
Queries on Trees

Jérôme Champavère Emmanuel Filiot Olivier Gauwin
Édouard Gilbert S lawek Staworko

INRIA Lille, Mostrare

2008

PhDs+S lawek (Mostrare) Queries on Trees 2008 1 / 128

Framework

n-ary queries on unranked labeled finite ordered trees

PhDs+S lawek (Mostrare) Queries on Trees 2008 2 / 128

Trees
t = a

c c d

finite alphabet: Σ = {a, b, c , d , e}

t is the structure (D, ch∗, ns∗, label) with:

D = {ǫ, 1, 2, 3}: prefix-closed finite subset of N

ch∗ = reflexive-transitive closure of ch, defined by:

ch(π1, π2) ⇔ π2 = π1 ·i for some i ∈ N

ns∗ = reflexive-transitive closure of ns, defined by:

ns(π1, π2) ⇔ π1 = π ·i and π2 = π ·(i + 1) for some π, i ∈ N∗ × N

label : D→ Σ. Can also be seen as a partition (labela)a∈Σ of D.

label(1·3) = d labeld(1·3)

PhDs+S lawek (Mostrare) Queries on Trees 2008 3 / 128

Queries

n-ary queries

q(t) ⊆ Dn
t

n=0: Boolean queries

q(t) = ∅ or q(t) = {()}

q defines Lq = {t | q(t) = {()}}

Questions

expressivity

complexity of:
◮ model-checking: x ∈ q(t)
◮ satisfiability: ∃t, q(t) 6= ∅

PhDs+S lawek (Mostrare) Queries on Trees 2008 4 / 128

Existing material

Surveys

Logics over unranked trees: an overview [Lib06]

Automata, logic, and XML [Nev02b, Nev02a]

Automata for XML – a survey [Sch07]

Effective Characterizations of Tree Logics [Boj08a]

Tree-walking automata [Boj08b]

Books

Finite Model Theory [EF99, Lib04]

Foundations of Databases [AHV95]

PhDs+S lawek (Mostrare) Queries on Trees 2008 5 / 128

Outline

1 Classical logics (FO, MSO)

2 Queries by Tree Automata
Tree-walking automata
Schema Languages & Tree Automata

3 Conjunctive Queries over Trees
Definition, results and acyclic fragment
Twigs and Tree Patterns

4 Monadic Datalog

5 µ-calculus

6 XPath

7 Temporal Logics

PhDs+S lawek (Mostrare) Queries on Trees 2008 6 / 128

Part I

Classical Logics, Automata

PhDs+S lawek (Mostrare) Queries on Trees 2008 7 / 128

Outline

1 Classical logics (FO, MSO)

2 Queries by Tree Automata
Tree-walking automata
Schema Languages & Tree Automata

PhDs+S lawek (Mostrare) Queries on Trees 2008 8 / 128

FO

Well-formed formulas based on:

predicates from the structure: ch∗, ns∗, (labela)a∈Σ

Boolean connectives: ∧,¬

FO variables: x , y ...

quantifiers on FO variables: ∃x

PhDs+S lawek (Mostrare) Queries on Trees 2008 9 / 128

Querying using FO

We use free variables:

q(x) = ∃y .∃z .(ch∗(x , y) ∧ ch∗(y , z) ∧ labela(z))

This way we can define queries of any arity.

PhDs+S lawek (Mostrare) Queries on Trees 2008 10 / 128

FO: Available predicates

Why ch∗ and ns∗?

because ch and ns are definable from ch∗ and ns∗ in FO...

... but the converse is false

So in the following, we suppose that ch and ns are also available.

Also definable in FO:

unary predicates: root , leaf , lc (lastchild)

binary predicates: fc (firstchild)

PhDs+S lawek (Mostrare) Queries on Trees 2008 11 / 128

FO: Complexity

Model-checking

PSPACE-complete (combined complexity). [Sto74, Var82]

Remark: PSPACE-hardness is even true for the quantified
propositional logic [GO99].

Satisfiability

non-elementary on trees

PhDs+S lawek (Mostrare) Queries on Trees 2008 12 / 128

FO: Restrictions on the number of variables

FOk = FO formulas using only k variables

Variables might be reused

q(x) = ∃y .∃z .(ch∗(x , y) ∧ ch∗(y , z) ∧ labela(z)) /∈ FO2

but is equivalent to
q′(x) = ∃y .(ch∗(x , y) ∧ ∃x .(ch∗(y , x) ∧ labela(x))) ∈ FO2

Theorem ([Imm82, Var95, GO99])

The model-checking problem for FOk (with k ≥ 2) is P-complete on any
structure.

PhDs+S lawek (Mostrare) Queries on Trees 2008 13 / 128

FO: Restrictions on the number of variables

FO2 = FO formulas using only 2 variables

In FO2, one cannot define ch and ns from ch∗ and ns∗ anymore. So ch

and ns are added to the signature.

Complexity

Model-checking in FO2 can be done in O(|t|2.|q|) [Imm82].

Expressivity

FO is strictly more expressive than FO2.

example of Boolean query: trees where the leaf language is (ab)∗.

Links between FO2 and XPath will be shown in Part 3.

PhDs+S lawek (Mostrare) Queries on Trees 2008 14 / 128

Expressivity
A B A (B

A B A ⊆ B

A B A * B

FO

FO2

PhDs+S lawek (Mostrare) Queries on Trees 2008 15 / 128

FO: Restrictions on the number of variables

Data values

predicate ∼:
x ∼ y if x and y are two attribute nodes that have the same value

in XPath semantics: add tests of the form
/bib//book/@type = //collection/@style

Decidability

FO2 [∼,ch,ns] is decidable [BDM+06].

FO2 [∼,ch,ns,ch∗,ns∗]: open question

FO3[∼,ch,ns] is undecidable (even on strings) [BMS+06].

PhDs+S lawek (Mostrare) Queries on Trees 2008 16 / 128

FO: Restrictions on the number of variables

FOk
n = FO formulas using (k bound variables) + (n free variables)

We assume here that the n free variables are never quantified.

Some results on trees

FO2 = FO3
2 [Mar05a] (his result is stronger)

FO3 = FO3
3 [Mar05b]

FOn = FO3
n

◮ translate into a FO0 formula on alphabet Σ× Bn,
◮ FO0 = FO3

0 (consequence of [Mar05b], Th. 3)
◮ backward translation: label(f ,~b)(x) becomes labelf (x)

∧

~bi =1 x = xi

PhDs+S lawek (Mostrare) Queries on Trees 2008 17 / 128

MSO

MSO = FO + quantification over monadic predicates

“monadic predicates” also seen as “sets”
X (x) x ∈ X

φodd(x , y)

= “y is a descendant of x and the path between them is of odd length”
= ∃X .∃Y . (∀z .(X (z)⇔ ¬Y (z))) ∧

(∀z .(X (z) ∨ Y (z)⇒ ch∗(x , z) ∧ ch∗(z , y))) ∧
(X (x) ∧ Y (y)) ∧
(∀z .∀v .(ch∗(x , z) ∧ ch(z , v) ∧ ch∗(v , y)⇒

(X (z)⇒ Y (v) ∧ Y (z)⇒ X (v))))

Expressivity

MSO is strictly more expressive than FO (see φodd).

PhDs+S lawek (Mostrare) Queries on Trees 2008 18 / 128

Expressivity
A B A (B

A B A ⊆ B

A B A * B

MSO

FO

FO2

PhDs+S lawek (Mostrare) Queries on Trees 2008 19 / 128

MSO: Complexity

Model-checking

combined complexity: PSPACEc [Sto74, Var82]

data complexity: linear (by translation to automaton)

Satisfiability

non-elementary on trees

PhDs+S lawek (Mostrare) Queries on Trees 2008 20 / 128

Deciding membership to FO

Theorem ([BS05])

Given a regular tree language L, one can decide if L is definable in
FOch,(labela)a∈Σ

.

Open decision problem

Given a regular tree language L, is it possible to decide if L is definable in
FO?

In other words, FO-definability is known to be decidable for unordered
trees, but unknown for ordered trees.

Automata for FO

For a definition of automata recognizing exactly FO-definable languages,
see [Boj04, Chapter 2].

PhDs+S lawek (Mostrare) Queries on Trees 2008 21 / 128

Outline

1 Classical logics (FO, MSO)

2 Queries by Tree Automata
Tree-walking automata
Schema Languages & Tree Automata

PhDs+S lawek (Mostrare) Queries on Trees 2008 22 / 128

Tree Automata for Queries

Branching & Stepwise Tree automata

Query automata

Tree-walking automata (TWA)

Schema languages

PhDs+S lawek (Mostrare) Queries on Trees 2008 23 / 128

Branching & Stepwise Tree Automata I

Automata over Σ× {0, 1}n

◮ Canonical languages
◮ Same expressive power as MSO

Automata with selecting states
◮ Boolean values into the states
◮ Existential run-based queries [NPTT05]
◮ Selecting tree automata [FGK03]

Stepwise tree automata [CNT04]

PhDs+S lawek (Mostrare) Queries on Trees 2008 24 / 128

Branching & Stepwise Tree Automata II

Decision problems

Membership PTIME

Non-emptiness PTIME

From MSO to tree automata: non-elementary size
◮ Upper bound [TW68]
◮ Lower bound [FG02]

PhDs+S lawek (Mostrare) Queries on Trees 2008 25 / 128

Query Automata [NS99, NS02]

Two-way deterministic tree automata [Mor94] over (un)ranked trees
extended with a selection function

Equivalent to MSO

Decision problems

Non-emptiness EXPTIME

Containment EXPTIME

Equivalence EXPTIME

PhDs+S lawek (Mostrare) Queries on Trees 2008 26 / 128

Outline

1 Classical logics (FO, MSO)

2 Queries by Tree Automata
Tree-walking automata
Schema Languages & Tree Automata

PhDs+S lawek (Mostrare) Queries on Trees 2008 27 / 128

Context

Most work is done on ranked trees

PhDs+S lawek (Mostrare) Queries on Trees 2008 28 / 128

Context

Most work is done on ranked trees

Still some definitions on unranked cases, but few results

PhDs+S lawek (Mostrare) Queries on Trees 2008 28 / 128

Context

Most work is done on ranked trees

Still some definitions on unranked cases, but few results

Thus we will work on trees of rank 2

PhDs+S lawek (Mostrare) Queries on Trees 2008 28 / 128

Context

Most work is done on ranked trees

Still some definitions on unranked cases, but few results

Thus we will work on trees of rank 2

Structure: label, ch1, ch2

PhDs+S lawek (Mostrare) Queries on Trees 2008 28 / 128

Tree-walking automata
on ranked trees

A tree-walking automaton (TWA)[AU71]:

◮ a tree is accepted whenever the “accept” action is used

PhDs+S lawek (Mostrare) Queries on Trees 2008 29 / 128

Tree-walking automata
on ranked trees

A tree-walking automaton (TWA)[AU71]:
◮ the automaton is located in some node (at first, the root) of the tree

and in a given state

◮ a tree is accepted whenever the “accept” action is used

PhDs+S lawek (Mostrare) Queries on Trees 2008 29 / 128

Tree-walking automata
on ranked trees

A tree-walking automaton (TWA)[AU71]:
◮ the automaton is located in some node (at first, the root) of the tree

and in a given state
◮ if some conditions are verified (label, being a leaf, being the left child

of one’s parent), decide of an action

◮ a tree is accepted whenever the “accept” action is used

PhDs+S lawek (Mostrare) Queries on Trees 2008 29 / 128

Tree-walking automata
on ranked trees

A tree-walking automaton (TWA)[AU71]:
◮ the automaton is located in some node (at first, the root) of the tree

and in a given state
◮ if some conditions are verified (label, being a leaf, being the left child

of one’s parent), decide of an action
◮ actions: accept, reject, move to parent with state q, move to left child

with state q′, . . .
◮ a tree is accepted whenever the “accept” action is used

PhDs+S lawek (Mostrare) Queries on Trees 2008 29 / 128

Tree-walking automata
on ranked trees

A tree-walking automaton (TWA)[AU71]:
◮ the automaton is located in some node (at first, the root) of the tree

and in a given state
◮ if some conditions are verified (label, being a leaf, being the left child

of one’s parent), decide of an action
◮ actions: accept, reject, move to parent with state q, move to left child

with state q′, . . .
◮ a tree is accepted whenever the “accept” action is used

PhDs+S lawek (Mostrare) Queries on Trees 2008 29 / 128

Tree-walking automata
on ranked trees

A tree-walking automaton (TWA)[AU71]:
◮ the automaton is located in some node (at first, the root) of the tree

and in a given state
◮ if some conditions are verified (label, being a leaf, being the left child

of one’s parent), decide of an action
◮ actions: accept, reject, move to parent with state q, move to left child

with state q′, . . .
◮ a tree is accepted whenever the “accept” action is used a tree can be

rejected by looping, the “reject” action is not necessary

Expressiveness:

PhDs+S lawek (Mostrare) Queries on Trees 2008 29 / 128

Tree-walking automata
on ranked trees

A tree-walking automaton (TWA)[AU71]:
◮ the automaton is located in some node (at first, the root) of the tree

and in a given state
◮ if some conditions are verified (label, being a leaf, being the left child

of one’s parent), decide of an action
◮ actions: accept, reject, move to parent with state q, move to left child

with state q′, . . .
◮ a tree is accepted whenever the “accept” action is used a tree can be

rejected by looping, the “reject” action is not necessary

Expressiveness:
◮ any tree-walking automaton can be represented as a branching

automaton, but with exponential blowup

PhDs+S lawek (Mostrare) Queries on Trees 2008 29 / 128

Tree-walking automata
on ranked trees

A tree-walking automaton (TWA)[AU71]:
◮ the automaton is located in some node (at first, the root) of the tree

and in a given state
◮ if some conditions are verified (label, being a leaf, being the left child

of one’s parent), decide of an action
◮ actions: accept, reject, move to parent with state q, move to left child

with state q′, . . .
◮ a tree is accepted whenever the “accept” action is used a tree can be

rejected by looping, the “reject” action is not necessary

Expressiveness:
◮ any tree-walking automaton can be represented as a branching

automaton, but with exponential blowup
◮ but the opposite is false: TWA are not as expressive as MSO [BC05]

PhDs+S lawek (Mostrare) Queries on Trees 2008 29 / 128

Expressiveness (ranked case)
A B A (B

A B A ⊆ B

A B A * B MSO

TWA

FO

[BC04]

PhDs+S lawek (Mostrare) Queries on Trees 2008 30 / 128

Deterministic TWA and their expressiveness

Formulae recognised by deterministic TWA are stable by negation

Formulae recognised by non-deterministic ones are not

PhDs+S lawek (Mostrare) Queries on Trees 2008 31 / 128

Deterministic TWA and their expressiveness

Formulae recognised by deterministic TWA are stable by negation

Formulae recognised by non-deterministic ones are not

PhDs+S lawek (Mostrare) Queries on Trees 2008 31 / 128

Deterministic TWA and their expressiveness

Formulae recognised by deterministic TWA are stable by negation

Formulae recognised by non-deterministic ones are not ⇒
deterministic TWA are strictly less expressive than non-deterministic
ones [MSS06]

FO ⊆ TWA (MSO [BC04]

PhDs+S lawek (Mostrare) Queries on Trees 2008 31 / 128

Deterministic TWA and their expressiveness

Formulae recognised by deterministic TWA are stable by negation

Formulae recognised by non-deterministic ones are not ⇒
deterministic TWA are strictly less expressive than non-deterministic
ones [MSS06]

FO ⊆ TWA (MSO [BC04]

FO 6⊆ DTWA 6⊆ FO [BC05]

PhDs+S lawek (Mostrare) Queries on Trees 2008 31 / 128

Expressiveness (ranked case)
A B A (B

A B A ⊆ B

A B A * B MSO

TWA

detTWA

FO

[MSS06]

[BC05]

[BC04]

[BC05]

PhDs+S lawek (Mostrare) Queries on Trees 2008 32 / 128

Pebble tree-walking automata and stack discipline
[EH99]

Add a finite number of pebble marked {1, . . . , n} to the automaton

PhDs+S lawek (Mostrare) Queries on Trees 2008 33 / 128

Pebble tree-walking automata and stack discipline
[EH99]

Add a finite number of pebble marked {1, . . . , n} to the automaton

New tests: is there a pebble on current node?

PhDs+S lawek (Mostrare) Queries on Trees 2008 33 / 128

Pebble tree-walking automata and stack discipline
[EH99]

Add a finite number of pebble marked {1, . . . , n} to the automaton

New tests: is there a pebble on current node?

New actions: add a pebble to current position, remove a pebble from
the current (or any) state

PhDs+S lawek (Mostrare) Queries on Trees 2008 33 / 128

Pebble tree-walking automata and stack discipline
[EH99]

Add a finite number of pebble marked {1, . . . , n} to the automaton

New tests: is there a pebble on current node?

New actions: add a pebble to current position, remove a pebble from
the current (or any) state

Stack discipline: if pebble 1 to i already can only add pebble i + 1 or
remove pebble i

PhDs+S lawek (Mostrare) Queries on Trees 2008 33 / 128

Expressiveness of pebble TWA

Expressiveness increases with number of pebble [BSSS06]

∀n ∈ N PTWAn (PTWAn+1

detPTWA ⊆ PTWA[EH99]

it is not known if detPTWA = PTWA
but there is no c s.t. PTWAk ⊆ detPTWAck

Expressiveness without stack discipline

MSO 6⊆ TWAno stack

TWAno stack emptiness is undecidable

PhDs+S lawek (Mostrare) Queries on Trees 2008 34 / 128

Expressiveness (ranked case)
A B A (B

A B A ⊆ B

A B A * B MSO

TWA

detTWA

FO

TWApebble

detTWApebble

[BC04]

[BC05]

[BC04]

[BSSS06]

[BC05]

PhDs+S lawek (Mostrare) Queries on Trees 2008 35 / 128

Unbounded pebble TWA

We now allow an unbounded number of pebble (with stack discipline)

Expressiveness

Unbounded pebble TWA emptiness is undecidable
Invisible pebble TWA = MSO

PhDs+S lawek (Mostrare) Queries on Trees 2008 36 / 128

Unbounded pebble TWA

We now allow an unbounded number of pebble (with stack discipline)

We can consider invisible pebble: only the top pebble presence can be
tested[EHS07]

Expressiveness

Unbounded pebble TWA emptiness is undecidable
Invisible pebble TWA = MSO

PhDs+S lawek (Mostrare) Queries on Trees 2008 36 / 128

Alternating tree-walking automata

Two players ∀,∃

PhDs+S lawek (Mostrare) Queries on Trees 2008 37 / 128

Alternating tree-walking automata

Two players ∀,∃

Each state belongs to a player: Q = Q∀ ⊎ Q∃

PhDs+S lawek (Mostrare) Queries on Trees 2008 37 / 128

Alternating tree-walking automata

Two players ∀,∃

Each state belongs to a player: Q = Q∀ ⊎ Q∃

If q ∈ Q∀, then ∀ plays the next move in a given set of rules,
otherwise, ∃ does

PhDs+S lawek (Mostrare) Queries on Trees 2008 37 / 128

Alternating tree-walking automata

Two players ∀,∃

Each state belongs to a player: Q = Q∀ ⊎ Q∃

If q ∈ Q∀, then ∀ plays the next move in a given set of rules,
otherwise, ∃ does

A tree is accepted if ∃ wins, rejected if ∀ does

PhDs+S lawek (Mostrare) Queries on Trees 2008 37 / 128

Alternating tree-walking automata

Two players ∀,∃

Each state belongs to a player: Q = Q∀ ⊎ Q∃

If q ∈ Q∀, then ∀ plays the next move in a given set of rules,
otherwise, ∃ does

A tree is accepted if ∃ wins, rejected if ∀ does

∃ wins if an accept rule is played by someone or if ∀ has no possible
move, otherwise ∀ wins

PhDs+S lawek (Mostrare) Queries on Trees 2008 37 / 128

Alternating tree-walking automata

Two players ∀,∃

Each state belongs to a player: Q = Q∀ ⊎ Q∃

If q ∈ Q∀, then ∀ plays the next move in a given set of rules,
otherwise, ∃ does

A tree is accepted if ∃ wins, rejected if ∀ does

∃ wins if an accept rule is played by someone or if ∀ has no possible
move, otherwise ∀ wins

PhDs+S lawek (Mostrare) Queries on Trees 2008 37 / 128

Alternating tree-walking automata

Two players ∀,∃

Each state belongs to a player: Q = Q∀ ⊎ Q∃

If q ∈ Q∀, then ∀ plays the next move in a given set of rules,
otherwise, ∃ does

A tree is accepted if ∃ wins, rejected if ∀ does

∃ wins if an accept rule is played by someone or if ∀ has no possible
move, otherwise ∀ wins

Expressiveness

alternating TWA = MSO

PhDs+S lawek (Mostrare) Queries on Trees 2008 37 / 128

Caterpillar expressions [BKW00]

PhDs+S lawek (Mostrare) Queries on Trees 2008 38 / 128

Caterpillar expressions [BKW00]

Caterpillar expressions describe runs of tree-walking automata

PhDs+S lawek (Mostrare) Queries on Trees 2008 39 / 128

Caterpillar expressions [BKW00]

Caterpillar expressions describe runs of tree-walking automata

Caterpillar alphabet on Σ
◮ Commands letter goleft, goright and goparent

PhDs+S lawek (Mostrare) Queries on Trees 2008 39 / 128

Caterpillar expressions [BKW00]

Caterpillar expressions describe runs of tree-walking automata

Caterpillar alphabet on Σ
◮ Commands letter goleft, goright and goparent
◮ Tests letter leaf, isleft, isright and labels a ∈ Σ

PhDs+S lawek (Mostrare) Queries on Trees 2008 39 / 128

Caterpillar expressions [BKW00]

Caterpillar expressions describe runs of tree-walking automata

Caterpillar alphabet on Σ
◮ Commands letter goleft, goright and goparent
◮ Tests letter leaf, isleft, isright and labels a ∈ Σ

Caterpillar words describe paths in TWA: isleft a goleft b
describes paths going from a left child labeled a to its left child
labeled b

PhDs+S lawek (Mostrare) Queries on Trees 2008 39 / 128

Caterpillar expressions [BKW00]

Caterpillar expressions describe runs of tree-walking automata

Caterpillar alphabet on Σ
◮ Commands letter goleft, goright and goparent
◮ Tests letter leaf, isleft, isright and labels a ∈ Σ

Caterpillar words describe paths in TWA: isleft a goleft b
describes paths going from a left child labeled a to its left child
labeled b

