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Languages of finite words

> : a finite alphabet of letters or symbols

a (finite) word is a finite sequence of letters over ©
e.g. ¥ ={a, b} and w = ababba

€ is the empty word

> * is the set of finite words

[A language is a subset L C Z*]




Logic-automata connections for languages

Two formalisms for defining languages

Automata Logical sentence

w € L(A) iff successful w e L(®)iff w =
execution on w

operational declarative




Logic-automata connections for languages

Two formalisms for defining languages

Automata Logical sentence

w € L(A) iff successful w e L(®)iff w =
execution on w

operational declarative

@ initiated in the 60s by Biichi, Elgot, Trakhtenbrot on finite
words (over S)
e monadic second-order logic = finite word automata
@ then extended to other structures: infinite words
(complementation, determinization), trees, ...

@ and to other logics: first-order, fixpoint logics, temporal logics



Finite State Automata

@ finite string acceptors over a finite alphabet
@ read-only input tape, left-to-right
@ finite set of states

Definition (Finite State Automaton)

A finite state automaton (FA) on X is a tuple A= (Q, /, F,J)
where

@ Q is the set of states,
e | C Q, reps. F C Q is the set of initial, resp. final, states,

@ 0: @ xX — @ is the transition relation.

L(A) = {w € X" | there exists an accepting run on w}



Finite State Automata — Example
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Finite State Automata — Example

b b
a
start —> e
a
Run on aabaa:

L(A) = {w € £* | w contains an even number of a}



Monadic Second-Order Logic over Finite Words

Words as logical structures

A word over some alphabet ¥ can be seen as a logical structure
over the signature {(a(.))aex, S(.,.)} (with equality =)

MSOI[S] Syntax

Second-order logic restricted to quantification over sets.
¢ == S(xy) | o(x) [ xe X [Vx- ¢ [VX-¢[-¢| oA

| A

MSOIS]-definable languages
Given ¢: MSOIS] sentence,

[¢] = {weX |wl=¢}

A
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Monadic Second-Order Logic over Finite Words

@ x is the first position:
first(x) = Vy - =S(y, x)
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Monadic Second-Order Logic over Finite Words

@ x is the first position:

first(x) = Vy - =S(y, x)

@ transitive closure of S: x <y =
VX-(x € XAV2VZ'-(z € XAz £ yAS(z,2))) - Z e X) >y e X
@ MSO sentences define languages, e.g. a*b*:

JL3R-Vx-(x € LVx € R)AVx € LVy € R-x < y Aa(x)Ab(y)

@ even number of a:

X - (Vx - a(x) <> x € X) A even(X)

Theorem (Biichi (60), Elgot (61) , Trakhenbrot (61))

A language L C ¥* is definable by a finite automata iff it is
definable in MSO[S].
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Some Applications of Logic-Automata Connections

e decidability of validity: e.g. MSO[S] over finite words

L(¢) = =¥ iff L(A) = £*

o decidability of Presburger arithmetic (FO over (N, +))
@ logic as a specification language: model-checking.

Input: : T: transition system, ¢: specification
Output: T = ¢?

TE¢e LADNLA,) =2

@ logics with good complexities (Vardi,Wolper,86)

@ reactive-system synthesis (Biichi-Landweber): emptiness of a
parity tree automaton
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A definability problem

Given an MSO[<] formula, is it equivalent to some FO[<] formula
-

Schiitzenberger, McNaughton, Papert’'s Theorem

Let L C ¥*. The following are equivalent:
@ L is FO[<]-definable

@ L is definable by a star-free regular expression

© The syntactic monoid of L is finite and aperiodic

Consequence
The problem MSO[<] in FO[<] is decidable.

| A\

@ transform the MSO[<]-sentence in some automaton A

@ compute the syntactic monoid of L(A)

© check its aperiodicity




From Languages to Transformations

Languages over X

Transformations over >

function from X* to {0,1}

relation R C ¥* x ¥*

accept words

transform words
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From Languages to Transformations

Languages over X Transformations over -

function from X* to {0,1} || relation R C X* x *

accept words transform words

o dom(R)={weX*| 3w (w,w') e R}
@ in this talk, we mostly consider functions instead of relations
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Examples of Transformations

fyei: delete all 'a’ positions

abbabaa — bbb

frev: reverse the input word

stressed — desserts

feopy: copy the input word twice

ab — abab

fraive: maps all inputs a” to al2!.
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Questions adressed in this talk

@ what are the logic-based specification languages for
transformations 7

@ what are the operational models for transformations ?

