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Framework

n-ary queries on unranked labeled finite ordered trees
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Trees
t = a

c c d

finite alphabet: Σ = {a, b, c , d , e}

t is the structure (D, ch∗, ns∗, label) with:

D = {ǫ, 1, 2, 3}: prefix-closed finite subset of N

ch∗ = reflexive-transitive closure of ch, defined by:

ch(π1, π2) ⇔ π2 = π1 ·i for some i ∈ N

ns∗ = reflexive-transitive closure of ns, defined by:

ns(π1, π2) ⇔ π1 = π ·i and π2 = π ·(i + 1) for some π, i ∈ N∗ × N

label : D→ Σ. Can also be seen as a partition (labela)a∈Σ of D.

label(1·3) = d labeld(1·3)
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Queries

n-ary queries

q(t) ⊆ Dn
t

n=0: Boolean queries

q(t) = ∅ or q(t) = {()}

q defines Lq = {t | q(t) = {()}}

Questions

expressivity

complexity of:
◮ model-checking: x ∈ q(t)
◮ satisfiability: ∃t, q(t) 6= ∅
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Existing material

Surveys

Logics over unranked trees: an overview [Lib06]

Automata, logic, and XML [Nev02b, Nev02a]

Automata for XML – a survey [Sch07]

Effective Characterizations of Tree Logics [Boj08a]

Tree-walking automata [Boj08b]

Books

Finite Model Theory [EF99, Lib04]

Foundations of Databases [AHV95]
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Outline

1 Classical logics (FO, MSO)

2 Queries by Tree Automata
Tree-walking automata
Schema Languages & Tree Automata

3 Conjunctive Queries over Trees
Definition, results and acyclic fragment
Twigs and Tree Patterns

4 Monadic Datalog

5 µ-calculus

6 XPath

7 Temporal Logics
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Part I

Classical Logics, Automata
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Outline

1 Classical logics (FO, MSO)

2 Queries by Tree Automata
Tree-walking automata
Schema Languages & Tree Automata
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FO

Well-formed formulas based on:

predicates from the structure: ch∗, ns∗, (labela)a∈Σ

Boolean connectives: ∧,¬

FO variables: x , y ...

quantifiers on FO variables: ∃x
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Querying using FO

We use free variables:

q(x) = ∃y .∃z .(ch∗(x , y) ∧ ch∗(y , z) ∧ labela(z))

This way we can define queries of any arity.
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FO: Available predicates

Why ch∗ and ns∗?

because ch and ns are definable from ch∗ and ns∗ in FO...

... but the converse is false

So in the following, we suppose that ch and ns are also available.

Also definable in FO:

unary predicates: root , leaf , lc (lastchild)

binary predicates: fc (firstchild)
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FO: Complexity

Model-checking

PSPACE-complete (combined complexity). [Sto74, Var82]

Remark: PSPACE-hardness is even true for the quantified
propositional logic [GO99].

Satisfiability

non-elementary on trees
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FO: Restrictions on the number of variables

FOk = FO formulas using only k variables

Variables might be reused

q(x) = ∃y .∃z .(ch∗(x , y) ∧ ch∗(y , z) ∧ labela(z)) /∈ FO2

but is equivalent to
q′(x) = ∃y .(ch∗(x , y) ∧ ∃x .(ch∗(y , x) ∧ labela(x))) ∈ FO2

Theorem ([Imm82, Var95, GO99])

The model-checking problem for FOk (with k ≥ 2) is P-complete on any
structure.
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FO: Restrictions on the number of variables

FO2 = FO formulas using only 2 variables

In FO2, one cannot define ch and ns from ch∗ and ns∗ anymore. So ch

and ns are added to the signature.

Complexity

Model-checking in FO2 can be done in O(|t|2.|q|) [Imm82].

Expressivity

FO is strictly more expressive than FO2.

example of Boolean query: trees where the leaf language is (ab)∗.

Links between FO2 and XPath will be shown in Part 3.
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Expressivity
A B A ( B

A B A ⊆ B

A B A * B

FO

FO2
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FO: Restrictions on the number of variables

Data values

predicate ∼:
x ∼ y if x and y are two attribute nodes that have the same value

in XPath semantics: add tests of the form
/bib//book/@type = //collection/@style

Decidability

FO2 [∼,ch,ns ] is decidable [BDM+06].

FO2 [∼,ch,ns,ch∗,ns∗ ]: open question

FO3[∼,ch,ns ] is undecidable (even on strings) [BMS+06].
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FO: Restrictions on the number of variables

FOk
n = FO formulas using (k bound variables) + (n free variables)

We assume here that the n free variables are never quantified.

Some results on trees

FO2 = FO3
2 [Mar05a] (his result is stronger)

FO3 = FO3
3 [Mar05b]

FOn = FO3
n

◮ translate into a FO0 formula on alphabet Σ× Bn,
◮ FO0 = FO3

0 (consequence of [Mar05b], Th. 3)
◮ backward translation: label(f ,~b)(x) becomes labelf (x)

∧

~bi =1 x = xi
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MSO

MSO = FO + quantification over monadic predicates

“monadic predicates” also seen as “sets”
X (x) x ∈ X

φodd(x , y)

= “y is a descendant of x and the path between them is of odd length”
= ∃X .∃Y . (∀z .(X (z)⇔ ¬Y (z))) ∧

(∀z .(X (z) ∨ Y (z)⇒ ch∗(x , z) ∧ ch∗(z , y))) ∧
(X (x) ∧ Y (y)) ∧
(∀z .∀v .(ch∗(x , z) ∧ ch(z , v) ∧ ch∗(v , y)⇒

(X (z)⇒ Y (v) ∧ Y (z)⇒ X (v))))

Expressivity

MSO is strictly more expressive than FO (see φodd).
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Expressivity
A B A ( B

A B A ⊆ B

A B A * B

MSO

FO

FO2
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MSO: Complexity

Model-checking

combined complexity: PSPACEc [Sto74, Var82]

data complexity: linear (by translation to automaton)

Satisfiability

non-elementary on trees
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Deciding membership to FO

Theorem ([BS05])

Given a regular tree language L, one can decide if L is definable in
FOch,(labela)a∈Σ

.

Open decision problem

Given a regular tree language L, is it possible to decide if L is definable in
FO?

In other words, FO-definability is known to be decidable for unordered
trees, but unknown for ordered trees.

