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Introduction Beyond Mealy Implementations Beyond automatic specifications

A basic zero-sum infinite game

Adam picks symbols in Σ

Eve picks symbols in Γ

u =

aabbcaaabbaacb . . .

I Eve wins if u ∈W ⊆ (ΣΓ)ω

Example: mimic Adam until first c
W = (aa+ bb)∗c(ΓΣ)ω

I Formally, she wins if she has a strategy λ : Σ+ → Γ s.t.

∀σ1σ2 . . . ∈ Σω, σ1β1σ2β2 · · · ∈W

where βi = λ(σ1 . . . σi)Example: Eve always mimics Adam
λ(uσ) = σ
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Introduction Beyond Mealy Implementations Beyond automatic specifications

Church Synthesis

I W is ω-regular (MSO, automata, ...)
I W is the specification, λ the implementation

I finite memory always suffices (Mealy machines)

c | a
| a

a | a

b | b

Complexity Results

I decidable problem [Büchi-Landweber 69] (via parity games)

I ExpTime-c from automata

I 2ExpTime-c for LTL specifications [Pnueli/Rosner 89]

I reactive synthesis competition SYNTCOMP since 2014

synchronous specification / implementation
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Introduction Beyond Mealy Implementations Beyond automatic specifications

Church synthesis as a uniformisation problem

Definition (Uniformiser)

Given R ⊆ I ×O, a uniformiser of R is a function f : I → O
such that

1. for all i ∈ dom(f), (i, f(i)) ∈ R,

2. dom(f) = dom(R)

Definition ((S, I)-uniformisation problem)

Given a relation R ∈ S, does there exists a uniformiser f ∈ I ?
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Introduction Beyond Mealy Implementations Beyond automatic specifications

Church synthesis as a uniformisation problem

I I = Σω, O = Γω

I any W ⊆ (ΣΓ)ω defines a relation RW ⊆ Σω × Γω:

RW = {(σ1σ2 . . ., β1β2 . . .) | σ1β1σ2β2 · · · ∈W}
AUT : class of ω-automatic relations.

I any strategy λ : Σ∗ → Γ defines a “strategic” function

fλ : Σω → Γω

STR : class of strategic functions.

Proposition

RW is uniformizable by fλ iff λ is winning for Eve in the
Church game with objective W .

Reformulation of Büchi-Landweber’s theorem
I The (AUT, STR)-uniformisation problem is decidable,

I and same as (AUT,MEALY )-uniformisation problem.

5 / 35



Introduction Beyond Mealy Implementations Beyond automatic specifications

Church synthesis as a uniformisation problem

I I = Σω, O = Γω

I any W ⊆ (ΣΓ)ω defines a relation RW ⊆ Σω × Γω:

RW = {(σ1σ2 . . ., β1β2 . . .) | σ1β1σ2β2 · · · ∈W}
AUT : class of ω-automatic relations.

I any strategy λ : Σ∗ → Γ defines a “strategic” function

fλ : Σω → Γω

STR : class of strategic functions.

Proposition

RW is uniformizable by fλ iff λ is winning for Eve in the
Church game with objective W .
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Introduction Beyond Mealy Implementations Beyond automatic specifications

Wait and see: beyond Mealy machines

Σ = {⊥, a, b} Γ = {a, b}

Spec W : Replace each symbol by the following non ⊥ symbol

⊥ ⊥ a ⊥ ⊥ ⊥ . . . ⊥ b . . .

a a a b b b . . . b b . . .

I W ∈ AUT
W = ((⊥a)∗aa+ (⊥b)∗bb)ω

I unrealisable with only finite memory
I but realisable by some ”streaming” algorithm

⊥ ⊥ a ⊥ ⊥ ⊥ . . . ⊥ b . . .

?a ?a a ?b ?b ?b . . . ?b b . . .
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Talk Outline

1. beyond Mealy implementations

2. beyond automatic specifications
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Introduction Beyond Mealy Implementations Beyond automatic specifications

Motivating question

Question

If a spec is not Mealy-realizable, is it still realizable in some
larger class of implementations ?

