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Languages of finite words

Σ: a finite alphabet of letters or symbols

a (finite) word is a finite sequence of letters over Σ

e.g. Σ = {a, b} and w = ababba

ε is the empty word

Σ∗ is the set of finite words�� ��A language is a subset L ⊆ Σ∗
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Logic-automata connections for languages

Two formalisms for defining languages

Automata A

w ∈ L(A) iff successful
execution on w

operational

Logical sentence Φ

w ∈ L(Φ) iff w |= Φ

declarative

initiated in the 60s by Büchi, Elgot, Trakhtenbrot on finite
words (over S)

monadic second-order logic ≡ finite word automata

then extended to other structures: infinite words
(complementation, determinization), trees, ...

and to other logics: first-order, fixpoint logics, temporal logics
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Finite State Automata

finite string acceptors over a finite alphabet Σ

read-only input tape, left-to-right

finite set of states

Definition (Finite State Automaton)

A finite state automaton (FA) on Σ is a tuple A = (Q, I ,F , δ)
where

Q is the set of states,

I ⊆ Q, reps. F ⊆ Q is the set of initial, resp. final, states,

δ : Q × Σ→ Q is the transition relation.

L(A) = {w ∈ Σ∗ | there exists an accepting run on w}
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Finite State Automata – Example

q0start q1

b b

a

a

Run on aabaa:

q0start q1 q0 q0 q1 q0
a a b a a

L(A) = {w ∈ Σ∗ | w contains an even number of a}

5 / 48



[Introduction] [Formal Models of Transformations] [MSOT-Transducer Connection] SST and FOT Conclusion

Finite State Automata – Example

q0start q1

b b

a

a

Run on aabaa:

q0start q1 q0 q0 q1 q0
a a b a a

L(A) = {w ∈ Σ∗ | w contains an even number of a}

5 / 48



[Introduction] [Formal Models of Transformations] [MSOT-Transducer Connection] SST and FOT Conclusion

Finite State Automata – Example

q0start q1

b b

a

a

Run on aabaa:

q0start q1 q0 q0 q1 q0
a a b a a

L(A) = {w ∈ Σ∗ | w contains an even number of a}

5 / 48



[Introduction] [Formal Models of Transformations] [MSOT-Transducer Connection] SST and FOT Conclusion

Monadic Second-Order Logic over Finite Words

Words as logical structures

A word over some alphabet Σ can be seen as a logical structure
over the signature {(a(.))a∈Σ, S(., .)} (with equality =)

a b a a b a a b
S S S S S S S

MSO[S] Syntax

Second-order logic restricted to quantification over sets.
φ ::= S(x , y) | σ(x) | x ∈ X | ∀x · φ | ∀X · φ | ¬φ | φ ∧ φ

MSO[S]-definable languages

Given φ: MSO[S] sentence,

JφK = {w ∈ Σ∗ | w |= φ}
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Monadic Second-Order Logic over Finite Words

Examples

x is the first position:

first(x) ≡ ∀y · ¬S(y , x)

transitive closure of S : x < y ≡

∀X ·(x ∈ X∧∀z∀z ′·(z ∈ X∧z 6= y∧S(z , z ′))→ z ′ ∈ X )→ y ∈ X

MSO sentences define languages, e.g. a∗b∗:

∃L∃R ·∀x ·(x ∈ L∨x ∈ R)∧∀x ∈ L∀y ∈ R ·x < y ∧a(x)∧b(y)

even number of a:

∃X · (∀x · a(x)↔ x ∈ X ) ∧ even(X )

Theorem (Büchi (60), Elgot (61) , Trakhenbrot (61))

A language L ⊆ Σ∗ is definable by a finite automata iff it is
definable in MSO[S ].
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Some Applications of Logic-Automata Connections

decidability of validity: e.g. MSO[S ] over finite words

L(φ) = Σ∗ iff L(A) = Σ∗

decidability of Presburger arithmetic (FO over (N,+))

logic as a specification language: model-checking.

Input: : T : transition system, φ: specification
Output: T |= φ?

T |= φ⇔ L(AT ) ∩ L(A¬φ) = ∅

logics with good complexities (Vardi,Wolper,86)

reactive-system synthesis (Büchi-Landweber): emptiness of a
parity tree automaton
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A definability problem

Question

Given an MSO[<] formula, is it equivalent to some FO[<] formula
?

Schützenberger, McNaughton, Papert’s Theorem

Let L ⊆ Σ∗. The following are equivalent:

1 L is FO[<]-definable

2 L is definable by a star-free regular expression

3 The syntactic monoid of L is finite and aperiodic

Consequence

The problem MSO[<] in FO[<] is decidable.