Automata for FO

For a definition of automata recognizing exactly FO-definable languages,
see [Boj04, Chapter 2].
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Outline

1 Classical logics (FO, MSO)

2 Queries by Tree Automata
Tree-walking automata
Schema Languages & Tree Automata
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Tree Automata for Queries

Branching & Stepwise Tree automata

Query automata

Tree-walking automata (TWA)

Schema languages
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Branching & Stepwise Tree Automata I

Automata over Σ× {0, 1}n

◮ Canonical languages
◮ Same expressive power as MSO

Automata with selecting states
◮ Boolean values into the states
◮ Existential run-based queries [NPTT05]
◮ Selecting tree automata [FGK03]

Stepwise tree automata [CNT04]
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Branching & Stepwise Tree Automata II

Decision problems

Membership PTIME

Non-emptiness PTIME

From MSO to tree automata: non-elementary size
◮ Upper bound [TW68]
◮ Lower bound [FG02]
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Query Automata [NS99, NS02]

Two-way deterministic tree automata [Mor94] over (un)ranked trees
extended with a selection function

Equivalent to MSO

Decision problems

Non-emptiness EXPTIME

Containment EXPTIME

Equivalence EXPTIME
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Outline

1 Classical logics (FO, MSO)

2 Queries by Tree Automata
Tree-walking automata
Schema Languages & Tree Automata
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Context

Most work is done on ranked trees
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Context

Most work is done on ranked trees

Still some definitions on unranked cases, but few results

Thus we will work on trees of rank 2

Structure: label, ch1, ch2
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Tree-walking automata
on ranked trees

A tree-walking automaton (TWA)[AU71]:

◮ a tree is accepted whenever the “accept” action is used
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Tree-walking automata
on ranked trees

A tree-walking automaton (TWA)[AU71]:
◮ the automaton is located in some node (at first, the root) of the tree

and in a given state

◮ a tree is accepted whenever the “accept” action is used
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Tree-walking automata
on ranked trees

A tree-walking automaton (TWA)[AU71]:
◮ the automaton is located in some node (at first, the root) of the tree

and in a given state
◮ if some conditions are verified (label, being a leaf, being the left child

of one’s parent), decide of an action

◮ a tree is accepted whenever the “accept” action is used
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Tree-walking automata
on ranked trees

A tree-walking automaton (TWA)[AU71]:
◮ the automaton is located in some node (at first, the root) of the tree

and in a given state
◮ if some conditions are verified (label, being a leaf, being the left child

of one’s parent), decide of an action
◮ actions: accept, reject, move to parent with state q, move to left child

with state q′, . . .
◮ a tree is accepted whenever the “accept” action is used a tree can be

rejected by looping, the “reject” action is not necessary

Expressiveness:
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A tree-walking automaton (TWA)[AU71]:
◮ the automaton is located in some node (at first, the root) of the tree

and in a given state
◮ if some conditions are verified (label, being a leaf, being the left child

of one’s parent), decide of an action
◮ actions: accept, reject, move to parent with state q, move to left child

with state q′, . . .
◮ a tree is accepted whenever the “accept” action is used a tree can be

rejected by looping, the “reject” action is not necessary

Expressiveness:
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Tree-walking automata
on ranked trees

A tree-walking automaton (TWA)[AU71]:
◮ the automaton is located in some node (at first, the root) of the tree

and in a given state
◮ if some conditions are verified (label, being a leaf, being the left child

of one’s parent), decide of an action
◮ actions: accept, reject, move to parent with state q, move to left child

with state q′, . . .
◮ a tree is accepted whenever the “accept” action is used a tree can be

rejected by looping, the “reject” action is not necessary

Expressiveness:
◮ any tree-walking automaton can be represented as a branching

automaton, but with exponential blowup
◮ but the opposite is false: TWA are not as expressive as MSO [BC05]
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Expressiveness (ranked case)
A B A ( B

A B A ⊆ B

A B A * B MSO

TWA

FO

[BC04]

PhDs+S lawek (Mostrare) Queries on Trees 2008 30 / 128



Deterministic TWA and their expressiveness

Formulae recognised by deterministic TWA are stable by negation

Formulae recognised by non-deterministic ones are not
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Deterministic TWA and their expressiveness

Formulae recognised by deterministic TWA are stable by negation

Formulae recognised by non-deterministic ones are not ⇒
deterministic TWA are strictly less expressive than non-deterministic
ones [MSS06]

FO ⊆ TWA ( MSO [BC04]
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Deterministic TWA and their expressiveness

Formulae recognised by deterministic TWA are stable by negation

Formulae recognised by non-deterministic ones are not ⇒
deterministic TWA are strictly less expressive than non-deterministic
ones [MSS06]

FO ⊆ TWA ( MSO [BC04]

FO 6⊆ DTWA 6⊆ FO [BC05]
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Expressiveness (ranked case)
A B A ( B

A B A ⊆ B

A B A * B MSO

TWA

detTWA

FO

[MSS06]

[BC05]

[BC04]

[BC05]
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Pebble tree-walking automata and stack discipline
[EH99]

Add a finite number of pebble marked {1, . . . , n} to the automaton
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Pebble tree-walking automata and stack discipline
[EH99]

Add a finite number of pebble marked {1, . . . , n} to the automaton

New tests: is there a pebble on current node?

New actions: add a pebble to current position, remove a pebble from
the current (or any) state

Stack discipline: if pebble 1 to i already can only add pebble i + 1 or
remove pebble i

PhDs+S lawek (Mostrare) Queries on Trees 2008 33 / 128



Expressiveness of pebble TWA

Expressiveness increases with number of pebble [BSSS06]

∀n ∈ N PTWAn ( PTWAn+1

detPTWA ⊆ PTWA[EH99]

it is not known if detPTWA = PTWA
but there is no c s.t. PTWAk ⊆ detPTWAck

Expressiveness without stack discipline

MSO 6⊆ TWAno stack

TWAno stack emptiness is undecidable
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Expressiveness (ranked case)
A B A ( B

A B A ⊆ B

A B A * B MSO

TWA

detTWA

FO

TWApebble

detTWApebble

[BC04]

[BC05]

[BC04]

[BSSS06]

[BC05]
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Unbounded pebble TWA

We now allow an unbounded number of pebble (with stack discipline)

Expressiveness

Unbounded pebble TWA emptiness is undecidable
Invisible pebble TWA = MSO
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Unbounded pebble TWA

We now allow an unbounded number of pebble (with stack discipline)

We can consider invisible pebble: only the top pebble presence can be
tested[EHS07]

Expressiveness

Unbounded pebble TWA emptiness is undecidable
Invisible pebble TWA = MSO
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Alternating tree-walking automata

Two players ∀,∃
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Alternating tree-walking automata

Two players ∀,∃

Each state belongs to a player: Q = Q∀ ⊎ Q∃

If q ∈ Q∀, then ∀ plays the next move in a given set of rules,
otherwise, ∃ does

A tree is accepted if ∃ wins, rejected if ∀ does

∃ wins if an accept rule is played by someone or if ∀ has no possible
move, otherwise ∀ wins

Expressiveness

alternating TWA = MSO
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Caterpillar expressions [BKW00]

PhDs+S lawek (Mostrare) Queries on Trees 2008 38 / 128



Caterpillar expressions [BKW00]

Caterpillar expressions describe runs of tree-walking automata

PhDs+S lawek (Mostrare) Queries on Trees 2008 39 / 128



Caterpillar expressions [BKW00]

Caterpillar expressions describe runs of tree-walking automata

Caterpillar alphabet on Σ
◮ Commands letter goleft, goright and goparent

PhDs+S lawek (Mostrare) Queries on Trees 2008 39 / 128



Caterpillar expressions [BKW00]

Caterpillar expressions describe runs of tree-walking automata

Caterpillar alphabet on Σ
◮ Commands letter goleft, goright and goparent
◮ Tests letter leaf, isleft, isright and labels a ∈ Σ

PhDs+S lawek (Mostrare) Queries on Trees 2008 39 / 128



Caterpillar expressions [BKW00]