Theorem (Uniformization property)

Any automatic relation can be uniformized by an automatic
function.

I f automatic if {σ1β1σ2β2 · · · | f(σ1σ2 . . .) = β1β2 . . .} is
ω-regular.

I in other words, any automatic spec is realizable by some
automatic function

I result due to Siefkes 75 and Choffrut/Grigorieff 99, some
proof in Carayol/Löding 2014 too
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9 / 35



Introduction Beyond Mealy Implementations Beyond automatic specifications

Proof of the theorem (for finite words)

Let A = (Q, q0, F,∆) be a DFA for R.

1. order the transitions <∆, extend to runs <∆∗

lexicographically

2. for u ∈ Σ∗,
minrun(u) = min<∆∗{r | r accepting and input(r) = u}

Lemma Lmin = {minrun(u) | u ∈ Σ∗} is regular.

3. let Amin be a DFA accepting Lmin and use it as a filter
4. the product A⊗Amin defines an automatic function.
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Introduction Beyond Mealy Implementations Beyond automatic specifications

Computability over infinite words

I the latter theorem is not very useful for synthesis

I because some automatic functions are not computable

Example

Σ = {a, b},Γ = {a, b}.

f(u) =

 aω if |u|a =∞

bω otherwise.

I f is automatic: ((Σa)∗aa)ω + (Σb)∗(bb)ω

I f is not computable:
no algorithm computes longer and longer output prefixes
while reading longer and longer input prefixes
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Turing-computability over infinite words

Consider a deterministic Turing machine M with 3 tapes:
I a one-way read-only input tape
I a two-way working tape
I a one-way write-only output tape

M(u, k):output written after reading u1u2 . . . uk

Definition

M computes f if for all u ∈ dom(f), there exists j1 < j2 < . . . :

M(α, j1) ≺M(α, j2) ≺ · · · � f(u)

The following function f⊥ is computable

⊥ ⊥ a ⊥ . . . ⊥ b . . . ∈ �♦(a ∨ b)

7→ a a a b . . . b b . . .

but f⊥ ∪ (♦�⊥ 7→ ⊥ω) is not.
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Some characterization and some decidability result

I any computable function is continuous for the Cantor
distance d(u, v) = 0 if u = v, and 2−|lcp(u,v)| otherwise

I the converse is not true, but true in some cases:

Theorem (Dave,F.,Krishna,Lhote,19)

Let f be a function preserving regular languages under inverse
image.

f is computable iff f is continuous.

Theorem

Continuity (and so computability) is decidable in NLogSpace for
automatic functions.

Proved for a large class (regular functions), already known for
rational functions by Prieur,01.
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Introduction Beyond Mealy Implementations Beyond automatic specifications

Idea of the algorithm

1. Check the following forbidden pattern where u1 6= u2:

p1 q1

p2 q2 r2

u|u1

v|v1

u|u2

v|v2

w|w2

x|x2

limn→∞ f(uvnwxω) 6= f(limn→∞ uvnwxω)

2. encode it in the pattern logic of [F., Mazzocchi, Raskin, 20]

which has decidable model-checking problem
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Introduction Beyond Mealy Implementations Beyond automatic specifications

Back to synthesis

Problem

Input: an automatic specification R ⊆ Σω × Γω

Output: Is R uniformisable by some computable function f ?
f ⊆ R and dom(f) = dom(R)

Results
I 2EXPTime when R has total domain and is given as a

DPA Holtmann/Kaiser/Thomas’10

I EXPTime-c Klein/Zimmermann’14

I EXPTime-c even when R has partial domain F., Winter,21

15 / 35



Introduction Beyond Mealy Implementations Beyond automatic specifications

Back to synthesis

Problem

Input: an automatic specification R ⊆ Σω × Γω

Output: Is R uniformisable by some computable function f ?
f ⊆ R and dom(f) = dom(R)