1 transform the MSO[<]-sentence in some automaton A

2 compute the syntactic monoid of L(A)

3 check its aperiodicity
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From Languages to Transformations

Definition

Languages over Σ Transformations over Σ

function from Σ∗ to {0, 1} relation R ⊆ Σ∗ × Σ∗

accept words transform words

dom(R) = {w ∈ Σ∗ | ∃w ′ · (w ,w ′) ∈ R}
in this talk, we mostly consider functions instead of relations
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Examples of Transformations

fdel : delete all ’a’ positions

abbabaa 7→ bbb

frev : reverse the input word

stressed 7→ desserts

fcopy : copy the input word twice

ab 7→ abab

fhalve : maps all inputs an to ab
n
2
c.

a5 7→ a2
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Questions adressed in this talk

Questions

what are the logic-based specification languages for
transformations ?

what are the operational models for transformations ?

is there some connection between them ?
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Plan

Motivations

Formal models of string transformations

String transformations
MSO-transducers
1way and 2way-transducers

Logic-transducer connections for regular transformations

2DFT → MSOT
MSOT → 2DFT
Applications

Logic-transducer connections for first-order transformations

transducers with registers
transition monoid for transducers with registers

Conclusion
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An operational model for transformations

Transducers

transducers = automata + some output mechanism

in this talk:

finite state transducers
two-way finite state transducers
register automata, aka streaming string transducers

Some applications

language and speech processing (e.g. M. Mohri’s work)

model-checking infinite state systemsa

verification of string-b and list-c processing programs

databases (XML document processing)

aA survey of regular model checking, P. Abdulla, B. Jonsson, M. Nilsson, M.
Saksena. 2004

bsee BEK, developped at Microsoft Research
cAlur/Cerny, POPL’11
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Finite State Transducers

read-only left-to-right input head

write-only left-to-right output head

finite set of states

Definition (Finite State Transducers)

A finite state transducer over Σ is a pair T = (A,O) where

A = (Q, I ,F , δ) is the underlying automaton

O is an output morphism from δ to Σ∗.

If t = q
a−→ q′ ∈ δ, then O(t) defines its output.

q
a|w−−→ q′ denotes a transition whose output is w ∈ Σ∗.

Two classes of transducers:

DFT if A is deterministic

NFT if A is non-deterministic.
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Finite State Transducers – Example 1

q0start q1

b|ε b|ε
a|a

a|a

Run on aabaa:

q0start q1 q0 q0 q1 q0
a|a a|a b|ε a|a a|a

T (aabaa)=a.a.ε.a.a=aaaa.

16 / 48



[Introduction] [Formal Models of Transformations] [MSOT-Transducer Connection] SST and FOT Conclusion

Finite State Transducers – Example 1

q0start q1

b|ε b|ε
a|a

a|a

Run on aabaa:

q0start q1 q0 q0 q1 q0
a|a a|a b|ε a|a a|a

T (aabaa)=a.a.ε.a.a=aaaa.

16 / 48



[Introduction] [Formal Models of Transformations] [MSOT-Transducer Connection] SST and FOT Conclusion

Finite State Transducers – Example 1

q0start q1

b|ε b|ε
a|a

a|a

Run on aaba:

q0start q1 q0 q0 q1
a|a a|a b|ε a|a

T (aaba)= undefined

17 / 48



[Introduction] [Formal Models of Transformations] [MSOT-Transducer Connection] SST and FOT Conclusion

Finite State Transducers – Example 1

q0start q1

b|ε b|ε
a|a

a|a

Run on aaba:

q0start q1 q0 q0 q1
a|a a|a b|ε a|a

T (aaba)= undefined

17 / 48



[Introduction] [Formal Models of Transformations] [MSOT-Transducer Connection] SST and FOT Conclusion

Finite State Transducers – Example 1

q0start q1

b|ε b|ε
a|a

a|a

Semantics

dom(T ) = {w ∈ Σ∗ | #aw is even}

R(T ) = {(w , a#aw ) | w ∈ dom(T )}
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Finite State Transducers – Example 2

= white space

q0start q1

a|a |ε
|

a|a

Semantics

Replace blocks of consecutive white spaces by a single white space.

T ( aa a ) = aa a

19 / 48
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Finite State Transducers – Example 3

= white space

q0 q1q2

a|a |ε
|

a|a

|ε

|ε

Semantics

Replace blocks of consecutive white spaces by a single white space
and
remove the last white spaces (if any).

