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Finite State Automata

@ finite string acceptors over a finite alphabet
@ read-only input tape, left-to-right
@ finite set of states

Definition (Finite State Automaton)

A finite state automaton (FA) on X is a tuple A= (Q, /, F,J)
where

@ Q is the set of states,
e | C Q, reps. F C Q is the set of initial, resp. final, states,

@ 0: @ xX — @ is the transition relation.

L(A) = {w € X" | there exists an accepting run on w}
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Finite State Automata — Example

b b
a
start —> @
a
Run on aabaa:

L(A) = {w € £* | w contains an even number of a}
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Expressiveness

FA = regular languages = MSO[+1] = regular expressions = ...
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Closure Properties

o closed under Boolean operations (union, intersection,
complement).
@ closed under various extensions:

o non-determinism (NFA): 6 C Q@ x ¥ x Q

e two-way input head (2NFA): § C Q x ¥ x {-1,0,1} x Q
o regular look-ahead: § C Q@ x ¥ X Reg x @
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complement).

@ closed under various extensions:
o non-determinism (NFA): 6 C Q@ x ¥ x Q
e two-way input head (2NFA): § C Q x ¥ x {-1,0,1} x Q
o regular look-ahead: § C Q@ x ¥ X Reg x @
o alternation: §: Q@ x ¥ — B(Q) (Boolean formulas over Q)

v

Decision Problems

Membership, emptiness, universality, inclusion, equivalence ... are
decidable. )
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From Languages to Transductions

Let & and A be two finite alphabets.

Language on X Transduction from ¥ to A

function from * to {0,1} relation R C X* x A*

defined by automata defined by transducers

accept strings transform strings

transducer = automaton + output mechanism.
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Finite State Transducers

@ read-only left-to-right input head
@ write-only left-to-right output head
o finite set of states

Definition (Finite State Transducers)

A finite state transducer from X to A is a pair T = (A, O) where
A=(Q,I,F,d) is the underlying automaton

@ O is an output morphism from § to A*.

If t =q 2 ¢’ €6, then O(t) defines its output.

q a'—W> q’ denotes a transition whose output is w € A*.

Two classes of transducers:
o DFT if A is deterministic
@ NFT if A is non-deterministic.



Some applications

@ language and speech processing (e.g. see work by Mehryar
Mohri)

@ model-checking infinite state-space systems
2

1

@ verification of web sanitizers

@ string pattern matching

LA survey of regular model checking, P. Abdulla, B. Jonsson, M. Nilsson, M.
Saksena. 2004
2see BEK, developped at Microsoft Research
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Finite State Transducers — Example 1

ble ble

start —

Run on aabaa:

ala ala ble ala ala
=@ @ @

T(aabaa)=a.a.c.a.a=aaaa.



Finite State Transducers — Example 1
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Finite State Transducers — Example 1

Run on aaba:

EROROROMON0

T (aaba)= undefined
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Finite State Transducers — Example 1

dom(T) = {we€X*|#,wiseven}
R(T) = {(w,a”") | w & dom(T)}
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Finite State Transducers — Example 2

.. = white space
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Finite State Transducers — Example 2

.. = white space

Semantics

Replace blocks of consecutive white spaces by a single white space.

T(--aa...a..) = _aa.a.
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Semantics
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Finite State Transducers — Example 3

- = white space

_le

Semantics

Replace blocks of consecutive white spaces by a single white space
and
remove the last white spaces (if any).

T(-caa.—ca..) = _aa.a

Non-deterministic but still defines a function: functional NFT
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Is non-determinism needed ?

_le
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Is non-determinism needed ?
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How to get a deterministic FT ?
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@ output the longest common prefix
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e ala _|e

@ extend automata subset construction with outputs
@ output the longest common prefix

ala
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How to get a deterministic FT ?

e ala _|e

@ extend automata subset construction with outputs
@ output the longest common prefix

ala

ala e _|€
0 0
—>| 9o q1(-), q2(€)
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Can we always get an equivalent deterministic FT 7
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Can we always get an equivalent deterministic FT 7

@ not in general: DFT define functions, NFT define relations
@ what about functional NFT ?

ale alb
—8” OO 8— -
t

initial

n n+1
R(T): a"br= b functional but not determinizable

EHe [ ek
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alc alb
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initial

Subset construction:
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Subset construction:
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alc alb
cle a alc . alb
t

initial

Subset construction:

ale | qu(b) | ale | qi(bb) |ale| qi(bbb)

92(c) go(cc) g2(ccc)
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alc alb
cle a alc . alb
t

initial

Subset construction:

qu(bb) |ale| qi(bbb)

g2(cc) g2(ccc)

17 /63



How to guarantee termination of subset construction?

