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Abstract

Two-player zero-sum games of infinite duration and their quantitative versions
are used in verification to model the interaction between a controller (Eve) and
its environment (Adam). The question usually addressed is that of the existence
(and computability) of a strategy for Eve that can maximize her payoff against
any strategy of Adam: a winning strategy. It is often assumed that Eve always
knows the exact state of the game, that is, she has full observation.

In this dissertation, we are interested in two variations of quantitative games.
First, we study a different kind of strategy for Eve. More specifically, we consider
strategies that minimize her regret: the difference between her actual payoff and
the payoff she could have achieved if she had known the strategy of Adam in
advance. Second, we study the effect of relaxing the full observation assumption
on the complexity of computing winning strategies for Eve.

Regarding regret-minimizing strategies, we give algorithms to compute the
strategies of Eve that ensure minimal regret against three classes of adversaries:
(i) unrestricted, (ii) limited to positional strategies, or (iii) limited to word
strategies. These results apply for quantitative games defined with the classical
payoff functions Inf, Sup, LimInf, LimSup, mean payoff, and discounted sum.

For partial-observation games, we continue the study of energy and mean-
payoff games started in 2010 by Degorre et al. We complement their decidabil-
ity result for a particular problem related to energy games (the Fixed Initial
Credit Problem) by giving tight complexity bounds for it. Also, we show that
mean-payoff games are undecidable for all versions of the mean-payoff function.
Motivated by the latter negative result, we define and study several decidable
sub-classes of mean-payoff games. Finally we extend the newly introduced win-
dow mean-payoff objectives to the partial observation setting. We show that
they are conservative approximations of partial-observation mean-payoff games
and we classify them according to whether they are decidable. Furthermore, we
give a symbolic algorithm to solve them.
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Chapter 1

Introduction

In this chapter we will introduce the reader to a part of the field of verification.
First, we will describe what kinds of systems we are aiming to formally verify,
and, eventually, synthesis in an automated fashion. We will then focus particu-
larly on the latter: the automatic generation of correct-by-construction reactive
systems. Our goal, in that second section, is to highlight the connections be-
tween the synthesis task and that of finding a winning strategy for a player in a
game. Finally, we will list the contributions to the game-theoretic foundations
of reactive synthesis developed in this dissertation.

1.1 Reactive Systems
Reactive (computer) systems are systems that maintain a continuous interaction
with their environment. They are ubiquitous in modern society. For exam-
ple, embedded controllers used in cars and planes, system software, and device
drivers, are all reactive systems. Although the correct functioning of reactive
systems is often safety or economically critical, their design and implementation
is difficult and error-prone. To support the design of such systems, in a way
that ensures correctness, mathematical logic and automata-theoretic methods
have been studied for decades. Seminal works in the 1950s by Kleene [Kle56]
and in the 1960s by Büchi, Rabin, among others, on automata theory and logic
have started this successful research track [Rab69] that focuses on verification of
reactive systems. Nowadays, companies such as Intel and Facebook are realizing
the importance of being able to mathematically prove the correctness of their
systems, leading to an increase in the profile of the field of formal verification.

Academically, research on formal verification ranges from contributions to
the theoretical foundations of the area to the development of efficient algorithms.
In practice, Intel, Microsoft, Airbus, and more recently Facebook and Amazon,
all have dedicated verification teams and industry-level verification tools.1

To further argue the need for formal verification, we present some examples
of how it is useful in real-world scenarios.

Real-world examples and applications. In 2015 a group of researchers
attempted to formally verify the correctness of several sorting algorithms im-

1See, for instance, the infer tool developed by Facebook: http://fbinfer.com/
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12 CHAPTER 1. INTRODUCTION

plemented in Java. Instead of successfully verifying them, they found a bug in
the default sorting algorithm inside the Android software development kit and
the OpenJDK Java development kit [dGRdB+15] using formal verification tools.
Sorting is, arguably, one of the most basic tasks that any modern computerized
system should be able to do. The fact that this bug had escaped code reviewers
and testing, and yet was diagnosed by a formal verification tool, highlights the
need for the use of such tools to become a default in software (and hardware)
development processes.

As an application, we focus on artificial intelligence. Artificial intelligence is
slowly becoming the biggest buzzword when it comes to developments related to
computer science. Autonomous vehicles and board game algorithms [SHM+16]
are examples of where artificial intelligence is being applied. It has, however,
become obvious that behavior learned by robots must be paired with safety guar-
antees. In [AOS+16], the authors argue that one of the most interesting research
directions regarding artificial intelligence is to find ways to make sure agents do
not damage themselves or their environments while learning. We posit that de-
ciding if a learning algorithm has that property, is in fact a verification problem.
Further, constructing learning algorithms which are safe-by-construction might
be related to reactive synthesis (which we will define in the sequel).

Model checking. One of the most successful techniques developed by the
formal verification community is model checking: given a model of the system
at hand together with a correctness specification, determine whether all the pos-
sible behaviors of the model satisfy the specification. Advancements in model
checking have been recognized as important contributions by the computer sci-
ence community. This recognition has taken the form of two Turing awards:
the first in 1996, awarded to Amir Pnueli for his work on temporal logic; the
second in 2007, shared by Clarke, Emerson, and Sifakis for their seminal works
on model checking itself.

One weakness of classical model checking is the fact that it is Boolean.
That is, a system either satisfies a specification or it does not [AK86, BK08].
Recently, quantitative verification has started to receive more attention as a
way to address questions such as: “What is the probability of battery power
dropping below minimum?” [Kwi07]. Models analyzed by such quantitative
methods are usually variants of finite automata or graphs with costs or rewards
labelling their transitions (respectively, edges).

1.2 Synthesis and Games
A more ambitious goal than that of model checking (or proving that a given
system is correct in general) is to synthesize reactive systems from their specifi-
cation and ensure correctness by construction. The main theoretical tool which
has been used to model this task is game theory. The required system, or con-
troller, is seen as a player choosing actions corresponding to outputs expected
from it, while its environment is modelled as a second player choosing actions
that correspond to the uncontrollable inputs which are fed to the system. An
infinite-duration game is then played by the two players on an arena which
models the possible configurations of the whole system. The winner is then
determined by whether the infinite sequence of configurations meets the desired
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Figure 1.1: An example of a succinct safety specification for the reactive syn-
thesis task.
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Figure 1.2: A solved instance of a safety-specification reactive synthesis task.

specification. If the controller has a set of rules—also known as a strategy—to
ensure he wins against any behavior of the environment, this may be imple-
mentable as the required system. The reason the latter is not always possible
is that a winning strategy may require unbounded amounts of memory to keep
track of, for instance, all actions witnessed so far. This motivates our interest
in the memory requirements of players in different games.

To give the reader a more concrete example of what we mean by synthesis
of reactive systems, we briefly sketch the rules for the Synthesis Compe-
tition [JBB+14] organized since 2013 in the context of the SYNT workshop.
Suppose we are given a sequential circuit C with a set of inputs and a single
output, such as the one depicted in Figure 1.1. The output of C is high, or
equal to 1, if and only if an error has occurred. In other words, the output of C
signals that the sequence of inputs it has been fed resulted in it reaching some
internal bad configuration. Further suppose that the inputs of the circuit are
partitioned into controllable and uncontrollable (again, like in Figure 1.1). We
would like to, automatically, obtain a sequential circuit XC which generates the
controllable inputs, as a function of the uncontrollable ones, so that the error
output will never be high. If such a circuit exists, we can compose it with C
(see Figure 1.2) and be sure that, regardless of the sequence of uncontrollable
inputs fed into XC and C, the circuit never reaches a bad configuration.

Seminal works on synthesis, e.g. [Tho95], are mostly based on models which
assume that all the information is available to the system (full observation),
that the specification is Boolean (a trace of the system is either good or bad),
and that the environment is completely antagonistic (a zero-sum situation). As
is the case for model checking, if we wish to apply reactive synthesis to real-
world scenarios, more robust models need to be considered. This dissertation
focuses on such extensions: quantitative games with partial observation and
regret minimization in quantitative games as a non-zero-sum solution concept.



14 CHAPTER 1. INTRODUCTION

We will now further elaborate on the connection between game theory and
verification, and reactive synthesis in particular.

Game theory. Game theory [OR94] is a branch of mathematics which is
applied in various application domains including economics, social sciences, bi-
ology, political sciences, as well as engineering. It attempts to model strategic
situations where several individuals are interacting, and it tries to predict what
will be the decisions taken by these individuals in a given situation. In this
framework, a strategic situation is called a game, each individual taking part
in this game is called a player, and their decisions are called strategies. For
instance, an auction on eBay can be seen as a game where the bidders are the
players, the prices at which the players will stop to increase their offers are their
strategies. The systematic study of game theory started in 1944 with the book
“Theory of Games and Economic Behavior” by John von Neumann and Oskar
Morgenstern [vNM07]. This book mainly focused on strictly competitive situ-
ations in which only two individuals interact, also known as zero-sum games.
Another important step forward in the development of game theory, around
1950, has been the introduction of the concept of Nash equilibrium (named
after John Forbes Nash, who proposed it) together with a proof of their exis-
tence [N+50]. Informally, a profile of strategies is a Nash equilibrium if no player
can do better by unilaterally changing her strategy. This important notion al-
lows us to study multi-player non-zero-sum games. It has been argued, however,
that for some classical games, Nash-equilibria do not correspond to ‘rational’
behavior of the players [HP12]. This has motivated the study of alternative
non-zero-sum solution concepts such as regret minimization.

Game theory for reactive synthesis. More recently, game theoretic con-
cepts have been introduced in computational models [Tho95]. The basic frame-
work that extends computational models with concepts from game theory is that
of so-called two-player zero-sum games played on graphs. In such games there
are two players, and plays are infinite paths constructed by the two players who
alternate in taking moves (traversals of edges). The winning condition is given
by a set of good infinite paths that one of the players tries to enforce against
the other player, who tries to build a path outside that set. Many problems
in verification and design of reactive systems can be modelled in this frame-
work [AHK02]. One of the applications of games in computer-aided design is
reactive synthesis. Given a model of the system to control (given as a graph)
and a control objective (for instance, to prevent the system to reach some bad
configurations), the controller synthesis problem asks to build a controller (a
program) that interacts with the system and ensures that the control objective
is enforced. In such a setting it is easy to see how modelling the controller as
one player and its system (also often called the environment) as an adversary,
captures the fact that the controller must react to the actions of the system in a
way that the control objective is enforced. As expected, to solve this problem,
zero-sum games played on graphs are adequate models [Tho95]. In such games,
vertices model configurations of the system, moves of player 1 model actions of
the controller, moves of player 2 model the uncontrollable actions of the system,
and the original control objective induces a set of paths in the graph which are
winning for player 1. A winning strategy for player 1 (the controller) is an ab-
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stract form of a control program that enforces the control objective no matter
how the system chooses its actions.

1.3 Contributions
The present dissertation summarizes our contributions to the theory of reactive
synthesis—via game theory—in two directions. First, we have started the study
of regret minimization in quantitative games played on graphs. Second, we
have continued the study of quantitative games with partial observation. We
elaborate on these two directions below.

Regret. Quantitative games are played on finite directed graphs with rational
weights on their edges. In the classical zero-sum setting, one of the players
attempts to maximize the value of a payoff function that aggregates the sequence
of weights seen along a play, while the other player strives to minimize the same
value. For several payoff functions, these games have been studied and shown
to be generalizations of well-known Boolean games. Most of the contributions
for the game-theoretical foundations of reactive synthesis, in the context of
quantitative games, are for zero-sum games. That is, the objective of the player
that models the system is to maximize the value of the game while the objective
of his opponent is to minimize this value (just as described above). This is a
worst-case assumption: because the cooperation of the environment cannot be
assumed, we postulate that it is antagonistic.

Equilibria [N+50] are, arguably, the most well-studied non-zero-sum solution
concept (see, e.g., [Kri03, Ves06, Rou09, RP15]). More recently, Halpern and
Pass have advocated for alternative solution concepts which include regret min-
imization [HP12]. We have started a study of the computational complexity of
regret minimization in quantitative games. More specifically, we have focused
on synthesizing strategies for the controller which minimize its regret when as-
suming the environment is of a specific class (namely, memoryless strategies or
word strategies, which will defined formally later). We have also considered the
most general case in which the environment is completely unrestricted. One can
argue that regret is not the best solution concept for the task of reactive syn-
thesis, indeed it does not guarantee, against all possibilities, a specific bound.
However, as we will see in the sequel, it transpires that regret-free strategies
are also worst-case optimal. Also, non-zero-sum solution concepts have recently
been gaining attention, for example, as a tool to synthesis controllers with guar-
antees conditioned on assumptions on the environment [BCH+16]. Furthermore,
it can be shown that regret-free strategies are in fact also optimal in the worst-
case sense [HPR16b, HPR16a]. Additionally, regret-free strategies have the
advantage of being superior to any alternative strategy when compared against
any witnessed behavior of the environment, that is, of course, the definition of
regret.

Unexpectedly, regret minimization against word strategies of the environ-
ment has been shown to be a generalization of a restricted kind of determiniza-
tion for Boolean automata on infinite words [HPR16b]. Our results, presented
in this dissertation, thus can also be seen as an approach to tackle unsolved
problems [CDH10] related to quantitative automata on infinite words and their
determinization.
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Partial Observability. A game is said to have (asymmetric) partial obser-
vation if Eve is not given the exact configuration of the game after every turn.
That is to say, whenever the current state of the game changes, instead of in-
forming Eve about the new state, a set of possible states—containing the actual
state of the game—is given to her.

Games with partial observation arise naturally in economics and have a rich
and well-developed theory. However, in computer science we only have prelimi-
nary results about games with partial observation [Rei84, CDHR06, DDG+10].
A large part of the results on games apply only for models with full observation.
Unfortunately, this hypothesis is often unrealistic: when some digital device has
to control a physical system, it acquires information about the state of the sys-
tem through sensors with finite precision. This results in the controller having
partial observation about the state of the system to control. In this scenario, we
want to construct so-called observation-based strategies, that is, strategies that
only depend on the information acquired by the sensors. Partial observability
also arises naturally in multi-component systems: the individual components
have only a partial view on the state of the other components. Typically, in a
shared memory system, processes have access to their local variables and the
global variables but not the local variables of other processes.

Games played on graphs with partial observation are conceptually and com-
putationally harder than games with full observation. For example, optimal
strategies in partial-observation games with simple reachability objectives re-
quire the use of randomization [CDHR06] while pure memoryless strategies exist
for reachability objectives under full observability. Games with partial obser-
vation and co-Büchi objectives are undecidable while, under full observability,
games with the same objectives are solvable in polynomial time [GO10, CD12].
Also, deciding the winner for quantitative objectives (mean-payoff and energy
games) is also undecidable under partial observation [DDG+10]. A lot of work
remains to be done in order to better understand these undecidability results.
For the decidable cases, the usual technique is based on subset constructions
that transform the game graph with partial observation into a game graph with
full observation.

In the literature, there are several decidability vs. undecidability results
about games with partial observation, e.g. [Rei84, DDG+10]. Nevertheless, our
understanding of the decidability frontier is far from being complete, and there
is a lack of general results and conceptual tools. For example, for mean-payoff
games with partial observation, the problem has been shown undecidable when
objectives are defined using strict thresholds, but the case for non-strict thresh-
olds was left open in [DDG+10]. In this work, we look for general properties that
are sufficient (in some games) to ensure that positive decidability results can
be transferred from a full-observation game to the original partial-observation
game. To be concrete, we focus on quantitative games. These games are impor-
tant in the context of controller synthesis: we may want, for example, a strategy
that ensures that energy consumed by the system is below some threshold per
time unit, or that the time separating every request (of a client) from its grant
(by the server) is minimal.

For classes of games that have been shown undecidable, it is often possible to
identify sub-classes that are decidable. For example, it was shown in [DDG+10]
that mean-payoff games with visible weights form a decidable subclass. We
show in the sequel that we can substantially extend this result by showing that
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all mean-payoff games for which the belief graph (its subset construction) only
contains simple cycles whose concrete paths can all be deemed ‘good’ or ‘bad’, in
a well-defined sense that we will formalize later, form a decidable subclass. For
this and other sub-classes, we investigate the exact complexity of recognizing
such instances and the complexity of synthesizing winning strategies for such
games. To obtain, decidability results for quantitative games, we also study
variants for the definition of the objectives. Particularly, instead of considering
constraints over the mean payoff along an infinite play, we study objectives,
recently proposed in [CDRR13] and called window mean-payoff objectives, that
ask that it is always true along the play that the next k steps (a window of size
k) have a mean payoff above a given threshold.
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Chapter 2

Preliminaries

In this chapter, we will go through most of the mathematical notations which
are used in later chapters. We will also derive some intermediate results that
will be, sometimes implicitly, used in the sequel.

2.1 Notations and Conventions
We assume the reader is familiar with basic discrete mathematics and com-
putational complexity theory. Whenever possible, we adhere to the following
notational conventions. Use lowercase letters such as a, b, . . . for elementary
objects; uppercase letters such as A,B, . . . for sets of elementary objects; up-
percase letters in calligraphic font such as A,B, . . . for structures composed of
other objects; lowercase Greek letters α, β, . . . for functions and sequences; and,
finally, uppercase Greek letters for sets of the latter.

The symbols | and : will be used interchangeably to separate elements of a
set and the properties these must satisfy, variable quantification and formulas,
etc. Both of them should be read as “such that”.

Sets and functions. For a set S, we denote by P(S) the set of subsets of S
(also referred to as the power set of S).

Let α : A → B be a function mapping elements from the set A to elements
from the set B. The set A is the domain of α and we denote it by Domain(α).
The set B is the range of α and we denote it by Range(α). Let β : A 9 B be
a partial function mapping a strict subset of A to elements from B. We denote
by supp(β) the support of β: the set A′ ⊂ A for which the function is defined.
We may sometimes favor using functions, instead of partial functions, and just
add a distinct new element to B which will be the value assigned by it to all
a ∈ A for which it would, otherwise, not be defined. For example, we replace β
by κ : A → (B ∪ {⊥}) which is such that κ(a) = β(a) if β is defined for a and
κ(a) = ⊥ otherwise. The support of κ is the set {a ∈ A | κ(a) 6= ⊥}.

Sequences and tuples. We will write a sequence of elements as a comma-
separated list in parenthesis. For instance, we could list all non-negative integers
in order: (0, 1, 2, . . . ). Alternatively, we might use angle brackets, i.e. 〈·〉, in-
stead of parentheses for improved readability, (for example, in cases where we
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have sequences of sequences). As a third possibility, we may omit the parenthe-
ses and commas altogether in order to avoid notation saturation.

The usual sets of numbers. We denote by R the set of real numbers; Q the
set of rational numbers; N the set of natural numbers—including 0; and N>0 the
set of positive integers. We will also use the Boolean numbers B := {0, 1}.

The usual notation for intervals of real numbers will be sometimes used.
That is, we denote by (a, b) the set {x ∈ R | a < x < b}; by [a, b), the set
{x ∈ R | a ≤ x < b}; by (a, b], the set {x ∈ R | a < x ≤ b}; and by [a, b], the set
{x ∈ R | a ≤ x ≤ b}.

Quasi-orderings and Vectors of Naturals. For a (possibly infinite) set of
numbers N , a relation R ⊆ N×N is said to be a quasi-order if it is reflexive (i.e.,
for all n ∈ N it holds that (n, n) ∈ N) and transitive (i.e., for all n1, n2, n3 ∈ N
if we have (n1, n2) ∈ N and (n2, n3) ∈ N then (n1, n3) ∈ N). Typically, one
writes nRm instead of (n,m) ∈ R.

An example of a quasi-order for the set of natural numbers N is ≤. If R is
a quasi-order for a set N and, additionally, for any infinite sequence n1, n2, . . .
such that n1 ∈ N there are two positions i, j ∈ N>0 such that i < j and niRnj ,
then we say R is a well-quasi-order.

We denote by Nd the set of all natural-number vectors of dimension d. For
two vectors a = (ad, . . . , a1),b = (bd, . . . , b1) ∈ Nd we write a ≤ b if and only
if ai ≤ bi for all 1 ≤ i ≤ d. That is, ≤ is the product order or component-wise
order. Dickson’s Lemma tells us that ≤ is a well-quasi-order for Nd.

Directed graphs. A directed graph is a pair (V,E) consisting of a set V of
vertices and a set E ⊆ V × V of edges with a direction associated to them.
That is, an edge (u, v) ∈ E is considered to ‘leave’ u and ‘arrive’ at v. In this
dissertation, all considered graphs are directed. Thus, henceforth we often omit
the adjective ‘directed’ and write digraph or just graph.

Let G = (V,E) be a directed graph and consider (u, v) ∈ E. The vertex v is
said to be a direct successor of u and u is a direct predecessor of v. We write
deg+(u) for the outdegree of u, that is, the number of direct successors of u,
and deg−(u) for the the indegree of u, the number of direct predecessors of u.
A vertex u ∈ V has a self-loop if (u, u) ∈ E. A path is a sequence of vertices
v0v1 . . . where vi+1 is a direct successor of vi, for all i ≥ 0; it is said to be simple
if vi 6= vj holds for all 0 ≤ i < j. If a path contains a vertex v, we sometimes say
it ‘visits’ or ‘reaches’ v; if it contains the sub-sequence uv then we say it ‘takes’
or ‘traverses’ the edge (u, v). If there is a finite path from u ∈ V to v ∈ V in the
graph, i.e. there is a path uv1 . . . vnv, then we say v is a successor of u and u is
a predecessor of v; alternatively, we may say v is reachable from u. If a vertex
v ∈ V has no direct successor, we call it a sink; if it has only one direct successor
and a self-loop, we say it is trapping. A cycle is a finite path χ = v0 . . . vn with
v0 = vn; it is said to be simple if vi 6= vj holds for all 0 ≤ i < j < n. We refer
to a finite path λ = v0 . . . vn−1vn . . . vm, where v0 . . . vn−1 is a finite path and
vn . . . vm is a cycle, as a lasso.

Players and their preferences. In this work we will be interested in games
played by two players only. We will refer to the first one (the one we are, in some
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sense, “supporting”) as Eve and to the second one as Adam. In most cases, Eve
will be interested in maximizing some value that Adam will try to minimize.

2.2 Languages, Automata, and Topology
In this dissertation we study systems, and thus games, with infinite behaviors.
We will repeatedly make use of infinite sequences studied in formal language
theory and topology. Hence, we need to introduce some of their notation.

