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u = aabbcaaabbaach . . .

» Eve wins if u € W C (XI)¢

C
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Complexity Results

v

decidable problem [Biichi-Landweber 69] (via parity games)

v

ExXPTIME-C from automata

v

2ExPTIME-C for LTL SpeCiﬁC&tiOHS [Pnueli/Rosner 89]

v

reactive synthesis competition SYNTCOMP since 2014

synchronous specification / implementation
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Definition (Uniformiser)

Given R C I x O, a uniformiser of R is a function f: 1 — O
such that

1. for all i € dom(f), (i, f(i)) € R,
2. dom(f) = dom(R)

Definition ((S,Z)-uniformisation problem)

Given a relation R € S, does there exists a uniformiser f € 7 7
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» [=% 0=I¥
» any W C (XI)¥ defines a relation Ry C ¥ x ['“:
Rw = {(c102...,182...) | 01B10252--- € W}

AUT : class of w-automatic relations.

> any strategy A : X* — ' defines a “strategic” function
f)\ (XY T
STR : class of strategic functions.

Proposition

Ry is uniformizable by fy iff A is winning for Fve in the
Church game with objective W.

Reformulation of Biichi-Landweber’s theorem
» The (AUT, ST R)-uniformisation problem is decidable,
» and same as (AUT, M EALY )-uniformisation problem.
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Motivating question

Question

If a spec is not Mealy-realizable, is it still realizable in some
larger class of implementations 7

Theorem (Uniformization property)

Any automatic relation can be uniformized by an automatic
function.

> f automatic if {0'1/810'252 s | f(()‘]O’Q .. ) = 5132 .. } is
w-regular.

» in other words, any automatic spec is realizable by some
automatic function

» result due to Siefkes 75 and Choffrut/Grigorieff 99, some
proof in Carayol/Loding 2014 too

9/35
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Let A =(Q,qo, F,A) be a DFA for R.

1. order the transitions <a, extend to runs <ax
lexicographically
2. for u € X%,

minrun(u) = min< . {r | r accepting and input(r) = u}

©

/ﬁ

©

Ml'-\run(u.)

(@)

Lemma L, = {minrun(u) | v € ¥*} is regular.

3. let Apmin be a DFA accepting Ly, and use it as a filter
4. the product A ® Anin defines an automatic function.

O

10 /35
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Computability over infinite words

» the latter theorem is not very useful for synthesis

> because some automatic functions are not computable

Example
Y ={a,b},I' = {a,b}.

w

a? if |u|g = 00

flw) =

b¥  otherwise.

» f is automatic: ((Xa)*aa)¥ + (2b)*(bb)*

» f is not computable:
no algorithm computes longer and longer output prefixes
while reading longer and longer input prefixes
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Turing-computability over infinite words

Consider a deterministic Turing machine M with 3 tapes:
» a one-way read-only input tape
> a two-way working tape
> a one-way write-only output tape

M (u, k):output written after reading ujus ... ug

Definition
M computes f if for all u € dom(f), there exists j; < jo < ...:
M(a,j1) = M(a,j2) <+ =2 f(u)

The following function f, is computable

L L oa L ... L b ... €00(aVDd)

~ a a a b ... b b

but fi U (0OL — 1) is not.



Introduction Beyond Mealy Implementations Beyond automatic specification

Some characterization and some decidability result

» any computable function is continuous for the Cantor
distance d(u,v) = 0 if u = v, and 27 11P(w.V)| otherwise
» the converse is not true, but true in some cases:

Theorem (Dave,F. Krishna,Lhote,19)
Let f be a function preserving regular languages under inverse
1mage.

f is computable iff f is continuous.

Theorem

Continuity (and so computability) is decidable in NLogSpace for
automatic functions.