Caterpillar expressions: regular expressions on caterpillar alphabet

PhDs+S lawek (Mostrare) Queries on Trees 2008 39 / 128

Cutting caterpillar expressions

New letters:
◮ test 〈c〉 (nest) where c is a caterpillar expression: true if c applied to

current node selects at least one path

PhDs+S lawek (Mostrare) Queries on Trees 2008 40 / 128

Cutting caterpillar expressions

New letters:
◮ test 〈c〉 (nest) where c is a caterpillar expression: true if c applied to

current node selects at least one path
◮ command cut transform the whole tree into the subtree of the current

node — local transform, does not apply outside nests

PhDs+S lawek (Mostrare) Queries on Trees 2008 40 / 128

Cutting caterpillar expressions

New letters:
◮ test 〈c〉 (nest) where c is a caterpillar expression: true if c applied to

current node selects at least one path
◮ command cut transform the whole tree into the subtree of the current

node — local transform, does not apply outside nests

Expressiveness: if nesting is forbidden under scope of negation,
posCAT = PTWA

PhDs+S lawek (Mostrare) Queries on Trees 2008 40 / 128

Cutting caterpillar expressions

New letters:
◮ test 〈c〉 (nest) where c is a caterpillar expression: true if c applied to

current node selects at least one path
◮ command cut transform the whole tree into the subtree of the current

node — local transform, does not apply outside nests

Expressiveness: if nesting is forbidden under scope of negation,
posCAT = PTWA

Expressiveness: if nesting is allowed under the scope of a negation, as
expressive as nested TWA (not defined here)

PhDs+S lawek (Mostrare) Queries on Trees 2008 40 / 128

Expressiveness (ranked case)
A B A (B

A B A ⊆ B

A B A * B MSO

TWA

detTWA

FO

TWApebble

detTWApebble

nested TWA

[BC04]

[BC05]

[BC04]

[BSSS06]

[BC05]

PhDs+S lawek (Mostrare) Queries on Trees 2008 41 / 128

FO: Extensions

Notation: z̄ = (z1, . . . , zn)

Adding Transitive Closure: TC n

TCn[ϕ(x̄ , ȳ)](ū, v̄)

iff

∃k , ∃(w̄i)i∈[1..k], ϕ(ū, w̄1) ∧ ϕ(w̄1, w̄2) ∧ . . . ∧ ϕ(w̄k , v̄)

By TCn, we mean “parameter-free” transitive closure, i.e., x̄ and ȳ are
exactly the free variable of ϕ.
We write TCn

p for the non-parameter-free transitive closure (i.e., ϕ can
have extra free variables).

PhDs+S lawek (Mostrare) Queries on Trees 2008 42 / 128

FO: Extensions

FO + TC 1
p = nested TWA [tCS08]

FO + TC 1 is often written FO∗, and FO + TC 1
p is written FO(MTC).

FO + TC 1 ⊆ FO + TC 1
p : it is unknown whether it is strict.

FO + TC 1 ⊆ MSO

because TC 1[ϕ(x , y)](u, v)⇔
∀X . (u ∈ X ∧ ∀(x , y). (x ∈ X ∧ ϕ(x , y)⇒ y ∈ X)⇒ v ∈ X)

FO (FO + TC 1 (MSO

Transitive closure is not expressible in FO [Fag75].

Adding TC 1 to FO is not enough to reach MSO [tCS08].

For properties of FO + TC 1 see [Kep06].

PhDs+S lawek (Mostrare) Queries on Trees 2008 43 / 128

Expressiveness (ranked case)
A B A (B

A B A ⊆ B

A B A * B MSO

TWA

detTWA

FO

TWApebble

detTWApebble

FO + TC1

FO + TC∗

[BC04]

[BC05]

[BC04]

[BSSS06]

[tCS08]

[TK06]

[BC05]

PhDs+S lawek (Mostrare) Queries on Trees 2008 44 / 128

FO: Extensions

FO + TC 2

FO + TC 2 * MSO

(cf next slide)

MSO ⊆ FO + TC 2?

This is an open question. It could be the case that MSO * FO + TC k , for
all k .

PhDs+S lawek (Mostrare) Queries on Trees 2008 45 / 128

FO: Extensions

FO + TC 2 * MSO

For instance L = {f (X , X) | X ∈ TΣ} is defined by:

ϕ = labelf (ǫ) ∧
∃u1.∃v1.fc(ǫ, u1) ∧ ns(u1, v1) ∧ samelabel(u1, v1) ∧
¬(∃w .ns(v1,w)) ∧
∀u2. ch∗(u1, u2)⇒ ∃v2. TC 2[ψ(x̄ , ȳ)](u1, u2, v1, v2)

where ψ encodes a step isomorphism:
ψ(x̄ , ȳ) = samelabel(x2, y2) ∧

(fc(x1, x2) ∧ fc(y1, y2)) ∨ (ns(x1, x2) ∧ ns(y1, y2))

with:
samelabel(x , y) =

∨

a∈Σ labela(x) ∧ labela(y)

PhDs+S lawek (Mostrare) Queries on Trees 2008 46 / 128

Expressiveness (ranked case)
A B A (B

A B A ⊆ B

A B A * B MSO

TWA

detTWA

FO

TWApebble

detTWApebble

FO + TC1

FO + TC2

FO + TC∗

[BC04]

[BC05]

[BC04]

[BSSS06]

[tCS08]

[TK06]

[BC05]

tree isomorphism

PhDs+S lawek (Mostrare) Queries on Trees 2008 47 / 128

FO: Extensions

FO + detTC 1 = detTWApebble [EH06]

Deterministic Transitive Closure of ϕ = TC on the functional part of ϕ

FO + detTC 1 ⊆ FO + TC 1

because
detTC 1[ϕ(x , y)](u, v)⇔ TC 1[ϕ(x , y) ∧ ∀z .ϕ(x , z)⇒ z = y](u, v)

FO + detTC 1 (FO + TC 1?

Open question (see [Kep06]).

For some properties of FO + detTC 1 (linear order, even...) see
[Kep06, EI95].

PhDs+S lawek (Mostrare) Queries on Trees 2008 48 / 128

FO: Extensions

FO + posTC 1 = TWApebble [EH06]

formulas of FO + TC 1 with TC 1 operators under an even number of
negations

FO + detTC 1 ⊆ FO + posTC 1 ⊆ FO + TC 1

inclusions due to TWA characterisations

whether these 2 inclusions are strict is still open

FO + TC 1 (MSO

separation language based on the branching structure [tCS08]

PhDs+S lawek (Mostrare) Queries on Trees 2008 49 / 128

Expressiveness (ranked case)
A B A (B

A B A ⊆ B

A B A * B

FO + TC∗

FO + TC2MSO

FO + TC1 [tCS08]
= nestedTWA

FO + posTC1 [EH06]
= TWApebble

FO + detTC1 [EH06]
= detTWApebble

TWA

detTWA

FO

[TK06]

[BSSS06]

[BSSS06]

[tCS08]

[BC04]

[TK06]

[BC05]

tree isomorphism

[Kep06, BSSS06]

[BC05]

PhDs+S lawek (Mostrare) Queries on Trees 2008 50 / 128

Outline

1 Classical logics (FO, MSO)

2 Queries by Tree Automata
Tree-walking automata
Schema Languages & Tree Automata

PhDs+S lawek (Mostrare) Queries on Trees 2008 51 / 128

XML Schema Languages

Describe a set of XML documents

Theoretical framework: no data, only structure

Closer to tree grammars [MLM01] than to tree automata

Tree automata: reference model for the expressiveness

PhDs+S lawek (Mostrare) Queries on Trees 2008 52 / 128

Document Type Definitions (DTDs)
“Standard” DTDs

Local tree languages

a

b

c d

L = {

a′

b

d c

, }

a(qb) → qa

a′(qb) → qa′

b(qcqd) → qb

b(qdqc) → qb

c(ǫ) → qc

d(ǫ) → qd

a

b

d c

∈ L!⇒

◮ Restriction: no competiting states

Deterministic content models
◮ One-unambiguous regular expressions [BKW98]
◮ ab + ac: which a to match depends on the next symbol

Polynomial complexity for other usual decision problems
(membership, emptiness, containment), except intersection [MNS04]

Lack of expressivity

PhDs+S lawek (Mostrare) Queries on Trees 2008 53 / 128

Extended DTDs (EDTDs) [MNSB06, Sch07] I

Alphabet extended with types (each type is associated to a unique
symbol)

a

b1

c d

L = {

a′

b2

d c

, }

a(qb1) → qa

a′(qb2) → qa′

b1(qcqd) → qb1

b2(qdqc) → qb2

c(ǫ) → qc

d(ǫ) → qd

Typing problem:
◮ Valid assignment of types to the elements w.r.t. EDTD
◮ (Consistent) combination of unary queries

As expressive as (parallel) unranked tree automata of [BKWM01],
thus equivalent to regular tree languages

◮ Examples of such schema languages: Relax NG [CM01], XDuce [HP03]
◮ Restricted EDTDs: single-type, restrained-competition

PhDs+S lawek (Mostrare) Queries on Trees 2008 54 / 128

Extended DTDs (EDTDs) [MNSB06, Sch07] II

Single-type EDTDs

a(qb1 + qb2) → qa

b1(ǫ) → qb1

b2(ǫ) → qb2

a1(qb1) → qa1

a2(qb2) → qa2

b1(ǫ) → qb1

b2(ǫ) → qb2

◮ Element Declaration Consistent constraint (W3C XML Schemas)
◮ Unique top-down typing
◮ Validation with deterministic tree-walking automata

Restrained-competition EDTDs

a(qb1 · qb2) → qa

b1(ǫ) → qb1

b2(ǫ) → qb2

◮ Unique top-down left-to-right typing
◮ Validation with deterministic top-down tree automata

PhDs+S lawek (Mostrare) Queries on Trees 2008 55 / 128

Expressiveness of Schemas

EDTD = MSO = UTA

Local
tree languages

tree languages
(Homogeneous) regular

Path-closed
tree languages

EDTD
Single-type

DTD

EDTD
Restrained-competition

DTWA

DetTA
Top-down

PhDs+S lawek (Mostrare) Queries on Trees 2008 56 / 128

Part II

Conjunctive Queries, Monadic Datalog

PhDs+S lawek (Mostrare) Queries on Trees 2008 57 / 128

Outline

3 Conjunctive Queries over Trees
Definition, results and acyclic fragment
Twigs and Tree Patterns

4 Monadic Datalog

PhDs+S lawek (Mostrare) Queries on Trees 2008 58 / 128

Conjunctive Queries

... seen as FO formulas

∃x . φ(x , y) where φ is a conjunction of atomic predicates.
For instance:

∃x∃y∃w R1(x) ∧ R2(x , y) ∧ R3(x ,w , z)

... seen as rules

answer(z)← R1(x),R2(x , y),R3(x ,w , z)

... seen as terms of the Projection/Join algebra

πZ (R1(X) ⋊⋉ R2(X ,Y) ⋊⋉ R3(X ,W ,Z))

These 3 formalisms are equivalent (see [AHV95]).
PhDs+S lawek (Mostrare) Queries on Trees 2008 59 / 128

Conjunctive Queries over Trees

XPath axis X : ch, ch∗, ch
+, ns, ns∗, ns

+, following and their inverse

following = (ch∗)−1 ◦ ns+ ◦ ch∗

Example

∃x∃y ch+(x , y) ∧ ch+(x , z) ∧ following(x , z)

x

y z
/ -̂

ch+ch+

following

PhDs+S lawek (Mostrare) Queries on Trees 2008 60 / 128

Boolean Queries

Theorem ([GKS04])

Evaluation of Boolean CQ over X is NP-complete, even on a fixed tree.

