Logic

Specification and Computation of Word Transductions

Emmanuel Filiot

Université libre de Bruxelles & FNRS

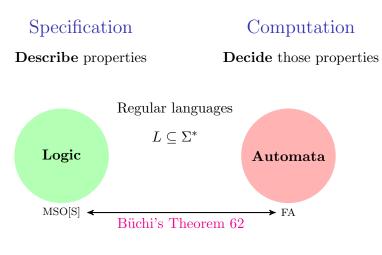
Workshop 'Trends in Transformations', 2018

Specification

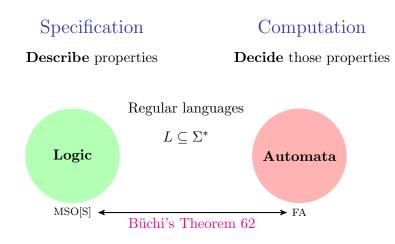
Describe properties

Computation

Decide those properties

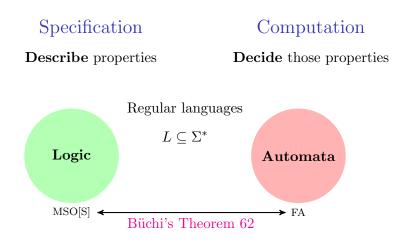


Logic



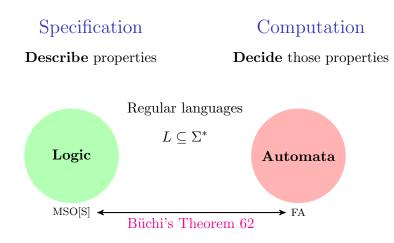
Many extensions: infinite words, finite and infinite trees, graphs, other logics ...

Logic



Many extensions: infinite words, finite and infinite trees, graphs, other logics ... Famous application: Model-checking $A \models \phi$?

Logic



Many extensions: infinite words, finite and infinite trees, graphs, other logics ... Famous application: Model-checking $A \models \phi$? $L(A) \cap L(A_{\neg \phi}) = \emptyset$

Objective of the talk

What about transductions ?

$$f: \Sigma^* \hookrightarrow \Sigma^*$$

Objective of the talk

What about transductions ?

$$f: \Sigma^* \hookrightarrow \Sigma^*$$

Append a #

 $abbab \mapsto abbab \#$

Objective of the talk

What about transductions ?

$$f: \Sigma^* \hookrightarrow \Sigma^*$$

Append a #Delete all b $abbab \mapsto abbab \#$

 $abbab \mapsto aa$

Objective of the talk

What about transductions ?

$$f: \Sigma^* \hookrightarrow \Sigma^*$$

Append a # $abbab \mapsto abbab #$ Delete all b $abbab \mapsto aa$

Squeeze all white space sequences ≥ 2 $fsttcs_18 \mapsto fsttcs_18$

Objective of the talk

What about transductions ?

$$f: \Sigma^* \hookrightarrow \Sigma^*$$

Append a # $abbab \mapsto abbab #$ Delete all b $abbab \mapsto aa$ Squeeze all white space sequences ≥ 2 $fsttcs_18 \mapsto fsttcs_18$ Add a parity bit $0100101 \mapsto 1100101$

Objective of the talk

What about transductions ?

$$f: \Sigma^* \hookrightarrow \Sigma^*$$

Append a # $abbab \mapsto abbab #$ Delete all b $abbab \mapsto aa$ Squeeze all white space sequences ≥ 2 $fsttcs_18 \mapsto fsttcs_18$ Add a parity bit $0100101 \mapsto 1100101$ Mirror the input word $trends18 \mapsto 81sdnert$

Objective of the talk

What about transductions ?

$$f: \Sigma^* \hookrightarrow \Sigma^*$$

Append a # $abbab \mapsto abbab$ #Delete all b $abbab \mapsto aa$ Squeeze all white space sequences ≥ 2 $fsttcs_18 \mapsto fsttcs_18$ Add a parity bit $0100101 \mapsto 1100101$ Mirror the input word $trends18 \mapsto 81sdnert$ Copy the input word $krishna \mapsto krishnakrishna$

Introduction

Transducers

Logic

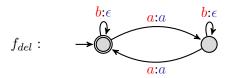
Outline

- 1. automata for transductions
- 2. logics for transductions
- 3. recent results

Automata models for transductions

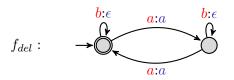
Conclusion

Automata for transductions: transducers



Conclusion

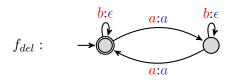
Automata for transductions: transducers

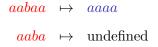


$aabaa \mapsto aaaa$

Conclusion

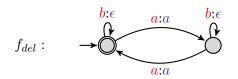
Automata for transductions: transducers

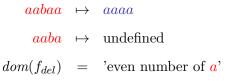




Conclusion

Automata for transductions: transducers





Introduction

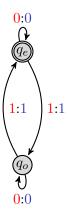
Transducers

Logic

Conclusion

Parity bit

$01101\mapsto \mathbf{1}01101, \mathbf{0}1111\mapsto \mathbf{0}011111$

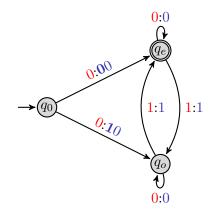


Logic

Conclusion

Parity bit

$01101\mapsto 101101, 01111\mapsto 0001111$

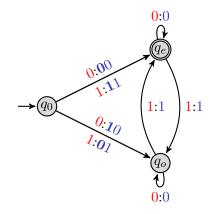


Logic

Conclusion

Parity bit

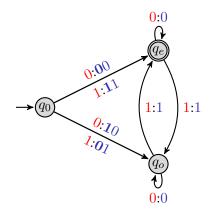
$01101\mapsto 101101, 01111\mapsto 0001111$



Logic

Parity bit

$01101 \mapsto 101101, 01111 \mapsto 001111$



- ▶ input non-determinism needed here (aka non-sequential)
- ▶ PTIME decidable whether non-determinism is necessary

Choffrut, Sakarovitch, Carton, Beal, Prieur

Equivalence problem

Def Let $f, g: \Sigma^* \hookrightarrow \Sigma^*$ given by transducers T_f, T_g such that dom(f) = dom(g). Decide whether f = g.