LAG(u,v) = (', V) such that u = ¢u', v =¢v' and ¢ = lcp(u, v).

E.g. LAG(abbc, abc) = (bc, c).
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How to guarantee termination of subset construction?

LAG(u,v) = (', V) such that u = ¢u', v =¢v' and ¢ = lcp(u, v).

E.g. LAG(abbc, abc) = (bc, c).

Lemma (Twinning Property)

Subset construction terminates iff for all such situations

U2’V2
ul\vl
~(=)
u1w @\MM/»@
U2‘W2

it is the case that LAG(v1,w1) = LAG(vivo, wiwp).

v
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Determinizability is decidable

Theorem (Choffrut 77, Beal Carton Prieur Sakarovitch 03)

Given a functional NFT T, the following are equivalent:
Q it is determinizable
@ the twinning property holds.

Moreover, the twinning property is decidable in PTime.

Intuition

@ If TP holds, then subset construction terminates and produces
an equivalent DFT

@ for the converse, uses the fact that TP is
machine-independent: for all T=T', T = TP iff T' = TP.

Ol

v
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Determinizability is decidable

Theorem (Choffrut 77, Beal Carton Prieur Sakarovitch 03)

Given a functional NFT T, the following are equivalent:
Q it is determinizable
@ the twinning property holds.

Moreover, the twinning property is decidable in PTime.

| A

Proof.
Intuition

@ If TP holds, then subset construction terminates and produces
an equivalent DFT

@ for the converse, uses the fact that TP is
machine-independent: for all T=T', T = TP iff T' = TP.

Ol

v

Almost true ...
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ala b

alab " ala | go(e) :Da|a

¢cle T 9(b)

a1(6)

@ subsequential transducers are deterministic but can output a
string in each accepting states

@ in the previous theorem: “determinizable” <+ “there exists an
equivalent subsequential transducer”

@ subsequential transducers = DFT if last string symbol is
unique
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Application: analysis of streaming transformations

Bounded Memory Problem

Hypothesis:

@ input string is received as a (very long) stream
@ output string is produced as a stream

Input: a transformation defined by some functional NFT
Output: can | realize this transformation with bounded memory ?

dB € N-Vu € dom(T)

T(u) can be computed with B-bounded memory ?
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Streaming Model

Deterministic Turing Transducer

Input Tape 1 1o
(read only)

[=l)d
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Streaming Model

Deterministic Turing Transducer

Input Tape
(read only) 1 /0[0]1

(=)
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Streaming Model

Deterministic Turing Transducer

Input Tape 7T T T T 1 2
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Streaming Model

Deterministic Turing Transducer

Input Tape 7T T T T 1 2

(readonly)y L= 1 ¥ | ¥ [ " |7 = Y™ I ...
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Streaming Model

Deterministic Turing Transducer

= >
wead onyy 1 LOTOT T el
-
“veadjarng L LOTOTo[ 1 [##]
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Streaming Model

Deterministic Turing Transducer

Input Tape
(read only) {001 ][]l

Working Tape
(read/write) 110/0[0 ]I

=2 By
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Streaming Model

Deterministic Turing Transducer

= >
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Streaming Model

Deterministic Turing Transducer

= >
wead onyy 1 LOTOT T el
<>
“eadjurie L1 10TOTOTITol#]

Output Tape ol#lalyl#ls

(write only) — 11— 1= 1= 1.

H*
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Streaming Model

Deterministic Turing Transducer

= >

InputTape [, TAalanls il el
(read only) 110101 IL_# ......

,LE
WorkingTape[ y Talalnlil lololl
(read/write) 110/0f0]1]0 il _____
e ———— = 2

Output Tape ol 1ll#lel#!gls
(write only) — S — 11— 1 = 1 = |.....
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Streaming Model

Deterministic Turing Transducer

= >

InputTape [, TAalanls il el
(read only) 110101 IL_# ......