Languages. Consider a (possibly infinite) set A of symbols. A word on A is
a sequence a0a1 . . . of elements from A. The special empty word is denoted by
ε. We sometimes refer to a set of symbols, such as A, as an alphabet and to
symbols as letters. Given a finite word α = a0 . . . an and a (possibly infinite)
word β = a′0a

′
1 . . . , we denote their concatenation: a0 . . . ana

′
0 . . . by α · β. We

denote by A∗ the set of all finite words on A, that is to say the set

{a0 . . . an | ai ∈ A for all 0 ≤ i ≤ n}

of finite sequences of elements from A. The set

{a0 . . . | ∀i ≥ 0 : ai ∈ A}

of infinite words on A we denote by Aω.
Given B ⊆ A∗ and C a set of (infinite or finite) words on A, we denote by

B · C the concatenation of B and C. That is, the set consisting of all words
constructed by concatenating a word from B to a word from C:

{β · κ | β ∈ B, κ ∈ C}.

Regular and Omega-regular Languages. A set L ⊆ A∗ of finite words on
A is a language over A. A special set of languages over A, the regular languages,
is defined recursively as follows:

• The empty language ∅ and the empty word language {ε} are both regular
languages.

• Any singleton language {a}, for a ∈ A, is a regular language over A.

• For any regular language B over A, B∗ is also a regular language over A.

• For any two regular languages B,C over A, their union and concatenation
is also a regular language over A.

• No other language over A is regular.

A set L ⊆ Aω of infinite words on A is referred to as an ω-language over A. An
ω-language L over A is ω-regular if any of the following hold:

• L = Bω, where B ⊆ A∗ is a non-empty regular language not containing
the empty word.

• L = B ·C, where B ⊆ A∗ is a regular language and C ⊆ Aω is an ω-regular
language.

• L = B ∪ C, where B,C ⊆ Aω are both ω-regular.
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Omega-automata. Automata over infinite words are very similar to their
finite-word counterparts: they consist of a finite set of states, transitions labelled
with symbols, and an initial state. However, since the words accepted by them
do not end, i.e. they are infinite, there are no ‘final’ states. Thus, more involved
acceptance conditions are needed.

Formally, an automaton is a tuple (Q, q0, A,∆) where Q is a finite set of
states, q0 ∈ Q is the initial state, A is a finite alphabet (of actions), and ∆ ⊆
Q×A×Q is the transition relation. We assume that ∆ is total, in the following
sense: for all (q, a) ∈ Q × A, there is q′ ∈ Q such that (q, a, q′) ∈ ∆. If ∆ is
functional, i.e. for all q ∈ Q and all a ∈ A there is a unique q′ ∈ Q such that
(q, a, q′) ∈ ∆, then we say the automaton is deterministic and write δ(q, a) to
denote q′. Given a set S ⊆ Q and a letter a ∈ A we denote by

posta(S) := {q ∈ Q | ∃p ∈ S : (p, a, q) ∈ ∆}

the set of a-successors of S. In a slight abuse of notation, we write posta(q)
instead of posta({q}) to improve readability.

Consider an automaton A = (Q, q0, A,∆). A run of A over an infinite word
a0a1 · · · ∈ Aω is a sequence q0a0q1a1 . . . such that (qi, ai, qi+1) ∈ ∆ for all i ≥ 0.
A run % = q0a0q1 . . . is then said to be accepting if some property—regarding
the states which appear infinitely often in %—is fulfilled. The automaton A then
accepts an infinite word α if it has an accepting run over α. We call the set of
all infinite words which are accepted by A the language of A and denote it by
LA. We also say that A ‘recognizes’ LA. Let % = q0a0 . . . be a run of A. The
set of states which appear infinitely often in % is defined as follows:

OccInf(%) := {p ∈ Q | ∀i ≥ 0,∃j ≥ i : qj = p}.

We write %[i] to denote the (i + 1)-th state, that is qi, in the sequence. Given
indices i, j ∈ N such that i ≤ j, we write %[i..j] for the infix qiai . . . aj−1qj ,
%[..i] for the prefix q0a0 . . . ai−1qi, and %[j..] for the suffix qjaj . . . A run prefix
π = q0a0 . . . an−1qn ending in state last(π) = qn is said to have length n + 1,
denoted |π| = n+ 1.

Büchi, co-Büchi, parity, and Streett automata. Once more, let us con-
sider an automaton A = (Q, q0, A,∆). We will now describe several acceptance
conditions and recall their expressive power. The following Boolean payoff func-
tions can be used to define acceptance conditions for automata, i.e. to determine
whether a run % = q0a0 . . . is accepting. One can view a Boolean payoff func-
tion as the indicator function of a payoff set of infinite runs. For convenience,
instead of defining a function Val : (Q ·A)ω → B we will define Val−1(1).

• The Reachability function is defined for a set T ⊆ Q of target states as:

Reach−1(1) := {run q0a0 . . . | ∃i ≥ 0 : qi ∈ T}.

• The Safety function is defined for a set U ⊆ Q of unsafe states as follows:

Safe−1(1) := {run q0a0 . . . | ∀i ≥ 0 : qi 6∈ U}.

• The Büchi function is defined for a set of accepting or Büchi states B ⊆ Q
as:

Buchi−1(1) := {run % | OccInf(%) ∩B 6= ∅}.
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• The co-Büchi function is defined for a set of rejecting or co-Büchi states
B ⊆ Q:

coBuchi−1(1) := {run % | OccInf(%) ∩B = ∅}.

• The parity function is defined for a priority function p : Q→ N as:

parity−1(1) :=
{

run % | min
q∈OccInf(%)

p(q) is even
}
.

• Finally, the Streett function is defined for a finite set of Streett pairs
{(Ei, Fi) | i ∈ I} where Ei, Fi ⊆ Q for all i ∈ I. Its payoff set Streett−1(1)
is equal to

{run % | ∀i ∈ I : Ei ∩ OccInf(%) 6= ∅ or Fi ∩ OccInf(%) = ∅}.

The are other classical payoff functions such as Rabin and Muller but we do not
make use of them here.

We refer to an automaton with a payoff function Val, from the list above,
as an Val automaton. For instance, the parity automaton B = (Q, q0, A,∆, p)
accepts a word α = a0a1 . . . if and only if it has a run % = q0a0 . . . on α such
that parity(%) = 1. Incidentally, we refer to the number max(Range(p)) as the
index of the parity function p.

Intuitively, a Büchi automaton with alphabet A has as its language the
set of infinite words which have some liveness property, that is, some event
represented by a Büchi state occurs infinitely often. Co-Büchi automata have a
dual acceptance condition. This can be thought of as bad events occurring only
finitely often (in at least one run of the automaton). Parity and Streett automata
capture, in different ways, the idea that (except for a finite number of times)
bad events must always be trumped by a good event. In the case of parity, any
bad event—namely the occurrence of an odd parity—can either: take place a
finite number of times, or a smaller and even priority must also occur an infinite
number of times (to trump it). For Streett automata, the acceptance condition
can be thought of as imposing a conjunction of “conditioned obligations”: for
all i ∈ I, if an element from Fi is seen infinitely often, then some element from
Ei must also be seen infinitely often.

Parity and Streett automata are known to be more expressive than Büchi and
co-Büchi automata when restricted to being deterministic. In fact, the following
is well-known about ω-regular languages and automata on infinite words.

Proposition 2.1 (From [Tho95, PP04]). For any alphabet A and ω-language
L over A, the following are equivalent:

• L is ω-regular.

• There exists a Büchi automaton A such that LA = L.

• There exists a deterministic parity automaton A such that LA = L.

�

Of particular interest to us in the context of the present dissertation is the fact
that any non-deterministic Büchi automaton can be determinized into a parity
automaton. In other words, for a given Büchi automaton, one can construct a
deterministic parity automaton with exactly the same language. More formally:
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Proposition 2.2 (Determinization of omega-automata [Saf88, Saf92, Pit07]).
Given a Büchi automaton A = (Q, q0, A,∆, B), there is an algorithm which
yields a deterministic parity automaton A′ = (Q′, q′0, A,∆′, p) such that |Q′| is
of size 2O(|Q| log |Q|) and with parity index polynomial with respect to |Q|. �

Borel hierarchy. Let A be a (possibly infinite) alphabet. The Borel hierarchy
of subsets of Aω is inductively defined as follows.

• Σ0
1 = {W ·Aω |W ⊆ A∗} is the set of open subsets of Aω.

• For all n ≥ 1, Π0
n = {Aω \ L | L ∈ Σ0

n} consists of the complement of sets
in Σ0

n.

• For all n ≥ 1, Σ0
n+1 = {

⋃
i∈N Li | ∀i ∈ N : Li ∈ Π0

n} is the set obtained by
countable unions of sets in Π0

n.

A map f : A→ B is said to be Borel measurable if f−1(X) is Borel for any
open subset X of B.

2.3 Quantitative Payoff Functions
As the title of this work implies, we will focus mainly on non-Boolean payoff
functions. We will now define some classical functions of the form

Qω → (R ∪ {−∞,+∞}) .

Formally, for an infinite sequence of rationals χ = x0x1 . . . we define:

• the Inf (Sup) payoff, is the minimum (maximum) rational seen along the
sequence:

Inf(χ) := inf{xi | i ≥ 0}
and

Sup(χ) := sup{xi | i ≥ 0};

• the LimInf (LimSup) payoff, is the minimum (maximum) rational seen
infinitely often:

LimInf(χ) := lim inf
i→∞

xi

and, respectively, we have that

LimSup(χ) := lim sup
i→∞

xi;

• the mean-payoff value of a sequence, i.e. the limiting average rational,
defined using lim inf or lim sup since the running averages might not con-
verge:

MP(χ) := lim inf
k→∞

1
k + 1

k∑
i=0

xi

and

MP(χ) := lim sup
k→∞

1
k + 1

k∑
i=0

xi.
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In words, MP corresponds to the limit inferior of the average of increasingly
longer prefixes of χ while MP is defined as the limit superior of χ.

Another payoff function we consider is the discounted sum. Given a sequence
of rationals χ = x0x1 . . . of length n ∈ N ∪ {∞}, the discounted sum is defined
for a rational discount factor λ ∈ (0, 1) as follows:

DSλ(χ) :=
n∑
i=0

λixi.

We remark the above payoff functions together with the Boolean functions—
Büchi, parity, etc.—are all Borel measurable. Note that, since they map se-
quences of rationals to real numbers (or infinity) then it suffices to show that,
for all a ∈ R, the set of sequences with value above a is Borel. Formally, we
have that:

Proposition 2.3. Let B ∈ {>,≥}. For all a ∈ R, for any Boolean or quanti-
tative payoff function Val, the set {χ = x0x1 . . . |Val(χ)B a} is Borel. �

Indeed, it is easy to use the definition of the payoff functions we have presented
thus far, and convince oneself that the above holds. For example, for a ∈ R and
B set to ≥, the payoff function MP yields:x0x1 · · · ∈ Qω |

⋂
i∈N>0

⋃
j∈N

⋂
k≥j

1
k + 1

k∑
`=0

x` ≥ a−
1
j


which is clearly Borel. It follows that all Boolean and quantitative payoff func-
tions defined in this chapter are Borel-measurable functions.

Proposition 2.4. All Boolean and quantitative payoff functions are Borel mea-
surable. �

Prefix independence. A payoff function Val is said to be prefix independent
if for any two sequences of rationals χ = x0x1 . . . , χ

′ = x′0x
′
1 · · · ∈ Qω the

following holds:(
∃i ≥ 0,∀j ≥ i : xj = x′j

)
=⇒ Val(χ) = Val(χ′).

In other words, any two sequences with the same infinite suffix (starting from
any point onwards) will have the same value. This can be seen as the payoff
function “not caring” about the prefix of the sequence. Hence the name, prefix
independent.

2.4 Computational Complexity
Throughout this dissertation, we follow notation and definitions from [GJ79]
and [Pap03] for concepts regarding computational complexity. We regard algo-
rithms which have polynomial worst-case running time as ‘efficient’. Thus, we
shall provide polynomial-time reductions when proving hardness results. Fur-
thermore, we use big-O notation—i.e. O(·)—to describe the limiting behavior
of functions (as was done in Proposition 2.2).
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As we work with games played on weighted structures, let us comment on
the format of the input of their decision problems. Unless explicitly stated oth-
erwise, all weights labelling considered structures are given in binary. Further-
more, parameters for payoff functions—such as the discount factor λ required
for the discounted sum function—are also given as input and in binary. Thus,
an algorithm with worst-case running time O(λ) is of pseudo-polynomial run-
ning time. That is, polynomial in the numeric value of λ yet exponential in the
size of its representation.

2.5 Recurrent Problems
We are interested in finding algorithms to determine the winner of games, as well
as their computational complexity. In the following chapters, we shall present
several reductions from known problems—complete or hard for some complexity
class—to other problems. Some of the problems we reduce from, appear in more
than one chapter. We present the most common ones here. Their relevance and
similarity to the games we study will become clear once we formally define them.

2.5.1 Quantified Boolean formulas
A fully quantified Boolean formula is a formula in quantified propositional logic
where every variable is quantified, either existentially or universally. For exam-
ple, consider the following formula in which x, y, and z are all either existentially
or universally quantified:

∃x∀y∃z : (x ∧ y) ∨ ¬z.

Such a formula is, therefore, either true or false. The QBF Problem consists
in determining whether a given formula is true. It is known that this problem
is Pspace-complete [SM73, GJ79].

The QBF problem is often rephrased as a game between Eve and Adam. In
this game, the two players take turns (following the order of the quantifiers in the
formula) to choose values for each variable from the given formula. In particular,
Eve chooses the truth value for existentially quantified variables while Adam
does so for universally quantified ones. The winner of the game is determined
by the truth value of the formula, after all variables have been assigned a value.
Eve wins the game if the formula is true while Adam wins if it is false.

One can, without loss of generality, assume that an instance of the QBF
problem is always given in a very particular form. Formally, the input for the
problem is a Boolean formula Ψ = ∃x0∀x1 . . .Qxn(Φ), where Q ∈ {∃,∀} and Φ
is a Boolean formula expressed in conjunctive normal form (CNF). The game
then begins by Eve choosing a value for x0. Then, Adam responds by choosing
a value for x1, and so on and so forth.

2.5.2 Counter machines
A Minsky machine consists of a finite set of control states Q, initial and final
states qI , qF ∈ Q, a set of counters C, and a finite set of instructions which act on
the counters. Namely, inck increases the value of counter k by 1, deck decreases
the same value by 1. Additionally, 0?k serves as a zero check on counter k which
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blocks if the value of counter k is not equal to 0. More formally, the transition
relation δ contains tuples (q, ι, k, q′) where q, q′ ∈ Q are source and target states
respectively, ι is an instruction from {inc, dec, 0?} which is applied to counter
k ∈ C. We focus here on deterministic Minsky machines, i.e. for every state
q ∈ Q either

• δ has exactly one outgoing transition, which is an increase instruction, i.e.
(q, ι, ·, ·) with ι = inc; or

• δ has exactly two transitions: a decrease (q, dec, k, ·) and a zero check
(q, 0?, k, ·) instruction.

We denote by |M| the size of M. Formally, |M| := |Q|+ |δ|.
A configuration ofM is a pair (q, v) of a state q ∈ Q and a valuation v : C →

N. (Note that we consider the variant of Minsky machines which guards all de-
creases with zero checks. Hence, all counters will have only non-negative values
at all times.) A run ofM is a finite sequence % = (q0, v0)δ0 . . . δn−1(qn, vn) such
that q0 = qI , v0(k) = 0 for all k ∈ C, and vi+1 is the correct valuation of the
counters after applying δi to vi for all 1 ≤ i ≤ n. A run (q0, v0)δ0 . . . δn−1(qn, vn)
is halting if qn = qF and it is m-bounded if vi(k) ≤ m for all 0 ≤ i ≤ n and all
k ∈ C.

We present three problems for Minsky machines with n counters, or nCMs,
which are of interest to us. The first one will be used to obtain undecidability
results.

Problem (The halting problem). Given a 2CM M, decide whether M has a
halting run. �

The halting problem was shown to be undecidable for Minsky machines with 2
or more counters by Minsky himself [Min67]. To do so, he constructs, from a
Turing machine, a 2CM which halts if and only if the original machine halts.

Problem (f -Bounded halting problem). Given a 2CM M, decide whether M
has an f(|M|)-bounded halting run. �

This bounded version of the halting problem is decidable. However, if f is
a fast-growing function, then it is complete for the corresponding level of the
fast-growing complexity classes [SS12, Sch16].

Finally, we consider a promise problem for 4CMs with an additional final
rejecting state qR. A run of such a machine is considered halting if, as before,
it reaches a final state qF or qR. A halting run is then rejecting if it reaches qR
and accepting otherwise.

Problem (Deciding problem). Given a 4CM guaranteed to have a halting run,
decide if the halting run is accepting or rejecting. �

The standard reduction from Turing machines to 4CMs, via finite state machines
with two stacks, is readily seen to be constructible in polynomial time. If we
start with a Turing machine that always halts, then in polynomial time we obtain
a 4CM that always halts. As determining whether the former accepts or rejects
is complete for the set of all decidable problems (i.e. R-complete), we conclude
the Deciding problem for 4CMs is R-complete under polynomial reductions
(decidability follows from the fact that we can simulate it and wait to see which
state is reached).
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Chapter 3

Quantitative Games

The main mathematical object studied throughout this dissertation is that of
two-player quantitative games played on finite structures. In its most general
form, these games are played on a finite directed graph with rational numbers
labelling the edges: a directed weighted graph. We shall call the structure on
which a quantitative game is played a (weighted) arena.

3.1 Games Played on Graphs
In this section, we shall first present all the definitions required in order to state
well-known results on quantitative games played on graphs. We generally follow
the definitions from [AG11]. Furthermore, we will recall some of these classical
results since they will be used in several parts of this dissertation.

Quantitative games are played by two players: Eve and Adam. We will
partition the vertices of an arena into those owned by Eve and those owned by
Adam.

Definition (Weighted arena). A (weighted) arena (or WA, for short) is a tuple
G = (V, V∃, vI , E, w) where (V,E) is a finite digraph, V∃ ⊆ V is the set of
vertices belonging to Eve, vI ∈ V is the initial vertex, and w : E → Q is a
rational weight function assigning weights to the edges of the graph. �

Since we will focus on infinite paths in arenas, we will assume that the underlying
digraph of any arena has no sinks. We depict vertices owned by Eve (i.e. those
in V∃) with squares and vertices owned by Adam (i.e. those in V \ V∃) with
circles. We denote the maximum absolute value of a weight in an arena by
wmax. (See Figure 3.1 for an example of a weighted arena.)

A game played on a weighted arena by Eve and Adam proceeds in rounds as
follows. Initially, the ‘current vertex’ is vI , that is the initial vertex. From the
current vertex u, if u ∈ V∃ then Eve chooses a direct successor v of u, otherwise
Adam chooses a direct successor v of u. The process is then repeated from v.
This interaction determines an infinite path in the arena. We shall call such an
infinite path, a play. More formal definitions for these concepts follow.

Definition (Plays and prefixes). A play in an arena (V, V∃, vI , E, w) is an infi-
nite path in the digraph (V,E). In other words, a play is an infinite sequence of

29
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v0 v1 v2

0
2

2

−4

0

1

Figure 3.1: Example weighted arena with an Eve vertex, v0, on the left and an
Adam vertex, v1, on the right. In this arena, wmax is equal to 4.

vertices π = v0v1 . . . where v0 = vI and (vi, vi+1) ∈ E for all i ≥ 0; a play prefix
is then a finite path starting from vI . �

In the weighted arena depicted in Figure 3.1, examples of plays are vω0 , v0 ·vω1 ,
and (v0 · v1)ω. An example of a sequence of vertices which is not a valid play
is v0v1v2 · vω0 since there is no edge from v2 to v0 and therefore the sequence is
not a path.

Definition (Strategies). Consider an arena G = (V, V∃, vI , E, w). A strategy
for Eve (respectively, Adam) in G is a function that maps play prefixes ending
with a vertex v in V∃ (V \ V∃) to a direct successor of v. �

Consider once more the arena from Figure 3.1. A sample strategy σ : V ∗ ·
V∃ → V for Eve is: from v2 always play to v2, and for any play prefix % · v0
play v1 if the length of % is even and v0 otherwise. An example of a strategy
τ : V ∗ · (V \ V∃) for Adam could be play from v1 to v1 always.

We say a strategy for Eve σ has memory m if there are: a non-empty set
M with |M | = m, an element m0 ∈ M , and functions αu : M × V → M
and αo : M × V∃ → V such that for any play prefix % = v0 . . . vn, we have
σ(%) = αo(mn, vn), where mn is defined inductively by mi+1 = αu(mi, vi) for
i ≥ 0. The memory of a strategy of Adam is defined analogously. A strategy is
said to have finite memory if m ∈ N>0. The tuple (M,m0, αu, αo) is sometimes
referred to as the Mealy machine realizing σ (see, e.g., [Gel14] and references
therein).

Definition (Sets of strategies). Consider an arena G = (V, V∃, vI , E, w). We
denote by S∃(G) and S∀(G) the sets of all strategies for Eve and, respectively,
for Adam in G; by Sm

∃ (G) and Sm
∀ (G) the sets of all strategies with memory m

for both players. �

Also, if G is clear from the context, we shall omit it.
A strategy for either player with memory 1 is said to be positional or mem-

oryless. Let (M,m0, αu, αo) realize a strategy for one of the players. Observe
that when |M | = 1 we then have that M = {m0} and thus αo does not depend
on its first parameter (since it is always m0). A positional strategy can then be
expressed as a function from vertices to vertices as follows:

σ : V∃ → V (or τ : (V \ V∃)→ V, respectively).
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A play π = v0 . . . in an arena G is said to be consistent with a strategy σ
(respectively, τ) for Eve (Adam) if for all i ≥ 0 it holds that vi ∈ V∃ (vi 6∈ V∃)
implies that:

σ(〈vj〉i0) = vi+1 (τ(〈vj〉i0) = vi+1).

