Safra’s Determinization

Emmanuel Filiot

Sources: Lecture™ by K. Narayan Kumar

Chennai Mathematical Institute, India

pdf available at http://www.cmi.ac.in/~kumar/

http://www.cmi.ac.in/~kumar/
http://www.cmi.ac.in/~kumar/

Qutline

Introduction
Preliminaries
2-Exponential Determinization Procedure

Optimal Determinization Procedure by Safra

Introduction

® Non-deterministic Buchi word automata
are not determinizable

® Safra gives a construction to go to
Deterministic Rabin automata

® This construction is optimal 22O(n.log n)

Why a lecture on it?

® Safra’s procedure manipulates a complex
state space (trees of subsets of states)

® most explanations are quite intricate

® in this lecture: structure of accepting runs
to structure of the state space

Related VWork

Muller, 1963: uncorrect construction

Mc Naughton, 1966. Gives a
determinization to Muller automata.

Safra, 1988.To Rabin automata, 22O(n.log n)
Muller/Schupp, 1995.

Qutline

Introduction
Preliminaries
2-Exponential Determinization Procedure

Optimal Determinization Procedure by Safra

Non-deterministic
Buchi Automata (NBWV)

alphabet 2= {a,b}

a,b b Acceptance Condition

7 \ Visits p infinitely often

L(A) = 277

Non-deterministic
Buchi Automata (NBW)

alphabet 2= {qa,b}

a,b Acceptance Condition

Visits p infinitely often

L(A) = words w in which a occurs
finitely many times

Non-deterministic
Buchi Automata (NBW)

alphabet 2= {qa,b}

Acceptance Condition

Visits p infinitely often

w = ababaaababbbbbbbbb....

r'=4999999999PPPPPPPP.-...
r'= 99999999999999pppp......

Non-deterministic
Buchi Automata (NBWV)

alphabet 2= {qa,b}

a,b b Acceptance Condition

Visits p infinitely often

L(A) = words w in which a occurs
finitely many times

There is no deterministic NBWV B s.t. L(A) = L(B)

Notations

® A=(2,Q,FA)

Q: set of states with initial state |
F: set of final states
A: set of rules

FUns. r

inf(r) = states that occur infinitely often in r

fin(r) = states that occur finitely often in r

Rabin Automata

® Acceptance Condition:
Finite set @ = (Ii,Fi)ISiSn F,EiCQ

® A run ris accepting if 3i:inf(r)<l;, fin(r)=F;

Rabin Automata
(Example)

® Finitely many a’s

a b
20N

® ®={(1p}L1q})}

Qutline

Introduction
Preliminaries
2-Exponential Determinization Procedure

Optimal Determinization Procedure by Safra

Running Example

p/p% {Q > T
\@: > T > T o >
A=03,Q,p F0) L(A) = “finitely many b”

Infinitely many runs: the deterministic automaton
should simulate all those runs

Powerset Automaton

A, = (29,%,6,,{s},{X | XN F #0}) with 6,(X,a) ={q | Ip€ X. q € §(p,a)}

(; ©)
e
son !
€ g@)

Too generous: abababababab is accepted

Change the acceptance
criterion

® |etr=505/52535455 ... be a run of A, on
W = 4od|d;dsd4das....

® Accept rif it can be decomposed into
Si1SipSis... such that:
® vkvqgeSik+1)dq’eSik such that there is a run

from g to g’ on aidik+...Qik+1)
® this run visits an accepting state

® clearly A accepts w

Express it as a Buchi
acceptance condition

® turn the previous acceptance condition into
a Buchi acceptance condition

® in a deterministic way ...

Let A = (Qum, S, 6, ({5}, 0), {(X,X) | X C Q} where

m = {(X Y)IYCXCQ}
5. (X,Y),a) = (6,(X,a),6,(Y,a)US(X,a)NF) if X#Y
5u((X, X),0) = (5,(X,a),8,(X,a) N F)

L(Am)CL(A)

IS hot accepted

ddadddada...

aaaaaa... is not accepted

®) ® (® (®) (®
X
el @

Y
o U U U

Start A with initial state ({g},2) after a have been read

Non-determinism is heeded
only on a finite prefix

Definition: Automaton B

- run A
- non-deterministically choose to run A, with initial
state ({q}, @), where q is the state reached by A so far.

