
Based on joint works with

 LEO EXIBARD AYRAT KHALIMOV PIERRE-ALAIN REYNIER

REACTIVE SYNTHESIS OVER
INFINITE DATA DOMAINS

EMMANUEL FILIOT (ULB)

Intro

• Reactive synthesis (RS): automatically construct a reactive system from a
specification of correct semantical behaviours

• Formal methods for RS: logic/automata/games, focus on control, ignore data

• Objective: extend formal methods for RS with data

• In this talk:

• Questions:

• How to model specifications ? How to model reactive systems ?

• What’s decidable ? For which data domains ?

S ⊆ (ActionsEnv . ActionsSys)ω

S ⊆ [(ActionsEnv × #) . (ActionsSys × #)]ω

Reactive
SystemEnvironment

ActionsEnv

ActionsSys

(Data-free) Reactive Synthesis Problem

Reactive
SystemEnvironment

I

O

i1 . o1 . i2 . o2… ∈ (I . O)ω

Synthesis Problem

Input: a specification language

Output: a Mealy machine M such that

S ⊆ (IO)ω

L(M) ⊆ S

Example 1
•

• Spec: “relay input up to first c, or forever if no c”

I = O = {a, b, c}

S = (aa + bb)ω + (aa + bb)*cc(IO)ω
-
- -
-

- - --
-
- - -

Example 1
•

• Spec: “relay input up to first c, or forever if no c”

I = O = {a, b, c}

S = (aa + bb)ω + (aa + bb)*cc(IO)ω

a / a

☐ de
>

À f : 1-
*
→
0

→

0
blb

Example 2
•

• Spec:

• Unrealizable !

I = O = {a, b, c}

S = (aa + ba)ω + (aa + bb)*cc(IO)ω

Example 2
•

• Spec:

• Unrealizable !

I = O = {a, b, c}

S = (aa + ba)ω + (aa + bb)*cc(IO)ω

ü
a
/ ° >

Environnent nan t
>

'

bla Ü
realize S with

C / b >

a Moore machine

Example 3: request / grant

• finite

•

•

• Spec:

C ⊆ ℕ

I = {reqi ∣ i ∈ C} ∪ {¬req}

O = {grti ∣ i ∈ C} ∪ {¬grt}

⋀
i∈C

G(reqi → F(grti))

l

Example 3: request / grant

• finite

•

•

• Spec:

C ⊆ ℕ

I = {reqi ∣ i ∈ C} ∪ {¬req}

O = {grti ∣ i ∈ C} ∪ {¬grt}

⋀
i∈C

G(reqi → F(grti))

|

> req Tyrant C- { 1
,
. . .

,
n}

reqn grant,
<

reqn granth
. .

.

'

Example 4: request/grant with delay

• Any request must be granted after at least d input steps

• For d =1 and |C| = 2:

In general: machine with statesO(|C |d)

> M'<
"7dg ,

Ireq/Y
regrettez

^

v

(
Treats'

→ neq.ly, 4-4G

T "

9-21>
g
t

> 12
<
V72 /92

7K71gr

Example 4: request/grant with delay

• Any request must be granted after at least d input steps

• For d =1 and |C| = 2:

In general: machine with statesO(|C |d)

C- { 1,2}

neqnlgr
eqd^J > rn [

preqtid r n

r

(
Trefl9'

→ req.ly, 4-491

t "

9-21>
g
t

>
tu
<

"9-2/92

7K71g ,

Example 4: request/grant with delay

• Any request must be granted after at least d input steps

• For d =1 and |C| = 2:

In general: machine with statesO(|C |d)

> z
req / g ,

Ireq/Y
regrettez

^

v

(
Trefl91

→ req.ly, 4-491

t "

9-21>
g
t

>
,
V72 /92

7K71gr

Important results in reactive synthesis

• Classical approach: logic → automata → deterministic automata → games

• Regular spec: LTL, MSO, non-det Büchi automata, universal coBüchi automata,
det parity automata, good-for-games automata, …

• Game theory on graphs

• Tools: Strix, LTLSynth, AcaciaBonzai, …

• Yearly synthesis competition since 2014

v
L

exptime - c
2exptine

-C

Important results in reactive synthesis

• Classical approach: logic → automata → deterministic automata → games

• Regular spec: LTL, MSO, non-det Büchi automata, universal coBüchi automata,
det parity automata, good-for-games automata, …

• Game theory on graphs

• Tools: Strix, LTLSynth, AcaciaBonzai, …

• Yearly synthesis competition since 2014

v
L

exptime - c
2exptine

-C

Delayed request/grant example revisited
• Spec: “Any request must be granted after at least d input steps”