Definition (Outcome of strategies). Consider an arena (V, V∃, vI , E, w). Given
strategies σ and τ for Eve and Adam, respectively, we denote by πvστ the unique
play starting from v ∈ V that is consistent with σ and τ . �

In the πvστ notation, if v is omitted we assume it is vI .
While fixing a strategy for each player results in a unique play induced by

them, fixing a strategy for only one of them yields a set of plays consistent with
it. One way to represent the latter set is to “combine” the weighted arena with
a given strategy. More formally,

Definition (Product of an arena and a strategy). Consider an arena G =
(V, V∃, vI , E, w) and a strategy σ for Eve in G realized by the Mealy ma-
chine (M,m0, αu, αo). We denote by G × σ their product, that is the arena
(V ×M,∅, (vI ,m0), E′, w′) where:

• E′ has an edge ((t,m), (v, n)) if only if (t, v) ∈ E, αu(m, t) = m, and
t ∈ V∃ =⇒ αo(m, t) = v;

• w′ maps ((t,m), (v, n)) to w(t, v) for all (t,m), (v, n) ∈ V ×M .

The product of G with a strategy for Adam is defined similarly. �

Intuitively, the product of an arena and a strategy is a weighted arena in which
Eve no longer controls any vertex since her choices have been fixed according to
the strategy. If the strategy used finite memory, the resulting weighted arena
is finite. Note that there is indeed a one-to-one correspondence between plays
consistent with a strategy σ for a player in G and plays in G × σ.

So far, we have defined the type of arena on which the games we study will
be played. Additionally, we have formalized the notion of strategy for each of
the two players who will take part in the games. Now, we must assign a value
to a play, so as to determine how much each player gains from having witnessed
it. We shall do so by using payoff functions of the form Qω → R (see Section 2.2
and Section 2.3).

Definition (Value of a play). Consider an arena G = (V, V∃, vI , E, w) and a
payoff function Val : Qω → R. The value of a play π = v0v1 . . . in G is denoted
by Val(π) and defined as:

Val(w(v0, v1)w(v1, v2) . . . ).

�

For simplicity, we denote the value of a play starting from v and consistent with
strategies σ and τ , for Eve and Adam respectively, as

Valv(σ, τ) := Val(πvστ ).

For the case when v = vI we write simply Val(σ, τ), i.e. we omit v.
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The above definition of the value of a play concludes the set of basic defi-
nitions required to determine a quantitative game. Indeed, what we refer to as
a ‘quantitative game’ is merely a weighted arena together with a payoff func-
tion. Examples of such payoff functions are Büchi, parity, Inf, Sup, LimInf, and
LimSup. (Note that for quantitative payoff functions such as LimSup, it is not
the case that for any sequence of rationals χ we have Val(χ) ∈ R. Indeed, their
values might be −∞ or +∞ for some sequences of rationals. However, when
applied to a sequence of rational weights obtained from a weighted arena, they
are easily seen to be bounded by a function of wmax.) For simplicity, we refer
to the quantitative game consisting of arena G and payoff function Val as a
Val game, e.g. an ‘MP game’ a.k.a. a mean-payoff game. Whenever the payoff
function is understood from the context, we directly speak of an arena as being
a game.

A Boolean game is a particular case of quantitative game. The payoff func-
tions for such games are of the form V ω → B and are obtained by adapting the
Boolean payoff functions for automata runs, such as Büchi and parity (see Sec-
tion 2.2), to sequences of vertices.

3.1.1 Winning condition
By far the most widely studied solution concept for quantitative games used for
reactive synthesis is that of winning strategies (we shall define winning strategies
briefly). In game theory, a solution concept is a rule predicting how a game will
or should be played. As we are interested in how Eve should behave, we are
looking for a solution concept for Eve. Intuitively, a winning strategy for her
is a strategy which ensures some property regardless of what strategy Adam
plays. This is an extremely robust concept—hence its popularity. In order to
properly define it, we need some more notation.

Let G be a quantitative game with weighted arena (V, V∃, vI , E, w) and payoff
function Val. In order for a strategy for Eve in G to be declared ‘winning’, we
need a winning condition (a.k.a. objective) for the game: a subset of the plays
which are desirable (or winning) for Eve. In quantitative games, a winning
condition is determined by a threshold. For instance, if we fix ν ∈ R we can
then say that a play π in G is winning for Eve if it has a value of at least ν, that
is, if it holds that Val(π) ≥ ν. Hence, we have a partition of the set of plays
into winning and losing for Eve: the set {π |Val(π) ≥ ν} is winning for her, and
the complement is losing for her. Two different, yet interrelated questions, arise
from this definition. The first, asks, for a given winning condition, whether a
player can ensure to win against any behavior of his adversary. The second,
asks what is the maximal or minimal threshold for which he can do the latter.
We focus here on the first question and deal with the second question in the
following section.

Problem (Deciding a game). Given a quantitative game with weighted arena
(V, V∃, vI , E, w), payoff function Val, and threshold ν, determine whether there
exists a strategy σ for Eve in G such that, against any strategy τ for Adam
in G it holds that Val(σ, τ) ≥ ν. If the latter holds, then the strategy of Eve
witnessing it, is called a winning strategy for her. If Eve has a winning strategy
in a game, she wins that game. �
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Similarly, a winning strategy for Adam is a strategy such that, against any
strategy of Eve, the resulting play is not winning for Eve. If Adam has a
winning strategy, we say he wins the game.

Note that, even if we can determine whether Eve wins a game, it is not
immediate how to obtain a winning strategy for her. Further, determining the
winner of a game might be ‘easier’, in terms of computational complexity, than
to obtain a winning strategy. This motivates the following search problem.

Problem (Winning strategy synthesis). Given a quantitative game with arena
(V, V∃, vI , E, w), payoff function Val, and threshold ν, if Eve wins the game
output a strategy σ for her such that:

inf
τ∈S∀

Val(σ, τ) ≥ ν.

�

Both problems stated above have been centered on Eve. A useful property
of all quantitative games considered in this dissertation is that: if Eve does not
have a winning strategy, then necessarily Adam has one. A game with this
property is said to be determined. Let us formalize these claims.

Definition (Determinacy). A quantitative game G is said to be determined if:
either Eve has a winning strategy, or Adam has a winning strategy. �

A quantitative game being determined can be seen as a kind of “quantifier
swap” property which holds for the logic formulas stating the existence of win-
ning strategies for the players. (We remark that, in general, it does not hold
that ¬ (∃A,∀B : ϕ) implies ∃B, ∀A : ¬ϕ and that is why determined games are
so special.) In a determined quantitative game, deciding the game is equivalent
to determining the winner of the game.

A very general result due to Martin [Mar75] implies that any quantitative
game with a Borel winning condition is guaranteed to be determined. All win-
ning conditions studied in the present dissertation can easily be shown to be
Borel subsets of the set of all plays (see Proposition 2.3).

Proposition 3.1 (Borel determinacy [Mar75]). For all weighted arenas G =
(V, V∃, vI , E, w), for all payoff functions Val, for all thresholds ν ∈ R, if the
corresponding set of winning plays W ⊆ V ω is a Borel subset of the set of all
plays in G then the Val game played on G is determined. �

The above result will prove to be extremely useful throughout this disser-
tation. More specific statements hold for different quantitative games, e.g. in
mean-payoff games one of the two players has a winning positional strategy for
every threshold. We recall these and other results regarding classical games
in subsection 3.1.3. In the next section we will be interested in the maximal
threshold for which Eve is guaranteed to have a winning strategy.

3.1.2 Values of a game
Previously, we have asked whether a player can enforce outcomes with value
of at least a given threshold (or, respectively, at most a threshold). However,
instead of fixing a threshold, we could directly define the value of a game. Since
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Eve is attempting to maximize the value of the witnessed play and Adam is
trying to do the opposite, we have the following two alternative values of a
game in which the players are antagonistic:

aValv(G) := sup
σ∈S∃(G)

inf
τ∈S∀(G)

Valv(σ, τ), and

aValv(G) := inf
τ∈S∀(G)

sup
σ∈S∃(G)

Valv(σ, τ).

It should be clear that the following relation among the two values trivially
holds for all v ∈ V :

aValv(G) ≤ aValv(G).

Furthermore, one can show—using Borel determinacy or directly applying a
result from [Mar98]—that if Val is bounded and Borel-measurable then both
are equivalent.

Proposition 3.2 ((Unique) antagonistic value). For any quantitative game with
arena G = (V, V∃, vI , E, w) and bounded Borel-measurable payoff function Val,
for all v ∈ V it holds that aValv(G) = aValv(G). �

Henceforth, we shall refer to

aValv(G) := aValv(G) = aValv(G)

as the antagonistic value of a game G (and we will omit G, as usual, if it is clear
from the context, or v if it is assumed to be vI).

Let us remark that all payoff functions considered in this work are in fact
bounded and Borel-measurable. (Measurability was already argued in Propo-
sition 2.4. All payoff functions used in this dissertation can be shown to be
bounded by a function of wmax due to the finiteness of the arenas.) We thus
consider the problem of computing the unique antagonistic value of a given
game.

Problem (Computing the value of a game). Given a quantitative game G,
output its antagonistic value aValvI (G). �

Following the definitions of the antagonistic value of a game and of the
problem of deciding a game, one might be tempted to say that the former (an
optimization problem) is harder than the latter. However, even if the antagonis-
tic value of a game turns out to be µ, this does not imply that there is a strategy
for Eve which actually achieves at least µ against any strategy for Adam. We
will later see that for some classical quantitative games, this intuition does turn
out to be correct and worst-case optimal strategies do exist for both players.

Definition (Worst-case optimal strategies). In a quantitative game G with
weighted arena (V, V∃, vI , E, w) and payoff function Val,

• a strategy σ for Eve is said to be worst-case optimal (maximizing) from
v ∈ V if it holds that infτ∈S∀ Valv(σ, τ) = aValv(G), and

• a strategy τ for Adam is said to be worst-case optimal (minimizing) from
v ∈ V if it holds that supσ∈S∃ Valv(σ, τ) = aValv(G).

�
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Thus far we have considered the case where Adam attempts to witness a play
with a small value. One can also study the case in which both Eve and Adam
co-operatively maximize the same value. We then have the co-operative value
of a quantitative game G played on arena (V, V∃, vI , E, w) with payoff function
Val:

cValv(G) := sup
σ∈S∃

sup
τ∈S∀

Valv(σ, τ)

where v ∈ V .

Definition (Co-operative optimal strategies). In a quantitative game G with
weighted arena (V, V∃, vI , E, w) and payoff function Val, a pair of strategies σ
and τ for Eve and Adam, respectively, is said to be co-operative optimal from
v ∈ V if Valv(σ, τ) = cValv(G). �

We observe that this scenario can be reduced to a one-player game: a game in
which Eve owns all the vertices.

We conclude this section on the values of a quantitative game by observing
that, for Boolean games, computing the antagonistic values is not really an
interesting problem. Indeed, by definition, we have that for any Boolean game
G it holds that cVal(G),aVal(G) ∈ B. Also note, for threshold ν = 0 Eve
always has a winning strategy and for any threshold ν > 1 Adam always has a
winning strategy. Furthermore, Eve wins the game for any threshold 0 < ν < 1
if and only if she wins for threshold ν = 1. Thus, the only interesting question
in these games is whether Eve wins the game with threshold 1. Henceforth, we
shall implicitly assume, for Boolean games, a threshold ν = 1.

3.1.3 Classical games
In this section, we will recall the definitions and properties of several classical
quantitative games. First, we will define all the Boolean games used in the
following chapters. We then focus on non-Boolean quantitative games.

Boolean games

Reachability, Safety, Büchi, co-Büchi, parity, and Streett games are defined us-
ing the corresponding Boolean payoff functions. An interesting property about
most of the aforementioned games is that they are positionally determined.
More formally:

Proposition 3.3 (Positional determinacy [AG11]). Reachability, safety, Büchi,
co-Büchi, and parity games are positionally determined: either Eve has a posi-
tional winning strategy or Adam has a positional winning strategy. �

Additionally, determining the winner of all but parity and Streett games, can
be done in polynomial time.

Proposition 3.4 (Complexity of determining the winner [EJ99, AG11]). De-
termining the winner of a reachability, safety, Büchi, or co-Büchi game can
be done in polynomial time. Determining the winner of a parity game is in
NP ∩ coNP. Determining the winner of a Streett game is coNP-complete. �
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Figure 3.2: Parity game won by Eve. Vertices are labelled with their priorities.

There is no known polynomial-time algorithm to determine the winner of a
parity game. Membership of the problem in NP∩coNP follows from the games
being positionally determined, and the fact that one-player parity games are in
polynomial time (hence, one can guess a strategy for a player and verify if the
opponent can beat it). Its exact complexity is considered to be one of the most
important open problems in formal verification. (It is known that the model
checking problem for the modal µ-calculus reduces to determining the winner
of a parity game.)

Example 1 (A parity-game example). Consider the parity game depicted in
Figure 3.2. From Proposition 3.3 it follows that if Eve has a strategy to ensure
the minimal priority seen infinitely often is even, then she also has a positional
strategy which ensures the same property. Note that the only vertices at which
players have a choice of successor are v1, v2, and v3. Let us consider the strategy
for Eve which corresponds to the mapping v1 7→ v0 and v3 7→ v4. Again, from
Proposition 3.3, we know that if Adam can beat this strategy for Eve (i.e. force
a play consistent with it for which the minimal priority seen infinitely often is
odd) then he has a positional strategy to do so. Clearly, if Adam plays to v1 from
v2 then the outcome of the strategies will be the play (v0v2v1)ω with value 1
since the priorities of the vertices are, respectively, 2, 3, and 3. If instead Adam
plays to v3 from v1, then the resulting outcome (v0v2v3v4)ω has value 1—since
the priority of v4 is 0 and it is the minimal priority in the arena. Finally, if
Adam plays to v0 from v3 then the outcome is (v0v2) and its value is 1 since
their priorities are 2 and 3. We conclude that the described strategy for Eve is
winning. �

Remark (Vertex-based vs. edge-based objectives). Note that we have defined
Boolean games played on directed graphs by specifying sets of distinct vertices
(e.g. unsafe vertices). However, we can also define them with distinct edges. It
is easy to see that one can reduce one version to the other, and vice versa, in
polynomial time. �

Quantitative games

Games defined using the quantitative payoff functions from Section 2.3 are the
main focus of this work. It is not hard to see that Inf games generalize safety
games; as Sup does reachability; LimInf does co-Büchi; and LimSup does Büchi.
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Conversely, for any threshold, one can reduce the quantitative game to the
Boolean game it generalizes. For instance, for LimSup and a threshold ν we
can mark as Büchi edges all of those with weight at least ν and then play a
Büchi game on the resulting arena. Clearly, Eve wins in the new game if and
only if she wins in the original one. It follows that, for any threshold, these
four quantitative games are positionally determined and solvable in polynomial
time. For Inf, Sup, LimInf, and LimSup, the above already implies that in those
games there always are worst-case optimal strategies for both players. (Also
co-operative optimal pairs of strategies.) For mean payoff and discounted sum,
the same property was shown to be true in [EM79, ZP96]. Thus, we have:

Proposition 3.5 (Existence of optimal strategies). For all quantitative games
with payoff function Inf, Sup, LimInf, LimSup, mean payoff, or discounted sum,
the following hold:

• there exists σ ∈ S1
∃ which is worst-case optimal maximizing from all v ∈

V ,

• there exists τ ∈ S1
∀ which is worst-case optimal minimizing from all v ∈ V ,

• there are σ ∈ S1
∃ and τ ∈ S1

∀ which are co-operative optimal from all
v ∈ V .

�

In terms of the complexity of solving the games, for all but mean payoff and dis-
counted sum, we have already argued polynomial-time algorithms exist. Based
on the above result we then get the following:

Proposition 3.6 (Complexity of determining the winner). Determining the
winner of a Inf, Sup, LimInf, or LimSup game can be done in polynomial time.
Determining the winner of a mean-payoff or discounted-sum game is in NP ∩
coNP. �

A reduction from mean-payoff games to discounted-sum games due to Zwick
and Paterson [ZP96] tells us that reducing the complexity upper bound of the
winner determination problem for discounted-sum games would result in a new
upper bound for the complexity of the same problem for mean-payoff games.
Additionally, Jurdziński has established a reduction from parity to mean-payoff
games [Jur98] which gives an analogue of the latter for these two games. It
follows that improving the upper bound for that problem, for mean-payoff or
discounted-sum games, would be a major development in the area of verification.

Although no polynomial-time algorithm is known to determine the winner
of a mean-payoff or discounted-sum game, pseudo-polynomial algorithms have
been discovered.

Proposition 3.7 (From [ZP96, BCD+11]). The antagonistic value of a mean-
payoff game can be computed in pseudo-polynomial time, i.e. in polynomial time
w.r.t. |V |, |E|, and wmax. The antagonistic value of a discounted-sum game
can be computed in pseudo-polynomial time, i.e. polynomial w.r.t. |V |, |E|,
log2 wmax, and λ. �
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We have two final remarks on the antagonistic and co-operative values of all
games considered above. It follows from Proposition 3.3 and Proposition 3.6
that they can be easily represented in binary (see [BCD+11] and [HM15] for the
details regarding mean payoff and discounted sum).

Proposition 3.8 (Representation of the values of a game). For all quantitative
games, both its co-operative and antagonistic values, i.e. cVal and aVal, are
representable using a polynomial number of bits. �

Also, the co-operative value of a game is easy to compute.

Proposition 3.9 (From [AG11, CDH10, ZP96]). The co-operative value of all
quantitative games can be computed in polynomial time. �

We will now study a sample mean-payoff game.

Example 2 (A mean-payoff game). Consider the weighted arena from Fig-
ure 3.1 and let us focus on the mean-payoff function. If Eve controlled all the
vertices, then she would be able to force a play of the form % ·(v0v1)ω. Note that
any such play has value 2—that is, regardless of the prefix % since mean payoff
is prefix independent. Since there is no other play with a higher value in this
game, 2 is its co-operative value. We will now argue that the antagonistic value
of the game is 0. Recall that in a mean-payoff game Eve always has memoryless
worst-case optimal strategies. Since at v2 she does not really have a choice, then
the only options are for her to stay in v0 forever or move to v1 every time the
play reaches v0. If she moves to v1 then Adam might stay in v1 forever. The
outcome of these two strategies has value −4. If she stays in v0 then the play
vω0 has value 0 and Adam cannot change that. Hence the antagonistic value is
indeed 0 and a worst-case optimal strategy for Eve in this game is to stay in v0
always. �

Particulars of discounted-sum games. In the first part of this disserta-
tion we study several quantitative games which include discounted-sum games.
Most of the techniques we develop apply uniformly to all functions except for
discounted sum. We will, therefore, make use of some particular properties of
discounted sum games to design special algorithms for those games. We will
shortly recall these properties.

We recall the definition of a stronger version of co-operative optimality in
which we ask the strategy to take co-operative optimal choices from all vertices
reached via a play prefix consistent with the strategy [Fae09]:

Definition (Strongly co-operative optimal strategies for Eve). Consider a quan-
titative game G with weighted arena (V, V∃, vI , E, w) and discounted-sum payoff
function. A strategy σ for Eve in G is said to be strongly co-operative optimal
(SCO) if for any play prefix % = v0 . . . vn consistent with σ, and such that
vn ∈ V∃:

σ(%) = v′ =⇒ v′ ∈ cOpt(vn),
where cOpt(u) := {v ∈ V | (u, v) ∈ E and cValu(G) = w(u, v) + λcValv(G)}.

�

We will now define a new type of strategy for Eve: co-operative worst-case
optimal strategies. A strategy is of this type if it attempts to maximize the co-
operative value while achieving at least the antagonistic value. More formally,
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Definition (Co-operative worst-case optimal strategies for Eve). Consider a
quantitative game G with weighted arena (V, V∃, vI , E, w) and discounted-sum
payoff function. A strategy σ for Eve in G is said to be co-operative worst-case
optimal (CWO) if for any play prefix % = v0 . . . vn consistent with σ, and such
that vn ∈ V∃,

σ(%) = v′ =⇒ v′ ∈ wOpt(vn)
and

w(vn, v′) + λcValv
′
(G) = max{w(vn, v′′) + λcValv

′′
(G) | v′′ ∈ wOpt(vn)},

where wOpt(u) := {v ∈ V | (u, v) ∈ E and aValu(G) = w(u, v) + λaValv(G)}.
�

A useful observation used by Zwick and Paterson in [ZP96], and which is
implicitly used throughout this work, is the following.
Remark (Bellman equations). Consider a quantitative game with weighted arena
(V, V∃, vI , E, w) and discounted-sum payoff function. For all u ∈ V it holds that
cValu(G) = max{w(u, v) + λcValv(G) | (u, v) ∈ E} and

aValu(G) =
{

max{w(u, v) + λaValv(G) | (u, v) ∈ E} if u ∈ V∃
min{w(u, v) + λaValv(G) | (u, v) ∈ E} else.

�

Using the above, one can easily show that a strategy σ for Eve is worst-case
optimal if and only if for all play prefixes % = . . . vn consistent with it, we have
that: if vn ∈ V∃ then σ(%) ∈ wOpt(vn). In other words, making local worst-
case optimal choices is sufficient and necessary to ensure the antagonistic value
of the game (cf. [BMR14]). Also, the same holds for the co-operative value.
That is, making local co-operative optimal choices is sufficient and necessary
to ensure the co-operative value. One can then show that both strongly co-
operative optimal and co-operative worst-case optimal strategies for Eve always
exist.

Proposition 3.10 (Existence of SCO and CWO strategies). In all discounted-
sum games there exist strongly co-operative optimal strategies and co-operative
worst-case optimal strategies for Eve. �

Proof. Let G = (V, V∃, vI , E, w) be a weighted arena and 0 < λ < 1 a rational
discount factor.

We will first define a new arena G′ such that any strategy for Eve in G′ is a
SCO strategy for Eve in G and any SCO strategy for Eve in G is a valid strategy
for her in G′. More precisely, G′ is a sub-arena of G obtained by removing from
G all edges (u, v) leaving vertices of Eve, i.e. u ∈ V∃, for which it holds that
v 6∈ cOpt(u). It follows from the Bellman equations for discounted-sum games
that for every vertex u, there is at least one of its direct successors v, such that
the edge (u, v) present in G is also present in G′. Hence, G′ has no sinks and Eve
has at least one strategy in G′. Furthermore, it is easy to show that G′ indeed
represents the set of all SCO strategies for Eve in G in the sense described
above (see our argument above regarding local optimal choices being sufficient
and necessary for a strategy to be optimal). Thus, there exists an SCO strategy
for Eve in any discounted-sum game.
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Figure 3.3: A sample weighted arena. With discounted-sum payoff function,
the only CWO strategy for Eve is to play left.