Equivalence problem

Def Let $f, g: \Sigma^* \hookrightarrow \Sigma^*$ given by transducers T_f, T_g such that dom(f) = dom(g). Decide whether f = g.

Lem (Schützenberger) Inequivalence is witnessed by runs r_1, r_2 such that

- (1) r_1, r_2 are over the same input
- (2) r_1, r_2 produce different outputs
- (3) r_1, r_2 have polynomial length

Equivalence problem

Def Let $f, g: \Sigma^* \hookrightarrow \Sigma^*$ given by transducers T_f, T_g such that dom(f) = dom(g). Decide whether f = g.

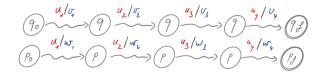
Lem (Schützenberger) Inequivalence is witnessed by runs r_1, r_2 such that

(1) r_1, r_2 are over the same input (2) r_1, r_2 produce different outputs (3) r_1, r_2 have polynomial length

Coro Equivalence is decidable in PSPACE.

Equivalence problem

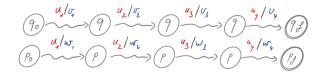
Lem Proof Assume $v = f(u) \neq g(u) = w$. If u is long enough, there exists a decomposition:



with $u = u_1 u_2 u_3 u_4$ ($|u_2| > 0, |u_3| > 0$), $v = v_1 v_2 v_3 v_4$, $w = w_1 w_2 w_3 w_4$.

Equivalence problem

Lem Proof Assume $v = f(u) \neq g(u) = w$. If u is long enough, there exists a decomposition:



with $u = u_1 u_2 u_3 u_4$ ($|u_2| > 0, |u_3| > 0$), $v = v_1 v_2 v_3 v_4$, $w = w_1 w_2 w_3 w_4$. Show one of the following cases hold:

1. $f(u_1u_4) = v_1v_4 \neq g(u_1u_4) = w_1w_4$ 2. $f(u_1u_2u_4) = v_1v_2v_4 \neq g(u_1u_2u_4) = w_1w_2w_4$ 3. $f(u_1u_3u_4) = v_1v_3v_4 \neq g(u_1u_3u_4) = w_1w_3w_4$

Equivalence problem

Def Let $f, g: \Sigma^* \hookrightarrow \Sigma^*$ given by transducers T_f, T_g such that dom(f) = dom(g). Decide whether f = g.

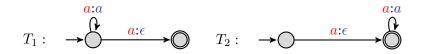
Lem (Schützenberger) Inequivalence is witnessed by runs r_1, r_2 such that

(1) r_1, r_2 are over the same input (2) r_1, r_2 produce different outputs (3) r_1, r_2 have polynomial length

Coro Equivalence is decidable in PSPACE.

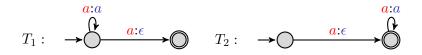
Thm (Gurari, Ibarra, 83). Equivalence is decidable in PTIME.

Transducer equivalence vs Automata equivalence



Intro	duction	

Transducer equivalence vs Automata equivalence

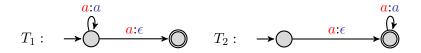


▶ Same transduction but different languages:

 $(a,\epsilon)(a,a)(a,a) \neq (a,a)(a,a)(a,\epsilon)$

T	1	
Intro	duction	

Transducer equivalence vs Automata equivalence



▶ Same transduction but different languages:

$$(a,\epsilon)(a,a)(a,a) \neq (a,a)(a,a)(a,\epsilon)$$

- ► Transducers are **asynchronous**
- ▶ Make most transducer problems conceptually difficult (and even computationally).

T	1			
Intr	O.C.	11C1	10	n

Non-determinism and relations

In general, transducers define binary relations in $\Sigma^* \times \Sigma^*$

realizes $\{(u, v) \mid v \text{ is a subword of } u\}$

Intro	duction	

Non-determinism and relations

In general, transducers define binary relations in $\Sigma^* \times \Sigma^*$

realizes $\{(\underline{u}, v) \mid v \text{ is a subword of } \underline{u}\}$

Thm. (Gurari, Ibarra 83) PTIME-decidable whether a given transducer defines a function.

Intro	duction	
111010	auction	

Non-determinism and relations

In general, transducers define binary relations in $\Sigma^* \times \Sigma^*$

realizes $\{(u, v) \mid v \text{ is a subword of } u\}$

Thm. (Gurari, Ibarra 83) PTIME-decidable whether a given transducer defines a function.

Equivalence Problem

Let $R_1, R_2 \subseteq \Sigma^* \times \Gamma^*$ given by transducers. Decide if $R_1 = R_2$.

 Undecidable (Griffith 68), even if one alphabet is unary (Ibarra 78)

 ${}^{1}\exists K \forall u |T(u)| \leq K$

Intro	duction	
111010	auction	

Non-determinism and relations

In general, transducers define binary relations in $\Sigma^* \times \Sigma^*$

realizes $\{(u, v) \mid v \text{ is a subword of } u\}$

Thm. (Gurari, Ibarra 83) PTIME-decidable whether a given transducer defines a function.