@ is there some connection between them ?
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Motivations

e o

Formal models of string transformations

e String transformations
o MSO-transducers
o lway and 2way-transducers

@ Logic-transducer connections for regular transformations

e 2DFT — MSOT
e MSOT — 2DFT
o Applications

@ Logic-transducer connections for first-order transformations

e transducers with registers
e transition monoid for transducers with registers

@ Conclusion

13 /48



An operational model for transformations

@ transducers = automata + some output mechanism
@ in this talk:

o finite state transducers
e two-way finite state transducers
e register automata, aka streaming string transducers
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An operational model for transformations

Transducers

@ transducers = automata + some output mechanism
@ in this talk:

o finite state transducers
e two-way finite state transducers
e register automata, aka streaming string transducers

<

Some applications

@ language and speech processing (e.g. M. Mohri's work)

@ model-checking infinite state systems?
e verification of string-? and list-< processing programs

o databases (XML document processing)

?A survey of regular model checking, P. Abdulla, B. Jonsson, M. Nilsson, M.
Saksena. 2004

bsee BEK, developped at Microsoft Research

“Alur/Cerny, POPL'11

A4 /48




Finite State Transducers

@ read-only left-to-right input head
@ write-only left-to-right output head
o finite set of states
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o finite set of states

Definition (Finite State Transducers)

A finite state transducer over X is a pair T = (A, O) where
A=(Q,I,F,d) is the underlying automaton

@ O is an output morphism from ¢ to X*.

If t =q 2 ¢’ €6, then O(t) defines its output.

q a'—W> q’ denotes a transition whose output is w € X*.
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Finite State Transducers

@ read-only left-to-right input head
@ write-only left-to-right output head
o finite set of states

Definition (Finite State Transducers)

A finite state transducer over X is a pair T = (A, O) where
A=(Q,I,F,d) is the underlying automaton

@ O is an output morphism from ¢ to X*.

If t =q 2 ¢’ €6, then O(t) defines its output.

q a'—W> q’ denotes a transition whose output is w € X*.

Two classes of transducers:
o DFT if A is deterministic
@ NFT if A is non-deterministic.
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Finite State Transducers — Example 1
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Finite State Transducers — Example 1

ble ble

start —

Run on aabaa:

ala ala ble ala ala
- ~(@@ @

T(aabaa)=a.a.c.a.a=aaaa.
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Finite State Transducers — Example 1
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Finite State Transducers — Example 1

Run on aaba:

ERORORONON0

T (aaba)= undefined
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Finite State Transducers — Example 1

dom(T) = {we€X*|#,wiseven}
R(T) = {(w,a”") | w & dom(T)}
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Finite State Transducers — Example 2

.. = white space
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Finite State Transducers — Example 2

.. = white space

Semantics

Replace blocks of consecutive white spaces by a single white space.

T(--aa...a..) = _aa.a.
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Finite State Transducers — Example 3

- = white space

_le ala e
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Finite State Transducers — Example 3

- = white space

_le

Semantics

Replace blocks of consecutive white spaces by a single white space
and

remove the last white spaces (if any).
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Finite State Transducers — Example 3

- = white space

_le

Semantics

Replace blocks of consecutive white spaces by a single white space
and
remove the last white spaces (if any).

T(-caa.—ca..) = _aa.a

Non-deterministic but still defines a function: functional NFT

20 /48



Is non-determinism needed ?

