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Chapter 1

Introduction

This work studies a methodology for creating provably correct real-time software
controllers. A real-time software is a program for which the correctness depends
not only on the soundness of its outputs, but also on the time at which those
outputs are produced. For instance, a nuclear power-plant emergency shutdown
sequence might involve numerous steps such as opening valves, raising robotic
arms, triggering sound alerts, etc. Each of those steps must be accomplished in
a timely fashion in order to prevent a catastrophe. When the possible damage
caused by software failure reaches a certain point, it is more and more considered
necessary to have some kind of formal assurance that the control software will
always operate as required, that is by keeping the controlled environment in a
safe state (the plant has not exploded, the aircraft has not crashed, etc.). To
obtain this formal assurance, we need a way of reasoning on control software such
that a proof of correctness can be constructed. This is done by (1) constructing
a formal model M of the system (including environment and control software),
(2) by specifying a formal property ¢ that the model needs to satisfy, and (3)
by proving that M |= ¢. When such a proof can be obtained, we say that the
control software is provably correct.

1.1 Formal Methods for Software Verification

Several formal methods for creating provably correct software have been studied
in computer science, each having their own particularities. These methods can
be classified in two distinct categories, which we introduce in turn.

1.1.1 Bottom-Up Approach

One way of reasoning about software that yields correctness proofs works by
proceeding bottom-up. Based on informal specifications, a software solution is
created, using standard software design techniques. After this first step, the
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control software and its environment are then abstracted, to provide a formal
model. Great care has to be put into this abstraction phase, to make sure that
the model is a sound over-approximation of the real system.

The notion of over-approximation is a key concept in software verification. In
short, a formal model correctly over-approximates a real-world system if we have
that every property which can be proven true on the model will also be true for
the real system. This is done by ensuring that every possible behavior of the real
system 1is included in the set of behaviors that the model contains. The model
can contain more behaviors however, hence the term over-approximation.

Once the formal model has been created, it is possible to reason on that model
in a formal way, in order to obtain formal assurance that the real system is indeed
correct (i.e. it satisfies some formal specification).

1.1.2 Top-Down Approach

Another approach to software verification (and the one we will use in this study)
works the other way around. Using the informal specifications of the system
to implement, a model is created before the beginning of the implementation
process. The same care has to be put into the model design than in the former
approach, in order to reason on a sound over-approximation of the target system.
This approach however, has one considerable advantage : after having verified
that the model is correct, it is possible to construct the implementation of the
software in a systematic way. This of course requires that the model be designed
in such a way that a systematic implementation is possible. Another considerable
advantage of the top-down approach is that it can detect design flaws before the
implementation process. If severe errors are found after the implementation has
been created, part of the programming effort will have been wasted.

1.2 Provably Correct Real-Time Controllers

In this work, we will use a top-down verification approach and apply it in the
context of real-time embedded controllers. In this study, a controller is a real-
time software interacting with an environment, and which has the responsibility
of keeping its environment in a safe state (or set of states). Such controllers are
often embedded physically in their environments, as for instance the ABS which
is found in cars, or the auto-pilot software aboard airplanes. These embedded
applications are often found in safety-critical environments, justifying the need
for formal verification.

The verification process that we will use to verify software controllers will
focus on the soundness of its output commands. We will not care so much about
the secondary computations that the controller must make to take decisions,
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but rather focus on verifying that the controller is able to issue the appropriate
commands at the right time, in all situations.

For example, consider a controller interacting with a valve, which needs to
be operated to regulate the air-pressure of a tank. The software controller is
aware of the current air-pressure by using an input-sensor and is linked to the
valve by an output port. The valve control chip periodically reads an integer
value on its input port and changes the valve opening angle accordingly, in real-
time. In this situation, the control software operates by monitoring an integer
input value and changing an integer output value accordingly. Our verification
methodology will not manipulate these values directly, but rather abstract them
with events. In this case, the output command could be abstracted by a single
ChangeValveAperture event, and our verification process will be able to verify that
it is issued by the controller appropriately. The rationale behind this abstraction
is that (1) it greatly simplifies the design of the controllers and (2) that once it
has been proven that the right command is always emitted at the right time,
it is always possible to prove that the actual contents of that command is also
appropriate, if need be. This latter verification would need other techniques
which are beyond the scope of this work, so we will not discuss them further.
The abstraction of controller-environment communication is illustrated at figure
1.1.

By abstracting the inputs and outputs of our software controllers with events,
it is possible to design and analyze them in a natural way by using language the-
ory. Hence, we will model the software control-logic with automata. Likewise, we
will construct models for the environments using automata, and study the system
as a whole, using the composition of the controller and environment automata.

1.3 Modeling Real-Time Controllers with Timed
Automata

Since we need to design and verify control logics with real-time requirements,
finite-state machines (regular languages) do not suffice in our context. We will
need a more powerful computation model to analyze real-time software con-
trollers, namely the timed automaton.

Timed automata have been introduced in [AD94], as an extension to regular
automata incorporating the notion of time, and have been widely adopted in the
research community as a tool for modeling real-time systems. A timed automaton
is a finite-state machine augmented with a finite number of clocks. These clocks
are real-valued variables which are used to count time and thus have a first
derivative equal to one. They are used to restrict the possible behaviors of the
automaton, by adding timing constraints to its nodes and edges. For example it
is possible to express behaviors such that “stay in that location while clock x is



CHAPTER 1. INTRODUCTION 3

( )

...1000110100100...

-

N
Y

...0101101000110...

PressureTooHigh

OpenSafetyValve

\. J

Figure 1.1: Abstraction of real-world communications using events. The top part
of the figure represents the real-time data exchange between the controller and
its environment, as it really occurs. For our verification purposes, we will study
these communications using abstract events, as shown on the bottom part of the
figure.

smaller than 3”7 or “take that edge as soon as clock y is equal to 27, etc. Timed
automata are defined formally in the next chapter.

The popularity of timed automata is such that a number of model-checking
tools exist to facilitate their analysis. The most notable ones include UPPAAL
[BLL*98] and Kronos [DOTY95].

1.4 Modeling Environments With Timed or
Hybrid Automata

Our verification approach is applicable to environments modeled with timed or
hybrid automata.

Hybrid automata [Hen96] are more sophisticated computation models than
timed automata, as they allow for more complex continuous behaviors. A hybrid
automaton can not only model time, but also any continuous dynamics such as
temperature, voltage, height, pressure, etc. Like the timed automaton, the hybrid
automaton is equipped with a finite number of variables, but their first derivative
is not necessarily equal to one; in fact, it does not even need to be constant, as
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hybrid automata define their continuous dynamics with differential equations.

The tank environment of the previous section for example, could be modeled
elegantly with a hybrid automaton. It would have a variable representing the
pressure of the tank, with each discrete location enforcing a particular pressure
dynamics (indicating how fast the pressure rises when the valve is closed, for
instance). With an environment modeled this way, it is possible to verify formally
that the pressure variable will never reach some critical threshold for example.

Unlike with timed automata, the analysis of hybrid automata turns out to
be undecidable in the general case!. This is immediate, because we do not know
how to solve differential equations in general. To work around this undecidability,
several subclasses of hybrid automata have been studied, most notably the rect-
angular hybrid automaton. The study of these subclasses has made it possible to
analyze hybrid automata with the help of automated tools. These tools include
for example HYTECH [HHW97] and PHAVER [Fre05].

In this work we will restrict ourselves to the use of timed automata. However,
our methodology is completely applicable to environments modeled with hybrid
automata.

1.5 Synchrony Hypothesis

Many approaches to the software verification problem use what is usually referred
to as the synchrony hypothesis. When making that hypothesis we assume that
the hardware on which our software controller will run is perfect in the following
sense :

1. The synchrony hypothesis assumes an infinitely fast hardware. This implies
that (1) any computation can be done in zero time units, and (2) that the
controller can read input data and emit output commands instantaneously.

2. Tt also assumes that clock rounding errors never happen; this is essentially
the same as requiring hardware clocks of infinite precision.

3. Finally, it assumes that the hardware clocks do not drift. A drifting clock
is a digital clock which sometimes “looses” a tick, yielding inaccurate time
readings. No real-world clock has a drift of zero, even the most sophisticated
atomic clocks do drift (albeit very slowly).

The reason why such an unrealistic hypothesis is used is that (1) it greatly
simplifies the design and analysis of software systems and (2) that in many situa-
tions the execution times and rounding errors are just too small compared to the
scale of the environment. Indeed, if every delay or time lapse is of several orders

By analysis of timed or hybrid automata, we mean reachability analysis unless otherwise
stated.
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of magnitude smaller than any time constraint required by the environment, they
can be safely ignored.

However, clearly there are cases where making the synchrony hypothesis is
just too unrealistic. In those circumstances, we have to make sure that the soft-
ware will run appropriately, even on hardware with limited speed and relatively
unreliable clocks.

One way of achieving this verification is to study the target hardware plat-
form, and incorporate its limitations into the controller model. This can be quite
difficult and time consuming, and the result might only be valid for one platform.

Another approach has been studied by Raskin et al. in [DDRO5b]|, which
works by using the synchrony hypothesis for the design of the controller, and
by formally validating that hypothesis during the verification phase. This is
achieved by using a special semantics for the controller automaton, called the
Almost ASAP semantics. This approach is studied in detail in chapter 3.

1.6 Syntax and Semantics

The theoretical aspects of this work will rely heavily on the dual notions of syntax
and semantics. In this work, what we call syntax is a formal definition of a set of
legal objects. The syntax definition indicates which are legal objects and which
are not. For example, the syntax of regular expressions is such that (a + b(cd)*)
and ((ab)Tc) are considered legal, while ((ab)*) and ((acd)+)) are not.

A syntax definition alone is meaningless without an associated semantics. The
semantics definition creates a formal object, the form of which depends on the
syntax. To continue with regular expression, the semantics of (a + b(cd)*), which
we note [(a + b(cd)*)] is the set of strings : {a, b, bed, beded, bededced, . . .}

The advantage of distinguishing syntax and semantics is clear : it is much
more convenient to write (ab)*(cd)* + e f, than {¢, ab, abab, ababab, .. . , cd, cdcd,
cdeded, . . ., abed, ababed, abababed, . . ., abeded, abededed, . . ., ef eef eeef, ...}

Moreover, the latter description is not only heavy and difficult to understand,
it is also ambiguous®. This is why we use syntax definitions; to represent complex
(and possibly infinite) mathematical objects (which are ultimately described by
the semantics) in a concise and unambiguous manner.

In this work, we will not use regular expression to reason on software con-
trollers, but rather timed automata and timed transition systems. Timed au-
tomata will provide syntax to our models, and we will define their semantics in
the form of timed transition systems. As with timed automata, timed transition
systems will be discussed in the next chapter.

2This example is a bit overdone to stress the point. It is of course possible the express the
language of the regular expression above in a totally unambiguous fashion.
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1.7 AASAP Semantics and Implementability

As stated previously, the Almost ASAP semantics provides a means to formally
validate the synchrony hypothesis. This approach works as follows :

1. A model for the controller is designed, using timed automata. At this
point, we do not worry about the limitations of the hardware yet. This
allows the designer to focus on control logic rather than implementation
details, yielding simpler and more elegant models.

2. When the controller automaton and environment automata have been cre-
ated, they are analyzed in the classical way by composing both automata
and applying model-checking techniques. This analysis is made using the
standard semantics for timed automata, which does not forbid unimple-
mentable behaviors. A sequence of actions is considered unimplementable
in our context, if it cannot be executed by hardware, no matter how fast it
is or how precise its digital clocks are. These behaviors include for example :
taking several discrete transitions consecutively, without letting time elapse;
or taking transitions only at fixed points in time (this is unimplementable
because it requires infinite clock-precision). Thus, this preliminary analy-
sis can yield “correctness proofs” for controllers which cannot be used in
practice.

3. To make sure that the control strategy can be be executed by hardware,
we analyze the system a second time, but with this time using the Al-
most ASAP semantics for the controller. Using this semantics, it is be
possible verify (with the help of automated tools) the correctness and im-
plementability of control strategies expressed with timed automata?®.

The reader might wonder why the second step is necessary. In fact, it is not.
However, as analyzing the classical semantics of timed automata is much faster
than with the Almost ASAP semantics, that second step is very useful in practice
(because if it fails, the next step will certainly fail as well).

1.8 Implementing Controllers Systematically

We have stated earlier that one of the advantages of the top-down verification ap-
proach is that it is possible to create implementations in a systematic way. With
the Almost ASAP semantics approach, this is achieved using an implementation
semantics.

3 Actually, the Almost ASAP semantics is not exactly applied on timed automata but rather
on one of its subclass, called ELASTIC controllers. The difference is quite small however, and
will be detailed in the following chapters.
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Once the control-logic of the controller has been proven correct and imple-
mentable, we give a third semantics to the controller’s timed automaton, which
does not only describe what the controller does, but also contains details on
how this is achieved in practice. The purpose of the three semantics we have
mentioned can be summarized as follows :

e The classical semantics enables us to ensure that a control strategy is sound
in the context of the synchrony hypothesis.

e The Almost ASAP semantics enables us to verify that a control strategy
remains sound, even when executed on hardware with limited speed and
precision.

e The implementation semantics describes how the control strategy is exe-
cuted by hardware and enables us to construct implementations in a sys-
tematic way.

In [DDRO5b], Raskin et al. have demonstrated how their methodology can
be used to create implementations in a systematic manner, by using a proof-of-
concept implementation semantics, which they called program semantics. They
successfully applied this methodology in practice, by creating a code generating
tool* for the LEGO MINDSTORMS™ platform.

1.9 Goal and Structure of this Work

The goal of this work is to study how the Almost ASAP semantics approach can
be applied to more realistic embedded real-time platforms. The implementation
semantics described in [DDRO05b] has been voluntarily kept simple, and thus
makes almost no hypothesis about the target run-time environment. As we will
see in the following, the Almost ASAP semantics approach can be improved if we
assume that the generated code will run on a hard real-time operating system.
Our work will be structured as follows :

e In chapter 2, we define timed automata and their classical semantics. We
will see how these automata are suitable for the design and analysis of
real-time software and how this is done in practice.

e In chapter 3, we define the Almost ASAP semantics and the various defini-
tions needed for its use. We will keep a to-the-point approach, by reviewing
only the essential aspects which will be needed in this work.

4The tool is available at http://www.ulb.ac.be/di/ssd/madewulf/aasap/
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e In chapter 4, we define the Program Semantics, as described in [DDRO5Db].
This definition will be followed by a discussion analyzing how it can be im-
proved in the context of real-time operating systems. We will then define
a new implementation semantics, called unsurprisingly Real-Time Seman-
tics, which takes advantage of the capabilities of an RTOS. To validate this
new semantics formally, we provide a complete simulation proof with the
Almost ASAP Semantics.

e In chapter 5, we present a modern hard real-time operating system, namely
RTATI’. We briefly describe its architecture and a small subset of its API
(this information is needed in the following chapter).

e In chapter 6, we present SPECTRE, a tool for generating provably correct
real-time code which has been created to demonstrate the practical appli-
cability of our work. We describe how a SPECTRE-generated controller uses
the RTAI run-time environment to behave consistently with the Real-Time
Semantics. We also describe the tool’s input language, along with details
illustrating how it generates code and in what respect this code can be
considered provably correct.

e In chapter 7, we illustrate the use of SPECTRE with a case-study.

e In chapter 8, we conclude this work by a discussion reviewing the progress
made in this work, and pointing out some suggestions as to how it could
be improved.

e Appendix A contains the grammar of the SPECTRE input language.

e Appendix B contains an example of a SPECTRE-generated controller.

SRTALI is freely available for download at http://www.rtai.org



Chapter 2

Timed Automata

This chapter introduces the theoretical background needed for the following chap-
ters. Definitions are given for timed automata, as well as a number of their useful
properties. In the final part of the chapter, we show how these computation mod-
els can be used in practice with a couple examples.

2.1 Syntax of Timed Automata

Timed automata are finite state automata extended with a finite number of clocks.
When a timed automaton (TA) stays in one particular location, each of his clocks’
value increases continuously with first derivative equal to one. As a discrete
transition occurs, the TA can either reset a clock to zero, or leave it untouched.
Before the formal definition, here is a small example of a timed automaton :

EnterPassword PasswordOK

)

BadPassword
t:=0

Figure 2.1: Simple example of a timed automaton.

11



CHAPTER 2. TIMED AUTOMATA 12

This simple timed automaton has four locations and one clock : t. As indi-
cated by the small arrow in the upper left part of the figure, location 1 is the
initial location of this automaton. Three of the four transitions are labeled with a
string; they materialize events that occur in the system. Labels and events will be
treated in depth later in this chapter. Transition 2 — 4 assigns the clock t to the
value zero. Thus, while in location 4, the value of clock ¢ increases continuously
from zero onward. Exactly three time units later, t will hold the value 3 and the
transition 4 — 1 will be enabled, because the predicate attached to it becomes
true. When one of its transition becomes enabled a timed automaton can take
that transition as long as it stays enabled. It is important to note that a TA does
not have to take an enabled transition, and this often leads to non-deterministic
behaviors. In this particular case, the automaton is fully deterministic thanks
to the predicate attached to location 4. The automaton cannot refuse to fire
transition 4 — 1 when ¢ equals 3 without violating the predicate t < 3.

Synchronization labels

The edges of timed automata are sometimes tagged with strings. Their purpose
can be purely informational (as in the example of figure 2.1), or they can be used
to synchronize events with other automata. When modeling complex interacting
systems, it is often convenient to model each system separately with its own
TA. Then, a special operation called synchronized product (also called parallel
composition in the literature) makes one big timed automaton with all the small
ones. The synchronization labels provide a means of communication between the
automata within the composition. This is best illustrated by an example.

The example of figure 2.2 is a much simplified version of the ICMP! protocol.
One station sends a “ping” packet to the other, which in turn responds with an
“echo” reply. Observe that not all labels are used to synchronize the sender with
the receiver : the label Timeout is not seen by the receiver. Throughout this
work, we will use the popular convention of adding an exclamation mark after
output messages, and a question mark after input messages. As illustrated by
the figure, the synchronized product is a somewhat natural operation.

Guards and rate conditions

The control flow in timed automata is coerced by the predicates attached to its
locations and edges. The edge predicates are often called guards in the literature.
When a guard becomes true, the corresponding edge is said to be enabled and the
automaton can follow that edge as long as it stays enabled. Location predicates
are also often called invariant predicates in the literature. A timed automaton
cannot be in a location unless its invariant predicate is true, and must thus leave
its location whenever it becomes false. In the example of figure 2.2, the receiver

'ICMP stands for Internet Control Message Protocol.
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Timeout
t = alpha

Receiver

Sender || Receiver  echo

t <= alpha
s <= beta

Timeout
t = alpha

Figure 2.2: Illustration of synchronization labels and parallel composition.
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automaton can delay the “echo” up to beta time units, as it can take transition
4 — 3 without restriction (it is always enabled because its predicate is true?).
It may not stay longer, however, without violating the invariant predicate of
location 4.

Syntax definitions

Before defining the timed automaton, we need to precise what kind of predicates
can be used in their definition. We will use a notion similar to the one intro-
duced in [AD94], namely the rectangular clock predicate. Basically, with these
predicates it is only possible to compare a clock to a positive rational value, or to
a rational interval (possibly infinite). It is not permitted to compare two clocks
directly for example. Here is the formal definition.

Definition 1 [Rectangular Clock Constraint / Predicate] A rectangular clock
constraint over a set of clocks X is a formula of the form x € I, where [ is a
rational interval, open or closed and possibly infinite. Formally, I is of the form
(a,b), [a,b), (a,b],or[a,b] with a,b € Q=% U {+occ} and a < b.

A rectangular clock predicate is a finite set of rectangular clock constraints.
For a rectangular clock predicate p and a clock valuation v, we write v = p if
v(z) € I for every “xz € I” appearing in p. Finally, the set of all rectangular
clock predicates over a clock set X is noted Rect(X), and that same set but with
closed intervals is noted Rect.(X). O

Note that this definition is quite restrictive. It is not possible to express a
disjunction directly with one predicate for instance. These restrictions are made
to reduce the complexity of timed automata analysis. This phenomenon is well
known : models that are too expressive quickly become undecidable. It is shown
in [AD94], for instance that allowing to compare a rational value to the sum of
two clocks leads to undecidability of timed automata analysis.

We are now ready to define the timed automaton formally.

Definition 2 [Timed Automaton - Syntax] A timed automaton is a tuple (Loc, [y,
Var, Inv, Lab™, Lab®!t, Lab”, Edg) where :

e Loc is a finite set of locations.
e [y € Loc is the initial location.
e Var is a finite set of clocks, which are positive real-valued variables.

e Lab = Lab"ULab®“tULab" is a structured, finite alphabet of synchronization
labels. It is partitioned into input output and internal labels, respectively.

ZPredicates that evaluate to true are omitted in the figures.
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e Edg C Loc x Loc x Rect(Var) x Lab x 22" is a finite set of edges, also
called transitions. The edge (I3, 12, 9,0, R) goes from location [; to ls, re-
sets the clocks contained in R to zero and is enabled only when the clock
guard ¢ is true. Depending on the label ¢ attached to the edge, the tran-
sition represents the acceptance of an input (0 € Lab™"), the emission of
output(c € Lab®"), or an internal event (o € Lab").

0

2.2 Classical Semantics of Timed Automata

As mentioned in the introduction, the above syntax definition does not mean
much without an associated semantics. As we will define several semantics for
timed automata in this work (four in total), we will give a name to each to avoid
ambiguity. We start by defining the classical semantics of timed automata.

Timed transition systems

To formalize the semantics of timed automata we will use timed transition systems
(TTS). The TTS associated to a timed automaton captures two things : (1) the
complete state space of the TA, and (2) for each state of that space, the TTS tells
which states are reachable in one move®. The state space of a timed automaton
is the set of all configurations it can have, i.e. its current location and the value
of its clocks. As the clocks take their values from a dense set, the state space is
almost always infinite?.

Definition 3 [Timed Transition System| A timed transition system 7 is a tuple
(S, 1,5, —) where :

e S is a (possibly infinite) set of states.
e . € S is the initial state.

e Y is a finite set of labels.

e -C S x X UR2% x S is the transition relation with R=? being the set
{z € R | x > 0} of all non-negative real numbers.

0

3In this context, a mowve is understood as either a discrete jump or an arbitrarily small time
increment.