Results
I 2EXPTime when R has total domain and is given as a

DPA Holtmann/Kaiser/Thomas’10

I EXPTime-c Klein/Zimmermann’14

I EXPTime-c even when R has partial domain F., Winter,21

15 / 35



Introduction Beyond Mealy Implementations Beyond automatic specifications

Back to synthesis

Problem

Input: an automatic specification R ⊆ Σω × Γω

Output: Is R uniformisable by some computable function f ?
f ⊆ R and dom(f) = dom(R)

Results
I 2EXPTime when R has total domain and is given as a

DPA Holtmann/Kaiser/Thomas’10

I EXPTime-c Klein/Zimmermann’14

I EXPTime-c even when R has partial domain F., Winter,21

15 / 35



Introduction Beyond Mealy Implementations Beyond automatic specifications

Back to synthesis

Problem

Input: an automatic specification R ⊆ Σω × Γω

Output: Is R uniformisable by some computable function f ?
f ⊆ R and dom(f) = dom(R)

Results
I 2EXPTime when R has total domain and is given as a

DPA Holtmann/Kaiser/Thomas’10

I EXPTime-c Klein/Zimmermann’14

I EXPTime-c even when R has partial domain F., Winter,21

15 / 35



Introduction Beyond Mealy Implementations Beyond automatic specifications

Partial vs Total Domain

I classical formulation of Church synthesis

∃λEve : Σ∗ → Γ · ∀σ1σ2 · · · ∈ Σω · (σ1σ2 . . ., λ(σ1)λ(σ1σ2 . . . )) ∈ R

I consequently, if dom(R) 6= Σω, R is unrealizable
I uniformization = synthesis under assumption1

I only asks that implementation and spec have the same
domain (dom(R) = dom(f))

∃λEve : Σ∗ → Γ·∀σ1σ2 · · · ∈ dom(R)·(σ1σ2 . . ., λ(σ1)λ(σ1σ2 . . . )) ∈ R

From partial to total domain

I R 7→ Rtot = R ∪ dom(R)× Γω

I R is realizable under assumption dom(R) iff Rtot is
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Partial vs Total Domain

I the latter reduction fails if one asks realizability by a
computable function instead of a strategy function

I it does not preserve the existence of a computable realizer

Counter-example

I R = f⊥:

⊥ ⊥ a ⊥ . . . ⊥ b . . . ∈ �♦(a ∨ b)

7→ a a a b . . . b b . . .

I R is uniformizable by a computable function (f⊥ is
computable)

I Rtot is not
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Transducer synthesis (total case)

Theorem (Holtmann/Kaiser/Thomas’10, Klein/Zimmermann’14)

Let R ∈ AUT with total domain.
If R is uniformisable by a computable function, it is
uniformisable by a deterministic (one-way) transducer.

Example

I R1: behaves as f⊥ as long as there is no two consecutive ⊥,
otherwise output ⊥ forever.

⊥ a ⊥ ⊥ b . . . 7→ a a ⊥ ⊥ ⊥ ⊥ω

I R1 is a function of total domain

I it is computed by

p q r
⊥|ε

a|a

b|b

a|aa

b|bb

⊥|⊥

|⊥
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Transducer synthesis (partial case)

I total setting: Eve only needs to wait a constant number of
steps

I partial setting: she may need to wait arbitrarily long

Theorem (F., Winter)

Let R ∈ AUT with partial domain.
If R is uniformisable by a computable function, it is
uniformisable by a deterministic two-way transducer.