_le
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Is non-determinism needed ?
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Two-way finite state transducers (2NFT)

Two-way finite state automata with outputs
@ two-way read-only input head
@ write-only left-to-right output head
o finite set of states
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Two-way finite state automata with outputs

@ two-way read-only input head

@ write-only left-to-right output head
@ finite set of states

y

input Tape [ | [s] [¢] [] [e] [s] [s] [e] [4] [4]

ale, +1 ala, -1
e, -1 }1\ Fle
(1 (2) @
Output Tape IEI DI:II:‘ DI:II:‘




Two-way finite state transducers (2NFT)

Two-way finite state automata with outputs

@ two-way read-only input head

@ write-only left-to-right output head
@ finite set of states

y

Input Tape EEE

Oé|€,+1 (1|Ol,—1
) Hle, —1 % Fle @
>
N
o [e] HINEIEE
utput Tape A




Two-way finite state transducers (2NFT)

Two-way finite state automata with outputs

@ two-way read-only input head

@ write-only left-to-right output head
@ finite set of states

y

Input Tape EEE

Oé|€,+1 (1|Ol,—1
) Hle, —1 % Fle @
>
N
o [e] [e] LI 0L
utput Tape A




Two-way finite state transducers (2NFT)
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@ two-way read-only input head

@ write-only left-to-right output head
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y
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Two-way finite state transducers (2NFT)

Two-way finite state automata with outputs

@ two-way read-only input head

@ write-only left-to-right output head
@ finite set of states

y

gt Tape (1] (5] (2] (7] (<] (5] 5] (<] [4] [

Oé|€,+1 (1|Ol,—1
) Hle, —1 % Fle @
>
N
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Two-way finite state transducers (2NFT)

Two-way finite state automata with outputs

@ two-way read-only input head

@ write-only left-to-right output head
@ finite set of states

y

input Tape [i-] [s] [¢] [] [e] [s] [s] [e] [¢] [1]

ale, +1 ala, —1

Ne e, —1 & e @

L] [e] [S] 1 L] [ () ] O

Output Tape




Main Properties of Finite State Transducers

Closure under composition

@ NFT are closed under composition:
VTi, To: NET, 3T : NFT, R(T) = R(T1) o R(T»)
@ 2NFT are closed under composition (Chytil Jakl 77)
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Main Properties of Finite State Transducers

Closure under composition

@ NFT are closed under composition:

VTy, To: NFT, 3T : NFT, R(T) = R(T1) o R(T>)

@ 2NFT are closed under composition (Chytil Jakl 77)

v
Equivalence Problem

e Given Ty, T, does R(T1) = R(T3) hold ?
@ undecidable for NFT
@ decidable for NFT and 2NFT? that define functions

e functionality is decidable for both models (in PTIME for NFT,
— Gurari, Ibarra 83 —)

@ decidability results extended to k-valued NFT by Culik and
Karhumaki (86) and Weber (88)

?Culik, Karhumaki 87
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(Courcelle) MSO Transformations
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@ output predicates defined by MSO[S] formulas interpreted
over the input structure
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(Courcelle) MSO Transformations

@ input structure can be copied a fixed number of times:

W — W.frey (W)
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W W.fre, (W)
s 5 s s S S >
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(Courcelle) MSO Transformations

@ input structure can be copied a fixed number of times:

W W.fre, (W)
s s s S S 5 >
s S S S S S )
copy 2 WWWM

copy 1: PE(x,y) = S(xy)
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(Courcelle) MSO Transformations

@ input structure can be copied a fixed number of times:

W»—)Wf,ev( )

copy 1: P5(x,y) = S(x,y)
copy 22 ¢:i(x,y) = S(y,x)
copy 1 to copy 2: q%ﬁz(x,y) = x =y A last(x)
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W»—)Wf,ev( )

S(x,¥)

copy 2: ¢ S(y,x)

copy 1 to copy 2: q%ﬁz x = y A last(x)
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(Courcelle) MSO Transformations

@ input structure can be copied a fixed number of times:

W»—)Wf,ev( )

S(x,¥)

copy 1: 10}

copy 2: ¢ S(y,x)

copy 1 to copy 2: q%ﬁz x = y A last(x)

1

copy 2 to copy 1:  ¢2~1

x
g S S S S
i

for all copies i: ilaba(X laba(x)
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(Courcelle) MSO Transformations

@ the domain is MSO-defined by a sentence ¢gom

Definition

An MSO transducer is defined by:

T = (ka Ddom (¢§(X))aez,1§c§k, (gb?d(xy Y))lgc,c’gk)
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Engelfriet-Hoogeboom’s Theorem

“A first Blichi theorem for transformations”