Theorem: L(A) = L(B)

Proof

- Consider a run tree and an accepting path of it
- Suppose there is only one accepting path

Sl
S, ' o '
' Y o SR
] ' ;
': P :
) pl '
S &) P . :
= S, T e
S,

What happens if we fork a copy of A, at position po
: with initial state ({po},2) ? =

It might be the case this copy never reaches an
- accepting state of A, (or only finitely many times)...
~ but it can happen for finitely many positions pi

Proof

pi ~ pier if Ayed*nsuff(w) : Op(Pixy) = Op(pi+1,y)

Proof

Equivalence classes are made of consecutive nodes.

- < ‘? V"H,Q, Since

\ 8 P, 9 8 m.,z)

. '\a
S (F“q_,'a)cg (rua,xlnj) 6 (Ftl 4)‘"3)

=2 FC+'L bl Fl'w\ F f(

Proof

How many equivalence classes at most !

rt;‘ ¥ PC‘, '*F“} T o ’f’FVM

& > & 35 & —> & »&—>
x x %3 L “a

V"a Sp (f‘n "3\ 3 Sr (fi... ."...3)%-- $ gr([’.‘ n".-'in-.'ﬁ)

Inclusions are strict: at most |Q| equivalence classes

INo, Vi,j=No, bi ~ p;

Consequence: if we fork a copy of An at position
bno, this copy will visit final states of A, infinitely often

End of Proof.

Towards a deterministic Rabin

® Reminder: B ="“run A and non-deterministically
run An, with initial state ({gs},2) where gris a final

state reached by A so far”
® How to turn B into a deterministic Rabin?
® |dea: ® run all the possible copies of A, in parallel

® for each final state gr currently reached by
Ap, fork a new copy of A, with initial ({gr},2)

® merge copies that reach the same states

Formally ...
Q4 QQX(QQXQQJ{J_})K K =221 |F|
Sd ({s}, L, L,...1)

5d((S, Wl, WQ e ooy WK), a,) =

|/ First compute vV = (6,(S,a),6m(Wi,a),0m(Wa,a) . ..6n(Wk, a))
2/ for each final state ped, (S, a)
add a copy of An, with intial state ({p},2)

at the lowest free slot in V |
3/ If several copies have the same state in An,

remove all but the one at lowest index
Acceptance: (F;, I;)
Fi: tuples that contain L at ith component
li: tuples that contain a final state of Am at ith component

Correctness

® [(A)CL(Ag): take an accepting run, after a
finite prefix, there is a finite copy of Ay, that
visits final states infinitely often. In the
tuple, this copy may move to lower
components, but only finitely many times...

® | (AyCL(A): Suppose that after finitely many

steps, some component of the states visit
final states infinitely often and is never
equal to L, then it corresponds to a copy

of Am which is never merged (otherwise L

will occur), and therefore this copy accepts
the word, i.e. L(Aq) CL(Am)CL(A).

Qutline

Introduction

Preliminaries

®)-Exponential Determinization Procedure

Optimal Determinization Procedure by Safra

Running Example

L(A) = “infinitely many b”

Run Tree on abababa...

Run Tree on abababa...

({a:s}{q,s}) @
(s)

(GO RO
©

(193} (1q}{})

Maintain ancestor-descendant relationship
between copies

SORDY
({s,q,v,r,t},{s,q,v,t})
({a.s}{q:s}) @ (o) }/O'\\\
(Pavhtsay ({q,s},{q,iﬂ\ <{s,q,v},{s,q}l/Q\\ O s

? ({S},{})<> Q O O ({q}A})

? g {sh{D)

b
({s}4})

O ©:
sy (a) ?
® ® ©

SCIES)) (q}A})

O~

Use node names to
refer to copies

) (s) CXS)
({s.q.v.r.t}.{s,qv.t})
({a.s}{q.s}) @)
a
Jsavhisah ({q,s},{q,?/@\ <{s,q,v},{s,qﬁ\ (1) Ger)

O (@)
’ ({54 ? wol ® @ gy,
s34 () ? ? ? () UsHAD)
O, O, »® O O
{ar 4D {ah)

The numbering respects the order the copies were forked

After reading a b

({8,q,V.r,t}{8,q.v,t})
<{q,s},{q,i>/@2\ <{s,q,v},{s,q (n,) G

@ @ @ @ ({q}A})

(is343) AAD {sHD
{q.u,v,rt}{quyv,;t})
{quv} g v}) (g0} {au) @ (n,) (4D

. ({g.uv}da})
(avrdan () e {q}) I{q ubda) ?