Two-wayness is necessary:
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Uniformisation by computable functions: proof idea

I reduction to a turn-based two-player parity game where
I Adam plays input letters
I Eve plays output letters or a waiting action

Problem
I Eve might need to wait an arbitrary amount of time
I We want a finite game arena, cannot store Adam’s input

Solution
I store state transformations of the specification automaton

induced by Adam’s inputs
I monitor membership to the domain
I Eve picks a state transformation instead of concrete

outputs
I winning condition: if Adam’s input is in the domain, then

Eve infinitely often picks an accepting state transformation
I convert this into a parity condition
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Introduction Beyond Mealy Implementations Beyond automatic specifications

Summary of Part 1

I synthesis of computable functions from automatic
specifications given by DPA is ExpTime-c

I without assuming that inputs comes from the domain:
deterministic one-way transducer suffice

I with that assumption: two-way transducer are necessary
and sufficient.

Can we go beyond automatic specifications ?
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Beyond Automatic Specifications
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Automata model for asynchronous spec / impl

I Non-automatic spec: alphabet Σ = {0,+,−}, Γ = {0,#}.
R : +0n1 − 0n2 + 0n3 . . . 7→ #0n1+1#0n2−1#0n3+1 . . .

I The language {i1o1 · · · | (i1 . . ., o1 . . . ) ∈ R} is not regular.

Transducers
I (input) deterministic, define sequential functions (SEQ):

−

0 | 0

+ | #0

− | #

0 | ε

I non-deterministic, define rational relations (RAT):

σ | σ

σ | ε
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Undecidability Result

Theorem (Löding,Carayol, 14)

The uniformization problem of rational relations by sequential
functions is undecidable.
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Proof Overview

Post-correspondence problem (PCP)

Given (u1, v1), (u2, v2), . . . , (un, vn) ∈ {0, 1}∗ × {0, 1}∗, find
indices i1, . . . , ik such that

ui1 . . . uik = vi1 . . . vik .
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v#ω, v ∈ {0, 1}∗ \ {vi1 . . . vik} otherwise.

Correctness

I no PCP solution ⇒ always output ui1 . . . uij#
ω

I i1, . . . , ik is a PCP solution: reading i1 . . . ik#, any
uniformiser can decide what to output w/o reading the
infinite suffix

25 / 35
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Asynchronous specifications: hopeless ?

I what about computable functions ?

still undecidable

I what about finite words and sequential functions ? still
undecidable

I decidability recovered for finite-valued rational relations of
finite words[F.,Jecker,Löding,Winter,16] 2

I and for stronger inclusion notions f ⊆ R
[F.,Jecker,Löding,Winter,16]

2∃k∀u ∈ Σω|{v | (u, v) ∈ R}| ≤ k
26 / 35
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I and for stronger inclusion notions f ⊆ R
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[F.,Jecker,Löding,Winter,16]

2∃k∀u ∈ Σω|{v | (u, v) ∈ R}| ≤ k
26 / 35



Introduction Beyond Mealy Implementations Beyond automatic specifications

A logic for asynchronous specifications

I so far, specifications are given by automata or transducers

I what about a logic ?

I for automatic specifications: LTL, MSO, well-known

Goal

Define a logic which is

I expressive enough to capture a large class of asynchronous
specifications

I has decidable satisfiability problem

I have decidable model-checking problem for known
transducer models

I have some decidable synthesis problems

We introduce a logic to define finite word relations.
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Motivation: Model-checking and Synthesis

I model-checking automata: A |= ϕ if LA ⊆ Lϕ

I transducers define relations in Σ∗ × Γ∗

I likewise, properties ϕ of transducers are relations

T |= ϕ if RT ⊆ Rϕ

Some Examples

True Σ∗ × Γ∗

There is an a in the output Σ∗ × Γ∗aΓ∗

Every task is scheduled {(t1 . . . tn, tπ(1) . . . tπ(n)) | π is a

exactly once permutation }
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MSO over Origin Graphs (MSOo)

I see pairs (u, v) as structures with origin information (origin
graphs)

s t r e s s e d

d e s s e r t s

input

origin

output

I MSOo := MSO[≤in,≤out, o]

I a formula ϕ defines a set of origin graphs {g | g |= ϕ}

I and hence a relation (by projecting away the origin)