Tractable fragments

X underbar property

Acyclic conjunctive queries

Twigs

PhDs+S lawek (Mostrare) Queries on Trees 2008 61 / 128

X property

R: a binary relation on the domain Dt of a tree t

a total order < on Dt

Definition

The relation R satisfies the X property wrt < if ∀n1, n2, n3, n4 st n1 < n2

and n3 < n4:

R

�

-

R

R

R
n1

n2

n3

n4

A set of relations R1, . . . ,Rn satisfies X wrt < if every Ri does.

PhDs+S lawek (Mostrare) Queries on Trees 2008 62 / 128

X property: Example

{ch+, ch∗} for the preorder <pre (ch+(x , y)⇒ x <pre y)

{ch, ns, ns+, ns∗} for <bflr

but not following for <pre
1

2

3 4

5

6 7
>

U

following

following R

�

2

3

4

6

-
following

following

PhDs+S lawek (Mostrare) Queries on Trees 2008 63 / 128

Dichotomy Result

Theorem (Gottlob, Koch, Schulz, 2004)

For all F ⊆ X , CQ[F] Boolean queries can be evaluated in PTIME iff
there is a total order < such that F satisfies the X property wrt <.

Question: generelization to n-ary queries? Which complexity measure?
→ polynomial in the number of answers.

PhDs+S lawek (Mostrare) Queries on Trees 2008 64 / 128

Acyclic Conjunctive Queries (ACQ)

Acyclic: the query graph is acyclic

∃x∃y∃z , ns(x , y) ∧ ch∗(y , z)

x

y z

ns ch∗

PhDs+S lawek (Mostrare) Queries on Trees 2008 65 / 128

Expressiveness

[GKS04]

CQ[X] (
⋃

ACQ[X] ⊆ FO[X]
exponential

x

y z
/ ^

-

ch∗ch∗

following

-

x

u

y

v

z

ch∗ ch∗

ch+

ns+=

? ?

-

[Mar05b], over unranked trees,

⋃

ACQ[FO2] = FOnary

PhDs+S lawek (Mostrare) Queries on Trees 2008 66 / 128

ACQ Evaluation

Yannakakis algorithm: O(|q|.|db|.|q(db)|)

∃x R(x , y) ∧ R ′(x , z)

on trees t with predicates X : O(|q|.|t|2.|q(t)|)

∃x ch∗(x , y) ∧ ns∗(x , z)

PhDs+S lawek (Mostrare) Queries on Trees 2008 67 / 128

Outline

3 Conjunctive Queries over Trees
Definition, results and acyclic fragment
Twigs and Tree Patterns

4 Monadic Datalog

PhDs+S lawek (Mostrare) Queries on Trees 2008 68 / 128

Twigs: Testing containment [MS02]

Tree pattern

(unordered and unranked) tree labeled with elements from Σ ∪ {∗}
child and descendant edges
n distinguished querying nodes (n-ary query)
unary tree patterns (n = 1) equivalent to XPath(∗, [], //, /)

a

b

∗x1

cx2

a

b c

d c

Ans(p, t) = {(1 · 1, 2), (1 · 1, 2 · 1)}

Containment (problem statement)

p1 ⊆ p2 if and only if Ans(p1, t) ⊆ Ans(p2, t) for every t ∈ TΣ

PhDs+S lawek (Mostrare) Queries on Trees 2008 69 / 128

Booleanize your twigs

Boolean tree patterns

Tree patterns p with no querying nodes (n = 0)

Mod(p) = {t ∈ TΣ|t satisfies p}

Then, p1 ⊆ p2 if and only if Mod(p1) ⊆ Mod(p2)

p :

a

b

∗x1

cx2 pB :

a

b

∗

z1

c

z2

Proposition

For any two n-ary tree patterns p1 and p2: p1 ⊆ p2 ⇔ pB
1 ⊆ pB

2

PhDs+S lawek (Mostrare) Queries on Trees 2008 70 / 128

Canonical models of Boolean twigs

p :

a

b

∗

c

a

b

∗

c

a

b

∗

∗

c

a

b

∗

∗

∗

c

. . .

PhDs+S lawek (Mostrare) Queries on Trees 2008 71 / 128

Canonical models of Boolean twigs

p :

a

b

∗

c

a

b

z

c

a

b

z

z

c

a

b

z

z

z

c

. . .

mod(p)

PhDs+S lawek (Mostrare) Queries on Trees 2008 71 / 128

Canonical models of Boolean twigs

p :

a

b

∗

c

a

b

z

c

a

b

z

z

c

a

b

z

z

z

c

. . .

mod(p)

Proposition

For any Boolean tree patterns p1 and p2:

p1 ⊆ p2 ⇔ mod(p1) ⊆ Mod(p2).

PhDs+S lawek (Mostrare) Queries on Trees 2008 71 / 128

Testing containment of Boolean twigs: Outline

unranked
a

b

∗

c

p

ranked
a

b

∗

∗

∗

cLp

Up

unranked
a

b

z

z

z

cmod(p)

PhDs+S lawek (Mostrare) Queries on Trees 2008 72 / 128

Testing containment of Boolean twigs: Outline

unranked
a

b

∗

c

p

ranked
a

b

∗

∗

∗

cLp

Up

unranked
a

b

z

z

z

cmod(p)

Main idea

p1 ⊆ p2 ⇔ mod(p1) ⊆ Mod(p2)⇔ Up1(Lp1) ⊆ Mod(p2)

⇔ Lp1 ⊆ U−1
p1

(Mod(p2))⇔ Ap1 ⊆ Ap2 ,

where:

Ap1 : DFTA defining Lp1

Ap2 : AFTA defining U−1
p1

(Mod(p2)) complexity:O(|p1|2
|p2|)

PhDs+S lawek (Mostrare) Queries on Trees 2008 72 / 128

Testing containment: Conclusions

Positive results

p1 ⊆ p2 can be decided in time O(|p1||p2|w
d), where:

d is the number of //-edges in p1

w is the maximal length of ∗/ ∗ / . . . /∗ in p2

Negative results

Deciding containment is coNP-complete. The result holds even if we:

bound the number of occurrences of ∗

bound the degree of the nodes of tree patterns

PhDs+S lawek (Mostrare) Queries on Trees 2008 73 / 128

Efficient evaluation of tree patterns

TwigStack [BKS02]

Interval representation used with a variant of B-tree index

Two phase approach:
1 Find and stack (partial) solutions to leaf-to-root paths
2 Join partial solutions

Linear in the size of the input and output

I/O and CPU optimal if only //-edges used

Twig2Stack [CLT+06]

Generalized tree pattern queries

One phase bottom-up approach

May stack elements that are not solutions

In the worst case the whole document may be stored in main memory

HollisticTwigStack [JLH+07] addresses this shortcoming
PhDs+S lawek (Mostrare) Queries on Trees 2008 74 / 128

Outline

3 Conjunctive Queries over Trees
Definition, results and acyclic fragment
Twigs and Tree Patterns

4 Monadic Datalog

PhDs+S lawek (Mostrare) Queries on Trees 2008 75 / 128

Overview

Few words on datalog

Least fixed point

Monadic datalog over trees

PhDs+S lawek (Mostrare) Queries on Trees 2008 76 / 128

Datalog in (Very) Few Words

Language used in deductive databases

Extends conjunctive queries with recursion

Example: transitive closure of a graph

TC (x , y) :− Edge(x , y).
TC (x , y) :− Edge(x , z),TC (z , y).

Model theoretic point of view:

∀x , y(Edge(x , y)→ TC (x , y))
∀x , y , z((Edge(x , z) ∧ TC (z , y))→ TC (x , y))

Remark: no function symbols (finite models), no negation

See chapter 12 of [AHV95] for more details

PhDs+S lawek (Mostrare) Queries on Trees 2008 77 / 128

Least Fixed Point I

P is a fixed point of operator F if F (P) = P

The least fixed point lfp(F) is the least element of the set of fixed
points of F w.r.t. inclusion

Every monotone operator F (i.e., P ⊆ Q ⇒ F (P) ⊆ F (Q)) has a
least fixed point (Knaster-Tarski, cited by [Lib04]):

lfp(F) =
⋂

{P|F (P) = P}

Computing the least fixed point (standard closure):

P0 = ∅
P i+1 = F (P i)
lfp(F) = P∞ =

⋃∞
i=0 P i

Stabilizes after n steps on finite structures, i.e., P∞ = Pn

PhDs+S lawek (Mostrare) Queries on Trees 2008 78 / 128

Least Fixed Point II
Datalog immediate consequence operator TP(from [GK04]):

TP(Q) := Q ∪ {f | ∃φ,∃h :− b1, . . . , bn ∈ P
φ(h) = f
φ(b1), . . . , φ(bn) ∈ Q }

Example: program P =

{

TC (x , y) :− Edge(x , y).
TC (x , y) :− Edge(x , z),TC (z , y).

}

and

database Q = {Edge(1, 2),Edge(2, 3),Edge(3, 1)}

T 0
P = Q = {Edge(1, 2),Edge(2, 3),Edge(3, 1)}

T 1
P = T 0

P ∪ {TC (1, 2),TC (2, 3),TC (3, 1)}
T 2
P = T 1

P ∪ {TC (1, 3),TC (2, 1),TC (3, 2)}
T 3
P = T 2

P

Finally, lfp(TP)
notation

= Tω
P = T 3

P = T 2
P =

{Edge(1, 2),Edge(2, 3),Edge(3, 1),TC (1, 2),TC (2, 3),TC (3, 1), . . .}

PhDs+S lawek (Mostrare) Queries on Trees 2008 79 / 128

Monadic Datalog over Trees

Datalog with unary head predicates

Built-in predicates (for binary trees): root, leaf, (labela)a∈Σ, ch1,
ch2

Example of query: select all nodes labeled by a at even height

Q0(x) :− root(x).
Q(i+1)mod2(x) :− Qi (y), chk(y , x). (for k ∈ {1, 2})
Ans(x) :− Q0(x), labela(x).

The query predicate is Ans

PhDs+S lawek (Mostrare) Queries on Trees 2008 80 / 128

Monadic Datalog over Trees: Complexity

Model Checking

Over ranked as well as unranked trees, monadic datalog has
O(|P| ∗ |dom|) combined complexity (theo. 4.2 of [GK04])

Proved by rewriting of P such that it is ground.

Satisfiability

Monadic datalog (over arbitrary finite structures) is NP-complete w.r.t.
combined complexity (prop. 3.4 of [GK04])

Membership: guess a proof tree

Hardness: boolean conjuctive queries

For trees, satisfiability can be reduced to the emptiness problem for
context-free languages [?]. What about the complexity?

PhDs+S lawek (Mostrare) Queries on Trees 2008 81 / 128

Monadic Datalog over Trees: Expressiveness

Equivalence with MSO

A tree language is definable in monadic datalog exactly if it is definable in
MSO (coro. 4.7 of [GK04])

Sketch of proof (for monadic queries):

⇒ Encode the query defined by a monadic datalog program into an
MSO formula (prop. 3.3 of [GK04])

⇐ More intricate, different ways of prooving it:
1 Using ≡MSO

k -types (theo. 4.4 of [GK04])
2 Simulating query automata of Neven & Schwentick [NS02] (Section

4.3 of [GK04])
3 Encoding tree automata with selecting states? (next slides)

PhDs+S lawek (Mostrare) Queries on Trees 2008 82 / 128

Encoding a Tree Automaton A into a Monadic Datalog
Program P I

Rq(x) in lfp of P if a run of A can evaluate node x in state q:

a→ q ∈ rules(A)

Rq(x) :− leaf(x), labela(x).

f (q1, q2)→ q ∈ rules(A)

Rq(x) :− Rq1(y),Rq2(z), ch1(x , y), ch2(x , z), labelf (x).