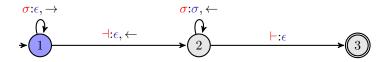
Equivalence Problem

Let $R_1, R_2 \subseteq \Sigma^* \times \Gamma^*$ given by transducers. Decide if $R_1 = R_2$.

- ▶ Undecidable (Griffith 68), even if one alphabet is unary (Ibarra 78)
- Decidable for bounded-valued transducers (Culik Karhumäki 86)¹.

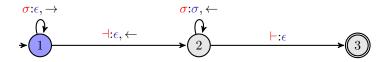
 ${}^1\exists K \forall u \ |T(u)| \leq K$

input $\vdash d e c - 2 0 1 8 +$

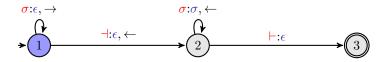


output

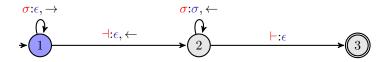
input $\vdash d e c - 2 0 1 8 \dashv$



input $\vdash d e c - 2 0 1 8 \dashv$

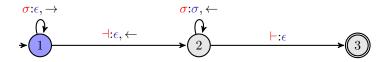


input $\vdash d e c - 2 0 1 8 \dashv$



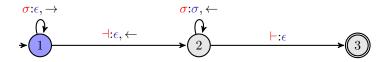
output

input $\vdash d e c - 2 0 1 8 \dashv$



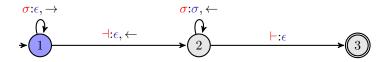
output

input $\vdash d e c - 2 = 0 = 1 = 8 = 4$

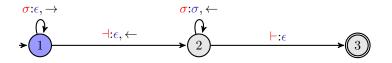


output

input $\vdash d e c - 2 0 1 8 \dashv$

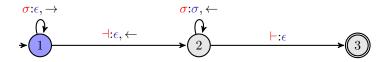


input $\vdash d e c - 2 = 0 = 1 = 8 = 4$

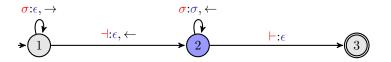


output

input $\vdash d e c - 2 0 1 8 \dashv$

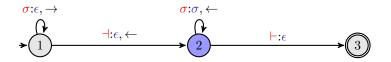


input
$$\vdash d e c - 2 = 0 = 1 = 8 = 4$$



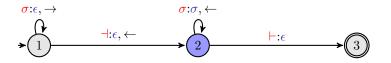
output

input $\vdash d e c - 2 0 1 8 \dashv$



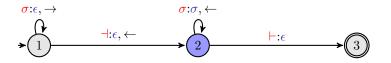
output 8

input $\vdash d e c - 2 = 0 = 1 = 8 = 4$



output 8 1

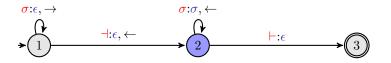
input $\vdash d e c - 2 0 1 8 \dashv$



output 8 1 0

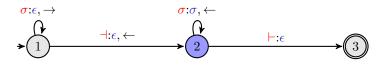
11/30

input $\vdash d e c - 2 0 1 8 \dashv$



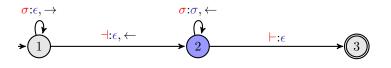
output 8 1 0 2

input $\vdash d e c - 2 0 1 8 \dashv$



output 8 1 0 2 -

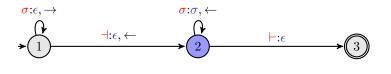
input $\vdash d e c - 2 0 1 8 +$



output 8 1 0 2 - c

Two-way finite transducers (2FT)

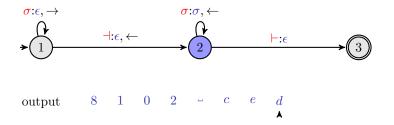
input $\vdash d e c - 2 0 1 8 +$



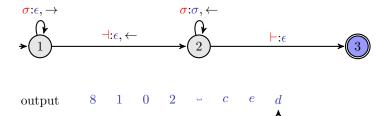
A

output 8 1 0 2 - c e

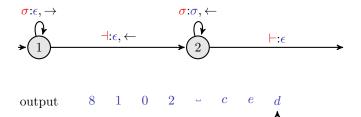
input $\vdash d e c - 2 0 1 8 \dashv$



input $\vdash d e c - 2 0 1 8 \dashv$

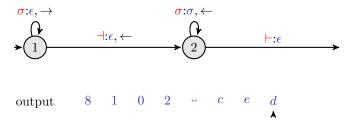


input d e c - 2 0 1 8 +



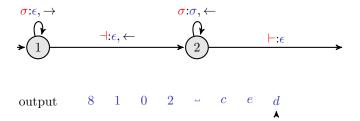
Other examples $dec, 2018 \mapsto 2018, dec$

input d e c - 2 0 1 8 - 4



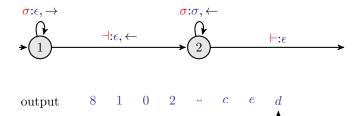
Other examples $dec, 2018 \mapsto 2018, dec$ $u \mapsto uu$ (copy)

input d e c - 2 0 1 8 +



Other examples $dec, 2018 \mapsto 2018, dec$ $u \mapsto uu$ (copy) $u \mapsto f_1(u)f_2(u)$ (copy+trans)

input d e c - 2 0 1 8 +



Other examples $dec, 2018 \mapsto 2018, dec$ $u \mapsto uu$ (copy) $u \mapsto f_1(u)f_2(u)$ (copy+trans) $u_1 \# u_2 \# \dots \# u_k \mapsto \overline{u_1} \# \dots \# \overline{u_k}$ (local reverse)

