Introduction Beyond Mealy Implementations Beyond automatic specification

On Some Transducer Synthesis
Problems

Emmanuel Filiot

Université libre de Bruxelles & FNRS

IRIF, June 2021

1/35

Introduction Beyond Mealy Implementations Beyond automatic specification

A basic zero-sum infinite game

Adam picks symbols in >

Introduction Beyond Mealy Implementations Beyond automatic specification

A basic zero-sum infinite game

Adam picks symbols in > Eve picks symbols in I'

Introduction Beyond Mealy Implementations Beyond automatic specification

A basic zero-sum infinite game

Adam picks symbols in > Eve picks symbols in I'

a

Introduction Beyond Mealy Implementations Beyond automatic specification

A basic zero-sum infinite game

Adam picks symbols in > Eve picks symbols in I'

aa

Introduction Beyond Mealy Implementations Beyond automatic specification

A basic zero-sum infinite game

Adam picks symbols in > Eve picks symbols in I'

aab

Introduction Beyond Mealy Implementations Beyond automatic specification

A basic zero-sum infinite game

Adam picks symbols in > Eve picks symbols in I'

aabb

Introduction Beyond Mealy Implementations Beyond automatic specification

A basic zero-sum infinite game

Adam picks symbols in > Eve picks symbols in I'

aabbc

Introduction Beyond Mealy Implementations Beyond automatic specification

A basic zero-sum infinite game

Adam picks symbols in > Eve picks symbols in I'

aabbca

Introduction Beyond Mealy Implementations Beyond automatic specification

A basic zero-sum infinite game

Adam picks symbols in > Eve picks symbols in I'

aabbcaa

Introduction Beyond Mealy Implementations Beyond automatic specification

A basic zero-sum infinite game

Adam picks symbols in > Eve picks symbols in I'

aabbcaaa

Introduction Beyond Mealy Implementations Beyond automatic specification

A basic zero-sum infinite game

Adam picks symbols in > Eve picks symbols in I'

aabbcaaab

Introduction Beyond Mealy Implementations Beyond automatic specification

A basic zero-sum infinite game

Adam picks symbols in > Eve picks symbols in I'

aabbcaaabb

Introduction Beyond Mealy Implementations Beyond automatic specification

A basic zero-sum infinite game

Adam picks symbols in > Eve picks symbols in I'

aabbcaaabba

Introduction Beyond Mealy Implementations Beyond automatic specification

A basic zero-sum infinite game

Adam picks symbols in > Eve picks symbols in I'

aabbcaaabbaa

Introduction Beyond Mealy Implementations Beyond automatic specification

A basic zero-sum infinite game

Adam picks symbols in > Eve picks symbols in I'

aabbcaaabbaac

Introduction Beyond Mealy Implementations Beyond automatic specification

A basic zero-sum infinite game

Adam picks symbols in > Eve picks symbols in I'

aabbcaaabbaach . . .

Introduction Beyond Mealy Implementations Beyond automatic specification

A basic zero-sum infinite game

Adam picks symbols in > Eve picks symbols in I'

u = aabbcaaabbaach . . .

» Eve wins if u € W C (XI)¢

C

W = (aa + bb)*c(I'Y)¥

Introduction Beyond Mealy Implementations Beyond automatic specification

A basic zero-sum infinite game

Adam picks symbols in > Eve picks symbols in I'

u = aabbcaaabbaach . . .

» Eve wins if u € W C (XI)¢

C

W = (aa + bb)*c(T'X)~
» Formally, she wins if she has a strategy A : ¥+ — I" s.t.
V()'l()'g ... € Ew, O’lﬂl(TQBQ e W

where ﬁi =)\(0'1 R 0'7;)

2/35

Introduction Beyond Mealy Implementations Beyond automatic specification

A basic zero-sum infinite game

Adam picks symbols in > Eve picks symbols in I'

u = aabbcaaabbaach . . .

» Eve wins if u € W C (XI)¢

C

W = (aa + bb)*c(T'X)~
» Formally, she wins if she has a strategy A : ¥+ — I" s.t.
Voi09... € Ew, O’lﬂl(TQBQ e W
Muo) =0

2/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Church Synthesis

» W is w-regular (MSO, automata, ...)
» W is the specification, A the implementation

3/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Church Synthesis

» W is w-regular (MSO, automata, ...)
» W is the specification, A the implementation
» finite memory always suffices (Mealy machines)

(1‘(1,

cla
> _|a

blb

Introduction Beyond Mealy Implementations Beyond automatic specification

Church Synthesis

» W is w-regular (MSO, automata, ...)
» W is the specification, A the implementation
» finite memory always suffices (Mealy machines)

(1‘(1,

cla
> _|a

blb

Complexity Results
» decidable problem [Biichi-Landweber 69] (via parity games)
» ExpPTIME-C from automata

» 2EXPTIME-C for LTL SpeCiﬁC&tiOHS [Pnueli/Rosner 89]

Introduction Beyond Mealy Implementations Beyond automatic specification

Church Synthesis

» W is w-regular (MSO, automata, ...)
» W is the specification, A the implementation
» finite memory always suffices (Mealy machines)

(1‘(1,

cla
> _|a

blb

Complexity Results

v

decidable problem [Biichi-Landweber 69] (via parity games)

v

ExXPTIME-C from automata

v

2ExPTIME-C for LTL SpeCiﬁC&tiOHS [Pnueli/Rosner 89]

v

reactive synthesis competition SYNTCOMP since 2014

synchronous specification / implementation

Introduction Beyond Mealy Implementations Beyond automatic specification

Church synthesis as a uniformisation problem

Definition (Uniformiser)

Given R C I x O, a uniformiser of R is a function f: 1 — O
such that

1. for all i € dom(f), (i, f(i)) € R,

4/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Church synthesis as a uniformisation problem

Definition (Uniformiser)

Given R C I x O, a uniformiser of R is a function f: 1 — O
such that

1. for all i € dom(f), (i, f(i)) € R,
2. dom(f) = dom(R)

4/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Church synthesis as a uniformisation problem

Definition (Uniformiser)

Given R C I x O, a uniformiser of R is a function f: 1 — O
such that

1. for all i € dom(f), (i, f(i)) € R,
2. dom(f) = dom(R)

4/35

Introduction Beyond Mealy Implementations Beyond automatic specification
Church synthesis as a uniformisation problem

Definition (Uniformiser)

Given R C I x O, a uniformiser of R is a function f: 1 — O
such that

1. for all i € dom(f), (i, f(i)) € R,
2. dom(f) = dom(R)

@)

4/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Church synthesis as a uniformisation problem

Definition (Uniformiser)

Given R C I x O, a uniformiser of R is a function f: 1 — O
such that

1. for all i € dom(f), (i, f(i)) € R,
2. dom(f) = dom(R)

Definition ((S,Z)-uniformisation problem)

Given a relation R € S, does there exists a uniformiser f € 7 7

4/35

Introduction Beyond Mealy Implementations Beyond automatic specification
Church synthesis as a uniformisation problem

»I=%"0=1I¥
» any W C (XI)¥ defines a relation Ry C ¥ x ['“:

Ry = {(0102 .. -,5162...) | 0110909 -+ € W}

AUT : class of w-automatic relations.

