
Safra’s Determinization

Sources: Lecture* by K. Narayan Kumar

Chennai Mathematical Institute, India

* pdf available at http://www.cmi.ac.in/~kumar/

Emmanuel Filiot

http://www.cmi.ac.in/~kumar/
http://www.cmi.ac.in/~kumar/

Outline

• Introduction

• Preliminaries

• 2-Exponential Determinization Procedure

• Optimal Determinization Procedure by Safra

Introduction

• Non-deterministic Büchi word automata
are not determinizable

• Safra gives a construction to go to
Deterministic Rabin automata

• This construction is optimal 2^O(n.log n)

Why a lecture on it?

• Safra’s procedure manipulates a complex
state space (trees of subsets of states)

• most explanations are quite intricate

• in this lecture: structure of accepting runs
to structure of the state space

Related Work

• Muller, 1963: uncorrect construction

• Mc Naughton, 1966. Gives a
determinization to Muller automata.

• Safra, 1988. To Rabin automata, 2^O(n.log n)

• Muller/Schupp, 1995.

Outline

• Introduction

• Preliminaries

• 2-Exponential Determinization Procedure

• Optimal Determinization Procedure by Safra

Non-deterministic
Büchi Automata (NBW)

a,b

b

b

A pq

Acceptance Condition

Visits p infinitely often

L(A) = ???

alphabet Σ= {a,b}

Non-deterministic
Büchi Automata (NBW)

a,b

b

b

A pq

Acceptance Condition

Visits p infinitely often

L(A) = words w in which a occurs
finitely many times

alphabet Σ= {a,b}

Non-deterministic
Büchi Automata (NBW)

a,b

b

b

A pq

Acceptance Condition

Visits p infinitely often

w = ababaaababbbbbbbbb....
r = qqqqqqqqqqpppppppp.....
r’ = qqqqqqqqqqqqqqpppp......

alphabet Σ= {a,b}

Non-deterministic
Büchi Automata (NBW)

a,b

b

b

A pq

Acceptance Condition

Visits p infinitely often

L(A) = words w in which a occurs
finitely many times

alphabet Σ= {a,b}

There is no deterministic NBW B s.t. L(A) = L(B)

Notations
• A = (Σ,Q,i,F,Δ)

• Q: set of states with initial state i

• F: set of final states

• Δ: set of rules

• runs: r

• inf(r) = states that occur infinitely often in r

• fin(r) = states that occur finitely often in r

Rabin Automata

• Acceptance Condition:
Finite set Φ = (Ii,Fi)1≤i≤n Fi,Ei⊆Q

• A run r is accepting if ∃i:inf(r)⊆Ii, fin(r)=Fi

Rabin Automata
(Example)

• Finitely many a’s

a

b

b

pq
a

• Φ = { ({p}, {q}) }

Outline

• Introduction

• Preliminaries

• 2-Exponential Determinization Procedure

• Optimal Determinization Procedure by Safra

Running Example

A = (∑, Q, p, F, δ) L(A) = “finitely many b”

Infinitely many runs: the deterministic automaton
should simulate all those runs

Powerset Automaton

Too generous: abababababab is accepted

Change the acceptance
criterion

• Let r = S0S1S2S3S4S5 ... be a run of Ap on
w = a0a1a2a3a4a5....

• Accept r if it can be decomposed into
Si1Si2Si3... such that:

• ∀k∀q∈Si(k+1)∃q’∈Sik such that there is a run
from q to q’ on aikaik+1...ai(k+1)

• this run visits an accepting state

• clearly A accepts w

Express it as a Büchi
acceptance condition

• turn the previous acceptance condition into
a Büchi acceptance condition

• in a deterministic way ...

L(Am)⊆L(A)

aaaaaa... is not accepted

X

Y

aaaaaa... is not accepted

X

Y

Start Am with initial state ({q},∅) after a have been read

Non-determinism is needed
only on a finite prefix

Definition: Automaton B

- run A
- non-deterministically choose to run Am with initial
state ({q}, ∅), where q is the state reached by A so far.

Theorem: L(A) = L(B)

Proof
- Consider a run tree and an accepting path of it
- Suppose there is only one accepting path

Proof

What happens if we fork a copy of Am at position p0
with initial state ({p0},∅) ?