Proved for a large class (regular functions), already known for

rational functions by Prieur,01.
13 /35
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Back to synthesis

Problem

Input: an automatic specification R C ¥ x ['¥
Output: Is R uniformisable by some computable function f ?
f € R and dom(f) = dom(R)

Results

» 2EXPTIME when R has total domain and is given as a
DPA Holtmann/Kaiser/Thomas’10

» EXPTIME-c Klein/Zimmermann’14

» EXPTIME-c even when R has partial domain r., Winter,21
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Partial vs Total Domain

» classical formulation of Church synthesis
Igpe : 2 =T -Vojog--- € X% (0'102 .. .,)\(01))\(0‘10‘2 . )) €ER

» consequently, if dom(R) # %%, R is unrealizable

» uniformization = synthesis under assumption®

» only asks that implementation and spec have the same
domain (dom(R) = dom(f))

Igpe 1 2 — T'Woi09 - € dom( R)-(O’ldg .. .,)\(0'1))\(0'10'2 S )) €ER

From partial to total domain

> R— Rtot = RUdOHl(R) x I'¥

» R is realizable under assumption dom(R) iff Ry is
realizable (in the classical sense)

» R is automatic iff Ry, is automatic

also called good-enough synthesis in Almagor, Kupferman,20
16 / 35
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Partial vs Total Domain

» the latter reduction fails if one asks realizability by a
computable function instead of a strategy function

» it does not preserve the existence of a computable realizer

Counter-example
» R=f1:

L 1L a L ... L b ... e0d0(aVbd)

» R is uniformizable by a computable function (f, is
computable)

» R, is not

17 /35
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Transducer synthesis (total case)

Theorem (Holtmann/Kaiser/Thornas’10, chin/Zimmormann’14)

Let R € AUT with total domain.
If R is uniformisable by a computable function, it is
uniformisable by a deterministic (one-way) transducer.

Example

> Ri: behaves as f| as long as there is no two consecutive L,
otherwise output L forever.

l e L L b ... = a a L 1L 1 1¥

» R; is a function of total domain

> it is computed by I .

alaa
T~ L
NN/ '

blbb

blb
18 /35



Introduction Beyond Mealy Implementations Beyond automatic specification

Transducer synthesis (partial case)
> total setting: Eve only needs to wait a constant number of

steps

» partial setting: she may need to wait arbitrarily long

19 /35



Introduction Beyond Mealy Implementations Beyond automatic specification

Transducer synthesis (partial case)

> total setting: Eve only needs to wait a constant number of
steps

» partial setting: she may need to wait arbitrarily long

Theorem (F., Winter)

Let R € AUT with partial domain.
If R is uniformisable by a computable function, it is
uniformisable by a deterministic two-way transducer.

Two-wayness is necessary:

19/35
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Uniformisation by computable functions: proof idea

» reduction to a turn-based two-player parity game where
» Adam plays input letters
» Eve plays output letters or a waiting action

Problem
» Eve might need to wait an arbitrary amount of time
» We want a finite game arena, cannot store Adam’s input

Solution

» store state transformations of the specification automaton
induced by Adam’s inputs

» monitor membership to the domain

» Eve picks a state transformation instead of concrete
outputs

» winning condition: if Adam’s input is in the domain, then
Eve infinitely often picks an accepting state transformation

» convert this into a parity condition
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Summary of Part 1

» synthesis of computable functions from automatic
specifications given by DPA is EXPTIME-c

» without assuming that inputs comes from the domain:
deterministic one-way transducer suffice

» with that assumption: two-way transducer are necessary
and sufficient.

Can we go beyond automatic specifications ?



Beyond automatic specification

Beyond Automatic Specifications
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Automata model for asynchronous spec / impl
» Non-automatic spec: alphabet ¥ = {0,+, —}, I' = {0, #}.
R ;40" — 0" 40" g0 g gt
» The language {i101---| (i1...,01...) € R} is not regular.