Introduction Beyond Mealy Implementations Beyond automatic specification
Church synthesis as a uniformisation problem
» [=% 0=I¥
» any W C (XI)¥ defines a relation Ry C ¥ x ['“:
Ry ={(o102..,01P2...) | 0110232 --- € W}

AUT : class of w-automatic relations.

> any strategy A : X* — ' defines a “strategic” function
f)\ (XY T

STR : class of strategic functions.

Introduction Beyond Mealy Implementations Beyond automatic specification
Church synthesis as a uniformisation problem
» [=% 0=I¥
» any W C (XI)¥ defines a relation Ry C ¥ x ['“:
Ry ={(o102..,01P2...) | 0110232 --- € W}

AUT : class of w-automatic relations.

> any strategy A : X* — ' defines a “strategic” function
f)\ (XY T

STR : class of strategic functions.

Introduction Beyond Mealy Implementations Beyond automatic specification
Church synthesis as a uniformisation problem
» [=% 0=I¥
» any W C (XI)¥ defines a relation Ry C ¥ x ['“:
Rw = {(c102...,182...) | 01B10252--- € W}

AUT : class of w-automatic relations.

> any strategy A : X* — ' defines a “strategic” function
f)\ (XY T
STR : class of strategic functions.

Proposition

Ry is uniformizable by fy iff A is winning for Fve in the
Church game with objective W .

5/35

Introduction Beyond Mealy Implementations Beyond automatic specification
Church synthesis as a uniformisation problem
» [=% 0=I¥
» any W C (XI)¥ defines a relation Ry C ¥ x ['“:
Rw = {(c102...,182...) | 01B10252--- € W}

AUT : class of w-automatic relations.

> any strategy A : X* — ' defines a “strategic” function
f)\ (XY T
STR : class of strategic functions.

Proposition

Ry is uniformizable by fy iff A is winning for Fve in the
Church game with objective W.

Reformulation of Biichi-Landweber’s theorem
» The (AUT, ST R)-uniformisation problem is decidable,
» and same as (AUT, M EALY)-uniformisation problem.

Introduction Beyond Mealy Implementations Beyond automatic specification

Wait and see: beyond Mealy machines
Y ={Ll,a,b} I'={a,b}
Spec W: Replace each symbol by the following non | symbol

1l 1L e L L L ... L b
a a a b b b ... b b

6/35

Introduction Beyond Mealy Implementations Beyond automatic specification
Wait and see: beyond Mealy machines

Y ={Ll,a,b} I'={a,b}
Spec W: Replace each symbol by the following non | symbol

1l 1L e L L L ... L b
a a a b b b ... b b

» W e AUT
W = ((La)*aa + (Lb)*bb)¥

6/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Wait and see: beyond Mealy machines
Y ={Ll,a,b} I'={a,b}
Spec W: Replace each symbol by the following non L symbol

1l 1L e L L L ... L b
a a a b b b ... b b
» W e AUT

W = ((La)*aa + (Lb)*bb)

» unrealisable with only finite memory
> but realisable by some ”streaming” algorithm

6/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Wait and see: beyond Mealy machines
Y ={Ll,a,b} I'={a,b}
Spec W: Replace each symbol by the following non L symbol

1l 1L e L L L ... L b
a a a b b b ... b b
» W e AUT

W = ((La)*aa + (Lb)*bb)

» unrealisable with only finite memory
> but realisable by some ”streaming” algorithm

1

6/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Wait and see: beyond Mealy machines
Y ={Ll,a,b} I'={a,b}
Spec W: Replace each symbol by the following non L symbol

1l 1L e L L L ... L b
a a a b b b ... b b
» W e AUT

W = ((La)*aa + (Lb)*bb)

» unrealisable with only finite memory
> but realisable by some ”streaming” algorithm

1

?

6/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Wait and see: beyond Mealy machines
Y ={Ll,a,b} I'={a,b}
Spec W: Replace each symbol by the following non L symbol

1l 1L e L L L ... L b
a a a b b b ... b b
» W e AUT

W = ((La)*aa + (Lb)*bb)

» unrealisable with only finite memory
> but realisable by some ”streaming” algorithm

1 1

?

6/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Wait and see: beyond Mealy machines
Y ={Ll,a,b} I'={a,b}
Spec W: Replace each symbol by the following non L symbol

1l 1L e L L L ... L b
a a a b b b ... b b
» W e AUT

W = ((La)*aa + (Lb)*bb)

» unrealisable with only finite memory
> but realisable by some ”streaming” algorithm

1 1

77

6/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Wait and see: beyond Mealy machines
Y ={Ll,a,b} I'={a,b}
Spec W: Replace each symbol by the following non L symbol

1l 1L e L L L ... L b
a a a b b b ... b b
» W e AUT

W = ((La)*aa + (Lb)*bb)

» unrealisable with only finite memory
> but realisable by some ”streaming” algorithm

1 1L a

77

6/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Wait and see: beyond Mealy machines
Y ={Ll,a,b} I'={a,b}
Spec W: Replace each symbol by the following non L symbol

1l 1L e L L L ... L b
a a a b b b ... b b
» W e AUT

W = ((La)*aa + (Lb)*bb)

» unrealisable with only finite memory
> but realisable by some ”streaming” algorithm
1 1 a

a a a
6/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Wait and see: beyond Mealy machines
Y ={Ll,a,b} I'={a,b}
Spec W: Replace each symbol by the following non L symbol