For CWO strategies we proceed similarly. We define an arena G′′ such that
any strategy for Eve in G′′ is a CWO strategy for her in G and any CWO strategy
for her in G is a valid strategy for her in G′′. First, remove all choices of Eve
which are not worst-case optimal locally. That is, remove all edges (u, v) such
that u ∈ V∃ and v 6∈ wOpt(u). Next, from the remaining edges, remove all of
her choices which are not co-operative optimal locally. It once more follows from
the Bellman equations that the obtained arena G′′ has no sinks, and thus Eve
has at least one strategy. Further, it is not hard to show any strategy for Eve
in the remaining sub-arena is a CWO strategy for her in G and vice versa.

We will now study a simple discounted-sum game in order to better illustrate
what SCO and CWO strategies are.

Example 3 (A discounted-sum game). We focus on the discounted-sum game
played on the arena shown in Figure 3.3. We do not instantiate a particular
discount factor but just refer to it as λ. It is easy to see that the antagonistic
value of the game is 1

1−λ while its co-operative value is 1+λ+λ2( 2
1−λ ). Indeed,

the play with the best discounted-sum value goes directly to v1 and stays there.
Let us compare the types of strategies Eve has in this game. If Eve does

not play from v3 to v2 from the first turn, then she is not able to achieve
the co-operative value. Hence, her only SCO strategy is to play v3 7→ v2 and
cOpt(v3) = {v2}. (Note that she only really has a choice of successor at v3 so a
positional strategy for her is just a mapping from v3 to a successor.) Since the
antagonistic value of the game is 1

1−λ , only strategies which always go to v2 or
v4 from v3 are worst-case optimal for her. In other words, wOpt(v3) = {v2, v4}.
Finally, regarding CWO strategies, we note that although going from v3 to v4
does ensure the antagonistic value, it does not allow for a higher co-operative
value like going to v2 does (there, Adam could eventually move to v1). Hence,
the only CWO behaviour of Eve consists in moving to v2. �

3.2 Games Played on Automata
In this section we consider an alternative choice of arena in which the games we
study can be played. Namely, we describe how Eve and Adam can take turns
to build infinite runs in an automaton, and the relation of such games to games
played on graphs.

A game played on an automaton (Q, q0, A,∆) with action set A proceeds in
rounds. First, from the current state p ∈ Q of the game, Eve chooses an action
a ∈ A. Then, Adam selects a state q from posta(p). The new state of the game
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then becomes q. This process is repeated ad infinitum and its outcome is an
infinite run. Formally, a game consists of an automaton and a payoff function
(as is the case for games played on directed graphs).

Quantitative games played on automata require we extend our definition of
automata.

Definition (Weighted automata). A weighted automaton is a tuple A = (Q, q0,
A,∆, w) where (Q, q0, A,∆) is a usual automaton and w : ∆ → Q is a weight
function that assigns rational weights to transitions. �

Notions of determinism, runs, etc. are inherited from the usual automata for
infinite words. As in graph games, let wmax denote the maximum absolute value
of a transition weight in the automaton.

A weighted automaton A = (Q, q0, A,∆, w) and a payoff function Val are,
together, called a quantitative automaton. A quantitative automaton realizes
a function from words to real numbers (this generalizes the notion of language
for Boolean automata). More formally, for a word α = a0a1 . . . , and a run
% = q0a0 . . . of A on α, we denote by Val(%) the value of the run, i.e.

Val(w(q0, a0, q1)w(q1, a1, q2) . . . ).

We then write A(α) for the supremum of the values of all its runs on the word.

In a quantitative game played on an automaton, a play is a run from the
automaton and strategies are extended in the natural way from their graph
game definitions. We remark that games played in graphs can be transformed
into games played on automata. (This can be achieved, e.g., by having states
modelling vertices of Eve allow choice of successor depending on actions, and
states corresponding to vertices of Adam transitioning to all direct successors
with all actions.) The same is true in the opposite direction, from automata
games to graph games. (Here one can, for instance, split transitions into two
edges with the same weight as the original transition and adjust the weights to
account for the doubling of path lengths.)

The usefulness of considering an alternative arena for quantitative games
will become obvious in the sequel. Intuitively, since automata are assumed to
have a total transition relation (see Section 2.2), Eve can play any action from
any state. Our goal is to generalize our definition of a game so that Eve is only
conscious of a set of possible states she could be at. Hence, if not all actions were
available, this would give her some additional information. Formal definitions
follow.

Definition (Partial-observation games). A (quantitative) game with partial ob-
servation is a tuple (Q, q0, A,∆, w,Obs) together with a payoff function Val
where (Q, q0, A,∆, w) is a weighted automaton and Obs ⊆ P(Q) is a partition
of Q into observations. �

Pictorially, we depict states by circles and observations by dotted boxes around
the states they contain (see Figure 8.1 and other examples in the second part of
this dissertation). If Obs = {Q} we say the game is blind, if Obs = {{q} | q ∈ Q}
we say it is a full-observation game.

Example 4 (A partial-observation game example). Consider the reachability
game with partial observation from Figure 3.4. When the game starts, Eve
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q0
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Figure 3.4: Partial-observation reachability game in which Eve does not have
an observation-based winning strategy. The alphabet is A = {a, b}. The target
states as depicted as double circles.

knows the current state of the game: q0. She then plays some action from A
and Adam selects a state from {q1, q2} and reveals the observation in the middle
to Eve. Since Eve does not know which state has been reached, she cannot base
her choice of next action on that knowledge. Note that if she plays a from
q1 then the game is reset; the same is true if she plays b from q2. Consider
any strategy for Eve and let α = a0a1 . . . be the sequence of actions she plays
when the middle observation is reached—if the middle observation is never again
observed then she must have won the game. It is easy to see that, Adam, in
order to keep the play from reaching t can choose to go to q1 for all i ≥ 0 such
that ai = a and to q2 otherwise. Hence, there is no winning observation-based
strategy for Eve in the game. �

Unless otherwise stated, in what follows we consider a fixed Val game A =
(Q, q0, A,∆, w,Obs). Note that in partial-observation games we can focus on
observation-action sequences or on state-action sequences. In what follows we
adapt the notions of plays, strategies, etc. from games played on graphs to
partial-observation games played on automata.

Plays. A (concrete) play in A is an infinite sequence π = q0a0q1 . . . such that
(qi, ai, qi+1) ∈ ∆, for all i ≥ 0. The set of plays in A is denoted by Plays(A)
and the set of prefixes of plays ending in a state is written Prefs(A). The
unique observation containing state q is denoted by obs(q). We extend obs(·) to
plays and prefixes in the natural way. For instance, we obtain the observation
sequence (or abstract play) obs(π) of a play π as follows: obs(q0)a0obs(q1)a1 . . . ;
we then say π is a ‘concretization’ of obs(π). We also denote by obs−1(ψ) the
set of all concretizations of an abstract play (prefix) ψ. Finally, we denote
by obs(Plays(A)) and obs(Prefs(A)) the set of all abstract plays and abstract
prefixes, respectively.

Strategies. A strategy for Eve is a function σ : Prefs(A) → A. A strategy σ
for Eve is observation-based if for all prefixes π, π′ ∈ Prefs(A), if obs(π) = obs(π′)
then σ(π) = σ(π′). A prefix (or play) π = q0a0 . . . is consistent with a strategy
σ for Eve if σ(π[..i]) = ai, for all i ≥ 0. A strategy for Adam is a function
τ : Prefs(A) × A → Q. A prefix or play π = q0a0 . . . is consistent with a
strategy τ for Adam if τ(π[..i − 1], ai−1) = qi, for all i > 0. The memory used
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by a strategy, the Mealy machine realizing it, and the product of a game and
an automaton are defined as for strategies in graph games.

Objectives. Winning conditions or objectives can be defined at two levels for
games with partial observation. The first possibility is to have a set of good
concrete plays for Eve W ⊆ Plays(A). The latter induces a set of good abstract
plays X ⊆ obs(Plays(A)) for her in the obvious way: the set of all observation
sequences so that for no play π 6∈ W we have obs(π) ∈ X. Alternatively, we
could directly define a set of good abstract plays X ⊆ obs(Plays(A)) for Eve; the
corresponding set of good concrete plays for her consists of all plays π ∈ Plays(A)
such that obs(π) ∈ X.

We say a strategy σ for Eve is a winning strategy for her in a game with
objective W ⊆ Plays(A) if all plays consistent with σ are in W .

More definitions and properties of partial-observation games will be given in
Chapter 8.

3.3 Non-Zero-Sum Games
We close this chapter with a brief comment on non-zero-sum games. In this
chapter we have considered games in which, if a play is winning for Eve then it
is not winning for Adam, and if it is winning for Adam then it is not winning for
Eve. These are commonly referred to as zero-sum games. We will make copious
use of results for zero-sum games. However, we will also consider non-zero-sum
games. Namely, in Chapter 10 we make use of reachability games in which each
player has their own target set of vertices they are trying to reach. Also, the
first part of this dissertation is dedicated to regret minimization as a solution
concept for non-zero-sum games. We defer the definitions and specifics of such
games to the chapters where they are used.
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Chapter 4

Background I:
Non-Zero-Sum Solution
Concepts

A fully antagonistic environment can sometimes be too coarse an abstraction
of reality. In practice, the environment usually has its own goal which does not
necessarily correspond to that of falsifying the specification of the reactive sys-
tem. Nevertheless, this abstraction is popular because it is simple and sound.
Against an antagonistic environment, the most commonly studied solution con-
cept for Eve is that of a winning strategy. By definition, a winning strategy is
in fact winning against any environment. That is, regardless of what the ob-
jective of the environment is and, further, regardless of whether he pursues it.
A winning strategy may not exist, even if solutions for the modelled synthesis
problem do exist when the objective of the environment is taken into account.
Winning strategies, when they do exist, may also suffer from being sub-optimal
because they are overcautious and do not exploit the fact that the environment
attempts to satisfy an objective of its own in order to “do better”.

In several recent works, new solution concepts have been studied for syn-
thesis of reactive systems that take the objective of the environment into ac-
count or relax the fully adversarial assumption. In [BFRR14, CR15], the au-
thors combined the classical formalism of two-player zero-sum games—where
the environment is considered to be completely antagonistic—with Markov de-
cision processes, a well-known model for decision-making inside a stochastic
environment. They then propose a combined solution concept, which they
call beyond worst-case. Essentially, they look for strategies which ensure some
worst-case performance while maximizing the expected performance (against a
given stochastic strategy for the environment, thus transforming the game into
a Markov decision process). In [BRS15], the authors propose a novel notion
of synthesis where the objective of the environment (and the assumption that
he pursues it) can be captured using the game-theoretic concept of admissi-
ble strategies [BFK08, Ber07, BRS14]. In [HPR16b, HPR16a] we have focused
on yet another classic game-theoretic solution concept recently popularized by
Halpern and Pass: regret minimization [AG11, HP12].

Minimization of regret is a central concept in decision theory [Bel82]. It
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is also an important concept in game theory, see e.g. [ZJBP08] and references
therein. Iterated regret minimization has been recently proposed by Halpern
and Pass as a solution concept for non-zero-sum games [HP12]. There, it is
applied to matrix games and not to game graphs. In a previous contribution,
Filiot et al. have applied the iterated regret minimization concept to non-zero-
sum games played on weighted graphs, for the shortest path problem [FGR10].
Restrictions on how Adam is allowed to play were not considered there. As we
do not consider an explicit objective for Adam, we do not consider iteration of
the regret minimization here.

In [HPR16b, HPR16a] we have studied strategies for Eve which minimize her
regret. The regret of a strategy σ of Eve corresponds to the difference between
the value Eve achieves by playing σ against Adam and the value she could have
ensured if she had known the strategy of Adam in advance. Regret had not
explicitly been used for games played on graphs before [FGR10]. The complexity
of deciding whether a regret-minimizing strategy for Eve exists, and the memory
requirements for such strategies change depending on two factors: (i) whether
the payoff function is—or can be made—prefix independent, and (ii) what type
of behavior Adam can use. Additionally, deciding whether Eve has a regret-free
strategy turns out to be simpler than determining if she has a strategy which
can ensure regret of at most r. Regarding the allowed behaviors for Adam,
we have focused on three cases: arbitrary behaviors, positional behaviors, and
time-dependent behaviors (otherwise known as oblivious environments). The
latter class of regret games was shown in [HPR16b] to be related to the problem
of determining whether an automaton has a certain form of determinism.

4.1 Regret Definition
Consider a fixed weighted arena G = (V, V∃, vI , E, w), and payoff function Val.
Let Σ∃ ⊆ S∃ and Σ∀ ⊆ S∀ be sets of strategies for Eve and Adam respectively.
Given σ ∈ Σ∃ we define the regret of σ in G w.r.t. Σ∃ and Σ∀ as:

regσΣ∃,Σ∀(G) := sup
τ∈Σ∀

( sup
σ′∈Σ∃

Val(σ′, τ)−Val(σ, τ)).

We define the regret of G w.r.t. Σ∃ and Σ∀ as:

RegΣ∃,Σ∀(G) := inf
σ∈Σ∃

regσΣ∃,Σ∀(G).

When Σ∃ or Σ∀ are omitted from reg(·) and Reg(·) they are assumed to be
the set of all strategies for Eve and Adam.

In the current part of this dissertation we will study the computational
complexity of the following decision problem.

Problem (The regret threshold, or r-regret, problem). Given a quantitative
game G with weighted arena (V, V∃, vI , E, w), sets of strategies Σ∃ ⊆ S∃ and
Σ∀ ⊆ S∀, payoff function Val, and regret threshold r, determine whether the
regret of G is at most r. That is, the problem consists in deciding if

RegΣ∃,Σ∀(G) ≤ r.

�
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Figure 4.1: Mean-payoff game used to demonstrate how different sets of strate-
gies for Adam yield different regret values.

4.2 Examples
Let us illustrate the notion of regret minimization on the example of Figure 4.1.
(We do not use the letters labelling edges for the moment.) The game is played
for infinitely many rounds and the value of a play for Eve is the long-run average
of the values of edges traversed during the play (i.e. the mean-payoff value).
In this game, Eve is only able to secure a mean payoff of 1

2 when Adam is fully
antagonistic. Indeed, if Eve (from v1) plays to v2 then Adam can force a mean-
payoff value of 0, and if she plays to v3 then the mean-payoff value is at least 1

2 .
Note also that if Adam is not fully antagonistic, then the mean payoff could be
as high as 2. Now, assume that Eve does not try to force the highest value in the
worst-case but instead tries to minimize her regret. If she plays v1 7→ v2 then
the regret is equal to 1. This is because Adam can play the following strategy:
if Eve plays to v2 (from v1) then he plays v2 7→ v1 (giving a mean payoff of 0),
and if Eve plays to v3 then he plays to v5 (giving a mean payoff of 1). If she
plays v1 7→ v3 then her regret is 3

2 since Adam can play the symmetric strategy.
It should thus be clear that the strategy of Eve which always chooses v1 7→ v2
is indeed minimizing her regret.

In the following chapters, we will study three variants of regret minimization,
each corresponding to a different set of strategies we allow Adam to choose from.
The first variant is when Adam can play any possible strategy (as in the example
above), the second variant is when Adam is restricted to playing memoryless
strategies, and the third variant is when Adam is restricted to playing word
strategies. To illustrate the last two variants, let us consider again the example
of Figure 4.1.

A positional adversary. Assume now that Adam is playing memoryless
strategies only. Then in this case, we claim that there is a strategy of Eve
that ensures regret 0. The strategy is as follows: first play to v2, if Adam
chooses to go back to v1, then Eve should henceforth play v1 7→ v3. We claim
that this strategy has regret 0. Indeed, when v2 is visited, either Adam chooses
v2 7→ v4, and then Eve secures a mean payoff of 2 (which is the maximal possi-
ble value), or Adam chooses v2 7→ v1 and then we know that v1 7→ v2 is not a
good option for Eve as cycling between v1 and v2 yields a payoff of only 0. In
this case, the mean payoff is either 1, if Adam plays v3 7→ v5, or 1

2 , if he plays
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Figure 4.2: A game that models different investment strategies.

HH HL LH LL Worst-case Regret
SS −7.7616 7.6048 7.9784 23.2848 −7.7616 3.8808
SB −5.8408 3.7632 9.8392 19.4432 −5.8408 3.8416
BB −3.8808 5.7232 5.9192 15.5232 −3.8808 7.7616

Table 4.1: The possible rate configurations for the rate of interests are given as
the first four columns, then follows the worst-case performance and the regret
associated to each strategy of Eve that are given in rows. Entries in bold are
the values that are maximizing the worst case (strategy BB) and minimizing
the regret (strategy SB).

v3 7→ v3. In all the cases, the regret is 0.

An eloquent adversary. Let us now turn to the restriction to word strategies
for Adam. When considering this restriction, we use the letters that label the
edges of the graph. A word strategy for Adam is a function τ : N → {a, b}. In
this setting Adam plays a sequence of letters and this sequence is independent
of the current state of the game. It is more convenient to view the latter as a
game played on a weighted automata in which Adam plays letters, hence the
name eloquent adversary, and Eve responds by resolving non-determinism.

When Adam plays word strategies, the strategy that minimizes regret for
Eve is to always play v1 7→ v2. Indeed, for any word in which the letter a
appears, the mean payoff is equal to 2, and the regret is 0, and for any word
in which the letter a does not appear, the mean payoff is 0 while it would have
been equal to 1

2 when playing v1 7→ v3. So the regret of this strategy is 1
2 and

it is the minimal regret that Eve can secure.
Note that the three different strategies give three different values in our

example. This is in contrast with the worst-case analysis of the same problem
(memoryless strategies suffice for both players).

Investment advice. We will now give a second example of the usefulness of
regret minimization in quantitative games.

Consider the discounted-sum game depicted in Figure 4.2. It models the
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rentability of different investment plans with a time horizon of two periods. In
the first period, it can be decided to invest in treasure bonds (B) or to invest in
the stock market (S). In the former case, treasure bonds (B) are chosen for two
periods. In the latter case, after one period, there is again a choice for either
treasure bonds (B) or stock market (S). The returns of the different investments
depend on the fluctuation of the rate of interests. When the rate of interests
is low (L) then the return for the stock market investments is equal to 12 and
for the treasure bonds it is equal to 8. When the interest rate is high (H) then
the returns for the stock market investments is equal to −4 and for the treasure
bonds it is equal to −2. To model time and take into account the inflation rate,
say equal to 2 percent, we consider a discount factor λ = 0.98 for the returns.
In this example, we make the hypothesis that the fluctuation of the rate of
interests is not a function of the behavior of the investor. This means that this
fluctuation rate is either one of the following four possibilities: HH, HL, LH,
LL. This corresponds to Adam playing a word strategy in our terminology. The
discounted sum of returns obtained under the 12 different scenarios are given
in Table 4.1.

Now, assume that you are a broker and you need to advise one of your
customers regarding his next investment. There are several ways to advise your
customer. First, if your customer is strongly risk averse, then you should be
able to convince him that he has to go for the treasure bonds (B). Indeed, this
is the choice that maximizes the worst case: if the interest rates stay high for
two periods (HH) then the loss will be −3.8808 while it will be higher for any
other choice. Second, and maybe more interestingly, if your customer tolerates
some risk, then you may want to keep him happy so that he will continue to ask
for your advice in the future! Then you should propose the following strategy:
first invest in the stock market (S) then in treasure bonds (B) as this strategy
minimizes regret. Indeed, at the end of the two investment periods, the actual
interest rates will be known and so your customer will evaluate your advices
ex-post. So, after the two periods, the value of the choices made ex-ante can
be compared to the best strategy that could have been chosen knowing the
evolution of the interest rates. The regret of SB is at most equal to 3.8416 in
all cases and it is minimal: the regret of BB can be as high as 7.7616 if LL is
observed, and the regret of SS can be as high as 3.8808.

Finally, let us remark that if the investments are done in financial markets
that are subject to different interest rates, then instead of considering regret
minimization against word strategies, then we could consider the regret against
all strategies.

4.3 Prefix Independization
It is well-known that LimInf, LimSup, MP, and MP are prefix independent. Of-
ten, the arguments that we develop in the following chapters work uniformly
for these four measures because of their prefix-independent property. Although
Inf and Sup are not prefix independent, in the sequel we apply a simple trans-
formation to the game and encode Inf into a LimInf objective, and Sup into a
LimSup objective. The transformation consists of encoding in the vertices of the
arena the minimal (maximal) weight that has been witnessed by a play, and
label the edges of the new graph with this same recorded weight. When this



52 CHAPTER 4. BACKGROUND I: NON-ZERO-SUM GAMES

simple transformation does not suffice, we mention it explicitly.
Let us first convince the reader that one can, in polynomial time, modify Inf

and Sup games so that they become prefix independent.
Consider a weighted arena G = (V, V∃, vI , E, w). We describe how to con-

struct Gmin from G so that there is a clear bijection between plays in both games
defined with the Inf payoff function. The arena Gmin consists of the following
components:

• V ′ = V × {w(e) | e ∈ E};

• V ′∃ = {(v, n) ∈ V ′ | v ∈ V∃};

• v′I = (vI ,W );

• E′ 3
(
(u, n), (v,m)

)
if and only if (u, v) ∈ E and m = min{n,w(u, v)};

• w′
(
(u, n), (v,m)

)
= m.

Intuitively, the construction keeps track of the minimal weight witnessed by a
play by encoding it into the vertices themselves. It is not hard to see that plays
in Gmin indeed have a one-to-one correspondence with plays in G. Furthermore,
the LimInf and LimSup values of a play in Gmin are easily seen to be equivalent
to the Inf value of the corresponding play in G. A similar idea can be used to
construct weighted arena Gmax from a Sup game such that the maximal weight
is recorded (instead of the minimal). The following result then follows from the
above arguments.

Lemma 4.1. For a given weighted arena G, and payoff function Sup: Reg(G) =
Reg(Gmax); for payoff function Inf: Reg(G) = Reg(Gmin). �

In fact, the antagonistic and co-operative values are also preserved by this trans-
formation.

Note that both Gmax and Gmin have size linear with respect to the size of G.
Henceforth we will thus consider Sup and Inf as being prefix independent.

4.4 Contributions
In Chapter 5 we give algorithms to compute regret-minimizing strategies for
Eve when playing against an arbitrary adversary. There, we give upper bounds
for the associated decision problem: does Eve have a strategy to ensure her
regret is of at most a given threshold. In Chapter 6 we turn our attention
to the case when Adam is only allowed to use memoryless strategies. Finally,
in Chapter 7 we establish the connection between minimizing regret against
an oblivious adversary and determinization of quantitative automata. We then
study the same problems as before, in this context. Our results are summarized
in Table 4.2.