,LE
WorkingTape[ y Talalnlil lololl
(read/write) 110/0f0]1]0 il _____
-

Output Tape ol1l1l#lelsg!ls
(write only) Rl o S
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Streaming Model

Deterministic Turing Transducer

_::>
ooy L ToToTn Tl
<>
Moderoe[1ToToTo 1 Tof#]
= .
Quiputrape [o [ 1 [1 o[ J# [#]
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Streaming Model

Deterministic Turing Transducer

-::>
cond onty LLLOToTn i f#]

<=
“readramg 1[0 ToTo 1 Tol#]

=
?xﬁﬁgt;ﬁf oltlifoli#lgl
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Streaming Model

Deterministic Turing Transducer

= >
wead onyy 1 LOTOT T el
-
“vead e LLT0T0ToT1To[#]
o=
Trreomy OOl i{#]

22 /63



Streaming Model

Deterministic Turing Transducer

= >
wead ony LITOTOTT T {i]#]
_ @ _____ .- M;amory
e (o ToTa T To[a] = e
— tape only !

Output Tape 2 |
(write only) Oj1]1]0]] Ii]
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Bounded Memory Problem — Examples

n n+1
Ty : a"b b Not bounded memory

a"c — ¢t

Tr: . ao..b..+— _a_b ‘ Bounded memory
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Bounded Memory Problem — Examples

n n+1
Ty : a"b b Not bounded memory

a"c — ¢t

Tr: . ao..b..+— _a_b ‘ Bounded memory

For all functional NFT T, the following are equivalent:

© T is bounded memory
@ T is determinizable

© T satisfies the twinning property.

Proof based on the following two observations:
@ any DFT is bounded memory
@ bounded memory Turing Transducer = DFT
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Closure Properties of Finite State Transducers

Domain, co-domain
The domains and co-domains of NFT are regular.

‘T*l T ThuT, T1NT, TioT,

NFT | no no yes no yes

DFT | no no no no yes

Table: Closure Properties for NFT and DFT.
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Closure Properties of Finite State Transducers

Domain, co-domain
The domains and co-domains of NFT are regular.

‘T*l T ThuT, T1NT, TioT,

NFT | no no yes no yes

DFT | no no no no yes

Table: Closure Properties for NFT and DFT.

Non-closure by intersection

Q@ R(T1)={(a™b",c™) | m,n> 0}
Q@ R(T2)={(amb",c") | m,n> 0}
Q@ R(T1)NR(T2) ={(a"b",c") | n >0}
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Decision problems

Membership (u, v)
Emptiness R(T) =
Type checking T(Lin) C Lout?
Equivalence R(T1)
Inclusion R(T1)

emptiness /  type checking  equiv /

membership (vs NFA) inclusion

NFT PTiME PSPACE-C undec

DFT PTIME PSPACE-C PTIME
Table: Decision problems for NFT and DFT.

Undecidability of equivalence and inclusion proved in [Griffiths68].
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Functional Finite State Transducers

A transduction (transducer) is functional if each word has at most
1 image.

Theorem (Gurari and Ibarra 83)

Functionality is decidable in PTIME for NFT.

The equivalence and inclusion of functional NFT is PSPACE-cC. \

Ty is included in T; if and only if
@ dom(Ty) C dom(T3), and
@ T1 U T, is functional.

26 /63



k-valued Finite State Transducers

A transduction (transducer) is k-valued if each word has at most k
images.

Theorem ( GI83, Web89, SdS08 )

Let k € N be fixed.
k-valuedness is decidable in PTIME for NFT.

Theorem (IK86, Web88)

The equivalence and inclusion of k-valued NFT are PSPACE-C.
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Extensions of NFT



Various more expressive extensions have been considered:

© two-way input tape
@ string variables (Alur Cerny 2010)
© pushdown stack
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Two-way finite state transducers (2NFT)

nput Tape [ [5] [e] [] [e] [5] [5] [e] [o] (1]

head

(,1/,‘6,"—1 O‘|aa_1

Output Tape [;] [:] [:] [:] [:] [:] [:] [:] [:]

head
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Two-way finite state transducers (2NFT)
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Two-way finite state transducers (2NFT)
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Two-way finite state transducers (2NFT)

nput Tape  [] [s] [e] [] [e] [s] [5] [e] [d] [4]

head

(,1/,‘6,"—1 O‘|aa_1

Output Tape [;] [:] [:] [:] [:] [:] [:] [:] [:]

head
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Two-way finite state transducers (2NFT)