4One could make a timed automaton which never lets time elapse, by taking an infinite
number of transitions at time zero. Then indeed, the state space of that automaton would be
finite.
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Timed transition systems are very useful because they contain in a somewhat
concise manner all the possible behaviors of a timed system. This notion of
possible behavior is formalized by a path, and is defined as follows :

Definition 4 [Path in TTS] A finite path in the timed transition system 7 =
(S,1,%,—) is a finite sequence alternating between state and transition labels,
and is noted \. Let A = (so, 70, $1, 71, -+, Tu—1,Sn). A is a finite path of 7 if (1)
for every i € [0,n],s; € S and (2) for every i € [0,n), (S, T4, Siv1) €—. The length
of Ais n+ 1 and is denoted | A | . This definition is extended to infinite paths
in the obvious way and the length of such a path is +00. A path A is initial if its
first state is the initial state. We write Pathg(7") the set of all finite initial paths
of T and Path.(7) the set of all infinite initial paths of T. The set of states
which appear in A is noted State(\) O

Now we can define the useful notion of reachability in T'TS :

Definition 5 [state-reachability in TTS| Let 7 = (S, ¢, X, —) be a timed tran-
sition system and a state s € S. The state s is reachable in T if there exists a
finite initial path A\ = (so, 7o, $1, 71, - - Tn—1, Sn) such that s, = s. The set of all
reachable states in 7 is noted Reach(7). O

As stated in the introduction, the verification process we employ requires a
composition of the interacting system models. We cannot perform this composi-
tion at the syntax level because the environment and controller semantics will not
be the same. Hence, we need a way of composing timed transition systems. This
composition requires a partitioning of the synchronization labels into three sets,
so we refine our definition of T'T'S with a definition of structured timed transitions
systems.

Definition 6 [Structured Timed Transition System| A structured timed transi-
tion system (STTS) 7 is a tuple (S, :, X", ¥°Ut 37 —) where :

e S is a (possibly infinite) set of states.
e . € S is the initial state.

e The set of labels is partitioned into input (3™) output (3°“) and internal
labels (X7).

e -C SxYryxutyXT URZ x S is the transition relation.

O

Before formalizing the notion of composition mentioned earlier, we need to
take a few precautions. We have seen that timed automata communicate through
synchronization on common labels. This communication is blocking and we need
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to make sure that (1) no automaton deliberately refuses an input from another
and (2) no automaton sends an output to one that cannot receive it. These issues
are resolved by imposing input enabledness of the STTS.

Definition 7 [Input Enabled STTS] A STTS 7 = (S, ¢, X", ¥°ut Y7 —) is input

enabled if it can accept any input symbol, at any time. Formally, 7 must be such

that for all ¢ € ¥, for all s; € S there exists s, € S such that (s;,0,s:) €—.
L]

We are now ready to define the composition of two STTS. Note that this
definition can be extended to the composition of any number of STTS.

Definition 8 [Composition of STTS] Consider two input enabled STTS 7; =
(S1, 01, Y91, 81, X, —1) and T = (S, Lg, Y12, Yo 1, X5, —2). The parallel
composition of 7; and 75, noted 77||7; is the TTS 7 = (S, ¢, 3, —) such that :

1. S ={(s1,82) | s1 € S1 and sy € Sy} and ¢ = (11, t2).
2. Y =% _,US  USTUSS.

3. For every o € ¥ UR=?, we have that ((s1, s2), 0, (s}, s5) €— iff one of the
following assertions holds :

e [Internal move of 7;] o € X7 and (s1,0,s})) €—1 and s, = ss.
e [Internal move of 73] 0 € X7 and (s, 0, s5) €—9 and s = s;.
e [Synchronized move] o € ¥; ., U Yy .y URZY and (s1,0,s)) €—; and

(82, a, 8,2) E—9.

U

Definition 8 is rather straightforward. In the composition, a STTS can fire
internal events without disturbing the other and vice versa. The third assertion
in the definition of — ensures that (1) synchronization on common labels does
happen correctly, and (2) that time elapses identically on both sides.

Classical semantics of timed automata

We are now ready to give a semantics definition to timed automata. Bear in
mind that several other semantics will be used in the following chapters, here we
define what is called the classical semantics of timed automata.

Definition 9 [Timed Automata - Classical Semantics|] The classical semantics
of the timed automaton A = (Loc, ly, Var, Inv, Lab", Lab®"t, Lab”, Edg), noted [A],
is the STTS (S, ¢, X", 30U 7 —) where :



CHAPTER 2. TIMED AUTOMATA 18

S = {(l,v) |l € Loc and v is a valuation of the clocks in Var such that

v EInv(l)}.

v = (I, vo) with vy being a valuation of the clocks in Var assigning the value
zero to each clock.

o YN — Lab", Yout — [ abo¥t Y7 = Lab.

For every o € X" U X U X" URZ=Y) the transition ((I,v),0, (I',v')) €— iff
one of the following assertions holds :

— 0 € ¥"UXT U X and there exists an edge (1,1, g,0, R) € Edg with
v = g and v being the same valuation than v but assigning the value
zero to the clocks in R.

— The edge mentioned above doesn’t exist, o € X" and (I,v) = (I, v).

— 0 € R2% I’ = [ and for each clock x € Var we have that (1) v/(z) =
v(xz) +tand (2) Vt' € [0,t] : v+t |= Inv(]).

0

Notice how definition 9 formalizes the intuitions given previously. The se-
mantic state space of the timed automaton (S in the definition) is the set of
all configurations (i.e. location and clock valuation) which satisfy the invariant
predicates. Transitions can occur along enabled edges, which is only the case
when their guard is satisfied by the current clock valuation. The syntactic com-
ponent R of an edge indicates which clocks need to be reset after taking that
edge. A timed automaton can stay in (or enter) a location if and only if the
corresponding location predicate is satisfied. Finally, observe that our definition
of the classical semantics of timed automata is input-enabled : if an input arrives
and no edge specifies what to do, an implicit self-loop occurs (as stated by the
second assertion in the definition of —).

Illustration of the semantics definition

This definition is essential to the following chapters so we illustrate with an
example. Let A be the timed automaton depicted in figure 2.1. The syntax of
that automaton has not been given formally but it is straightforward. Its classical
semantics is the STTS [A]= (S, ¢, X", ¥°ut 7 —) where :

o S={(lv) | 1€{1,2,3}v(t) € [0,+00)} U{(4,v) | v(t) € [0,3]}
e | = (1,U0) with Uo(t) =0

o X" =Yt = ¢ 37 = {¢, EnterPassword, BadPassword, PasswordOK}
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,v), EnterPassword, (2,v)) | v(t)

1v), & [0, 420}
2,v), PasswordOK, (2, )) | v(t) € [0,+00)}

2,v), BadPassword, (4,v")) | v(t) € [0, 4+00),v/(t) = 0}
4,0),¢,(1,v)) | v(t) = 3)

[,v),0,(l,v+0)) | 6 € R=Y 1 € {1,2,3},v(t) € [0,+00)}
4,v),6,(Lv+0)) | § € R=° v+ 4(t) € [0, 3]}

CCccCccc

{((
{((
{((
{((
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2.3 Timed Systems Analysis

When using timed automata to analyze a timed system, we are generally in-
terested not only by the model itself but by the formal properties that can be
inferred from it. For example, an interesting property of the automaton of figure
2.1 could be phrased as “A brute-force attack of n password attempts requires
at least 3n time units”. Of course, we usually want to be more formal and this
section will show how properties are defined and used in practice.

Formal specifications have many kind of properties and this work will mainly
focus on one kind : safety properties. A safety property requires a formal system
to stay in a predefined subset of the state space, which is usually referred as the
safe states or good states. These kind of properties are very useful in practice
and suffice for many applications. One notable exception where safety properties
are not enough is the liveness (or fairness) type of property, which requires the
model to actually do what it is supposed to, in a finite amount of time, and to
have no deadlock®.

To define safety properties formally, we need to extend the notion of reacha-
bility of definition 5 to regions. A region of a timed transition system is a subset
of its state space. A region R is reachable in the TTS 7 if R N Reach(7) # ¢.

Definition 10 [Safety Property in TTS] Let 7 = (S,¢,0,—) and let R C S be
a region representing a set of good states. 7 is safe for R iff Reach(7) C R.
O

In practice, we use algorithms which compute Reach(7), and determine if
that set has an intersection with the complement of R in S. The set R = S\ R
is often called the set of bad states.

To formalize properties in a natural way, we usually use what is called a
monitor automaton. This automaton usually consists of two states : Good and
Bad with one edge going from the first to the second. On that edge we attach a
predicate corresponding to the negation of the property we want to verify. That
monitor automaton is then included in the composition, along with the other
agents in the system and we compute a reachability analysis to verify if indeed

°Indeed, a model which sits forever in its initial state (provided that state is safe) trivially
satisfies any safety property. This is usually easily detected, however, and does not always need
to be verified formally.
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Bad is never reachable. Of course, some safety properties will be complex enough
so that they cannot be expressed with only one clock predicate, and in that case
a bigger monitor automaton will be needed.

For example, to formalize the property mentioned previously, the monitor
automaton of figure 2.3 would work. To express the property accurately, it needs
three states.

PasswordOK ?

BadPassword ?

Figure 2.3: Example monitor automaton.
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2.4 Timed Automata in the Literature

This chapter only scratched the surface of the theory of timed automata. To keep
this work at a reasonable size, we have only given the few definitions needed for
the understanding of the following chapters. We have not described, for instance,
how timed automata can be analyzed effectively using automated tools. This
information, along with decidability results, can be found for example in [BY04]
and [AD94].



Chapter 3

Implementability of Timed
Controllers

The final goal of this work is to develop a methodology for building real-time
embedded software with formal assurance that it will work as intended. In the
previous chapter, we have seen that timed automata can be used to provide a
model for the controller and its environment and that it is possible to obtain
formal assurance that this model is correct, in the sense that it satisfies some
formal requirement.

However, as stated in the introduction, this proof of correctness is only valid in
the context of the synchrony hypothesis. This is because the classical semantics
of timed automata allows unimplementable behaviors. Consider the following
controller :

@ )

. J

Figure 3.1: This timed automaton has a classical semantics that is not imple-
mentable because it requires an infinite clock precision, which any hardware is
incapable of.

This controller is obviously not implementable and it illustrates one reason

22
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for this : any computer hardware has clocks with finite precision. The clocks of
timed automata take their values from a dense set, whereas hardware clocks are
always discrete and thus have limited precision. If the correctness of a control
strategy relies on infinite time precision, then it will not be implementable. We
need to make sure that clock-rounding errors will not induce bad behaviors of
the controller.

Infinite clock precision is not the only cause of unimplementability, as illus-
trated by this controller :

@ )

TooHot ?
t:=0

MakeltColder !

\. J

Figure 3.2: This second example illustrates the unimplementability caused by
the instantaneity required by the classical semantics. The classical semantics of
timed automata requires that these two transitions be taken in zero time units
which is impossible on any hardware.

This last example does not require infinite clock-precision (even digital clocks
can hold an exact null value) and yet it is not implementable. This is because
until now we have considered that the communication between the interacting
components of the system was instantaneous. This is very convenient at the
modeling level, but again it needs to be formally validated. Communications in
real implementations will always introduce delays and we need to make sure that
the control strategy remains correct when they happen.

The synchrony hypothesis can be seen as an undesirable “side-effect” of the
classical semantics of timed automata. This problem could be solved by taking the
hardware limitation into account in the controller design process. This amounts
to make syntactic changes to the controller automaton, by adding enough nodes,
clocks, predicates and edges in order to obtain a implementable model.

The Almost ASAP semantics approach suggests a different path; it incorpo-
rates the hardware limitations the target platform by the means of a semantics
change. This is very convenient because it keeps the controller automaton free of
implementation details.
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3.1 Overview of the Almost ASAP Approach

Recall the classical semantics of timed automata defined in the previous chap-
ter. This semantics interprets the syntax in the most obvious manner; an edge
guarded by the predicate t = 3 can only be taken when t is exactly 3. Simi-
larly, the classical semantics makes the emission of an output event correspond
to its arrival to the receiver at the exact same time. The idea behind the Almost
ASAP semantics is to make an interpretation of the syntax that is more relaxed;
by allowing some bounded imprecision on the guard evaluation mechanism, and
some bounded delay during synchronization on common labels, the almost ASAP
semantics makes the control strategy something which can be executed by hard-
ware.

The Almost ASAP semantics is parametric, it takes a real-valued parameter
noted A, which represents a superior bound on both the time-imprecision of
the hardware and communication delay. This parameter is used throughout the
semantics, extending its possible behaviors to a wider range. For example, with
the AASAP semantics the interpretation of every guard of the automaton is
enlarged by the parameter A. An edge with a guard predicate ¢ = 3 will be
traversable when ¢ € [3 — A, 3 + AJ. So, if the time imprecision of the hardware
is bounded by A, the controller implementation will have a chance to take the
edge appropriately. The AASAP semantics also makes a distinction between the
emission of an event and its arrival. This is done by duplicating event labels :
one set corresponds to the emissions, and the other to the actual treatments by
the receivers. When an event is emitted by the environment, the almost ASAP
semantics allows the controller to wait up to A time units before taking that
event into account. This represents the time needed for the hardware to detect
the event appropriately.

Suppose we have a controller modeled with a timed automaton A. We can
prove that [A] satisfies some properties, but we cannot do so directly for its almost
ASAP semantics : [A]A***®. To be able to analyze the almost ASAP semantics
effectively with the tools and theories available, we need a way of transforming A
into some A’ such that [A'] is somehow similar to [AJX*®. In this work, we will
use simulations - and the dual notion of refinement - to formalize this similarity.

3.2 Simulation and Controller Refinement

In the previous chapter, we have defined the structured timed transition system,
which in our context is used to represent the timed state space of the controllers
and environments we want to model. The STTS describes for each state, which
states are reachable in one transition - discrete or continuous. The possible
behaviors of an STTS is represented by the set of all its initial paths. The
concept of simulation is closely related to initial paths; intuitively, an STTS A
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can simulate another STTS B if every initial path of B is also an initial path of
A. In short, in order for A to simulate B it must have at least as much possible
behaviors as B. The notion simulation is defined formally by constructing a
relation between the state spaces of the two STTS :

Definition 11 [Simulation relation for STTS] Given two STTS,

7'1 = <Sl, Ly, Ziln, Z?Ut, 271—, —>1> and 7’2 = <Sg, Lo, Zizn’ ZSUt, 272—, —>2>, let X = Z?Ut U
YinUYT, we say that 7 is simulable by Ty, noted 7o C 7, if there exists a relation
R C Sy x 8 (called a simulation relation) such that:

o (12,11) € R;

e forany (sz,s1) € R, for any 0 € SUR=Z?, for any s} such that (s, 0, s}) €—o,
there exists s§ € S such that (sy,0,s]) €—1 and (s5,s]) € R.

O

When two STTS can simulate each other, we say that they are mutually
similar, but this will not be needed in the following. The similarity we have
defined is sufficient in our context because it preserves safety properties.

To reason on preservation of safety properties, it is convenient to think in
terms of refinement. The notion of refinement is dual to that of simulation; if
B C A, ie. A can simulate B, then we say that B refines A, in the sense that
B has less possible behaviors than A. Safety properties which are satisfied by an
STTS are also satisfied by any refined version of that STTS. In fact, simulation
relations even preserve stronger properties such as the ones that can be expressed
with LTL formulas.

Recall from definition 10 that an STTS 7 is safe for a region R iff Reach(7") C
R. The preservation of safety properties is formalized as follows :

Theorem 1 Let ,]1 = <Sl, Ly, Ziln’ ch)Ut, 271—, —>1> s 7’2 = <Sg, Lo, Zi2n, ng, 272—, —>2>
be two STTS such that 7; C 72. If 75 is safe for a region R C Sy C S then 73
is also safe for R.

This theorem will be extremely useful in the following. Recall that our ulti-
mate goal is to generate provably correct code in a systematic fashion. As we have
seen in the introduction, this will require the use of an implementation semantics,
which details how the hardware executes the control strategy described by the
corresponding timed automaton. To verify the soundness of the implementation
semantics, we will use simulation proofs. Indeed, if we can prove that an imple-
mentation semantics is simulable by the AASAP, then we will not need to verify
the safety of that implementation semantics, thanks to the above theorem. Such
a simulation proof will be given for the Real-Time Semantics in the next chapter.
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3.3 EvrasTIiC Controllers and ASAP Semantics

As seen in the previous chapter, invariant predicates can be attached to the
nodes of a timed automaton to force it to leave its location. This was necessary
in order to obtain a controller which does not idle constantly. A simpler way
to work with timed automata is to remove invariants completely and assume an
ASAP behavior. This ASAP semantics makes the automaton take every action
as soon as possible, thus removing the need for invariant predicates completely.
In [DDRO5b], controllers are modeled with this subclass of timed automata, and
are called ELASTIC controllers.

Definition 12 [EvrasTiC Controller] An Elastic controller A is a tuple
(Loc, ly, Var, Lab™, Lab®“t, Lab™, Edg) where:

e Loc is a finite set of locations;
e [y € Loc is the initial location;
e Var = {xy,...,x,} is a finite set of clocks;

e Lab = Lab™ U Lab®'t U Lab” is a finite structured alphabet of labels, par-
titioned into input labels Lab™, output labels Lab®“t, and internal labels
Lab7;

e Edg is a set of edges of the form (I,1', g, o, R) where [,{" € Loc are locations,
o € Lab is a label, g € Rect.(Var) is a guard and R C Var is a set of clocks
to be reset.

O

Note that ELASTIC controllers only use closed rectangular predicates. This is
because in our context of finite clock-precision, comparing a clock to a non-closed
rational interval does not make sense.

3.4 Almost ASAP Semantics

Before defining the AASAP semantics we need a couple more definitions:

Definition 13 [True Since] We define the function “True Since”, noted TS :
[Var — R=2Y] x Rect.(Var) — R=%U {—o0}, as follows:

t foEghv—tEgAVE >t:v—t g
—oo  otherwise

TS(v, g) = {
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This TS function will be used in the AASAP semantics definition to express
that the controller must take action when the predicate of an outgoing edge has
been true long enough. Recall that the AASAP semantics allows a delay of up
to A time units before taking a transition.

To represent the clock imprecision, the guards attached to the edges of the
elastic controller are enlarged. This is formalized as follows :

Definition 14 [Guard Enlargement| Let g(z) be the rectangular constraint “z €
[a, b]”, the rectangular constraint rg(z)a with A € Q=° is the formula “x € [a —
A b+A]" ifa—A > 0and “z € [0,b+ A]” otherwise. If ¢ is a closed rectangular
predicate then aga is the set of closed rectangular constraints {ag(z)a | g(z) €

g} ]

We are now ready to define the AASAP semantics. Intuitions are given right
after the definition.

Definition 15 [AASAP semantics] Given an ELASTIC controller
A = (Loc, Iy, Var, Lab™, Lab®t, Lab”, Edg)
and A € Q2°, the AASAP semantics of A, noted [A]JX** is the STTS
T = (S, 1,2 ¥out 37 )
where:

(A1) S is the set of tuples (I,v, I,d) where [ € Loc, v € [Var — R2%], [ € [&i" —
R=°U {1}] and d € R=;

(A2) ¢ = (lp,v,I,0) where v is such that for any x € Var : v(z) = 0, and [ is
such that for any o € ¥, I(0) = L;

(A3) X" = Lab™, ¥out = Lab®, and X7 = Lab™ U Lab™ U {¢};
(A4) The transition relation is defined as follows:

— for the discrete transitions, we distinguish five cases:
(A4.1) let o0 € Lab®"*. We have ((l,v,I,d),o,(I';v',1,0)) €— iff there
exists ([,1', g,0, R) € Edg such that v = aga and v/ = v[R := 0] ;
(A4.2) let o € Lab™. We have ((I,v,1,d),o, (l,v,I',d)) €— iff
- either I(0) = L and I' = I[o :=0];
~orl(o)# Land I'=1.
(A4.3) let & € Lab". We have ((I,v,1,d),a,(I',v',I',0)) €— iff there
exists ([,1',g,0,R) € Edg, v = agn, I(0) # L, v = v[R := 0] and
I'=1I[o:=1];
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(A4.4) let 0 € Lab™. We have ((l,v,1,d),o,(I';,v',1,0)) €— iff there
exists (I,I',g,0, R) € Edg, v E aga, and v/ = v[R := 0] ;
(A4.5) let 0 = €. We have for any (I,v,I,d) € S: ((l,v,1,d),¢,(l,v,1,d))
c—.
— for the continuous transitions:
(A4.6) for any t € R=2°, we have ((I,v,1,d),t,(l,v+t, 1+t ,d+t)) €~
iff the two following conditions are satisfied:
- for any edge (I,I',g,0, R) € Edg with ¢ € Lab®** U Lab", we
have that:
Vi:0 <t/ <t:(d+t <AVTSw+t,g9) <A)
- for any edge (1,1, g,0, R) € Edg with o € Lab'", we have that:
Vil 0 <t/ <t:(d+t' < AVTS(v+t,g9) < AV({I+t)(0) < A)

O

Comments on the AASAP semantics definition

(A1)

(A4.1)

(A4.2)

The state space is made of 4-tuples (I,v,1,d). [ and v are the location
and clock-valuation as in the classical semantics. [ is vector assigning a
real value to every input label, representing the time elapsed since the last
untreated occurrence of that label, or L if there is no pending occurrence of
that label. The AASAP semantics does not react instantaneously to input
events, so it needs to remember how long it has delayed an input. The value
d holds the time elapsed since the last location change occurred. That value
will be used to delay edge crossings; the controller can ignore an enabled
edge if d is smaller than A.

The initial location definition is straightforward.

As mentioned previously, the AASAP semantics duplicates input labels.
A distinction is made between the emission of an output label o and its
reception as an input label @ by the controller. When the input is actually
received, it is treated as an internal event, hence Labi" is added to 7.

To cross an edge tagged with an output label, the current clock valuation
must satisfy the corresponding guard predicate, enlarged by A. The nota-
tion v = v[R := 0] means that v’ is the same valuation than v but assigning
the value 0 to the clocks in R. This behavior is exactly the same as in the
usual semantics, except for the guard enlargement.

This rule indicates what happens when a label is emitted by the environ-
ment. In the normal case, the corresponding value in [ is set to zero. If
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(A44.3,4,5)
(A4.6)

more than one input of the same kind is received before the controller had
the chance to treat the first one, the semantics simply ignores the others
and the “older” value in [ is kept. Note that no edge is crossed at this point,
the controller stays in its location for now. Also, this rule alone ensures the
input enabledness of the controller.

These rules should be clear with the previous comments.

The previous rules defined when the controller can take action, this rule
states when it must do so. It can let £ time units elapse and not take a
transition only if (1) the controller made a location change less than A time
units ago : d+1t < A; or (2) there are no enabled outgoing edge, or if there
are enabled outgoing edges, they have been enabled for less than A time
units : TS(v +t,g) < A. Also, the controller cannot delay the treatment
of an input event more than A time units : (I +¢')(0) < A.