All chapters in the first part of this document are based on two articles. The
first one, corresponding to our study of prefix-independent quantitative games,
was first presented at the 2015 International Conference on Concurrency The-
ory and a later extended version appeared in Acta Informatica. The results
regarding discounted-sum games have been presented at the 2016 EACSL An-
nual Conference on Computer Science.
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Payoff Any strat. Pos. strats. Word strats. Word strats.
fun. threshold 0
Inf, Ptime-c Pspace EXPtime-c NP-c
Sup, (Thm 5.1, 5.3) (Thm 6.3), (Thm 7.6) (Thm 7.1, 7.5)
LimSup coNP-h

(Thm 6.1)
LimInf Ptime-c Pspace-c EXPtime-c NP-c

(Thm 5.3) (Thm 6.2, 6.3) (Thm 7.6) (Thm 7.1, 7.5)
MP, MP MPG-eq. Pspace-c Undec NP-c

(Thm 5.1, 5.3) (Thm 6.2, 6.3) (Thm 7.4) (Thm 7.1, 7.5)
DSλ NP Pspace-c EXPtime NP-c

(Lem 5.1) (Thm 6.2, if λ = 1
b

(Thm 7.1, 7.5)
Lem 6.12) (Thm 7.7),

Pspace-c
for ε-gap

(Thm 7.2, 7.8)

Table 4.2: Complexity of deciding the regret threshold problem.
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Chapter 5

Minimizing Regret Against
an Unrestricted Adversary

In this chapter, we provide algorithms to solve the Regret Threshold Prob-
lem: given a game and a threshold, does there exist a strategy for Eve with a
regret of at most the threshold against all strategies for Adam. It is worth men-
tioning that we actually provide algorithms to solve the following, more general,
search problem: find the controller which ensures the minimal possible regret.
Our algorithms are reductions to well-known games. We establish two links
between the original and the constructed game. First, a worst-case optimal
strategy for Eve in the constructed game corresponds to a regret-minimizing
strategy in the original one. Second, the regret value of the original game is a
function of the antagonistic value of the constructed game.

We study this problem for seven common quantitative measures: Inf, Sup,
LimInf, LimSup, MP, MP, DSλ. For all measures, but MP and DSλ, the strict
and non-strict threshold problems are equivalent. We state our results for both
cases for consistency. In almost all the cases, we provide matching lower bounds
showing the worst-case optimality of our algorithms.

Contributions. For prefix-independent and Inf and Sup games we establish
that the problem of computing the antagonistic value and the problem of com-
puting the regret value are inter-reducible in polynomial time (see Theorem 5.1
and Theorem 5.2). For the discounted sum payoff function, the situation is more
complicated. In Section 5.4 we present different approaches to decide both the
0-regret problem and the general r-regret threshold problem.

5.1 Additional Preliminaries for Regret
In the following chapters, we denote the set of direct successors of a vertex u as
succ(u). Also, we apply the notation for sub-sequences of runs in automata to
vertex sequences. For instance, if we let π = v0v1 . . . be a play, then by π[i..]
we mean the suffix vi . . .

We will often establish relations between values and strategies of a given
game G and values and strategies of a second game Ĝ. For convenience, and in
order to improve readability, we use σ to denote a strategy for a player in G and
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σ̂ for a strategy in Ĝ; π to denote a play in G and π̂ for a play in Ĝ; ValG(σ, τ)
to denote the value of the outcome of σ and τ in G and ValĜ(σ̂, τ̂) for the value
of the outcome of σ̂ and τ̂ in Ĝ; etc.

In the unfolded definition of the regret of a game, i.e.

RegΣ∃,Σ∀(G) := inf
σ∈Σ∃

sup
τ∈Σ∀

( sup
σ′∈Σ∃

Val(σ′, τ)−Val(σ, τ)),

let us refer to the witnesses σ and σ′ as the primary strategy and the alternative
strategy respectively. Observe that for any primary strategy for Eve and any one
strategy for Adam, we can assume Adam plays to maximize the payoff (i.e. co-
operates) together with the alternative strategy once it deviates (necessarily at
an Eve vertex). Indeed, since the deviation yields different histories, the two
strategies for Adam can be combined without conflict. More formally,

Proposition 5.1. Consider any σ ∈ S∃, τ ∈ S∀, and corresponding play
πστ = v0v1 . . . . For all i ≥ 0 such that vi ∈ V∃, for all v′ ∈ succ(vi) \ {vi+1}
there exist σ′ ∈ S∃, τ ′ ∈ S∀ for which

(i) πσ′τ [..i+ 1] = πστ [..i] · v′,

(ii) Val(πσ′τ ′ [i+ 1..]) = cValv
′
(G), and

(iii) πστ = πστ ′ .

�

Furthermore, from any vertex v ∈ V , Eve has a strategy to ensure a payoff
of at least aValv(G) and Adam has a strategy to ensure a payoff of at most
aValv(G). Thus, one could further assume that Adam plays to minimize against
the primary strategy while maximizing against the alternative one.

Proposition 5.2. Consider any σ ∈ S∃, τ ∈ S∀, and corresponding play
πστ = v0v1 . . . . For all i ≥ 0 such that vi ∈ V∃, for all v′ ∈ succ(vi) \ {vi+1}
there exist σ′ ∈ S∃, τ ′ ∈ S∀ for which

(i) πσ′τ [..i+ 1] = πστ [..i] · v′ = πστ ′ [..i] · v′,

(ii) Val(πσ′τ ′ [i+ 1..]) = cValv
′
(G), and

(iii) Val(πστ ′ [i+ 1..]) ≤ aValvi+1(G).

�

Both claims follow from the definitions of strategies for Eve and Adam and from
Proposition 3.5.

5.2 Lower Bounds
For all the payoff functions, from a given game G we can construct in logarithmic
space G′ such that the antagonistic value of G is a function of the regret value
of G′, and so we have:
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v′I
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Figure 5.1: Gadget to reduce a game to its regret game.

Theorem 5.1. For payoff functions Inf, Sup, LimInf, LimSup, MP, MP, and
DSλ, computing the regret value of a game is at least as hard as computing the
antagonistic value of a (polynomial-size) game with the same payoff function.

�

Suppose G is a weighted arena with initial vertex vI . Consider the weighted
arena G′ obtained by adding to G the gadget of Figure 5.1. The initial vertex
of G′ is set to be v′I . In G′ from v′I Eve can either progress to the original game
or to the new gadget, both with weight L. We claim that the right choice of
values for the parameters K1,K2, L,M1,M2 makes it so that the antagonistic
value of G is a function of the regret of the game G′.

Proof of Theorem 5.1 for prefix-independent functions. For all payoff functions
that are prefix independent we set K1 and M1 to wmax + 1, and K2 and M2 to
−3wmax − 2. For Inf we have L = wmax, for Sup we have L = −wmax and for
the remaining payoff functions we have L = 0.

Observe that for all prefix-independent payoff functions we consider we have
that aVal(G) and cVal(G) both lie in [−wmax, wmax].

Claim 1. For payoff functions Inf, Sup, LimInf, LimSup, MP, and MP it holds
that:

aVal(G) = wmax + 1−Reg(G′).

�

Indeed, at v′I Eve has a choice: she can choose to remain in the gadget or she can
move to the original game G. If she chooses to remain in the gadget, her payoff
will be −3wmax − 2, meanwhile Adam could choose a strategy that would have
achieved a payoff of cVal(G) if she had chosen to play to G. Hence her regret in
this case is cVal(G) + 3wmax + 2 ≥ 2wmax + 2. Otherwise, if she chooses to play
to G she can achieve a payoff of at most aVal(G). As cVal(G) ≤ wmax is the
maximum possible payoff achievable in G, the strategy which now maximizes the
regret of Eve is the one which remains in the gadget—giving a payoff of wmax+1.
Her regret in this case is wmax+1−aVal(G) ≤ 2wmax+1. Therefore, to minimize
her regret she will play this strategy, and Reg(G′) = wmax + 1− aVal(G).

The desired result follows from the claim.
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A different valuation of the parameters in G′ yields the proof for the remain-
ing payoff function.

Proof of Theorem 5.1 for discounted sum. Let K1 be assigned the value wmax
1−λ +

1, K2 = −3
(
wmax
1−λ

)
− 2, and M1 = M2 = L = 0. Note that, for the discounted

sum function, we have that −wmax
1−λ ≤ aVal(G) ≤ cVal(G) ≤ wmax

1−λ . Using the
same arguments as for prefix-independent functions, it is then easy to show that

Claim 2. For payoff function DSλ it holds that

aVal(G) = wmax

1− λ + 1−Reg(G′)/λ.

�

The desired result once more follows from the claim.

5.3 Upper Bounds for Prefix-Independent Func-
tions

In this section we provide an algorithm to decide the regret threshold problem for
games with prefix-independent objectives. Our solution consists in constructing
a new game with the same payoff function. The regret value of the original game
can then be computed as a function of the antagonistic value of the new game.
The algorithm is thus optimal in view of the lower bound provided in Section 5.2.

Theorem 5.2. For payoff functions Inf, Sup, LimInf, LimSup, MP, and MP,
computing the regret value of a game is at most as hard as computing the an-
tagonistic value of a (polynomial-size) game with the same payoff function. �

Proof. The result follows from Claim 3 for all prefix-independent payoff func-
tions. Together with Lemma 4.1, we get the same result for Inf and Sup.

Let us fix a weighted arena G. We define a new weight function w′ as follows.
For any edge e = (u, v) let w′(e) = −∞ if u ∈ V \ V∃, and if u ∈ V∃ then

w′(e) = max{cValv
′
| (u, v′) ∈ E \ {e}}.

Intuitively, w′ represents the best value obtainable for a strategy of Eve that
differs at the given edge. It is not difficult to see that in order to minimize
regret, Eve is trying to minimize the difference between the value given by the
original weight function w and the value given by w′. For b ∈ Range(w′) we
define Gb to be the graph obtained by restricting G—the original weighted arena
with weight function w—to edges e with w′(e) ≤ b.

Next, we will construct a new weighted arena Ĝ such that the regret of G is
a function of the antagonistic value of Ĝ. Figure 5.2 depicts the general form of
the arena we construct. We have three vertices v0 ∈ V̂ \ V̂∃ and v1, v⊥ ∈ V̂∃ and
a “copy” of G as Gb for each b ∈ Range(w′)\{−∞}. We have a self-loop of weight
0 on v0 which is the initial vertex of Ĝ, a self-loop of weight −2wmax − 1 on v⊥,
and weight-0 edges from v0 to v1 and from v1 to the initial vertices of Gb for all
b. Recall that Gb might not be total. To fix this we add, for all vertices without
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v0

v1 v⊥

vb1
I

· · ·

vbnI · · ·

Gb1

...
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0

0

−2wmax − 1

0

0

w(e)− b1

w(e)− bn

if w′(e) > b1
0

if w′(e) > bn
0

Figure 5.2: Weighted arena Ĝ, constructed from G. Dotted lines represent
several edges added when the condition labelling them is met.

a successor, a weight-0 edge to v⊥. The remainder of the weight function ŵ, is
defined for each edge eb in Gb as ŵ(eb) = w(e)− b.

Intuitively, in Ĝ Adam first decides whether he can ensure a non-zero regret.
If this is the case, then he moves to v1. Next, Eve chooses a maximal value she
will allow for strategies which differ from the one she will play (this is the choice
of b). The play then moves to the corresponding copy of G, i.e. Gb. She can
now play to maximize her payoff. However, if her choice of b was not correct
then the play will end in v⊥.

We show that, for all prefix-independent payoff functions we consider, the
following holds:

Claim 3. For all prefix-independent payoff functions considered in this work

Reg(G) = −aVal(Ĝ).

�

Proof. It follows from the definition of regret and the observation that the regret
of a game is non-negative that

Reg(G) = inf
σ∈S∃

sup
τ∈S∀

sup
σ′∈S∃\{σ}

{0,Val(σ′, τ)−Val(σ, τ)}. (5.1)

Thus, Adam can always ensure the regret of a game is at least 0. Now, for
b ∈ Range(w′), define Σ∃(b) ⊆ S∃(G) as:

Σ∃(b) := {σ | sup
τ∈S∀

sup
σ′∈S∃\{σ}

Val(σ′, τ) ≤ b}.

It is clear from the definitions that σ ∈ Σ∃(b) if and only if σ is a strategy for
Eve in Gb which avoids ever reaching v⊥. (Note that v⊥ is indeed in Ĝ and not
in Gb.) Now, if we let

bσ = sup
τ∈S∀

sup
σ′∈S∃\{σ}

Val(σ′, τ),
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then σ ∈ Σ∃(b) if and only bσ ≤ b. It follows that for all σ:

sup
τ∈S∀

sup
σ′∈S∃\{σ}

Val(σ′, τ) = inf{b | σ ∈ Σ∃(b)}. (5.2)

We now turn to the game played on Ĝ, and make some observations about
the strategies we need to consider. It is well known that memoryless strategies
suffice for either player to ensure an antagonistic value of at least (resp. at most)
aVal(Ĝ), for all quantitative games considered in this work, so we can assume
that Adam and Eve play positionally. It follows that all plays either remain in
v0, or move to Gb for some b, and Adam can ensure a non-positive payoff. Note
that for bmax = max(Range(w′) \ {−∞}) we have Gbmax = G. So the copy of
Gbmax in Ĝ has no edge to v⊥, and by playing to this sub-graph Eve can ensure
a payoff of at least −|bmax − wmax| ≥ −2wmax. As any play that reaches v⊥
will have a payoff of −2wmax − 1, we can restrict Eve to strategies which avoid
v⊥, and hence all plays either remain in v0 or (eventually) in the copy of Gb for
some b. Now Gb contains no restrictions for Adam, so we can assume that he
plays the same strategy in all the copies of Gb (where he cannot force the play
to v⊥), and these strategies have a one-to-one correspondence with strategies
in G. Likewise, as Eve chooses a unique Gb to play in, we have a one-to-one
correspondence with strategies of Eve in Ĝ and strategies in G. More precisely,
if σ̂ ∈ S∃(Ĝ) is such that σ̂(v1) = vbI and σ̂ avoids v⊥, then the corresponding
strategy σ ∈ S∃(G) is a valid strategy in Gb, and hence:

σ̂(v1) = vbI =⇒ σ ∈ Σ∃(b). (5.3)

Now suppose σ̂ ∈ S∃(Ĝ) is a strategy such that σ̂(v1) = vbI and σ̂ avoids v⊥,
and τ̂ ∈ S∀(Ĝ) is a strategy such that τ̂(v0) = v1. Let σ ∈ Σ∃(b) and τ ∈ S∀(G)
be the strategies in G corresponding to σ̂ and τ̂ respectively. It is easy to show
that:

−ValĜ(σ̂, τ̂) = b−ValG(σ, τ). (5.4)

Putting together Equations (5.1)–(5.4) gives:

−aVal(Ĝ) = − supσ̂ inf τ̂ ValĜ(σ̂, τ̂)

= inf σ̂ sup({−ValĜ(σ̂, τ̂) | τ̂(v0) = v1} ∪ {0})

= inf{sup({−ValĜ(σ̂, τ̂) | τ̂(v0) = v1} ∪ {0}) | σ̂(v1) = vbI}

= inf{supτ∈S∀({b−ValG(σ, τ)} ∪ {0}) | σ ∈ Σ∃(b)}

= infσ∈S∃ supτ∈S∀({inf{b | σ ∈ Σ∃(b)} −ValG(σ, τ)} ∪ {0})

= infσ∈S∃ supτ∈S∀ supσ′∈S∃{0,ValG(σ′, τ)−ValG(σ, τ)}

= Reg(G) as required.

Memory requirements for Eve and Adam. It follows from the reductions
underlying the proof of Theorem 5.2 that Eve only requires positional strategies
to minimize regret when there is no restriction on Adam’s strategies. On the
other hand, for any given strategy σ for Eve, the strategy τ for Adam which
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Figure 5.3: A game in which waiting is required to minimize regret.

witnesses the maximal regret against it consists of a combination of three posi-
tional strategies: first he moves to the optimal vertex for deviating (it is from
this vertex that the alternative strategy σ′ of Eve will achieve a better payoff
against τ), then he plays his optimal (positional) strategy in the antagonistic
game (i.e. against σ). His strategy for the alternative scenario, i.e. against σ′,
is his optimal strategy in the co-operative game which is also positional. This
combined strategy is clearly realizable as a strategy with three memory states,
giving us:

Corollary 1. For payoff functions LimInf, LimSup, MP and MP:

Reg(G) = RegS1
∃,S

3
∀
(G).

�

The algorithm we give relies on the prefix independence of the payoff function.
As the transformation from Inf and Sup to equivalent prefix-independent ones is
polynomial it follows that polynomial memory (w.r.t. the size of the underlying
graph of the arena) suffices for both players.

5.4 Upper Bounds for Discounted Sum
In this section we describe an algorithm to compute the (minimal) regret of a
discounted-sum game when there are no restrictions placed on the strategies of
Adam. The algorithm can be implemented by an alternating machine guaran-
teed to halt in pseudo-polynomial time. We show that the regret value of any
game is achieved by a strategy for Eve which consists of two strategies, the first
choosing edges which lead to the optimal co-operative value, the second choosing
edges which ensure the antagonistic value. The switch from the former to the
latter is done based on the “local regret” of the vertex (this is formalized in the
sequel). The latter allows us to claim NP-membership of the regret threshold
problem when λ is not part of the input. Additionally, we give an alternative
algorithm to deal with the regret threshold problem for threshold 0. We show
that this case is in NP and in coNP even if λ is part of the input. Our algo-
rithms consists in reducing the decision problem to determining the winner of
a safety game.

While for mean-payoff objectives, strategies that minimize regret are memo-
ryless when Adam can play any strategy, we show here that pseudo-polynomial
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memory is necessary (and sufficient) to minimize regret in games with the
discounted-sum payoff function. The need for memory is illustrated by the
following example.
Example 5. Consider the example in Figure 5.3 where M � 1. Eve can play
the following strategies in this game: let i ∈ N∪ {∞}, and note σi the strategy
that first plays i rounds the edge (vI , v) and then switches to (vI , x). The regret
values associated to those strategies are as follows. The regret of σ∞ is 1

1−λ and
it is witnessed when Adam never plays the edge (v, y). Indeed, the discounted
sum of the outcome in that case is 0, while if Eve had chosen to play (vI , x)
at the first step instead, then she would have gained 1

1−λ . The regret of σi is
equal to the maximum between 1

1−λ − λ2i 1
1−λ and λ2i+1 M

1−λ − λ2i 1
1−λ . The

maximum is either witnessed when Adam never plays (v, y) or plays (v, y) if the
edge (vI , x) has been chosen i + 1 times (one more time compared to σi). So
the strategy that minimizes regret is the strategy σN for N > − logM

2 logλ −
1
2 (so

that λ2N+1M < 1), i.e. the strategy needs to count up to N . �

The following theorem summarizes the bounds we obtain:
Theorem 5.3. Deciding if the regret value of a discounted-sum game is less
than a given threshold r (strictly or non-strictly), playing against all strategies
of Adam, is in EXPspace; in NP, if λ is not part of the input; in NP and in
coNP, if r = 0. �

Proof. The result follows from Lemma 5.1, Lemma 5.5, and Lemma 5.6.

Let us start by formalizing the concept of local regret. Given a play or play
prefix π = v0 . . . and integer 0 ≤ i < |π| such that vi ∈ V∃, define locreg(π, i)
as follows:

λi
(
cValvi¬vi+1

(G)−Val(π[i..])
)

if π is a play,

λi
(
cValvi¬vi+1

(G)−Val(π[i..j])
)
− λjaValvj (G) if π is a prefix of

length j + 1 > i+ 1,
λi (cValvi(G)− aValvi(G)) if π is a prefix of

length i+ 1,

where cValvi¬vi+1
(G) = max{w(vi, v) + λcValv(G) | (vi, v) ∈ E and v 6= vi+1}.

Intuitively, for π a play, locreg(π, i) corresponds to the difference between the
value of the best deviation from position i and the value of π. For π a play prefix,
locreg(π, i) assumes that after position j = |π| − 1 Eve will play a worst-case
optimal strategy.

5.4.1 Deciding 0-regret
We will now argue that the problem of determining whether Eve has a regret-free
strategy can be decided in pseudo-polynomial time and the the corresponding
decision problem is in NP ∩ coNP. Furthermore, if no such strategy for Eve
exists, we will extract a strategy for Adam which, against any strategy of Eve,
ensures non-zero regret. To do so, we will reduce the problem to that of deciding
whether Eve wins a safety game. The unsafe edges are determined by a function
of the antagonistic and co-operative values of the original game. Critically, the
game is played on the same arena as the original regret game.
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Lemma 5.1. Deciding if the regret value is 0, playing against all strategies of
Adam, is in NP ∩ coNP. �

Proof. We define a partition of the edges leaving vertices from V∃ into good and
bad for Eve. A bad edge is one which witnesses non-zero local regret. We then
show that Eve can ensure a regret value of 0 if and only if she has a strategy to
avoid ever traversing bad edges. More formally, let us assume a given weighted
arena G = (V, V∃, vI , E, w) and a discount factor λ ∈ (0, 1). We define the set
of bad edges B := {(u, v) ∈ E | u ∈ V∃ and w(u, v) + λaValv(G) < cValu¬v(G)}.

Note that strategies for either player in the newly defined safety game are
also strategies for them in the original game (and vice versa as well). We now
claim that winning strategies for Adam in the safety game Ĝ = (V, V∃, vI , E,B)
ensure that, regardless of the strategy of Eve, its regret will be strictly positive.
The idea behind the claim is that, Adam can force to traverse a bad edge and
from there, play adversarially against the primary strategy and co-operatively
with an alternative strategy.

Claim 4. If τ ∈ S∀ is a winning strategy for Adam in Ĝ, then there ex-
ist τ ′ ∈ S∀ and σ′ ∈ S∃ such that ∀σ ∈ S∃ : Val(σ′, τ ′) − Val(σ, τ ′) ≥
λ|V |min{cValu¬v(G)− w(u, v)− λaValv(G) | (u, v) ∈ B and u ∈ V∃} > 0. �

The claim follows from the definitions and Proposition 5.2. Conversely, winning
strategies for Eve in Ĝ are actually regret-free.

Claim 5. If σ ∈ S∃ is a winning strategy for Eve in Ĝ, then regσ(G) = 0. �

Our argument to prove this claim requires we first show that a winning strategy
for Eve ensures the antagonistic value of G from vI .

The desired result then follows from Proposition 3.3 and from the fact that
membership of an edge in B can be decided by computing cVal and a threshold
query regarding aVal, thus in NP∩coNP and in pseudo-polynomial time.