1l 1L e L L L ... L b
a a a b b b ... b b
» W e AUT

W = ((La)*aa + (Lb)*bb)

» unrealisable with only finite memory
> but realisable by some ”streaming” algorithm
1 1L a L

a a a
6/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Wait and see: beyond Mealy machines
Y ={Ll,a,b} I'={a,b}
Spec W: Replace each symbol by the following non L symbol

1l 1L e L L L ... L b
a a a b b b ... b b
» W e AUT

W = ((La)*aa + (Lb)*bb)

» unrealisable with only finite memory
> but realisable by some ”streaming” algorithm
1 1L a L

a a a ?
6/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Wait and see: beyond Mealy machines
Y ={Ll,a,b} I'={a,b}
Spec W: Replace each symbol by the following non L symbol

1l 1L e L L L ... L b
a a a b b b ... b b
» W e AUT

W = ((La)*aa + (Lb)*bb)

» unrealisable with only finite memory
> but realisable by some ”streaming” algorithm
1 1L a L 1

a a a ?
6/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Wait and see: beyond Mealy machines
Y ={Ll,a,b} I'={a,b}
Spec W: Replace each symbol by the following non L symbol

1l 1L e L L L ... L b
a a a b b b ... b b
» W e AUT

W = ((La)*aa + (Lb)*bb)

» unrealisable with only finite memory
> but realisable by some ”streaming” algorithm
1 1L a L 1

a a a 7 7
6/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Wait and see: beyond Mealy machines
Y ={Ll,a,b} I'={a,b}
Spec W: Replace each symbol by the following non L symbol

1l 1L e L L L ... L b
a a a b b b ... b b
» W e AUT

W = ((La)*aa + (Lb)*bb)

» unrealisable with only finite memory
> but realisable by some ”streaming” algorithm
1l a L 1L 1

a a a 7 7
6/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Wait and see: beyond Mealy machines
Y ={Ll,a,b} I'={a,b}
Spec W: Replace each symbol by the following non L symbol

1l 1L e L L L ... L b
a a a b b b ... b b
» W e AUT

W = ((La)*aa + (Lb)*bb)

» unrealisable with only finite memory
> but realisable by some ”streaming” algorithm
1l a L 1L 1

a a a 7T 7 7
6/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Wait and see: beyond Mealy machines
Y ={Ll,a,b} I'={a,b}
Spec W: Replace each symbol by the following non L symbol

1l 1L e L L L ... L b
a a a b b b ... b b
» W e AUT

W = ((La)*aa + (Lb)*bb)

» unrealisable with only finite memory
> but realisable by some ”streaming” algorithm
1l e L L 1 ... 1L

a a a 7T 7 7
6/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Wait and see: beyond Mealy machines
Y ={Ll,a,b} I'={a,b}
Spec W: Replace each symbol by the following non L symbol

1l 1L e L L L ... L b
a a a b b b ... b b
» W e AUT

W = ((La)*aa + (Lb)*bb)

» unrealisable with only finite memory
> but realisable by some ”streaming” algorithm

1l e L L 1L ... 1

a a a 7T 7 7T ...

6/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Wait and see: beyond Mealy machines
Y ={Ll,a,b} I'={a,b}
Spec W: Replace each symbol by the following non L symbol

1l 1L e L L L ... L b
a a a b b b ... b b
» W e AUT

W = ((La)*aa + (Lb)*bb)

» unrealisable with only finite memory
> but realisable by some ”streaming” algorithm

1l a L L L ... L b

a a a 7T 7 7T ...

6/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Wait and see: beyond Mealy machines
Y ={Ll,a,b} I'={a,b}
Spec W: Replace each symbol by the following non | symbol

1l 1L e L L L ... L b
a a a b b b ... b b
» W e AUT

W = ((La)*aa + (Lb)*bb)

» unrealisable with only finite memory
» but realisable by some ”streaming” algorithm

1l 1 e L L L ... L b
a a a b b b ... b b

6/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Wait and see: beyond Mealy machines
Y ={Ll,a,b} I'={a,b}
Spec W: Replace each symbol by the following non | symbol

1l 1L e L L L ... L b
a a a b b b ... b b
» W e AUT

W = ((La)*aa + (Lb)*bb)

» unrealisable with only finite memory
» but realisable by some ”streaming” algorithm

1l 1 e L L L ... L b
a a a b b b ... b b

6/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Talk Outline

1. beyond Mealy implementations

2. beyond automatic specifications

Beyond Mealy Implementations

Beyond Mealy Implementations

Beyond Mealy Implementations

Beyond Mealy Implementations

» based on works together with Vrunda Dave, Nathan Lhote,
Krishna S. and Sarah Winter.

Beyond Mealy Implementations

Beyond Mealy Implementations

» based on works together with Vrunda Dave, Nathan Lhote,
Krishna S. and Sarah Winter.

» Hypothesis: specifications are automatic relations

Introduction Beyond Mealy Implementations Beyond automatic specification

Motivating question

Question

If a spec is not Mealy-realizable, is it still realizable in some
larger class of implementations 7

9/35

Introduction Beyond Mealy Implementations Beyond automatic specification
Motivating question

Question
If a spec is not Mealy-realizable, is it still realizable in some
larger class of implementations 7

Theorem (Uniformization property)

Any automatic relation can be uniformized by an automatic
function.

Introduction Beyond Mealy Implementations Beyond automatic specification

Motivating question

Question

If a spec is not Mealy-realizable, is it still realizable in some
larger class of implementations 7

Theorem (Uniformization property)

Any automatic relation can be uniformized by an automatic
function.

> f automatic if {0'1/810'252 s | f(()‘]O’Q ..) = 5132 .. } is
w-regular.

» in other words, any automatic spec is realizable by some
automatic function

» result due to Siefkes 75 and Choffrut/Grigorieff 99, some
proof in Carayol/Loding 2014 too

9/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Proof of the theorem (for finite words)
Let A =(Q,qo, F,A) be a DFA for R.

1. order the transitions <a, extend to runs <ax
lexicographically

10 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Proof of the theorem (for finite words)
Let A =(Q,qo, F,A) be a DFA for R.

1. order the transitions <a, extend to runs <ax
lexicographically

2. for u € X%,
minrun(u) = min< . {r | r accepting and input(r) = u}

10 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Proof of the theorem (for finite words)
Let A =(Q,qo, F,A) be a DFA for R.