Some important results on two-way transducers

Over (functional) transductions:

▶ equivalence is decidable in PSPACE

(Gurari 82) (Culik, Karhumäki,87)

Some important results on two-way transducers

Over (functional) transductions:

• equivalence is decidable in PSPACE

(Gurari 82) (Culik, Karhumäki,87)

closed under composition

(Chytil, Jakl, 77)

Some important results on two-way transducers

Over (functional) transductions:

• equivalence is decidable in PSPACE

(Gurari 82) (Culik, Karhumäki,87)

closed under composition

(Chytil, Jakl, 77)

▶ equivalent to **reversible** two-way transducers

(Dartois, Fournier, Jecker, Lhote, 17)

Some important results on two-way transducers

Over (functional) transductions:

• equivalence is decidable in PSPACE

(Gurari 82) (Culik, Karhumäki,87)

closed under composition

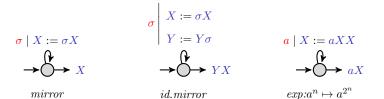
(Chytil, Jakl, 77)

• equivalent to **reversible** two-way transducers

(Dartois, Fournier, Jecker, Lhote, 17)

▶ and to many other models ...

Transducers with registers



- deterministic one-way
- equivalent to 2FT if linear updates

(Alur, Cerny, 10)

▶ decidable equivalence problem

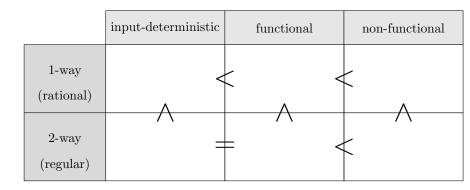
(F., Reynier, 17) (Benedikt et. al., 17)

Introduction

Transducers

Logic

Summary – Expressiveness



Introduction

Transducers

Logic

Summary – Expressiveness

	input-deterministic	functional	non-functional
1-way (rational)	· PTn	ме Рј	ÎME
2-way (regular)		← PS	Pace

Introduction

Transducers

Logic

Summary – Expressiveness

	input-deterministic	functional	non-functional
1-way (rational)	· PTn	ME \uparrow PT DEC	ÎIME Î UNDEC
2-way (regular)		← PS	Pace

(F., Gauwin, Reynier, Servais, 13)

(Baschenis, Gauwin, Muscholl, Puppis, 17)

Summary – Equivalence problem

	input-deterministic	functional	non-functional
1-way (rational)	PTime	PTime	undec
2-way (regular)	PSPace	PSPace	undec

Logics for transductions

MSO on words

Over some finite alphabet Σ :

$$\varphi \ ::= \ \varphi \wedge \varphi \mid \neg \varphi \mid \exists x \varphi \mid \exists X \varphi \mid x \in X \mid \sigma(x) \mid S(x,y) \qquad \sigma \in \Sigma$$

Over finite words, (set) variables interpreted by (sets of) positions.

MSO on words

Over some finite alphabet Σ :

$$\varphi \ ::= \ \varphi \land \varphi \mid \neg \varphi \mid \exists x \varphi \mid \exists X \varphi \mid x \in X \mid \sigma(x) \mid S(x,y) \qquad \sigma \in \Sigma$$

Over finite words, (set) variables interpreted by (sets of) positions.

Some examples

- $\blacktriangleright \leq$: transitive closure of S
- first position is an $a: a(x) \land \forall y(x \leq y)$
- counting modulo: odd number of a, even length, ...

MSO on words

Over some finite alphabet Σ :

$$\varphi \ ::= \ \varphi \land \varphi \mid \neg \varphi \mid \exists x \varphi \mid \exists X \varphi \mid x \in X \mid \sigma(x) \mid S(x,y) \qquad \sigma \in \Sigma$$

Over finite words, (set) variables interpreted by (sets of) positions.

Some examples

- \blacktriangleright \leq : transitive closure of S
- first position is an $a: a(x) \land \forall y(x \leq y)$
- counting modulo: odd number of a, even length, ...

 $L_\phi = \{w \in \Sigma^* \mid w \models \phi\}$

MSO on words

Over some finite alphabet Σ :

$$\varphi \ ::= \ \varphi \land \varphi \mid \neg \varphi \mid \exists x \varphi \mid \exists X \varphi \mid x \in X \mid \sigma(x) \mid S(x,y) \qquad \sigma \in \Sigma$$

Over finite words, (set) variables interpreted by (sets of) positions.

Some examples

- $\blacktriangleright \leq$: transitive closure of S
- first position is an $a: a(x) \land \forall y(x \leq y)$
- counting modulo: odd number of a, even length, ...

 $L_\phi = \{w \in \Sigma^* \mid w \models \phi\}$

Büchi-Elgot-Trakhenbrot

A language L is MSO-definable iff it is recognisable by some finite automaton.