We now present a full proof of Claim 5.

Proof of Claim 5. As a first step towards proving the result, we first make the
observation that any winning strategy of Eve in Ĝ also ensures a value of at
least aVal(G) in the discounted-sum game played on G. More formally,

Claim 6. If σ ∈ S∃ is a winning strategy for Eve in Ĝ, then

∀τ ∈ S∀,∀i ≥ 0 : Val(πστ [i..] = vi . . . ) ≥ aValvi(G). (5.5)

�

Proof. Consider a winning strategy σ ∈ S∃ for Eve in Ĝ. Since safety games
are positionally determined we can assume w.l.o.g. that σ is memoryless.

To convince the reader that σ has the property from Equation (5.5), we
consider the product of G and σ—that is, the product of G and the finite Mealy
machine realizing σ. As σ is memoryless, then this product, which we denote
in the sequel by G × σ, is finite. Now, towards a contradiction, suppose that
Equation (5.5) does not hold for σ. Further, let us consider an alternative
(memoryless) strategy σ′ of Eve which ensures aValv(G) from all v ∈ V . The
latter exists by definition of aVal(G) and memoryless determinacy of discounted-
sum games (see, e.g. [ZP96]).
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Let H denote a copy of G × σ where all edges induced by E from G are
added—not just the ones allowed by σ—and H�σ′ denote the sub-graph of H
where only edges allowed by σ′ are left. Since, by assumption, σ does not have
the property of Equation (5.5) then the edges present in at least one vertex
from H�σ′ and G × σ differ. Note that such a vertex u is necessarily such that
u ∈ V∃. Furthermore, from our definition of a strategy, we know that there
is a single outgoing edge from it in both structures. Let us write (u, v) for
the edge in G × σ and (u, v′) for the edge in H�σ′. Recall that σ is winning
for Eve in Ĝ. Thus, we have that (u, v) 6∈ B = {(u, v) ∈ E | u ∈ V∃ and
w(u, v) + λaValv(G) < cValu¬v(G)}. It follows that

w(u, v) + λaValv(H) ≥ max
x 6=v
{w(u, x) + λcValx(H)}

≥ max
x 6=v
{w(u, x) + λaValx(H)} as cVal ≥ aVal

= aValu(H) because u ∈ V∃.
Thus, the strategy σ′′ of Eve which takes (u, v) instead of (u, v′) and follows σ′
otherwise—indeed, this might mean σ′′ is not memoryless—also achieves at least
aValu(H) from u onwards and is therefore an worst-case optimal antagonistic
strategy in G (i.e. it has the property of Equation (5.5)). Notice that this process
can be repeated for all vertices in which the two structures differ. Further, since
both are finite, it will eventually terminate and yield a strategy of Eve which
plays exactly as σ and for which Equation (5.5) holds, which is absurd.

Once more, consider a winning strategy σ ∈ S∃ for Eve in Ĝ. We will now
show that

∀τ ∈ S∀,∀σ′ ∈ S∃ \ {σ} : Val(σ, τ) ≥ Val(σ′, τ).
The desired result will then directly follow.

Consider arbitrary strategies τ ∈ S∀ and σ′ ∈ S∃ \ {σ}. Suppose that
πστ 6= πσ′τ , as our claim trivially holds otherwise. Let ι be the maximal index
i ≥ 0 such that, if we write πστ = v0v1 . . . and πσ′τ = v′0v

′
1 . . . , then vi = v′i.

That is, ι is the maximal index for which the outcomes of σ and τ , and σ′ and
τ coincide. Note that vι is necessarily an Eve vertex, i.e. vι ∈ V∃. We observe
that, by definition of cVal, it holds that

Val(πσ′τ [ι+ 1..]) ≤ cValv
′
ι+1(G). (5.6)

Furthermore, we know from the fact that σ is winning for Eve in Ĝ that the
edge (vι, vι+1) is such that

w(vι, vι+1) + λaValvι+1(G) ≥ max
t6=vι+1

{w(vι, t) + λcValt(G)}. (5.7)

In particular, this implies that w(vι, vι+1) + λaValvι+1(G) ≥ w(vι, v′ι+1) +
λcValv

′
ι+1(G). It is then easy to verify that w(vι, vι+1) + λaValvι+1(G) =

aValvι(G) using the observation that vι ∈ V∃. From Claim 6 we also get that
Val(πστ [ι..]) ≥ aValvι(G). (5.8)

Putting all the above inequalities together, we have
Val(πστ [ι..]) ≥ aValvι(G) = w(vι, vι+1) + λaValvι+1(G) by Eqn. (5.8)

≥ w(vι, v′ι+1) + λcValv
′
ι+1(G) by Eqn. (5.7)

≥ Val(πσ′τ [ι..]) by Eqn. (5.6)
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Figure 5.4: Depiction of a play and a “better alternative play”.

which, in turn, implies Val(σ, τ) ≥ Val(σ′, τ) since πστ [..ι] = πσ′τ [..ι].

We observe that the proof of Lemma 5.1—more precisely, Claim 4—implies
that, if there is no regret-free strategy for Eve in a game, then the regret of the
game is at least λ|V | times the smallest local regret labelling the bad edge from
B which Adam can force. More formally:
Corollary 2. If no regret-free strategy for Eve exists in G, then Reg(G) ≥ aG
where aG := λ|V |min{locreg(uv, 0) | u ∈ V∃ and (u, v) ∈ B}. �

5.4.2 Deciding r-regret
It will be useful in the sequel to define the regret of a play and the regret of a
play prefix. Given a play π = v0v1 . . . , we define the regret of π as:

reg(π) := sup ({locreg(π, i) | vi ∈ V∃} ∪ {0}) .

Intuitively, the local regrets give lower bounds for the overall regret of a play.
We will also let the regret of a play prefix % = v0 . . . vj be equal to

max
(
{λi(cValvi¬vi+1

(G)−Val(%[i..j])) | 0 ≤ i < j and vi ∈ V∃} ∪ {0}
)
.

Let us give some more intuition regarding the regret of a play. Consider
a pair of strategies σ and τ for Eve and Adam, respectively. Suppose there
is an alternative strategy σ′ for Eve, such that, against τ , the obtained payoff
is greater than that of πστ . It should be clear that this implies there is some
position i such that, from vertex vi ∈ V∃ σ′ and τ result in a different play from
πστ (see Figure 5.4). We will sometimes refer to this deviation, i.e. the play
πσ′τ , as a better alternative to πστ .

We can now show the regret of a strategy for Eve in fact corresponds to the
supremum of the regret of plays consistent with the strategy.
Lemma 5.2. For any strategy σ of Eve,

regσ(G) = sup{reg(π) | π is consistent with σ}.

�
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vI

πστ

vi

πσ′τ

j

vk

πσ′′τ

Figure 5.5: A deviation from vk cannot be a better alternative to πστ if j ≥
N(Val(σ′, τ)−Val(σ, τ)).

Proof. Consider any σ, σ′ ∈ S∃ and τ ∈ S∀ such that πστ 6= πσ′τ . Let us write
πστ = v0v1 . . . and πσ′τ = v′0v

′
1 . . . and denote by ` the length of the longest

common prefix of πστ and πσ′τ . We claim that

λ`
(
cValv`¬v`+1

(G)−Val(πστ )
)
≥ λ`

(
Val(πσ′τ [`..])−Val(πστ [`..])

)
. (5.9)

Indeed, if we assume it is not the case, we then get that

cValv
′
`+1(G) < Val(πσ′τ [`+ 1..]),

which contradicts the definition of cVal. Note that Proposition 5.1 actually tells
us that there is another strategy τ ′ for Adam and a second alternative strategy
σ′′ for Eve which give us equality in the above equation. More formally, from
Equation (5.9) and Proposition 5.1 we get that for all σ ∈ S∃, if there are
τ ∈ S∀ and σ′ ∈ S∃ such that πστ 6= πσ′τ then

sup
τ,σ′:πστ 6=πσ′τ

Val(πσ′τ [`..])−Val(πστ [`..]) = cValv`¬v`+1
(G)−Val(πστ ). (5.10)
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We are now able to prove the result. That is, for any strategy σ for Eve:

sup{reg(π) | π is consistent with σ}
= sup
τ∈S∀

reg(πστ = v0v1 . . . ) def. of πστ

= sup
τ∈S∀

max

0, sup
i≥0
vi∈V∃

λi
(
cValvi¬vi+1

(G)−Val(πστ [i..])
) def. of reg(·)

= sup
τ∈S∀

max
{

0, sup
σ′:πστ 6=πσ′τ

λ` (Val(πσ′τ [`..])−Val(πστ [`..]))
}

by Eq. (5.10)

= sup
τ∈S∀

max
{

0, sup
σ′:πστ 6=πσ′τ

(Val(σ′, τ)−Val(σ, τ))
}

def. of Val(·),

and def. of `
= sup
τ∈S∀

sup
σ′∈S∃

(Val(σ′, τ)−Val(σ, τ)) 0 if πστ = πσ′τ

as required.

We note that for any play π, the sequence 〈λi(cValvi¬vi+1
(G)−Val(π[i..]))〉i≥0

converges to 0 because (cValvi¬vi+1
(G) − Val(π[i..])) is bounded by 2wmax

(1−λ) . It
follows that if we have a non-zero lower bound for the regret of π, then there is
some index N such that the witness for the regret occurs before N . Moreover,
we can place a pseudo-polynomial upper bound on N . More precisely:

Lemma 5.3. Let π be a play in G and suppose 0 < r ≤ reg(π). Let

N(r) := b(log r + log(1− λ)− log(2wmax))/ log λc+ 1.

Then reg(π) = reg(π[..N(r)])− λN(r)Val(π[N(r)..]). �

Proof. Observe that N(r) is such that 2wmaxλ
N(r)

1−λ < r. Hence, we have that for
all i ≥ N(r) such that vi ∈ V∃ it holds that

λi(cValvi¬vi+1
(G)−Val(π[i..])) ≤ 2wmaxλ

N(r)

1− λ < r.

It follows that

reg(π) = sup{λi(cValvi¬vi+1
(G)−Val(π[i..])) | i ≥ 0 and vi ∈ V∃}

= max
0≤i<N(r)
vi∈V∃

λi
(
cValvi¬vi+1

(G)−Val(π[i..N(r)])
)
− λN(r)Val(π[N(r)..])

as required.

The above result gives us a bound on how far we have to unfold a game after
having witnessed a non-zero lower bound, r, for the regret. If we consider the
example from Figure 5.4, this translates into a bound on how many turns after
vi a deviation can still yield bigger local regret (see Figure 5.5).

Corollary 2 then gives us the required lower bound for us to be able to
use Lemma 5.3.
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Lemma 5.4. If Reg(G) ≥ aG then Reg(G) is equal to

inf
σ∈S∃

sup{reg(π[..N(aG)])−λN(aG)aValvN(aG)(G)|π = v0 . . . consistent with σ}.

�

Proof. First, note that if Reg(G) > 0 then there cannot be any regret-free
strategies for Eve in G. It then follows from Corollary 2 that Reg(G) ≥ aG .
Next, using Lemma 5.3 and the definition of the regret of a play we have that
Reg(G) is equal to

inf
σ∈S∃

sup{reg(π[..N(aG)])− λN(aG)Val(π[N(aG)..]) | π is consistent with σ}.

Finally, note that it is in the interest of Eve to maximize the value

λN(aG)Val(π[N(aG)..])

in order to minimize her regret. Conversely, Adam tries to minimize the same
value. Thus, we can replace it by the antagonistic value from π[N(aG)..] dis-
counted accordingly. More formally, we have

inf
σ∈S∃

sup{reg(π[..N(aG)])− λN(aG)Val(π[N(aG)..]) | π is consistent with σ}

= inf
σ∈S∃

sup
τ∈S∀

reg(πστ [..N(aG)])− λN(aG)Val(πστ [N(aG)..])

= inf
σ∈S∃
σ′∈S∃

sup
τ∈S∀
τ ′∈S∀

reg(πστ [..N(aG)] = . . . v)− λN(aG)Valv(σ′, τ ′)

= inf
σ∈S∃

sup
τ∈S∀

reg(πστ [..N(aG)] = . . . v) + inf
σ′∈S∃

sup
τ ′∈S∀

(
−λN(aG)Valv(σ′, τ ′)

)
= inf
σ∈S∃

sup
τ∈S∀

reg(πστ [..N(aG)] = . . . v)− λN(aG)
(

sup
σ′∈S∃

inf
τ ′∈S∀

Valv(σ′, τ ′)
)

= inf
σ∈S∃

sup
τ∈S∀

reg(πστ [..N(aG)] = . . . v)− λN(aG)aValv(G)

as required.

This already implies we can compute the regret value in alternating expo-
nential time (or equivalently, exponential space [CKS81]).

Lemma 5.5. The regret value is computable in exponential space. �

Proof. We first label the arena with the antagonistic and co-operative values
and solve the safety game described for Lemma 5.1. The latter can be done
in pseudo-polynomial time. If Eve wins the safety game Ĝ—as constructed
in subsection 5.4.1—the regret value is 0. Otherwise, we know aG > 0 is a lower
bound for the regret value. We now simulate G using an alternating Turing
machine which halts in at most N(aG) steps. That is, a pseudo-polynomial
number of steps. The simulated play prefix is then assigned a regret value as
per Lemma 5.4 (recall we have already pre-computed the antagonistic value of
every vertex).
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As a Corollary, the same arguments above imply that the regret value can be
computed in alternating polynomial time if λ is not given as part of the input.
Hence we get that

Corollary 3. If λ is not given as part of the input, the regret value is computable
in polynomial space. �

Also as a side-product of the algorithm described in the above proof, we get that
finite memory strategies suffice for Eve to minimize her regret in a discounted-
sum game.

Corollary 4. Let µ := |∆|N(aG), with N(0) = 0. It holds that

RegSµ∃ ,S∀
(G) = RegS∃,S∀

(G).

�

5.4.3 Simple regret-minimizing behaviors
We will now argue that Eve has a simple strategy which ensures regret of at
most Reg(G). Her strategy will consist of “playing co-operatively” for some
turns (until a high local regret has already been witnessed) and then switch to
a co-operative worst-case optimal strategy.

We will now define a family of strategies which switch from co-operative
behavior to antagonistic, after a specific number of turns have elapsed (in fact,
enough for the discounted local regret to be less than the desired regret). Denote
by σsc a strongly co-operative strategy for Eve in G and by σcw a co-operative
worst-case optimal strategy for Eve in G. Recall that, by Proposition 3.10,
such strategies for her always exist. Finally, given a co-operative strategy σsc,
a co-operative worst-case optimal strategy σcw, and t ∈ Q let us define an
optimistic-then-pessimistic strategy for Eve [σsc t→ σcw]. The strategy is such
that, for any play prefix % = v0 . . . vn such that vn ∈ V∃

[σsc t→ σcw](%) =
{
σsc(%) if |cOpt(vn)| = 1 and locreg(% · σcw(%), n+ 1) > t

σcw(%) otherwise.

We claim that, when we set t = Reg(G), an optimistic-then-pessimistic
strategy for Eve ensures minimal regret. That is

Proposition 5.3. Let σsc be a strongly co-operative strategy for Eve, σcw be a
Eve and a co-operative worst-case optimal strategy for Eve, and t = Reg(G).
The strategy σ = [σsc t→ σcw] has the property that regσ(G) = Reg(G). �

This is a refinement of the strategy one can obtain from applying the algorithm
used to prove Lemma 5.5.1 The latter tells us that a regret-minimizing strategy
of Eve eventually switches to a worst-case optimal behavior. For vertices where,
before this switch, another edge was chosen by Eve, we argue that she must
have been playing a co-operative strategy. Otherwise, she could have switched
sooner.

1In fact, our proof of Proposition 5.3 relies on Eve requiring finite memory, to minimize
her regret.
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Proof of Proposition 5.3. Let us start by showing that the regret of a play π is
bounded (from above) by the discounted local regret from any index i, where
from the i-th turn onwards Eve plays a worst-case optimal strategy. More
formally:

Claim 7. Let π = v0v1 . . . be a play. Assume there is some i ∈ N such that

(i) vi ∈ V∃;

(ii) reg(π) ≤ λireg(π[i..]); and

(iii) aValvj (G) = w(vj , vj+1) + λaValvj+1(G), for all j ≥ i.

It then holds that reg(π) ≤ λi (cValvi(G)− aValvi(G)). �

Proof. If reg(π) = 0 then the claim holds trivially. Hence, let us assume
reg(π) > 0. It follows from Lemma 5.4 and Assumption (ii) that there exists
k ≥ i such that vk ∈ V∃ and

reg(π) = λk
(
cValvk¬vk+1

(G)− w(vk, vk+1)− λaValvk+1(G)
)
.

Observe that cValvk(G) ≥ cValvk¬vk+1
(G), by definition, and that from Assump-

tion (iii) we have that aValvk(G) ≤ w(vk, vk+1) + λaValvk+1(G). Thus, we get
that reg(π) ≤ λk (cValvk(G)− aValvk(G)). Also, note that by definition of
cVal we have that

cValvj (G) ≥ w(vj , vj+1) + λcValvj+1(G)

for all j ≥ 0. It thus follows from Assumption (iii) and the previous arguments
that reg(π) ≤ λi (cValvi(G)− aValvi(G)) as required.

We are now ready to prove the Proposition holds.

The zero case. If Reg(G) = 0, then it follows from our reduction to safety
games that Eve has a co-operative worst-case optimal strategy which minimizes
regret. Indeed, it is straightforward to show that the strategy for Eve obtained
from the safety game does not only ensure at least the antagonistic value, but
it is also co-operative worst-case optimal. Thus, since [σsc 0→ σcw] is clearly
equivalent to σcw in this case, the result follows.

Non-zero regret. Assume Reg(G) > 0. It then follows from Lemma 5.4 that
Eve has a finite memory strategy σ which ensures regret of at most Reg(G)
(see Corollary 4) and which, furthermore, can be assumed to switch after turn
N(aG) to a co-operative worst-case optimal strategy σcw for Eve (since such a
strategy ensures at least the antagonistic value of the vertex from which Eve
starts playing it). We will further assume, w.l.o.g., that for all play prefixes
π = v0 . . . vn with n ≤ N(aG), vn ∈ V∃ and having σcw(π) 6= σsc(π) = σ(π), if σ
switches to σcw from π onwards—that is, for all prefixes extending π—then the
regret of the resulting strategy is strictly greater than Reg(G). Otherwise, one
can consider the strategy resulting from the previously described switch instead
of σ.
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We will now argue that for all play prefixes π = v0 . . . vn with n ≤ N(aG)
and vn ∈ V∃, if σ(π) 6= σcw then cOpt(vn) is a singleton and

locreg(π[..n] · σcw(π[..n]), n+ 1) > Reg(G).

The desired result will follow since, in order for our assumption of reg(σ) =
Reg(G) to be true Eve must then choose the unique edge leading to the single
element in cOpt(vn).

Let us consider two cases.
First, if locreg(π[..n] · σcw(π[..n]), n + 1) ≤ Reg(G), we can switch to σcw

fron π[..n] onwards. Contradicting our initial assumption.
Second, if |cOpt(vn)| > 1 and locreg(π[..n] · σcw(π[..n]), n+ 1) > Reg(G),

then by Claim 7 we get that the regret of the play (if we switched to σcw) is
bounded above by λn (cValvn(G)− aValvn(G)). Also, since cOpt(vn) is not
a singleton, if Eve does not switch, then she cannot ensure a local regret of
less than λn (cValvn(G)− aValvn(G))—particularly, not even by taking an edge
leading to a vertex in cOpt(vn). This contradicts the assumption that that
switching to σcw yields strictly more regret.

Let us now suppose that λ is not given as part of the input. We will ar-
gue that we can then decide the regret threshold problem in non-deterministic
polynomial time.

Lemma 5.6. If λ is not given as part of the input, the regret threshold problem
is in NP. �

Proof. Indeed, we have shown the regret value can be computed using an al-
gorithm which requires polynomial space only. This algorithm is based on a
polynomial-length unfolding of the game and from it we can deduce that the
regret value is representable using a polynomial number of bits. (All exponents
occurring in the formula from Lemma 5.4 will be polynomial according to
Lemma 5.3.) Also, we have argued that Eve has a “simple” strategy σ to ensure
minimal regret. Such a strategy is defined by two polynomial-time constructible
sub-strategies and the regret value of the game. Hence, it can be encoded into
a polynomial number of bits itself. Furthermore, σ is guaranteed to be playing
as its co-operative worst-case optimal component after N(Reg(G)) turns (see,
again, Lemma 5.3), which is a polynomial number of turns. Given a regret
threshold r, we claim we can verify that σ ensures regret at most r in polyno-
mial time. This can be achieved by allowing Adam to play in G, and against σ,
with the objective of reaching an edge with high local regret before N(Reg(G))
turns. A possible formalization of this idea follows. Consider the product of G
with a counter ranging from 1 to N(Reg(G)) where we make all vertices belong
to Adam. In this game H, we make edges leaving vertices previously belonging
to Eve go to a sink and define a new weight function w′ which assigns to these
edges their negative non-discounted local regret: going from u to v when σ dic-
tates to go to v′ yields w(u, v′) +λaValv

′
(H × σ)−w(u, v) +λcValv(H). (The

function w′ assigns a weight of 0 to all the other edges.) Lemma 5.4 tells us
that σ ensures regret at most r in G if and only if the antagonistic value of a
discounted-sum game played on H with weight function w′ is at least −r.

It follows that the regret threshold problem is in NP.
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We close this section by applying the algorithm we just described to an
example discounted-sum game.

Example 6. We revisit the discounted-sum game from Figure 5.3. Let us in-
stantiate the values M = 100 and λ = 9

10 . According to our previous remarks
on this arena, after i visits to v without Adam choosing (v, y), Eve could achieve(

1
1− 9

10

) ( 9
10
)2i = 10

( 9
10
)2i

, by going to x, or hope for
(

100
1− 9

10

) ( 9
10
)2i+1 =

1000
( 9

10
)2i+1 by going to v again. Her best regret minimizing strategy cor-

responds to σ22 which ensures regret of at most 10− 10( 9
10 )44 ≈ 9.9030. (Note

that, since 1000( 9
10 )2j+1 < 10 for all j ≥ 22, the best alternative strategy

indeed achieves a payoff of 10 only. This alternative strategy corresponds to
having gone to x from the beginning.)