Input Tape E‘EE

head

ale, +1 ale, -1

Output Tape [;] [:] [:] [:] [:] [:] [:] [:] [:]

head
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Two-way finite state transducers (2NFT)

e [ EEHDEEEE GO

head

(,1/,‘6,"—1 O‘|aa_1
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Two-way finite state transducers (2NFT)

nput Tape  [-] [5] [¢] [] [e] [5] [5] [e] [o] (1]

head

(,1/,‘6,"—1 O‘|aa_1

OutputTapeEEDDDDDD
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Two-way finite state transducers (2NFT)

Input Tape EEE

head
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head
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Two-way finite state transducers (2NFT)

nput Tape [ [5] [e] [] [e] [5] [5] [e] [o] (1]

head

(,1/,‘6,"—1 O‘|aa_1

OutputTapelzIEEDD
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Two-way finite state transducers (2NFT)

nput Tape  [1-] [s] [¢] [] [e] [s] [5] [e] [d] [4]

head

(,1/,‘6,"—1 O‘|aa_1

(1 e, —1 <f§%> Hle <:E:>

OutputTapelEIlE'lE'D
x

head
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Two-way finite state transducers (2NFT)
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Two-way finite state transducers — Properties

Main Properties of 2NFT

@ still closed under composition (Chytil Jakl 77)

@ equivalence of functional 2NFT is decidable (Culik,
Karhumaki, 87)

@ functional 2NFT = 2DFT (Hoogeboom Engelfriet 01, De
Souza 13)

Logical Characterization (Hoogeboom Engelfriet 01)

2DFT = MSO transductions

2DFT define regular functions.

\
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MSO Transductions (Courcelle)

@ input string seen as the logical structure over
{suce, (lab,)acs }

@ output predicates defined with MSO formulas interpreted over
the input structure
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MSO Transductions (Courcelle)

@ input string seen as the logical structure over
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@ output predicates defined with MSO formulas interpreted over
the input structure

succ succ succ succ succ succ succ
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¢succ(x,}/) = SUCC(y,X)
Glab,(x) = labs(x)
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MSO Transductions (Courcelle)

@ input string seen as the logical structure over
{suce, (lab,)acs }

@ output predicates defined with MSO formulas interpreted over
the input structure

succ succ succ succ succ succ succ

: succ : succ : succ : mm
¢succ(x,}/) = SUCC(y,X)

¢/aba (X) = /aba(x)
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MSO Transductions (Courcelle)

@ input string seen as the logical structure over

{succ, (lab,)sex }
@ output predicates defined with MSO formulas interpreted over
the input structure

LA LD

sSucc succ Succ Succ Succ sSucc Succ
¢succ(x, }/) = SUCC(y, X)
Glab,(x) = labs(x)
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Streaming String Transducers (Alur, Cerny, 2010)

On every transitions, a finite set of variables can be updated by
@ appending a string: x := x.u
@ prepending a string: x := u.x
@ concatenating two variables: x := yz
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Streaming String Transducers

Theorem (Alur Cerny 2010)

The following models are expressively equivalent:
Q two-way DFT
@ MSO transductions

@ deterministic (one-way) streaming string transducers with
copyless update

Moreover, SSTs have good algorithmic properties and have been
used to analyse list processing programs (Alur Cerny 2011).
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Pushdown Transducers

A pushdown transducer is a pair (A, O) where A is a pushdown
automaton and O is an output morphism.

(Bad) Properties

@ closure under composition is lost

@ Functionality, determinizability, equivalence and inclusion of
functional transducers are lost.
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Finite State Transducers — Summary

D="(input) deterministic”
f="functional"
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A word about infinite strings

most transducer models can be extended to (right-) infinite
strings

Biichi / Muller accepting conditions

most of the results seen so far still hold with some
complications ...

determinization of one-way transducers: TP is too strong

alaa ala

start > start >

deterministic 2way < functional 2way:

a“ if infinite number of 'a’
T : u—

u otherwise

functional 2way = determinitic 2way + w-regular look-ahead
= w-MSO transductions = w-SST (Alur,Filiot, Trivedi,12)
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Transducers for Nested Words (~ Trees)
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Motivations

Streaming XML Transformations

@ XML are words with a nesting structure

@ XML documents can be (very) wide but usually not deep

@ in a streaming setting, not reasonable to keep the entire
document in memory

@ bounded memory streaming transformations ?
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Streaming XML Transformations

@ XML are words with a nesting structure

@ XML documents can be (very) wide but usually not deep

@ in a streaming setting, not reasonable to keep the entire
document in memory

@ bounded memory streaming transformations ?