Caterpillar expressions describe runs of tree-walking automata

Caterpillar alphabet on Σ
◮ Commands letter goleft, goright and goparent
◮ Tests letter leaf, isleft, isright and labels a ∈ Σ
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describes paths going from a left child labeled a to its left child
labeled b
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Caterpillar expressions [BKW00]

Caterpillar expressions describe runs of tree-walking automata

Caterpillar alphabet on Σ
◮ Commands letter goleft, goright and goparent
◮ Tests letter leaf, isleft, isright and labels a ∈ Σ

Caterpillar words describe paths in TWA: isleft a goleft b
describes paths going from a left child labeled a to its left child
labeled b

Caterpillar expressions: regular expressions on caterpillar alphabet
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Cutting caterpillar expressions

New letters:
◮ test 〈c〉 (nest) where c is a caterpillar expression: true if c applied to

current node selects at least one path
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Cutting caterpillar expressions

New letters:
◮ test 〈c〉 (nest) where c is a caterpillar expression: true if c applied to

current node selects at least one path
◮ command cut transform the whole tree into the subtree of the current

node — local transform, does not apply outside nests

Expressiveness: if nesting is forbidden under scope of negation,
posCAT = PTWA

Expressiveness: if nesting is allowed under the scope of a negation, as
expressive as nested TWA (not defined here)
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Expressiveness (ranked case)
A B A ( B

A B A ⊆ B

A B A * B MSO

TWA

detTWA

FO

TWApebble

detTWApebble

nested TWA

[BC04]

[BC05]

[BC04]

[BSSS06]

[BC05]
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FO: Extensions

Notation: z̄ = (z1, . . . , zn)

Adding Transitive Closure: TC n

TCn[ϕ(x̄ , ȳ)](ū, v̄)

iff

∃k , ∃(w̄i )i∈[1..k], ϕ(ū, w̄1) ∧ ϕ(w̄1, w̄2) ∧ . . . ∧ ϕ(w̄k , v̄)

By TCn, we mean “parameter-free” transitive closure, i.e., x̄ and ȳ are
exactly the free variable of ϕ.
We write TCn

p for the non-parameter-free transitive closure (i.e., ϕ can
have extra free variables).
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FO: Extensions

FO + TC 1
p = nested TWA [tCS08]

FO + TC 1 is often written FO∗, and FO + TC 1
p is written FO(MTC ).

FO + TC 1 ⊆ FO + TC 1
p : it is unknown whether it is strict.

FO + TC 1 ⊆ MSO

because TC 1[ϕ(x , y)](u, v)⇔
∀X . (u ∈ X ∧ ∀(x , y). (x ∈ X ∧ ϕ(x , y)⇒ y ∈ X )⇒ v ∈ X )

FO ( FO + TC 1 ( MSO

Transitive closure is not expressible in FO [Fag75].

Adding TC 1 to FO is not enough to reach MSO [tCS08].

For properties of FO + TC 1 see [Kep06].
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Expressiveness (ranked case)
A B A ( B

A B A ⊆ B

A B A * B MSO

TWA

detTWA

FO

TWApebble

detTWApebble

FO + TC1

FO + TC∗

[BC04]

[BC05]

[BC04]

[BSSS06]

[tCS08]

[TK06]

[BC05]
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FO: Extensions

FO + TC 2

FO + TC 2 * MSO

(cf next slide)

MSO ⊆ FO + TC 2?

This is an open question. It could be the case that MSO * FO + TC k , for
all k .
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FO: Extensions

FO + TC 2 * MSO

For instance L = {f (X , X ) | X ∈ TΣ} is defined by:

ϕ = labelf (ǫ) ∧
∃u1.∃v1.fc(ǫ, u1) ∧ ns(u1, v1) ∧ samelabel(u1, v1) ∧
¬(∃w .ns(v1,w)) ∧
∀u2. ch∗(u1, u2)⇒ ∃v2. TC 2[ψ(x̄ , ȳ)](u1, u2, v1, v2)

where ψ encodes a step isomorphism:
ψ(x̄ , ȳ) = samelabel(x2, y2) ∧

(fc(x1, x2) ∧ fc(y1, y2)) ∨ (ns(x1, x2) ∧ ns(y1, y2))

with:
samelabel(x , y) =

∨

a∈Σ labela(x) ∧ labela(y)
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Expressiveness (ranked case)
A B A ( B

A B A ⊆ B

A B A * B MSO

TWA

detTWA

FO

TWApebble

detTWApebble

FO + TC1

FO + TC2

FO + TC∗

[BC04]

[BC05]

[BC04]

[BSSS06]

[tCS08]

[TK06]

[BC05]

tree isomorphism
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FO: Extensions

FO + detTC 1 = detTWApebble [EH06]

Deterministic Transitive Closure of ϕ = TC on the functional part of ϕ

FO + detTC 1 ⊆ FO + TC 1

because
detTC 1[ϕ(x , y)](u, v)⇔ TC 1[ϕ(x , y) ∧ ∀z .ϕ(x , z)⇒ z = y ](u, v)

FO + detTC 1 ( FO + TC 1?

Open question (see [Kep06]).

For some properties of FO + detTC 1 (linear order, even...) see
[Kep06, EI95].
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FO: Extensions

FO + posTC 1 = TWApebble [EH06]

formulas of FO + TC 1 with TC 1 operators under an even number of
negations

FO + detTC 1 ⊆ FO + posTC 1 ⊆ FO + TC 1

inclusions due to TWA characterisations

whether these 2 inclusions are strict is still open

FO + TC 1 ( MSO

separation language based on the branching structure [tCS08]
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Expressiveness (ranked case)
A B A ( B

A B A ⊆ B

A B A * B

FO + TC∗

FO + TC2MSO

FO + TC1 [tCS08]
= nestedTWA

FO + posTC1 [EH06]
= TWApebble

FO + detTC1 [EH06]
= detTWApebble

TWA

detTWA

FO

[TK06]

[BSSS06]

[BSSS06]

[tCS08]

[BC04]

[TK06]

[BC05]

tree isomorphism

[Kep06, BSSS06]

[BC05]
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Outline

1 Classical logics (FO, MSO)

2 Queries by Tree Automata
Tree-walking automata
Schema Languages & Tree Automata
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XML Schema Languages

Describe a set of XML documents

Theoretical framework: no data, only structure

Closer to tree grammars [MLM01] than to tree automata

Tree automata: reference model for the expressiveness
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Document Type Definitions (DTDs)
“Standard” DTDs

Local tree languages

a

b

c d

L = {

a′

b

d c

, }

a(qb) → qa

a′(qb) → qa′

b(qcqd) → qb

b(qdqc) → qb

c(ǫ) → qc

d(ǫ) → qd

a

b

d c

∈ L!⇒

◮ Restriction: no competiting states

Deterministic content models
◮ One-unambiguous regular expressions [BKW98]
◮ ab + ac: which a to match depends on the next symbol

Polynomial complexity for other usual decision problems
(membership, emptiness, containment), except intersection [MNS04]

Lack of expressivity
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Extended DTDs (EDTDs) [MNSB06, Sch07] I

Alphabet extended with types (each type is associated to a unique
symbol)

a

b1

c d

L = {

a′

b2

d c

, }

a(qb1 ) → qa

a′(qb2 ) → qa′

b1(qcqd) → qb1

b2(qdqc) → qb2

c(ǫ) → qc

d(ǫ) → qd

Typing problem:
◮ Valid assignment of types to the elements w.r.t. EDTD
◮ (Consistent) combination of unary queries