•

•

•

• Spec realizable by a Mealy machine with registers. For d=1:

C ⊆ ℕ C = ℕ

I = {(req, i) ∣ i ∈ C} ∪ {¬req}

O = {(grt, i) ∣ i ∈ C} ∪ {¬grt}

➔ Priorities between processes: data domain (ℕ, ≤)
➔ in general: Mealy machine with O(d) states and O(d) registers

Ireq Jr
""

(req , #) out (regnant) ; trr

>

~
>

@ freq , *) out (grant, r) ; tu
t'

Ireq out (grant , r)

Delayed request/grant example revisited
• Spec: “Any request must be granted after at least d input steps”

•

•

•

• Spec realizable by a Mealy machine with registers. For d=1:

C ⊆ ℕ C = ℕ

I = {(req, i) ∣ i ∈ C} ∪ {¬req}

O = {(grt, i) ∣ i ∈ C} ∪ {¬grt}

➔ Priorities between processes: data domain (ℕ, ≤)
➔ in general: Mealy machine with O(d) states and O(d) registers

Treot
'Sra
"

(req , *) out (regnant) ; trr

>
>

deq , *) out (grant, r) ; tu
r out (grant , r)

Delayed request/grant example revisited
• Spec: “Any request must be granted after at least d input steps”

•

•

•

• Spec realizable by a Mealy machine with registers. For d=1:

C ⊆ ℕ C = ℕ

I = {(req, i) ∣ i ∈ C} ∪ {¬req}

O = {(grt, i) ∣ i ∈ C} ∪ {¬grt}

➔ Priorities between processes: data domain (ℕ, ≤)
➔ in general: Mealy machine with O(d) states and O(d) registers

Treot
'Sra
"

(req , #) out (regnant) ; trr

>
>

deq , *) out (grant, r) ; tn
r

Ireq out (grant , r)

Synthesis Problem over Infinite Data Domains

Definition

Input: a specification language where is a data domain

Output: a Mealy machine with registers M such that

S ⊆ #ω #

L(M) ⊆ S

Specification: FO with , constraint LTL, LTL with freeze quantifier, variable
automata, det/nondet/universal register automata, …

≤d

Register Automata on (ℕ, ≤ ,0) A = (Q, q0, R, ", #)

Run:

,

\

states

register
•

transitions
^

• ↑ ↑
par ity acceptance←

Time

interdira Tests (R) ✗ Assignment ☒ .

À soi
(§ , f0)% ×

> (q ,5,0)
-3' ' ai -

↑ ↑ ↑
State me ~

Register Automata on (ℕ, ≤ ,0) A = (Q, q0, R, ", #)

Run:

%
• me

•

•
T

•
•

•

•

•

•

•

⑧ ⑧ • >
Time

inpntdata
5

> (q /5,0)
}
> (q , 5,3)

4
> (q , 5,4)

°
> (q , 5,0)(p , 0,0)

p îî
state ne ~

Register Automata on (ℕ, ≤ ,0) A = (Q, q0, R, ", #)

Run:

pr
• me

•

•
T

•

•
• ~

•

•

•

•

⑧ ⑧ • >
Time

inpntdata
5

> (q /5,0)
}
> (q , 5,3)

4
> (q , 5,4)

°
> (q , 5,0)(p , 0,0)

p îî
staten ~

Results
Synthesis problem

Input: a universal register automaton A over
Output: a Mealy machine with registers M such that

!
L(M) ⊆ L(A)

Register-Bounded Synthesis problem
Input: a universal register automaton A over and
Output: a Mealy machine with k registers M such that

! k ∈ ℕ
L(M) ⊆ L(A)

Synthesis ✘ [3] ✘ ✘

Register-bounded synthesis ✓ [1,2] ✓[3] ✓ [4]

(%, =) (ℚ, <) (ℕ, <)

[1]: R.Bloem, B.Maderbacher, A.Khalimov.: Bounded Synthesis of Register Transducers. 2019

[2]: L.Exibard, E.F., P.-A. Reynier: Synthesis of data word transducers. 2019.

[3]: L. Exibard: Automatic Synthesis of Systems with Data (PhD thesis), 2021.

[4]: L. Exibard, E.F., A. Khalimov: Generic solution to register-bounded synthesis. 2022.