Extension to transductions

Example (Delete all b)

▶ replace input label **by** *a* **if it is** *a*

• replace input label by ϵ if it is b

Extension to transductions

Example (Delete all b)

• replace input label by a if it is a

$$\phi_{a}(x) \equiv \frac{a}{a}(x)$$

• replace input label by ϵ if it is b

$$\phi_{\epsilon}(x) \equiv \frac{\mathbf{b}(x)}{\mathbf{b}(x)}$$

Extension to transductions

Example (Append #)

▶ replace label σ of x by σ if x is **not** the last position

▶ replace label σ of x by σ # if x is the last position

Extension to transductions

Example (Append #)

▶ replace label σ of x by σ if x is **not** the last position

$$\phi_{\sigma}(x) \equiv \sigma(x) \land \exists y \ S(x,y)$$

▶ replace label σ of x by σ # if x is the last position

$$\phi_{\sigma \#}(x) \equiv \sigma(x) \land \forall y \ \neg S(x, y)$$

Extension to transductions

Example (Add a parity bit)

► replace label σ of x by 1σ if x is the first position and odd number of 1

► replace label σ of x by 0σ if x is the first position and even number of 1

▶ replace label σ of x by σ if x is not the first position

Extension to transductions Example (Add a parity bit)

► replace label σ of x by 1σ if x is the first position and odd number of 1

$$\phi_{1\sigma}(x) \equiv \sigma(x) \land \forall y \ \neg S(y, x) \land \phi_{odd}$$

► replace label σ of x by 0σ if x is the first position and even number of 1

$$\phi_{0\sigma}(x) \equiv \sigma(x) \land \forall y \ \neg S(y, x) \land \phi_{even}$$

• replace label σ of x by σ if x is not the first position

$$\phi_{\sigma}(x) \equiv \sigma(x) \land \forall y \neg S(y, x)$$

Büchi Theorem for Rational Transductions

Def $f: \Sigma^* \hookrightarrow \Sigma^*$ is MSO-definable if it can be "described" by a finite set of formulas $\phi_{v_1}(x), \ldots, \phi_{v_k}(x)$ $(v_1, \ldots, v_k \subseteq \Sigma^*)$.

Büchi Theorem for Rational Transductions

Def $f: \Sigma^* \hookrightarrow \Sigma^*$ is MSO-definable if it can be "described" by a finite set of formulas $\phi_{v_1}(x), \ldots, \phi_{v_k}(x)$ $(v_1, \ldots, v_k \subseteq \Sigma^*)$.

Thm $f: \Sigma^* \hookrightarrow \Sigma^*$ is MSO-definable iff it is realisable by a finite state transducer.

Def $f: \Sigma^* \hookrightarrow \Sigma^*$ is MSO-definable if it can be "described" by a finite set of formulas $\phi_{v_1}(x), \ldots, \phi_{v_k}(x)$ $(v_1, \ldots, v_k \subseteq \Sigma^*)$.

Thm $f: \Sigma^* \hookrightarrow \Sigma^*$ is MSO-definable iff it is realisable by a finite state transducer.

Proof Idea Transducers \rightarrow MSO

For all transitions $t = p \xrightarrow{\sigma:v} q$ define $\phi_v^t(x)$

- which expresses the existence of an accepting run which at position x triggers transition t.
- ► latter property is regular, so MSO-definable (Büchi's Theorem)

(the transducer must be unambiguous)

Def $f: \Sigma^* \hookrightarrow \Sigma^*$ is MSO-definable if it can be "described" by a finite set of formulas $\phi_{v_1}(x), \ldots, \phi_{v_k}(x)$ $(v_1, \ldots, v_k \subseteq \Sigma^*)$.

Thm $f: \Sigma^* \hookrightarrow \Sigma^*$ is MSO-definable iff it is realisable by a finite state transducer.

Proof Idea Transducers \rightarrow MSO

For all transitions $t = p \xrightarrow{\sigma:v} q$ define $\phi_v^t(x)$

- which expresses the existence of an accepting run which at position x triggers transition t.
- ► latter property is regular, so MSO-definable (Büchi's Theorem)

(the transducer must be unambiguous)

Def $f: \Sigma^* \hookrightarrow \Sigma^*$ is MSO-definable if it can be "described" by a finite set of formulas $\phi_{v_1}(x), \ldots, \phi_{v_k}(x)$ $(v_1, \ldots, v_k \subseteq \Sigma^*)$.

Thm $f: \Sigma^* \hookrightarrow \Sigma^*$ is MSO-definable iff it is realisable by a finite state transducer.

Proof Idea MSO \rightarrow Transducers

- states must hold enough information to decide MSO satisfiability
- states are MSO-types (τ_1, τ_2) of (prefix, suffix)
- ▶ if formula $\phi_v(x)$ holds at (τ_1, τ_2) , output v

Def $f: \Sigma^* \hookrightarrow \Sigma^*$ is MSO-definable if it can be "described" by a finite set of formulas $\phi_{v_1}(x), \ldots, \phi_{v_k}(x)$ $(v_1, \ldots, v_k \subseteq \Sigma^*)$.

Thm $f: \Sigma^* \hookrightarrow \Sigma^*$ is MSO-definable iff it is realisable by a finite state transducer.

Proof Idea MSO \rightarrow Transducers

- states must hold enough information to decide MSO satisfiability
- states are MSO-types (τ_1, τ_2) of (prefix, suffix)
- ▶ if formula $\phi_v(x)$ holds at (τ_1, τ_2) , output v

Def $f: \Sigma^* \hookrightarrow \Sigma^*$ is MSO-definable if it can be "described" by a finite set of formulas $\phi_{v_1}(x), \ldots, \phi_{v_k}(x)$ $(v_1, \ldots, v_k \subseteq \Sigma^*)$.

Thm $f: \Sigma^* \hookrightarrow \Sigma^*$ is MSO-definable iff it is realisable by a finite state transducer.

Proof Idea MSO \rightarrow Transducers

- states must hold enough information to decide MSO satisfiability
- states are MSO-types (τ_1, τ_2) of (prefix, suffix)
- ▶ if formula $\phi_v(x)$ holds at (τ_1, τ_2) , output v

Büchi Theorem for Rational Transductions

What about mirror ?