PhDs+S lawek (Mostrare) Queries on Trees 2008 83 / 128

Encoding a Tree Automaton A into a Monadic Datalog
Program P II

L2Fq(x), aka LeadsToFinalq(x), in lfp of P if state q is used in a succesful
run of A:

q ∈ final(A)

L2Fq(x) :− root(x).

f (q1, q2)→ q ∈ rules(A)

L2Fq1(y) :− L2Fq(x), ch1(x , y), ch2(x , z), labelf (x),Rq2(z).
L2Fq2(z) :− L2Fq(x), ch1(x , y), ch2(x , z), labelf (x),Rq1(y).

PhDs+S lawek (Mostrare) Queries on Trees 2008 84 / 128

Encoding a Tree Automaton A into a Monadic Datalog
Program P III

Ans(x) in lfp of P if x is selected by automaton A, i.e., x is evaluated in
state q ∈ S , where S ⊆ states(A) is the set of selecting states:

q ∈ S

Ans(x) :− Rq(x), L2Fq(x).

Proposition: Monadic datalog program P with Ans as query predicate
simulates tree automaton with selecting states A

PhDs+S lawek (Mostrare) Queries on Trees 2008 85 / 128

Part III

µ-calculus, Modal Logics (Temporal Logics, XPath...)

PhDs+S lawek (Mostrare) Queries on Trees 2008 86 / 128

Outline

5 µ-calculus

6 XPath

7 Temporal Logics

PhDs+S lawek (Mostrare) Queries on Trees 2008 87 / 128

Structure and formulae

The structure used here is the one used by Barceló and Libkin. Most
of the results are taken from [BL05a, ABL07].

Tree t with two relations (or more) on position: child ≺ch and next
sibling ≺ns

Formulae of Lµ[≺]:
◮ constants a
◮ second order variables X
◮ ⊤,⊥,¬φ, φ ∨ φ′

◮ ⋄(≺)φ
◮ µX .φ where X can only appears positively in φ

PhDs+S lawek (Mostrare) Queries on Trees 2008 88 / 128

Interpretation

Given a tree t, nodes s, s ′ ∈ Domain(t) and a valuation
v : X → P(Domain(t))

logic operators are interpreted as usual

(t, v , s) |= a iff t(s) = a

(t, v , s) |= X iff s ∈ v(X)

(t, v , s) |= ⋄(≺)φ iff (t, v , s ′) |= ⋄(≺)φ for some s ′ such that s ≺ s ′

(t, v , s) |= µX .φ iff s ∈ S where S is the least fix point of Fφ, defined
by Fφ(P) = {s ′ | (t, v [P/X], s ′) |= φ}

PhDs+S lawek (Mostrare) Queries on Trees 2008 89 / 128

Interpretation

(t, v , s) |= µX .φ(X) iff s ∈ S where S is the least fix point of F

Problem: is there a least fix point?

The function P 7→ {s ′ | (t, v [P/X], s ′) |= φ} is monotonically
increasing because X can only appear positively in µX .φ

PhDs+S lawek (Mostrare) Queries on Trees 2008 90 / 128

Interpretation

(t, v , s) |= µX .φ(X) iff s ∈ S where S is the least fix point of F

Problem: is there a least fix point?

The function P 7→ {s ′ | (t, v [P/X], s ′) |= φ} is monotonically
increasing because X can only appear positively in µX .φ

◮ Fa,F⊤,F⊥,FY are constant

PhDs+S lawek (Mostrare) Queries on Trees 2008 90 / 128

Interpretation

(t, v , s) |= µX .φ(X) iff s ∈ S where S is the least fix point of F

Problem: is there a least fix point?

The function P 7→ {s ′ | (t, v [P/X], s ′) |= φ} is monotonically
increasing because X can only appear positively in µX .φ

◮ Fa,F⊤,F⊥,FY are constant
◮ FX (P) = P is increasing

PhDs+S lawek (Mostrare) Queries on Trees 2008 90 / 128

Interpretation

(t, v , s) |= µX .φ(X) iff s ∈ S where S is the least fix point of F

Problem: is there a least fix point?

The function P 7→ {s ′ | (t, v [P/X], s ′) |= φ} is monotonically
increasing because X can only appear positively in µX .φ

◮ Fa,F⊤,F⊥,FY are constant
◮ FX (P) = P is increasing
◮ if Fφ and F ′

φ both are increasing (resp. decreasing), then
Fφ∨φ′(P) = Fφ(P) ∪ Fφ′(P) is increasing (resp. decreasing)

PhDs+S lawek (Mostrare) Queries on Trees 2008 90 / 128

Interpretation

(t, v , s) |= µX .φ(X) iff s ∈ S where S is the least fix point of F

Problem: is there a least fix point?

The function P 7→ {s ′ | (t, v [P/X], s ′) |= φ} is monotonically
increasing because X can only appear positively in µX .φ

◮ Fa,F⊤,F⊥,FY are constant
◮ FX (P) = P is increasing
◮ if Fφ and F ′

φ both are increasing (resp. decreasing), then
Fφ∨φ′(P) = Fφ(P) ∪ Fφ′(P) is increasing (resp. decreasing)

◮ if Fφ is increasing (resp. decreasing) then F⋄(≺)φ is increasing (resp.
decreasing)

PhDs+S lawek (Mostrare) Queries on Trees 2008 90 / 128

Interpretation

(t, v , s) |= µX .φ(X) iff s ∈ S where S is the least fix point of F

Problem: is there a least fix point?

The function P 7→ {s ′ | (t, v [P/X], s ′) |= φ} is monotonically
increasing because X can only appear positively in µX .φ

◮ Fa,F⊤,F⊥,FY are constant
◮ FX (P) = P is increasing
◮ if Fφ and F ′

φ both are increasing (resp. decreasing), then
Fφ∨φ′(P) = Fφ(P) ∪ Fφ′(P) is increasing (resp. decreasing)

◮ if Fφ is increasing (resp. decreasing) then F⋄(≺)φ is increasing (resp.
decreasing)

◮ if Fφ is increasing (resp. decreasing), then F¬φ(P) = Fφ(P) is
decreasing (resp. increasing)

PhDs+S lawek (Mostrare) Queries on Trees 2008 90 / 128

Interpretation

(t, v , s) |= µX .φ(X) iff s ∈ S where S is the least fix point of F

Problem: is there a least fix point?

The function P 7→ {s ′ | (t, v [P/X], s ′) |= φ} is monotonically
increasing because X can only appear positively in µX .φ

◮ Fa,F⊤,F⊥,FY are constant
◮ FX (P) = P is increasing
◮ if Fφ and F ′

φ both are increasing (resp. decreasing), then
Fφ∨φ′(P) = Fφ(P) ∪ Fφ′(P) is increasing (resp. decreasing)

◮ if Fφ is increasing (resp. decreasing) then F⋄(≺)φ is increasing (resp.
decreasing)

◮ if Fφ is increasing (resp. decreasing), then F¬φ(P) = Fφ(P) is
decreasing (resp. increasing)

◮ if Fφ is increasing then FµX .φ(P) is increasing

PhDs+S lawek (Mostrare) Queries on Trees 2008 90 / 128

Unary and boolean queries

A formula φ from Lµ can be used as a unary query which selects in t the
nodes s such that

(t, ., s) |= φ

PhDs+S lawek (Mostrare) Queries on Trees 2008 91 / 128

Unary and boolean queries

A formula φ from Lµ can be used as a unary query which selects in t the
nodes s such that

(t, ., s) |= φ

A formula φ from Lµ can be used as a boolean query which accepts a tree
t iff

(t, ., ε) |= φ

Example

Selects nodes which are ancestors of a node labelled by a:

µX .(a ∨ ⋄(≺ch)X).

PhDs+S lawek (Mostrare) Queries on Trees 2008 91 / 128

Expressiveness
of boolean queries

Lµ[≺ch,≺ns] cannot express first child...
◮ Lµ[≺ch,≺ns,≺fc]
◮ Lfull

µ [≺ch,≺ns]: one can use ⋄(≺−)φ, where s ≺− s ′ iff s ′ ≺ s

Lµ[≺ch,≺ns,≺fc] = Lfull
µ [≺ch,≺ns] = MSO

PhDs+S lawek (Mostrare) Queries on Trees 2008 92 / 128

Lµ[≺ch,≺ns,≺fc] ⊆ MSO

One can rewrite any Lµ[≺ch,≺ns,≺fc] formula into a MSO query as
follow:

〈a〉(x) = labela(x)

〈µX .φ〉(z) = ∃X (z ∈ X ∧ ∀x ∈ X ⇒ 〈φ〉(x) ∧ (∀Y (∀y ∈ Y ⇒
〈φ〉(y))⇒ X ⊆ Y))

PhDs+S lawek (Mostrare) Queries on Trees 2008 93 / 128

Lµ[≺ch,≺ns,≺fc] ⊆ MSO

One can rewrite any Lµ[≺ch,≺ns,≺fc] formula into a MSO query as
follow:

〈a〉(x) = labela(x)

〈X 〉(x) = x ∈ X

〈µX .φ〉(z) = ∃X (z ∈ X ∧ ∀x ∈ X ⇒ 〈φ〉(x) ∧ (∀Y (∀y ∈ Y ⇒
〈φ〉(y))⇒ X ⊆ Y))

PhDs+S lawek (Mostrare) Queries on Trees 2008 93 / 128

Lµ[≺ch,≺ns,≺fc] ⊆ MSO

One can rewrite any Lµ[≺ch,≺ns,≺fc] formula into a MSO query as
follow:

〈a〉(x) = labela(x)

〈X 〉(x) = x ∈ X

〈⋄(≺ch)φ〉(x) = ∃y | ch(y , x) ∧ 〈φ〉(y), ...

〈µX .φ〉(z) = ∃X (z ∈ X ∧ ∀x ∈ X ⇒ 〈φ〉(x) ∧ (∀Y (∀y ∈ Y ⇒
〈φ〉(y))⇒ X ⊆ Y))

PhDs+S lawek (Mostrare) Queries on Trees 2008 93 / 128

Lµ[≺ch,≺ns,≺fc] ⊆ MSO

One can rewrite any Lµ[≺ch,≺ns,≺fc] formula into a MSO query as
follow:

〈a〉(x) = labela(x)

〈X 〉(x) = x ∈ X

〈⋄(≺ch)φ〉(x) = ∃y | ch(y , x) ∧ 〈φ〉(y), ...

〈µX .φ〉(z) = ∃X (z ∈ X ∧ ∀x ∈ X ⇒ 〈φ〉(x) ∧ (∀Y (∀y ∈ Y ⇒
〈φ〉(y))⇒ X ⊆ Y))

PhDs+S lawek (Mostrare) Queries on Trees 2008 93 / 128

Lµ[≺ch,≺ns,≺fc] ⊆ MSO

One can rewrite any Lµ[≺ch,≺ns,≺fc] formula into a MSO query as
follow:

〈a〉(x) = labela(x)

〈X 〉(x) = x ∈ X

〈⋄(≺ch)φ〉(x) = ∃y | ch(y , x) ∧ 〈φ〉(y), ...