1. order the transitions <a, extend to runs <ax
lexicographically
2. for u € X%,

minrun(u) = min< . {r | r accepting and input(r) = u}

©

//_

©

m'nrun(u.)

(@)

10 /35

Introduction Beyond Mealy Implementations

Beyond automatic specification

Proof of the theorem (for finite words)
Let A =(Q,qo, F,A) be a DFA for R.

1. order the transitions <a, extend to runs <ax
lexicographically
2. for u € X%,

minrun(u) = min< . {r | r accepting and input(r) = u}

©

//_

©

m'nrun(u.)

(@)

Lemma L, = {minrun(u) | v € ¥*} is regular.

10 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Proof of the theorem (for finite words)
Let A =(Q,qo, F,A) be a DFA for R.

1. order the transitions <a, extend to runs <ax
lexicographically
2. for u € X%,

minrun(u) = min< . {r | r accepting and input(r) = u}

©

/ﬁ

©

Ml'-\run(u.)

(@)

Lemma L, = {minrun(u) | v € ¥*} is regular.

3. let Apmin be a DFA accepting Ly, and use it as a filter
4. the product A ® Anin defines an automatic function.

O

10 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Computability over infinite words

» the latter theorem is not very useful for synthesis

> because some automatic functions are not computable

Introduction Beyond Mealy Implementations Beyond automatic specification

Computability over infinite words

» the latter theorem is not very useful for synthesis

> because some automatic functions are not computable

Example
Y ={a,b},I' = {a,b}.

if |u|g = 00

b¥ otherwise.

11/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Computability over infinite words

» the latter theorem is not very useful for synthesis

> because some automatic functions are not computable

Example
Y ={a,b},I' = {a,b}.

w

a? if |u|g = 00

flw) =

b¥ otherwise.

» f is automatic: ((Xa)*aa)¥ + (2b)*(bb)*

» f is not computable:
no algorithm computes longer and longer output prefixes
while reading longer and longer input prefixes

Introduction Beyond Mealy Implementations Beyond automatic specification

Turing-computability over infinite words

Consider a deterministic Turing machine M with 3 tapes:
» a one-way read-only input tape
> a two-way working tape
> a one-way write-only output tape

Introduction Beyond Mealy Implementations Beyond automatic specification

Turing-computability over infinite words

Consider a deterministic Turing machine M with 3 tapes:
» a one-way read-only input tape
> a two-way working tape
> a one-way write-only output tape

M (u, k):output written after reading ujus ... ug

Introduction Beyond Mealy Implementations Beyond automatic specification

Turing-computability over infinite words

Consider a deterministic Turing machine M with 3 tapes:
» a one-way read-only input tape
> a two-way working tape
> a one-way write-only output tape

M (u, k):output written after reading ujus ... ug

Definition
M computes f if for all u € dom(f), there exists j; < jo < ...:
M(a,j1) = M(a,j2) <+ =2 f(u)

Introduction Beyond Mealy Implementations Beyond automatic specification

Turing-computability over infinite words

Consider a deterministic Turing machine M with 3 tapes:
» a one-way read-only input tape
> a two-way working tape
> a one-way write-only output tape

M (u, k):output written after reading ujus ... ug

Definition
M computes f if for all u € dom(f), there exists j; < jo < ...:
M(a,j1) = M(a,j2) <+ =2 f(u)

The following function f, is computable

L L oa L ... L b ... €00(aVDd)

~ a a a b ... b b

Introduction Beyond Mealy Implementations Beyond automatic specification

Turing-computability over infinite words

Consider a deterministic Turing machine M with 3 tapes:
» a one-way read-only input tape
> a two-way working tape
> a one-way write-only output tape

M (u, k):output written after reading ujus ... ug

Definition
M computes f if for all u € dom(f), there exists j; < jo < ...:
M(a,j1) = M(a,j2) <+ =2 f(u)

The following function f, is computable

L L oa L ... L b ... €00(aVDd)

~ a a a b ... b b

but fi U (0OL — 1) is not.

Introduction Beyond Mealy Implementations Beyond automatic specification

Some characterization and some decidability result

» any computable function is continuous for the Cantor
distance d(u,v) = 0 if u = v, and 27 11P(w.V)| otherwise
» the converse is not true, but true in some cases:

Theorem (Dave,F. Krishna,Lhote,19)
Let f be a function preserving regular languages under inverse
1mage.

f is computable iff f is continuous.

Theorem

Continuity (and so computability) is decidable in NLogSpace for
automatic functions.

Proved for a large class (regular functions), already known for

rational functions by Prieur,01.
13 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Idea of the algorithm

1. Check the following forbidden pattern where u; # us:

vlvy
ulug
v|vg x|zo

—(P2 @ 2

14 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Idea of the algorithm

1. Check the following forbidden pattern where u; # us:

vlvy
limy o0 fuvwz®) # f(limp— oo uv™wz")
ulug
v|vg x|zo

ulug g wlws
—(P2 \\q-2/ 2

14 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Idea of the algorithm

1. Check the following forbidden pattern where u; # us:

vlvy
limy o0 fuvwz®) # f(limp— oo uv™wz")
ulug
v|vg x|zo

ulug g wlws
—(P2 \\q-2/ 2

14 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Idea of the algorithm

1. Check the following forbidden pattern where u; # us:

vlvy
limy o0 fuvwz®) # f(limp— oo uv™wz")
ulug
v|vg x|zo

—(P2 @ 2

2. encode it in the pattern logic of [F., Mazzocchi, Raskin, 20]
which has decidable model-checking problem

14 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Idea of the algorithm

1. Check the following forbidden pattern where u; # us:

vlvy
limy o0 fuvwz®) # f(limp— oo uv™wz")
ulu
ﬁ@L ’
v|vg x|y limn— oo up vy way

—(P2 @ 2

2. encode it in the pattern logic of [F., Mazzocchi, Raskin, 20]
which has decidable model-checking problem

14 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Idea of the algorithm

1. Check the following forbidden pattern where u; # us:

vlvy
limy o0 fuvwz®) # f(limp— oo uv™wz")
ulu
ﬁ@L ’
v|vg x|y limn— oo up vy way

I
ulug % wlws
—(2 (=) ry upvy

2. encode it in the pattern logic of [F., Mazzocchi, Raskin, 20]
which has decidable model-checking problem