 $csl2018\mapsto 8102lsc$

Replace label of position x by σ if last - x is labeled σ . Not MSO-definable.

(Courcelle) MSO Transducers

"interpreting the output structure in the input structure"

(Courcelle) MSO Transducers

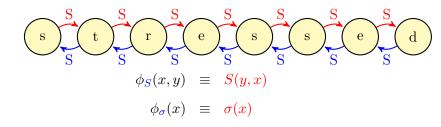
"interpreting the output structure in the input structure"

(Courcelle) MSO Transducers

"interpreting the output structure in the input structure"

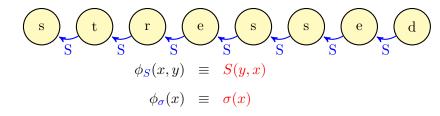
(Courcelle) MSO Transducers

"interpreting the output structure in the input structure"



(Courcelle) MSO Transducers

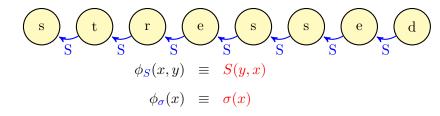
"interpreting the output structure in the input structure"



(Courcelle) MSO Transducers

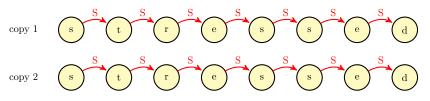
"interpreting the output structure in the input structure"

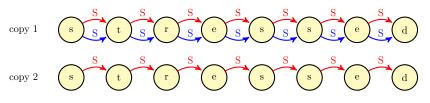
 output predicates defined by MSO formulas interpreted over the input structure



• input structure can be copied a fixed number of times: $u \mapsto uu$, or $u \mapsto u$.mirror(u).

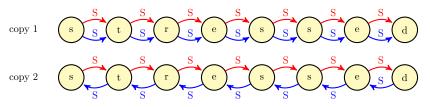
Introduction			



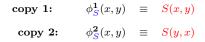


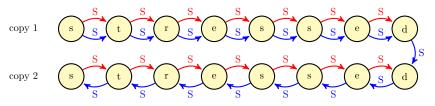
Formulas

copy 1: $\phi_S^1(x,y) \equiv S(x,y)$



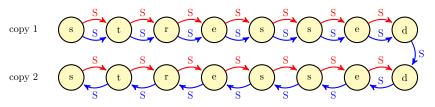
Formulas





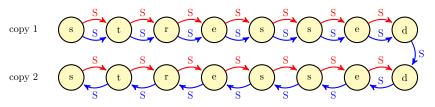
Formulas

copy 1: $\phi_S^1(x,y) \equiv S(x,y)$ copy 2: $\phi_S^2(x,y) \equiv S(y,x)$ copy 1 to copy 2: $\phi_S^{1\to 2}(x,y) \equiv x = y \wedge last(x)$



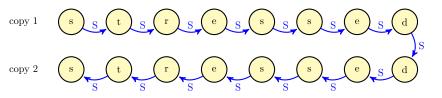
Formulas

 $\begin{array}{rcl} \operatorname{copy} & \mathbf{1} \colon & \phi_S^1(x,y) & \equiv & S(x,y) \\ & \operatorname{copy} & \mathbf{2} \colon & \phi_S^2(x,y) & \equiv & S(y,x) \\ \end{array}$ $\begin{array}{rcl} \operatorname{copy} & \mathbf{1} \text{ to copy } & \mathbf{2} \colon & \phi_S^{1 \to 2}(x,y) & \equiv & x = y \wedge last(x) \\ \end{array}$ $\begin{array}{rcl} \operatorname{copy} & \mathbf{2} \text{ to copy } & \mathbf{1} \colon & \phi_S^{2 \to 1}(x,y) & \equiv & \bot \end{array}$



Formulas

 $\begin{array}{rcl} \operatorname{copy} \mathbf{1} & \phi_{S}^{1}(x,y) & \equiv & S(x,y) \\ & \operatorname{copy} \mathbf{2} & \phi_{S}^{2}(x,y) & \equiv & S(y,x) \\ \end{array}$ $\begin{array}{rcl} \operatorname{copy} \mathbf{1} & \operatorname{to} & \operatorname{copy} \mathbf{2} & \phi_{S}^{1 \to 2}(x,y) & \equiv & x = y \wedge last(x) \\ \operatorname{copy} \mathbf{2} & \operatorname{to} & \operatorname{copy} \mathbf{1} & \phi_{S}^{2 \to 1}(x,y) & \equiv & \bot \\ \end{array}$ $\begin{array}{rcl} \operatorname{for} & \operatorname{all} & \operatorname{copies} & i & \phi_{S}^{i}(x) & \equiv & \sigma(x) \end{array}$



Formulas

 $\begin{array}{rcl} \operatorname{copy} \mathbf{1} & \phi_{S}^{1}(x,y) & \equiv & S(x,y) \\ & \operatorname{copy} \mathbf{2} & \phi_{S}^{2}(x,y) & \equiv & S(y,x) \\ \end{array}$ $\begin{array}{rcl} \operatorname{copy} \mathbf{1} & \operatorname{to} & \operatorname{copy} \mathbf{2} & \phi_{S}^{1 \to 2}(x,y) & \equiv & x = y \wedge last(x) \\ \operatorname{copy} \mathbf{2} & \operatorname{to} & \operatorname{copy} \mathbf{1} & \phi_{S}^{2 \to 1}(x,y) & \equiv & \bot \\ \end{array}$ $\begin{array}{rcl} \operatorname{for} & \operatorname{all} & \operatorname{copies} & i & \phi_{S}^{i}(x) & \equiv & \sigma(x) \end{array}$

Büchi Theorem for Regular Transductions Let $f: \Sigma^* \hookrightarrow \Sigma^*$.