Summary of the Almost ASAP semantics

Let us summarize the previous formal definition. In our methodology, control
strategies are expressed using a syntax that is free of invariant predicates. The
controller always tries to take a transition as soon as it can thus, almost as soon
as possible. The “almost” is quantified by the parameter A, which is the upper
bound on three different delays or time imprecisions :

e The controller can wait up to A time units between two location changes,

no matter the outgoing edge guards. This represents the fact that CPUs
are not infinitely fast; a “location change” in the real world takes up a few
processor cycles. It would be unreasonable to qualify a semantics allow-
ing an infinite number of location changes in a finite amount of time as
implementable.

Since digital clocks aboard real computers have finite precision, every edge
of the controller is enlarged by the value A. If clock-rounding errors are
guaranteed to be always smaller than A, then then controller implementa-
tion will be able to cross the edge appropriately in all situations, despite
the imprecision of its clocks.

Finally, the almost ASAP semantics models communication delays that can
be as large as A. Each time an input arrives, the controller can wait up to
A time units before taking the corresponding edge, thus taking the input
into account.
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Example

As with the Classical Semantics, we illustrate the Almost AASAP Semantics
definition with an example. Again, we use the timed automaton of figure 2.1
but with a minor modification : consider EnterPassword as an input label and
BadPassword and PasswordOK as output labels. Also, as we work with an ELASTIC
controller this time, the predicate attached to location 4 is removed. To simplify
the notations, consider that the clock valuation v and the input delay vector
I are real values - I can still have the value L. There is only one clock and
input label in this example so this works fine. Finally, in the definition of —
assume that the free variables which are not quantified on the right hand side
of the set definitions are simply non-negative real values. The Almost ASAP

semantics of that ELASTIC controller is the structured timed transition system
[[A]]AAAsaP: <S’ L, Ein’ Eout’ ET, _>> where -

o S={(l,v,I,d) | 1€{1,2,3,4},v,de R=°, T € {R=°U 1L}}
e 1 =(1,0,1,0)
e X" = {EnterPassword}, ¥°“t = {EnterPassword, BadPassword}, ¥7 = {¢}

e — = {((l,v,L,d),EnterPassword, (I,v,0,d)) | I € {1,2,3,4}}
U {((l,v,[, d), EnterPassword, (I,v,1,d)) | l € {1,2,3,4}}
U {((1,v,1,d), EnterPassword, (2,v, 1, 0))}
U {((2,v,1,d), PasswordOK, (3 v,1,0)) | I € {R="U _L}}
U {((2,v,1,d),BadPassword, (4,0,1,0)) | I € {R=°U 1}}
U {((4,v,1,d),€e (1vIO))|v€[ — A3+ AL Te{R>2UL}}
U {((1,v, L,d),t,(1,v+t,L,d+1))}
U {((1,U,I,d),t,(1,U+t,[+t,d+t>) | T e {R2OU L}, T+t <A}
U {(2,v,1,d),t,2,v+t, I +t,d+1t) | I e {R=PU L}, d+t <A}
U {(B,v,1,d),t,(3,v+t, I +t,d+1t)) | [ € {R=PU_L}}
U {((4,0,1,d),t,(4,v+t, I+t d+1t)) | [ € {RZOU L}, v+t <3}
U {((4,0,1,d),t,(4v+t, I+t d+1t) | [ € {RZOU L}, d+t < A}

Comments on the discrete transitions

e (1) The controller waits for the input event EnterPassword. When it arrives,
I is set to zero but no location change occurs yet. Notice that there is
no restriction on the location here; the controller can receive the input
EnterPassword at any time, ensuring input-enabledness.

e (2) As stated by the semantics, the controller ignores the subsequent emis-
sions of an untreated input symbol; I and d are left untouched (We know
that there is an untreated occurrence of the input symbol because I is a
real value and not ).
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e (3) This set of transitions represent what happens when the controller has
taken the input into account. [ is reset back to L, d is reset to zero, and
the location changes from 1 to 2.

e (4) There is no guard attached to the edge 2 — 3, so this transition can be
taken for any valuation v. It is important to note however, that this does
not mean that the controller can delay the emission indefinitely; at some
point it will have to make that transition when the transition relation —
does not allow it to let time pass anymore.

e (5) This works just the same as the previous one, except that we reset the
clock valuation as required by the edge 2 — 4.

e (6) The edge 4 — 1 illustrates how the guard enlargement works. This
edge is enabled as long as the clock valuation satisfies the enlarged guard
predicate.

Comments on the continuous transitions

e (7) Since the only outgoing edge of location 1 corresponds to an input, the
controller can wait there indefinitely, as long as no input has arrived, i.e.
as long as [ = L.

e (8) When in location 1, the controller can delay an untreated input for as
long as A time units but not longer.

e (9) When in location 2, the controller faces two outgoing edges that are
always enabled. The classical semantics would require it to fire one of the
two immediately. Here, we allow the controller to stay in the location 2 for
as long as d does not grow larger than A.

e (10) As there is no outgoing edge in location 3, the Almost ASAP controller
can of course let time pass indefinitely.

e (11) This one is a little more subtle. The controller can delay the transition
4 — 1 for as long as the enlarged guard has not been true for longer than
A time units. Formally, using the semantics definition, we know that the
controller can wait ¢ time units if TS(v +t, v+t € [3— A,3 + A]) < A,
which is equivalent to v +¢ < 3.

e (12) This is the same as (9), but for location 4.
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3.5 Almost ASAP Semantics Analysis

We have defined the Almost ASAP Semantics formally and given some intuitions
and examples about why it is useful to ensure implementability. However, as
stated previously, the AASAP semantics is not known to model-checking tools
and thus cannot be analyzed “as is”. To work around this difficulty, it is shown in
[DDRO5b] how to construct a timed automaton with a Classical Semantics that
is simulable by the Almost ASAP semantics of another automaton which can be
constructed effectively. This is formalized by the following theorem :

Theorem 2 For any ELASTIC controller A, for any A € Q% we can con-
struct effectively a timed automaton A* = F(A, A) such that [A]A***PC[A%]
and [A2]C[AJY*.

The interested reader will find all the details of this construction, with full
proofs, in [DDRO5D].

Thanks to this theorem, we are able to analyze the Almost ASAP Semantics
effectively. We explain briefly how this is achieved in practice. Suppose we want
to control an environment E to avoid some bad region B, subset of the state
space of the STTS [E]. Using the methods introduced in the previous chapter, it
is possible to design an elastic controller A and verify formally that [A] is safe!
and controls E to avoid B. Now we want to to know if the control strategy A
is implementable. To achieve this, we need to find if there exists some A > 0
such that [AJX*® controls [E] to avoid B as well. Hence, we construct the
timed automaton A® and analyze it parametrically to verify if there exists a
positive rational A such that the control strategy A controls its environment F
in a safe and implementable manner. This parametric analysis can for example
be computed with the help of HYTECH. If no parametric tool is available or if its
computation does not terminate, it always possible to obtain an approximation
of the best A by doing a binary search in the range of possible values. This way,
the best A value can be approximated up to any precision.

Our work focuses on the satisfaction of safety properties, but in fact the above
construction could be used to prove the satisfaction of more complex properties,
such as LTL (Linear Temporal Logic) formulas or even real-time properties such
as those expressed in MITL (Metric Interval Temporal Logic) or TCTL (Timed
Computational Tree Logic).

Tt must be mentioned that in this case, [A] is understood as the classical semantics of A,
but with an ASAP behavior. The classical semantics as defined in the previous chapter cannot
be used “as is” with ELASTIC controllers.



Chapter 4

Implementation Semantics

The previous chapter introduced a methodology with which we are able to design
and validate implementable strategies, using the Almost ASAP Semantics. But
as explained in the introduction, the Almost ASAP Semantics only describes
what is to be done to keep the environment in a safe state, but contains little
information about how a software controller is supposed to achieve this. We
provide this additional information in an implementation semantics.

We will require the implementation semantics to have the following charac-
teristics :

e Parametricity. As the AASAP semantics, the implementation semantics
will need to be parametric. Its parameters will represent the run-time
limitations that the implementation will have to face. This includes clock
imprecision, communication delays, CPU speed, etc.

e Almost ASAP Simulability. We will require that the implementation
semantics be simulable by the Almost ASAP semantics. As both semantics
are parametric, the existence of such a simulation relation will depend on
the value of the parameters. As we have seen, STTS refinements preserve
safety properties. Thus, if a controller has been proven safe for a positive
Almost ASAP semantics parameter A, then there will exist a set of param-
eters (constrained by A) such that the implementation semantics will be
safe for those parameters.

e Systematic Implementability. This is probably the trickiest part. The
implementation semantics will need to contain details about how exactly
the software controller will function. We will require it to contain “enough
details” in order to be able to create a fully-functional implementation in a
systematic fashion. This will be hard to prove formally, so we will need to
justify this with informal arguments.

The rest of this chapter will be organized as follows. First, we will review the
proof-of-concept implementation semantics which was introduced in [DDRO5D).

33
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We will see how this semantics satisfies the above requirements, and then identify
certain aspects which could be improved. This discussion will lead to a new
implementation semantics, specially designed to take advantage of the features
of real-time operating systems.

4.1 Program Semantics

In [DDRO5b], Raskin et al. have demonstrated the practical applicability of
the AASAP semantics with a simple, yet functional, approach. The resulting
program is composed of an infinite loop which is executed as fast as possible.
The body of that loop is called an ezxecution round and it is composed of the
following steps :

1. The clock register is read and stored in a global variable.
2. The input sensors are checked and stored in a vector.

3. The outgoing edges of the current location are checked. If one of them is
enabled, the edge is taken and the input vector, current location and clock
values are updated accordingly.

4. The next execution round starts immediately.

This simple implementation scheme has been chosen because it is obviously
implementable. Also, this can formalized quite naturally if we make a couple
assumptions; (1) the length of an execution round is bounded by a finite rational
value, called Ay, and (2) the clock register of the CPU (or whichever clock value
is read by the program) is updated every Ap time units. Using these two values,
it is possible to create a formal semantics which is a refined version of the Almost
ASAP semantics.

Clock rounding

Before giving a formal definition of the Program Semantics, we need a way to
formalize the time-imprecision induced by digital clocks. This is done by using
the following clock-rounding function, which converts an exact time value into
its corresponding digital value, depending on the clock granularity Ap :

Definition 16 [Clock rounding] Let T € R=° and A € Q~°.

|T]a = |L]A, where |z is the greatest integer k such that k < z.

Likewise, [T]a = [£]A, where [z] is the smallest integer k such that k > z.
U

From this definition, we obtain the following lemma, which will be used ex-
tensively in the following.
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Lemma 1 For any 7' € R=%, any A € Q>°, we have that :
T—-A<|T|a<T,and

T<[Tla<T+A.

4.1.1 Formalization of the Program Semantics

In order to prove that this simple implementation strategy is indeed simulable
by the Almost ASAP semantics, we need a formal semantics definition for this
strategy; this is done as follows :

Definition 17 [Program Semantics| Let A be an ELASTIC controller and Ap,
Ap € Q70 Let Ag = [Ar + Apla,. The (A, Ap) Program Semantics of A,
noted [[A]]er’ A, is the structured timed transition system 7 = (S, 5", £,
Y7, —) where:

(P1) S is the set of tuples (I,7,T,I,u,d, f) such that | € Loc, r is a function
from Var into R=%, T' € R2%, [ is a function from Lab™ into R=% U {1},
ueR2 deR29 and fe {1, T}

(P2) v = (lp,r,0,1,0,0, L) where r is such that for any = € Var, r(x) = 0, I is
such that for any o € Lab™, I(0) = 1;

(P3) Xn = Lab™, ¥°ut = Lab®t, )7 = Lab” U Lab" U {e};
(P4) the transition relation — is defined as follows:

— for the discrete transitions:

(P4.1) let o € Lab°t. ((I,r,T,I,u,d, L),o,(I',r",T,1,u,0,T)) €— iff
there exists (I,1', g, 0, R) € Edg such that |T'|a, —7 | as9a, and
" =r[R:=|T|a,]

(P4.2) let o € Lab™. ((I,r,T,1,u,d, f),o,(l,r,T,I',u,d, f)) €— iff

- either I(0) = L and I' = I[o :=0];
~orI(o)# Land I' = 1.

(P4.3) let & € Labn. ((I,r,T,1,u,d, L), 5, (I',7',T,I',u,0,T)) e€— iff
there exists ([,{’,g,0,R) € Edg such that |T|a, — 7 E ag9as,
I(o) > u,

" =r[R:=|T|a,] and I' = I[o := L];

(P4.4) let ¢ € Lab™. ((I,r,T,1,u,d, L),o,(l',r",T,1,u,0,T)) €— iff
there exists ([,',g,0, R) € Edg such that |T|a, — 7 = aAs0as
and ' = r[R:= |T]|a,].

(P4.5) ((L,r, T, 1,u,d, f),e,({,r, T4+ u,1,0,d, 1)) €— iff either f =T or
the two following conditions hold:
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. for any & € Lab™, for any (1,1, g, 0, R) € Edg, we have that
either |T'|a, — 7 [~ aqgag or I(0) <u

- for any o € Lab°"*ULab", for any (/,1’, g, 0, R) € Edg, we have
that LTJAP —Tr l?é ASgAS

— for the continuous transitions:

(P4.6) ((L,r,T,I,u,d, f),t,(L,r, T, I+t,u+t,d+t, f)) e—iff u+t < Ap.
0

4.1.2 Comments on the Program Semantics

The previous definition is clearly not obvious so we comment the most important
parts.

State space

The state space of this new STTS is a bit more complicated than the one used
with the AASAP semantics; it is composed of tuples of the form (I,r, T, I, u,d, f).

e [, I, and d have the same meaning they had in the AASAP semantics.

e The value T holds the exact time at which the current execution round was
started.

e The function r represents the clock-valuation but it works differently from
the valuation v of the AASAP semantics. Timed automata can have any
number of clocks, all containing a different value and increasing simulta-
neously. In practice however, there is usually only one clock used, so the
“clocks” used by the real-time program are materialized by integer variables
which, when reset, are assigned to the current clock value (i.e. |T'|a,). To
obtain a clock’s value', the value stored in » must be substracted from 7.
The values stored in r are digital values (as opposed to T') and are thus
always a multiple of Ap.

e The variable u holds the exact time elapsed since the beginning of the
current execution round. Thus, 7'+ u is always the exact present time.

e The flag f is set to T when the current execution round ends. It holds the
value | at all other times.

!By current clock value, we mean the value of the clock at the beginning of the current
execution round.
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Transition relation

Remember that this Program Semantics is meant to be a refined version of the
Almost ASAP semantics. Basically, this implies two things : (1) when the Pro-
gram Semantics makes a discrete jump, the AASAP semantics must be able to
follow and (2) when the Program Semantics lets time elapse without making any
transition, the AASAP semantics must be able to do the same. We will not
give the full simulation proof here (as another lengthy simulation proof will be
detailed later), so while explaining the rules of the transition relation, we also
give insights on how this makes the Program Semantics simulable by the Almost
ASAP. The rules which are simple enough are not mentioned.

(P4.1) In the Program Semantics, the guards are enlarged with the value Ag =
[AL + Ap|a,. It is rounded with Ap because this constant is intended
to be written in real code - to enlarge the edge guards - so it needs to
be expressible in a non-fractional amount of time units Ap. Observe that
an edge guarded by the predicate g is enabled when |T'|a, — 7 = ag9as-
| T | A, is the value held by the global variable we mentioned previously, and
as r, g and Ag are readily available by the program, this is a computation
that can be made by the software controller.

(P4.3) This rule is self-explanatory, except for the I(c) > u requirement. Remem-
ber that inputs are checked only at the beginning of the execution round, so
the program cannot treat an input which has arrived after the beginning of
the current round, and must wait until the next one. The value u represents
the time spent into the current round, so it must be strictly smaller than
I(o) for the program to take the arrival of o into account in the current
round.

(P4.5) This transition is taken when a new execution round is started. If the
program has already made an action this round (i.e. f = T) then a new
round can start immediately. If not, a new round can start, but only if
there are no enabled outgoing edges at the current location.

4.1.3 AASAP Simulability of the Program Semantics

In [DDRO5b], a simulation proof is given, asserting that the Program Semantics
is simulable by the Almost ASAP semantics, requiring only that Ap and Ay are
small enough compared to A. This is stated by the following theorem :

Theorem 3 Let A be an ELASTIC controller, for any rationals A, Ay, Ap € Q>°
such that A > 3A, + 4Ap, we have [[A]]ZriAPE[[A]]AAAsap.

We omit the proof of this theorem here, but it can be found in [DDRO5b].
To clarify things a bit, we illustrate the existence of the bound A > 3A, + 4Ap
with an example.
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Insights on the bound 3A; + 4Ap

The following scenario should make the value of this bound on A more clear.
Consider an outgoing edge tagged with an output event, and guarded with the
predicate t = 3. In this context, a worst-case scenario is to have |T'|a, — 7(t) =
3 — Ags — Ap, which is the case when the guard has been missed by exactly one
clock tick. Then, at worst, the edge will be taken at the end of the next round,
when TS(t = 3) = 3A, + 4Ap. The 4Ap term in the expression is the worst
rounding-error possible in the guard-evaluation mechanism. The 3Ap term is
explained by (1) the fact the edge is fired 2A, time units after it is “enabled”
and (2) that the the maximum error between r(¢) and the exact value of ¢ can
be as large as Ay (not considering the rounding error which has already been
counted). Remember that the Almost ASAP semantics must take an edge which
has been enabled for A time units, so this example shows that a simulation
relation cannot exist between the two semantics unless A > 3A; + 4Ap. The
interested reader will find the complete proof in [DDRO5b].

4.1.4 Implementability of the Program Semantics

At this point it should be clear that, using the Program Semantics, it is possible to
construct effectively a piece of software which can be considered provably correct.
Again, this has been demonstrated successfully in [DDRO05a].

4.1.5 Limitations of the Program Semantics

The implementation strategy that we have previously described was meant to
demonstrate the usefulness of the Almost ASAP semantics in a practical manner.
However, there is still space for improvements left and one of the main objectives
of this work is to create an implementation strategy that could be even more
useful.

The big downside of the Program Semantics just described is that it imposes
a CPU usage of 100%. This is inconvenient for at least three reasons, which we
detail in turn.

1. Multitasking

Clearly, a real-time task requiring a usage of 1 cannot be executed along-side
other tasks. This is unfortunate because there are many cases where real-time
infrastructures are best designed using many different independent tasks in par-
allel. The advantages of a multitask design are numerous :

e Modularity. Compared to monolithic designs, multitasking offers the ben-
efit of a greater modularity. Tasks can be added, changed or removed with-
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out affecting the other tasks (of course, we still need to verify that the
real-time instance stays schedulable when adding and/or changing tasks).

e Simplicity. In many cases, using concurrency can lead to a simpler design,
especially if the system needs to perform various, unrelated actions with
different levels of importance.

e Fault tolerance. Usually, not all of the code is completely safety-critical
and since most of the attention will have been put on assuring that the
critical part works, the quality of the less important code might be lower.
If a non-critical task crashes, it can be restarted without causing a catas-
trophe; monolithic systems however, can be brought down by the silliest
bug in some relatively unimportant code.

e Performance. If one CPU is not fast enough, make it 2, or even 128 if
need be ! As the processors’ performance have begun to stall in the last
few years, the only way to faster software lies in multi-cores, SMP and
other multi-tasking hardware technologies. Of course, these require that
the software be split into parallel tasks.

2. User interaction

The next inconvenience of having a real-time task with a 100% CPU usage is that
it will certainly be very limited in terms of user interaction. The user interface
code could be built-in, but this is hardly possible in our context of automatic
code generation. Moreover, even if there is only one real-time task running in the
system, it is very useful to be able to run a background server, which can execute
tasks which are non-critical and not necessarily real-time.

For example, the real-time platform that was chosen to experiment with the
code generation works this way. RTAI, the Real-Time Application Interface, is
a nano-kernel which contains a real-time scheduler that runs a modified version
of the LINUX operating system as its idle loop. The real-time system is operated
from within LINUX. This setup is a very convenient environment; it has all the
advantages of a modern hard real-time OS, along with all the applications and
tools available to LINUX. However, the architecture of RTAI requires not to
launch tasks which take up all CPU resources because otherwise LINUX won’t be
executed, leading to a unrecoverable freeze. The architecture of RTAI is described
in chapter 5.

3. Power consumption

In our context of embedded controllers, the power consumption induced by the
software execution is not to be overlooked. Embedded applications will often
run on batteries, so we need to make sure that the controller does not waste
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CPU power unnecessarily. In that respect, the Program Semantics can be clearly
improved.

4.2 Real-Time Semantics

In this section, we introduce a new implementation semantics, which mimics the
behavior of a periodic hard real-time task. It is quite similar to the Program
Semantics of the previous section, with the notable difference that the beginning
of each execution round are evenly spaced in a periodic fashion. This will be the
period of the real-time task and will be called Ap. Additionally we require that
every execution round ends within a fixed time amount, called Ap, representing
the deadline of the periodic task. Finally, we require that Ap < Ap. This is
illustrated at figure 4.1.

(" )

Program Semantics
) g

Real-Time Semantics

\ i i \
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Figure 4.1: Comparison of the Program Semantics and Real-Time Semantics
executing four consecutive execution rounds.

The above figure illustrates the respective behaviors of the two implementa-
tion semantics when executing four consecutive execution rounds (A, B,C and
D). In the Program Semantics, the length of an execution round is bounded by
Ap (1). The Real-Time Semantics has much tighter requirements and imposes
that every execution round be started at periodic time intervals Az (2). It also
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requires that every execution round completes within Ap time units (3). Observe
from the figures that the Real-Time Semantics allows the execution round to be
preempted. This has no consequence, as long as the deadline is always met.

At a first glance, it might seem unnatural to improve a semantics by forcing
it to slow down, so we motivate this choice with a few arguments.

Why make the controller idle ?

The answer to that question is simple; the environment does not always need
to be watched over a 100% of the time. Consider the following example. An
Almost ASAP controller has been proven safe, and controls its environement for
all values of A < 2 seconds. After implementing the controller, the worst case
execution time of the execution round is estimated to 10ms and the platform it is
running on has a clock granularity of 1ms. Using the traditional implementation
strategy, we would obtain a program running the execution round at least 100
times per second, which in this case is about 200 times more than what was really
needed.

True, the previous argument is not really a strong one, because if we wanted
to design controllers with such slow (2 seconds) reaction times, we would not have
needed to part from the synchrony hypothesis in the first place, and the AASAP
methodology would not be needed. Still, even if we will probably not bring the
CPU usage of our controllers from 100% to 0,5% like in the previous example,
the gain will lie somewhere in the middle, providing all the advantages we have
previously mentioned (the possibility of running other tasks and / or running a
background server, consuming less power, etc.).