14 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Idea of the algorithm

1. Check the following forbidden pattern where u; # us:

vlvy
limy o0 fuvwz®) # f(limp— oo uv™wz")
ulu
— :) | , I I
olvs ol limp,— 00 u2 VS Wo s fuv®)

I
ulug % wlws
—(2 (=) ry vy

2. encode it in the pattern logic of [F., Mazzocchi, Raskin, 20]
which has decidable model-checking problem

14 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Idea of the algorithm

1. Check the following forbidden pattern where u; # us:

vlvy
limy o0 f(uvwz®) # f(limp—oo uv™waz®
ulu
4,() | R I I
v|vg x|y limp — o0 uzvg w2 fuv®)

I I
@ e % — CO@ "
U U2V5 uU1vy

2. encode it in the pattern logic of [F., Mazzocchi, Raskin, 20]
which has decidable model-checking problem

14 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Back to synthesis

Problem

Input: an automatic specification R C »“ x I'“

Output: Is R uniformisable by some computable function f ?
f € R and dom(f) = dom(R)

Introduction Beyond Mealy Implementations Beyond automatic specification

Back to synthesis

Problem

Input: an automatic specification R C ¥ x ['¥
Output: Is R uniformisable by some computable function f ?
f € R and dom(f) = dom(R)

Results

» 2EXPTIME when R has total domain and is given as a
DPA Holtmann/Kaiser/Thomas’10

Introduction Beyond Mealy Implementations Beyond automatic specification

Back to synthesis

Problem

Input: an automatic specification R C ¥ x ['¥
Output: Is R uniformisable by some computable function f ?
f € R and dom(f) = dom(R)

Results

» 2EXPTIME when R has total domain and is given as a
DPA Holtmann/Kaiser/Thomas’10

» EXPTIME-c Klein/Zimmermann’14

Introduction Beyond Mealy Implementations Beyond automatic specification

Back to synthesis

Problem

Input: an automatic specification R C ¥ x ['¥
Output: Is R uniformisable by some computable function f ?
f € R and dom(f) = dom(R)

Results

» 2EXPTIME when R has total domain and is given as a
DPA Holtmann/Kaiser/Thomas’10

» EXPTIME-c Klein/Zimmermann’14

» EXPTIME-c even when R has partial domain r., Winter,21

Introduction Beyond Mealy Implementations Beyond automatic specification

Partial vs Total Domain

» classical formulation of Church synthesis

gpe : X° =T -Voyo9--- € XY (0102..,A\(01)\(o102...)) € R

also called good-enough synthesis in Almagor, Kupferman,20
16 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Partial vs Total Domain

» classical formulation of Church synthesis
Igpe : 2 =T -Vojog--- € X% (0'10'2 .. .,/\(01))\(0‘10‘2 .)) €ER

» consequently, if dom(R) # %%, R is unrealizable

also called good-enough synthesis in Almagor, Kupferman,20
16 / 35

Introduction Beyond Mealy Implementations Beyond automatic specification

Partial vs Total Domain

» classical formulation of Church synthesis

Igpe : 2 =T -Vojog--- € X% (0'102 .. .,)\(0'1>)\(O‘10‘2 .)) €ER
» consequently, if dom(R) # %%, R is unrealizable
» uniformization = synthesis under assumption’

» only asks that implementation and spec have the same
domain (dom(R) = dom(f))

IEpe : ° = T'WVWoy09--- € dom(R)-(0102...,A(01)\(o102...)) €ER

also called good-enough synthesis in Almagor, Kupferman,20
16 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Partial vs Total Domain

» classical formulation of Church synthesis
Igpe : 2 =T -Vojog--- € X% (0'102 .. .,)\(01))\(0‘10‘2 .)) €ER

» consequently, if dom(R) # %%, R is unrealizable

» uniformization = synthesis under assumption®

» only asks that implementation and spec have the same
domain (dom(R) = dom(f))

Igpe 1 2 — T'Woi09 - € dom(R)-(O’ldg .. .,)\(0'1))\(0'10'2 S)) €ER

From partial to total domain

> R— Rtot = RUdOHl(R) x I'¥

» R is realizable under assumption dom(R) iff Ry is
realizable (in the classical sense)

» R is automatic iff Ry, is automatic

also called good-enough synthesis in Almagor, Kupferman,20
16 / 35

Introduction Beyond Mealy Implementations Beyond automatic specification

Partial vs Total Domain

» the latter reduction fails if one asks realizability by a
computable function instead of a strategy function

» it does not preserve the existence of a computable realizer

Introduction Beyond Mealy Implementations Beyond automatic specification

Partial vs Total Domain

» the latter reduction fails if one asks realizability by a
computable function instead of a strategy function

» it does not preserve the existence of a computable realizer

Counter-example
» R=f1:

L 1L a L ... L b ... e0d0(aVbd)

» R is uniformizable by a computable function (f, is
computable)

» R, is not

17 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Transducer synthesis (total case)

Theorem (Holtmann/Kaiser/Thornas’107 Klein/Zimmcrmann’14)

Let R € AUT with total domain.
If R is uniformisable by a computable function, it is
uniformisable by a deterministic (one-way) transducer.

18 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Transducer synthesis (total case)

Theorem (Holtmann/Kaiser/Thomas’10, chin/Zimmormann’14)
Let R € AUT with total domain.

If R is uniformisable by a computable function, it is
uniformisable by a deterministic (one-way) transducer.
Example

> Ri: behaves as f| as long as there is no two consecutive L,
otherwise output L forever.

l e L L b ... = a a L 1L 1 1¥

18 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Transducer synthesis (total case)

Theorem (Holtmann/Kaiser/Thornas’10, chin/Zimmormann’14)

Let R € AUT with total domain.
If R is uniformisable by a computable function, it is
uniformisable by a deterministic (one-way) transducer.

Example

> Ri: behaves as f| as long as there is no two consecutive L,
otherwise output L forever.

l e L L b ... = a a L 1L 1 1¥

» R; is a function of total domain

> it is computed by I .

alaa
T~ L
NN/ '

blbb

blb
18 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Transducer synthesis (partial case)
> total setting: Eve only needs to wait a constant number of

steps

» partial setting: she may need to wait arbitrarily long

19 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Transducer synthesis (partial case)

> total setting: Eve only needs to wait a constant number of
steps

» partial setting: she may need to wait arbitrarily long

Theorem (F., Winter)

Let R € AUT with partial domain.
If R is uniformisable by a computable function, it is
uniformisable by a deterministic two-way transducer.