As expressive as (parallel) unranked tree automata of [BKWM01],
thus equivalent to regular tree languages

◮ Examples of such schema languages: Relax NG [CM01], XDuce [HP03]
◮ Restricted EDTDs: single-type, restrained-competition
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Extended DTDs (EDTDs) [MNSB06, Sch07] II

Single-type EDTDs

a(qb1 + qb2 ) → qa

b1(ǫ) → qb1

b2(ǫ) → qb2

a1(qb1 ) → qa1

a2(qb2 ) → qa2

b1(ǫ) → qb1

b2(ǫ) → qb2

◮ Element Declaration Consistent constraint (W3C XML Schemas)
◮ Unique top-down typing
◮ Validation with deterministic tree-walking automata

Restrained-competition EDTDs

a(qb1 · qb2 ) → qa

b1(ǫ) → qb1

b2(ǫ) → qb2

◮ Unique top-down left-to-right typing
◮ Validation with deterministic top-down tree automata
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Expressiveness of Schemas

EDTD = MSO = UTA

Local
tree languages

tree languages
(Homogeneous) regular

Path-closed
tree languages

EDTD
Single-type

DTD

EDTD
Restrained-competition

DTWA

DetTA
Top-down
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Part II

Conjunctive Queries, Monadic Datalog
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Outline

3 Conjunctive Queries over Trees
Definition, results and acyclic fragment
Twigs and Tree Patterns

4 Monadic Datalog
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Conjunctive Queries

... seen as FO formulas

∃x . φ(x , y) where φ is a conjunction of atomic predicates.
For instance:

∃x∃y∃w R1(x) ∧ R2(x , y) ∧ R3(x ,w , z)

... seen as rules

answer(z)← R1(x),R2(x , y),R3(x ,w , z)

... seen as terms of the Projection/Join algebra

πZ ( R1(X ) ⋊⋉ R2(X ,Y ) ⋊⋉ R3(X ,W ,Z ) )

These 3 formalisms are equivalent (see [AHV95]).
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Conjunctive Queries over Trees

XPath axis X : ch, ch∗, ch
+, ns, ns∗, ns

+, following and their inverse

following = (ch∗)−1 ◦ ns+ ◦ ch∗

Example

∃x∃y ch+(x , y) ∧ ch+(x , z) ∧ following(x , z)

x

y z
/ -̂

ch+ch+

following
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Boolean Queries

Theorem ([GKS04])

Evaluation of Boolean CQ over X is NP-complete, even on a fixed tree.

Tractable fragments

X underbar property

Acyclic conjunctive queries

Twigs
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X property

R: a binary relation on the domain Dt of a tree t

a total order < on Dt

Definition

The relation R satisfies the X property wrt < if ∀n1, n2, n3, n4 st n1 < n2

and n3 < n4:

R

�

-

R

R

R
n1

n2

n3

n4

A set of relations R1, . . . ,Rn satisfies X wrt < if every Ri does.
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X property: Example

{ch+, ch∗} for the preorder <pre (ch+(x , y)⇒ x <pre y)

{ch, ns, ns+, ns∗} for <bflr

but not following for <pre
1

2

3 4

5

6 7
>

U

following

following R

�

2

3

4

6

-
following

following
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Dichotomy Result

Theorem (Gottlob, Koch, Schulz, 2004)

For all F ⊆ X , CQ[F ] Boolean queries can be evaluated in PTIME iff
there is a total order < such that F satisfies the X property wrt <.

Question: generelization to n-ary queries? Which complexity measure?
→ polynomial in the number of answers.
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Acyclic Conjunctive Queries (ACQ)

Acyclic: the query graph is acyclic

∃x∃y∃z , ns(x , y) ∧ ch∗(y , z)

x

y z

ns ch∗
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Expressiveness

[GKS04]

CQ[X ] (
⋃

ACQ[X ] ⊆ FO[X ]
exponential

x

y z
/ ^

-

ch∗ch∗

following

-

x

u

y

v

z

ch∗ ch∗

ch+

ns+=

? ?

-

[Mar05b], over unranked trees,

⋃

ACQ[FO2] = FOnary
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ACQ Evaluation

Yannakakis algorithm: O(|q|.|db|.|q(db)|)

∃x R(x , y) ∧ R ′(x , z)

on trees t with predicates X : O(|q|.|t|2.|q(t)|)

∃x ch∗(x , y) ∧ ns∗(x , z)
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Outline

3 Conjunctive Queries over Trees
Definition, results and acyclic fragment
Twigs and Tree Patterns

4 Monadic Datalog
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Twigs: Testing containment [MS02]

Tree pattern

(unordered and unranked) tree labeled with elements from Σ ∪ {∗}
child and descendant edges
n distinguished querying nodes (n-ary query)
unary tree patterns (n = 1) equivalent to XPath(∗, [], //, /)

a

b

∗x1

cx2

a

b c

d c

Ans(p, t) = {(1 · 1, 2), (1 · 1, 2 · 1)}

Containment (problem statement)

p1 ⊆ p2 if and only if Ans(p1, t) ⊆ Ans(p2, t) for every t ∈ TΣ
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Booleanize your twigs

Boolean tree patterns

Tree patterns p with no querying nodes (n = 0)

Mod(p) = {t ∈ TΣ|t satisfies p}

Then, p1 ⊆ p2 if and only if Mod(p1) ⊆ Mod(p2)

p :

a

b

∗x1

cx2 pB :

a

b

∗

z1

c

z2

Proposition

For any two n-ary tree patterns p1 and p2: p1 ⊆ p2 ⇔ pB
1 ⊆ pB

2
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Canonical models of Boolean twigs

p :

a

b

∗

c

a

b

∗

c

a

b

∗

∗

c

a

b

∗

∗

∗

c

. . .
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Canonical models of Boolean twigs

p :

a

b

∗

c

a

b

z

c

a

b

z

z

c

a

b

z

z

z

c

. . .

mod(p)
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Canonical models of Boolean twigs

p :

a

b

∗

c

a

b

z

c

a

b

z

z

c

a

b

z

z

z

c

. . .

mod(p)

Proposition

For any Boolean tree patterns p1 and p2:

p1 ⊆ p2 ⇔ mod(p1) ⊆ Mod(p2).
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Testing containment of Boolean twigs: Outline

unranked
a

b

∗

c

p

ranked
a

b

∗

∗

∗

cLp

Up

unranked
a

b

z

z

z

cmod(p)
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Testing containment of Boolean twigs: Outline

unranked
a

b

∗

c

p

ranked
a

b

∗

∗

∗

cLp

Up

unranked
a

b

z

z

z

cmod(p)

Main idea

p1 ⊆ p2 ⇔ mod(p1) ⊆ Mod(p2)⇔ Up1(Lp1) ⊆ Mod(p2)

⇔ Lp1 ⊆ U−1
p1

(Mod(p2))⇔ Ap1 ⊆ Ap2 ,

where:

Ap1 : DFTA defining Lp1

Ap2 : AFTA defining U−1
p1

(Mod(p2)) complexity:O(|p1|2
|p2|)
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Testing containment: Conclusions