4.2.1 Overview of the Real-Time Semantics

In practice, the implementation of this new semantics will be quite similar to
what was done with the Program Semantics, except that it explicitly uses some
features of a real-time OS. This new implementation strategy is as follows :

e At startup, the controller initializes its variables, and asks the RTOS to
create a new periodic task with a period of |[Ar|a, (the period must be
an integral number of clock ticks). Usually, the task-creation process in an
RTOS is just a matter of indicating which procedure to call when the task
is to be run, and which priority it has. We will call this procedure rt_main.

e Every time the task is scheduled, the procedure rt_main is invoked? and
performs the same actions than the body of the execution loop in the Pro-
gram Semantics (clock-reading, sensor-checking and edge-crossing, in that
order).

2 Actually, in practice it is not really a procedure call in the traditional sense. Rather, the
context of the RT task is restored to where it was right before its preemption.
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e At the end of its execution, rt_main indicates to the RTOS that it has
finished, and wishes to be rescheduled on the next period.

In practice, this implementation scheme would resemble to the C-like code
fragment of figure 4.2.

rt_main() {

running = true;

while(running) {
... // read the clock value
... // check sensors
... // take enabled edge if, any
... // running gets false if current state is a sink
wait_next_period();

init_vars() {
... // initialize variables

cleanup() {
... // free all used resources

}
main() {
init_vars();
tid = create_rt_task(rt_main, priority, period);
wait_task_completion(tid) ;
cleanupQ);
}

Figure 4.2: Basic structure of a C implementation following the Real-Time Se-
mantics.

4.2.2 Formalization of the Real-Time Semantics

To obtain formal assurance of correctness for our real-time implementations, we
will proceed in the same way than in [DDRO5b], i.e. formalize the implementation
strategy with an STTS-construction definition and make a simulation proof with
the Almost ASAP semantics. We start by defining the Real-Time Semantics of
an ELASTIC controller (comments follow the definition).
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Definition 18 [Realtime Task Semantics|] Let A be an ELASTIC controller and
AT, AD, Ap € @>0. Let As = (AT_'_AP—IAP- The (AT,AD,AP) real-time
task semantics of A, noted [A]RT 5 A, is the structured timed transition system
T = (S, 1,2 YUt ¥7 —) where:

(RT1) S is the set of tuples (I,r,T,1I,u,d, f) such that [ € Loc, r is a function
from Var into R=%, T' € R2%, [ is a function from Lab™ into R=% U {1},
ueR2 deR2% and f e {L, T}

(RT2) v = (ly,r,0,1,0,0, L) where r is such that for any x € Var, r(z) = 0, I is
such that for any o € Lab™, I(0) = L;

(RT3) X" = Lab™, ¥°ut = Lab®t, 37 = Lab™ U Lab"" U {e};
(RT4) the transition relation — is defined as follows:

— for the discrete transitions:

(RT4.1) let o € Lab°t. ((I,r,T,I,u,d, L),o,(I',r",T,1,u,0,T)) €= iff
there exists (I,', g,0, R) € Edg such that |T'|a, —7 = As9a, and
" =r[R:=|T]|a,]

(RT4.2) let o € Lab™. ((I,7,T,I,u,d, f),o,(l,r,T,I',u,d, f)) € iff

- either I(c) = L and I' = I[o := 0];
~orI(o)# Land I' = I.

(RT4.3) let ¢ € Lab™. ((I,r,T,1,u,d,L),a,(',r",T,1",u,0,T)) €— iff
there exists (1,0, 9,0, R) € Edg such that |T|a, — 7 = As9ags
I(0) > u,

" =r[R:=|T|a,] and I' = I[o := L];

(RT4.4) let ¢ € Lab™. ((I,r,T,1,u,d, L),o,(l',r",T,I,u,0,T)) €— iff
there exists ([,1',g,0,R) € Edg such that |T'|a, — 7 = aAs9as
and ' =r[R:= |T]|a,].

(RT4.5) ((I,r,T,I,u,d, L),e (l,r,T,I,u,d, T)) €— iff the two following
conditions hold:

- for any & € Lab", for any (1,1, g, 0, R) € Edg, we have that
either |T'|a, — 7 [~ aqgag or I(0) <u
- for any o € Lab°"*ULab", for any (/,1’, g, 0, R) € Edg, we have
that LTJAP - T l?é ASgAS
(RT4.6) ((I,r,T,1,u,d, T),e,(I,r, T +u,1,0,d,1))e—iff u= Ar.

— for the continuous transitions:
(RTA.7) ((I,r, T, I,u,d, L), t,(l,r, T, I+t,ut+t,d+t, L)) e—iff u+t < Ap.
(RT4.8) ((I,r, T, 1,u,d, T),t,(l,r, T, I+t,utt,d+t, T)) e—iff u+t < Arp.

O
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Quite not surprisingly, this definition is very similar to the Program Semantics
definition. The few differences are detailed in turn.

Comments on the Real-Time Semantics definition

e The worst-case execution time of the execution round A has been replaced
with two distinct parameters Ar (the period of the real-time task) and Ap
(its deadline).

e In this semantics, the flag f indicates whether the task is currently idle (T)
or not idle (L). More precisely, T indicates that the task is waiting to be
rescheduled at the beginning of the next period. When f = | the task is
active, but this not necessarily means that it has the CPU; its scheduling
state can be either of ready to run, preempted, or running.

e Rule (RT4.7) says that the task can let time elapse while not finished, until
the deadline is reached.

e Rules (RT4.8) and (RT'4.9) make the task idle until the next period begins.

Real-Time semantics and periodic tasks

The purpose of the Real-Time Semantics is to mimic the behavior of schedulable
hard-real time periodic task. We justify this by analyzing the semantics rules :

e Periodicity. Rule (R7T'4.6) ensures the exact periodicity of the real-time
task.

e Schedulability. The RT semantics behaves as a periodic task which never
misses a deadline. This is enforced by rule (RT'4.7); the flag L indicates
that the task has not reached completion yet, which can never be the case
when u > Ap

e Preemptability. As said earlier, the Real-Time Semantics allows the task
to be preempted. This is not explicitly indicated in the semantics, because
the only thing it cares about is that the deadline is reached. When running
other higher-priority tasks, the only thing we have to make sure is that this
periodic task remains schedulable.

4.2.3 AASAP Simulability of the Real-Time Semantics

The real time semantics is simulable by the Almost ASAP semantics, provided
that their respective parameters satisfy the following inequality :

A > Ar+2Ap +4Ap

This is formalized by the following theorem :
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Theorem 4 (Simulation) Let A be an ELASTIC controller. For any rationals
A, Ar, Ap, Ap € Q7% such that Ap+2Ap+4Ap < A we have [[A]]TT’AD’APQ[[A]]QA”P_

Notation Reminder

(ll,Tl,Tl, [1au17d1a fl) € Sl

e [, € Loc is the current location. o u; € R2% holds the ezact time
elapsed since T; (The exact cur-

. >0 : i5-
e 1 : Var — R=" contains the dis rent is thus always T) + uy).

crete time at which each clock has

been last reset. e d; € RZ" contains the ezact
e T, € R2Y contains the ezact time time elapsed since the last dis-
at which the current period has crete jump occurred.
started.
_ e f1 = 1 means that the task is cur-
o I, : Lab" — R=2U {1} is a func- rently active, and when f; = T
tion used to remember the time the task is idle.

elapsed since the oldest untreated
occurrence of each input symbol.
I1(0) = L means that there is no
untreated occurrence of o.

(12, V2, ]2, dg) € S2

e [5, I5, and d, have a meaning that e vy : Var — R0 contains the ezact
is identical to Iy, Iy, and d;, re- time value of each clock.
spectively.

Real-Time semantics simulation proof

Proof. Let [AJRT A, A= (Si, 01, 50,59, 7, —1) and [A[Y**P= (Ss, 12, B0,
EgUtv 257 _>2)-
Consider the relation R C S7 x Sy that contains all the pairs:

(s1,82) = ((l1, 71, T, Ly, wa, dyy fr), (o, v, 1o, do))

such that the following conditions hold:
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(R5) there exists (15, v4, 15, dy) such that:

— if .fl = | then ((lg,Ug,IQ,dg), AD — U1, (lg,’l}é/, [g,dg)) E—9.
—if f1 = T then ((lg, Vo, IQ, d2), AT — Uy, (lg, Ug, Ié/, dg)) E—9.

Let us show that R is a simulation relation.

1. (t1,t2) € R. We have to check the 5 rules of the simulation relation.
(R1), (R2), (R3) and (R4) are clearly true.

(R5) To establish this property, we first note that dy = 0 and so do+Ap < A
which implies Vt' < Ap : dy +t < A. Hence the two conditions of rule
(A4.6) are verified.

2. Let us assume that (sq,s2) = ((I1,71,Th, I1,u1,dy, f1), (l2,v9, I5,d3)) € R
and that (s1,0,]) €—1 (with s = (I}, 7,17, I], v}, d}, f])). We must prove
that for each value of o, there exists a state s, € Sy such that (s2, 0, s},) €—9
and (s}, s5) € R.

Since (s1,$2) € R we know that:

(H1) s9 = (l1,v9, I1,dy)
(H2) Yz € Var : T1—ri(x)+u1—Ap—Ap < vy(z) < T1—r1(z)+ui+Ap+Ap
(H3) there exists sy = (I5,v4, 15, dy) € Sy such that:
— either fi = L and ((ly,ve, I3, d2), Ap — uy, (15,04, 15,d})) €—s.
—or fi = T and ((lo, va, o, do), A — uq, (15,04, I} d})) €—.
Note : (H1) is obtained by (R1), (R3), (R4); (H2) by (R2),
and (H3) by (Rb).

The rest of the proof works case by case on the possible types of o:

case (a) let o € X"
Since (s1,0,s}) €—1 we know that:

o :{ (li,r, Ty, Li[{o} == 0L u,dy, f1) if Li(o) =L
! (lisr1, Thy Dy un s da, fr) if Li(o)# L1

Let us first prove that 3s}, € Sy : (s2,0,s5) €—9. This is immediate
since the AASAP semantics is input enabled. Now that we know s
exists we can say that:

o :{ (I, v9, L[{o} :=0],dy) if I(0)= L
2 (lla'U2>Il,d1) if Il(O')#J_

It is now easy to prove that (s, s)) € R. Indeed, it is obvious that s
fulfills the five conditions of the simulation relation if (s, s2) € R.
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case (b) let o € 3o

Since (s1,0,s}) €—1 we know by RT'4.1 that:

(Jl){ (01,11, 9,0,R) € BEdg : [T\ |a, — 71 FE As9ng
S/l = (Z/D/rl[R = LTIJAP]aTlallaulaoaT)

Let us first prove that 3s, € Sy : (s2,0,55) €—2. We use the same
edge as in the real time semantics (see (J1)). This amounts to prove
that: Vo € Var : va(x) = aga(x). Let a, = Ib(g(z)) and b, = rb(g(x)).
We know that Vz € Var:

Ay — AS S LTIJAP - 7"1(5(7) S bm +AS

— ;= Asg —Ap <T) —ri(x) < b, + Ag + Ap
— ay — [Ar+Apla, —Ap STy —ri(x) < by + [Ar+ Apla, + Ap
— ax—AT—?)APSTl—T’l(ZL')be+AT+3AP
— CLm—AT—AD—ZlAP—i‘UlSTl—’/’l(fL’)—AD—AP—Ful/\
Ty —r(x)+Ap+Ap+up < b, +Ar+Ap +4Ap + uy

— CLm—AT—AD—ZlAP—FulSUQ(I)§b$+AT+AD—|—4AP+U1
— ax—AT—AD—4APSU2($)be+AT+2AD+4AP
— a, —A<wv(r)<b +A
— 02(2) F aga

(1) Hypothesis (J1) (5) Hypothesis (H2)

(2) Lemma 1 6) fi=L—-0<u <Ap

(3) Ag = [AT + AP—IAP (7) A > Apr+2Ap +4Ap

(4) Lemma 1

Now that it is established that 3sj € Sy : (8], 0,55) €—2, we know
that s, = (I}, v2[R := 0], [1,0).

It remains to prove that (s}, s5) € R which means we must check the
five rules of the simulation relation. (R1),(R3),(R4) are clearly true.
(R5) is seen easily using (A4.6) and the fact that uy = 0.

To prove (R2) we have to prove that:

T — Tl[R = |_T1JAP]([L') +u — Ap — Ap < UQ[R = 0](1’)

Va € Var : { v[R:=0)(z) < Ty —r[R:= |T1|ap)(x) +us + Ap + Ap

This proposition is the same as (H2) for x ¢ R. For z € R, it amounts
to prove:

Th—|Ti)ap+ur —Ap —Ap <O Ty — |Th]ap +ur + Ap + Ap.

which is implied by 71 — Ap — [T1]a, <0 <T) + Ap — |T1 | A, since
fi = L and thus u; — Ap < 0. This is a consequence of Lemma 1.
This establishes (R2).
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case (c) let ¢ € X7. ¥7 = Lab” U Labi" U {e}. The proof for the first two sets
is similar to the previous case. Let ¢ = €. Depending on the value
of the flag f, the transition taken will be different (see (R7'4.5) and
(RT4.6)). We treat these two cases in turn with f; = L in (c.1) and
fi=Tin (c.2).
(c.1) Since (s1,€,5)) €—1 and fi = L we know by (RT'4.5) that
(Kl) 8,1 = (ll, T, Tl, Il, Uy, dl, T)
(K2) - for any & such that o € Lab™, for any (I3,1', g,0, R) € Edg, we
have that
either |1 |a, — 71 & aggag or I1(0) <y
- for any o € Lab®t U Lab", for any (I1,l',g,0, R) € Edg, we
have that

[Tilap =71V~ as9as
By rule (A4.5) of the AASAP-semantics, we know that there exists
sy € Sy such that (s, €, s5) and
(K3) sy =52 = (l1,v2,I1,d1).
Now we have to prove that (s7,s,) € R. (R1),(R2),(R3) and (R4)
are clearly true. Let us now prove (R5). In this case, we must show
that there exists s s.t. ((l1, v, [1,d1), Ap — uq, s5) €—9. According
to rule (A4.6), it amounts to prove that
(L1) for any edge (I1,!',g,0, R) € Edg with o € Lab°"* U Lab”, we have
that:
Vi 0 <t/ <Ap—wup:(dy+t' <AVTS(wa+t,9) <A)
(L2) for any edge (I1,l', g, 0, R) € Edg with o € Lab™, we have that:
Vi :0<t' <Ap—wuy:(di+t <AVTS(vg+1t,g9) <
AV (I +#)(0) < A)
We first make a proof for labels of (L1).
V(lh,l',g9,0,R) € Edg with o0 € Lab®* we have [T1]a, & as9as by
(K2). Let a, = Ib(g(x)) and b, = rb(g(x)). There are two possible
cases:
(a) Jz € Var such that
|11 A, —ri(z) < az — Ag

Tilay — 11(2) < @y — [Ag + Apla, 1)
T — 7“1(!13) < Az — AT (2)
Tl—T1($)+U1+AD+AP<QI—AT+U1—|—AD—|—AP

UQ(ZL’) <QI—AT+U1+AD—|—AP (3)

Vi 0 <t/ <Ap—uy:vg(x)+t <a,+Ap+ Ap
Vt,ZOStISAT—UliTS(UQ( )"—t/ g( ))SAD"—AP
vt,ZOStISAT—Uli (Ug()+t/ ())<A (4)
Vt’:Ogt’SAT—ulz (U2+t/ )<A

A
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(1) As = [Ar+ Apla, (3) Hypothesis (H2)
(2) Lemma 1 (4) A > Ar+2Ap+ Ap
(b) Jx € Var such that
LleAP — 7’1(5(7) > bx + As

— [Tilan —r1(z) > by + [Ar+ Apla, 1)
— Tl—’l“l(l') >bx+AT+AP (2)
— Tl—Tl(l')—l—ul—AD—Ap>bx—|—AT—|—U1—AD

— UQ(ZL’) >bx—|—AT—|—u1—AD (3)
— ve(x) > b, (4)
— V0 <t/ <Ap—wuy:v(x)+t > b,

— V' 0<t/ <Ap—wuy: TS(va(z) +t',9(x)) <A (5)
— V' 0<t/ <Ar—wu : TS(na+t,9) <A

(1) ASZIVAT—FAP—IAP (4) ADSAT/\’UlZO
(2) Lemma 1 (5) va(x) +t' = g(x)
(3) Hypothesis (H2)

Thus, both cases imply that (L1) is true.

The proof for (L2) is the same if we have, by (K2), |T1|a, F~ as9a-
If not, we have I;(0) < w; which also proves (L2). Indeed

]1(0') < Uy
— Vt’:Ogt’gAT—ul:Il(a)+t’<AT
— V' 0<t/<Ar—wu:Li(o)+t <A (Ar<A)
(c.2) Since (s1,€,5)) €—1 and fi = T we know by (R7'4.6) that

(M1) sy = (l,r, Ty + Ar, [1,0,dy, 1)
By rule (A4.5) of the AASAP-semantics, we know that there exists
sy € Sy such that (s, €, s5) and

(M2) sy =5 = (l1,v2,[1,d1).
Now we have to prove that (s7,s,) € R. (R1),(R2),(R3) and (R4)
are clearly true. Let us now prove (R5). In this case we have u; = 0,

so we must show that there exists s5 s.t. ((l1,v2, [1,d1), Ap, sh) E—a.
According to rule (A4.6), it amounts to prove that

(N1) for any edge (I1,0', g,0, R) € Edg with o € Lab®"t U Lab", we have
that:
Vi :0<t'<Ap:(di+t <AVTS(wy+1t,g9) <A)
(N2) for any edge (I1,1',g,0, R) € Edg with o € Lab™, we have that:
Y 0<t <Ap:(di+t <AVTS(wy+t,g) <
AV (L +1t)(0) <A)
First, if a location change occurred during the last period, then (N1)
and (N2) are clearly true. Indeed
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dp < AT
— Vt’:Ogt’gAD:d1+t’<AT—|—AD
— V' 0<t'<Ap:di+t <A (A > Ar+2Ap +4Ap)
Now we have yet to prove that (N1) and (N2) are true in the case
where there was no location change during the last period. We proceed
in a similar way than in case (c.1). If there was no location change
during the last period, we now that

(M3) - for any & such that o € Lab™, for any (I1,l, g, 0, R) € Edg, we
have that either |11 |a, — 71 £ ag9ag Or [1(0) < Ap
- for any o € Lab®t U Lab", for any (I1,l',g,0, R) € Edg, we
have that |T1]a, — 71 & Ag9as
We first make a proof for labels of (V1).
V(l,l',g,0,R) € Edg with o € Lab®* we have |T1]a, & asgas by
(M3). Let a, = Ib(g(x)) and b, = rb(g(x)). There are two possible
cases:
(a) Jz € Var such that
|11 A, —ri(z) < az — Ag

Tilan — 11(2) < @y — [Ag + Apla, 1)
T — 7“1(!13’) < Az — AT (2)
Tl—T1($)+U1+AD+AP<QI—AT+U1—|—AD—|—AP

UQ(ZL’) <QI—AT+U1+AD—|—AP (3)
Ug(l’) <az,+Ap+ Ap (4)

vt,ZOStISADZ’UQ(SL’)—Ft,SCLm—'—QAD—'—AP

Vi 0 <t <Ap: TS(vg( )+t g(x)) <2Ap + Ap

Vi 0 <t <Ap:TS(ve(z) +t,g9(z)) <A (5)
Vt’:Ogt’SAD (U2+t/ )<A

(1) As =[Ar + Apla, (4) w1 =Ar

(2) Lemma 1 (5) A > Ar +2Ap +4Ap

(3) Hypothesis (H2)

(b) Jx € Var such that

LleAP — 7’1<l’) > bx + AS

L A

— [Tiay (@) > b+ [Ar + Apla, ()
— T, — 7"1(.]7) > b, + AT + AP (2)
— T1—Tl(ZB)—l—ul—AD—AP>bx—|—AT—|—U1—AD

— (x)>bx—|—AT—|—u1—AD (3)
— UQ(ZL’) > b, + 2AT — AD (4)
— va(x) > by (5)
— Y :0<t' <Ap:v(x)+t >0,

— V' :0<t <Ap:TS(va(x) +t,9(x)) <A (6)
W 0<t <Ap:TS(mt+t,g) <A
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(1) AS = (AT + AP—‘AP (4) Uy = AT
(2) Lemma 1 (5) A > Ap+2Ap +4Ap
(3) Hypothesis (H2) (6) vo(z) +t' = g(x)

Thus, both cases imply that (V1) is true.
The proof for (N2) is the same if we have, by (M3), |T1|a, F as9ng-
If not, we have I;(0) < Ar which also proves (N2). Indeed
(o) < Ar
— V' 0<t' <Ap:L(o)+t <Ar+Ap
— V' 0<t' <Ap:L(o)+t <A (A > Ar +2Ap + 4Ap)
case (d) let 0 € R=°. For the sake of clarity let us consider that o = t. Again,
we need to consider two different cases depending on the value of f.
We treat these two cases in turn with f; = L in (d.1) and f; = T in
(d.2).
(d.1) Since f; = L and (s1,t,s]) €—1 we know by (RT'4.7) that
(Pl) 8/1 = (ll, 1, Tl, [1 + t, Ui + t, dl + t, J_);
(P2) u1+t S AD.
With those facts, we know that there exists s, = (I}, v}, I}, d,) € S,
such that (sq,t,s,) €—9 because (s2, Ap — uy, sy) €—9 by (H3) and
t < Ap —wuy by (P2).
Now we have (sq,t, s5) €— and we know that:
(P3) 8,2 = (ll,’UQ +t,]1 +t,d1 —|—t)

We can now prove that (s}, s5) € R. We have to check the five points
of the simulation relation: (R1), (R2), (R3) and (R4) are easy to prove
using hypothesis (H1) to (H3) and (P1) to (P3).

For (R5), since by (H3), there exists s§ = ({5, v, I}/, dy) € Sy such that
((ZQ, Vo, ]2, dg), AD — Uy, (1/2,, ’Ué/, Ig, dg)) E—9, We have ((ll, vy + t, Il +
tydy +1t), (Ap —uy —t), (15,05, I}, dy)) €.

(d.2) This case is proven exactly the same way as for (c.1), just replace Ap
with Ap, and use (RT'4.7) and the second item of (H3).

4.2.4 Implementability of the Real-Time Semantics

We have stated in the beginning of this chapter that an appropriate implemen-
tation semantics should contain “enough information” about how the control
software must function. This is arguably the case for the Real-Time Semantics :
the controller is a periodic real-time task, executing the same sequence of steps



CHAPTER 4. IMPLEMENTATION SEMANTICS 52

at every period. Moreover, this sequence of steps is detailed thoroughly, it is
thus possible to create a code generator which will create the control software
automatically. Such a code generator has been constructed and is discussed in
detail in chapter 6.