Theorem (Engelfriet,Hoogeboom,98)

Let f: X* — ¥* be a partial function. The following statements
are equivalent:

@ 1 is definable by a deterministic two-way finite state
transducer

Q@ f is MSOT-definable

Moreover, the encodings are effective in both directions.
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2DFT = MSOT: Proof idea

Run of a 2DFT

= a b a (o] a a b a —

O (0]
/ z /
ab
ebé ODODd
Proof ldea

@ encode the transformation from words to run graphs: T;

@ output signature of T; is edge-labelled: {Su(x,y) | w € ¥*}
@ transform an edge-labelled graph into a node-labelled graph over ¥: T,
© T = Tho0 T1 (MSOT are closed under composition)

We focus on step 1.
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2DFT = MSOT: Proof idea

Run of a 2DFT

= a b a (o] a a b a —
0 040

- /% 0
SR

Copies

Words to run graphs: T; =< k, @6do,,,,<;6§'vvc'(x,y) > 1<c,cd <k

@ copies = states (assumed to range over N)
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Run of a 2DFT

= a b a (o] a a b a —

0 020\

e
1 1
b

o/

Copies

Words to run graphs: T; =< k, @6do,,,,¢)§'wcl(x,y) > 1<ccd <k

@ copies = states (assumed to range over N)
@ dom(T) is regular, hence MSO[S]-definable by Biichi's Theorem
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2DFT = MSOT: Proof idea

Run of a 2DFT

X y
= a b a (4 a

0 020\

: 0
" oo e
2 eﬁé N b

a b a —

Copies

ab
3 b

Words to run graphs: T; =< k, gbdo,,,,fj);';'(x,y) > 1<ccd <k

@ copies = states (assumed to range over N)

@ dom(T) is regular, hence MSO[S]-definable by Biichi's Theorem

@ The existence of an atomic move from state g to state p from x to y, that
produces a word w, is MSO[S]-definable by
PP (x,y)

\/ fabs(x)ARung(x)A(d=1 = S(x,y))A(d=—1 = S(y, x))
(g,a,w,p,d)EA
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2DFT = MSOT: Proof idea

Run of a 2DFT

Words to run graphs: T; =< k, gbdo,,,,fj);';'(x,y) > 1<ccd <k

@ copies = states (assumed to range over N)

@ dom(T) is regular, hence MSO[S]-definable by Biichi's Theorem

@ The existence of an atomic move from state g to state p from x to y, that
produces a word w, is MSO[S]-definable by

PEP(x,y) = \/ 1abs(x) ARung(x)A(d=1 — S(x,y))A(d=—1 = S(y,x))
(q,a,w,p,d)EA

@ Existence of Rung(x): consequence of Biichi’'s Theorem Do / 48



T=2DFT

Engelfriet-Hoogeboom's proof

Several intermediate models

[m — 2DFTMSO — —

2DFT with MSO tests ¢(x) 2DFT with regular look-around
alw,me{+1,—1},L,REREG(X)

and MSO jumps ¥(x, y)
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MSOT=-2DFT

Engelfriet-Hoogeboom's proof

Several intermediate models

[m — 2DFTMSO — —

2DFT with MSO tests ¢(x) 2DFT with regular look-around
alw,me{+1,—1},L,REREG(X)

and MSO jumps ¥(x, y)

Crucial steps
@ show how to simulate MSO tests by regular look-around
@ show how to go from MSO jumps to walks (+1/-1 moves)

@ remove look-around (uses closure under composition of 2DFT)

30 /48



MSOT=-2DFT-+MSO jumps

Assumption: unary alphabet.

MSOT graph

input & a a a a a a a a a

#¢°(x.y)
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MSOT=-2DFT-+MSO jumps

Assumption: unary alphabet.

MSOT graph

input & a a a a a a a a a

#¢°(x.y)




From jumps to walks

input  a a a a a a a a a a

00
b5 (x,y)
0
o 62°(x,y)
o
1 )

o‘;’(X-y‘/
> OO
¢5°(x.y) —

Copies

31
v 95 ()

W

) \“\;%
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From jumps to walks

@ Let ¢(x,y) an MSOIS] “jump”, i.e. defining a function, and such that
#(x,y) = x < y (other case solved similarly).

walk
a b c a a b a b a a

Sty

@ Goal: replace that jump by a walk.