Positive results

p1 ⊆ p2 can be decided in time O(|p1||p2|w
d), where:

d is the number of //-edges in p1

w is the maximal length of ∗/ ∗ / . . . /∗ in p2

Negative results

Deciding containment is coNP-complete. The result holds even if we:

bound the number of occurrences of ∗

bound the degree of the nodes of tree patterns
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Efficient evaluation of tree patterns

TwigStack [BKS02]

Interval representation used with a variant of B-tree index

Two phase approach:
1 Find and stack (partial) solutions to leaf-to-root paths
2 Join partial solutions

Linear in the size of the input and output

I/O and CPU optimal if only //-edges used

Twig2Stack [CLT+06]

Generalized tree pattern queries

One phase bottom-up approach

May stack elements that are not solutions

In the worst case the whole document may be stored in main memory

HollisticTwigStack [JLH+07] addresses this shortcoming
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Outline

3 Conjunctive Queries over Trees
Definition, results and acyclic fragment
Twigs and Tree Patterns

4 Monadic Datalog
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Overview

Few words on datalog

Least fixed point

Monadic datalog over trees
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Datalog in (Very) Few Words

Language used in deductive databases

Extends conjunctive queries with recursion

Example: transitive closure of a graph

TC (x , y) :− Edge(x , y).
TC (x , y) :− Edge(x , z),TC (z , y).

Model theoretic point of view:

∀x , y(Edge(x , y)→ TC (x , y))
∀x , y , z((Edge(x , z) ∧ TC (z , y))→ TC (x , y))

Remark: no function symbols (finite models), no negation

See chapter 12 of [AHV95] for more details
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Least Fixed Point I

P is a fixed point of operator F if F (P) = P

The least fixed point lfp(F ) is the least element of the set of fixed
points of F w.r.t. inclusion

Every monotone operator F (i.e., P ⊆ Q ⇒ F (P) ⊆ F (Q)) has a
least fixed point (Knaster-Tarski, cited by [Lib04]):

lfp(F ) =
⋂

{P|F (P) = P}

Computing the least fixed point (standard closure):

P0 = ∅
P i+1 = F (P i )
lfp(F ) = P∞ =

⋃∞
i=0 P i

Stabilizes after n steps on finite structures, i.e., P∞ = Pn
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Least Fixed Point II
Datalog immediate consequence operator TP(from [GK04]):

TP(Q) := Q ∪ {f | ∃φ,∃h :− b1, . . . , bn ∈ P
φ(h) = f
φ(b1), . . . , φ(bn) ∈ Q }

Example: program P =

{

TC (x , y) :− Edge(x , y).
TC (x , y) :− Edge(x , z),TC (z , y).

}

and

database Q = {Edge(1, 2),Edge(2, 3),Edge(3, 1)}

T 0
P = Q = {Edge(1, 2),Edge(2, 3),Edge(3, 1)}

T 1
P = T 0

P ∪ {TC (1, 2),TC (2, 3),TC (3, 1)}
T 2
P = T 1

P ∪ {TC (1, 3),TC (2, 1),TC (3, 2)}
T 3
P = T 2

P

Finally, lfp(TP)
notation

= Tω
P = T 3

P = T 2
P =

{Edge(1, 2),Edge(2, 3),Edge(3, 1),TC (1, 2),TC (2, 3),TC (3, 1), . . .}
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Monadic Datalog over Trees

Datalog with unary head predicates

Built-in predicates (for binary trees): root, leaf, (labela)a∈Σ, ch1,
ch2

Example of query: select all nodes labeled by a at even height

Q0(x) :− root(x).
Q(i+1)mod2(x) :− Qi (y), chk(y , x). (for k ∈ {1, 2})
Ans(x) :− Q0(x), labela(x).

The query predicate is Ans
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Monadic Datalog over Trees: Complexity

Model Checking

Over ranked as well as unranked trees, monadic datalog has
O(|P| ∗ |dom|) combined complexity (theo. 4.2 of [GK04])

Proved by rewriting of P such that it is ground.

Satisfiability

Monadic datalog (over arbitrary finite structures) is NP-complete w.r.t.
combined complexity (prop. 3.4 of [GK04])

Membership: guess a proof tree

Hardness: boolean conjuctive queries

For trees, satisfiability can be reduced to the emptiness problem for
context-free languages [?]. What about the complexity?
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Monadic Datalog over Trees: Expressiveness

Equivalence with MSO

A tree language is definable in monadic datalog exactly if it is definable in
MSO (coro. 4.7 of [GK04])

Sketch of proof (for monadic queries):

⇒ Encode the query defined by a monadic datalog program into an
MSO formula (prop. 3.3 of [GK04])

⇐ More intricate, different ways of prooving it:
1 Using ≡MSO

k -types (theo. 4.4 of [GK04])
2 Simulating query automata of Neven & Schwentick [NS02] (Section

4.3 of [GK04])
3 Encoding tree automata with selecting states? (next slides)
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Encoding a Tree Automaton A into a Monadic Datalog
Program P I

Rq(x) in lfp of P if a run of A can evaluate node x in state q:

a→ q ∈ rules(A)

Rq(x) :− leaf(x), labela(x).

f (q1, q2)→ q ∈ rules(A)

Rq(x) :− Rq1(y),Rq2(z), ch1(x , y), ch2(x , z), labelf (x).
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Encoding a Tree Automaton A into a Monadic Datalog
Program P II

L2Fq(x), aka LeadsToFinalq(x), in lfp of P if state q is used in a succesful
run of A:

q ∈ final(A)

L2Fq(x) :− root(x).

f (q1, q2)→ q ∈ rules(A)

L2Fq1(y) :− L2Fq(x), ch1(x , y), ch2(x , z), labelf (x),Rq2(z).
L2Fq2(z) :− L2Fq(x), ch1(x , y), ch2(x , z), labelf (x),Rq1(y).
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Encoding a Tree Automaton A into a Monadic Datalog
Program P III

Ans(x) in lfp of P if x is selected by automaton A, i.e., x is evaluated in
state q ∈ S , where S ⊆ states(A) is the set of selecting states:

q ∈ S

Ans(x) :− Rq(x), L2Fq(x).

Proposition: Monadic datalog program P with Ans as query predicate
simulates tree automaton with selecting states A
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Part III

µ-calculus, Modal Logics (Temporal Logics, XPath...)
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Outline

5 µ-calculus

6 XPath

7 Temporal Logics
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Structure and formulae

The structure used here is the one used by Barceló and Libkin. Most
of the results are taken from [BL05a, ABL07].

Tree t with two relations (or more) on position: child ≺ch and next
sibling ≺ns

Formulae of Lµ[≺]:
◮ constants a
◮ second order variables X
◮ ⊤,⊥,¬φ, φ ∨ φ′

◮ ⋄(≺)φ
◮ µX .φ where X can only appears positively in φ
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Interpretation

Given a tree t, nodes s, s ′ ∈ Domain(t) and a valuation
v : X → P(Domain(t))

logic operators are interpreted as usual

(t, v , s) |= a iff t(s) = a

(t, v , s) |= X iff s ∈ v(X )

(t, v , s) |= ⋄(≺)φ iff (t, v , s ′) |= ⋄(≺)φ for some s ′ such that s ≺ s ′

(t, v , s) |= µX .φ iff s ∈ S where S is the least fix point of Fφ, defined
by Fφ(P) = {s ′ | (t, v [P/X ], s ′) |= φ}
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Interpretation

(t, v , s) |= µX .φ(X ) iff s ∈ S where S is the least fix point of F

Problem: is there a least fix point?

