REACTIVE SYNTHESIS OVER INFINITE DATA DOMAINS

EMMANUEL FILIOT (ULB)

Based on joint works with

LEO EXIBARD

AYRAT KHALIMOV

PIERRE-ALAIN REYNIER

Intro

- **Reactive synthesis (RS):** automatically construct a reactive system from a specification of correct semantical behaviours $S \subseteq (\text{Actions}_{Env}, \text{Actions}_{Svs})^{\omega}$
- Formal methods for RS: logic/automata/games, focus on control, ignore data
- Objective: extend formal methods for RS with data
- In this talk: $S \subseteq [(Actions_{Env} \times \mathscr{D}). (Actions_{Svs} \times \mathscr{D})]^{\omega}$
- **Questions:**

 - How to model specifications ? How to model reactive systems ? • What's decidable ? For which data domains ?

(Data-free) Reactive Synthesis Problem

$$i_1 \cdot o_1 \cdot i_2 \cdot o_2$$
.

Synthesis Problem

Input: a specification language $S \subseteq (IO)^{\omega}$

Output: a Mealy machine *M* such that $L(M) \subseteq S$

Reactive System

- $\ldots \in (I . O)^{\omega}$

- $I = O = \{a, b, c\}$
- **Spec:** *"relay input up to first c, or forever if no c"* $S = (\underline{aa} + \underline{bb})^{\omega} + (\underline{aa} + \underline{bb})^* \underline{cc(IO)}^{\omega}$

•
$$I = O = \{a, b, c\}$$

• **Spec:** *"relay input up to first c, or forever if no c"* $S = (aa + bb)^{\omega} + (aa + bb)^* cc(IO)^{\omega}$

- $I = O = \{a, b, c\}$
- Spec: $S = (aa + ba)^{\omega} + (aa + bb)^* cc(IO)^{\omega}$
- Unrealizable !

- $I = O = \{a, b, c\}$
- Spec: $S = (aa + ba)^{\omega} + (aa + bb)^* cc(IO)^{\omega}$
- Unrealizable !

Example 3: request / gr

- $C \subseteq \mathbb{N}$ finite
- $I = \{req_i \mid i \in C\} \cup \{\neg req\}$
- $O = \{grt_i \mid i \in C\} \cup \{\neg grt\}$
- Spec: $\bigwedge_{i \in C} G(req_i \to F(grt_i))$ $i \in C$

ant	
-----	--

Example 3: request / grant

- $C \subseteq \mathbb{N}$ finite
- $I = \{req_i \mid i \in C\} \cup \{\neg req\}$
- $O = \{grt_i \mid i \in C\} \cup \{\neg grt\}$
- **Spec:** $\bigwedge G(req_i \to F(grt_i))$ $i \in C$

Example 4: request/grant with delay

- Any request must be granted after at least *d* input steps
- For d = 1 and |C| = 2:

-

Example 4: request/grant with delay

- Any request must be granted after at least *d* input steps
- For d = 1 and |C| = 2: $C = \{1, 2\}$

reg1 g1

- reg2 92

Example 4: request/grant with delay

- Any request must be granted after at least *d* input steps
- For d = 1 and |C| = 2:

reg1 g1

- reg 2 92 In general: machine with $O(|C|^d)$ states

Important results in reactive synthesis

- Classical approach: logic \rightarrow automata \rightarrow deterministic automata \rightarrow games
- det parity automata, good-for-games automata, ...

2 exptine-C

exptime - c

• Regular spec: LTL, MSO, non-det Büchi automata, universal coBüchi automata,

Important results in reactive synthesis

- Classical approach: logic \rightarrow automata \rightarrow deterministic automata \rightarrow games
- det parity automata, good-for-games automata, ...

2 exptine-c

- **Game theory** on graphs
- Tools: Strix, LTLSynth, AcaciaBonzai, ...
- Yearly synthesis **competition** since 2014

• Regular spec: LTL, MSO, non-det Büchi automata, universal coBüchi automata,

exptime - C

Delayed request/grant example revisited

- **Spec:** "Any request must be granted after at least **d** input steps"
- $C \subseteq \mathbb{N}$ $C = \mathbb{N}$
- $I = \{(req, i) \mid i \in C\} \cup \{\neg req\}$
- $O = \{(grt, i) \mid i \in C\} \cup \{\neg grt\}$

Delayed request/grant example revisited

- **Spec:** "Any request must be granted after at least **d** input steps"
- $C \subseteq \mathbb{N}$ $C = \mathbb{N}$
- $I = \{(req, i) \mid i \in C\} \cup \{\neg req\}$
- $O = \{(grt, i) \mid i \in C\} \cup \{\neg grt\}$
- Spec realizable by a Mealy machine with registers. For d=1:

Delayed request/grant example revisited

- **Spec:** "Any request must be granted after at least **d** input steps"
- $C \subset \mathbb{N}$ $C = \mathbb{N}$
- $I = \{(req, i) \mid i \in C\} \cup \{\neg req\}$
- $O = \{(grt, i) \mid i \in C\} \cup \{\neg grt\}$
- Spec realizable by a Mealy machine with registers. For d=1:

 \rightarrow in general: Mealy machine with O(d) states and O(d) registers → Priorities between processes: data domain (\mathbb{N}, \leq)

Treg out (grant, r)

Treg | 25ront (reg, *) | out (29nant); tr

Synthesis Problem over Infinite Data Domains

Definition

Input: a specification language $S \subseteq \mathscr{D}^{\omega}$ where \mathscr{D} is a data domain **Output:** a Mealy machine with registers M such that $L(M) \subseteq S$

Specification: FO with \leq_d , constraint LTL, LTL with freeze quantifier, variable automata, det/nondet/universal register automata, ...

Register Automata on $(\mathbb{N}, \leq ,0)$

Register Automata on $(\mathbb{N}, \leq ,0)$

 $Run: (p, 0, 0) \xrightarrow{5} (q, 5, 0) \xrightarrow{3} (q, 5, 3) \xrightarrow{4} (q, 5, 4) \xrightarrow{0} (q, 5, 0)$ state m N

$A = (Q, q_0, R, \delta, \alpha)$

Register Automata on $(\mathbb{N}, \leq , 0)$

5 Run: (p, 0, 0) -1 T state m n

Synthesis problem

Input: a universal register automaton A over *D* **Output:** a Mealy machine with registers *M* such that $L(M) \subseteq L(A)$

Synthesis

[3]: L. Exibard: Automatic Synthesis of Systems with Data (PhD thesis), 2021.

$ (\mathbb{D}, =) $	$(\mathbb{Q}, <)$	$(\mathbb{N}, <)$
× [3]	×	×

Synthesis problem

Input: a universal register automaton A over *S* **Output:** a Mealy machine with registers M such that $L(M) \subseteq L(A)$

Synthesis

[3]: L. Exibard: Automatic Synthesis of Systems with Data (PhD thesis), 2021.

Register-Bounded Synthesis problem

Input: a universal register automaton A over \mathcal{D} and $k \in \mathbb{N}$ **Output:** a Mealy machine with *k* registers *M* such that $L(M) \subseteq L(A)$

$(\mathbb{D}, =)$	$(\mathbb{Q}, <)$	$(\mathbb{N}, <)$
× [3]	×	×

Synthesis problem

Input: a universal register automaton A over *S* **Output:** a Mealy machine with registers M such that $L(M) \subseteq L(A)$

[1]: R.Bloem, B.Maderbacher, A.Khalimov.: Bounded Synthesis of Register Transducers. 2019 [2]: L.Exibard, E.F., P.-A. Reynier: Synthesis of data word transducers. 2019. [3]: L. Exibard: Automatic Synthesis of Systems with Data (PhD thesis), 2021. [4]: L. Exibard, E.F., A. Khalimov: Generic solution to register-bounded synthesis. 2022.

Register-Bounded Synthesis problem

Input: a universal register automaton A over \mathcal{D} and $k \in \mathbb{N}$ **Output:** a Mealy machine with *k* registers *M* such that $L(M) \subseteq L(A)$

$(\mathbb{Q}, <)$	$(\mathbb{N}, <)$
×	×
√ [3]	✓ [4]
	(ℚ, <) × √[3]

Generic Solution to Register-Bounded Synthesis

Thanks to Ayrat for the slides !

Main ideas

- reduction to omega-regular synthesis over finite alphabets
- **sufficient condition** on the data domain allowing for such a reduction (regapprox domains)
- prove that $(\mathbb{Q}, <)$ and $(\mathbb{N}, <)$ are regapprox

Abstraction

finite automata over action words

Abstraction

Abstraction

set (increase)³³
set increase incr² recet incr³ reset ...
on
$$(N,c)$$

Any feasible action woud has the form
set incrⁿ reset incrⁿz_n, where $\exists B: every n; < B$

FEASIBILITY IN (Q, <)

- Feasibility = local consistency

FEASIBILITY IN (Q, <)

- Feasibility = local consistency

FEASIBILITY IN (Q, <)

- Feasibility = local consistency

- Lemma: the set of feasible words is omega-regular

FEASIBILITY IN (N, ζ)

An action word is feasible iff it has:

no unbounded chains of the form

FEASIBILITY IN (N, ζ)

An action word is feasible iff it has:

no unbounded chains of the form

Let FEAS be the set of feasible action words over given R.