Results
Synthesis problem

Input: a universal register automaton A over
Output: a Mealy machine with registers M such that

!
L(M) ⊆ L(A)

Register-Bounded Synthesis problem
Input: a universal register automaton A over and
Output: a Mealy machine with k registers M such that

! k ∈ ℕ
L(M) ⊆ L(A)

Synthesis ✘ [3] ✘ ✘

Register-bounded synthesis ✓ [1,2] ✓[3] ✓ [4]

(%, =) (ℚ, <) (ℕ, <)

[1]: R.Bloem, B.Maderbacher, A.Khalimov.: Bounded Synthesis of Register Transducers. 2019

[2]: L.Exibard, E.F., P.-A. Reynier: Synthesis of data word transducers. 2019.

[3]: L. Exibard: Automatic Synthesis of Systems with Data (PhD thesis), 2021.

[4]: L. Exibard, E.F., A. Khalimov: Generic solution to register-bounded synthesis. 2022.

Results
Synthesis problem

Input: a universal register automaton A over
Output: a Mealy machine with registers M such that

!
L(M) ⊆ L(A)

Register-Bounded Synthesis problem
Input: a universal register automaton A over and
Output: a Mealy machine with k registers M such that

! k ∈ ℕ
L(M) ⊆ L(A)

Synthesis ✘ [3] ✘ ✘

Register-bounded synthesis ✓ [1,2] ✓[3] ✓ [4]

(%, =) (ℚ, <) (ℕ, <)

[1]: R.Bloem, B.Maderbacher, A.Khalimov.: Bounded Synthesis of Register Transducers. 2019

[2]: L.Exibard, E.F., P.-A. Reynier: Synthesis of data word transducers. 2019.

[3]: L. Exibard: Automatic Synthesis of Systems with Data (PhD thesis), 2021.

[4]: L. Exibard, E.F., A. Khalimov: Generic solution to register-bounded synthesis. 2022.

o

Generic Solution to Register-
Bounded Synthesis

Thanks to Ayrat for the slides !

Main ideas

• reduction to omega-regular synthesis over finite alphabets

• sufficient condition on the data domain allowing for such a reduction (regapprox
domains)

• prove that and are regapprox(ℚ, <) (ℕ, <)

Insight 1: Abstraction

p q
0 < ⌅, ⌃m

r < ⌅ < m, ⌃r

⌅ = 0, ⌃r

An action word is a sequence (tst0, asgn0)(tst1, asgn1)
It is feasible if it is induced by some data word.

Let FEAS be the set of feasible action words over given R.

21

S ≤ ☒N' Tests ✗ Assignment ✗ Q

-

finite alphabet
0f actions

=D see register automata as

finite automata over action wards

Insight 1: Abstraction

p q
0 < ⌅, ⌃m

r < ⌅ < m, ⌃r

⌅ = 0, ⌃r

An action word is a sequence (tst0, asgn0)(tst1, asgn1)
It is feasible if it is induced by some data word.

Let FEAS be the set of feasible action words over given R.

21

S ≤ Tests ✗ Assignment ✗ Q

-

finite alphabet
0f actions

=D see register automata as

finite automata over action wards

regi !
-Yonatan

↓

NOTATION : Lsyntx (A) =def set of action wards

accepted by A

Insight 1: Abstraction

p q
0 < ⌅, ⌃m

r < ⌅ < m, ⌃r

⌅ = 0, ⌃r

An action word is a sequence (tst0, asgn0)(tst1, asgn1)
It is feasible if it is induced by some data word.

Let FEAS be the set of feasible action words over given R.

22

Insight 1: Abstraction

p q
0 < ⌅, ⌃m

r < ⌅ < m, ⌃r

⌅ = 0, ⌃r

An action word is a sequence (tst0, asgn0)(tst1, asgn1)
It is feasible if it is induced by some data word.

Let FEAS be the set of feasible action words over given R.

27

Insight 1: Abstraction

p q
0 < ⌅, ⌃m

r < ⌅ < m, ⌃r

⌅ = 0, ⌃r

An action word is a sequence (tst0, asgn0)(tst1, asgn1)
It is feasible if it is induced by some data word.

Let FEAS be the set of feasible action words over given R.

27

NOT FEASIBLE BY ANY DATA WORD

ON (IN
,
<) !

' BUT FEASIBLE ON (Q)
L)

FEASIBLE ON WEDW ◦

" the sequence of
◦

actions can
be

"

executed on W

Insight 1: Abstraction

p q
0 < ⌅, ⌃m

r < ⌅ < m, ⌃r

⌅ = 0, ⌃r

An action word is a sequence (tst0, asgn0)(tst1, asgn1)
It is feasible if it is induced by some data word.

Let FEAS be the set of feasible action words over given R.

27

NOT FEASIBLE BY ANY DATA WORD

ON (IN
,
<) !