Two-wayness is necessary:

19/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Uniformisation by computable functions: proof idea

» reduction to a turn-based two-player parity game where
» Adam plays input letters
» Eve plays output letters or a waiting action

20/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Uniformisation by computable functions: proof idea

» reduction to a turn-based two-player parity game where
» Adam plays input letters
» Eve plays output letters or a waiting action

Problem

20/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Uniformisation by computable functions: proof idea

» reduction to a turn-based two-player parity game where
» Adam plays input letters
» Eve plays output letters or a waiting action

Problem
» Eve might need to wait an arbitrary amount of time

20/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Uniformisation by computable functions: proof idea

» reduction to a turn-based two-player parity game where
» Adam plays input letters
» Eve plays output letters or a waiting action

Problem
» Eve might need to wait an arbitrary amount of time
» We want a finite game arena, cannot store Adam’s input

20/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Uniformisation by computable functions: proof idea

» reduction to a turn-based two-player parity game where
» Adam plays input letters
» Eve plays output letters or a waiting action

Problem
» Eve might need to wait an arbitrary amount of time
» We want a finite game arena, cannot store Adam’s input

Solution

20/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Uniformisation by computable functions: proof idea

» reduction to a turn-based two-player parity game where
» Adam plays input letters
» Eve plays output letters or a waiting action

Problem
» Eve might need to wait an arbitrary amount of time
» We want a finite game arena, cannot store Adam’s input

Solution

» store state transformations of the specification automaton
induced by Adam’s inputs

» monitor membership to the domain

» Eve picks a state transformation instead of concrete
outputs

» winning condition: if Adam’s input is in the domain, then
Eve infinitely often picks an accepting state transformation

» convert this into a parity condition

Introduction Beyond Mealy Implementations Beyond automatic specification

Summary of Part 1

» synthesis of computable functions from automatic
specifications given by DPA is EXPTIME-c

» without assuming that inputs comes from the domain:
deterministic one-way transducer suffice

» with that assumption: two-way transducer are necessary
and sufficient.

Introduction Beyond Mealy Implementations Beyond automatic specification

Summary of Part 1

» synthesis of computable functions from automatic
specifications given by DPA is EXPTIME-c

» without assuming that inputs comes from the domain:
deterministic one-way transducer suffice

» with that assumption: two-way transducer are necessary
and sufficient.

Can we go beyond automatic specifications ?

Beyond automatic specification

Beyond Automatic Specifications

Introduction Beyond Mealy Implementations Beyond automatic specification
Automata model for asynchronous spec / impl

» Non-automatic spec: alphabet ¥ = {0, +, —}, I' = {0, #}.
R : +0n1 o 0n2 + Ong RS #On1+1#0n271#0n3+1 o

23/35

Introduction Beyond Mealy Implementations Beyond automatic specification
Automata model for asynchronous spec / impl

» Non-automatic spec: alphabet ¥ = {0,+, —}, I' = {0, #}.
R : +0n1 o 0n2 + On:s RS #On1+1#0n271#0n3+1 o

» The language {ij01--+| (i1...,01...) € R} is not regular.

23/35

Introduction Beyond Mealy Implementations Beyond automatic specification
Automata model for asynchronous spec / impl
» Non-automatic spec: alphabet ¥ = {0,+, —}, I' = {0, #}.
R 0 +0™ — 0" 4 0™ .. s 0" g2 gons
» The language {ij01---| (i1...,01...) € R} is not regular.

Transducers

» (input) deterministic, define sequential functions (SEQ):

0]0
- | #

QL2 i

23/35

Introduction Beyond Mealy Implementations Beyond automatic specification
Automata model for asynchronous spec / impl
» Non-automatic spec: alphabet ¥ = {0,+, —}, I' = {0, #}.
R ;40" — 0" 40" g0 g gt
» The language {i101---| (i1...,01...) € R} is not regular.

Transducers

» (input) deterministic, define sequential functions (SEQ):

0]0
—|#

@ “\‘-) + | #0

» non-deterministic, define rational relations (RAT):

Introduction Beyond Mealy Implementations Beyond automatic specification

Undecidability Result

Theorem (Léding,Carayol, 14)

The uniformization problem of rational relations by sequential
functions is undecidable.

Introduction Beyond Mealy Implementations Beyond automatic specification
! Y P

Proof Overview

Post-correspondence problem (PCP)

Given (u1,v1), (u2,v2), ..., (up,v,) € {0,1}* x {0,1}*, find
indices i1, ...,%; such that

Ujy - oo Uy, = Vjy « - - Vg, -

v
o
~
w
o

Introduction Beyond Mealy Implementations Beyond automatic specification

Proof Overview

PCP:Hil,... ,’ik * Uy - Ujy, = Uiy U'Lk?

25/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Proof Overview

‘PCP:EIil,...,ik-uil...uik :’Uil...’uik?‘

Reduction: ¥ ={1,...,n,#, A, B}, ' ={0,1,#, A, B}.
Construct R such that:

. . Uir v o Ug, Y if |ul, = o0
.. e L i 7 [tla

v#Y, v € {0,1}* \ {v;, ... v;, } otherwise.

v
o
~
w
at

Introduction Beyond Mealy Implementations Beyond automatic specification

Proof Overview

‘PCP:HZ&,... ,’ik cUgy - - Uy,

:Uil...’l)ik?‘

Reduction: ¥ ={1,...,n,#, A, B}, ' ={0,1,#, A, B}.
Construct R such that:

. . Uir v o Ug, Y if |ul, = o0
.. e L i 7 [tla

v#Y, v € {0,1}* \ {v;, ... v;, } otherwise.

Correctness

» no PCP solution = always output w;, ... u;#*

V)
w
~
w
ot

Introduction Beyond Mealy Implementations Beyond automatic specification

Proof Overview

‘PCP:EIil,...,z'k'uil...uik :vil...vik?‘

Reduction: ¥ ={1,...,n,#, A, B}, ' ={0,1,#, A, B}.