Theorem (Engelfriet, Hoogeboom, 01)

The following are equivalent:

- 1. f is definable by a deterministic two-way transducer
- $2. \ f \ is \ MSO-definable.$

Büchi Theorem for Regular Transductions Let $f: \Sigma^* \hookrightarrow \Sigma^*$.

Theorem (Engelfriet, Hoogeboom, 01)

The following are equivalent:

- 1. f is definable by a deterministic two-way transducer
- 2. f is MSO-definable.

Consequence Equivalence is decidable for MSO-transducers, and they are closed under composition.

Büchi Theorem for Regular Transductions Let $f: \Sigma^* \hookrightarrow \Sigma^*$.

Theorem (Engelfriet, Hoogeboom, 01)

The following are equivalent:

- 1. f is definable by a deterministic two-way transducer
- 2. f is MSO-definable.

Consequence Equivalence is decidable for MSO-transducers, and they are closed under composition.

Proof ideas: MSO-transducers are 2-way transducers with MSO jumps $\phi^{c \to c'}_S(x,y)$

- turn jumps into walks
- hold enough information to decide MSO-formulas locally: states = MSO-types

 $f = \hat{f} \circ f_{types}$ (use composition closure of 2-way trans)

Some other (recent) results

Other specification languages

- ► FO-transducers
 - equivalent to <u>aperiodic</u> transducers with registers (F., Krishna, Trivedi, 14)
 - ▶ and to aperiodic 2-way transducers (Dartois, Jecker, Reynier, 16)

Other specification languages

- ▶ FO-transducers
 - equivalent to <u>aperiodic</u> transducers with registers (F., Krishna, Trivedi, 14)
 - ▶ and to aperiodic 2-way transducers (Dartois, Jecker, Reynier, 16)
- regular expressions for regular functions (called combinators)
 - iterated sum $f^*(u) = f(u_1)f(u_2)\dots f(u_n)$ for $u = u_1\dots u_n$
 - chain sum $f^{c}(u) = f(u_1u_2)f(u_2u_3)\dots f(u_{n-1}u_n)$
 - ▶ introduced by Alur, Freilich, Raghothaman in 14
 - extended to infinite words by Dave, Gastin, Krishna in 18

Other specification languages

- ► FO-transducers
 - equivalent to <u>aperiodic</u> transducers with registers (F., Krishna, Trivedi, 14)
 - ▶ and to aperiodic 2-way transducers (Dartois, Jecker, Reynier, 16)
- regular expressions for regular functions (called combinators)
 - iterated sum $f^*(u) = f(u_1)f(u_2)\dots f(u_n)$ for $u = u_1\dots u_n$
 - chain sum $f^{c}(u) = f(u_1u_2)f(u_2u_3)\dots f(u_{n-1}u_n)$
 - ▶ introduced by Alur, Freilich, Raghothaman in 14
 - extended to infinite words by Dave, Gastin, Krishna in 18
- new FO-equivalent expressions based on function composition o by Bojanczyk, Daviaud and Krishna in 18

Other specification languages

- ► FO-transducers
 - equivalent to <u>aperiodic</u> transducers with registers (F., Krishna, Trivedi, 14)
 - ▶ and to aperiodic 2-way transducers (Dartois, Jecker, Reynier, 16)
- regular expressions for regular functions (called combinators)
 - iterated sum $f^*(u) = f(u_1)f(u_2)\dots f(u_n)$ for $u = u_1\dots u_n$
 - chain sum $f^{c}(u) = f(u_{1}u_{2})f(u_{2}u_{3})\dots f(u_{n-1}u_{n})$
 - ▶ introduced by Alur, Freilich, Raghothaman in 14
 - ▶ extended to infinite words by Dave, Gastin, Krishna in 18
- ▶ new FO-equivalent expressions based on function composition ∘ by Bojanczyk, Daviaud and Krishna in 18
- ► an expressive decidable logic tailored to (non-functional) transductions Dartois, F., Lhote, 18.

Definability Problems

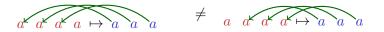
Definition \mathcal{F} : logical fragment of MSOT (e.g. FOT) Input: T an MSOT Output: Is [T] FO-definable ?

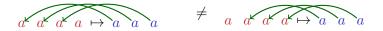
Definability Problems

Definition \mathcal{F} : logical fragment of MSOT (e.g. FOT) Input: T an MSOT Output: Is [T] FO-definable ?

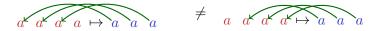
Results

- Decidable for "rational" MSO (=rational functions)
 F., Gauwin, Lhote, 16
- ▶ Open for MSOT

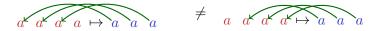




- existence of a canonical transducer if *origin* is taken into account (Bojanczyk, ICALP'14)
- ▶ decidable FO-definability of MSOT with origin



- existence of a canonical transducer if *origin* is taken into account (Bojanczyk, ICALP'14)
- ▶ decidable FO-definability of MSOT with origin
- ▶ algorithmic problems modulo origin $(\llbracket T_1 \rrbracket_o = \llbracket T_2 \rrbracket_o)$
- extended to "similar" origins through resynchronisers (F., Maneth, Reynier, Talbot, 15) (F., Jecker, Löding, Winter, 16), (Bose, Muscholl, Penell, Puppis, 18)