' BUT FEASIBLE ON (Q)
L)

FEASIBLE ON WEDW ◦

" the sequence of
◦

actions can
be

"

executed on W

Insight 1: Abstraction

p q
0 < ⌅, ⌃m

r < ⌅ < m, ⌃r

⌅ = 0, ⌃r

An action word is a sequence (tst0, asgn0)(tst1, asgn1)
It is feasible if it is induced by some data word.

Let FEAS be the set of feasible action words over given R.

27

il 'N , <)

%

œoaYᵐEᵐTTooÉo?ÉÏ.toxocarose

FEASIBILITY IN

- Feasibility = local consistency

(Qin)

* > 0 ; tn ; * = r ; Ivs ;
r< * < s . . .

^ ^ ^

TYPES :{n=s=0} { r> ◦=ˢ} { r=s > °}

FEASIBILITY IN

- Feasibility = local consistency

(Qin)

* > 0 ; tn ; * = r ; Ivs ;
r< * < s . . .

^ ^ ^

TYPES :{n=s=0} { r> ◦=ˢ} { r=s > °}
INCONSISTENT !

FEASIBILITY IN

- Feasibility = local consistency

- Lemma: the set of feasible words is omega-regular

(Qin)

* > 0 ; tn ; * = r ; Ivs ;
r< * < s . . .

^ ^ ^

TYPES :{n=s=0} { r> ◦=ˢ} { r=s > °}
INCONSISTENT !

FEASIBILITY IN

An action word is feasible iff it has:

(IN
,
C)

(* < r ; ↓ →
°

(* <~ ;
ts ; ✗ Ss ;

tn)
"

FEASIBILITY IN

An action word is feasible iff it has:

(IN
, C)

Insight 1: Abstraction

Given S and k, create a finite-alphabet specification WS,k:
WS,k is realizable by a Mealy machine

�
S is realizable by a k-reg transducer.

W
F
S,k = ¬

⇧
aT | aS � L(Ssynt) : aT ⌦ aS � FEAS

⌃
.

Solving such a synthesis problem is hard, as FEAS is not �-regular :-(

29

REDUCTION TO FINITE ALPHABETS

fa
à registres

NOT W - REGULAR IN GENERAL !

Insight 1: Abstraction

Given S and k, create a finite-alphabet specification WS,k:
WS,k is realizable by a Mealy machine

�
S is realizable by a k-reg transducer.

W
F
S,k = ¬

⇧
aT | aS � L(Ssynt) : aT ⌦ aS � FEAS

⌃
.

Solving such a synthesis problem is hard, as FEAS is not �-regular :-(

29

REDUCTION TO FINITE ALPHABETS

a- k reg .

NOT W - REGULAR IN GENERAL !

Insight 1: Abstraction

Given S and k, create a finite-alphabet specification WS,k:
WS,k is realizable by a Mealy machine

�
S is realizable by a k-reg transducer.

W
F
S,k = ¬

⇧
aT | aS � L(Ssynt) : aT ⌦ aS � FEAS

⌃
.

Solving such a synthesis problem is hard, as FEAS is not �-regular :-(

29

REDUCTION TO FINITE ALPHABETS

NOT W - REGULAR IN GENERAL !

Generic Solution

Data domain is regapprox if for every R there exists e�.constr. �-
regular over-approximation QFEAS

QFEAS � lasso ⇥ FEAS ⇥ QFEAS.

Theorem:
on regapprox domains, register-bounded synthesis is decidable.

30

TESTG.
LASSO

FEAS QFEAS

WS,k = {aM ∣ ∀aS ⋅ aM ⊗ aS ∈ FEAS ⇒ aS ∈ Lsyntx(S)}

WQF
S,k = {aM ∣ ∀aS ⋅ aM ⊗ aS ∈ QFEAS ⇒ aS ∈ Lsyntx(S)}

Lemma
S is realizable by a k-reg Mealy machine iff

 is realisable by a Mealy machine iff

 is realizable by a Mealy machine

WS,k

WQF
S,k

PROOF IDEA

S is defined by a URA

Â

AS FEAS ≤ QFEAS , WÊÎ ≤ WÇK

So
, WÎÛ is hardes to realize .

WS,k = {aM ∣ ∀aS ⋅ aM ⊗ aS ∈ FEAS ⇒ aS ∈ Lsyntx(S)}

WQF
S,k = {aM ∣ ∀aS ⋅ aM ⊗ aS ∈ QFEAS ⇒ aS ∈ Lsyntx(S)}

Lemma
S is realizable by a k-reg Mealy machine iff

 is realisable by a Mealy machine iff

 is realizable by a Mealy machine

WS,k

WQF
S,k

PROOF IDEA

S is defined by a URA

H

het M St
.
Lcm) 4- LCWÊ,Î) .