Transducers

» (input) deterministic, define sequential functions (SEQ):

0]0
—|#

@ “\‘-) + | #0

» non-deterministic, define rational relations (RAT):
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Undecidability Result

Theorem (Léding,Carayol, 14)

The uniformization problem of rational relations by sequential
functions is undecidable.
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Proof Overview

Post-correspondence problem (PCP)

Given (u1,v1), (u2,v2), ..., (up,v,) € {0,1}* x {0,1}*, find
indices i1, ...,%; such that

Ujy - oo Uy, = Vjy « - - Vg, -

v
o
~
w
o
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Construct R such that:
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v#Y, v € {0,1}* \ {v;, ... v;, } otherwise.

Correctness
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Proof Overview

‘PCP:EIil,...,z'k'uil...uik :vil...vik?‘

Reduction: ¥ ={1,...,n,#, A, B}, ' ={0,1,#, A, B}.

Construct R such that:

71“#&}_) uil...uik# if "(L|a:OO
v#Y, v € {0,1}* \ {v;, ... v;, } otherwise.

Correctness
» no PCP solution = always output w;, ... u;#*

> iy,...,i; is a PCP solution: reading i, ...i;#, any
uniformiser can decide what to output w/o reading the
infinite suffix
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Asynchronous specifications: hopeless ?

» what about computable functions ? still undecidable

» what about finite words and sequential functions ? still
undecidable

» decidability recovered for finite-valued rational relations of
finite WOI'dS[F,,Je(:ker,L(")ding,\Vinter,16] 2

» and for stronger inclusion notions f C R
[F.,Jecker,Loding, Winter,16]

3kvu € SNv | (u,v) € R} <k
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A logic for asynchronous specifications

» so far, specifications are given by automata or transducers
» what about a logic 7

» for automatic specifications: LTL, MSO, well-known

Goal
Define a logic which is

» expressive enough to capture a large class of asynchronous
specifications

» has decidable satisfiability problem

» have decidable model-checking problem for known
transducer models

» have some decidable synthesis problems

We introduce a logic to define finite word relations.
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Motivation: Model-checking and Synthesis

» model-checking automata: A = if Ly C L,
» transducers define relations in >* x ['*
> likewise, properties ¢ of transducers are relations

T ¢if Rp C R,

Some Examples

True X x I
There is an @ in the output X x I al™
Every task is scheduled {1 tastry - trn)) | TS @
exactly once permutation }

28 /35
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7999090
O—O—O—O—O—
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> MSOO = MSO[ iny outv ]
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MSO over Origin Graphs (MSO,)

» see pairs (u,v) as structures with origin information (origin

graphs)
B aeass:
output @_>@—>@—>@—’@_’@_’

> MSOO = MSO[ zm_outv ]
» a formula ¢ defines a set of origin graphs {¢ | g = ¢}

» and hence a relation (by projecting away the origin)

29 /35
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Examples
» True
T
» There is an a in the output
3oy a(x)

> Every task is scheduled exactly once

s =qef bijection(o) A N\ ¥z o(x) = o (o(x))
gEY

» Mirror
¢$ A VOUtma Yy xgouty — U(y)Smf)(Z)

30/35



Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

31/35



Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input 9 a b d e «a b f A
A
ole,— olo,
e, A Fle
output
A

31/35



Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b d e a b A
A
ole,— olo,
e, A Fle
output
A

31/35



Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b d e a b A
A
ole,— olo,
e, A Fle
output
A

31/35



Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b d e a b A
A
ole,— olo,
e, A Fle
output
A

31/35



Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b d e a b A
A
ole,— olo,
e, A Fle
output
A

31/35



Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b d e a b A
A
ole,— olo,
e, A Fle
output
A

31/35



Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b d e a b A
A
ole,— olo,
e, A Fle
output
A

31/35



Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b d e a b A
A
ole,— olo,
e, A Fle
output
A

31/35



Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b d e a b A
A
ole,— olo,
e, A Fle
output
A

31/35



Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input 9 a b d e «a b f A
A
ole,— olo,
e, A Fle
output f
A

31/35



Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input 9 a b d e «a b f A

ole,— olo,

e, A Fle
->& >( 2 >@

31/35



Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b d e a b A
A
ole,— olo,
e, A Fle