T ( aa a ) = aa a

Non-deterministic but still defines a function: functional NFT

20 / 48
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Is non-determinism needed ?

q0 q1q2

a|a |ε
|

a|a

|ε

|ε

≡

q3 q4

a|a |ε
|ε

a| a
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Two-way finite state transducers (2NFT)

Two-way finite state automata with outputs

two-way read-only input head

write-only left-to-right output head

finite set of states

Example

Input Tape

Output Tape

`

`

s

s t

t

r

r

e

e

s

s

s

s

e

e

d

d

a

a

dd ee ss ss ee rr tt s

1

1 2

2

3

3

α|ε,+1

a|ε,−1

α|α,−1

`|ε
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Main Properties of Finite State Transducers

Closure under composition

NFT are closed under composition:

∀T1,T2 : NFT , ∃T : NFT , R(T ) = R(T1) ◦ R(T2)

2NFT are closed under composition (Chytil Jakl 77)

Equivalence Problem

Given T1,T2, does R(T1) = R(T2) hold ?

undecidable for NFT

decidable for NFT and 2NFTa that define functions

functionality is decidable for both models (in PTIME for NFT,
– Gurari, Ibarra 83 – )

decidability results extended to k-valued NFT by Culik and
Karhumaki (86) and Weber (88)

aCulik, Karhumaki 87
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(Courcelle) MSO Transformations

“interpreting the output structure in the input structure”

output predicates defined by MSO[S] formulas interpreted
over the input structure

s t r e s s e d

S S S S S S S

SSSSSSS

φS(x , y) ≡ S(y , x)

φlaba(x) ≡ laba(x)
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(Courcelle) MSO Transformations

input structure can be copied a fixed number of times:

w 7→ w .frev (w)

s t r e s s e d

s t r e s s e d

copy 1

copy 2

S S S S S S S

S S S S S S S

SSSSSSS

S

SSSSSS

S

Formulas

copy 1: φ1
S (x , y) ≡ S(x , y)

copy 2: φ2
S (x , y) ≡ S(y , x)

copy 1 to copy 2: φ1→2
S (x , y) ≡ x = y ∧ last(x)

copy 2 to copy 1: φ2→1
S (x , y) ≡ ⊥

for all copies i : φi
laba

(x) ≡ laba(x)
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(Courcelle) MSO Transformations

the domain is MSO-defined by a sentence φdom

Definition

An MSO transducer is defined by:

T = (k , φdom, (φ
c
σ(x))σ∈Σ,1≤c≤k , (φ

c,c ′

S (x , y))1≤c,c ′≤k)
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Engelfriet-Hoogeboom’s Theorem

“A first Büchi theorem for transformations”

Theorem (Engelfriet,Hoogeboom,98)

Let f : Σ∗ → Σ∗ be a partial function. The following statements
are equivalent:

1 f is definable by a deterministic two-way finite state
transducer

2 f is MSOT-definable

Moreover, the encodings are effective in both directions.
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2DFT ⇒ MSOT: Proof idea

Run of a 2DFT

Proof Idea
1 encode the transformation from words to run graphs: T1

output signature of T1 is edge-labelled: {Sw (x , y) | w ∈ Σ∗}
2 transform an edge-labelled graph into a node-labelled graph over Σ: T2

3 T = T2 ◦ T1 (MSOT are closed under composition)

We focus on step 1.

28 / 48



[Introduction] [Formal Models of Transformations] [MSOT-Transducer Connection] SST and FOT Conclusion

2DFT ⇒ MSOT: Proof idea

Run of a 2DFT

Words to run graphs: T1 =< k, φdom, φ
c,c′

Sw
(x , y) >, 1 ≤ c, c ′ ≤ k

copies = states (assumed to range over N)

dom(T ) is regular, hence MSO[S]-definable by Büchi’s Theorem

The existence of an atomic move from state q to state p from x to y , that
produces a word w , is MSO[S]-definable by

φq,pSw
(x , y) ≡

∨
(q,a,w,p,d)∈∆

laba(x)∧Runq(x)∧(d=1→ S(x , y))∧(d=−1→ S(y , x))

Existence of Runq(x): consequence of Büchi’s Theorem

29 / 48



[Introduction] [Formal Models of Transformations] [MSOT-Transducer Connection] SST and FOT Conclusion