〈µX .φ〉(z) = ∃X (z ∈ X ∧ ∀x ∈ X ⇒ 〈φ〉(x) ∧ (∀Y (∀y ∈ Y ⇒
〈φ〉(y))⇒ X ⊆ Y))

Finally, the whole query will be ∃x root(x) ∧ 〈φ〉(x)

PhDs+S lawek (Mostrare) Queries on Trees 2008 93 / 128

MSO ⊆ Lµ[≺ch,≺ns,≺fc]

Given a MSO query, let A be an equivalent deterministic automaton. We
can encode A with a Lµ[≺ch,≺ns,≺fc] formula.

Example

On ranked trees, ≺ch1,≺ch2,
Automaton Q = {qa, qb} ,QF = {qa}
a→ qa, b → qb, f (qa, qb)→ qa, f (qb, qa)→ qb

µXa.a ∨ f ∧ ⋄(≺ch1)Xa ∧ ⋄(≺ch2)(µXb.b ∨ f ∧ ⋄(≺ch1)Xa ∧ ⋄(≺ch2))

PhDs+S lawek (Mostrare) Queries on Trees 2008 94 / 128

Expressiveness
of unary queries

Lµ[≺ch,≺ns,≺fc] cannot express root...

we need to use Lfull
µ [≺ch,≺ns]

Lfull
µ [≺ch,≺ns] = MSO

PhDs+S lawek (Mostrare) Queries on Trees 2008 95 / 128

Expressiveness
of unary queries

Lµ[≺ch,≺ns,≺fc] cannot express root...

we need to use Lfull
µ [≺ch,≺ns]

Lfull
µ [≺ch,≺ns] = MSO

PhDs+S lawek (Mostrare) Queries on Trees 2008 95 / 128

Expressiveness
of unary queries

Lµ[≺ch,≺ns,≺fc] cannot express root...

we need to use Lfull
µ [≺ch,≺ns]

Lfull
µ [≺ch,≺ns] = MSO

Proofs: similar to Boolean queries, but with query automata instead

PhDs+S lawek (Mostrare) Queries on Trees 2008 95 / 128

Complexities

Because the structure of trees are acyclic, model checking of
Lfull

µ [≺ch,≺sb] can be computed in O(|φ|2 |t|). Can be reduced for a
subclass of Lµ (as expressive as MSO) to O(|φ| |t|)

Satisfiability of Lfull
µ [≺ch,≺sb] is EXPTIME (slightly better bounds in

the case of tree than in the general case)

PhDs+S lawek (Mostrare) Queries on Trees 2008 96 / 128

Outline

5 µ-calculus

6 XPath

7 Temporal Logics

PhDs+S lawek (Mostrare) Queries on Trees 2008 97 / 128

First-order modal logics
on Unranked Trees

Strong links between:

XPath

Modal Logics (temporal, propositional...)

FO

PhDs+S lawek (Mostrare) Queries on Trees 2008 98 / 128

First-order modal logics
on Unranked Trees

Strong links between:

XPath

Modal Logics (temporal, propositional...)

FO

→ remember the first slides about the model and FO

PhDs+S lawek (Mostrare) Queries on Trees 2008 98 / 128

First-order modal logics
on Unranked Trees

Strong links between:

XPath

Modal Logics (temporal, propositional...)

FO

→ remember the first slides about the model and FO
→ we won’t talk about L-definability (i.e., given an automaton, is it
equivalent to a formula of the logic L?). See [Boj08a] for a survey.

PhDs+S lawek (Mostrare) Queries on Trees 2008 98 / 128

Binary vs Unranked Trees

FO-definable queries on binary trees?

“select trees with even number of nodes”

PhDs+S lawek (Mostrare) Queries on Trees 2008 99 / 128

Binary vs Unranked Trees

FO-definable queries on binary trees?

“select trees with even number of nodes” X (always false)

PhDs+S lawek (Mostrare) Queries on Trees 2008 99 / 128

Binary vs Unranked Trees

FO-definable queries on binary trees?

“select trees with even number of nodes” X (always false)

“select trees with even number of a-nodes”

PhDs+S lawek (Mostrare) Queries on Trees 2008 99 / 128

Binary vs Unranked Trees

FO-definable queries on binary trees?

“select trees with even number of nodes” X (always false)

“select trees with even number of a-nodes” x

PhDs+S lawek (Mostrare) Queries on Trees 2008 99 / 128

Binary vs Unranked Trees

FO-definable queries on binary trees?

“select trees with even number of nodes” X (always false)

“select trees with even number of a-nodes” x

“select trees that have a leaf of even depth”

PhDs+S lawek (Mostrare) Queries on Trees 2008 99 / 128

Binary vs Unranked Trees

FO-definable queries on binary trees?

“select trees with even number of nodes” X (always false)

“select trees with even number of a-nodes” x

“select trees that have a leaf of even depth” X (zigzag technic)

PhDs+S lawek (Mostrare) Queries on Trees 2008 99 / 128

Binary vs Unranked Trees

FO-definable queries on binary trees?

“select trees with even number of nodes” X (always false)

“select trees with even number of a-nodes” x

“select trees that have a leaf of even depth” X (zigzag technic)

not clear whether the last query is FO-definable on unranked trees.

PhDs+S lawek (Mostrare) Queries on Trees 2008 99 / 128

XPath 1.0: a W3C recommendation (since 1999)

Example:
/descendant :: a[position() > last() ∗ 0.5 or self :: ∗ = 100]
Features:

select nodes (monadic queries)

navigation through axis (child... following, preceding)

node test and filters: /ax1::ntst1[f1][f2[f3]]/...

context-sensitive functions (position, last...)

element types (element, attribute, instruction, comments)

arithmetic operators (+,−...)

data operators/comparators (string-length...)

aggregators (count, sum...)

identifiers functions...

type conversion functions...

PhDs+S lawek (Mostrare) Queries on Trees 2008 100 / 128

XPath axes [Shi08]

PhDs+S lawek (Mostrare) Queries on Trees 2008 101 / 128

XPath 1.0

first implementations: exponential time in the size of the query

PTIME combined complexity obtained in [GKP02, GKP03a]:
O(|D|2.|Q|4) in time, O(|D|2.|Q|2) in space.

PhDs+S lawek (Mostrare) Queries on Trees 2008 102 / 128

XPath 1.0

first implementations: exponential time in the size of the query

PTIME combined complexity obtained in [GKP02, GKP03a]:
O(|D|2.|Q|4) in time, O(|D|2.|Q|2) in space.

Questions:

linear time fragment?

expressiveness? links to other logics?

PhDs+S lawek (Mostrare) Queries on Trees 2008 102 / 128

CoreXPath
The navigational core of XPath

defined by Gottlob, Koch and Pichler [GKP02, GKP03a]

restriction to navigation through axis, filters, and nodetests

locpath ::= axis :: ntst | axis :: ntst[fexpr] | /locpath | locpath/locpath
fexpr ::= locpath | not fexpr | fexpr and fexpr | fexpr or fexpr

axis ::= self | ch | ch+ | ch∗ | ch
−1 | ch−1

+ | ch−1
∗ | ns+ | ns

−1
+

ntst ::= a, a ∈ Σ | ∗

document order axis following and preceding are syntactic sugar:

following :: ntst[fexpr] ≡ ch−1
∗ :: ∗/ns+ :: ∗/ch∗ :: ntst[fexpr]

preceding :: ntst[fexpr] ≡ ch−1
∗ :: ∗/ns−1

+ :: ∗/ch∗ :: ntst[fexpr]

PhDs+S lawek (Mostrare) Queries on Trees 2008 103 / 128

CoreXPath complexity [GKP03b]

query evaluation becomes linear: O(|D|.|Q|)

it is P-hard wrt. combined complexity...

... even when t is limited to depth 3 and only axes ch, ch−1, ch∗ are
allowed

Positive-CoreXPath is LOGCFL-complete

satisfiability is EXPTIME-complete

PhDs+S lawek (Mostrare) Queries on Trees 2008 104 / 128

CoreXPath expressiveness

CoreXPath ⊆ FO

CoreXPath /ch+ :: a [ch :: b] /ch :: c

variables y z x

φ(x) = ∃y . labela(y) ∧ ∃z . labelc(z) ∧ labelc(x)
∧ ch(y , z) ∧ ch(y , x)

PhDs+S lawek (Mostrare) Queries on Trees 2008 105 / 128

CoreXPath expressiveness

CoreXPath ⊆ FO

CoreXPath /ch+ :: a [ch :: b] /ch :: c

variables y z x

φ(x) = ∃y . labela(y) ∧ ∃z . labelc(z) ∧ labelc(x)
∧ ch(y , z) ∧ ch(y , x)

FO * CoreXPath

example: select root if the leaf language is (ab)∗.

in fact, CoreXPath = FO2
1 [Mar05b]

PhDs+S lawek (Mostrare) Queries on Trees 2008 105 / 128

Expressiveness
A B A (B

A B A ⊆ B

A B A * B

FO1

FO2
1 = CoreXPath

PhDs+S lawek (Mostrare) Queries on Trees 2008 106 / 128

CondXPath [Mar04]
Conditional XPath

CondXPath =
CoreXPath
+ axis: ns, ns∗, ns

−1, ns−1
∗

+ until operator: (axis :: ntst[fexpr])+ with axis ∈ {ch, ch−1, ns, ns−1}

CondXPath has the same complexity as CoreXPath (for both query
evaluation and satisiability).

PhDs+S lawek (Mostrare) Queries on Trees 2008 107 / 128

CondXPath [Mar04]
Conditional XPath

CondXPath =
CoreXPath
+ axis: ns, ns∗, ns

−1, ns−1
∗

+ until operator: (axis :: ntst[fexpr])+ with axis ∈ {ch, ch−1, ns, ns−1}

CondXPath has the same complexity as CoreXPath (for both query
evaluation and satisiability).

CondXPath ⊆ FO

For instance (ch :: a[ns∗ :: b])+ translates to the FO formula:
φ(x , y) =
∃z . ns∗(y , z) ∧ labelb(z) ∧
¬(∃s. ch∗(x , s) ∧ ch∗(s, y) ∧ (¬labela(s) ∨ ¬∃s ′. ns∗(s, s ′) ∧ labelb(s ′)))

PhDs+S lawek (Mostrare) Queries on Trees 2008 107 / 128

CondXPath [Mar04]
Expressiveness

How to prove that FO ⊆ CondXPath?

PhDs+S lawek (Mostrare) Queries on Trees 2008 108 / 128

CondXPath [Mar04]
Expressiveness

How to prove that FO ⊆ CondXPath?
Marx uses an intermediate logic: Xuntil.

CondXPath FO

Xuntil

previous slide

21

PhDs+S lawek (Mostrare) Queries on Trees 2008 108 / 128

Xuntil

Syntax

ϕ ::≡ a | ⊤ | ¬ϕ | ϕ ∧ ϕ′ | θ(ϕ,ϕ′) (a ∈ Σ, θ ∈ {⇓,⇐,⇒,⇑})

Arrows are interpreted as transitive closures of corresponding axis.

Semantics
(t, π) |= a iff labelt

a(π)
(t, π) |= ¬ϕ iff (t, π) 6|= ϕ
(t, π) |= ϕ ∧ ϕ′ iff (t, π) |= ϕ and (t, π) |= ϕ′

(t, π) |= θ(ϕ,ϕ′) iff there exists π′ s.t. θ+(π, π′) and (t, π′) |= ϕ
and for all π′′ s.t. πθ+π′′θ+π′, (t, π′′) |= ϕ′

PhDs+S lawek (Mostrare) Queries on Trees 2008 109 / 128

1. From Xuntil to CondXPath

Xuntil → CondXPath

r(a) = self :: a
r(¬ϕ) = not r(ϕ)

r(ϕ ∧ ϕ′) = r(ϕ) and r(ϕ′)
r(θ(ϕ,ϕ′)) = θ :: ∗[r(ϕ)] or (θ :: ∗[r(ϕ′)])+/θ :: ∗[r(ϕ)]

PhDs+S lawek (Mostrare) Queries on Trees 2008 110 / 128

2. From FO to Xuntil
Separation technic

Theorem ([GHR94], adapted in [Mar04])

If every Xuntil formula is separable over trees, then Xuntil is FO-expressive.