@ Difficulty: the automaton starts from x, move forward, and has to determine

the y position
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From jumps to walks

@ Let ¢(x,y) an MSOIS] “jump”, i.e. defining a function, and such that
#(x,y) = x < y (other case solved similarly).

walk
a b c a a b a b a a

Sty

@ Goal: replace that jump by a walk.

@ Difficulty: the automaton starts from x, move forward, and has to determine

the y position

Idea of the construction

@ construct a formula gb(x,yi such that [[¢>(x,yi]] C (T x 2lorhyx;

I} o {x} @ o {y} o

§%} o g
[[¢(X7Y$ﬂ = {01...0/210i041...0j-10j0j41...0n | 01...0n = &(i,))}

@ by Biichi's theorem, this language is regular, thus definable by a DFA A

33/48



From jumps to walks

@ [o(x yﬂ] = {0'1 o'fa 1 c;'(,}a',[il ajgl{év'j}ajil ... z?,, |o1...0n = &(i,))}

@ A can be assumed to have the following form:

Zx{X) Sy} | 3x9)
I .(‘:v0 (b.2)
(a.2)
Left Middle ~ Right
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From jumps to walks

—S } {r} .
] [[¢Xy]—{01 a',glr;,a,[il O'sz_loxjojil...gn|01...0',,|:¢>(l,_/)}

@ A can be assumed to have the following form:

2x{a}

(ce

2x{x} ZX{V}

(b.2)
,cz

Left Middle nght

@ project A on X, and use look-around
@ first time A enters the right part, then current position =

B

Left Middle Right

look-behind walk look-ahead
b a a

d(xy)

34/48



2DFT+LA = 2DFT

T : 2DFT + LA

© first run a 2DFT T, that computes all the look-around
information

o it labels the input word with states of the look-around
automata
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automata

@ then transform T into a 2DFT (without look-around T') that
simulates T and run over tagged words
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2DFT+LA = 2DFT

T : 2DFT + LA

© first run a 2DFT T, that computes all the look-around
information

o it labels the input word with states of the look-around
automata

@ then transform T into a 2DFT (without look-around T') that
simulates T and run over tagged words

@ compose Ty, and T: it yields a 2DFT (Chytl, Jakl, 77)

35/48



Two Applications

e Given an MSOT ¢, does R(¢) = @ hold ?

@ Transform ¢ into a 2DFT T
@ Check whether dom(T) = @
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Two Applications

@ Given an MSOT ¢, does R(¢) = & hold ?

@ Transform ¢ into a 2DFT T
@ Check whether dom(T) = @

e Given two MSOT ¢1, ¢2, does R(¢1) = R(¢2) hold ?

@ Transform ¢1, ¢ into 2DFT Ty, T>
@ Check equivalence of Ty and T, (decidable Chytil, Jakl, 77).

v
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Order-preserving MSOT

@ no backward edges in the MSO graph.
@ e.g. reverse is not order-preserving

@ can be enforced syntactically by guarding formula gzﬁg’cl(x,y)
by x <y.
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Order-preserving MSOT

@ no backward edges in the MSO graph.
@ e.g. reverse is not order-preserving

@ can be enforced syntactically by guarding formula gzﬁg’cl(x,y)
by x <y.

Let f:¥X* — ¥* be a partial function. The following statements
are equivalent:
@ f is definable by a one-way finite state transducer

@ f is order-preserving MSOT-definable

37 /48



Application to some definability problem

Order-preserving problem

Given an MSOT ¢, is ¢ equivalent to some order-preserving
MSOT ?

o Input: MSOT T

@ Output: Yes iff exists an order-preserving MSOT T’ s.t.
R(T)=R(T).
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Application to some definability problem

Order-preserving problem

Given an MSOT ¢, is ¢ equivalent to some order-preserving
MSOT ?

o Input: MSOT T

@ Output: Yes iff exists an order-preserving MSOT T’ s.t.
R(T)=R(T).