2DFT ⇒ MSOT: Proof idea

Run of a 2DFT

Words to run graphs: T1 =< k, φdom, φ
c,c′

Sw
(x , y) >, 1 ≤ c, c ′ ≤ k

copies = states (assumed to range over N)

dom(T ) is regular, hence MSO[S]-definable by Büchi’s Theorem
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MSOT⇒2DFT

Engelfriet-Hoogeboom’s proof

Several intermediate models�� ��MSOT →
�� ��2DFTMSO →

�� ��2DFTRLA →
�� ��2DFT

2DFT with MSO tests φ(x) 2DFT with regular look-around

and MSO jumps ψ(x , y) q
a|w,m∈{+1,−1},L,R∈REG(Σ)−−−−−−−−−−−−−−−−−−−→ p

Crucial steps

show how to simulate MSO tests by regular look-around

show how to go from MSO jumps to walks (+1/-1 moves)

remove look-around (uses closure under composition of 2DFT)
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MSOT⇒2DFT+MSO jumps

Assumption: unary alphabet.

MSOT graph

⇓
2DFT with MSO jumps
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From jumps to walks

Walks
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From jumps to walks

Let φ(x , y) an MSO[S] “jump”, i.e. defining a function, and such that
φ(x , y)⇒ x < y (other case solved similarly).

Goal: replace that jump by a walk.

Difficulty: the automaton starts from x , move forward, and has to determine

the y position

Idea of the construction

construct a formula
−−−−→
φ(x , y) such that J

−−−−→
φ(x , y)K ⊆ (Σ× 2{x,y})∗:

J
−−−−→
φ(x , y)K = {∅σ1 . . .

∅
σi−1

{x}
σi

∅
σi+1 . . .

∅
σj−1

{y}
σj

∅
σj+1 . . .

∅
σn | σ1 . . . σn |= φ(i , j)}

by Büchi’s theorem, this language is regular, thus definable by a DFA A
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From jumps to walks

J
−−−−→
φ(x , y)K = {∅σ1 . . .

∅
σi−1

{x}
σi

∅
σi+1 . . .

∅
σj−1

{y}
σj

∅
σj+1 . . .

∅
σn | σ1 . . . σn |= φ(i , j)}

A can be assumed to have the following form:

project A on Σ, and use look-around
first time A enters the right part, then current position = y .
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2DFT+LA ⇒ 2DFT

T : 2DFT + LA

Main idea

1 first run a 2DFT Tla that computes all the look-around
information

it labels the input word with states of the look-around
automata

2 then transform T into a 2DFT (without look-around T ′) that
simulates T and run over tagged words

3 compose Tla and T : it yields a 2DFT (Chytl, Jakl, 77)
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Two Applications

Emptiness

Given an MSOT φ, does R(φ) = ∅ hold ?
1 Transform φ into a 2DFT T
2 Check whether dom(T ) = ∅

Equivalence

Given two MSOT φ1, φ2, does R(φ1) = R(φ2) hold ?
1 Transform φ1, φ2 into 2DFT T1,T2

2 Check equivalence of T1 and T2 (decidable Chytil, Jakl, 77).
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Order-preserving MSOT

no backward edges in the MSO graph.

e.g. reverse is not order-preserving

can be enforced syntactically by guarding formula φc,c
′

S (x , y)
by x ≤ y .

Theorem

Let f : Σ∗ → Σ∗ be a partial function. The following statements
are equivalent:

1 f is definable by a one-way finite state transducer

2 f is order-preserving MSOT-definable
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Application to some definability problem

Order-preserving problem

Given an MSOT φ, is φ equivalent to some order-preserving
MSOT ?

Input: MSOT T

Output: Yes iff exists an order-preserving MSOT T ′ s.t.
R(T ) = R(T ′).

Theorem (F., Gauwin, Reynier, Servais, 13)

The following problem is decidable:

Input: 2DFT T

Output: Yes iff exists T ′ : NFT s.t. R(T ) = R(T ′).

Corollary

The order-preserving problem is decidable for MSOT.
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Streaming String Transducers (SST)

one-way, deterministic model
extend finite automata with a finite set of word variables
X ,Y . . .

appending a word u: X := Xu
prepending a word: X := uX
concatenating two variables: X := YZ

39 / 48



[Introduction] [Formal Models of Transformations] [MSOT-Transducer Connection] SST and FOT Conclusion

Streaming String Transducers (SST)

one-way, deterministic model
extend finite automata with a finite set of word variables
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appending a word u: X := Xu
prepending a word: X := uX
concatenating two variables: X := YZ

X

σ|X := σ.X

reverse : σ ∈ Σ
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YX

σ|(X := σ.X ,Y := Y .σ)

w 7→ w .frev (w) : σ ∈ Σ

Theorem (Alur, Cerny, 10)

A function f : Σ∗ → Σ∗ is MSOT-definable iff it is definable by an
SST with copyless variable update.
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w 7→ w .frev (w) : σ ∈ Σ

Theorem (Alur, Cerny, 10)

A function f : Σ∗ → Σ∗ is MSOT-definable iff it is definable by an
SST with copyless variable update.