It might be the case this copy never reaches an
accepting state of Am (or only finitely many times)...

but it can happen for finitely many positions pi

Proof
pi ∼ pi+1 if ∃y∈∑*∩suff(w) : δp(pi,xy) = δp(pi+1,y)

x

w

y

Proof
Equivalence classes are made of consecutive nodes.

Proof
How many equivalence classes at most ?

Inclusions are strict: at most |Q| equivalence classes

Proof

∃N0, ∀i,j≥N0, pi ∼ pj

Consequence: if we fork a copy of Am at position
pN0, this copy will visit final states of Am infinitely often

End of Proof.

Towards a deterministic Rabin

• Reminder: B = “run A and non-deterministically
run Am with initial state ({qf},∅) where qf is a final
state reached by A so far”

• How to turn B into a deterministic Rabin?

• Idea: • run all the possible copies of Am in parallel

• for each final state qf currently reached by
Ap, fork a new copy of Am with initial ({qf},∅)

• merge copies that reach the same states

Formally ...

1/ First compute

=

2/ for each final state p∈
add a copy of Am with intial state ({p},∅)

at the lowest free slot in V
3/ If several copies have the same state in Am,

remove all but the one at lowest index

Acceptance:
Fi: tuples that contain ⊥ at ith component
Ii: tuples that contain a final state of Am at ith component

Correctness
• L(A)⊆L(Ad): take an accepting run, after a

finite prefix, there is a finite copy of Am that
visits final states infinitely often. In the
tuple, this copy may move to lower
components, but only finitely many times...

• L(Ad)⊆L(A): Suppose that after finitely many
steps, some component of the states visit
final states infinitely often and is never
equal to ⊥, then it corresponds to a copy
of Am which is never merged (otherwise ⊥
will occur), and therefore this copy accepts
the word, i.e. L(Ad)⊆L(Am)⊆L(A).

Outline

• Introduction

• Preliminaries

• 2-Exponential Determinization Procedure

• Optimal Determinization Procedure by Safra

Running Example

initialA

L(A) = “infinitely many b”

Run Tree on abababa...

Run Tree on abababa...

Maintain ancestor-descendant relationship
between copies

Use node names to
refer to copies

The numbering respects the order the copies were forked

After reading a b

A

b

Fork new copies for each final state of A

Bound the height by |Q|
• Let nj be the child of ni

• Merge ni and nj if ni is labeled (X,Y) and nj is
labeled (X,Z) (keep ni)

• i.e. the two copies ni and nj of Am have
merged

⇒ the height of the tree is bounded by |Q|

Bound The Width

For each state, keep the left-most path that contains it

Bound The Width

The labels of the children of a node are pairwise disjoint

⇒ a node as at most |Q| children

Transition Function
• 1/ Update all labels (X,Y) by δm((X,Y),a)

• 2/ For all paths and all final states qf, find the
youngest occurence of qf and “fork a copy of Am”,
i.e. create a new right-most child labeled {qf}.
Name this node by the smallest free node name.

• 3/ Merge descendant nodes with the same first
component (keep the oldest copy)

• 4/ For all state q, remove q from all paths that
contain it except the left-most

Acceptance Condition
• First: at each level we refine the label of the

parent with disjoint labels

• we add at most |F| nodes

• ⇒ n = 3|Q| node names are sufficient

• Rabin AC: (Fi, Ii)1≤i≤n

• Fi = set of trees where node ni does not occur

• Ii = set of trees where node ni occurs and is
labeled by an accepting state of Am

Correctness (Sketch)

• L(Safra)⊆L(A): if after a finite prefix, a node
ni always appears in the Safra states, and is
labeled infinitely often by a final state of Am,
it means that the same copy of Am visits a
final state infinitely often. Therefore the
word is accepted.

Correctness (Sketch)
• L(A)⊆L(Safra): let w∈L(A) and consider an accepting

run ρ on w in its run-tree, and the run ρ’ of Safra
on w

• Claim 1: after a certain point, there is a node v
that appears in all “Safra” states of ρ’

• Claim 2: this node is labeled infinitely often by
final state of Am

2nd component labels
are useless

• The second component was needed to
check if all current states visited an
accepting state

• This is now the case when a merge occurs

• We can forget the 2nd component, but
mark a label with a special symbol if its
direct descendant have been merged

The End