It is easy to see that Eve cannot win the safety game Ĝ constructed from this
arena. Indeed, from the initial vertex vI both (vI , x) and (vI , v) are bad edges for
Eve since there are always alternative strategies to obtain higher payoffs (that
is, if Adam does not play to y). More formally, we note that cValvI¬x = 1000λ,
cValvI¬v = 10, aValx = 10, and aValv = 10λ2. Thus, the lower bound aG one
can obtain from Ĝ is then equal to

min
{

1000
(

9
10

)
− 10, 10− 10

(
9
10

)2
}(

9
10

)4
=10

(
9
10

)4
− 10

(
9
10

)6

≈1.2466.

As expected, when Eve plays her optimal regret-minimizing (optimistic-then-
pessimistic) strategy any better alternative must deviate before N(aG) = 71
turns. In general, against σi, for i < 22 a regret bigger than 9.9030 is obtained
by Adam choosing the edge (v, y) to help any strategy of Eve going to v more
than i times, for i ≥ 22 choices of Adam are no longer relevant and the best
alternative strategy for Eve is to have gone to x from the first step. �



Chapter 6

Minimizing Regret Against
Positional Adversaries

In this chapter, we study strategies for Eve which minimize regret against an ad-
versary which is assumed to play positionally. Recall that all quantitative games
considered in this dissertation are known to be positionally determined. That is,
both Eve and Adam have optimal (maximizing and, respectively, minimizing)
positional strategies. Hence, the present restriction on the set of strategies from
which Adam can choose is natural.

Restricting the environment to positional behaviors is useful when designing
a system that needs to perform well in an environment which is only partially
known. In practical situations, a controller may discover the environment with
which it is interacting at run time. Such a situation can be modelled by an
arena in which choices, in nodes of the environment, model an entire family of
environments and each memoryless strategy models a specific environment of
the family. In such cases, if we want to design a controller that performs rea-
sonably well against all the possible environments, we can consider a controller
that minimizes regret: the strategy of the controller will be as close as possible
to an optimal strategy if we had known the environment beforehand. This is,
for example, the modelling choice done in the famous Canadian traveller’s
problem [PY91]: a driver is attempting to reach a specific location while en-
suring the traversed distance is not too far from the shortest feasible path. The
partial knowledge is due to some roads being closed because of snow. The Cana-
dian traveller, when planning his itinerary, is in fact searching for a strategy to
minimize his regret for the shortest path measure against a memoryless adver-
sary who determines the roads that are closed. Similar situations naturally arise
when synthesizing controllers for robot motion planning [WET15].

We will, again, consider the regret threshold problem in this setting and for
the same quantitative measures as in Chapter 5: Inf, Sup, LimInf, LimSup, MP,
MP, and DSλ.

Contributions. For prefix-independent and Inf and Sup games we reduce the
computation of the regret value (and, thus, the regret threshold problem) to
the computation of the antagonistic value in a larger game. We then argue
that, in the constructed game, the antagonistic value can be computed using

73
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v t1

s2

Figure 6.1: Regret gadget for 2-disjoint-paths reduction.

only polynomial space. For discounted-sum games we provide an alternative
solution which follows the same ideas presented in Chapter 5. Unfortunately,
the space required by the resulting algorithm is quite high, namely, exponential.
We consider sub-cases for the discounted sum function and show that more
efficient solutions for them exist. In particular, we study once more the special
case of threshold 0 and the regret threshold problem when λ is not being given
in binary as part of the input.

In terms of lower bounds, for most payoff functions, the polynomial-space
algorithm we give turns out to be optimal. For Inf, Sup, LimSup, and DSλ, how-
ever, we have not been able to show Pspace-hardness. Nonetheless, a reduction
from the problem of finding two disjoint paths in a weighted digraph, allows us
to argue that they are coNP-hard (even for threshold 0).

6.1 Lower Bounds
In this section we will first show that the regret threshold problem is coNP-
hard for all payoff functions we consider. We will then show an even higher
lower bound, namely Pspace, for a subset of the functions.

Theorem 6.1. Consider a fixed regret threshold r ∈ Q and let C ∈ {<,≤}.
For payoff functions Inf, Sup, LimInf, LimSup, MP, MP, and DSλ, determining
whether RegS∃,S1

∀
(G) C r for a given weighted arena G, is coNP-hard even if

λ is not part of the input. �

Proof. We provide a reduction from the complement of the 2 Disjoint Paths
Problem (2DP) on directed graphs [ET98]. As the problem is known to be
NP-complete, the result follows. In other words, we describe how to translate
a given instance of the 2DP problem into a weighted arena in which Eve can
ensure regret value strictly less than r if and only if the answer to the instance
of the 2DP problem is negative. We focus on payoff functions Sup and LimSup
and a strict threshold for clarity. However, it will be clear how one can easily
adapt the construction to all other payoff functions and the non-strict threshold
problem.

Consider a directed graph G and distinct vertex pairs (s1, t1) and (s2, t2).
W.l.o.g. we assume G is such that for all i ∈ {1, 2}:

(i) ti is reachable from si, and

(ii) ti is a sink.
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We now describe the changes we apply to G in order to get the underlying graph
structure of the weighted arena and then comment on the weight function. Let
all vertices from G be Adam vertices and s1 be the initial vertex. We replace
all edges arriving at t1—edges of the form (v, t1), for some v—by a copy of the
gadget shown in Figure 6.1. Next, we add self-loops on t1 and t2 with weights
r and 2r, respectively. Finally, the weights of all remaining edges are 0. (To
make sure G is total, we add self-loops on all vertices with no outgoing edges.)

We claim that, in this weighted arena, Eve can ensure regret strictly less
than r—for payoff functions Sup and LimSup—if and only if in G the vertex
pairs (s1, t1) and (s2, t2) cannot be joined by vertex-disjoint paths. Indeed, we
claim that the strategy that minimizes the regret of Eve is the strategy that, in
states where she has a choice, tells her to go to t1.

First, let us prove that this strategy has regret strictly less than r if and only
if no two disjoint paths in the graph exist between the pairs of states (s1, t1) and
(s2, t2). Assume the latter is the case. Then if Adam chooses to always avoid
t1, then clearly the regret is 0. If t1 is eventually reached, then the choice of Eve
secures a value of r (for all payoff functions). Note that if she had chosen to go
towards s2 instead, as there are no two disjoint paths, we know that either the
path constructed from s2 by Adam never reaches t2, and then the value of the
path is 0—and the regret is 0 for Eve—or the path constructed from s2 reaches
t1 again since Adam is playing positionally—and, again, the regret is 0 for Eve.
Now assume that two disjoint paths between the source-target pairs do exist. If
Eve changed her strategy to go towards s2 (instead of choosing t1) then Adam
has a strategy to reach t2 and achieve a payoff of 2r. Thus, her regret is at least
r.

Second, we claim that any other strategy of Eve has a regret greater than
or equal to r. Indeed, if Eve decides to go towards s2 (instead of choosing to go
to t1) then Adam can choose to loop on the state before s2 and the payoff in
this case is 0. Since she could have gotten r by going to t1, the regret of Eve is
at least r.

Discounted sum. For the discounted-sum function, we weight the self-loops
on t1 and t2 with A and B, respectively. The reduction then works, as is, for
any value of A and B such that

(i) λ|V | A1−λ > r, and

(ii) λ|V | B1−λ − λ
A

1−λ > r.
For instance, consider α := r+1

λ|V |
. It is easy to verify that setting A := (1−λ)α

and B := (1−λ)α2 satisfies the inequalities. Furthermore, A and B are rational
numbers which can be represented using a polynomial number of bits w.r.t. |V |
and the size of the representation of both λ and r.

We will now argue that minimizing regret in games where the payoff function
is LimInf, mean-payoff, or discounted sum is even harder. To do so, we will
reduce the QBF problem to the regret threshold problem for games with those
payoff functions.

Theorem 6.2. Let C ∈ {<,≤}. For payoff functions LimInf, MP, MP, and
DSλ, determining whether RegS∃,S1

∀
(G) C r for a given weighted arena G and

regret threshold r ∈ Q, is Pspace-hard. �



76 CHAPTER 6. REGRET AGAINST POSITIONAL ADVERSARIES

xi

xjxk

00

0

00

0

B0

C

C

C

0

B

C

C

C

C

C

0

B

C

Figure 6.2: Clause gadget for the QBF reduction for clause xi ∨ ¬xj ∨ xk.

Consider an instance of the QBF problem given in the following form:

∃x0∀x1∃x2 . . .Φ(x0, x1, . . . , xm)

where Φ is in 3-CNF and has n clauses. Also w.l.o.g., we assume that every
non-trivially true clause has at least one existentially quantified variable (as
otherwise the answer to the problem is trivial).

Recall that the QBF problem can be viewed as a game between an existential
and a universal player. The existential player chooses a truth value for existen-
tially quantified variable xi and the universal player responds with a truth value
for xi+1. After m turns the truth value of Φ determines the winner: the existen-
tial player wins if Φ is true and the universal player wins otherwise. The game
we shall construct mimics the choices of the existential and universal player and
makes sure that the regret of the game is small if and only if Φ is true.

The crux of the reduction from the QBF problem is a gadget used for each
clause of the QBF formula. Visiting this gadget allows Eve to gain information
about the highest payoff obtainable in the gadget: each entry point corresponds
to a literal from the clause, and the literal is ‘visited’ when it is made true by
the valuation of variables chosen by Eve and Adam in the reduction described
below. Figure 6.2 depicts an instance of the gadget for a particular clause. As
an example, let us focus on the mean-payoff function and let A = 4, B = 3.
Note that staying in the inner 6-vertex triangle would yield a mean-payoff value
of 4. However, in order to do so, Adam needs to cooperate with Eve at all three
corner vertices. Also note that if he does cooperate in at least one of these
vertices then Eve can secure a payoff value of at least 11

3 .

Proof of Theorem 6.2 for LimInf and mean-payoff. For clarity, we focus on the
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Figure 6.3: Depiction of the reduction from QBF.

non-strict regret threshold problem for the moment. We will later comment
on how to adapt the construction for the strict case. Our reduction works for
arbitrary values A, B, C, and r, satisfying the following constraints:

• A < B < C,

• 2C+B
3 −A < r so that Eve wins if Φ is true,

• C −A ≥ r so that Adam wins if Φ is false, and

• C −B < r so that he never helps Eve in the clause gadgets.

For concreteness, let us consider A = 2, B = 3, C = 4, and r = 2.
We first describe the value-choosing part of the game (see Figure 6.3). V∃

contains vertices for every existentially quantified variable from the QBF and
V \V∃ contains vertices for every universally quantified variable. At each of this
vertices, there are two outgoing edges with weight 0 corresponding to a choice
of truth value for the variable. For the variable xi vertex, the true edge leads
to a vertex from which Eve can choose to move to any of the clause gadgets
corresponding to clauses where the literal xi occurs (see dotted incoming edge
in Figure 6.2) or to advance to xi+1. The false edge construction is similar,
while leading to the literal xi rather than to xi. From the vertices encoding the
choice of truth value for xn Eve can either visit the clause gadgets for it or move
to a “final” vertex Φ ∈ V∃. This final vertex has a self-loop with weight A = 2.

To conclude the proof, we describe the strategy of Eve which ensures the
desired property if the QBF is satisfiable and a strategy of Adam which ensures
the property is falsified otherwise.

Assume the QBF is true. It follows that there is a strategy of the existential
player in the QBF game such that for any strategy of the universal player the
QBF will be true after they both choose values for the variables. Eve now follows
this strategy while visiting all clause gadgets corresponding to occurrences of
chosen literals. At every gadget clause she visits she chooses to enter the gadget.
If Adam now decides to take the weight C = 4 edge, Eve can achieve a mean-
payoff value of 11

3 or a LimInf value of B = 3 by staying in the gadget. In this case
the claim trivially holds since the highest obtainable payoff in the constructed
arena is 4 (for both functions). We therefore focus in the case where Adam
chooses to take Eve back to the vertex from which she entered the gadget. She
can now go to the next clause gadget and repeat. Thus, when the play reaches
vertex Φ, Eve must have visited every clause gadget and Adam has chosen to
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disallow a weight 4 edge in every gadget. Now Eve can ensure a payoff value of
2 by going to Φ. As she has witnessed that in every clause gadget there is at
least one vertex in which Adam is not helping her, alternative strategies might
have ensured a mean-payoff of at most 11

3 and a LimInf value of at most 3. Thus,
her regret is less than r = 2.

Conversely, if the universal player had a winning strategy (or, in other words,
the QBF was not true) then the strategy of Adam consists in following this
strategy in choosing values for the variables and taking Eve out of clause gadgets
if she ever enters one. If the play arrives at Φ we have that there is at least one
clause gadget that was not visited by the play. We note there is an alternative
strategy of Eve which, by choosing a different valuation of some variable, reaches
this clause gadget and with the help of Adam achieves value 4. Hence, this
strategy of Adam ensures regret of exactly 2. If Eve avoids reaching Φ then she
can ensure a value of at most 0, which means an even greater regret for her.

Strict threshold. It is not hard to see that if we find a valuation for r, A,
B, C which meets the first restriction and the last three having changed from
strict to non-strict, and vice versa, we can get a reduction that works for the
non-strict regret threshold problem. That is, find values such that
• A < B < C,

• 2C+B
3 −A ≤ r so that Eve wins if Φ is true,

• C −A > r so that Adam wins if Φ is false, and

• C −B ≤ r so that he never helps Eve in the clause gadgets.
For example, one could consider A = 5, B = 7, C = 10 and r = 4.

We will now show that the same holds for discounted-sum games. A new
version of the clause-gadget is needed for this payoff function. The new gadget
is depicted in Figure 6.4

Proof of Theorem 6.2 for discounted sum. Our reduction works for values of λ,
r, A, B, and C such that the following constraints are met:

(i) A < B < C,

(ii) λ2
(

C
1−λ

)
− λ2nm−2

(
C + λ2 B

1−λ

)
< r,

(iii) λ2nm−2
(
C + λ2 B

1−λ

)
> λ2

(
C 1−λ4

1−λ
1−λ8

)
,

(iv) λ2
(
C + λ2 B

1−λ

)
− λ2nm

(
A

1−λ

)
< r, and

(v) λ2nm−2
(

C
1−λ

)
− λ2nm

(
A

1−λ

)
≥ r.

We remark that the constraints depend on the number m of variables in Φ
and the number of clauses, n, as well. (See end of proof for a sample concrete
assignment.) In the sequel we focus on the strict threshold problem, it will
be clear how to adapt the construction in order to obtain the result for the
non-strict version of the problem.
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Figure 6.4: Clause gadget for the QBF reduction for clause xi ∨ ¬xj ∨ xk.

The value-choosing part of the game is the same as the one for LimInf and
mean-payoff games (see Figure 6.3).

We now describe the strategy of Eve which ensures the desired property if
the QBF is true, and a strategy of Adam which ensures the property is falsified
otherwise.

Assume the QBF is true. Eve follows the strategy of the existential player
to win the QBF game. This allows her to visit all clause gadgets corresponding
to occurrences of chosen literals. At every gadget clause she visits she chooses
to enter the gadget. If Adam now decides to take the weight C edge, Eve can
go to the center-most vertex and obtain a payoff of at least

λ2nm−2
(
C + λ2 B

1− λ

)
,

with equality holding if Adam helps her at the very last clause visit of the very
last variable gadget. In this case, the claim holds by (i). We therefore focus in
the case where Adam chooses to take Eve back to the vertex from which she
entered the gadget. She can now go to the next clause gadget and repeat. Thus,
when the play reaches vertex Φ, Eve must have visited every clause gadget and
Adam has chosen to disallow a weight C edge in every gadget. Now Eve can
ensure a payoff value of

λ2nm
(

A

1− λ

)
by going to Φ. As she has witnessed that in every clause gadget there is at least
one vertex in which Adam is not helping her, alternative strategies might have
ensured a payoff of at most λ2(C + λ2 B

1−λ ), by playing to the center of some
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clause gadget, or

λ2

(
C 1−λ4

1−λ
1− λ8

)
by playing in and out of some adjacent clause gadgets. By (iii), we know it
suffices to show that the former is still not enough to make the regret of Eve at
least r. Thus, from (iv), we get that her regret is less than r.

Conversely, if the universal player had a winning strategy (or, in other words,
the QBF were false) then the strategy of Adam consists in following this strategy
in choosing values for the variables and taking Eve out of clause gadgets if she
ever enters one. If the play arrives at Φ we have that there is at least one clause
gadget that was not visited by the play. We note there is an alternative strategy
of Eve which, by choosing a different valuation of some variable, reaches this
clause gadget and with the help of Adam achieves value of at least λ2nm−2( C

1−λ ).
Hence, by (v), this strategy of Adam ensures regret of at least r. If Eve avoids
reaching Φ then she can ensure a value of at most 0, which means an even
greater regret for her.

Sample assignment. For completeness, we give one assignment of the posi-
tive rationals λ, r, A, B, and C which satisfies the inequalities. It will be obvious
the chosen values can be encoded into a polynomial number of bits w.r.t. n and
m.

We can assume, w.l.o.g., that 2 ≤ 2m ≤ n. Intuitively, we want values such
that (i) A < B < C and such that the discount factor λ is close enough to 1
so that going to the center of a clause gadget at the end of the value-choosing
rounds, is preferable for Adam compared to doing some strange path between
adjacent clauses—this is captured by item (iii). A λ which is close to 1 also
gives us item (v) from (i). In order to ensure Eve wins if she does visit the
center of a clause gadget, we also would like to have C − A < rλ−2(1 − λ),
which would imply items (ii) and (iv) from the inequality list. It is not hard to
see that the following assignment satisfies all the inequalities:
• λ := 1− 1

2n3 ,

• A := 2,

• B := 3,

• C := 4, and

• r := 3(2n6 − 1).
This concludes our proof.

6.2 Upper Bounds for Prefix-Independent Func-
tions

An interesting fact regarding the miminization of regret against a positional
adversary is that, contrary to the case when Adam can use any strategy, Eve
may benefit from using memory. As an example, let us consider a mean-payoff
game played on the arena from Figure 6.5. Now, if Eve stays in u forever, she
will obtain a payoff of 1. If, however, she first goes to v, at any point, she can
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Figure 6.5: Example weighted arena.

still come back to u and obtain a payoff of 1. In this second case, she will have
witnessed whether Adam plays from v to u or from v to x. Since Adam is only
allowed to use positional strategies, he must commit to one of this two choices
and repeat it every time v is visited. It follows that the best strategy for Eve,
in terms of regret-minimization, is to first visit v to confirm Adam is not going
to u—thus allowing the edge (x, u). If Adam is, indeed, not allowing that edge,
she can always go back to u. But, if Adam goes to u then Eve can achieve
a mean-payoff value of 2: the highest obtainable payoff in this arena. In both
cases she has no regret. Additionally, it is easy to see that no positional strategy
for Eve can achieve regret 0.

We provide a polynomial space algorithm to solve the regret threshold prob-
lem using, essentially, the same intuition from the example above. More specif-
ically, for a given game we construct a new game in which Adam is forced to
play positionally and such that the regret of the original game is a function of
the antagonistic value of the new one. In order to force Adam to play posi-
tional strategies, we encode into the vertices the set of choices he has already
made. Although the construction yields an exponential arena, we argue that
this can be done on-the-fly, and only a polynomial number of vertices need to
be considered.

Theorem 6.3. For payoff functions Inf, Sup, LimInf, LimSup, MP, and MP,
the regret of a game played against a positional adversary can be computed in
polynomial space. �

Let G = (V, V∃, vI , E, w) be a weighted arena. For a set of edges D ⊆ E, we
denote by G�D the weighted arena (V, V∃, vI , D,w). Also, for an edge (s, t) ∈ E
we define E∀(st) := {(u, v) ∈ E | if u = s then v = t or u ∈ V∃}. Intuitively,
E∀(e) is the subset of edges determine by the positional behavior of Adam we
have already witnessed (by traversing e).

Given a weighted arena G, we construct a new weighted arena Ĝ such that
we have that −aVal(Ĝ) is equivalent to the regret of G.

The vertices of Ĝ encode the choices made by Adam. For a subset of edges
D ⊆ E, let G�D denote the weighted arena (V, V∃, D,w, vI). The new weighted
arena Ĝ is the tuple (V̂ , V̂∃, Ê, ŵ, v̂I) where

(i) V̂ = V × P(E);
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Figure 6.6: Weighted arena, constructed from Figure 6.5 w.r.t the MP pay-
off function. In the edge set component only edges leaving Adam nodes are
depicted.

(ii) V̂∃ = {(v,D) ∈ V̂ | v ∈ V∃};

(iii) v̂I = (vI , E);

(iv) Ê contains the edge
(
(u,C), (v,D)

)
if and only if (u, v) ∈ E and D =

C ∩ E∀(uv);

(v) ŵ
(
(u,C), (v,D)

)
= w(u, v)− cVal(G�D).

The application of this transformation for the weighted arena from Figure 6.5
w.r.t. to the MP payoff function is given in Figure 6.6.

Consider a play π̂ = (v0, C0)(v1, C1) . . . in Ĝ. We denote by [π̂]k, for k ∈
{1, 2}, the sequence 〈ck,i〉i≥0, where ck,i is the k-th component of the i-th pair
from π̂. Observe that [π̂]1 is a valid play in G. Also observe that E ⊇ Cj ⊇ Cj+1
for all j. Hence [π̂]2 is an infinite descending chain of finite subsets, and there-
fore lim [π̂]2 is well-defined. Finally, we define c(π̂) := cVal(G� lim [π̂]2). The
following result relates the value of a play in Ĝ to the value of the corresponding
play in G.

Lemma 6.1. For payoff functions LimInf, LimSup,MP,MP and for any play π̂
in Ĝ we have that Val(π̂) = Val([π̂]1)− c(π̂). �

Proof. We first establish the following intermediate result. It follows from the
existence of lim [π̂]2 and the definition of c(·) that:

lim sup
n→∞

1
n

n−1∑
i=0

cVal(G�Ci) = lim inf
n→∞

1
n

n−1∑
i=0

cVal(G�Ci) = c(π̂). (6.1)
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We now show that the result holds for MP.