4.2.5 Benefits of the Real-Time Semantics

It should be noted that one does not need to use the Real-Time Semantics to
create provably correct real-time software in the form of a periodic task. The
Program Semantics can also be used for that purpose. Indeed, the latter se-
mantics requires that every execution round be finished within Aj time units.
Hence, we can implement our controller with a real-time task of period Ay, and
if it can be proven that the WCRT?® of that task is smaller than A;, then that
implementation will be provably correct provided that A > 3A; + 4Ap.

The benefit of the Real-Time Semantics is that it takes advantage of the
knowledge that the WCRT of the task is smaller than Ayp. The Program Se-
mantics requires it, but does nothing with that information. This is why the
Real-Time Semantics splits the A parameter into two distinct parameters Ay
and Ap; the value of Ap is used to provide a tighter simulation requirement :
A>Ar+2Ap +4Ap. As Ap and Ap will be of an order of magnitude smaller
than A7 in many applications, using the Real-Time Semantics provides a gain of
nearly 3 units on the simulation bound.

Observe that when using periodic real-time tasks instead of a program run-
ning an infinite loop, we need to measure the task’s WCRT, instead of the loop
WCET®*. The worst-case reaction time of a periodic task measures the true worst-
case time amount that it needs to reach completion from the moment it has been
ready to run. The WCRT may be slightly larger than the WCET because it
includes the time spent serving interrupts, the time spent in the scheduler and
the time spent serving higher priority tasks.

3Worst-Case Reaction Time
4Worst-Case Execution Time



Chapter 5

RTAI : GNU/LiNnux Made RT
Capable

In this chapter, we describe RTAI, a modern hard real-time operating system.
We start by a brief overview of its architecture, and then detail a small subset of
RTAI’s API which will be needed for the following chapter.

5.1 Architecture of RTAI

RTALI is not exactly a real-time operating system in itself. Rather, it is an exten-
sion of the general-purpose LINUX OS, designed to make it hard real-time capable.
Because it not a self-contained RTOS, RTAI has a quite exotic architecture. It
is essentially composed of three parts :

e A hardware abstraction layer (HAL)
e A patch for the LINUX kernel

o A set of real-time services. These include : a real-time scheduler, inter-
process communication primitives, real-time threads management primi-
tives, etc.

The purpose of the kernel patch and the HAL is to prevent LINUX from
handling hardware interrupts directly. To achieve this, a patch for the LINUX
kernel replaces every interrupt-related instruction contained in the kernel with
a macro which transfers the request to the hardware abstraction layer. This in
effect isolates the kernel from the hardware in a transparent manner. The trick
is that the HAL not only listens to the requests from LINUX, but also from the
RTAI core, to which it will give a higher priority. When an interrupt arrives, it
is first treated by an RTAI handler. It is only after this first handling phase that
the interrupt is forwarded to LINUX.

53
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e ™
Hardware Abstraction Layer

RTAI core

Linux Kernel

Real-Time Processes

MMU-protected user space

. J

Figure 5.1: This figure represents the components of the RTAI/Linux RTOS.
Everything above the double line lies in kernel space.

This design makes the RTAI core in total control of the hardware, which
enables it to run hard real-time tasks without any disruption. The RTAI scheduler
runs LINUX as its idle loop, which makes LINUX a very convenient background
server, able to execute every non real-time task that the system might need. It is
also from LINUX that the user / administrator interacts with RTAI. A high-level
representation of a RTAI / LiNUX architecture is depicted at figure 5.1.

RTALI is able to handle real-time processes running either in kernel-space or in
user-space. However, it is a bit more of a hassle to use the latter so we will consider
that our tasks reside in kernel space. In RTAI, such a process is created by the
means of LINUX kernel modules. One module represents one RTAI process, and
can be started and stopped at will using the commands insmod and rmmod.
Within such a module, the RTAI service primitives are available, provided that
its core modules have been loaded.

5.2 RTAI Service Routines

The API of RTAI contains literally hundreds of service routines of all kinds, so
we will only detail the ones we will need for this work.

5.2.1 Timer Routines

Probably the most important feature of an RTOS, the time-related primitives
must be both reliable and straightforward. We describe briefly how RTAI deals
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with time readings.

One-shot and periodic modes

RTAI provides two different ways to get real-time class clock-readings : the one-
shot and periodic modes. On Intel-based machines (we will not consider other
hardware platforms in this work but it should only differ slightly), both modes
interact with the 8254 Programmable Interval Timer (PIT) chip. This hardware
counter can be programmed to :

e Trigger an interrupt after a certain amount of time has passed (this is used
by the one-shot mode).

e Trigger an interrupt at fixed periodic intervals (used by the periodic mode).

In the one-shot mode, the 8254 timer needs to be reprogrammed after each
interrupt. This is very flexible (a different delay can be specified each time),
but it generates a lot of overhead on low-end machines (reprogramming the PIT
takes up a few CPU cycles). The periodic mode, however less flexible, has the
advantage of only needing to program the PIT once, and is hence less subject
to jitter. We will only use the periodic mode in the following, which is done in
RTAI by calling the function rt_set_periodic_mode().

Clock-resolution setting

In the periodic mode, it is the interval between two clock interrupts which defines
the resolution of RTAI’s clocks. This is very convenient, because the 8254 PIT
accepts a wide range of frequencies : from 1193180 Hz to about 18 Hz; we will
thus bee able to choose the appropriate clock resolution. The PIT is programmed
by writing a number of ticks in a 16-bit register. There are exactly 1193180 ticks
in one second, thus writing the value 1 in the register makes the PIT trigger
interrupts at a frequency of a little more than a megahertz. This is obviously a
very bad idea, because it is probably more interrupts than the CPU can handle
and would ultimately lead to a crash!. The clock-resolution must hence be chosen
with care, by finding the best trade-off between interrupt-handling overhead and
clock-precision.

To program the PIT in RTAI, simply call the function start_rt_timer(ticks).
This call must be made after calling rt_set_periodic_mode(). Once the PIT
starts triggering interrupts, the clocks of RTAI are updated automatically, and
we can start using them. When the timer is not needed anymore, it is advised to
call stop_rt_timer (), which reverts the PIT to its default settings.

IThis was tried by the author on a 500 MHz Pentium machine, resulting as expected in a
complete freeze.
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Reading the current time

Once the timer mode and clock-resolution have been set, we can start measuring
time by calling the primitive RTIME rt_get_time(). On all platforms, this call
always returns a 64-bit unsigned integer.

5.2.2 Task-Management Routines

The following describes how real-time tasks are created and managed in RTAI

Creating a new task

RTAI holds all information about a task into a RT_TASK structure. A new task
is created using the rt_task_init function, which has the following signature :

int rt_task_init (RT_TASK xtask,
void (*thread_main) (int),
int data,
int stack_size,
int priority,
int uses_fpu,
void(*signal) (void));

Calling this function initializes the task structure and creates a new task
with the indicated parameters. The function pointer thread_main is the entry
point of the task, and data is an integer that will be given as parameter to
thread_main. The function signal will be called each time the scheduler sets
the task back in the running state, which enables the task to be aware that
it has been preempted (this parameter can be safely set to 0 if this feature is
not desired). The priority parameter must be an integer between 0 (highest
priority) and 255 (lowest priority). The RTAI scheduler does not require that all
tasks have different priorities.

Making a task periodic

If we wish to create a periodic task, a subsequent call to the rt_task_make_periodic
function must be made. Its signature is very straightforward :

int rt_task_make_periodic (RT_TASK *task,
RTIME offset,
RTIME period);

If task has been correctly initialized by rt_task_init, this call will make the
task periodic, with the specified offset and period values. Both offset and
period are expressed in units defined by the clock resolution (set by start_rt_timer).
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When the task is scheduled for the first time, its entry-point function is called.
When the task returns from that function, it is stopped and will not be resched-
uled. When a task is preempted, its context is saved, and will be restored when
rescheduled. A periodic task does not need to wait for preemption however, it can
explicitly yield its current period by calling the rt_task_wait_period() func-
tion, which takes no parameters. The structure of a periodic task entry-point
function in RTAI would typically resemble the following :

void task_main (int data)
{

int running = 1;

while (running)

{
perform_important_things ();
if (are_we_done_yet ())
running = O;
else
rt_task_wait_period ();
}

Deleting a task

Deleting unused tasks is needed so that the real-time scheduler does not fill up
with zombies?. This is done by simply calling rt_task_delete.

5.3 The RTAI Scheduler

To conclude this short presentation of RTAI, we briefly describe the RTAI sched-
uler that will be used in the next chapter.

RTAI natively supports the use of 3 built-in schedulers : namely UP, SMP
and MUP3. Only the first one is meant to be used on uni-processors machines (we
will not consider other cases in the following), so we shall use the UP scheduler.

As a standard fixed-priority scheduler, UP will always favor the pending task
with highest priority (again, there are 256 unique priorities in RTAI, 0 being the
highest). The UP scheduler manages tasks with equal priorities by applying a
round-robin strategy. Priority assignments should hence be made using the Rate
Monotonic, or Deadline Monotonic algorithms.

2In UNIX terminology, a zombie process is a process which has completed its execution but
still resides in the process table. While in this state, it is possible to investigate why the process
was terminated, and retrieve other useful information.

3UP, SMP and MUP respectively stand for “uni-processor”, “symmetric multi-processor”,
and “multi uni-processor”.
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In addition to the schedulers packaged with the RTAI distribution, RTAI also
easily supports custom-made schedulers. As every service in RTAI is materialized
by kernel modules, using a custom scheduler amounts to simply load a different
module. This can be used for instance to implement a dynamic priority scheduler
with an Farliest Deadline First strategy.

Whichever scheduling strategy is used, this choice is orthogonal to our con-
cerns. Remember that regarding scheduling, the only thing the Real-Time Se-
mantics cares about is never to miss a deadline. How exactly this is guaranteed
is beyond the scope of this work.



Chapter 6

Code Generation of Real-Time
Controllers

In this chapter we present SPECTRE!, a tool for generating real-time code from
timed-automata. SPECTRE currently generates code for RTAI but should be
easily adapted to work with any other RTOS. The following is divided in two
main parts : first we describe the tool’s input language and discuss the various
design choices which had to be made; in the second part, we describe how SPEC-
TRE generates code and discuss the to which extent the generated code can be
considered provably correct.

6.1 Input Language
The SPECTRE input language is composed of two sections :

1. The specification section describes the model of the controller in the form
of a timed automaton.

2. The decoration section holds the controller’s functionality code. This sec-
tion maps the timed automaton’s abstract behavior to concrete side-effects.

6.1.1 Specification Section

The syntax of this section is quite classic, as it is heavily inspired from the
ELASTIC input language [DDRO05a], which is very similar to HYTECH's.

A short example of a SPECTRE specification can be found at figure 6.1. This
example really does nothing meaningful, it is only meant to present as many
syntactic elements as possible in a relatively short space. Most of the syntax
should be rather self-explanatory, so we only explain the essential here. More

'SPECTRE stands for Spécification de Controleurs Temps-Réels Embarqués.
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specification example

clocks : x;
vars : a, b;

orders : o;
internals : 1i;
events : e;

initially A, {x := 0, a := 0, b := 0};
location A :
{x=2, b=1}, e, {a := 7}, B;
{3 <=1x, x<=4, b =0}, e, {a := a + 4}, B;
{3<=x, x<=4, b =1}, e, {a := a + 2}, B;
location B :
{a <= 10}, i, {a := a + 1}, B;
{a >= 10}, o, {a :=0, x :=0, b := 1}, A;
{a >= 10}, none, {a =0, x := 0, b := 0}, A;

end

Figure 6.1: Example of a SPECTRE specification section.

information about the SPECTRE input language, along with a complete grammar,
can be found in the appendix.

Comments on the specification syntax

The “initially” line indicates which location is the initial location of the automa-
ton. The assignments on the right side of the line specify the initial values of the
clocks and variables. There is a key difference here with HYTECH for example,
which specifies the initial clock and variables valuations with constraints rather
than assignments, and thus allows non-deterministic initial valuations. As SPEC-
TRE will ultimately need to generate code, it needs to know the precise initial
value of each clock and variable. This should not be a problem in practice, if
a controller has been proven correct for a range of possible initial values, the
designer can always choose precise values from that range.

Each “location” paragraph defines a location of the automaton and its out-
going edges, if any. The syntax for edges is composed of (in that order) : guard
predicates, a label, updates, and the destination location. The guard predicates
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are separated by commas, and the guard as a whole is the conjunction of the
predicates it contains. Any empty guard is simply interpreted as True. The edge
label can be either one of the previously declared events, orders or internals?, or
the keyword “none” which represents the silent label €. Just like the initial valua-
tions, the guards updates are expressed using a set of assignments. As expected,
any unmentioned clock or variable is left untouched by the update.

A note about discrete variables

The perspicacious reader will have noted that, in the previous chapters, there
were no mention of discrete variables in the syntax of timed automata. How
do these fit with the definition of timed automata given previously ? The an-
swer is simple : discrete variables are just a very convenient syntactic addition
to standard timed automata, which allows a designer to represent a timed au-
tomaton in a more natural way. To translate a timed automaton with discrete
variables into the “classical” syntax, just multiply every location by the number
of possible valuations of the discrete variables. As a direct consequence, for the
automaton to remain finite-state, there must be a finite number of possible valu-
ations of the discrete variables. The usefulness of discrete variables in timed and
hybrid automata is unquestioned in practice. The tools HYTECH and UPPAAL
for example, both allow their use extensively. A simple example showing how to
transform a timed automaton with variables into its variable-less equivalent is
shown at figure 6.2.

6.1.2 Decoration Section

As stated previously, the decoration section of a SPECTRE input file contains
all the code and information necessary to produce a fully-functional real-time
controller, that will be provably correct w.r.t to the specification®. The decoration
is composed of several different items, which can be found at most once in the
decoration. We detail each item type in turn.

Global decoration

This item is optional, but it will most likely be present in any implementation. It
enables the user to provide global declarations. Everything that will be needed
further on can be declared here -functions, global variables, includes, etc. The
following code fragment shows how a global decoration item is declared in SPEC-
TRE.

2The ELASTIC terminology identifies input labels as “events”, and output labels as “orders”.
We have chosen to keep that terminology in SPECTRE.
3This will only hold under certain conditions which will be detailed later on.
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4 \
With variables Without variables Begin ?

Begin ?
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Figure 6.2: Transformation of a timed automaton with discrete variables into a
standard timed automaton.

global
%

#include "complex.h"

const int length = 8§;
int var_a;

int array_b[length];
int b_index;

h}

Figure 6.3: Example of a SPECTRE global decoration item.

Variables decoration

Conceptually, the discrete variables are used in two different ways : in the guard
predicates they are read, and in the updates assignments they are written to. For
each of those two uses, and for each variable, SPECTRE requires a code fragment
which will perform the read or write operation.

Short examples of reading and writing decoration items are shown in figure
6.4. The items involving variable a are the simplest and probably the most
common use of this decoration. Other more sophisticated uses are possible, as
shown by the decorations of b and c¢. Note that all identifiers (functions and
variables) mentioned in the decoration must be declared at the global level (see
above).
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reading a {J) return var_a; %}
writing a (val) {% var_a = val; %}

reading b {), return array_b[b_index]; %}
writing b (val) {% array_b[b_index] = val; %}

reading c¢ {J) return something_ complex(); %}
writing ¢ (val) {% update_the_complex_thing(val); %}

Figure 6.4: Example of SPECTRE reading and writing decoration items.

Labels decoration

SPECTRE takes a quite radical stance regarding labels, because it considers that
they are somewhat context-free*. The tool is designed in such a way that the
emission of an output or internal order will produce the same side-effects, regard-
less of the source and destination locations of the edge to which the label was
attached. Likewise, an event label will be treated by the tool the same way in
every part of the automaton. While this radical choice may seem unnecessary at
first, we believe that it will enforce cleaner and more elegant designs.

Order and internal labels require two code fragments, which we note d; and ds.
Upon crossing an edge from location A to location B labeled by o, the produced
code will execute dy (o) before the variables updates and dy(o) after the updates.
This enables the designer of a SPECTRE implementation to produce label side-
effects which depend on the variable valuations in a fine-controlled manner. As
a result, labels in SPECTRE are not totally context-free, they can use a context
in the form of variable valuations.

Here is a small example of order and internal labels decoration. The keyword
“nop” can be used to provide an explicitly empty code fragment.

internal i {J printf("before : a = %d", var_a); %}t
{% printf("after : a = %d", var_a); %}

order o {% produce_some_side_effect(); %}
nop

Figure 6.5: Example of SPECTRE order and internal decoration items.

Event labels decoration items require three code fragments instead of two.
This additional code fragment (which we note p(c)) has the responsibility of
returning a non-zero value if and only if there is an untreated occurrence of the

4This “context-freeness” is not absolute, as will be explained shortly.
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input label. The generated real-time task will call p(c) every period, for every
event label o (that is, unless there is already an untreated occurrence of o, in
which case the function need not be called).

Here is an example of an event decoration in SPECTRE. The code fragments
dy and dy were left empty, but this is of course not mandatory.

event e {% return event_e_has_arrived(); %}
nop
nop

Figure 6.6: Example of a SPECTRE event decoration item.

Transitions decoration

As with label decorations, the design choices behind SPECTRE’s way of decorating
transitions might seem limiting at first glance. In SPECTRE, the implementation
designer cannot associate a piece of code to a specific edge of the automaton.
Rather, it is possible to attach code to the following events® :

e The controller goes from location A to location B.
e The controller leaves location C.
e The controller enters location D.

e The controller makes a discrete jump, no matter which edge is used.

Just like with label decorations, it is possible to provide two code fragments for
each transition decoration item. As a consequence, it is possible to differentiate
side-effects on a per-edge fashion to a limited extent. For instance, in the example
of figure 6.1, there are two edges from B to A, and the code can tell which edge
was taken by testing the value of variable b after the updates have been computed.

The syntax for transitions decorations is straightforward, as illustrated by the
example of figure 6.7. The keyword “any” represents the set of all locations. This
example also illustrates SPECTRE’s comment syntax, which is borrowed from the
language Haskell, in which SPECTRE is written (line comments start with two
consecutive minus symbols, and block comments are enclosed between “{-” and
1),

The “any to any” item would probably not be used in a production environ-
ment but it is very useful for testing, by generating logs or execution traces for
instance.

SHere, event is meant in the broad sense, not as a type of label.
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A to B {% printf("going from A to B '"); %}
nop

any to B nop
{% printf("entering B !"); %}

A to any {% printf("leaving ATy %Y
nop

any to any {’ printf("before update : i = %d", var_i); %}

{% printf("after update i = 9%d", var_i); %}
B to B nop —- these two lines are,
nop -- as expected, useless

Figure 6.7: Example of SPECTRE transitions decoration items.

Restrictions

The SPECTRE input language uses restriction items in order to produce fully-
deterministic implementations out of a non-deterministic model. Controller mod-
els are usually non-deterministic because they represent the set of all possible
behaviors of the controller, not its actual control flow. Restriction items provide
a way to specify the desired control flow precisely, without any modification to
the model.

Consider the following simple example. Both transitions are always enabled,
because they represent a conditional statement that exclusively belongs to the
implementation. The two restriction items are used to provide this missing con-
ditional statement.

{- ... -}
location A :
{}, none, {}, B;
{}, none, {}, C;
{- ... -}

restrict A to B {% return condition(); %}
restrict A to C {) return !condition(); %}

Figure 6.8: Example of SPECTRE restriction items.
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As with transitions decorations, it is not possible to restrict the crossing of an
edge in particular. It is possible however, to use the keyword “any” in restrictions.
It should be noted that restriction items are dangerous if used poorly, because
they can modify the controller’s behavior in such a way that correctness is no
longer assured. This issue will be treated more in depth later on in this chapter.
It is also worth noting that controller implementations do not need to be fully-
deterministic. Some network protocols, for instance, take certain decisions at
random. However, in that case, the implementation designer will need to provide
the code which generates the random numbers and makes the appropriate choice.

Startup and cleanup decorations

These last two remaining decoration items are called just before the controller
starts and right after it has completed its execution. It is useful for allocating
and freeing up resources, initializing variables, setting up peripherals, etc. The
syntax for those items is straightforward, as shown by the following code excerpt.

startup {/% /* allocate and initialize everything here */ %}
cleanup {) /* free up all used resources here */ h

Figure 6.9: SPECTRE’s startup and cleanup decoration items.

6.2 Code Generation

In this section, we will first describe the code generation process, and then discuss
the various conditions that need to be met in order to insure correctness.

6.2.1 Architecture of the Generated Code

The way SPECTRE works is quite straightforward, so we will not examine every
detail of the code generation process. Instead, we detail a number of key portions
of the generated code. Additional information can be found in the appendix,
along with complete examples of SPECTRE’s output.

Additional defines

After running SPECTRE on an input file, the generated code needs a few small
modifications before compiling. These modifications are however very limited, the
implementation designer only needs to encode the following numerical constants,
which are defined in the first few lines of the generated file :

1. The period of the real-time task.
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2. The number of ticks between two clock interrupts.

3. The guard-enlargement constant.

4. The time unit, which maps the automaton time values to real time values.
5. The real-time task priority.

6. The real-time task stack size.

In code these constants are specified as pre-processor defines, as shown by the
following code fragment :

#define TIME_UNIT 7000
#define WIDENER 1001
#define PERIOD 1000
#define BEAT 11
#define STACK_SIZE 10000
#define TASK_PRIORITY 128 /x 0 = highest, 255 = lowest */

Figure 6.10: Pre-processor defines which need to be filled in before compiling.

The code of figure 6.10 specifies a clock interrupt frequency of one interrupt
every 11 ticks. This makes for a clock resolution of ﬁ seconds, which is
approximately 9,219061667 microseconds. With such a setting, the controller
can be safely verified using a Ap of 10 microseconds. To distinguish the clock-
resolution of the verification phase (Ap) and the one that is used in code (which
can be smaller), we use the term beat for the latter.

Setting the period define to 1000 specifies a period of 1000 beats, thus approx-
imately 9,219061667 milliseconds. Since the Real-Time Semantics has the “faster
is better” property, such a setting could safely be guaranteed correct if the con-
troller was verified with a Ar of 10 milliseconds. Of course, the schedulability
analysis will need to be done using the real period value, not Ar.

The widener define specifies a guard enlargement of 1001 beats. This is con-
sistent with the definition of Ag = [Az + Ap]a,.

A time unit define of 7000 beats means that every numeric constant that is
compared or assigned to clocks in the automaton are multiples of 7000 beats. For
instance, a guard testing the equality of a clock with the constant 3 in the automa-
ton, will be true if that clock’s value lies in the interval [11><((31><1;(i])’(i(;)0—1001) , 11><((31><1;(i])’(i(2)3)0+1001) ],
thus [0.184372014, 0.202828576], with both intervals being expressed in seconds.