29 / 35
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Examples
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>

I There is an a in the output
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Examples
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Examples

I True

>

I There is an a in the output

∃outx a(x)

I Every task is scheduled exactly once

φs =def bijection(o) ∧
∧
σ∈Σ

∀outx σ(x)→ σ(o(x))

I Mirror
φs ∧ ∀outx, y x≤outy → o(y)≤ino(z)
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Origin information

Mikolaj Bojańczyk’s Observation (14) Most transducer
models T define a set of origin graphs ographs(T )

input

output

`

`

g

g a

a

b

b

d

d

e

e

a

a

b

b

f

f

a

a

ff bb aa ee dd bb aa g

1

1 2

2

3

3

σ|ε,→

a|ε,←

σ|σ,←

`|ε
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Mikolaj Bojańczyk’s Observation (14) Most transducer
models T define a set of origin graphs ographs(T )

input

output

`

`

g

g a

a

b

b

d

d

e

e

a

a

b

b

f

f

a

a

f

f

b

b

a

a

e

e

d

d

b

b a

a g

1

1 2

2 3

3

σ|ε,→

a|ε,←

σ|σ,←

`|ε

31 / 35



Introduction Beyond Mealy Implementations Beyond automatic specifications

Origin information
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Mikolaj Bojańczyk’s Observation (14) Most transducer
models T define a set of origin graphs ographs(T )

Other examples of two-way transductions

I doubling function aabbc 7→ aabbcaabbc

I local mirror: ab#baa#bcc 7→ ba#aab#ccb

31 / 35



Introduction Beyond Mealy Implementations Beyond automatic specifications

Origin information
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I local mirror: ab#baa#bcc 7→ ba#aab#ccb

The class of functions defined by det. 2-way transducers

I closed under composition Chytil, Jákl, 77

I decidable equivalence problem Gurari 82

Many Characterisations

I reversible 2-way transducers Dartois, Fournier, Jecker, Lhote, 17

I deterministic 1-way transducers with registers Alur, Cerny, 09

I MSO-transductions on strings Engelfriet,Hoogeboom,01

I regular combinators (Alur, Freilich, Raghothaman, 14) (Dave, Gastin,

Krishna, 18) (Baudru, Reynier, 18)
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Results

Theorem (Bojanczyk,Daviaud,Guillon,Penelle,17)

The model-checking problem ographs(T ) |= ϕ for T
deterministic 2-way trans and ϕ ∈MSOo is decidable.

Theorem

The satisfiability problem (∃G ·G |= ϕ ?) is undecidable.

Contribution Dartois,F.,Lhote,18

A fragment F = FO2[≤out,MSObin[≤in]]such that:

1. any F-defined relation is uniformisable by a det. 2-way
transducer

2. satisfiability is decidable

3. it is expressive (captures regular functions and more)

4. implies decidability of an expressive logic for data words:
FO2[≤pos,MSObin[≤data]]
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Summary

beyond Mealy machines

I synthesis of computable functions from automatic spec is
decidable

I if Adam can input anything: one-way transducer suffice
I if Adam can play only in the domain of the spec: two-way

transducers are necessary

I what about synthesis of functions computable with
bounded-memory ?

beyond automatic specifications

I decidability of synthesis is lost (for asynchronous spec
defined by non-deterministic transducers)

I recovered in some cases (finite-valued relations, ...)
I over finite words: a logic to specify binary relations
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Conclusion

I many generalizations of the classical reactive synthesis
problem: quantitative specifications, pushdown,
multiplayers, rational synthesis, data words ...

I this work generalizes the class of implementations by
relaxing the reactivity requirement

I relevant when a spec is not realizable in a reactive manner

I this relaxation could be studied in other synthesis settings

I for instance: synthesis of computable functions from
synchronous specifications given as weighted automata ?

I other interesting question: synthesis under assumptions
(regular, quantitative, etc.)
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