\

Visibly Pushdown Transducers (VPTs)
e extend Visibly Pushdown Automata (Alur Madhusudan 04)

o well-suited for streaming nested words transformations

@ bounded memory analysis for VPT transductions.

A\
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Structured Alphabet

Definition (Structured Alphabet)
A structured alphabet, ¥, isaset Xy =Y . W; WY, where

@ X . are call symbols,
@ 2, are internal symbols,

@ X, are return symbols.

(]

a nested word is a word over a structured alphabet

Ci Can

it is well-nested if there is no pending call nor return symbols

C1C2ar2br1
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Nested Words vs Trees

Well-nested words = linearizations of trees

family
<family>
‘ <person>
person <pame> Marie Curie </name>
T <gender> F </gender>
— <hirth> 1867 </birth>
- ~ — h
name gender birth  children “i'g;:ig:)
» <name> Iréne </name>
) <gender> F </gender>
8¢ person <hirth> 1897 </birth>
7 </person>
J </children=>
nalme gender birth (jff:;irl;?>

@ nested words are well-suited to

model tree streams
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Visibly Pushdown Automata ( ) [Alur,Madhusudan,04]

VPAs = Pushdown Automata on structured alphabet
Y=Y WX, Wi

@ push one stack symbol on call symbols > .
@ pop one stack symbol on return symbols ¥,
@ don't touch the stack on internal symbols ;

@ in this talk, accept on empty stack and final state
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Visibly Pushdown Automata ( ) [Alur,Madhusudan,04]

VPAs = Pushdown Automata on structured alphabet
Y=Y WX, Wi

@ push one stack symbol on call symbols > .
@ pop one stack symbol on return symbols ¥,
@ don't touch the stack on internal symbols ;

@ in this talk, accept on empty stack and final state

& JHY |n|t|a| & Jr’y
‘ ¢, +y /\ ¢, +v q ‘
( L) )\ 5 S

LA)={c"ir"a | n>0}u{c"ir" b | n>0}
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Properties of VPA

o NFA < VPA < PA
@ close under all Boolean operations

e NFA algorithmic properties are preserved (equivalence,
universality, ...)
@ applicatons in

e computer-aided verification
o XML processing

@ see http://www.cs.uiuc.edu/~madhu/vpa/
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Visibly Pushdown Transducers (

Definition
Pair (A, O) where A : VPA and O is an output morphism.

rlb, —y c\b + |n|t|a| cla, +y rla, —

‘ ble 5 c|b +'ymc\a +'yA & ‘

R(T)={(c"ir"a,a") | n>0yU{(c"ir" bb>) | n>0}
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Properties of Visibly Pushdown Transducers

NFT < VPT < PT

dVPTs < (functional) VPT

closed under composition if the output is well-nested
closed under VPA-lookahead

functionality is decidable in PTime

k-valuedness is decidable

® 6 6 6 o o o

equivalence of functional VPTs is decidable (in PTime of
dVPTs)

o decidable typechecking problem (if the output is well-nested)
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Properties of Visibly Pushdown Transducers

NFT < VPT < PT

dVPTs < (functional) VPT

closed under composition if the output is well-nested
closed under VPA-lookahead

functionality is decidable in PTime

k-valuedness is decidable

® 6 6 6 o o o

equivalence of functional VPTs is decidable (in PTime of
dVPTs)

decidable typechecking problem (if the output is well-nested)

@ Open Problems: equivalence of k-valued VPTs,
determinizability

@ more details in F. Servais's Phd thesis
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Why is determinizability more difficult?

rlaa, cle, +v cla, +v rla, =y

initial

v
cle, +v . cla, +v
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Why is determinizability more difficult?

rlaa, - cle, +v initial

v
cle, +v . cla, +v

It is determinizable by:

initial cla, +v rla, =

v .
.C|a7+7 ile

but lag increase arbitrarily in (p1, g1).

cla, +v rla, =
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Streamability Problem [F, Gauwin, Reynier, Servais, 11]

Streaming evaluation: avoid the storage of the whole input
Fix a functional (non-deterministic) VPT T.