Question: What restriction to put on SST to capture FO ?
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Aperiodic Finite Automata

Among several characterizations of FO languages1, we use the
following:

Theorem

A language L ⊆ Σ∗ is FO-definable iff it is definable by an
aperiodic finite automaton (AFA).

AFA = finite automaton with aperiodic transition monoid
T (A)
T (A) = {Mw | w ∈ Σ∗}
for any two states p, q, Mw [p][q] = 1 iff p  w q.
T (A) is aperiodic if ∃m ≥ 0, for all M ∈ T (A), Mm = Mm+1

Examples:

a

a

not aperiodic

a

b

aperiodic

a

aperiodic

1First-order definable languages, V. Diekert and P. Gastin. 2007.
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Towards a restriction: fhalve : an 7→ ab
n
2c again

not FO-definable, unlike its domain

definable by:

X X

a | X := X

a | X := aX

T1 :

aperiodicity of the underlying input automaton is not
sufficient:

X

a | X := aY

Y := X

T0 :
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Variable flow

a | X := aY

Y := X

T0 :

Dependency graph

input: a a a a a

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

⇒ impose aperiodicity of the variable flow !
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SST Transition Monoid

combine state flow and variable flow

matrices indexed by pairs (q,X )

coefficients in N ∪ {⊥}

Definition

The transition monoid of an SST is the set of N ∪ {⊥}-valued
square matrices Mw indexed by Q × Vars, for all w ∈ Σ∗, such
that

Mw [p,X ][q,Y ] = ⊥ if

there no run from p to q on w

Mw [p,X ][q,Y ] = n ∈ N if

there is a run r from p to q on w
on this run, X “flows” n times to Y

In other words, the value of X before r appears n times in the
value of Y after r .

43 / 48
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SST Transition Monoid Examples

if the run on aa is:

q0

a

∣∣∣∣∣∣∣∣∣
X := aXb

Y := aXa
−−−−−−−−−−→ q1

a

∣∣∣∣∣∣∣∣∣
X := ε

Y := YY
−−−−−−−−−−→ q2

then Maa[q0,X ][q2,Y ] = 2 and Maa[q0,X ][q2,Y ] = 0.

for T0 :

q a | X := aY

Y := X

Ma2n =

( (q,X ) (q,Y )

(q,X ) 1 0
(q,Y ) 0 1

)
and Ma2n+1 =

( (q,X ) (q,Y )

(q,X ) 0 1
(q,Y ) 1 0

)
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Result

Theorem (F., Krishna S., Trivedi, 14)

1 A function f : Σ∗ → Σ∗ is MSO-definable iff it is definable by
a SST with finite transition monoid.

2 A function f : Σ∗ → Σ∗ is FO-definable iff it is definable by a
SST with aperiodic (⊥, 0, 1)-transition monoid.

Theorem (L. Dartois, O. Carton, CSL’15)

A function f : Σ∗ → Σ∗ is FO-definable iff it is definable by an
aperiodic 2DFT.
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Conclusion

Results

transducer-logic connections for finite word functions

MSOT = 2DFT = SST
order-preserving MSOT = functional NFT
FOT = aperiodic SST

Applications

emptiness of logical-transformations

equivalence of logical-transformations

Open problems

FOT definability problem (decidable for rational functions –
N. Lothe, 2015 –)

logics for transformations with better complexity

model-checking techniques for word-processing programs
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What else can be found in the paper ?

FOT definability problem for a weaker semantics:
transformations with origins (Bojanczyk 14)

extensions to relations

extension to infinite words

extensions to trees (macro tree transducers)

Thank You
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What this result is not

Theorem

A function f : Σ∗ → Σ∗ is FO-definable iff it is definable by a SST
with {0, 1,⊥}-valued and aperiodic transition monoid.

It does not yield an effective characterization of FO-definable
SST-transformations !

a non-aperiodic SST can still define an FO-transformation
(here the identity):

q a | X := aY

Y := Xa

for automata: a language L is FO-definable iff its minimal
DFA is aperiodic.
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