Construct R such that:

71“#&}_) uil...uik# if "(L|a:OO
v#Y, v € {0,1}* \ {v;, ... v;, } otherwise.

Correctness
» no PCP solution = always output w;, ... u;#*

> iy,...,i; is a PCP solution: reading i, ...i;#, any
uniformiser can decide what to output w/o reading the
infinite suffix

Introduction Beyond Mealy Implementations Beyond automatic specification

Asynchronous specifications: hopeless ?

» what about computable functions ?

23kvu € 2¢|{v | (u,v) € R} < k

26 /35

Introduction Beyond Mealy Implementations Beyond automatic specification
! Y P

Asynchronous specifications: hopeless ?

» what about computable functions 7 still undecidable

23kvu € 2¢|{v | (u,v) € R} < k

26 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Asynchronous specifications: hopeless ?

» what about computable functions ? still undecidable

» what about finite words and sequential functions ?

3kvu € SNv | (u,v) € R} <k

26 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Asynchronous specifications: hopeless ?

» what about computable functions ? still undecidable

» what about finite words and sequential functions ? still
undecidable

3kvu € SNv | (u,v) € R} <k

26 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Asynchronous specifications: hopeless ?

» what about computable functions ? still undecidable

» what about finite words and sequential functions ? still
undecidable

» decidability recovered for finite-valued rational relations of
finite WOI'dS[F,,Je(:ker,L(")ding,\Vinter,16] 2

» and for stronger inclusion notions f C R
[F.,Jecker,Loding, Winter,16]

3kvu € SNv | (u,v) € R} <k

Introduction Beyond Mealy Implementations Beyond automatic specification

A logic for asynchronous specifications

» so far, specifications are given by automata or transducers

» what about a logic 7

Introduction Beyond Mealy Implementations Beyond automatic specification

A logic for asynchronous specifications

» so far, specifications are given by automata or transducers
» what about a logic 7

» for automatic specifications: LTL, MSO, well-known

Goal
Define a logic which is

» expressive enough to capture a large class of asynchronous
specifications

» has decidable satisfiability problem

» have decidable model-checking problem for known
transducer models

» have some decidable synthesis problems

Introduction Beyond Mealy Implementations Beyond automatic specification

A logic for asynchronous specifications

» so far, specifications are given by automata or transducers
» what about a logic 7

» for automatic specifications: LTL, MSO, well-known

Goal
Define a logic which is

» expressive enough to capture a large class of asynchronous
specifications

» has decidable satisfiability problem

» have decidable model-checking problem for known
transducer models

» have some decidable synthesis problems

We introduce a logic to define finite word relations.

Introduction Beyond Mealy Implementations Beyond automatic specification

Motivation: Model-checking and Synthesis

» model-checking automata: A = if Ly C L,

28 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Motivation: Model-checking and Synthesis

» model-checking automata: A = if Ly C L,
» transducers define relations in >* x ['*
> likewise, properties ¢ of transducers are relations

Tk ¢if Ry C R,

28 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Motivation: Model-checking and Synthesis

» model-checking automata: A = if Ly C L,
» transducers define relations in >* x ['*
> likewise, properties ¢ of transducers are relations

Tk ¢if Ry C R,

Some Examples

True YEx I

28 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Motivation: Model-checking and Synthesis

» model-checking automata: A = if Ly C L,
» transducers define relations in >* x ['*
> likewise, properties ¢ of transducers are relations

T ¢if Rp C R,

Some Examples

True YEx I

There is an @ in the output X x I al™

28 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

Motivation: Model-checking and Synthesis

» model-checking automata: A = if Ly C L,
» transducers define relations in >* x ['*
> likewise, properties ¢ of transducers are relations

T ¢if Rp C R,

Some Examples

True X x I
There is an @ in the output X x I al™
Every task is scheduled {1 tastry - trn)) | TS @
exactly once permutation }

28 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

MSO over Origin Graphs (MSO,)

» see pairs (u,v) as structures with origin information (origin
graphs)

29 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

MSO over Origin Graphs (MSO,)

» see pairs (u,v) as structures with origin information (origin
graphs)

00000

29 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

MSO over Origin Graphs (MSO,)

» see pairs (u,v) as structures with origin information (origin

7999090
O—O—O—O—O—

graphs)

O—

output

> MSOO = MSO[iny outv]

29 /35

Introduction Beyond Mealy Implementations Beyond automatic specification

MSO over Origin Graphs (MSO,)

» see pairs (u,v) as structures with origin information (origin

graphs)
B aeass:
output @_>@—>@—>@—’@_’@_’

> MSOO = MSO[zm_outv]
» a formula ¢ defines a set of origin graphs {¢ | g = ¢}

» and hence a relation (by projecting away the origin)

29 /35

Introduction Beyond Mealy Implementations Beyond automatic specification
Examples

» True

30/35

Introduction Beyond Mealy Implementations Beyond automatic specification
Examples

» True

» There is an a in the output

Jr 2<,x A a(x)

30/35

Introduction Beyond Mealy Implementations Beyond automatic specification
Examples

» True

» There is an a in the output

3oy a(x)

30/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Examples
» True
T
» There is an a in the output
3oy a(x)

> Every task is scheduled exactly once

s =qef bijection(o) A N\ ¥z o(x) = o (o(x))
gEY

30/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Examples
» True
T
» There is an a in the output
3oy a(x)

> Every task is scheduled exactly once

s =qef bijection(o) A N\ ¥z o(x) = o (o(x))
gEY

» Mirror
¢$ A VOUtma Yy xgouty — U(y)Smf)(Z)

30/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

31/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input 9 a b d e «a b f A
A
ole,— olo,
e, A Fle
output
A

31/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b d e a b A
A
ole,— olo,
e, A Fle
output
A

31/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b d e a b A
A
ole,— olo,
e, A Fle
output
A

31/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b d e a b A
A
ole,— olo,
e, A Fle
output
A

31/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b d e a b A
A
ole,— olo,
e, A Fle
output
A

31/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b d e a b A
A
ole,— olo,
e, A Fle
output
A

31/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b d e a b A
A
ole,— olo,
e, A Fle
output
A

31/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b d e a b A
A
ole,— olo,
e, A Fle
output
A

31/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b d e a b A
A
ole,— olo,
e, A Fle
output
A