How much memory is needed to compute T(u) from an input
stream u?
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constant ) dependent
memory height(u) in length(u)
: |-+ memory usage
cannot check not
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memory O(f(height(u))?
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Streamability Problem [F, Gauwin, Reynier, Servais, 11]

Streaming evaluation: avoid the storage of the whole input
Fix a functional (non-deterministic) VPT T.

How much memory is needed to compute T(u) from an input
stream u?

constant ) dependent
memory height(u) in length(u)
: |-+ memory usage
cannot check not
well-nestedness! streamable!

Streamability Problem

Given a VPT T, decide if T defines a
transformation that can be evaluated with
memory O(f(height(u))?

Decidable in NP for VPTs
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Determinizability is too strong

Obs: Deterministic VPTs are always streamable (no output lag)
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Determinizability is too strong

Obs: Deterministic VPTs are always streamable (no output lag)

However: determinizable VPTs < streamable VPTs:

R(T):c"ir"a w—a® n>0

rlb, —y c|b, +v |n|t|a| cla, +v rla, —

ble \%’2 . /qu +’ymc\a +7A 5 '

Streamable but not determinizable !
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Twinning Property for VPTs

For all such situations

U2’V2
U1‘V1

()
ur|w @'\MAM@
AL

it is the case that LAG(vi, w1) = LAG(viva, wiwp).
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Twinning Property for VPTs

Definition
For all such situations

uo|va
ui|lvi

up|wi S
up|wa

it is the case that LAG(vi, wi) = LAG(viva, wawp).
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Twinning Property for VPTs

stack height

q.c a.o

pio’ \/ 0,0

U1 [VE} input wor

I
I—same lag —I
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stack height
Ko q.0, q.0
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Twinning Property for VPTs

stack height
q.0, Ay 4.0, q.0
pla’ N/ 0.0 N/ 0,0 N/ p.o’
U1 o Us Lo input worc,
lag1 < lag2 < lag3 < lag4
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Twinning Property for VPTs

Given a functional VPT T, T is streamable iff the twinning
property holds.
It can be decided in NPtime.
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Twinning Property for VPTs

Given a functional VPT T, T is streamable iff the twinning
property holds.
It can be decided in NPtime.

@ TP is machine-independent: streamable VPTs is class of
transductions.

@ decidability based on reversal-bounded pushdown counter
machines

@ same result extend to strongly streamable (memory depends
only on current height)

51/63



Other tree transducer models

@ top-down tree transducers

q(f(xa;- - xa)) = Claa(xi), - - 4p(, )]

(see TATA® book
@ macro tree transducers

fun q(tl t2 t3 t4 t)=

if t = a() then

return F (t1,t2)
else

if t=g(u,v) then

return C(q’(t1,t2,u), q’’(t3,t4,v))

@ see Joost Engelfriet and Sebastian Maneth's work

3 Tree Automata Techniques and Applications, tata.gforge.inria.fr
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Church Problem (aka Church Synthesis Problem)

Definition (Church 57)
@ R a relation, or requirements, from a domain D to a domain
D/
@ synthesize a program P such for all X € D, (X, P(X)) € R.
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Church Problem (aka Church Synthesis Problem)

Definition (Church 57)
@ R a relation, or requirements, from a domain D to a domain
D/
@ synthesize a program P such for all X € D, (X, P(X)) € R.

v

Reactive System Synthesis

Let X;, and X, be to finite alphabets.

@ reactive systems continuously react to stimuli produced by
some uncontrollable environment

e D=YY D' =%%,
@ R is a synchronous relation given by a (non-deterministic)

symbol-to-symbol Biichi transducer
@ P is a Mealy machine (deterministic symbol-to-symbol

transducer)

A
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Reactive System Synthesis: Example

o Xy = {req, nop)
e X, = {grant,nop}.

@ Requirement R: if there is a request, it must be eventually
granted

nop|nop _|nop

_|grant

req|grant
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Reactive System Synthesis: Example

e ¥, = {req, nop}

e X, = {grant,nop}.

@ Requirement R: if there is a request, it must be eventually
granted

nop|nop _|nop

_|grant

req|grant

@ Possible programs (Mealy machines) that realize R:

nop|nop nop|nop
req|nop
~(») -
_|grant
req|grant
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Church Game

Definition

@ turn-based game between two players
@ Player in chooses input symbols in %,
@ Player out chooses output symbols in X ,,¢

@ they play during an infinite number of rounds.
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Church Game

Definition

turn-based game between two players
Player in chooses input symbols in ¥,

Player out chooses output symbols in 2 ,,;

they play during an infinite number of rounds.