The function P 7→ {s ′ | (t, v [P/X ], s ′) |= φ} is monotonically
increasing because X can only appear positively in µX .φ
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Interpretation

(t, v , s) |= µX .φ(X ) iff s ∈ S where S is the least fix point of F

Problem: is there a least fix point?

The function P 7→ {s ′ | (t, v [P/X ], s ′) |= φ} is monotonically
increasing because X can only appear positively in µX .φ

◮ Fa,F⊤,F⊥,FY are constant
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Interpretation

(t, v , s) |= µX .φ(X ) iff s ∈ S where S is the least fix point of F

Problem: is there a least fix point?

The function P 7→ {s ′ | (t, v [P/X ], s ′) |= φ} is monotonically
increasing because X can only appear positively in µX .φ

◮ Fa,F⊤,F⊥,FY are constant
◮ FX (P) = P is increasing
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Interpretation

(t, v , s) |= µX .φ(X ) iff s ∈ S where S is the least fix point of F

Problem: is there a least fix point?

The function P 7→ {s ′ | (t, v [P/X ], s ′) |= φ} is monotonically
increasing because X can only appear positively in µX .φ

◮ Fa,F⊤,F⊥,FY are constant
◮ FX (P) = P is increasing
◮ if Fφ and F ′

φ both are increasing (resp. decreasing), then
Fφ∨φ′(P) = Fφ(P) ∪ Fφ′(P) is increasing (resp. decreasing)
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Interpretation

(t, v , s) |= µX .φ(X ) iff s ∈ S where S is the least fix point of F

Problem: is there a least fix point?

The function P 7→ {s ′ | (t, v [P/X ], s ′) |= φ} is monotonically
increasing because X can only appear positively in µX .φ

◮ Fa,F⊤,F⊥,FY are constant
◮ FX (P) = P is increasing
◮ if Fφ and F ′

φ both are increasing (resp. decreasing), then
Fφ∨φ′(P) = Fφ(P) ∪ Fφ′(P) is increasing (resp. decreasing)

◮ if Fφ is increasing (resp. decreasing) then F⋄(≺)φ is increasing (resp.
decreasing)
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◮ Fa,F⊤,F⊥,FY are constant
◮ FX (P) = P is increasing
◮ if Fφ and F ′

φ both are increasing (resp. decreasing), then
Fφ∨φ′(P) = Fφ(P) ∪ Fφ′(P) is increasing (resp. decreasing)

◮ if Fφ is increasing (resp. decreasing) then F⋄(≺)φ is increasing (resp.
decreasing)

◮ if Fφ is increasing (resp. decreasing), then F¬φ(P) = Fφ(P) is
decreasing (resp. increasing)
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Interpretation

(t, v , s) |= µX .φ(X ) iff s ∈ S where S is the least fix point of F

Problem: is there a least fix point?

The function P 7→ {s ′ | (t, v [P/X ], s ′) |= φ} is monotonically
increasing because X can only appear positively in µX .φ

◮ Fa,F⊤,F⊥,FY are constant
◮ FX (P) = P is increasing
◮ if Fφ and F ′

φ both are increasing (resp. decreasing), then
Fφ∨φ′(P) = Fφ(P) ∪ Fφ′(P) is increasing (resp. decreasing)

◮ if Fφ is increasing (resp. decreasing) then F⋄(≺)φ is increasing (resp.
decreasing)

◮ if Fφ is increasing (resp. decreasing), then F¬φ(P) = Fφ(P) is
decreasing (resp. increasing)

◮ if Fφ is increasing then FµX .φ(P) is increasing
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Unary and boolean queries

A formula φ from Lµ can be used as a unary query which selects in t the
nodes s such that

(t, ., s) |= φ
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Unary and boolean queries

A formula φ from Lµ can be used as a unary query which selects in t the
nodes s such that

(t, ., s) |= φ

A formula φ from Lµ can be used as a boolean query which accepts a tree
t iff

(t, ., ε) |= φ

Example

Selects nodes which are ancestors of a node labelled by a:

µX .(a ∨ ⋄(≺ch)X ).
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Expressiveness
of boolean queries

Lµ[≺ch,≺ns] cannot express first child...
◮ Lµ[≺ch,≺ns,≺fc]
◮ Lfull

µ [≺ch,≺ns]: one can use ⋄(≺−)φ, where s ≺− s ′ iff s ′ ≺ s

Lµ[≺ch,≺ns,≺fc] = Lfull
µ [≺ch,≺ns] = MSO
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Lµ[≺ch,≺ns,≺fc] ⊆ MSO

One can rewrite any Lµ[≺ch,≺ns,≺fc] formula into a MSO query as
follow:

〈a〉(x) = labela(x)

〈µX .φ〉(z) = ∃X (z ∈ X ∧ ∀x ∈ X ⇒ 〈φ〉(x) ∧ (∀Y (∀y ∈ Y ⇒
〈φ〉(y))⇒ X ⊆ Y ))
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Lµ[≺ch,≺ns,≺fc] ⊆ MSO

One can rewrite any Lµ[≺ch,≺ns,≺fc] formula into a MSO query as
follow:

〈a〉(x) = labela(x)

〈X 〉(x) = x ∈ X

〈⋄(≺ch)φ〉(x) = ∃y | ch(y , x) ∧ 〈φ〉(y), ...

〈µX .φ〉(z) = ∃X (z ∈ X ∧ ∀x ∈ X ⇒ 〈φ〉(x) ∧ (∀Y (∀y ∈ Y ⇒
〈φ〉(y))⇒ X ⊆ Y ))

Finally, the whole query will be ∃x root(x) ∧ 〈φ〉(x)
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MSO ⊆ Lµ[≺ch,≺ns,≺fc]

Given a MSO query, let A be an equivalent deterministic automaton. We
can encode A with a Lµ[≺ch,≺ns,≺fc] formula.

Example

On ranked trees, ≺ch1,≺ch2,
Automaton Q = {qa, qb} ,QF = {qa}
a→ qa, b → qb, f (qa, qb)→ qa, f (qb, qa)→ qb

µXa.a ∨ f ∧ ⋄(≺ch1)Xa ∧ ⋄(≺ch2)(µXb.b ∨ f ∧ ⋄(≺ch1)Xa ∧ ⋄(≺ch2))
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Expressiveness
of unary queries

Lµ[≺ch,≺ns,≺fc] cannot express root...

we need to use Lfull
µ [≺ch,≺ns]

Lfull
µ [≺ch,≺ns] = MSO
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Expressiveness
of unary queries

Lµ[≺ch,≺ns,≺fc] cannot express root...

we need to use Lfull
µ [≺ch,≺ns]

Lfull
µ [≺ch,≺ns] = MSO

Proofs: similar to Boolean queries, but with query automata instead
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Complexities

Because the structure of trees are acyclic, model checking of
Lfull

µ [≺ch,≺sb] can be computed in O(|φ|2 |t|). Can be reduced for a
subclass of Lµ (as expressive as MSO) to O(|φ| |t|)

Satisfiability of Lfull
µ [≺ch,≺sb] is EXPTIME (slightly better bounds in

the case of tree than in the general case)
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Outline

5 µ-calculus

6 XPath

7 Temporal Logics
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First-order modal logics
on Unranked Trees

Strong links between:

XPath

Modal Logics (temporal, propositional...)