Finally, the remaining two defines are shown with their default values. They
need not be changed in normal circumstances, except maybe the task priority if
there are other real-time tasks running on the target platform.
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Kernel module management and real-time main loop

SPECTRE’s output is the C source code of a LINUX kernel module which, when
inserted into an RTAI-enabled kernel, launches a single periodic real-time task.
The code of figure 6.11 shows how this is achieved in practice.

void spectre_task_main (int data) {

spectre_running = 1;

spectre_startup ();

spectre_transition_initially ();

while (spectre_running == 1) {
spectre_current_time = rt_get_time (;
spectre_check_for_events ();
spectre_current_location ();
rt_task_wait_period ();

}

spectre_cleanup ();

int spectre_init_module (void) {
rt_set_periodic_mode ();
start_rt_timer (BEAT);
rt_task_init (&spectre_task, spectre_task_main, O, STACK_SIZE,
TASK_PRIORITY, USE_FPU, 0);
rt_task_make_periodic (&spectre_task, rt_get_time () + PERIOD, PERIOD);
return O;

void spectre_exit_module (void) {
stop_rt_timer ();
rt_task_delete (&spectre_task);
}

module_init (spectre_init_module);
module_exit (spectre_exit_module);

Figure 6.11: Main loop and kernel module management routines.

The “init” and “exit” functions should be self-explanatory, all the RTAI
primitives used by SPECTRE were detailed in the previous chapter. The first
function of the figure is the entry point of the real-time task. Before entering
the main loop, the startup decoration is called, followed by a call to the initial
transition. This call will initialize the clocks and variables and set the current
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location, all according to the “initially” line of the SPECTRE specification section.
The current location is remembered by the code with a function pointer, which
is called every period (the internals of this function will be detailed further on).
The loop body is consistent with the Real-Time Semantics : first the current
time is read, then the inputs are checked, and finally the outgoing edges of the
current location are examined to see if any of them is enabled. This will result in
at most one location change, before the current period is yielded. After the loop
ends, the cleanup decoration code is called and the real-time task stops.

Location functions

As stated just before, every location in a SPECTRE-generated controller is repre-
sented by a function. This function, when called, examines every outgoing edge
of its location and fires the first enabled transition it sees. The generated code
for locations is extremely simple, as shown by figure 6.12.

void spectre_location_A (void)
{
if (spectre_check_A_to_B_1 () {
spectre_transition_A_to_B_1 (); return;

}

if (spectre_check_A_to_B_2 () {
spectre_transition_A_to_B_2 (); return;
}
}

Figure 6.12: Example of a location function.

Enabledness checking functions

For each edge of the automaton, SPECTRE generates a “check” function which
returns a non-zero value if and only if its edge is currently enabled. This is done by
evaluating the guard predicates, calling the appropriate restrictions decorations,
and if necessary, verifying that there is an untreated occurrence of the attached
event label.

The code in figure 6.13 shows an example of a check function. The function
calls prefixed by “r” correspond to restrictions decorations. Every restriction
that is not mentioned in the SPECTRE input file is given a function which simply
returns 1. The internals of the “guard” function in the figure are described

hereafter.
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int spectre_check_A_to_B_1 (void) {
int spectre_rl, spectre_r2, spectre_r3, spectre_r4, spectre_g;
spectre_rl = spectre_r_A_to_B ();
spectre_r2 = spectre_r_A_to_any ();
spectre_r3 = spectre_r_any_to_B ();
spectre_r4d = spectre_r_any_to_any Q);
spectre_g = spectre_guard_A_to_B_1 ();
return (spectre_g && spectre_rl && spectre_r2 &&
spectre_r3 && spectre_r4d && (spectre_e_is_pending == 1));

Figure 6.13: Example of a transition check function.

Guard evaluation functions

The code at figure 6.14 shows how the generated controller evaluates guards (in
this case, it is the guard {x = 2,p > 7} with = being a clock and p a discrete
variable). The spectre_equals function provides the enlargement mechanism.
As mentioned in the beginning of this chapter, this guard evaluation function
uses the “read” decorations to retrieve the variable values.

int spectre_guard_One_to_Two_1 (void) {
RTIME spectre_tl, spectre_t2;
int spectre_el, spectre_e2;
int spectre_res = 1, spectre_tmp;
spectre_tl = spectre_read_x ();
spectre_t2 = (TIME_UNIT * 2);
spectre_tmp = spectre_equals (spectre_tl, spectre_t2);
spectre_res = spectre_tmp &&% spectre_res;
spectre_el = spectre_read_p ();
spectre_e2 = 7;
spectre_tmp = spectre_el >= spectre_e2;
spectre_res spectre_tmp && spectre_res;
return spectre_res;

Figure 6.14: Example of a guard evaluation function.

Transitions functions

When a location function (described previously) detects an enabled edge, it calls
the corresponding “transition” function. This function calls the appropriate dec-
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orations, computes the clocks and variables updates, and updates the current
location appropriately. An example of such a function is illustrated at figure
6.15.

void spectre_transition_A_to_B_1 (void)

{
spectre_d1_A_to_B ();
spectre_dl1_A_to_any Q;
spectre_dl_any_to_B ();
spectre_dl_any_to_any ();
spectre_dil_e ();
spectre_update_A_to_B_1 (O);
spectre_current_location = spectre_location_B;
spectre_d2_e ();
spectre_e_is_pending = O;
spectre_d2_A_to_B ();
spectre_d2_A_to_any ();
spectre_d2_any_to_B ();
spectre_d2_any_to_any ();

Figure 6.15: Example of a transition function.

The transition function first calls the d; transition decorations. Any such
decoration that was not present in the input file is replaced by an empty stub
(this also applies to “nop” fragments). Right after, the d; label decoration is
called, followed by the clocks and variables updates, the location update, the ds
label decoration, and the reset of the event label pending flag (this last action is
only performed for event labels, obviously). Finally, the d transitions decorations
are called.

These numerous function calls might raise some performance concerns. How-
ever, we believe that this should easily be solved if a good optimizing compiler is
used, which will “inline”® many (if not all) of these calls, and simply remove the
empty stubs.

Updates functions

Updates functions are called by the transitions functions to perform the clocks
and variables updates. It uses both the “read” and “write” decorations to perform

6<Inlining” is a common optimization trick which replaces a function call by a copy of that
function’s body. This generates faster code (the call / return sequence is saved), at the cost of
a larger executable.
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the updates. The example of figure 6.16 shows the generated update function for
the assignments {z :=2,a := a + 4}.

void spectre_update_A_to_B_2 (void)

{
spectre_write_x (TIME_UNIT * 2);
spectre_write_a (spectre_read_a () + 4);

3

Figure 6.16: Example of an update function.

6.2.2 Correctness of the Generated Code

In the following, we shall not prove that the code generated by SPECTRE is
correct, as that would require a very involved effort that is beyond the scope of
this work. Rather, we will enumerate a number of necessary conditions that need
to be met to insure correctness, and then give informal arguments showing that
these conditions should be sufficient in practice.

Necessary conditions for correctness

In the following, we will assume that the AASAP semantics of the automaton
given in the specification has been proven to satisfy a set of safety properties, for
some positive value A. We will assume that the designer assigned values to the
Real-Time Semantics parameters such that the inequality A > Ar+2Ap+4Ap is
satisfied. The generated code needs to satisfy the following requirements (details
follow) :

R1) The clock resolution set by the BEAT define must not be greater than Ap.

R2) The PERIOD define must not be greater than Ar.

R3) The WCRT of the task loop must not be greater than Ap.

R4) All decorations code fragments must be proven free of run-time errors.

R6) The WIDENER define must be set to PERIOD + 1.

R7

The restrictions decorations must only reduce non-determinism.

R8) The input-checking functions must be proven never to miss any event.

(R1)
(R2)
(£3)
(f4)
(R5) All decorations code fragments must be proven to terminate.
(16)
(RT)
(R8)
(9)

The PRIORITY define must be set such that the task is proven schedulable.
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The requirements (R1) through (R3) are very natural. If the real-time seman-
tics inequality holds for a set of parameters, it will remain true if the parameters
effectively used are smaller.

The requirements (R4) and (R5) are related to requirement (R3). The gen-
erated code must be proven to always complete a task loop without errors and
within the deadline. Proving this in a formal way requires techniques which are
beyond the scope of this work. However, if great care is put into the decoration
programming, it might suffice in practice.

Requirement (R6) comes from the definition of Ag = [Ar + Ap|a,.

Requirement (R7) insures that the generated controller’s behavior is somehow
a refined version of the original automaton. It is easy to prove that reducing non-
determinism does not break safety-properties’.

Requirement (R8) needs to be met because we made the hypothesis that the
controller was input-enabled. For this hypothesis to hold in practice, we need to
make sure that the input-polling functions never miss an event.

Requirement (R9) comes from the Real-Time Semantics, which makes the
hypothesis that the deadline is always met.

Final notes on code correctness

Because it follows precisely the strategy dictated by the Real-Time Semantics,
the code generated by SPECTRE (without the decorations) can be considered
correct by construction. Moreover, if great care has been put in the decoration
effort, and if all the requirements just described are proven to be satisfied, then it
seems reasonable to have great confidence in the generated controller, decorations
included.

6.3 Use of the SPECTRE Decoration Language

The decoration language of SPECTRE is simple and straightforward but to some
extent somewhat limiting. Indeed, for an arbitrary controller automaton, a SPEC-
TRE decoration file might be hard to write (because of the impossibility to deco-
rate an edge in particular for instance). However, if is known during the modeling
phase that SPECTRE will be used for code generation, we believe that it should
be rather simple to deal with its few limitations. Here are two guidelines to follow
when modeling a controller to use with SPECTRE :

e The semantic weight should be stressed on locations. Going from a location
A to a location B should have a meaning that is independent of the edge
followed.

"This is because the existence of a simulation relation is easy to show.
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e Synchronization labels should have a meaning of their own, regardless of
where they are used in the automaton.

Clearly, these guidelines seem reasonable for an automaton that is intended
to be used for code generation.

6.4 Implementation of SPECTRE

The current SPECTRE implementation is made of about 3000 lines of Haskell®.
The parsing code was created using the ALEX lexical analyzer generator, and the
HAPPY parser generator. The rest of the SPECTRE source code is composed of a
semantic checker and the code generator itself. The entire source code is freely
available upon request to the author : nmaquet@ulb.ac.be

As Haskell is completely portable, SPECTRE should run without modification
on any platform.

8Haskell is a purely functional language. Compilers, interpreters and documentation for
Haskell are available at http://www.haskell.org



Chapter 7

Case Study : Philips Audio
Control Protocol

This chapter illustrates how our methodology is used in practice, from verification
to code generation. For this purpose, we have chosen to implement a simple
real-time data transmission protocol, namely the Philips Audio Control Protocol
(PACP in the following). This physical-layer protocol was designed by Philips
engineers for stereo device equipments, and uses Manchester encoding to send
arbitrary long binary sequences on a wire between a single sender and a receiver.
We have chosen to implement this particular protocol for the following reasons :

1. Because it is a physical-layer protocol using Manchester encoding, a soft-
ware implementation must run on a real-time platform to insure correctness.

2. The protocol has already been analyzed with the Almost ASAP semantics
in [DDRO5al, so we will use their verification results.

3. The protocol is quite subtle, and is arguably difficult to implement by hand.
This advocates in favor of code generation.

4. The experimental setup needed for implementation and testing is very lim-
ited : only a single low-cost PC is required. Optionally, one could also link
two machines with a single cable.

The following is structured as follows : first we describe the data transmission
protocol informally, then we present the modeling effort and verification results
obtained in [DDRO05a], and finally we describe the implementation process using
the tool SPECTRE.

Remark : Figures 7.4 through 7.7 are found at the end of this chapter.

75
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7.1 Description of the PACP

As stated just above, the protocol uses Manchester encoding to transmit binary
sequences. The binary information is sent by changing the wire voltage in the
middle of evenly-spaced time slots. Each time slot holds one bit of information;
if the voltage goes from a low state to a high state in the middle of the time
slot then a “1” is transmitted. If on the contrary, the switch went from high to
low voltage then it is considered by the receiver as a “0”. The PACP faces the
following difficulties :

e Even if the sender and receiver agree on the length of a time slot, they run
asynchronously so they do not know where the time slot begins.

e The protocol needs to work for binary sequences of any length, so the
receiver needs a way of detecting the beginning and end of a sequence.

e The receiver cannot detect voltage switches from high to low reliably?
(called DOWN signals from now on), so it will need to rely solely on switches
from low to high (UP signals).

The above issues are solved by the PACP as follows : when no transmission
takes places, the wire voltage stays low. To initiate a sequence, the sender starts
by sending an UP signal, which is understood by the receiver as the middle of the
first time-slot. The binary sequence is then sent using the standard Manchester
encoding technique. To decode the binary sequence, the receiver simply measures
the time elapsed between consecutive UP signals. This works fine except for the
end of the sequence, because by relying only on UP signals, the receiver cannot
distinguish sequences ending with “1” from those ending with “10”. This is
illustrated at figure 7.1.

As seen in the figure, the difference between “111”7 and “1110” is marked only
by the time of the last DOWN signal, which the receiver does not see. The PACP
solves this problem by requiring that all transmitted sequences be either odd in
length or end with “00”.

7.2 Modeling the PACP with Timed Automata

In [DDRO5a], Raskin et al. have analyzed the PACP using the Almost ASAP
semantics. The purpose of the article was to illustrate the practical and theoreti-
cal attractiveness of the Almost ASAP semantics compared to other approaches,
which do not address the synchrony hypothesis thoroughly. They also briefly
described a code generation scheme which targets the LEGO MINDSTORMS™
platform, but the emphasis was clearly on the more theoretical aspects.

!This limitation comes from the original target hardware environment of the PACP.
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Figure 7.1: Manchester encodings for sequences “111” and “1110”.

As our work focuses on code generation, rather than model-checking, we re-
view the verification results obtained in [DDRO05a], but without much detail as
to how they were obtained. The interested reader will find this information in
[DDRO05a].

7.2.1 Sender Automaton

A timed automaton for the PACP sender controller is depicted at figure 7.2. It
has a single clock x, and three discrete variables p, dz and i. Again, these discrete
variables could have been encoded in the locations, but this has not been done
for the sake of clarity. These variables have the following meaning :

e p is used to remember the parity of the transmitted sequence (0 for even, 1
for odd).

e dz (standing for “double zero”) contains 1 if the last two transmitted bits
were “00”, and 0 otherwise.

e ¢ contains the next bit to be transmitted, and is read by the sender to
produce UP and DOWN signals appropriately. During verification, this
variable is assigned to a non-deterministic binary value, which can change
at any time.

As the first UP signal does not correspond to a transmitted bit, the sequence
parity is initialized to 0. Every time a bit is sent, the update p := 1-p sets the
new parity appropriately. When the automaton goes from WaitZero to ZeroSent,
we know we have just sent two consecutive zeroes, variable dz is thus set to 1.

Observe that the sender automaton non-deterministically chooses to end or
continue to transmit, after sending each bit. This makes the sender automaton
valid for any binary sequence of finite length.
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x:=0 x >=12 i=1,x=2
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x:=0,p:=0,dz:=0
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ZeroSent
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DOWN !
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Figure 7.2: Sender automaton for the PACP.

Finally, the predicate {z > 12} attached to the edge from Idle to OneSent is
there to ensure that the sender stays idle for at least three time slots between two
consecutive sequences. This is necessary because the receiver automaton relies
on that period of inactivity to detect the end of the sequence.

7.2.2 Receiver Automaton

The receiver automaton is a bit more simple because it has only three location,
and it is illustrated at figure 7.3. It has one clock y and two discrete variables
m and r. The m variable is equivalent to the p variable of the sender automaton
and contains the parity of the received sequence. The receiver uses this variable
to determine whether it needs to append a final “0” to the binary stream when
the transmission ends. Variable r is assigned to the received bit(s) each time the
receiver sees an UP signal (except the for the first UP signal). When r is assigned
the value 2, it means that the receiver has decoded “01”.

Each time the automaton sees an UP signal, it rounds the reception time
to the closest time-slot center. This is what makes the PACP robust : if all
accumulated clock-rounding errors never reach more than one quarter of a time-
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Figure 7.3: Receiver automaton for the PACP.

slot, then the receiver will be able to decode each UP signal appropriately. The
Almost ASAP semantics enables us to prove this in a formal fashion.

7.3 Verification Results

In [DDRO5a], it is shown that the above specification is correct in the context of
the Almost ASAP semantics iff the sum of the respective A parameters of the
sender and receiver automata is strictly less than one sixteenth of a time slot.
Formally, for an appropriate Observer automaton, and U being one quarter of a
time-slot, :

1
Reach([[Sender]]/X;‘Sap I [[Receiver]]/g/;Sap || [Observer]) NBad = ¢ iff A;+ Ay < ZU

We see from the above formula that the A parameters of the automata are
related : if one controller is less precise (i.e. has a higher A parameter), the
other must compensate to retain correctness of the whole (by decreasing its A
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parameter). If the hardware platforms of both controllers are equal then the
best throughput (which is directly related to U, the length of a time-slot) will be
obtained by assigning both A parameters to the same value.

7.4 Systematic Implementation of the PACP
using SPECTRE

Now that we have given a complete specification of the PACP and indicated under
which conditions it is proven correct, we can describe how the implementation
process is achieved.

7.4.1 Sender Specification

The SPECTRE specification section of the PACP sender controller is given at figure
7.4. This section should be straightforward, as it is simply a textual version of
the automaton of figure 7.2.

7.4.2 Sender Decoration

A SPECTRE decoration section for the sender automaton is found at figure 7.5.
We comment each decoration item in turn.

Global decoration

This implementation of the PACP uses the parallel port to transmit data. On
our target platform (a Intel-based PC), sending data through the parallel port is
achieved by writing a byte at the memory address 0x378. The parallel port can
be configured in various modes, which is done by writing the appropriate byte at
the memory address 0x37A.

Variables var_p and var_dz will be used to store their respective automaton
variables. For the ¢ variable, it is a bit more complicated as we do not want
our controller to send random bits. Instead, we declare an array datal] along
with an index, and we will map the ¢ variable to the contents of data[] at index
data_index.

Finally, we declare a small boolean function : sequence_finished(), which
will be used to make the implementation deterministic.

Labels decorations

The UP order of the sender automaton is decorated by a single call to the outb
function, which sets all data bits of the parallel port to 1. Similarly, the decoration
for the DOWN order clears all bits of the parallel port back to 0.



CHAPTER 7. CASE STUDY : PHILIPS AUDIO CONTROL PROTOCOL 81

Startup and cleanup decorations

The only initializations that the sender needs to perform are (1) configure the
parallel port for output, and (2) put the initial data bits to 0. No cleanup
decoration is needed.

Variables decorations

The decorations for variables p and dz are straightforward. Variable ¢ is bound
to the next bit to be sent, thus datal[data_index]. The array-accessing code is
protected by a conditional statement ensuring that we will never access the wrong
memory space. As our controller runs in kernel mode and is thus not subject to
page fault violations, this might seem unnecessary. We do it anyway for the sake
of best practices.

Transitions decorations

The transitions decorations are used to initialize and increment the data index
when necessary. When the automaton goes from Idle to OneSent, we know that
the transmission starts so we take this opportunity to initialize data_index to
0. When entering OneSent from locations WaitOne and ZeroSent, we know we
have just sent a “1” bit so we increment data_index. Similarly, when entering
location ZeroSent from anywhere, we know that a “0” has been sent so we
increment data_index in this case as well.

Finally, when the automaton goes back to Idle, we know that the transmis-
sion is complete so we set the spectre_running flag to 0. This will cause the
real-time task to stop.

Restrictions

The final part of the decoration section uses five restrictions to make the sender
controller fully-deterministic. The non-determinism of the sender automaton
comes from the fact that it can go back to Idle, and thus end the transmission,
after each bit is sent. Hence, to make the sender controller deterministic we must
make sure that the two following statements are true :

1. The controller does not end the transmission until it is finished.

2. The controller does end the transmission when it is finished.
This can be expressed in SPECTRE by using the following restrictions :

1. restrict any to Idle {% return sequence_finished(); %}
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2. restrict any to WaitZero {% return !sequence_finished();
restrict any to WaitOne {% return !sequence_finished();
restrict any to ZeroSent {% return !sequence_finished();

restrict ZeroSent to OneSent {J return !sequence_finished();

It is easy to see that the above restrictions have the effect of only reducing
non-determinism.

7.4.3 Receiver Specification

The SPECTRE specification section for the PACP receiver controller can be found
at figure 7.6. Again, this is simply a textual representation of the receiver au-
tomaton given earlier in this chapter. Notice the usage of the “none” keyword,
which represents the silent label.

7.4.4 Receiver Decoration

A SPECTRE decoration section for the receiver automaton can be found at figure
7.7. We comment each decoration item in turn.

Global decoration

The global decoration of the PACP receiver controller is very similar to the
sender’s. The GOOD_INDEX define is slightly modified (it requires data_index
to be at least two positions away from the bottom of data[]) because the re-
ceiver will write up to two bits at once in the data[] array. As the datal[] array
is statically allocated with a length of 128, this implementation of the PACP
receiver only supports transmission of up to 128 bits?.

Labels decorations

The only label of the receiver automaton is the input UP signal. In the SPECTRE
input file, we must decorate this event with a function which returns a non-zero
value if and only if an untreated occurrence of UP is detected. To achieve this,
the receiver controller reads the contents of the parallel port data register every
period (stored in val), and remembers the value read at the previous period in
a global variable last_val. The following table shows the various possibilities.
A “1” in the table represents a non-zero value.

It might seem silly to waste a whole integer (four bytes on our target platform) to store
one bit of information. This is done solely to alleviate the figures.

h
h}
35
h}
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last_val val event up

_ = O O
_ o = O
oS O = O

Admittedly, this way of checking for the UP signal is a bit cheating, because
it relies on seeing the DOWN signals reliably (third line in the table). We could
have avoided cheating by providing a handler for the parallel port interrupt line
(IRQ 7 on Intel-based machines), but we have chosen not to do so to keep the
receiver decoration short and simple.

It is easy to see that this input-polling function will never miss an event. Since
we have that A < %U and A > Ar+2Ap+4Ap, we know that the period of the
real-time task will be at least 32 times smaller than the time-slot. It should hence
be impossible for the controller to miss an event by using this polling function.

Startup and cleanup decorations

The startup decoration configures the parallel port for input use, and initializes
the variables that are not initialized by the initially line of the specification.

The cleanup decoration simply prints out the received bits to the kernel log.
This output can be consulted in LINUX by using the dmesg command, or by
reading the file /var/log/messages.

Variables decorations

The decoration of variable m is straightforward. Remember that the r variable is
written by the receiver automaton when it has decoded a new bit (or sometimes
two consecutive bits). Hence, we provide a writing decoration for that variable,
which writes to the data[] array whatever r is written to. Again, the array
accessing code is protected by a conditional statement. If the sender goes mad
and sends more than what the receiver can handle, we need to make sure that
no buffer overflow will occur. This is especially important because the receiver
controller runs in kernel space, where memory corruption is very destructive to
say the least.