“ϕ separable” means:
equivalent to a Boolean
combination of pure
past/present/future/left/right
formula

PhDs+S lawek (Mostrare) Queries on Trees 2008 111 / 128

2. From FO to Xuntil
Separation technic

Theorem ([Mar04])

Each Xuntil formula is separable.

Query rewriting... with blowup.

PhDs+S lawek (Mostrare) Queries on Trees 2008 112 / 128

Alternative proof

Theorem ([Mar05b])

any expansion of CoreXPath which is closed under complementation
is FO-expressive

CondXPath is closed under complementation

PhDs+S lawek (Mostrare) Queries on Trees 2008 113 / 128

Expressiveness
A B A (B

A B A ⊆ B

A B A * B

FO1 = CondXPath

FO2
1 = CoreXPath

PhDs+S lawek (Mostrare) Queries on Trees 2008 114 / 128

RegularXPath≈ [tC06]

RegularXPath =

CoreXPath
+ axis: ns, ns∗, ns

−1, ns−1
∗

+ transitive closure: (RegularXPath expression)∗

RegularXPath≈ =

RegularXPath
+ loop predicate: [loop(ϕ)]t = {π ∈ Dt | (π, π) ∈ [ϕ]t}

Both have PTIME combined complexity for query evaluation.

PhDs+S lawek (Mostrare) Queries on Trees 2008 115 / 128

RegularXPath≈ [tC06]
Expressiveness

Theorem

RegularXPath≈ and FO + TC 1 have the same expressive power.

In a preceding section, we saw that FO + TC 1 is strictly less expressive
than MSO [tCS08].

Corollary

The class of binary relations definable in RegularXPath≈ is closed under
intersection and complementation.

It is only conjectured that adding loop increases expressivity, i.e., that
RegularXPath (RegularXPath≈.

PhDs+S lawek (Mostrare) Queries on Trees 2008 116 / 128

Expressiveness
A B A (B

A B A ⊆ B

A B A * B MSO

FO + TC1 = RegularXPath≈

FO = CondXPath

FO2 = CoreXPath

[BC05, BSSS06]

[tCS08]

PhDs+S lawek (Mostrare) Queries on Trees 2008 117 / 128

RegularXPath variants

µRegularXPath adds a fixed-point operator [tC06] → MSO

RegularXPath(W) adds a “subtree relativisation operator” [tCS08]

Beware: RegularXPath(W) = FO + TC 1
p , whereas

RegularXPath≈ = FO + TC 1. Remind that it is not known whether the
inclusion FO + TC 1 ⊆ FO + TC 1

p is strict.

PhDs+S lawek (Mostrare) Queries on Trees 2008 118 / 128

XPath 2.0

XPath 2.0

adds the following features to XPath:

for loops: for $i in R return S

Boolean intersection (intersect) and complementation (except) on
path expressions

variables: n-ary queries

node comparison tests (is)

PhDs+S lawek (Mostrare) Queries on Trees 2008 119 / 128

CoreXPath 2 [tCM07]

CoreXPath 2

for loops are interpreted as sets of nodes, not sequences

no positional/aggregate: position(), last(), count()

no value comparison operators

PhDs+S lawek (Mostrare) Queries on Trees 2008 120 / 128

CoreXPath 2 [tCM07]

CoreXPath 2

for loops are interpreted as sets of nodes, not sequences

no positional/aggregate: position(), last(), count()

no value comparison operators

adding the last 2 features leads to undecidability.

equivalence of CoreXPath 2 queries is decidable.

of course, CoreXPath 2 is FO-expressive (adding except to
CoreXPath is already sufficient).

CoreXPath 2 ↔ FO translations in linear time

PhDs+S lawek (Mostrare) Queries on Trees 2008 120 / 128

Outline

5 µ-calculus

6 XPath

7 Temporal Logics

PhDs+S lawek (Mostrare) Queries on Trees 2008 121 / 128

Preliminaries: Linear Temporal Logic (LTL)

Syntax

ϕ ::≡ a | ¬ϕ | ϕ ∨ ψ | Xϕ | X− ϕ | ϕU ψ | ϕ S ψ

Semantics

Structure: s = s0s1 · · · sn a string over Σ
Interpretation: (s, i) |= ϕ (ϕ is satisfied in s at position i)
label (s, i) |= a iff si = a (i.e. labels(i) = a)
next (s, i) |= Xϕ iff (s, i + 1) |= ϕ
prev (s, i) |= X− ϕ iff (s, i − 1) |= ϕ
until (s, i) |= ϕU ψ iff ∃j ≥ i . (s, j) |= ψ ∧ ∀k ∈ {i , . . . , j − 1}. (s, k) |= ϕ
since (s, i) |= ϕ S ψ iff ∃j ≤ i . (s, j) |= ψ ∧ ∀k ∈ {j + 1, . . . , i}. (s, k) |= ϕ

PhDs+S lawek (Mostrare) Queries on Trees 2008 122 / 128

Querying and expressivity

LTL Boolean queries

QA(ϕ, s) = true⇔ (s, 0) |= ϕ

LTL unary queries

QA(ϕ, s) =
{

i ∈ {0, . . . , |s|} : (s, i) |= ϕ
}

Kamp’s Theorem.

Over strings, LTL = FO

PhDs+S lawek (Mostrare) Queries on Trees 2008 123 / 128

Tree Temporal Logic TLtree

Syntax

ϕ ::≡ a | ¬ϕ | ϕ ∨ ψ | Xθ ϕ | X
−
θ ϕ | ϕUθ ψ | ϕ Sθ ψ (θ ∈ {↓,←})

Semantics

(t, π) |= ϕ reads “ϕ is satisfied in t at node π”
(t, π) |= a iff labelt(π) = a
(t, π) |= X↓ϕ iff ∃π′ such that π ↓ π′ and (t, π′) |= ϕ.
etc.

Theorem [Mar05a]

Over unranked ordered trees, TLtree = FO (Boolean and unary queries)

PhDs+S lawek (Mostrare) Queries on Trees 2008 124 / 128

Computational tree logic CTL∗past

Syntax

Node formulas: Φ ::≡ a | ¬Φ | Φ ∨Ψ | E↓ ϕ | E→ ϕ

Path formulas: ϕ = Φ? | ¬ϕ | ϕ ∨ ψ | Xϕ | X− ϕ | ϕU ψ | ϕ S ψ

Semantics

(t, π) |= Φ reads “Φ is satisfied in t at node π”
(t, π) |= E↓ϕ iff ∃π1 ↓ · · · ↓ πi−1 ↓ π ↓ πi+1 ↓ · · · ↓ πk such that
(π1 · · ·πk , i) |=p ϕ where:
(π1 · · ·πk , i) |=p Φ? iff (t, πi) |= Φ etc.

Theorem [BL05b]

Over unranked ordered trees, CTL∗
past = FO (Boolean and unary queries)

PhDs+S lawek (Mostrare) Queries on Trees 2008 125 / 128

Propositional Dynamic Logic for trees PDLtree [ABD+05]

Syntax

Path formulas:

σ ::≡ ← | → | ↓ | ↑ | σ/σ′ | σ ∪ σ′ | σ∗ | ϕ?

Propositions:
ϕ ::≡ a | ¬ϕ | ϕ ∨ ψ | Xσ ϕ |

Semantics

σ defines a binary relation [[σ]]t on nodes of t
(t, π) |= Xσ ϕ iff ∃π′ such that π [[σ]]t π

′ and (t, π′) |= ϕ

PhDs+S lawek (Mostrare) Queries on Trees 2008 126 / 128

Expressivity of PDLtree [ABD+05]

Theorem

PDLtree is equivalent to Regular XPath.

Theorem

PDLtree restricted to

σ ::≡ ← | → | ↓ | ↑ | σ∗ | σ/ϕ?

is equivalent to Conditional XPath which is equivalent to FO.

Theorem

PDLtree restricted to
σ ::≡ ← | → | ↓ | ↑ | σ∗

is equivalent to Core XPath which is equivalent to FO2.

PhDs+S lawek (Mostrare) Queries on Trees 2008 127 / 128

References

PhDs+S lawek (Mostrare) Queries on Trees 2008 128 / 128

[ABD+05] Loredana Afanasiev, Patrick Blackburn, Ioanna Dimitriou,
Bertrand Gaiffe, Evan Goris, Maarten Marx, and Maarten
de Rijke.
PDL for ordered trees.
Journal of Applied Non-Classical Logics, 15(2):115–135, 2005.

[ABL07] Marcelo Arenas, Pablo Barceló, and Leonid Libkin.
Combining temporal logics for querying XML documents.
In Springer-Verlag, editor, Proceedings of International
Conference on Database Theory, volume 4353 of Lecture
Notes in Computer Science, pages 359–374, 2007.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu.
Foundations of Databases.
1995.

[AU71] A. V. Aho and J. D. Ullmann.
Translations on a context-free grammar.
Information and Control, 19:439–475, 1971.

[BC04] Miko laj Bojańczyk and Thomas Colcombet.

PhDs+S lawek (Mostrare) Queries on Trees 2008 128 / 128

Tree-walking automata cannot be determinized.
In 31st International Colloquium on Automata, Languages
and Programming, Lecture Notes in Computer Science, pages
246–256. Springer Verlag, 2004.

[BC05] Miko laj Bojańczyk and Thomas Colcombet.
Tree-walking automata do not recognize all regular languages.
In 37th Annual ACM Symposium on Theory of Computing,
pages 234–243, New York, NY, USA, 2005. ACM-Press.

[BDM+06] Miko laj Bojańczyk, Claire David, Anca Muscholl, Thomas
Schwentick, and Luc Segoufin.
Two-variable logic on data trees and XML reasoning.
In Twenty-fifth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 10–19, 2006.

[BKS02] Nicolas Bruno, Nick Koudas, and Divesh Srivastava.
Holistic twig joins: optimal xml pattern matching.
In SIGMOD Conference, pages 310–321, 2002.

[BKW98] Anne Brüggemann-Klein and Derick Wood.

PhDs+S lawek (Mostrare) Queries on Trees 2008 128 / 128

One-unambiguous regular languages.
Information and Computation, 142(2):182–206, May 1998.

[BKW00] Anne Brüggemann-Klein and Derick Wood.
Caterpillars: A context specification technique.
Markup Languages, 2(1):81–106, 2000.

[BKWM01] Anne Brüggemann-Klein, Derick Wood, and Makoto Murata.
Regular tree and regular hedge languages over unranked
alphabets: Version 1, April 07 2001.

[BL05a] Pablo Barceló and Leonid Libkin.
Temporal logics over unranked trees.
In Proceedings of the IEEE Symposium on Logic in Computer
Science, pages 31–40, 2005.

[BL05b] Pablo Barcelo and Leonid Libkin.
Temporal logics over unranked trees.
In 20th Annual IEEE Symposium on Logic in Computer
Science, pages 31–40. IEEE Comp. Soc. Press, 2005.