FO
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First-order modal logics
on Unranked Trees

Strong links between:

XPath

Modal Logics (temporal, propositional...)

FO

→ remember the first slides about the model and FO
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First-order modal logics
on Unranked Trees

Strong links between:

XPath

Modal Logics (temporal, propositional...)

FO

→ remember the first slides about the model and FO
→ we won’t talk about L-definability (i.e., given an automaton, is it
equivalent to a formula of the logic L?). See [Boj08a] for a survey.
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Binary vs Unranked Trees

FO-definable queries on binary trees?

“select trees with even number of nodes”
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Binary vs Unranked Trees

FO-definable queries on binary trees?

“select trees with even number of nodes” X (always false)

“select trees with even number of a-nodes” x

“select trees that have a leaf of even depth” X (zigzag technic)
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Binary vs Unranked Trees

FO-definable queries on binary trees?

“select trees with even number of nodes” X (always false)

“select trees with even number of a-nodes” x

“select trees that have a leaf of even depth” X (zigzag technic)

not clear whether the last query is FO-definable on unranked trees.
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XPath 1.0: a W3C recommendation (since 1999)

Example:
/descendant :: a[position() > last() ∗ 0.5 or self :: ∗ = 100]
Features:

select nodes (monadic queries)

navigation through axis (child... following, preceding)

node test and filters: /ax1::ntst1[f1][f2[f3]]/...

context-sensitive functions (position, last...)

element types (element, attribute, instruction, comments)

arithmetic operators (+,−...)

data operators/comparators (string-length...)

aggregators (count, sum...)

identifiers functions...

type conversion functions...
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XPath axes [Shi08]
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XPath 1.0

first implementations: exponential time in the size of the query

PTIME combined complexity obtained in [GKP02, GKP03a]:
O(|D|2.|Q|4) in time, O(|D|2.|Q|2) in space.
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XPath 1.0

first implementations: exponential time in the size of the query

PTIME combined complexity obtained in [GKP02, GKP03a]:
O(|D|2.|Q|4) in time, O(|D|2.|Q|2) in space.

Questions:

linear time fragment?

expressiveness? links to other logics?
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CoreXPath
The navigational core of XPath

defined by Gottlob, Koch and Pichler [GKP02, GKP03a]

restriction to navigation through axis, filters, and nodetests

locpath ::= axis :: ntst | axis :: ntst[fexpr ] | /locpath | locpath/locpath
fexpr ::= locpath | not fexpr | fexpr and fexpr | fexpr or fexpr

axis ::= self | ch | ch+ | ch∗ | ch
−1 | ch−1

+ | ch−1
∗ | ns+ | ns

−1
+

ntst ::= a, a ∈ Σ | ∗

document order axis following and preceding are syntactic sugar:

following :: ntst[fexpr ] ≡ ch−1
∗ :: ∗/ns+ :: ∗/ch∗ :: ntst[fexpr ]

preceding :: ntst[fexpr ] ≡ ch−1
∗ :: ∗/ns−1

+ :: ∗/ch∗ :: ntst[fexpr ]
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CoreXPath complexity [GKP03b]

query evaluation becomes linear: O(|D|.|Q|)

it is P-hard wrt. combined complexity...

... even when t is limited to depth 3 and only axes ch, ch−1, ch∗ are
allowed

Positive-CoreXPath is LOGCFL-complete

satisfiability is EXPTIME-complete
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CoreXPath expressiveness

CoreXPath ⊆ FO

CoreXPath /ch+ :: a [ch :: b] /ch :: c

variables y z x

φ(x) = ∃y . labela(y) ∧ ∃z . labelc(z) ∧ labelc(x)
∧ ch(y , z) ∧ ch(y , x)
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CoreXPath expressiveness

CoreXPath ⊆ FO

CoreXPath /ch+ :: a [ch :: b] /ch :: c

variables y z x

φ(x) = ∃y . labela(y) ∧ ∃z . labelc(z) ∧ labelc(x)
∧ ch(y , z) ∧ ch(y , x)

FO * CoreXPath

example: select root if the leaf language is (ab)∗.

in fact, CoreXPath = FO2
1 [Mar05b]
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Expressiveness
A B A ( B

A B A ⊆ B

A B A * B

FO1

FO2
1 = CoreXPath
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CondXPath [Mar04]
Conditional XPath

CondXPath =
CoreXPath
+ axis: ns, ns∗, ns

−1, ns−1
∗

+ until operator: (axis :: ntst[fexpr ])+ with axis ∈ {ch, ch−1, ns, ns−1}

CondXPath has the same complexity as CoreXPath (for both query
evaluation and satisiability).
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CondXPath [Mar04]
Conditional XPath

CondXPath =
CoreXPath
+ axis: ns, ns∗, ns

−1, ns−1
∗

+ until operator: (axis :: ntst[fexpr ])+ with axis ∈ {ch, ch−1, ns, ns−1}

CondXPath has the same complexity as CoreXPath (for both query
evaluation and satisiability).

CondXPath ⊆ FO

For instance (ch :: a[ns∗ :: b])+ translates to the FO formula:
φ(x , y) =
∃z . ns∗(y , z) ∧ labelb(z) ∧
¬(∃s. ch∗(x , s) ∧ ch∗(s, y) ∧ (¬labela(s) ∨ ¬∃s ′. ns∗(s, s ′) ∧ labelb(s ′)))
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CondXPath [Mar04]
Expressiveness

How to prove that FO ⊆ CondXPath?
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CondXPath [Mar04]
Expressiveness

How to prove that FO ⊆ CondXPath?
Marx uses an intermediate logic: Xuntil.

CondXPath FO

Xuntil

previous slide

21
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Xuntil

Syntax

ϕ ::≡ a | ⊤ | ¬ϕ | ϕ ∧ ϕ′ | θ(ϕ,ϕ′) (a ∈ Σ, θ ∈ {⇓,⇐,⇒,⇑})

Arrows are interpreted as transitive closures of corresponding axis.

Semantics
(t, π) |= a iff labelt

a(π)
(t, π) |= ¬ϕ iff (t, π) 6|= ϕ
(t, π) |= ϕ ∧ ϕ′ iff (t, π) |= ϕ and (t, π) |= ϕ′

(t, π) |= θ(ϕ,ϕ′) iff there exists π′ s.t. θ+(π, π′) and (t, π′) |= ϕ
and for all π′′ s.t. πθ+π′′θ+π′, (t, π′′) |= ϕ′
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1. From Xuntil to CondXPath

Xuntil → CondXPath

r(a) = self :: a
r(¬ϕ) = not r(ϕ)

r(ϕ ∧ ϕ′) = r(ϕ) and r(ϕ′)
r(θ(ϕ,ϕ′)) = θ :: ∗[r(ϕ)] or (θ :: ∗[r(ϕ′)])+/θ :: ∗[r(ϕ)]
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2. From FO to Xuntil
Separation technic

Theorem ([GHR94], adapted in [Mar04])

If every Xuntil formula is separable over trees, then Xuntil is FO-expressive.