CCITeY @ (ns) @3

CCIRS) N CTIAS)

Fork new copies for each final state of A

Bound the height by |Q|

® | et njbe the child of n;

® Merge njand n; if n; is labeled (X)Y) and n; is
labeled (X,Z) (keep n)

® i.e.the two copies n; and n; of Ay, have
merged
({q.u,vrit{quyv.t})

{q,u,v,r,t}.{q,u,v,t}) n , 5
({q,u,v}{q,u V}) ({q,u,v},{q,u,v}) @ @ {3} ({qu.v}{q.uyv}) 1:11"] ({quy}.{quy)) (_\E]:‘!:; n- {1} 4D
ot ia LR A I ™
Vs q:u.viig : (n,) (n.) (n,) 7N :
({qV}{qD Qquv}«n> un}&n> ({gvidah) \/ Y/ Hqurdgy) (4D
!ﬁ> ({g}{})

T E.
dard () @ () Gar») dahan (1) ()
({gr D)

SCIRe)) ({q} A

= the height of the tree is bounded by |Q]|

Bound The Width

({ql-\.rl}{quxt})

—, \ brss S -____--k-—

({quvrdquyd) (n) Wgusdiquad (n,) (n.) {1341
~ N I s <
({gvidgh () () @) o @) dand
({q} {})
|
{ardd) (n) (n.)
({q}{})

For each state, keep the left-most path that contains it

({q.u,v,r,t},{q,u,v,t})

({q,u,v},{q,u,v}))/@z\ @0 (n,)
(45 ({q.v},{q}) @ @ 1D @ {H{D)

l ({1

o (n) ()

({34}

Bound T he Width

—~ (quyvrt{quvt})
,z

-----.L 1'1
---------------------- /\
‘/--—-\A‘:‘:'-------- / \
\-_ ‘-/‘ (1 | ? ? J g‘l‘ I .11 ,\ }) \{ /z

({q.v}dq)) (n, Y,

The labels of the children of a node are pairwise disjoint

= a node as at most |Q| children

Transition Function

|/ Update all labels (X,Y) by Om((X,Y),a)

2/ For all paths and all final states g, find the
youngest occurence of grand “fork a copy of An”,
i.e. create a new right-most child labeled {gs}-
Name this node by the smallest free node name.

3/ Merge descendant nodes with the same first
component (keep the oldest copy)

4/ For all state g, remove g from all paths that
contain it except the left-most

Acceptance Condition

® First: at each level we refine the label of the
parent with disjoint labels

® we add at most |F| nodes

® = n = 3|QJ| node names are sufficient

® Rabin AC:; (Fi, Ii)ISiSn
® [, = set of trees where node n; does not occur

® | = set of trees where node n;j occurs and is
labeled by an accepting state of A,

Correctness (Sketch)

® | (Safra)CL(A): if after a finite prefix, a node
n; always appears in the Safra states, and is
labeled infinitely often by a final state of An,
it means that the same copy of A, visits a
final state infinitely often. Therefore the
word is accepted.

Correctness (Sketch)

L(A)CL(Safra): let wel(A) and consider an accepting

run P on w in its run-tree, and the run p’ of Safra
on w

Claim |:after a certain point, there is a node v
that appears in all “Safra” states of p’

Claim 2: this node is labeled infinitely often by
final state of An,

2nd component labels
are useless

® The second component was needed to
check if all current states visited an
accepting state

® This is now the case when a merge occurs

® We can forget the 2nd component, but
mark a label with a special symbol if its
direct descendant have been merged