31/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input 9 a b d e «a b f A
A
ole,— olo,
e, A Fle
output f
A

31/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input 9 a b d e «a b f A

ole,— olo,

e, A Fle
->& >(2 >@

31/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b d e a b A
A
ole,— olo,
e, A Fle

31/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b d e a b A
A
ole,— olo,

)& e, >& Fle >@

31/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input 9 a b d e «a b f A

ole,— olo,

)& e, >& Fle >@

31/35

Introduction Beyond Mealy Implementations Beyond automatic specification
! Y P

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input 9 a b d e «a b f A

ole,— olo,

31/35

Introduction

Origin information

Beyond Mealy Implementations Beyond automatic specification

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input

ole,—

a b f A

Fle >@

31/35

Introduction Beyond Mealy Implementations

Origin information

Beyond automatic specification

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b

ole,—

a b f A

Fle >@

31/35

Introduction Beyond Mealy Implementations

Origin information

Beyond automatic specification

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b

ole,—

a b f A

Fle >®

31/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

Other examples of two-way transductions
» doubling function aabbc +— aabbcaabbc
» local mirror: ab#baa#bcc +— baFaabitcch

31/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

Other examples of two-way transductions
» doubling function aabbc +— aabbcaabbc
» local mirror: ab#baa#bcc +— baFaabitcch

The class of functions defined by det. 2-way transducers
» closed under composition Chytil, Jakl, 77

» decidable equivalence problem Gurari 82

31/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)
Other examples of two-way transductions
» doubling function aabbc +— aabbcaabbe
» local mirror: ab#baa#bcc +— ba#aabFcch

The class of functions defined by det. 2-way transducers
» closed under composition Chytil, Jakl, 77

» decidable equivalence problem Gurari 82

Many Characterisations

» reversible 2—Way transducers Dartois, Fournier, Jecker, Lhote, 17

v

deterministic 1-way transducers with registers Alur, Cerny, 09

v

MSO-transductions on StI‘iDgS Engelfriet,Hoogeboom,01

v

regular combinators (Alur, Freilich, Raghothaman, 14) (Dave, Gastin, 31,35

Introduction Beyond Mealy Implementations Beyond automatic specification

Results

32/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Results

Theorem (Boj anczyk,Daviaud,Guillon,Penelle, 17)

The model-checking problem ographs(T) = ¢ for T
deterministic 2-way trans and @ € MSO, is decidable.

Introduction Beyond Mealy Implementations Beyond automatic specification

Results

Theorem (Boj anczyk,Daviaud,Guillon,Penelle, 17)

The model-checking problem ographs(T) = ¢ for T
deterministic 2-way trans and @ € MSO, is decidable.

Theorem
The satisfiability problem (3G - G |= ¢ ?) is undecidable.

Introduction Beyond Mealy Implementations Beyond automatic specification

Results

Theorem (Boj anczyk,Daviaud,Guillon,Penelle, 1 7)

The model-checking problem ographs(T) = ¢ for T
deterministic 2-way trans and @ € MSO, is decidable.

Theorem
The satisfiability problem (3G - G |= ¢ ?) is undecidable.

Contribution Dartois,F.,Lhote,18
A fragment F = FO2[<,ur, M SOpin[<in]]such that:

1. any F-defined relation is uniformisable by a det. 2-way
transducer

2. satisfiability is decidable
3. it is expressive (captures regular functions and more)

4. implies decidability of an expressive logic for data words:
FOZ[pOSH MSObm[<dataH

Introduction Beyond Mealy Implementations Beyond automatic specification

Summary

33/35

Introduction Beyond Mealy Implementations Beyond automatic specification

Summary

beyond Mealy machines

» synthesis of computable functions from automatic spec is
decidable

» if Adam can input anything: one-way transducer suffice

» if Adam can play only in the domain of the spec: two-way
transducers are necessary

Introduction Beyond Mealy Implementations Beyond automatic specification

Summary

beyond Mealy machines

» synthesis of computable functions from automatic spec is
decidable

» if Adam can input anything: one-way transducer suffice

» if Adam can play only in the domain of the spec: two-way
transducers are necessary

» what about synthesis of functions computable with
bounded-memory ?

Introduction Beyond Mealy Implementations Beyond automatic specification

Summary

beyond Mealy machines

» synthesis of computable functions from automatic spec is
decidable

» if Adam can input anything: one-way transducer suffice

» if Adam can play only in the domain of the spec: two-way
transducers are necessary

» what about synthesis of functions computable with
bounded-memory ?

beyond automatic specifications

» decidability of synthesis is lost (for asynchronous spec
defined by non-deterministic transducers)

» recovered in some cases (finite-valued relations, ...)

» over finite words: a logic to specify binary relations

Introduction Beyond Mealy Implementations Beyond automatic specification

Summary

beyond Mealy machines

» synthesis of computable functions from automatic spec is
decidable

» if Adam can input anything: one-way transducer suffice

» if Adam can play only in the domain of the spec: two-way
transducers are necessary

» what about synthesis of functions computable with
bounded-memory ?

beyond automatic specifications

» decidability of synthesis is lost (for asynchronous spec
defined by non-deterministic transducers)

» recovered in some cases (finite-valued relations, ...)

» over finite words: a logic to specify binary relations

Introduction 3eyond Mealy Implementations Beyond automatic specification

Conclusion

» many generalizations of the classical reactive synthesis
problem: quantitative specifications, pushdown,
multiplayers, rational synthesis, data words ...

» this work generalizes the class of implementations by
relaxing the reactivity requirement

» relevant when a spec is not realizable in a reactive manner
» this relaxation could be studied in other synthesis settings

» for instance: synthesis of computable functions from
synchronous specifications given as weighted automata 7

o

Introduction 3eyond Mealy Implementations Beyond automatic specification

Conclusion

» many generalizations of the classical reactive synthesis
problem: quantitative specifications, pushdown,
multiplayers, rational synthesis, data words ...

» this work generalizes the class of implementations by
relaxing the reactivity requirement

» relevant when a spec is not realizable in a reactive manner
» this relaxation could be studied in other synthesis settings

» for instance: synthesis of computable functions from
synchronous specifications given as weighted automata 7

» other interesting question: synthesis under assumptions
(regular, quantitative, etc.)

	Introduction
	Beyond Mealy Implementations
	Beyond automatic specifications