REDUCTION TO FINITE ALPHABETS

Given S and k, create a *finite-alphabet* specification $W_{S,k}$: $W_{S,k}$ is realizable by a Mealy machine \Leftrightarrow S is realizable by a Mealy machine \diamond \bigvee (e) is trees

REDUCTION TO FINITE ALPHABETS

Given S and k, create a finite-alphabet specification $W_{S,k}$: $W_{S,k}$ is realizable by a Mealy machine \Leftrightarrow S is realizable by a Mealy machine δ (ℓ) .

$$\overline{W_{S,k}} = \{ \overline{a}_M \mid \exists \overline{a}_S \notin L_{syntx}(S) \cdot \exists w \in \mathscr{D}^{\omega} \cdot w \models \overline{a}_M \land w \models \overline{a}_S \}$$
$$= \{ \overline{a}_M \mid \exists \overline{a}_S \notin L_{syntx}(S) \cdot \overline{a}_M \otimes \overline{a}_S \in \mathsf{FEAS} \}$$

REDUCTION TO FINITE ALPHABETS

Given S and k, create a finite-alphabet specification $W_{S,k}$: $W_{S,k}$ is realizable by a Mealy machine \Leftrightarrow S is realizable by a Mealy machine

$$\overline{W_{S,k}} = \{ \overline{a}_M \mid \exists \overline{a}_S \notin L_{syntx}(S) \cdot \exists w \in \mathscr{D}^{\omega} \cdot w \models \overline{a}_M \land w \models \overline{a}_S \}$$
$$= \{ \overline{a}_M \mid \exists \overline{a}_S \notin L_{syntx}(S) \cdot \overline{a}_M \otimes \overline{a}_S \in \mathsf{FEAS} \}$$

NOT W-REGULAR IN GENERAL!

GENERIC SOLUTION

Data domain is regapprox if for every R there exists eff.constr. ω -regular over-approximation QFEAS

 $\mathsf{QFEAS} \cap lasso \subseteq \mathsf{FEAS} \subseteq \mathsf{QFEAS}.$

Theorem:

on regapprox domains, register-bounded synthesis is decidable.

Lemma

S is realizable by a k-reg Mealy machine iff $W_{S,k}$ is realisable by a Mealy machine iff $W_{S,k}^{QF}$ is realizable by a Mealy machine \mathcal{D}

S is defined by a URA $W_{S,k} = \{ \overline{a}_M \mid \forall \overline{a}_S \cdot \overline{a}_M \otimes \overline{a}_S \in \mathsf{FEAS} \Rightarrow \overline{a}_S \in L_{syntx}(S) \}$ $W_{S,k}^{QF} = \{ \overline{a}_M \mid \forall \overline{a}_S \cdot \overline{a}_M \otimes \overline{a}_S \in \mathsf{QFEAS} \Rightarrow \overline{a}_S \in L_{syntx}(S) \}$

As FEAS
$$\subseteq$$
 QFEAS, $W_{S_1k} \subseteq W_{S_1k}$
So, W_{S_1k} is harder to realize.

Lemma

S is realizable by a k-reg Mealy machine iff $W_{S,k}$ is realisable by a Mealy machine iff $W_{S,k}^{QF}$ is realizable by a Mealy machine

S is defined by a URA $W_{S,k} = \{ \overline{a}_M \mid \forall \overline{a}_S \cdot \overline{a}_M \otimes \overline{a}_S \in \mathsf{FEAS} \Rightarrow \overline{a}_S \in L_{syntx}(S) \}$ $W_{S,k}^{QF} = \{ \overline{a}_M \mid \forall \overline{a}_S \cdot \overline{a}_M \otimes \overline{a}_S \in \mathsf{QFEAS} \Rightarrow \overline{a}_S \in L_{syntx}(S) \}$

Let M s.f.
$$L(M) \notin L(W_{S,k}^{QF})$$
.
 $\exists a_M \otimes a_S \in (QFEAS \cap L(M) \otimes L_{SYNTX}(S))$

Lemma

S is realizable by a k-reg Mealy machine iff $W_{S,k}$ is realisable by a Mealy machine iff $W_{S,k}^{QF}$ is realizable by a Mealy machine