Transitions decorations

The only transition decoration of the receiver is one that makes the controller
stop when the sequence is finished (i.e. when the automaton goes back to Idle).
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7.4.5 Assigning the RT Semantics Parameters

One last step is needed before our implementation of the PACP is complete.
After running each input file through the SPECTRE tool, we need to encode some
numerical constants in the BEAT, PERIOD, WIDENER and TIME_UNIT defines. To
ensure correctness, we must respect the following equations :

A > Ap+2Ap+4Ap
U > 8xA
U < (1193180)~! x BEAT x TIME_UNIT
Ar > (1193180)"! x BEAT x PERIOD
Ap > (1193180)~' x BEAT
Ap > WCRT of the task
WIDENER = PERIOD + 1

On our testing machines, a safe setting for the clock resolution is 11 ticks.
Also, some very approximate WCET analysis shows that both the sender and
receiver controllers will always be able to complete a task loop within a time
certainly not larger than 1 millisecond. As a CPU usage of 50% seems sufficiently
high, we set the period to 2 milliseconds. These observations suffice to assign a
safe value to the remaining parameters, which we do as follows :

BEAT=11 — Ap=10 us

Ap =10 ps
Ap =1ms
Ar=2ms — A=5ms
A=5ms — U=45ms
U=45ms — TIME_UNIT = 5000
Ar =2 ms — PERIOD = 200
PERIOD = 200 — WIDENER = 201

7.5 Execution of the Generated Code

The generated code has been successfully tested on two 500MHz Pentium ma-
chines. With the above settings, the actual CPU usage observed in practice is
less than 1%. This shows that our WCET analysis was very pessimistic indeed.
More fine-grained WCET and schedulability analysis could be used to push the
throughput to several hundred bits per second (with the above settings it is a
little over 5 bits per second). Peformance-wise, this seems very satisfying consid-
ering that (1) everything is done in software, (2) this software is provably correct,
and (3) the hardware used is quite modest.
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specification sender

clocks : x;

vars : i, p, dz;
events : ;

internals : ;

orders : up, down;
initially Idle, {x := 0, p := 0, dz := 0};
location Idle :

{x >= 12}, up, {x := 0, p := 0, dz
location OneSent :
{x =2, i =1}, down, {x := 0}, WaitOne;
{x =4, i = 0}, down, {x := 0, p :=
{p = 1}, down, {x := 0}, Idle;

location WaitOne :

{x = 2}, up, {x := 0, p := 1-p}, OneSent;

location ZeroSent

{x =2, i =0}, up, {x := 0}, WaitZero;
{x=4,1i=1}, up, {x :=0, p := 1-p, dz
{p = 1}, down, {x := 0}, Idle;
{dz = 1}, down, {x := 0}, Idle;

location WaitZero :
{x = 2}, down, {x := 0, p := 1-p, dz := 1},

end

:= 0}, OneSent;

1-p}, ZeroSent;

:= 0}, OneSent;

ZeroSent;

Figure 7.4: SPECTRE specification for the PACP sender controller.
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decoration sender

global
{h
#define DATA_REGISTER  0x378
#define CTRL_REGISTER  0x37A
#define GOOD_INDEX (0 <= data_index && data_index < data_length)

int var_p, var_dz, data_index;

int datal] =
{ 1, 1,1, 1, 1, 1, 1, 1, i, 0, 1, 0, 1, 0, 1, 1,
1, 0, 1, 0, 1, 1, 1, 1, i, 0, 1, 0, 1, 0, 1, 1,
1, 0, 1, 1,1, 0, 1, 1, i, 0, 1, 0, 1, 0, 1, 1,
1, 1,1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0
};
const int data_length = 8%8+2;

int sequence_finished(void) {return data_index >= data_length;}

h}

{% outb(255, DATA_REGISTER); %} nop
DATA_REGISTER); %} nop

order up
order down {% outb(O,

startup {% outb(0, CTRL_REGISTER); outb(O, DATA_REGISTER); %}

cleanup

reading
reading
writing
reading
writing

Idle
WaitOne
ZeroSent
any

any

restrict
restrict
restrict
restrict
restrict

end

Figure 7.5: SPECTRE decoration for the PACP sender controller.

nop

sequence_finished();
I'sequence_finished();
I'sequence_finished();

nop
nop
nop
nop
nop

i {% return GOOD_INDEX ? dataldata_index]
P {% return var_p;
p (value) {% var_p = value;
dz {% return var_dz;
dz (value) {% var_dz = value;
to OneSent {% data_index = 0; %}
to OneSent {% data_index++; %}
to OneSent  {’ data_index++; %}
to ZeroSent {’ data_index++; %}
to Idle {% spectre_running = 0; %}
any to Idle {% return
any to WaitZero {% return
any to WaitOne {% return
any to ZeroSent {% return

ZeroSent to OneSent {%

return

I'sequence_finished();
'sequence_finished();

. 0;

3
h
h}
h
h}

h
h}
h}
%}
%}
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specification receiver

clocks : y;
vars : m, T;
events : up;
internals : ;
orders : ;

initially Idle, {y := 0, m := 0};

location Idle :
{}, up, {y := 0, m := 0}, LastIsOne;

location LastIsOne :
{3<=y, y<=5} uwp, {y :=0, m := 1-m, r :
{7 <=y}, up, {y := 0, r := 2}, LastIsOne;
{6<=y, y<=7}, up, {y :=0, m := 1-m, r :
{9 <=y, m = 0}, none, {r := 0}, Idle;
{9 <=y, m = 1}, none, {}, Idle;

1}, LastIsOne;

0}, LastIsZero;

location LastIsZero :
{3 <=y, y<=5} uwp, {y :=0, m := 1-m, r := 0}, LastIsZero;
{6 <=y, y<=7}, up, {y := 0,r := 2}, LastIsOne;
{7 <= y}, none, {r := 0}, Idle;

end

Figure 7.6: SPECTRE specification for the PACP receiver controller.
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decoration receiver

global
{h
#define DATA_REGISTER  0x378
#define CTRL_REGISTER  0x37A
#define GOOD_INDEX (0 <= data_index && data_index < data_length-1)
const int data_length = 128;
int var_m, data_index, datal[data_length];
unsigned char last_val;
void print_received_bits(void) {
int 1i;
if (GOOD_INDEX)
for(i = 0; i < data_index-1; i++) rt_printk("%d\n", datali]);
else
rt_printk("ERROR : received more bits than buffer length...\n");

}
h}
event up
{h
unsigned char val = inb(DATA_REGISTER);
return val == last_val ? 0 : (last_val = val);
%} nop nop

startup {% outb(32, CTRL_REGISTER); last_val = O; data_index = 0; %}
cleanup {’ print_received_bits(); %}

reading m {} return var_m; %}
writing m (val) {% var_m = val; 7%}

writing r (val)

{%
if (!GOOD_INDEX) return;
switch (val) {
case 0: case 1: dataldata_index++] = val; break;
case 2: datal[data_index++] = 0; datal[data_index++] = 1;
}
hx

any to Idle {% spectre_running = O; %} nop

end

Figure 7.7: SPECTRE decoration for the PACP receiver controller.



Chapter 8

Conclusions

The objective of this work was to develop a methodology for creating provably
correct software systematically, in the context of real-time embedded controllers.
A controller in our context is a software-operated device which interacts with
a physical environment and has the responsibility of keeping that environment
in a safe configuration. Our methodology belongs to the so-called “top-down”
approach to the creation of provably correct software, which can be summarized
as follows : first, a formal model for the system (controller and environment)
is created; second, a formal property is specified; third, the model is checked
(usually with automated tools) against the property; and finally, the control
software is constructed systematically and is guaranteed correct by construction.

In this work, we have put a lot of effort into ensuring that the models we use
are realistic in the sense that they do take into account the software and hardware
limitations that a real-time controller implementation must face. Indeed, many
verification approaches to this day make a number of simplifications regarding
these limitations, by making the hypothesis that no computation delay or data
transmission delay will ever be large enough to cause any harm. This can be
justified informally in a number of cases, but clearly there are situations where
those simplifications need to be formally validated. To this end, we have used
recent research from Raskin et al. [DDRO5b] which proposes an elegant way of
dealing with these simplifications formally, namely the Almost ASAP Semantics.

Experimental testing has revealed that the code generated using the Almost
ASAP Semantics approach, when run on a hard real-time platform, behaves
better than expected. These experimental results suggested that the model for
the control software was somehow too coarse than needed, and that it hence
could be refined. Further investigation revealed the possibility to perform this
refinement by making a few assumptions about the run-time environment, namely
the presence of a hard real-time operating system. This has led to the creation
of a new implementation semantics, which we named Real-Time Semantics, that
provides a tighter model for the control software. To validate this new semantics,
we have constructed a simulation proof with the Almost ASAP Semantics, which
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resulted in a non-trivial adaptation of a similar proof found in [DDRO5b].

As our work was focused more on code generation than on model-checking, we
have only illustrated the use of safety properties, which require the environment
to avoid a subset region of its state-space. Our methodology could be used with
more complex specifications however, such as LTL formulas.

The final part of our work has been to develop a code generator which was
meant to illustrate the practical applicability of our approach. This step involved
the design of an input language composed of two parts called specification and
decoration. The former is used to encode the controller’s timed automaton and
is very classic, borrowing heavily from the syntax of the tools HYTECH and
ErasTic. The decoration part of the language has been developed from the
ground up however, and much effort has been put into making it as generic and
straightforward as possible. The final result is a trade-off between simplicity
and expressive power. Much of the involved design choices were made in favor of
straightforwardness, which we believe is especially important since the decoration
programming effort is the only part of our methodology which is not formally
ensured correct. Hence, a simple and effective tool with some limitations seemed
more appropriate than one more powerful but intricate and harder to manipulate.

The code generation process itself that we have implemented has also been
designed with straightforwardness in mind. This makes it easier to be convinced
that the generated code follows the Real-Time Semantics very closely, and can
hence be considered correct by construction. This correctness is only ensured
within a certain set of requirements however, which we have tried to enumerate
in the most exhaustive way possible.

As final note, it is interesting to point out that the case study we have pre-
sented in the previous chapter is a fine example of what could barely be possible
to verify only ten years ago. In contrast, the model-checking tools available today
are able to perform this verification in a matter of seconds, and that is by using
the Almost ASAP Semantics which is much coarser than the classical semantics
and is thus harder to verify. This clearly illustrates the progress made in the field
in recent years, and without which this work would not have been possible.



Appendix A

SPECTRE Grammar

A.1 Typographical Conventions Used

Empty symbol : €

Non terminals : (non_terminal)
Keyword terminals : keyword_terminal
Non keyword terminals : ‘ non keyword terminal‘

A.2 Grammar

(spectre_input) ::  (specification)
(decoration)

(specification) :: specification
(declarations)
(initially)
(locations)
end

(declarations) :: €
| (declaration)
(declarations)

(declaration) (clocks_declaration)
(vars_declaration)

(events_declaration)
(orders_declaration)
{

internals_declaration)
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(clocks_declaration) 0 clocks : (identifier_list) ;
(vars_declaration) ;0 vars : (identifier_list) ;
(events_declaration) 1 events : (identifier_list) ;
(orders_declaration) .2 orders : (identifier_list) ;
(internals_declaration) :: internals : (identifier_list) ;
(identifier_list) :: €

|

(identi fier_list_tail)
(identifier_list_tail) :: €

|, [identifier]

(identifier_list_tail)

(initially) :: initially : , (assignments) ;

(assignments) :: { (assignment_list) }
(assignment_list) = €
| (assignment)

(assignment _list_tail)

(assignment_list tail) = €
|, (assignment)
(assignment _list_tail)

(assignment) := (expression)

(expression) ::  (expression) + (term)
| (expression) - (term)

| (factor)

(term) = (term) * (factor)
| (term) / (factor)
| (factor)

(factory :: ( (expression) )

| linteger

| |identifier

(locations) = (location)
(locations_tail)
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(locations_tail) :: €
| (location)
(locations_tail)

(location) :: location [identifier] : (transitions)

(transitions) €
| (transition)
(transitions)

(transition) :: (predicates) , (label) , (assignments) , ;

(label) :: none
|
(predicates) :: { (predicate list) }
(predicate_list) :: €
| (predicate)
(predicate_list tail)
(predicate_list_tail) :: €
|, (predicate)
(predicate_list tail)
(predicate) ::  (expression)
(comparator)
(expression)
(comparator)y :: =
| -
| >=

(decoration) :: decoration (decoration_items) end

(decoration_items) :: €
| (decoration_item)
{(decoration_items)
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(decoration_item) :: global (fragment)
startup (fragment)
cleanup (fragment)

event |identifier| ( fragment) (fragment) {fragment)

order |identifier| ( fragment) (fragment)

internal |identifier | (fragment) (fragment)

writing

identifier | ( fragment)

identifier| (|identifier| ) (fragment)

lidentifier| to |identifier| { fragment) (fragment)

any to |identifier | ( fragment) (fragment)
to any (fragment) {fragment)
any to any (fragment) (fragment)
restrict (restriction_header) {fragment)

|
|
|
|
|
| reading
|
|
|
|
|
|

(restriction_header) :: |identifier| to |identifier]

| any to |identifier
| to any

| any to any

(fragment)

;X nop
Y %}
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Example of SPECTRE Output

The following code is what SPECTRE generates when run on the “receiver” input
file given in the previous chapter.

/* RTAI includes —————————————————————— */
#include <linux/module.h>

#include <rtai.h>

#include <rtai_sched.h>

#include <rtai_sem.h>

#include <rtai_fifos.h>

/* user defines - ———————-—-—-—-—"—"""""""""""—————— */
#define TIME_UNIT <define this>
#define WIDENER <define this>
#define PERIOD <define this>
#define BEAT <define this>
/* system defines ———————————————————————————— x/

#define STACK_SIZE 10000
#tdefine USE_FPU 1
#tdefine TASK_PRIORITY 128 /* 0 = highest, 255 = lowest */

/* global decoration ——-————————————————————————————— x/

#define DATA_REGISTER  0x378

#define CTRL_REGISTER  0x37A

#define GOOD_ INDEX (0 <= data_index && data_index < data.length-1)
const int data_length = 128;

int var_m, data_index, dataldata_ length];

unsigned char last_val,;

void print_received_bits(void) {
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int 1i;
if (GOOD_INDEX)
for (i = 0; i < data_index - 1; i++)
rt_printk("%d\n", datalil);
else
rt_printk("ERROR : received more bits than buffer length...\n");

/* spectre gobals ———————————————————————————— x/
RTIME spectre_clock_y;

int spectre_equals(RTIME a, RTIME b);

int spectre_largerthan(RTIME a, RTIME other);
int spectre_smallerthan(RTIME a, RTIME other);
RT_TASK spectre_task;

void spectre_task_main(int data);

void (*spectre_current_location) (void);

RTIME spectre_current_time;

int spectre_running;

void spectre_check for_events(void);

int spectre_up_is_pending = O;

/* variables readings headers -—--—--—-————————————————————- */
int spectre_read m(void);
int spectre_read r(void);

/* clocks readings headers ------—-———————————————————————— */

RTIME spectre_read_y(void);

/* variables writings headers -----—--——-———-—————————————- */
void spectre_write_m(int value);

void spectre_write_r(int value);

/* clocks writings headers -—-—---——--——-————————————————————- */
void spectre_write_y(RTIME value);

/* orders headers ——————————————————————————— x/

/* internals headers ————-————————————————————————— x/
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/* events headers -----—---——---———--——---———--———-———————— */
int spectre_poll_up(void);

void
void

spectre_dl_up(void);
spectre_d2_up(void);

/* location headers —--—-—————————————————————————— */

void
void
void

spectre_location_ Idle(void);
spectre_location LastIsOne(void);
spectre_location LastIsZero(void);

/* transitions headers —--—-—————————————————————————————— x/

void
void
void
void
void
void
void
void
void
void

spectre_transition_initially(void);
spectre_transition_Idle to_LastIsOne_1(void);
spectre_transition_LastIsOne_to_LastIsOne_1(void);
spectre_transition_LastIsOne_to_LastIsOne_2(void);
spectre_transition_LastIsOne_to_LastIsZero_3(void);
spectre_transition LastIsOne_to_Idle_4(void);
spectre_transition_ LastIsOne_to_Idle_ 5(void);
spectre_transition_LastIsZero_to_LastIsZero_1(void);
spectre_transition_LastIsZero_to_LastIsOne_2(void);
spectre_transition_LastIsZero_to_Idle_3(void);

/* updates headers —-——-—-——————————————————————————————————— */

void
void
void
void
void
void
void
void
void
void

spectre_update_initially(void);
spectre_update_Idle_to_LastIsOne_1(void);
spectre_update_LastIsOne_to_LastIsOne_1(void);
spectre_update_LastIsOne_to_LastIsOne_2(void);
spectre_update_LastIsOne_to_LastIsZero_3(void);
spectre_update_LastIsOne_to_Idle_4(void);
spectre_update_LastIsOne_to_Idle_5(void);
spectre_update_LastIsZero_to_LastIsZero_1(void);
spectre_update_LastIsZero_to_LastIsOne_2(void);
spectre_update_LastIsZero_to_Idle_ 3(void);

/* guards headers —-——-———————————————————————————— x/

int spectre_guard_Idle_to_LastIsOne_1(void);

int spectre_guard_LastIsOne_to_LastIsOne_1(void);
int spectre_guard_LastIsOne_to_LastIsOne_2(void);
int spectre_guard_LastIsOne_to_LastIsZero_3(void);
int spectre_guard_LastIsOne_to_Idle_4(void);

int spectre_guard_LastIsOne_to_Idle_5(void);

int spectre_guard_LastIsZero_to_LastIsZero_1(void);
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int spectre_guard_LastIsZero_to_LastIsOne_2(void);
int spectre_guard_LastIsZero_to_Idle_3(void);

/* checks headers ---—----————————————————————————————
int spectre_check_Idle_to_LastIsOne_1(void);

int spectre_check_LastIsOne_to_LastIsOne_1(void);

int spectre_check LastIsOne_to_LastIsOne_2(void);

int spectre_check LastIsOne_to_LastIsZero_3(void);

int spectre_check LastIsOne_to_Idle_4(void);

int spectre_check_LastIsOne_to_Idle_5(void);

int spectre_check LastIsZero_to_LastIsZero_1(void);

int spectre_check_LastIsZero_to_LastIsOne_2(void);

int spectre_check LastIsZero_to_Idle_3(void);

/* decorations headers -——--———-—————————————————————————————
void spectre_dl_Idle_to_LastIsOne(void);

void spectre_dl_LastIsOne_to_Idle(void);

void spectre_dl_LastIsOne_to_LastIsOne(void);

void spectre_dl_LastIsOne_to_LastIsZero(void);

void spectre_dl_LastIsZero_to_Idle(void);

void spectre_dl_LastIsZero_to_LastIsOne(void);

void spectre_dl_LastIsZero_to_LastIsZero(void);

void spectre_d2_Idle_to_LastIsOne(void);

void spectre_d2_LastIsOne_to_Idle(void);

void spectre_d2_LastIsOne_to_LastIsOne(void);
void spectre_d2_LastIsOne_to_LastIsZero(void);
void spectre_d2_LastIsZero_to_Idle(void);

void spectre_d2_LastIsZero_to_LastIsOne(void);
void spectre_d2_LastIsZero_to_LastIsZero(void);

void spectre_dl_any_to_Idle(void);
void spectre_dl_any_to_LastIsOne(void);
void spectre_dl_any_to_LastIsZero(void);

void spectre_d2_any_to_Idle(void);
void spectre_d2_any_to_LastIsOne(void);
void spectre_d2_any_to_LastIsZero(void);

void spectre_dl_Idle_to_any(void);
void spectre_dl_LastIsOne_to_any(void);
void spectre_dl_LastIsZero_to_any(void);
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void spectre_d2_Idle_to_any(void);
void spectre_d2_LastIsOne_to_any(void);
void spectre_d2_LastIsZero_to_any(void);

void spectre_dl_any_to_any(void);
void spectre_d2_any_to_any(void);

/* restrictions headers --——--—-——————————————————————————— */
int spectre_r_Idle_to_LastIsOne(void);

int spectre_r_LastIsOne_to_Idle(void);

int spectre_r_LastIsOne_to_LastIsOne(void);

int spectre_r_LastIsOne_to_LastIsZero(void);

int spectre_r_LastIsZero_to_Idle(void);

int spectre_r_LastIsZero_to_LastIsOne(void);

int spectre_r_LastIsZero_to_LastIsZero(void);

int spectre_r_any_to_Idle(void);
int spectre_r_any_to_LastIsOne(void);
int spectre_r_any_to_LastIsZero(void);

int spectre_r_Idle_to_any(void);
int spectre_r_LastIsOne_to_any(void);
int spectre_r_LastIsZero_to_any(void);

int spectre_r_any_to_any(void);

/* variables readings implementation --------——-————————--—- */
int spectre_read m() { return var m; }
int spectre_read r() { return O; }

/* clocks readings implementation —--------—--—————————————- x/
RTIME spectre_read_y(void) {
return spectre_current_time - spectre_clock_y;

b

/* variables writings implementation ----------—--—-————-—- x/
void spectre_write_m(int val) { var.m = val; }
void spectre_write_r(int val) {
if (!GOOD_INDEX) return;
switch (val) {
case 0: case 1: datal[data_index++] = val; break;
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case 2: data[data_index++] = 0; datal[data_index++] = 1;

/* clocks writings implementation —-----—--—-—————————————- x/
void spectre_write_y(RTIME newtime) {
spectre_clock_y = spectre_current_time - newtime;

}

/* decorations implementation --—--—-—-———————————————————————— x/
void spectre_dl_Idle_to_LastIsOne() {;}

void spectre_dl_LastIsOne_to_Idle() {;}

void spectre_dl_LastIsOne_ to_LastIsOne() {;}
void spectre_dl_LastIsOne_to_LastIsZero() {;}
void spectre_dl_LastIsZero_to_Idle() {;}

void spectre_dl_LastIsZero_to_LastIsOne() {;}
void spectre_dl_LastIsZero_to_LastIsZero() {;}
void spectre_d2_Idle_to_LastIsOne() {;}

void spectre_d2_LastIsOne_to_Idle() {;}

void spectre_d2_LastIsOne_to_LastIsOne() {;}
void spectre_d2_LastIsOne_to_LastIsZero() {;}
void spectre_d2_LastIsZero_to_Idle() {;}

void spectre_d2_LastIsZero_to_LastIsOne() {;}
void spectre_d2_LastIsZero_to_LastIsZero() {;}
void spectre_dl_any_to_Idle(void) { spectre_running = 0; }
void spectre_dl_any_to_LastIsOne(void) {;}
void spectre_dl_any_to_LastIsZero(void) {;}
void spectre_d2_any_to_Idle(void) {;}

void spectre_d2_any_to_LastIsOne(void) {;}
void spectre_d2_any_to_LastIsZero(void) {;}
void spectre_dl_Idle_to_any(void) {;}

void spectre_dl_LastIsOne_to_any(void) {;}
void spectre_dl_LastIsZero_to_any(void) {;}
void spectre_d2_Idle_to_any(void) {;}

void spectre_d2_LastIsOne_to_any(void) {;}
void spectre_d2_LastIsZero_to_any(void) {;}
void spectre_dl_any_to_any(void) {;}

void spectre_d2_any_to_any(void) {;}

/* guards implementation --—--—-——-———————————————————————— */
int spectre_guard_Idle_to_LastIsOne_1(void) {