- existence of a canonical transducer if *origin* is taken into account (Bojanczyk, ICALP'14)
- ▶ decidable FO-definability of MSOT with origin
- ▶ algorithmic problems modulo origin $(\llbracket T_1 \rrbracket_o = \llbracket T_2 \rrbracket_o)$
- extended to "similar" origins through resynchronisers (F., Maneth, Reynier, Talbot, 15) (F., Jecker, Löding, Winter, 16), (Bose, Muscholl, Penell, Puppis, 18)
- ▶ study of rational relation subclasses by control languages $REL(C), C \subseteq \{in, out\}^*$ (Descotte, Figueira, Libkin, Puppis)

Some Other Results

▶ machine-independent characterisations

 $Cadilhac, Krebs, Ludwig, Paperman, \ 15$

Some Other Results

- ► machine-independent characterisations
 - $Cadilhac, Krebs, Ludwig, Paperman, \ 15$
- uniformisation problems (Ismaël's Jecker and Sarah Winter's PhD thesis). E.g. given R rational, is there f sequential such that

•
$$G_f \subseteq R$$

$$\bullet \ dom(f) = dom(R)$$

Some Other Results

- ▶ machine-independent characterisations
 - $Cadilhac, Krebs, Ludwig, Paperman, \ 15$
- uniformisation problems (Ismaël's Jecker and Sarah Winter's PhD thesis). E.g. given R rational, is there f sequential such that
 - $G_f \subseteq R$
 - $\bullet \ \operatorname{dom}(f) = \operatorname{dom}(R)$

ressource analysis (streaming, number of registers, etc.)
 Baschenis, Daviaud, F., Gauwin, Muscholl, Puppis, Reynier, Talbot...

Some Other Results

▶ machine-independent characterisations

 $Cadilhac, Krebs, Ludwig, Paperman, \ 15$

- uniformisation problems (Ismaël's Jecker and Sarah Winter's PhD thesis). E.g. given R rational, is there f sequential such that
 - $G_f \subseteq R$
 - $\bullet \ \operatorname{dom}(f) = \operatorname{dom}(R)$
- ressource analysis (streaming, number of registers, etc.)
 Baschenis, Daviaud, F., Gauwin, Muscholl, Puppis, Reynier, Talbot...
- learning

Boiret, Lemay, Niehren 12

Some Other Results

- ▶ machine-independent characterisations
 - $Cadilhac, Krebs, Ludwig, Paperman, \ 15$
- uniformisation problems (Ismaël's Jecker and Sarah Winter's PhD thesis). E.g. given R rational, is there f sequential such that
 - $G_f \subseteq R$
 - $\bullet \ \operatorname{dom}(f) = \operatorname{dom}(R)$
- ressource analysis (streaming, number of registers, etc.)
 Baschenis, Daviaud, F., Gauwin, Muscholl, Puppis, Reynier, Talbot...

learning

Boiret, Lemay, Niehren 12

data word transducers Léo Exibard's PhD thesis

Some Other Results

► machine-independent characterisations

 $Cadilhac, Krebs, Ludwig, Paperman, \ 15$

- uniformisation problems (Ismaël's Jecker and Sarah Winter's PhD thesis). E.g. given R rational, is there f sequential such that
 - $G_f \subseteq R$
 - $\bullet \ \operatorname{dom}(f) = \operatorname{dom}(R)$
- ressource analysis (streaming, number of registers, etc.)
 Baschenis, Daviaud, F., Gauwin, Muscholl, Puppis, Reynier, Talbot...

learning

Boiret, Lemay, Niehren 12

- ▶ data word transducers Léo Exibard's PhD thesis
- ▶ other structures: infinite strings, nested words, trees, graphs, data words ...

A Few Applications

- ▶ language and speech processing (M. Mohri)
- ▶ regular model-checking
- ▶ text analysis, document transformation
- reactive synthesis
- ▶ **Tools**: OpenFST, Vaucanson, DreX (Alur, d'Antoni, Raghothaman)
- ▶ line of works on symbolic transducers (d'Antoni, Veanes ...)

A Few Applications

- ▶ language and speech processing (M. Mohri)
- ▶ regular model-checking
- ▶ text analysis, document transformation
- reactive synthesis
- ▶ **Tools**: OpenFST, Vaucanson, DreX (Alur, d'Antoni, Raghothaman)
- ▶ line of works on symbolic transducers (d'Antoni, Veanes ...)

But **so far**, no strong application of the "asynchronous" setting (non letter-to-letter)

Transducers

Logic

People

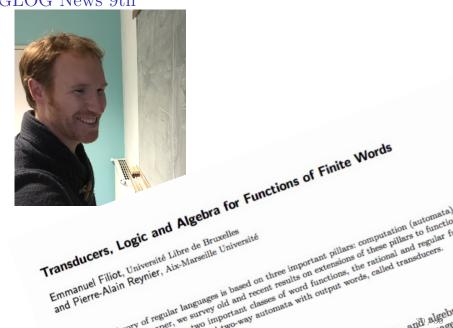
From left-to-right top-to-bottom: Nathan Lhote, Ismaël Jecker, Luc Dartois, Olivier Gauwin, Anca Muscholl, Frédéric Servais, Ashutosh Trivedi, Léo Exibard, Jean-Marc Talbot, Krishna S., Nicolas Mazzocchi, Christof Löding, Sarah Winter. Introduction

Transducers

Logic

Conclusion

SIGLOG News 9th



Introduction

Transducers

Logic

Conclusion

SIGLOG News 9th