3- àm ④ Âge (QFEAS n LCM) ④LÈS))

re

WS,k = {aM ∣ ∀aS ⋅ aM ⊗ aS ∈ FEAS ⇒ aS ∈ Lsyntx(S)}

WQF
S,k = {aM ∣ ∀aS ⋅ aM ⊗ aS ∈ QFEAS ⇒ aS ∈ Lsyntx(S)}

Lemma
S is realizable by a k-reg Mealy machine iff

 is realisable by a Mealy machine iff

 is realizable by a Mealy machine

WS,k

WQF
S,k

PROOF IDEA

S is defined by a URA

A

Let Mst. Lcm) 4- LCWÎÎ) .

3- àm ⑤ aie (Q NLASSO

re

WS,k = {aM ∣ ∀aS ⋅ aM ⊗ aS ∈ FEAS ⇒ aS ∈ Lsyntx(S)}

WQF
S,k = {aM ∣ ∀aS ⋅ aM ⊗ aS ∈ QFEAS ⇒ aS ∈ Lsyntx(S)}

Lemma
S is realizable by a k-reg Mealy machine iff

 is realisable by a Mealy machine iff

 is realizable by a Mealy machine

WS,k

WQF
S,k

PROOF IDEA

S is defined by a URA

H

het M St
.
Lcm) 4- LCWÊ,Î) .

3- àm ④ aie (QÆçg④Îs)nÆ
3- àm ④ Âge (¥

,
FEAS n LCM) ④LÈS))

(because QFEASNLASSO = FEASN LASSO) .
So
,
LIM) ¢ NS.kpgz

Domain (N, <)

33

Main Theorem

Reg-bounded synthesis in (N, <) is solvable in time
exp(exp(r, k), n, c)

for every given universal parity register automaton
with r registers, n states, c priorities, and bound k.

A similar complexity holds for domains (Q, <) and (D, =).

34

Reduction between Domains

If D reduces to D�, and D� is regapprox, then D is regapprox.

Two definitions of reductions:
– via transducer relations,
– via first-order formulas.

Allows us to state decidability of register-bounded synthesis
for (Nd, <d) and (⇥⇥, �).

35

↑
p? ation

Conclusion

Synthesis ✘ [3] ✘ ✘

Register-bounded synthesis ✓ [1,2] ✓[3] ✓ [4]

(!, =) (ℚ, =) (ℕ, <)

• not in this talk: synthesis is decidable for deterministic register-automata

• future directions / open questions:

• other data domains: strings with subword relation, sets of natural numbers with inclusion, …

• decidable data-synthesis framework capturing realistic request/grant example

• parameterised synthesis

• logical specifications: undec for FO2[<pos,succpos,=data], what about FO2[<pos,=data] ?

• implementation: refinement techniques

à
☐

-

me for IRI ≥ 2

1M -1 ??

DETERMINISTIC REGISTER AUTOMATA

UNCONSTRAINED SYNTHESIS (3- register Mealy machine Mf5 ?)

(D. =) (Q
,
L) (Mc)

Simulation of

✓ ✓ ✗ A Minsky machines

✓ A data on input ouf !

CHURCH PROBLEM (7f :
À > D such that ff-5 ?)

(D. =) (Q
,
<) (Mc) register Mealy

machine

✓ ✓ ✗ suffire

incrementing r,

by 1

WHY NOT NRA ?

Fondamental reagon! 7M¥ trun (URA)

JM Ht 3- run (NRA)

OTHER INTUITION : Wqk = { a-m | V-a-g.at/Oa-mEFEAS--a-s-cLsyn*ls) }

→ If Adam can enforce àm ¢ Wspa ,
then

7a-stcLsyntxlD.JWE@w.w tam nwtàs
→ From àg ¢ Lsyntx (s) a vejecting run on we can be construited

⇒ by en forcing w in the concrete game, Adam
wins !

FAILS with NRA
,

MORE DETAILS ON THE REDUCTION

Wçk = { a-
m

3-we D
"

- w ¢ LIS) ^ wtàm }

= { a-µ | 3-WEDW . 3- non- acæpt run p on w n w f- a-
µ}
-

= { àm | Jure Du tas ¢ Lsyntx (s) ^ wtàs ^ wfàm}

= { a-m
'

| Bàs ¢ Lsyntx (s) a 3-we D
"
. wtàs a wkâm}

= { a-m l Bàs ¢ Lsyntx (s) a às ④ a-
m

C- FEAS }