Player in (¥;,) R R S S PR

Player out (Xout) @ 01 02 03 o0a 05

Def: Player out wins if (i1i2/3...,010003...) € R.
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Church Game

Definition

@ turn-based game between two players
@ Player in chooses input symbols in %,
@ Player out chooses output symbols in X ,,¢

@ they play during an infinite number of rounds.

Player in (¥;,) R R S S PR

Player out (Xout) @ 01 02 03 o0a 05

o Def: Player out wins if (i1i2/3...,010003...) € R.

@ Prop: There exists a program that realizes the requirements
R iff Player out has a winning strategy.
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State of the Art

@ reactive system synthesis from w-regular specifications is
decidable (Biichi Landweber 69)

@ reactive system synthesis from LTL specifications is
2-ExpTime-c (Pnueli Rosner 89)
@ several tools for LTL synthesis:

o Lily (Jobstmann Bloem 06)
o Acacia (Filiot Jin Raskin 09)
o Unbeast (Ehlers 10)

@ very active community in game theory for synthesis

e quantitative games
multi-player games
stochastic games
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Acacia Tool

aspume s25_reql=0;
ansume Gi{s2h_reqb=1 « bis_sckl=0) = X(s2b_reg0-1)};
assume G{s2s_ackl=1 -> X{aZh regD-0]);

GenBuf spec from IBM

B2s_sek0-0;
G1(225_reg0=0 & x(sIb reglel)) -> K(bZs azii=d « Xi¥(=2s_sck0=11))):
. Gi (b2u_ack0=0 o K{52b_req0=0)) -> X(bzu_sck(=0)

BIR_fey Gib2s_ackt-0 = bls_sckl-D);

it dusd | Receiverd
I

[#pec_unit sb_ 1]

520 Rey! ! eyl
‘ 1 ) e | assume 525 reqlei
g A ptlAkl ) Bessnerd asgume G(lsZb_cegl=l « bie_ackl=0) -> X(slb_regl=l))s
77777 assume G(bZz_achl-l -» R{aZb_regl=01);

| b2e_sckl=l;
,,,,,,, 3 G (52b_regl=0 a %{sZh_regl=1)) = X{bZs_sckl=0 + K(¥{b2s_sckl=1)})|;
G (b2s_ackl-D & %{s2b_cegl-0)) -> X{bZs_sckl=0});

Gib2s_acki=0 « b2s_ackl=0);

calable example

aseume r2b_ackd=0r
ansume G{bEr_regi=0 =» R{r¥h_ack0-01);
assume G{b2c_regl=1 -> X{F(clh_sck0=1]});

0]

b2z_req0-t;
Giz2b_ackl=] -» %{blr_reql=0)):

G 5 _ack0-0) -» X{bZr_regl=13);
rom —Page ong G52z regl=1 » %(bZr cegbe0)] -> X(bic ceql-d U (bZ

G{ (22r_ragi=0) regl=0) |
G{(22b_reg0=1 + s2b_reqll) -> R(F(bIr_regl=1 + bir_cegl=1)}):

to 4-page long

assume r2o_acikl=l;

M M assume G{bIc regl-0 -> K{cZb ackl-0});
s Pecl |catl O ns assume G(b2r_reglel -> X(F(cl5_sckl=1))):

http://1it2.ulb.ac.be/acaciaplus
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How is it related to transducer theory?

@ reactive systems are streaming machines
@ from a relation R, extract a function f such that:
@ dom(R) C dom(f)
@ for all u € dom(R), f(u) € R(u).
@ f is a deterministic symbol-to-symbol transducer
@ this problem is known as the uniformization problem in
transducer theory
@ equivalently, is there a bounded memory (symbol-to-symbol)
function f such that £ C R and dom(R) C dom(f) ?
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Conclusion
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Contributions

@ finite transducers have good closure and algorithmic properties
@ nicely extend to visibly pushdown transducers

@ streamability problem = synthesis problem
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Open Problems and Future Work

Open problems
@ equivalence of k-valued VPTs
@ determinizability of VPTs

@ extension of streaming results to more expressive transducers,
e.g. macro tree transducers

@ shift from reactive systems to list processing program synthesis
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