\

Theorem (F., Gauwin, Reynier, Servais, 13)

The following problem is decidable:

o Input: 2DFT T
@ Output: Yes iff exists T' : NFT s.t. R(T) = R(T').
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Application to some definability problem

Order-preserving problem

Given an MSOT ¢, is ¢ equivalent to some order-preserving
MSOT ?

o Input: MSOT T

@ Output: Yes iff exists an order-preserving MSOT T’ s.t.
R(T) = R(T").

Theorem (F., Gauwin, Reynier, Servais, 13)

The following problem is decidable:

o Input: 2DFT T
@ Output: Yes iff exists T' : NFT s.t. R(T) = R(T').

y

The order-preserving problem is decidable for MSOT.

38 /48




Streaming String Transducers (SST)

@ one-way, deterministic model
@ extend finite automata with a finite set of word variables
X, Y. ..
e appending a word u: X := Xu
e prepending a word: X := uX
e concatenating two variables: X := YZ
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Streaming String Transducers (SST)

@ one-way, deterministic model
@ extend finite automata with a finite set of word variables
X, Y. ..
e appending a word u: X := Xu
e prepending a word: X := uX
e concatenating two variables: X := YZ

o|lX =0X

reverse : — X =D
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Streaming String Transducers (SST)

@ one-way, deterministic model
@ extend finite automata with a finite set of word variables
X, Y. ..
e appending a word u: X := Xu
e prepending a word: X := uX
e concatenating two variables: X := YZ

o|(X :=0.X,Y :=Y.0)

w = W.fe(w): — YX oEXL
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Streaming String Transducers (SST)

@ one-way, deterministic model
@ extend finite automata with a finite set of word variables
X, Y. ..
e appending a word u: X := Xu
e prepending a word: X := uX
e concatenating two variables: X := YZ

o|(X :=0.X,Y :=Y.0)

w = W.fe(w): — YX oEXL

Theorem (Alur, Cerny, 10)

A function f : X* — ¥* s MSOT-definable iff it is definable by an
SST with copyless variable update.
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Streaming String Transducers (SST)

@ one-way, deterministic model
@ extend finite automata with a finite set of word variables
X, Y. ..
e appending a word u: X := Xu
e prepending a word: X := uX
e concatenating two variables: X := YZ

o|(X :=0.X,Y :=Y.0)

w = W.fe(w): — YX oEXL

Theorem (Alur, Cerny, 10)

A function f : X* — ¥* s MSOT-definable iff it is definable by an
SST with copyless variable update.

Question: What restriction to put on SST to capture FO 7

39 /48



Aperiodic Finite Automata

Among several characterizations of FO languages!, we use the
following;:

A language L C ¥* js FO-definable iff it is definable by an
aperiodic finite automaton (AFA).
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Among several characterizations of FO languages!, we use the
following;:

A language L C ¥* js FO-definable iff it is definable by an
aperiodic finite automaton (AFA).

@ AFA = finite automaton with aperiodic transition monoid
T(A)

o T(A)={M, | weX¥}

e for any two states p, q, M, [p][q] = 1 iff p ~" q.

o T(A) is aperiodic if 3m > 0, for all M € T(A), M™ = M™+1
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Aperiodic Finite Automata

Among several characterizations of FO languages!, we use the
following;:

A language L C ¥* js FO-definable iff it is definable by an
aperiodic finite automaton (AFA).

@ AFA = finite automaton with aperiodic transition monoid
T(A)

o T(A)={M, | weX¥}

e for any two states p, q, M, [p][q] = 1 iff p ~" q.

o T(A) is aperiodic if 3m > 0, for all M € T(A), M™ = M™+1

o Examples:

not aperiodic aperiodic aperiodic

~-O=0 -O0=0 -O-:.




Towards a restriction: again

@ not FO-definable, unlike its domain
o definable by:
al X:=aX

T1: —
al X=X

X X
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Towards a restriction: again

@ not FO-definable, unlike its domain
o definable by:

al X:=aX

h: *@@@
al X=X

X X

@ aperiodicity of the underlying input automaton is not
sufficient:

41 /48



Variable flow

Dependency graph

input: a a a a a

U U <
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Variable flow

Dependency graph

input: a a a a a
X><X><X><X><X><X
Y Y Y Y Y Y

= impose aperiodicity of the variable flow !