S is defined by a URA $W_{S,k} = \{ \overline{a}_M \mid \forall \overline{a}_S \cdot \overline{a}_M \otimes \overline{a}_S \in \mathsf{FEAS} \Rightarrow \overline{a}_S \in L_{syntx}(S) \}$ $W_{S,k}^{QF} = \{ \overline{a}_M \mid \forall \overline{a}_S \cdot \overline{a}_M \otimes \overline{a}_S \in \mathsf{QFEAS} \Rightarrow \overline{a}_S \in L_{syntx}(S) \}$

 \sim

Lemma

S is realizable by a k-reg Mealy machine iffS $W_{S,k}$ is realisable by a Mealy machine iffW $W_{S,k}^{QF}$ is realizable by a Mealy machineW $W_{S,k}^{QF}$ is realizable by a Mealy machineW

S is defined by a URA $W_{S,k} = \{ \overline{a}_M \mid \forall \overline{a}_S \cdot \overline{a}_M \otimes \overline{a}_S \in \mathsf{FEAS} \Rightarrow \overline{a}_S \in L_{syntx}(S) \}$ $W_{S,k}^{QF} = \{ \overline{a}_M \mid \forall \overline{a}_S \cdot \overline{a}_M \otimes \overline{a}_S \in \mathsf{QFEAS} \Rightarrow \overline{a}_S \in L_{syntx}(S) \}$

Let M s.t.
$$L(M) \notin L(W_{S,k}^{S,k})$$
.
 $\exists \overline{a}_{M} \otimes \overline{a}_{S} \in (QFEAS \cap L(M) \otimes \overline{L_{SYN+X}(S)}) \cap LASSO$
 $\exists \overline{a}_{M} \otimes \overline{a}_{S} \in (QFEAS \cap L(M) \otimes \overline{L_{SYN+X}(S)})$
 $(because QFEAS \cap LASSO = FEAS \cap LASSO)$. So, $L(M) \notin W_{S,k}$

DOMAIN $(\mathbb{N}, <)$ is regapprox.

MAIN THEOREM

Reg-bounded synthesis in $(\mathbb{N}, <)$ is solvable in time exp(exp(r, k), n, c)for every given universal parity register automaton with r registers, n states, c priorities, and bound k.

A similar complexity holds for domains $(\mathbb{Q}, <)$ and $(\mathbb{D}, =)$.

REDUCTION BETWEEN DOMAINS

If \mathcal{D} reduces to \mathcal{D}' , and \mathcal{D}' is regapprox, then D is regapprox.

Allows us to state decidability of register-bounded synthesis for $(\mathbb{N}^d, <^d)$ and (Σ^*, \prec) .

Conclusion

- **not in this talk**: synthesis is decidable for *deterministic* register-automata
- future directions / open questions:

 - decidable data-synthesis framework capturing realistic request/grant example
 - parameterised synthesis
 - logical specifications: under for $FO_2[<_{pos}, succ_{pos}, =_{data}]$, what about $FO_2[<_{pos}, =_{data}]$?
 - implementation: refinement techniques

• other data domains: strings with subword relation, sets of natural numbers with inclusion, ...

DETERMINISTIC REGISTER AUTOMATA

Unconstrained synthesis (Fregister Mealy machine MES?)

WHY NOT NRA?

Fundomental reason: 3M VT Vrun (URA)

JM ∀t 3 run (NRA)

OTHER INTUITION: WSK = Jam | Vas as Oam E FEAS => as EL ()

→ If Adam can enforce
$$\bar{a}_{M} \notin W_{S,k}$$
, then
 $\exists \bar{a}_{S} \notin L_{Syntx}(S)$. $\exists w \in D^{W}$. $w \neq \bar{a}_{M}$ $n w \neq \bar{a}_{S}$
 $\neg From \bar{a}_{S} \notin L_{Syntx}(S)$ a rejecting run on w can be constructed
 \Rightarrow by enforcing w in the concrete game, Adam withs!
FAILS with NRA

MORE DETAILS ON THE REDUCTION

 $W_{S,k} = \frac{1}{2} \overline{a_m} | \exists w \in D^{\omega} \cdot w \notin L(S) \wedge w \neq \overline{a_m}$ =) ān 1 Zwedw. Znon-accept run pon w n w fān} = { an } zwe D = Jas & Lsyntx (S) ~ w = as ~ w Fan} = Jām 13ās & Lsyntx (S) x Jure D. wt as x wtant = $\int \bar{a}_{M} | \exists \bar{a}_{S} \notin L_{syntx}(\hat{s}) \land \bar{a}_{S} \otimes \bar{a}_{M} \in FEAS \}$