RTIME spectre_tl, spectre_t2;

int spectre_el, spectre_e2;
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int spectre_res = 1, spectre_tmp;
return spectre_res;

int spectre_guard_LastIsOne_to_LastIsOne_1(void) {
RTIME spectre_tl, spectre_t2;
int spectre_el, spectre_e2;
int spectre_res = 1, spectre_tmp;
spectre_tl = (TIME_UNIT * 3);
spectre_t2 = spectre_read y();
spectre_tmp = spectre_smallerthan(spectre_tl, spectre_t2);
spectre_res = spectre_tmp &&% spectre_res;
spectre_tl = spectre_read y();
spectre_t2 = (TIME_UNIT * 5);
spectre_tmp = spectre_smallerthan(spectre_tl, spectre_t2);
spectre_res = spectre_tmp &&% spectre_res;
return spectre_res;

int spectre_guard_LastIsOne_to_LastIsOne_2(void) {
RTIME spectre_tl, spectre_t2;
int spectre_el, spectre_e2;
int spectre_res = 1, spectre_tmp;
spectre_tl = (TIME_UNIT * 7);
spectre_t2 = spectre_read_y();
spectre_tmp = spectre_smallerthan(spectre_tl, spectre_t2);
spectre_res = spectre_tmp &&% spectre_res;
return spectre_res;

int spectre_guard_LastIsOne_to_LastIsZero_3(void) {
RTIME spectre_tl, spectre_t2;
int spectre_el, spectre_e2;
int spectre_res = 1, spectre_tmp;
spectre_tl (TIME_UNIT * 5);
spectre_t2 = spectre_read y();
spectre_tmp = spectre_smallerthan(spectre_tl, spectre_t2);
spectre_res spectre_tmp && spectre_res;
spectre_tl = spectre_read y();
spectre_t2 (TIME_UNIT * 7);
spectre_tmp = spectre_smallerthan(spectre_tl, spectre_t2);
spectre_res = spectre_tmp &&% spectre_res;
return spectre_res;
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int spectre_guard_LastIsOne_to_Idle_4(void) {
RTIME spectre_tl, spectre_t2;
int spectre_el, spectre_e2;
int spectre_res = 1, spectre_tmp;
spectre_tl = (TIME_UNIT * 9);
spectre_t2 = spectre_read y();
spectre_tmp = spectre_smallerthan(spectre_tl, spectre_t2);
spectre_res = spectre_tmp &&% spectre_res;
spectre_el = spectre_read m();
spectre_e2 = 0;
spectre_tmp = spectre_el == spectre_e2;
spectre_res = spectre_tmp &&% spectre_res;
return spectre_res;

int spectre_guard_LastIsOne_to_Idle_5(void) {
RTIME spectre_tl, spectre_t2;
int spectre_el, spectre_e2;
int spectre_res = 1, spectre_tmp;
spectre_tl = (TIME_UNIT * 9);
spectre_t2 = spectre_read_y();
spectre_tmp = spectre_smallerthan(spectre_tl, spectre_t2);
spectre_res = spectre_tmp &&% spectre_res;
spectre_el = spectre_read m();
spectre_e2 = 1;
spectre_tmp = spectre_el == spectre_e2;
spectre_res = spectre_tmp &&% spectre_res;
return spectre_res;

int spectre_guard_LastIsZero_to_LastIsZero_1(void) {
RTIME spectre_tl, spectre_t2;
int spectre_el, spectre_e2;
int spectre_res = 1, spectre_tmp;
spectre_tl = (TIME_UNIT * 3);
spectre_t2 = spectre_read y();
spectre_tmp = spectre_smallerthan(spectre_tl, spectre_t2);
spectre_res = spectre_tmp &&% spectre_res;
spectre_tl = spectre_read y();
spectre_t2 = (TIME_UNIT * 5);
spectre_tmp = spectre_smallerthan(spectre_tl, spectre_t2);
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spectre_res = spectre_tmp &&% spectre_res;
return spectre_res;

int spectre_guard_LastIsZero_to_LastIsOne_2(void) {
RTIME spectre_tl, spectre_t2;
int spectre_el, spectre_e2;
int spectre_res = 1, spectre_tmp;
spectre_tl = (TIME_UNIT * 5);
spectre_t2 = spectre_read y();
spectre_tmp = spectre_smallerthan(spectre_tl, spectre_t2);
spectre_res = spectre_tmp &&% spectre_res;
spectre_tl = spectre_read y();
spectre_t2 = (TIME_UNIT * 7);
spectre_tmp = spectre_smallerthan(spectre_tl, spectre_t2);
spectre_res = spectre_tmp &&% spectre_res;
return spectre_res;

int spectre_guard_LastIsZero_to_Idle_3(void) {
RTIME spectre_tl, spectre_t2;
int spectre_el, spectre_e2;
int spectre_res = 1, spectre_tmp;
spectre_tl = (TIME_UNIT * 7);
spectre_t2 = spectre_read_y();
spectre_tmp = spectre_smallerthan(spectre_tl, spectre_t2);
spectre_res = spectre_tmp &&% spectre_res;
return spectre_res;

/* restrictions implementation —-————-—————————————————————— x/
int spectre_r_Idle_to_LastIsOne(void) { return 1; }

int spectre_r_LastIsOne_to_Idle(void) { return 1; }

int spectre_r_LastIsOne_to_LastIsOne(void) { return 1; }
int spectre_r_LastIsOne_to_LastIsZero(void) { return 1; }
int spectre_r_LastIsZero_to_Idle(void) { return 1; }

int spectre_r_LastIsZero_to_LastIsOne(void) { return 1; }
int spectre_r_LastIsZero_to_LastIsZero(void) { return 1; }
int spectre_r_any_to_Idle(void) { return 1; }

int spectre_r_any_to_LastIsOne(void) { return 1; }

int spectre_r_any_to_LastIsZero(void) { return 1; }

int spectre_r_Idle_to_any(void) { return 1; }

int spectre_r_LastIsOne_to_any(void) { return 1; }
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int spectre_r_LastIsZero_to_any(void) { return 1; }
int spectre_r_any_to_any(void) { return 1; }

/* updates implementation ---------—-——-——————————————————— */
void spectre_update_initially(void) {
spectre_write_y((TIME_UNIT * 0));
spectre_write_m(0);

void spectre_update_Idle_to_LastIsOne_1(void) {
spectre_write_y((TIME_UNIT * 0));
spectre_write_m(0) ;

void spectre_update_LastIsOne_to_LastIsOne_1(void) {
spectre_write_y((TIME_UNIT * 0));
spectre_write m(1 - spectre_read m());
spectre_write_r(1);

void spectre_update_LastIsOne_to_LastIsOne_2(void) {
spectre_write_y((TIME_UNIT * 0));
spectre_write_r(2);

void spectre_update_LastIsOne_to_LastIsZero_3(void) {
spectre_write_y((TIME_UNIT * 0));
spectre_write m(1 - spectre_read m());
spectre_write_r(0);

void spectre_update_LastIsOne_to_Idle_4(void) {
spectre_write_r(0);

b

void spectre_update_LastIsOne_to_Idle_5(void) {

}

void spectre_update_LastIsZero_to_LastIsZero_1(void) {
spectre_write_y((TIME_UNIT * 0));
spectre_write m(1 - spectre_read m());
spectre_write_r(0);
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void spectre_update_LastIsZero_to_LastIsOne_2(void) {
spectre_write_y((TIME_UNIT * 0));
spectre_write_r(2);

void spectre_update_LastIsZero_to_Idle_3(void) {
spectre_write_r(0);

}

/* orders implementation ————-——=——————=————————————— */
/* internals implementation —-——--=-—=-—=————————————————————— */
/* events implementation -——-——-——-—=—=—=————————————————— */

void spectre_dl_up(void) {;}
void spectre_d2_up(void) {;}
int spectre_poll up(void) {
unsigned char val = inb(DATA_REGISTER);
return val == last_val ? 0 : (last_val = val);

/* checks implementation —-——--—————————————————————————————— x/
int spectre_check Idle_to_LastIsOne_1(void) {

int spectre_rl, spectre_r2, spectre_r3, spectre_r4, spectre._g;

spectre_rl = spectre_r_Idle to_LastIsOne();

spectre_r2 = spectre_r_Idle to_any(Q);

spectre_r3 = spectre_r_any_to_LastIsOne();

spectre_r4 = spectre_r_any_to_any();

spectre_g = spectre_guard_Idle to_LastIsOne_ 1();

return (spectre_g && spectre_rl && spectre_r2 && spectre_r3

&& spectre_r4 && (spectre_up_is_pending == 1));

int spectre_check LastIsOne_to_LastIsOne_1(void) {
int spectre_rl, spectre_r2, spectre_r3, spectre_r4, spectre._g;
spectre_rl = spectre_r_LastIsOne_to_LastIsOne();
spectre_r2 = spectre_r_LastIsOne_to_any();
spectre_r3 = spectre_r_any_to_LastIsOne();
spectre_r4 = spectre_r_any_to_any();
spectre_g = spectre_guard LastIsOne_to_LastIsOne_1Q);
return (spectre_g && spectre_rl && spectre_r2 && spectre_r3
&& spectre_r4 && (spectre_up_is_pending == 1));
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int spectre_check LastIsOne_to_LastIsOne_2(void) {
int spectre_rl, spectre_r2, spectre_r3, spectre_r4, spectre._g;
spectre_rl = spectre_r_LastIsOne_to_LastIsOne();
spectre_r2 = spectre_r_LastIsOne_to_any();
spectre_r3 = spectre_r_any_to_LastIsOne();
spectre_r4 = spectre_r_any_to_any();
spectre_g = spectre_guard LastIsOne_to_LastIsOne_2(Q);
return (spectre_g && spectre_rl && spectre_r2 && spectre_r3
&& spectre_r4 && (spectre_up_is_pending == 1));

int spectre_check LastIsOne_to_LastIsZero_3(void) {

int spectre_rl, spectre_r2, spectre_r3, spectre_r4, spectre_g;

spectre_rl = spectre_r_LastIsOne_to_LastIsZero();

spectre_r2 = spectre_r_LastIsOne_to_any();

spectre_r3 = spectre_r_any_to_LastIsZero();

spectre_r4 = spectre_r_any_to_any();

spectre_g = spectre_guard_LastIsOne_to_LastIsZero_3();

return (spectre_g && spectre_rl && spectre_r2 && spectre_r3
&& spectre_r4 && (spectre_up_is_pending == 1));

int spectre_check LastIsOne_to_Idle_4(void) {
int spectre_rl, spectre_r2, spectre_r3, spectre_r4, spectre._g;
spectre_rl = spectre_r_LastIsOne_to_Idle();
spectre_r2 = spectre_r_LastIsOne_to_any();
spectre_r3 = spectre_r_any to_Idle();
spectre_r4 = spectre_r_any_to_any();
spectre_g = spectre_guard LastIsOne_to_Idle_4();
return (spectre_g && spectre_rl && spectre_r2 && spectre_r3
&& spectre_r4);

int spectre_check LastIsOne_to_Idle_5(void) {
int spectre_rl, spectre_r2, spectre_r3, spectre_r4, spectre_g;
spectre_rl = spectre_r_LastIsOne_to_Idle();
spectre_r2 = spectre_r_LastIsOne_to_any();
spectre_r3 = spectre_r_any to_Idle();
spectre_r4 = spectre_r_any_to_any();
spectre_g = spectre_guard_LastIsOne_to_Idle_5Q);
return (spectre_g && spectre_rl && spectre_r2 && spectre_r3
&& spectre_r4);
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}
int spectre_check LastIsZero_to_LastIsZero_1(void) {
int spectre_rl, spectre_r2, spectre._r3, spectre_r4, spectre.
spectre_rl = spectre_r_LastIsZero_to_LastIsZero();
spectre_r2 = spectre_r_LastIsZero_to_any();
spectre_r3 = spectre_r_any_to_LastIsZero();
spectre_r4 = spectre_r_any_to_any();
spectre_g = spectre_guard_LastIsZero_to_LastIsZero_ 1();
return (spectre_g && spectre_rl && spectre_r2 && spectre_r3
&& spectre_r4 && (spectre_up_is_pending == 1));
}
int spectre_check LastIsZero_to_LastIsOne_2(void) {
int spectre_rl, spectre_r2, spectre_r3, spectre_r4, spectre.
spectre_rl = spectre_r_LastIsZero_to_LastIsOne();
spectre_r2 = spectre_r_LastIsZero_to_any();
spectre_r3 = spectre_r_any_to_LastIsOne();
spectre_r4 = spectre_r_any_to_any();
spectre_g = spectre_guard_LastIsZero_to_LastIsOne_2();
return (spectre_g && spectre_rl && spectre_r2 && spectre_r3
&& spectre_r4 && (spectre_up_is_pending == 1));
}
int spectre_check LastIsZero_to_Idle_3(void) {
int spectre_rl, spectre_r2, spectre_r3, spectre_r4, spectre.
spectre_rl = spectre_r_LastIsZero_to_Idle();
spectre_r2 = spectre_r_LastIsZero_to_any(Q);
spectre_r3 = spectre_r_any_to_Idle();
spectre_r4 = spectre_r_any_to_any();
spectre_g = spectre_guard_LastIsZero_to_Idle_3();
return (spectre_g && spectre_rl && spectre_r2 && spectre_r3
&& spectre_r4);
}
/* transitions implementation --—---————————————————————————— x/

void spectre_transition_initially(void) {

spectre_update_initially();
spectre_current_location = spectre_location_Idle;

void spectre_transition_ Idle_to_LastIsOne_1(void) {

spectre_dl_Idle_to_LastIsOne();
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spectre_dl_Idle_to_any();
spectre_dl_any_to_LastIsOne();
spectre_dl_any_to_anyQ);
spectre_dl_upQ);
spectre_update_Idle_to_LastIsOne_ 1();
spectre_current_location = spectre_location_LastIs(One;
spectre_d2_up(Q);
spectre_up-is_pending = O;
spectre_d2_Idle_to_LastIsOne();
spectre_d2_Idle_to_any();
spectre_d2_any_to_LastIsOne();
spectre_d2_any_to_any(Q);

void spectre_transition_ LastIsOne_to_LastIsOne_1(void) {
spectre_dl_LastIsOne_to_LastIsOne();
spectre_dl_LastIsOne_to_any();
spectre_dl_any_to_LastIsOne();
spectre_dl_any_to_anyQ);
spectre_dl_upQ);
spectre_update_LastIsOne_to_LastIsOne_1();
spectre_current_location = spectre_location_LastIs(One;
spectre_d2_up();
spectre_up-is_pending = O;
spectre_d2_LastIsOne_to_LastIsOne();
spectre_d2_LastIsOne_to_any();
spectre_d2_any_to_LastIsOne();
spectre_d2_any_to_anyQ);

void spectre_transition_ LastIsOne_to_LastIsOne_2(void) {
spectre_dl_LastIsOne_to_LastIsOne();
spectre_dl_LastIsOne_to_any();
spectre_dl_any_to_LastIsOne();
spectre_dl_any_to_anyQ);
spectre_dl_upQ);
spectre_update_LastIsOne_to_LastIsOne_2();
spectre_current_location = spectre_location_LastIs(One;
spectre_d2_up();
spectre_up-is_pending = O;
spectre_d2_LastIsOne_to_LastIsOne();
spectre_d2_LastIsOne_to_any();
spectre_d2_any_to_LastIsOne();
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spectre_d2_any_to_any();

void spectre_transition_LastIsOne_to_LastIsZero_3(void) {
spectre_dl_LastIsOne_to_LastIsZero();
spectre_dl_LastIsOne_to_any();
spectre_dl_any_to_LastIsZero();
spectre_dl_any_to_anyQ);
spectre_dl_upQ);
spectre_update_LastIsOne_to_LastIsZero_3(Q);
spectre_current_location = spectre_location_LastIsZero;
spectre_d2_up(Q);
spectre_up-is_pending = O;
spectre_d2_LastIsOne_to_LastIsZero();
spectre_d2_LastIsOne_to_any();
spectre_d2_any_to_LastIsZero();
spectre_d2_any_to_any(Q);

void spectre_transition_ LastIsOne_to_Idle_4(void) {
spectre_dl_LastIsOne_to_Idle();
spectre_dl_LastIsOne_to_any();
spectre_dl_any_to_Idle();
spectre_dl_any_to_anyQ);
spectre_update_LastIsOne_to_Idle_4Q);
spectre_current_location = spectre_location_Idle;
spectre_d2_LastIsOne_to_Idle();
spectre_d2_LastIsOne_to_anyQ);
spectre_d2_any_to_Idle();
spectre_d2_any_to_anyQ);

void spectre_transition_ LastIsOne_to_Idle_5(void) {
spectre_dl_LastIsOne_to_Idle();
spectre_dl_LastIsOne_to_anyQ);
spectre_dl_any_to_Idle();
spectre_dl_any_to_anyQ);
spectre_update_LastIsOne_to_Idle_5Q);
spectre_current_location = spectre_location_Idle;
spectre_d2_LastIsOne_to_Idle();
spectre_d2_LastIsOne_to_any();
spectre_d2_any_to_Idle();
spectre_d2_any_to_any(Q);
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void spectre_transition_LastIsZero_to_LastIsZero_1(void) {
spectre_dl_LastIsZero_to_LastIsZero();
spectre_dl_LastIsZero_to_any();
spectre_dl_any_to_LastIsZero();
spectre_dl_any_to_anyQ);
spectre_dl_upQ);
spectre_update_LastIsZero_to_LastIsZero_1();
spectre_current_location = spectre_location_LastIsZero;
spectre_d2_up(Q);
spectre_up_is_pending = O;
spectre_d2_LastIsZero_to_LastIsZero();
spectre_d2_LastIsZero_to_any();
spectre_d2_any_to_LastIsZero();
spectre_d2_any_to_any(Q);

void spectre_transition_LastIsZero_to_LastIsOne_2(void) {
spectre_dl_LastIsZero_to_LastIsOne();
spectre_dl_LastIsZero_to_any();
spectre_dl_any_to_LastIsOne();
spectre_dl_any_to_anyQ);
spectre_dl_upQ);
spectre_update_LastIsZero_to_LastIsOne_2Q);
spectre_current_location = spectre_location_LastIs(One;
spectre_d2_up(Q);
spectre_up-is_pending = O;
spectre_d2_LastIsZero_to_LastIsOne();
spectre_d2_LastIsZero_to_any();
spectre_d2_any_to_LastIsOne();
spectre_d2_any_to_any(Q);

void spectre_transition_LastIsZero_to_Idle_3(void) {
spectre_dl_LastIsZero_to_Idle();
spectre_dl_LastIsZero_to_any();
spectre_dl_any_to_Idle();
spectre_dl_any_to_anyQ);
spectre_update_LastIsZero_to_Idle_ 3();
spectre_current_location = spectre_location_Idle;
spectre_d2_LastIsZero_to_Idle();
spectre_d2_LastIsZero_to_any();
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spectre_d2_any_to_Idle();
spectre_d2_any_to_any();

/* location implementation ——--—-——-————————————————————————

void spectre_location_ Idle(void) {
if (spectre_check_ Idle_to_LastIsOne 1()) {
spectre_transition_Idle_ to_LastIsOne_ 1();

return;
}
}
void spectre_location_LastIsOne(void)
{
if (spectre_check_LastIsOne_to_LastIsOne_1()) {
spectre_transition_LastIsOne_to_LastIsOne_1();
return,
}
if (spectre_check LastIsOne_to_LastIsOne_2()) {
spectre_transition_LastIsOne_to_LastIsOne_2();
return;
}
if (spectre_check LastIsOne_to_LastIsZero_3()) {
spectre_transition_LastIsOne_to_LastIsZero_3Q);
return;
}
if (spectre_check_LastIsOne_to_Idle_4()) {
spectre_transition_LastIsOne_to_Idle_4();
return;
}
if (spectre_check_LastIsOne_to_Idle_5(0)) {
spectre_transition_LastIsOne_to_Idle_5(Q);
return;
}
}

void spectre_location LastIsZero(void)

{
if (spectre_check_LastIsZero_to_LastIsZero_1()) {

spectre_transition_LastIsZero_to_LastIsZero_1();

return;

}
if (spectre_check_LastIsZero_to_LastIsOne_2()) {
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spectre_transition_LastIsZero_to_LastIsOne_2();
return;

}
if (spectre_check_LastIsZero_to_Idle 3()) {
spectre_transition_LastIsZero_to_Idle_3();

return;
}
}
void spectre_check for_events(void)
{
if ((spectre_up-is_pending == 0) && spectre_poll_up())
spectre_up-is_pending = 1;
}

void spectre_cleanup(void) {
print_received_bits();

b

void spectre_startup(void) {
outb(32, CTRL_REGISTER);
last_val = 0;
data_index = 0;

int spectre_equals(RTIME a, RTIME b) {
RTIME lower = b - WIDENER;
RTIME higher = b + WIDENER;
return (a > lower &% a < higher);

int spectre_largerthan(RTIME a, RTIME other) {
other -= WIDENER;
return (a > other);

int spectre_smallerthan(RTIME a, RTIME other) {
other += WIDENER;
return (a < other);

/* main function implementation --—--—--—-————————————————- x/
void spectre_task main(int data) {
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spectre_running = 1;

spectre_startup();

spectre_transition_initially();

while (spectre_running == 1) {
spectre_current_time = rt_get_time();
spectre_check_for_events();
spectre_current_location();
rt_task_wait_period();

}
spectre_cleanup();
}
/* kernel module functions ——-—-———————————————————————————— */

int spectre_init_module(void) {
rt_set_periodic_mode();
start_rt_timer (BEAT) ;
rt_task_init(&spectre_task, spectre_task_main, 0, STACK_ SIZE,
TASK_PRIORITY, USE_FPU, 0);
rt_task_make_periodic(&spectre_task, rt_get_time() + PERIOD, PERIOD);
return O;

void spectre_cleanup_module(void) {
stop_rt_timer();
rt_task_delete(&spectre_task);

module_init(spectre_init_module);
module_exit (spectre_cleanup_module);
MODULE_LICENSE("GPL");
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