31/35



Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b d e a b A
A
ole,— olo,

)& e, >& Fle >@

31/35



Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input 9 a b d e «a b f A

ole,— olo,

)& e, >& Fle >@

31/35



Introduction Beyond Mealy Implementations Beyond automatic specification
! Y P

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input 9 a b d e «a b f A

ole,— olo,

31/35



Introduction

Origin information

Beyond Mealy Implementations Beyond automatic specification

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input

ole,—

a b f A

Fle >@

31/35



Introduction Beyond Mealy Implementations

Origin information

Beyond automatic specification

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b

ole,—

a b f A

Fle >@

31/35



Introduction Beyond Mealy Implementations

Origin information

Beyond automatic specification

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

input g a b

ole,—

a b f A

Fle >®

31/35



Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

Other examples of two-way transductions
» doubling function aabbc  +—  aabbcaabbc
» local mirror: ab#baa#bcc +—  baFaabitcch

31/35



Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)

Other examples of two-way transductions
» doubling function aabbc  +—  aabbcaabbc
» local mirror: ab#baa#bcc +—  baFaabitcch

The class of functions defined by det. 2-way transducers
» closed under composition Chytil, Jakl, 77

» decidable equivalence problem Gurari 82

31/35



Introduction Beyond Mealy Implementations Beyond automatic specification

Origin information

Mikolaj Bojariczyk’s Observation (14) Most transducer
models T" define a set of origin graphs ographs(T)
Other examples of two-way transductions
» doubling function aabbc  +—  aabbcaabbe
» local mirror: ab#baa#bcc +—  ba#aabFcch

The class of functions defined by det. 2-way transducers
» closed under composition Chytil, Jakl, 77

» decidable equivalence problem Gurari 82

Many Characterisations

» reversible 2—Way transducers Dartois, Fournier, Jecker, Lhote, 17

v

deterministic 1-way transducers with registers Alur, Cerny, 09

v

MSO-transductions on StI‘iDgS Engelfriet,Hoogeboom,01

v

regular combinators (Alur, Freilich, Raghothaman, 14) (Dave, Gastin, 31,35



Introduction Beyond Mealy Implementations Beyond automatic specification

Results

32/35



Introduction Beyond Mealy Implementations Beyond automatic specification

Results

Theorem (Boj anczyk,Daviaud,Guillon,Penelle, 17)

The model-checking problem ographs(T) = ¢ for T
deterministic 2-way trans and @ € MSO, is decidable.



Introduction Beyond Mealy Implementations Beyond automatic specification

Results

Theorem (Boj anczyk,Daviaud,Guillon,Penelle, 17)

The model-checking problem ographs(T) = ¢ for T
deterministic 2-way trans and @ € MSO, is decidable.

Theorem
The satisfiability problem (3G - G |= ¢ ?) is undecidable.



Introduction Beyond Mealy Implementations Beyond automatic specification

Results

Theorem (Boj anczyk,Daviaud,Guillon,Penelle, 1 7)

The model-checking problem ographs(T) = ¢ for T
deterministic 2-way trans and @ € MSO, is decidable.

Theorem
The satisfiability problem (3G - G |= ¢ ?) is undecidable.

Contribution Dartois,F.,Lhote,18
A fragment F = FO2[<,ur, M SOpin[<in]]such that:

1. any F-defined relation is uniformisable by a det. 2-way
transducer

2. satisfiability is decidable
3. it is expressive (captures regular functions and more)

4. implies decidability of an expressive logic for data words:
FOZ[ pOSH MSObm[<dataH
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o



Introduction 3eyond Mealy Implementations Beyond automatic specification

Conclusion

» many generalizations of the classical reactive synthesis
problem: quantitative specifications, pushdown,
multiplayers, rational synthesis, data words ...

» this work generalizes the class of implementations by
relaxing the reactivity requirement

» relevant when a spec is not realizable in a reactive manner
» this relaxation could be studied in other synthesis settings

» for instance: synthesis of computable functions from
synchronous specifications given as weighted automata 7

» other interesting question: synthesis under assumptions
(regular, quantitative, etc.)
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