“ϕ separable” means:
equivalent to a Boolean
combination of pure
past/present/future/left/right
formula
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2. From FO to Xuntil
Separation technic

Theorem ([Mar04])

Each Xuntil formula is separable.

Query rewriting... with blowup.
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Alternative proof

Theorem ([Mar05b])

any expansion of CoreXPath which is closed under complementation
is FO-expressive

CondXPath is closed under complementation
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Expressiveness
A B A ( B

A B A ⊆ B

A B A * B

FO1 = CondXPath

FO2
1 = CoreXPath
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RegularXPath≈ [tC06]

RegularXPath =

CoreXPath
+ axis: ns, ns∗, ns

−1, ns−1
∗

+ transitive closure: (RegularXPath expression)∗

RegularXPath≈ =

RegularXPath
+ loop predicate: [loop(ϕ)]t = {π ∈ Dt | (π, π) ∈ [ϕ]t}

Both have PTIME combined complexity for query evaluation.
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RegularXPath≈ [tC06]
Expressiveness

Theorem

RegularXPath≈ and FO + TC 1 have the same expressive power.

In a preceding section, we saw that FO + TC 1 is strictly less expressive
than MSO [tCS08].

Corollary

The class of binary relations definable in RegularXPath≈ is closed under
intersection and complementation.

It is only conjectured that adding loop increases expressivity, i.e., that
RegularXPath ( RegularXPath≈.
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Expressiveness
A B A ( B

A B A ⊆ B

A B A * B MSO

FO + TC1 = RegularXPath≈

FO = CondXPath

FO2 = CoreXPath

[BC05, BSSS06]

[tCS08]
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RegularXPath variants

µRegularXPath adds a fixed-point operator [tC06] → MSO

RegularXPath(W ) adds a “subtree relativisation operator” [tCS08]

Beware: RegularXPath(W ) = FO + TC 1
p , whereas

RegularXPath≈ = FO + TC 1. Remind that it is not known whether the
inclusion FO + TC 1 ⊆ FO + TC 1

p is strict.
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XPath 2.0

XPath 2.0

adds the following features to XPath:

for loops: for $i in R return S

Boolean intersection (intersect) and complementation (except) on
path expressions

variables: n-ary queries

node comparison tests (is)
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CoreXPath 2 [tCM07]

CoreXPath 2

for loops are interpreted as sets of nodes, not sequences

no positional/aggregate: position(), last(), count()

no value comparison operators
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CoreXPath 2 [tCM07]

CoreXPath 2

for loops are interpreted as sets of nodes, not sequences

no positional/aggregate: position(), last(), count()

no value comparison operators

adding the last 2 features leads to undecidability.

equivalence of CoreXPath 2 queries is decidable.

of course, CoreXPath 2 is FO-expressive (adding except to
CoreXPath is already sufficient).

CoreXPath 2 ↔ FO translations in linear time
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Outline

5 µ-calculus

6 XPath

7 Temporal Logics
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Preliminaries: Linear Temporal Logic (LTL)

Syntax

ϕ ::≡ a | ¬ϕ | ϕ ∨ ψ | Xϕ | X− ϕ | ϕU ψ | ϕ S ψ

Semantics

Structure: s = s0s1 · · · sn a string over Σ
Interpretation: (s, i) |= ϕ (ϕ is satisfied in s at position i)
label (s, i) |= a iff si = a (i.e. labels(i) = a)
next (s, i) |= Xϕ iff (s, i + 1) |= ϕ
prev (s, i) |= X− ϕ iff (s, i − 1) |= ϕ
until (s, i) |= ϕU ψ iff ∃j ≥ i . (s, j) |= ψ ∧ ∀k ∈ {i , . . . , j − 1}. (s, k) |= ϕ
since (s, i) |= ϕ S ψ iff ∃j ≤ i . (s, j) |= ψ ∧ ∀k ∈ {j + 1, . . . , i}. (s, k) |= ϕ
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Querying and expressivity

LTL Boolean queries

QA(ϕ, s) = true⇔ (s, 0) |= ϕ

LTL unary queries

QA(ϕ, s) =
{

i ∈ {0, . . . , |s|} : (s, i) |= ϕ
}

Kamp’s Theorem.

Over strings, LTL = FO
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Tree Temporal Logic TLtree

Syntax

ϕ ::≡ a | ¬ϕ | ϕ ∨ ψ | Xθ ϕ | X
−
θ ϕ | ϕUθ ψ | ϕ Sθ ψ (θ ∈ {↓,←})

Semantics

(t, π) |= ϕ reads “ϕ is satisfied in t at node π”
(t, π) |= a iff labelt(π) = a
(t, π) |= X↓ϕ iff ∃π′ such that π ↓ π′ and (t, π′) |= ϕ.
etc.

Theorem [Mar05a]

Over unranked ordered trees, TLtree = FO (Boolean and unary queries)
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Computational tree logic CTL∗past

Syntax

Node formulas: Φ ::≡ a | ¬Φ | Φ ∨Ψ | E↓ ϕ | E→ ϕ

Path formulas: ϕ = Φ? | ¬ϕ | ϕ ∨ ψ | Xϕ | X− ϕ | ϕU ψ | ϕ S ψ

Semantics

(t, π) |= Φ reads “Φ is satisfied in t at node π”
(t, π) |= E↓ϕ iff ∃π1 ↓ · · · ↓ πi−1 ↓ π ↓ πi+1 ↓ · · · ↓ πk such that
(π1 · · ·πk , i) |=p ϕ where:
(π1 · · ·πk , i) |=p Φ? iff (t, πi ) |= Φ etc.

Theorem [BL05b]

Over unranked ordered trees, CTL∗
past = FO (Boolean and unary queries)
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Propositional Dynamic Logic for trees PDLtree [ABD+05]

Syntax

Path formulas:

σ ::≡ ← | → | ↓ | ↑ | σ/σ′ | σ ∪ σ′ | σ∗ | ϕ?

Propositions:
ϕ ::≡ a | ¬ϕ | ϕ ∨ ψ | Xσ ϕ |

Semantics

σ defines a binary relation [[σ]]t on nodes of t
(t, π) |= Xσ ϕ iff ∃π′ such that π [[σ]]t π

′ and (t, π′) |= ϕ
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Expressivity of PDLtree [ABD+05]

Theorem

PDLtree is equivalent to Regular XPath.

Theorem

PDLtree restricted to

σ ::≡ ← | → | ↓ | ↑ | σ∗ | σ/ϕ?

is equivalent to Conditional XPath which is equivalent to FO.

Theorem

PDLtree restricted to
σ ::≡ ← | → | ↓ | ↑ | σ∗

is equivalent to Core XPath which is equivalent to FO2.
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Tree-walking automata.
Tutorial at LATA’08, 2008.

[BS05] Michael Benedikt and Luc Segoufin.
Regular tree languages definable in FO and FOmod.

PhDs+S lawek (Mostrare) Queries on Trees 2008 128 / 128



In 22nd International Symposium on Theoretical Aspects of
Computer Science, volume 3404 of Lecture Notes in
Computer Science, pages 327–339. Springer Verlag, 2005.
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