42 /48



SST Transition Monoid

@ combine state flow and variable flow
@ matrices indexed by pairs (g, X)
o coefficients in NU {_L}
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SST Transition Monoid

@ combine state flow and variable flow
@ matrices indexed by pairs (g, X)
o coefficients in NU {_L}

Definition
The transition monoid of an SST is the set of NU {_L }-valued
square matrices M,, indexed by @ x Vars, for all w € X*, such
that
o Mylp,X]lg, Y] = L if
o there no run from p to g on w
e My[p,X]lq,Y]=neNif

e thereis a run r from p to g on w
e on this run, X “flows” n times to Y

In other words, the value of X before r appears n times in the

value of Y after r.
43 /48



SST Transition Monoid Examples

@ if the run on aa is:

X = aXb X :=c¢€
a

Y = aXa Y =YY
qo > q1 gz

then Maa[qo, X][g2, Y] = 2 and Ma,[qo0, X][g2, Y] = 0.
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SST Transition Monoid Examples

@ if the run on aa is:

X = aXb X :=c¢€
a

Y = aXa Y =YY
qo > q1 gz

then Maa[qo, X][g2, Y] = 2 and Ma,[qo0, X][g2, Y] = 0.

o for Tg :
@:D X :=aY
— a |
Y =X
(¢.X) (q,Y) (¢.X) (q,Y)
_ (a.X) 1 0 _ (a.X) 0 1
Ma2n = (q,Y) < 0 1 ) and M32n+1 = (q,Y) < 1 0 )

44 /48



Theorem (F., Krishna S., Trivedi, 14)

Q@ A function f : ¥* — ¥* is MSO-definable iff it is definable by
a SST with finite transition monoid.

@ A function f : X* — ¥ is FO-definable iff it is definable by a
SST with aperiodic (L, 0,1)-transition monoid.
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Theorem (F., Krishna S., Trivedi, 14)

Q@ A function f : ¥* — ¥* is MSO-definable iff it is definable by
a SST with finite transition monoid.

@ A function f : X* — ¥ is FO-definable iff it is definable by a
SST with aperiodic (L, 0,1)-transition monoid.

Theorem (L. Dartois, O. Carton, CSL'15)

A function f : ¥* — ¥* is FO-definable iff it is definable by an
aperiodic 2DFT.
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Conclusion

@ transducer-logic connections for finite word functions

e MSOT = 2DFT = SST
e order-preserving MSOT = functional NFT
e FOT = aperiodic SST
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Conclusion

@ transducer-logic connections for finite word functions
e MSOT = 2DFT = SST
o order-preserving MSOT = functional NFT
e FOT = aperiodic SST

Applications

@ emptiness of logical-transformations

@ equivalence of logical-transformations

A\

Open problems

@ FOT definability problem (decidable for rational functions —
N. Lothe, 2015 -)

@ logics for transformations with better complexity

@ model-checking techniques for word-processing programs

46 /48



What else can be found in the paper ?

@ FOT definability problem for a weaker semantics:
transformations with origins (Bojanczyk 14)

@ extensions to relations
@ extension to infinite words

@ extensions to trees (macro tree transducers)
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What else can be found in the paper ?

@ FOT definability problem for a weaker semantics:
transformations with origins (Bojanczyk 14)

@ extensions to relations
@ extension to infinite words

@ extensions to trees (macro tree transducers)

Thank You

47 /48



What this result is not

A function f : ¥* — ¥* is FO-definable iff it is definable by a SST
with {0,1, L }-valued and aperiodic transition monoid.

@ It does not yield an effective characterization of FO-definable
SST-transformations !

@ a non-aperiodic SST can still define an FO-transformation
(here the identity):

@D X :=aY
—> a|

Y .= Xa
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What this result is not

A function f : ¥* — ¥* is FO-definable iff it is definable by a SST
with {0,1, L }-valued and aperiodic transition monoid.

@ It does not yield an effective characterization of FO-definable
SST-transformations !

@ a non-aperiodic SST can still define an FO-transformation
(here the identity):

@D X :=aY
—> a|
Y .= Xa

e for automata: a language L is FO-definable iff its minimal
DFA is aperiodic.

48 /48
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