PhDs+S lawek (Mostrare) Queries on Trees 2008 128 / 128

[BMS+06] Miko laj Bojańczyk, Anca Muscholl, Thomas Schwentick, Luc
Segoufin, and Claire David.
Two-variable logic on words with data.
In 21st Annual IEEE Symposium on Logic in Computer
Science, pages 7–16. IEEE Comp. Soc. Press, 2006.

[Boj04] Miko laj Bojańczyk.
Decidable Properties of Tree Languages.
PhD thesis, Warsaw University, 2004.

[Boj08a] Miko laj Bojańczyk.
Effective characterizations of tree logics, 2008.
PODS’08 Keynote.

[Boj08b] Miko laj Bojańczyk.
Tree-walking automata.
Tutorial at LATA’08, 2008.

[BS05] Michael Benedikt and Luc Segoufin.
Regular tree languages definable in FO and FOmod.

PhDs+S lawek (Mostrare) Queries on Trees 2008 128 / 128

In 22nd International Symposium on Theoretical Aspects of
Computer Science, volume 3404 of Lecture Notes in
Computer Science, pages 327–339. Springer Verlag, 2005.

[BSSS06] Miko laj Bojańczyk, Mathias Samuelides, Thomas Schwentick,
and Luc Segoufin.
Expressive power of pebbles automata.
In International Colloquium on Automata Languages and
Programming (ICALP’06), Lecture Notes in Computer
Science, pages 157–168. Springer Verlag, 2006.

[CLT+06] Songting Chen, Hua-Gang Li, Jun’ichi Tatemura, Wang-Pin
Hsiung, Divyakant Agrawal, and K. Selçuk Candan.
Twig2stack: Bottom-up processing of generalized-tree-pattern
queries over xml documents.
In VLDB, pages 283–294, 2006.

[CM01] James Clark and Murata Makoto.
Relax ng specification, 2001.

[CNT04] Julien Carme, Joachim Niehren, and Marc Tommasi.

PhDs+S lawek (Mostrare) Queries on Trees 2008 128 / 128

Querying unranked trees with stepwise tree automata.
In 19th International Conference on Rewriting Techniques and
Applications, volume 3091 of Lecture Notes in Computer
Science, pages 105–118. Springer Verlag, 2004.

[EF99] H. Ebbinghaus and J. Flum.
Finite Model Theory.
Springer Verlag, Berlin, 1999.

[EH99] Joost Engelfriet and Hendrik Jan Hoogeboom.
Tree-walking pebble automata.
In Juhani Karhumäki, Hermann A. Maurer, Gheorghe Paun,
and Grzegorz Rozenberg, editors, Jewels are Forever,
Contributions on Theoretical Computer Science in Honor of
Arto Salomaa, pages 72–83, London, UK, 1999.
Springer-Verlag.

[EH06] Joost Engelfriet and Hendrik Jan Hogeboom.
Nested pebbles and transitive closure.

PhDs+S lawek (Mostrare) Queries on Trees 2008 128 / 128

In 23rd Symposium on Theoretical Aspects of Computer
Science, volume 3884 of Lecture Notes in Computer Science,
pages 477–488. Springer Verlag, 2006.

[EHS07] Joost Engelfriet, Hendrik Jan Hoogeboom, and Bart Samwel.
Xml transformation by tree-walking transducers with invisible
pebbles.
In PODS ’07: Proceedings of the twenty-sixth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 63–72, New York, NY, USA, 2007.
ACM.

[EI95] Kousha Etessami and Neil Immerman.
Reachability and the power of local ordering.
Theoretical Computer Science, 148(2):227–260, 1995.

[Fag75] Ronald Fagin.
Monadic generalized spectra.
Zeitschrift für Mathematische Logik und Grundlagen der
Mathematik, 21:89–96, 1975.

PhDs+S lawek (Mostrare) Queries on Trees 2008 128 / 128

[FG02] Markus Frick and Martin Grohe.
The complexity of first-order and monadic second-order logic
revisited.
In LICS ’02: Proceedings of the 17th Annual IEEE
Symposium on Logic in Computer Science, pages 215–224,
Washington, DC, USA, 2002.

[FGK03] Markus Frick, Martin Grohe, and Christoph Koch.
Query evaluation on compressed trees.
In 18th IEEE Symposium on Logic in Computer Science,
pages 188–197, 2003.

[GHR94] D.M. Gabbay, I. Hodkinson, and M. Reynolds.
Temporal Logic (Volume 1: Mathematical Foundations and
Computational Aspects).
Oxford Science Publications, 1994.

[GK04] Georg Gottlob and Christoph Koch.
Monadic datalog and the expressive power of languages for
web information extraction.

PhDs+S lawek (Mostrare) Queries on Trees 2008 128 / 128

Journal of the ACM, 51(1):74–113, 2004.

[GKP02] Georg Gottlob, Christoph Koch, and Reinhard Pichler.
Efficient algorithms for processing xpath queries.
In 28th International Conference on Very Large Data Bases,
pages 95–106, Hong Kong, 2002.

[GKP03a] G. Gottlob, C. Koch, and R. Pichler.
Xpath query evaluation: Improving time and space efficiency.
In In Proceedings of the 19th IEEE International Conference
on Data Engineering (ICDE 03), 2003.

[GKP03b] Georg Gottlob, Christoph Koch, and Reinhard Pichler.
The complexity of xpath query evaluation.
In 22nd ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pages 179–190, 2003.

[GKS04] Georg Gottlob, Christoph Koch, and Klaus U. Schulz.
Conjunctive queries over trees.

PhDs+S lawek (Mostrare) Queries on Trees 2008 128 / 128

In Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pages
189–200, New York, NY, USA, 2004. ACM-Press.

[GO99] Erich Grädel and Martin Otto.
On logics with two variables.
Theoretical Computer Science, 224:73–113, 1999.

[HP03] Haruo Hosoya and Benjamin Pierce.
Regular expression pattern matching for XML.
Journal of Functional Programming, 6(13):961–1004, 2003.

[Imm82] Neil Immerman.
Upper and lower bounds for first order expressibility.
Journal of Computer and System Science, 25:76–98, 1982.

[JLH+07] Zhewei Jiang, Cheng Luo, Wen-Chi Hou, Qiang Zhu, and
Dunren Che.
Efficient processing of xml twig pattern: A novel one-phase
holistic solution.
In DEXA, pages 87–97, 2007.

PhDs+S lawek (Mostrare) Queries on Trees 2008 128 / 128

[Kep06] Stephan Kepser.
Properties of binary transitive closure logics over trees.
In 11th conference on Formal Grammar, 2006.

[Lib04] Leonid Libkin.
Elements of Finite Model Theory.
Springer Verlag, 2004.

[Lib06] Leonid Libkin.
Logics over unranked trees: an overview.
Logical Methods in Computer Science, 3(2):1–31, 2006.

[Mar04] Maarten Marx.
Conditional XPath, the first order complete XPath dialect.
In ACP SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 13–22. ACM-Press, 2004.

[Mar05a] Maarten Marx.
Conditional XPath.
ACM Transactions on Database Systems, 30(4):929–959,
2005.

PhDs+S lawek (Mostrare) Queries on Trees 2008 128 / 128

[Mar05b] Maarten Marx.
First order paths in ordered trees.
In International Conference on Database Theory, pages
114–128, 2005.

[MLM01] M. Murata, D. Lee, and M. Mani.
Taxonomy of XML schema languages using formal language
theory.
In Extreme Markup Languages, Montreal, Canada, 2001.

[MNS04] Wim Martens, Frank Neven, and Thomas Schwentick.
Complexity of decision problems for simple regular
expressions.
In Mathematical Foundations of Computer Science 2004, 29th
International Symposium, pages 889–900, 2004.

[MNSB06] Wim Martens, Frank Neven, Thomas Schwentick, and
Geert Jan Bex.
Expressiveness and complexity of XML schema.

PhDs+S lawek (Mostrare) Queries on Trees 2008 128 / 128

ACM Transactions of Database Systems, 31(3):770–813,
2006.

[Mor94] Etsuro Moriya.
On two-way tree automata.
Inf. Process. Lett., 50(3):117–121, 1994.

[MS02] Gerome Miklau and Dan Suciu.
Containment and equivalence for an xpath fragment.
In PODS, pages 65–76, 2002.

[MSS06] Anca Muscholl, Mathias Samuelides, and Luc Segoufin.
Complementing deterministic tree-walking automata.
Information Processing Letters, 99(1):33–39, 2006.

[Nev02a] Frank Neven.
Automata, logic, and XML.
In Computer Science Logic, Lecture Notes in Computer
Science, pages 2–26. Springer Verlag, 2002.

[Nev02b] Frank Neven.
Automata theory for XML researchers.

PhDs+S lawek (Mostrare) Queries on Trees 2008 128 / 128

SIGMOD Rec., 31(3):39–46, 2002.

[NPTT05] Joachim Niehren, Laurent Planque, Jean-Marc Talbot, and
Sophie Tison.
N-ary queries by tree automata.
In 10th International Symposium on Database Programming
Languages, volume 3774 of Lecture Notes in Computer
Science, pages 217–231. Springer Verlag, September 2005.

[NS99] Frank Neven and Thomas Schwentick.
Query automata.
In Proceedings of the Eighteenth ACM Symposium on
Principles of Database Systems, pages 205–214, 1999.

[NS02] Frank Neven and Thomas Schwentick.
Query automata over finite trees.
Theoretical Computer Science, 275(1-2):633–674, 2002.

[Sch07] Thomas Schwentick.
Automata for XML—a survey.

PhDs+S lawek (Mostrare) Queries on Trees 2008 128 / 128

Journal of Computer and System Science, 73(3):289–315,
2007.

[Shi08] John W. Shipman.
XSLT Reference.
2008.

[Sto74] L. J. Stockmeyer.
The Complexity of Decision Problems in Automata Theory.
PhD thesis, Department of Electrical Engineering, MIT, 1974.

[tC06] Balder ten Cate.
The expressiveness of XPath with transitive closure.
In 25st ACM SIGMOD-SIGACT Symposium on Principles of
Database Systems. ACM-Press, 2006.

[tCM07] Balder ten Cate and Maarten Marx.
Axiomatizing the logical core of XPath 2.0.
In International Conference on Database Theory, 2007.

[tCS08] Balder ten Cate and Luc Segoufin.

PhDs+S lawek (Mostrare) Queries on Trees 2008 128 / 128

XPath, transitive closure logic, and nested tree walking
automata.
In 27th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, 2008.

[TK06] Hans-Jörg Tiede and Stephan Kepser.
Monadic second-order logic and transitive closure logics over
trees.
In 13th Workshop on Logic, Language, Information and
Computation, volume 165 of Electronical notes in theoretical
computer science, pages 189–199. Elsevier, 2006.

[TW68] J. W. Thatcher and J. B. Wright.
Generalized finite automata with an application to a decision
problem of second-order logic.
Mathematical System Theory, 2:57–82, 1968.

[Var82] Moshe Y. Vardi.
The complexity of relational query languages.
In 14th ACM Symposium on Theory of Computing, pages
137–146, 1982.

PhDs+S lawek (Mostrare) Queries on Trees 2008 128 / 128

[Var95] Moshe Y. Vardi.
On the complexity of bounded-variable queries.
In Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 266–276, 1995.

PhDs+S lawek (Mostrare) Queries on Trees 2008 128 / 128

	Classical logics (FO, MSO)
	Queries by Tree Automata
	Tree-walking automata
	Schema Languages & Tree Automata

	Conjunctive Queries over Trees
	Definition, results and acyclic fragment
	Twigs and Tree Patterns

	Monadic Datalog
	-calculus
	XPath
	Temporal Logics