Val(π̂) = lim inf
n→∞

(
1
n

n−1∑
i=0

(w(vi, vi+1)− cVal(G�Cj))
)

defs. of Val(·), ŵ

= Val([π̂]1)− lim sup
n→∞

1
n

n−1∑
j=0

cVal(G�Cj) def. of Val(·)

= Val([π̂]1)− c(π̂) from Eq. (6.1)

The proofs for the other payoff functions are almost identical (for LimInf and
LimSup replace the use of Equation (6.1) by Equation (6.2)).

lim sup
i→∞

cVal(G�Ci) = lim inf
i→∞

cVal(G�Ci) = c(π̂). (6.2)

We now describe how to translate winning strategies for either player from
Ĝ back to G, i.e. given an optimal maximizing (minimizing) strategy for Eve
(Adam) in Ĝ we construct the corresponding optimal regret minimizing strategy
(memoryless regret maximizing counter-strategy) for Eve (Adam) in G. For
clarity, we follow this same naming convention throughout this section: again,
we say a strategy is an optimal maximizing (minimizing) strategy when we speak
about antagonistic and cooperative games, we say a strategy is an optimal regret
maximizing (regret minimizing) when we speak about regret games. When this
does not suffice, we explicitly state which kind of game we are speaking about.

Let ε̂ ∈ S∃(Ĝ) be an optimal maximizing strategy of Eve in Ĝ and α̂ ∈ S∀(Ĝ)
be an optimal minimizing strategy of Adam. Indeed, in [EM79] it was shown
that mean-payoff games are positionally determined. We will now define a
strategy for Eve in G that, for every play prefix s, constructs a valid play prefix
ŝ in Ĝ and plays as ε̂ would in Ĝ for ŝ. More formally, for a play prefix s from
G, denote by [s]−1

1 the corresponding sequence of vertex and edge-set pairs in
Ĝ (indeed, it is the inverse function of [·]1, which is easily seen to be bijective).
Define σ ∈ S∃(G) as follows: σ(s) = [ε̂([s]−1

1 )]1 for all play prefixes s ∈ V ∗ · V∃
in G consistent with a positional strategy of Adam.

For a fixed strategy of Eve we can translate the optimal minimizing strategy
of Adam in Ĝ into an optimal memoryless regret maximizing counter-strategy
of his in G. Formally, for an arbitrary strategy σ for Eve in G, define σ̂ ∈ S∃(Ĝ)
as follows: σ̂(ŝ) = σ([ŝ]1) for all ŝ ∈ V̂ ∗ · V̂∃. Let τσ be an optimal (positional)
maximizing strategy for Adam in G� lim [πσ̂α̂]2.

It is not hard to see the described strategy of Eve ensures a regret value of at
most −aVal(Ĝ). Slightly less obvious is the fact that for any strategy of Eve, the
counter-strategy τσ of Adam is such that supσ′∈S∃ ValG(σ′, τσ)−ValG(σ, τσ) ≥
−aVal(Ĝ).

Lemma 6.2. For payoff functions LimInf, LimSup, MP, and MP:

RegS∃,S1
∀
(G) = −aVal(Ĝ).

�
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Proof. The proof is decomposed into two parts. First, we describe a strategy
σ ∈ S∃(G) which ensures a regret value of at most −aVal(Ĝ). Second, we show
that for any σ ∈ S∃(G) there is a τ ∈ S1

∀(G) such that

sup
σ′∈S∃

ValG(σ′, τ)−ValG(σ, τ) ≥ −aVal(Ĝ).

The result follows.
We have already mentioned earlier that for a play π̂ in Ĝ we have that [π̂]1

is a play in G. Let PPref(G) denote the set of all play prefixes consistent with a
positional strategy for Adam in G. It is not difficult to see that [·]1 is indeed a
bijection between plays of Ĝ and plays of G consistent with positional strategies
for Adam.

It follows from the determinacy of antagonistic games defined by the payoff
functions considered in this work that there are optimal strategies for Eve and
Adam that ensure a payoff of, respectively, at least and at most a value aVal(Ĝ)
against any strategy of the opposing player. Let ε̂ ∈ S∃(Ĝ) be an optimal
maximizing strategy of Eve in Ĝ and α̂ ∈ S∀(Ĝ) be an optimal minimizing
strategy of Adam.

First Part. Define a strategy σ from S∃(G) as follows: σ(s) = [ε̂([s]−1
1 )]1 for

all s ∈ PPref(G) · V∃. We claim that

regσS∃,S1
∀
(G) ≤ −aVal(Ĝ).

Towards a contradiction, assume there are τ ∈ S1
∀(G) and σ′ ∈ S∃(G) such that

ValG(σ′, τ)−ValG(σ, τ) > −aVal(Ĝ).

Define a strategy τ̂ ∈ S∀(Ĝ) as follows: τ̂(ŝ) = τ([ŝ]1) for all ŝ ∈ V̂ ∗ · ˆV \ V∃.
From the definition of ε̂ and our assumption we get that

ValG(σ′, τ)−ValG(σ, τ) > −aVal(Ĝ) ≥ −ValĜ(ε̂, τ̂). (6.3)

It is straightforward to verify that [πστ ]−1
1 = πε̂τ̂ . Therefore, from Lemma 6.1,

we have:

Val(πσ′τ ) > Val(πστ )−Val(πε̂τ̂ ) = cVal(G� lim [πε̂τ̂ ]2). (6.4)

At this point we note that, since τ is positional, it holds that ValG(σ′, τ) is at
most the highest payoff value attainable in G restricted to the edges allowed by
τ . Formally, if Eτ = {(u, v) ∈ E | u ∈ V \ V∃ =⇒ v = τ(u)} then Val(πσ′τ ) ≤
cVal(G�Eτ ). Also, by construction of τ̂ we get that Eτ ⊆ lim [πε̂τ̂ ]2. It should
be clear that this implies cVal(G� lim [πε̂τ̂ ]2) ≥ cVal(G�Eτ ). This contradicts
Equation (6.4).

Second Part. For the second part of the proof we require the following result
which relates positional strategies for Adam in G that agree on certain vertices
to strategies in sub-graphs defined by plays in Ĝ.

Claim 8. Let σ ∈ S∃(G) and τ, τ ′ ∈ S1
∀(G). Then πστ = πστ ′ if and only if

τ ′ ∈ S1
∀(G� lim [[πτσ]−1

1 ]2) �
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Proof. (only if) Note that by construction of Ĝ we have that once Adam chooses
an edge

(
(u,C), (v,D)

)
from a vertex (v, C) ∈ V̂ \ V̂∃ then on any subsequent

visit to a vertex (u,C ′) ∈ V̂ \ V̂∃ he has no other option but to go to (v, C ′).
That is, his choice is restricted to be consistent with the history of the play.
For a play π̂ in Ĝ, it is clear that the sequence [π̂]2 is the decreasing sequence
of sets of edges consistent (for Adam) with the history of the play in the same
manner. In particular, for any τ ′ ∈ S1

∀(G) and any play π in G consistent with
τ ′ we have that τ ′ is a valid strategy for Adam in G�E′ where E′ = lim [[π]−1

1 ]2.
As πστ = πστ ′ is a play consistent with τ ′, the result follows.

(if) Suppose πστ 6= πστ ′ , and let v be the last vertex in their common prefix.
As σ is common to both plays, we have v ∈ V \ V∃, and τ(v) 6= τ ′(v). In
particular, (v, τ ′(v)) /∈ lim [[πτσ]−1

1 ]2 so τ ′ /∈ S1
∀(G� lim [[πτσ]−1

1 ]2).

For an arbitrary strategy σ for Eve in G, define σ̂ ∈ S∃(Ĝ) as follows:
σ̂(ŝ · (v,D)) = (σ([ŝ · (v,D)]−1

1 ), D) for all ŝ · (v,D) ∈ V̂ ∗ · V̂∃. Let τσ be an
optimal (positional) maximizing strategy for Adam in G� lim [πσ̂α̂]2. We claim
that for all σ ∈ S∃(G) we have that

sup
σ′∈S∃

ValG(σ′, τσ)−ValG(σ, τσ) ≥ −aVal(Ĝ).

Towards a contradiction, assume that for some σ ∈ S∃(G) it is the case that for
all σ′ ∈ S∃(G) the left hand side of the above inequality is strictly smaller than
the right hand side. By definition of α̂ we then get the following inequality.

sup
σ′∈S∃

ValG(σ′, τσ)−ValG(σ, τσ) < −aVal(Ĝ) ≤ −ValĜ(σ̂, α̂) (6.5)

Using the above Claim it is easy to show that [πστσ ]1 = πσ̂α̂. Hence, by Equa-
tion (6.5) and Lemma 6.1 we get that:

sup
σ′∈S∃

Val(πσ′τσ ) < cVal(G� lim [πσ̂α̂]2) (6.6)

However, by choice of τσ, we know that there is a strategy σ′′ ∈ S∃(G) such
that Val(πσ′′τσ ) = cVal(G� lim [πσ̂α̂]2). This contradicts Equation (6.6) and
completes the proof of the Theorem.

If G was constructed from a Inf or Sup game H, then one could easily transfer
the described strategy of Eve, σ into a strategy for her in H which achieves
the same regret. In order to have a symmetric result we still lack the ability to
transfer a strategy of Adam from Ĝ to the original game H. Consider a modified
construction in which we additionally keep track of the minimal (resp. maximal)
weight seen so far by a play, just like described in Section 5.3. Denote the
corresponding game by G̃. The vertex set Ṽ of G̃ is thus a set of triples of the form
(v, C, x) where x is the minimal (resp. maximal) weight the play has witnessed.
We observe that in the proof of the above result the intuition behind why we
can transfer a strategy of Adam from Ĝ back to G as a memoryless strategy,
although the vertices in Ĝ already encode additional information, is
that once we have fixed a strategy of Eve in G, this gives us enough information
about the prefix of the play before visiting any Adam vertex. In other words,
we construct a strategy of Adam tailored to spoil a specific strategy of Eve, σ,
in G using the information we gather from [·]−1

1 and his optimal strategy in Ĝ.
These properties still hold in G̃. Thus, we get the following result.
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Lemma 6.3. For payoff functions Inf, Sup: RegS∃,S1
∀
(G) = −aVal(G̃). �

We recall a result from [EM79] which gives us an algorithm for computing
the value RegS∃,S1

∀
(G) in polynomial space. In [EM79] the authors show that

the value of a mean-payoff game G is equivalent to the value of a finite cycle-
forming game ΓG played on G. The game is identical to the mean-payoff game
except that it is finite. The game is stopped as soon as a cycle is formed and
the value of the game is given by the mean-payoff value of the cycle.

Proposition 6.1 (Finite Mean-Payoff Game [EM79]). The value of a mean-
payoff game G is equal to the value of the finite cycle-forming game ΓG played
on the same weighted arena. �

Let us summarize the argument we have thus far presented.

Proof of Theorem 6.3. It follows from results in [AR14] that LimInf and LimSup
games are equivalent to their finite cycle-forming game. Together with Proposi-
tion 6.1, this means one can use an alternating Turing machine to compute the
value of a game and that said machine will stop in time bounded by the length
of the largest simple cycle in the arena. We note the length of the longest simple
path in Ĝ is bounded by |V |(|E|+ 1). Hence, we can compute the winner of Ĝ
in alternating polynomial time. Since APtime = Pspace, and the regret value
of G is computable in constant time from Ĝ (see Lemma 6.2) this concludes the
proof of Theorem 6.3.

Memory requirements for Eve. It follows from our algorithms for com-
puting regret in this variant that Eve only requires strategies with exponential
memory. Examples where exponential memory is necessary can be easily con-
structed.

Corollary 5. For all payoff functions Sup, Inf, LimSup, LimInf, MP, and MP,
for all game graphs G, there exists m which is O(2|E||V |) such that:

RegS∃,S1
∀
(G) = RegSm∃ ,S

1
∀
(G).

�

6.3 Upper Bounds for Discounted Sum
In this section we consider the problem of computing the (minimal) regret when
Adam is restricted to playing positional strategies.

Theorem 6.4. Deciding if the regret value is less than a given threshold (strictly
or non-strictly), playing against positional strategies of Adam, is in EXPspace;
in Pspace, if λ is not part of the input or if r = 0. �

Proof. The result follows from Lemma 6.5 and Lemma 6.12.

Playing against an Adam, when he is restricted to playing memoryless strate-
gies gives Eve the opportunity to learn some of Adam’s strategic choices. How-
ever, due to its decaying nature, with the discounted-sum payoff function Eve
must find a balance between exploring too quickly, thereby presenting lightly
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discounted alternatives; and learning too slowly, thereby heavily discounting her
eventual payoff.

A similar approach to the one we have adopted in Section 5.4 can be used
to obtain an algorithm for this setting. The claimed lower bound follows from
Theorem 6.1.

6.3.1 Deciding 0-regret
As in the previous section, we will reduce the problem of deciding if the game
has regret value 0 to that of determining the winner of a safety game. It will be
obvious that if no regret-free strategy for Eve exists in the original game, then
we can construct, for any strategy of hers, a positional strategy of Adam which
ensures non-zero regret. Hence, we will also obtain a lower bound on the regret
of the game in the case Adam wins the safety game.

We extend E∀(·) to play prefixes % = v0 . . . vn by (recursively) defining
E∀(%) := E∀(%[..n − 1]) ∩ E∀(vn−1vn). If π is a play, then E ⊇ E∀(π[..i]) ⊇
E∀(π[..j]) for all 0 ≤ i ≤ j. Hence, since E is finite, the value E∀(π) :=
limi≥0E∀(π[..i]) is well-defined. Remark that E∀(π) does not restrict edges
leaving vertices of Eve. The following properties directly follow from our defi-
nitions.

Lemma 6.4. Let π be a play or play prefix consistent with a positional strategy
for Adam. It then holds that:

(i) for every v ∈ V \ V∃ there is some edge (v, ·) ∈ E∀(π),

(ii) π is consistent with τ ∈ S1
∀(G) if and only if τ ∈ S1

∀(G�E∀(π)), and

(iii) every strategy τ ∈ S1
∀(G�E∀(π)) is also an element from S1

∀(G).

�

To be able to decide whether regret-free strategies for Eve exist, we define a
new safety game. The arena we consider is Ĝ := (V̂ , V̂∃, v̂I , Ê) where V̂ := V ×
P(E), V̂∃ := V∃ × P(E), v̂I := (vI , E), and Ê contains the edge ((u,C), (v,D))
if and only if (u, v) ∈ E and D = C ∩ E∀(uv).

Lemma 6.5. Deciding if the regret value is 0, playing against positional strate-
gies of Adam, is in Pspace. �

Proof. A safety game is constructed as in the proof of Lemma 5.1. Here, we
consider G̃ and the set of bad edges B̃ := {((u,C), (v,D)) ∈ Ê |u ∈ V∃ and ∃τ ∈
S1
∀(G�C), w(u, v) + λcValv(G × τ) < cValu¬v(G × τ)}. We then have the safety

game G̃ = (V̂ , V̂∃, v̂I , Ê, B̃). Note that there is an obvious bijective mapping
from plays (and play prefixes) in G̃ to plays (prefixes) in G which are consistent
with a positional strategy for Adam. One can then show the following properties
hold:

Claim 9. If τ ∈ S∀(G̃) is a winning strategy for Adam in G̃, then for all
σ ∈ S∃(G), there exist tτσ ∈ S1

∀(G) and sτσ ∈ S∃(G) such that Val(sτσ, tτσ)−
Val(σ, tτσ) ≥ λ|V |(|E|+1)

min{cValu¬v(G×τ)−w(u, v)−λcValv(G×τ)| ((u,C), (v,D)) ∈ B̃, τ ∈ S1
∀(G�C)}.

�
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The claim follows from positional determinacy of safety games together with
Lemma 6.4.

Claim 10. If σ ∈ S∃(G̃) is a winning strategy for Eve in G̃, then there is
sσ ∈ S∃(G) such that regsσ

S∃,S1
∀
(G) = 0. �

It then follows from the determinacy of safety games that Eve wins the safety
game G̃ if and only if she has a regret-free strategy.

We observe that simple cycles in G̃ have length at most |V |(|E|+ 1). Thus,
we can simulate the safety game until we complete a cycle and check that all
traversed edges are good, all in alternating polynomial time. Indeed, an alter-
nating Turing machine can simulate the cycle and then (universally) check that
for all edges, for all positional strategies of the Adam, the inequality holds.

It remains to convince the reader Claim 9 and Claim 10 hold.

Proof of Claim 9. We will now argue that if τ ∈ S∀(G̃) is a winning strategy for
Adam in G̃, then for all σ ∈ S∃(G), there exist tτσ ∈ S1

∀(G) and sτσ ∈ S∃(G)
such that Val(sτσ, tτσ)−Val(σ, tτσ) is at least

λ|V |(|E|+1) min
((u,C),(v,D))∈B̃
τ∈S1

∀(G�C)

{cValu¬v(G × τ)− w(u, v)− λcValv(G × τ)}. (6.7)

The argument is straightforward and based on the bijection between plays
from G, which are consistent with positional strategies of Adam, and plays in
G̃. Recall that safety games are positionally determined. That is, either Eve
has a positional strategy which allows her to perpetually avoid the unsafe edges
against any strategy for Adam, or Adam has a positional strategy which ensures
that—regardless of the behavior of Eve—the play eventually traverses some
unsafe edge. Thus, since we assume τ ∈ S∀(G̃) is winning for Adam in G̃ we
can assume that τ is in fact a positional strategy for Adam in G̃. Now consider
an arbitrary strategy σ for Eve in G. We note, once more, that τ is a strategy
for Adam in G, not only in G̃. Furthermore, τ is a positional strategy for Adam
in G. Conversely, σ is a valid strategy for Eve in G̃. These facts follow from the
definition of E∀(·) and construction G̃. Since τ is winning for Adam in G̃, the
play ˜πστ traverses an unsafe edge. In fact, since τ is positional, the unsafe edge
is necessarily traversed in at most |V |(|E|+1) steps—that is, at most the length
of the longest simple path in G̃. Let us write (ṽi, ṽi+1) = ((vi, Ci), (vi+1, Ci+1))
for the traversed unsafe edge at step i ≤ |V |(|E| + 1). By definition of B̃ we
have that there exists tτσ ∈ S1

∀(G�Ci) such that

cValvi¬vi+1
(G × tτσ)− w(vi, vi+1)− λcValvi(G × tτσ).

We now move from G̃ back to the original game G. Henceforth, we consider the
play πστ = v0v1 . . . in G which corresponds to π̃στ = (v0, C0)(v1, C1) . . . in G̃.
It is easy to see that πστ [..i] is consistent with tτσ. Hence, πσtτσ traverses edge
(vi, vi+1) corresponding to bad edge (ṽi, ṽi+1) in G̃. Finally, by determinacy of
discounted-sum games and by virtue of G × tτσ being a finite weighted arena,
we have that there is a strategy sτσ ∈ S∃(G × tτσ) such that ValviG (sτσ, tτσ) =
cValvi(G × tτσ). It then follows from the definition of cVal and G × sτσ that
ValvIG (sτσ, tτσ)−ValvIG (σ, tτσ) is at least the value from Equation (6.7), just as
required.
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Proof of Claim 10. Let us show that if σ ∈ S∃(G̃) is a winning strategy for Eve
in G̃, then there is sσ ∈ S∃(G) such that regsσ

S∃,S1
∀
(G) = 0. The intuition behind

the argument is the same as for the proof of Claim 5. However, in this case we
first need to describe how to construct the strategy for Eve in G from a strategy
for her in G̃.

A regret-free strategy from G̃. Observe that, by construction of G̃, for any
vertex (u,C) ∈ V̂∃ and any edge (u, v) ∈ E there is exactly one corresponding
edge in G̃: ((u,C), (v, C)). Given a vertex (u,C) from G̃, denote by [(u,C)]1
the vertex u. Now, given a strategy σ ∈ S∃(G̃) we define sσ ∈ S∃(G) as follows

sσ(v0v1v2 . . . ) = [σ((v0, C0)(v1, C1 = C0 ∩ E∀(v0v1))(v2, C1 ∩ E∀(v1v2)) . . . )]1

where C0 = E. It follows from the fact that we have a bijective mapping
from plays in G̃ to plays in G which are consistent with positional strategies for
Adam, that sσ is a valid strategy for Eve in G when playing against a positional
adversary. Additionally, it is easy to see that sσ can be realized using finite
memory only. The memory required corresponds to the subsets of E. The
current memory element is determined by the applying the operator E∀(·) to
the current play prefix.

Now that we have our strategy sσ for Eve in G, we proceed by proving the
analogue of Claim 6 in this setting.

Claim 11. If σ ∈ S∃(G̃) is a winning strategy for Eve in G̃, then

∀τ ∈ S1
∀(G),∀i ≥ 0 : Val(πsστ [i..] = vi . . . ) ≥ cValvi(G × τ). (6.8)

�

Proof. To convince the reader that sσ has the property from Equation (6.8),
we consider the synchronized product of G and sσ—that is, the synchronized
product of G and the finite Mealy machine realizing sσ. As sσ is a finite memory
strategy, then this product, which we denote in the sequel by G × sσ, is finite.
Now, towards a contradiction, suppose that Equation (6.8) does not hold for
sσ. That is, there is some τ ∈ S1

∀(G) for which the property fails. Further,
let us consider an alternative (memoryless) strategy σ′ of Eve which ensures
cValv(G × τ) from all v ∈ V . The latter exists by definition of cVal(G × τ) and
memoryless determinacy of discounted-sum games (see, e.g. [ZP96]).

Let H denote a copy of G × sσ where all edges induced by E from G are
added—not just the ones allowed by sσ—and H�σ′ denote the sub-graph of H
where only edges allowed by σ′ are left. Intuitively, both G × sσ and H�σ′ are
sub-structures of G̃ with a weight function w̃ lifted from w to the blown-up
vertex set Ṽ . This is due to the way in which we constructed sσ.

Since, by assumption, sσ does not have the property of Equation (6.8) then
the edges present in at least one vertex from H�σ′ and G × σ differ. Note
that such a vertex (u,C) is necessarily such that u ∈ V∃—and C is a “memory
element” from the machine realizing sσ corresponding to a subset of E obtained
via E∀(·). Furthermore, from our definition of a strategy, we know that there is
a single outgoing edge from it in both structures. Let us write (u, v)—instead
of ((u,C), (v,D))—for the edge in G × sσ and (u, v′) for the edge in H�σ′.
Recall that sσ is winning for Eve in G̃. Thus, we have that (u, v) 6∈ B̃ =
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{((u,C), (v,D)) ∈ Ê | u ∈ V∃ and ∃τ ′ ∈ S1
∀(G�C), w(u, v) + λcValv(G × τ ′) <

cValu¬v(G × τ ′)}. It follows that

w(u, v) + λcValv(H× τ) ≥ cValv
′
(H× τ).

Thus, the strategy σ′′ of Eve which takes (u, v) instead of (u, v′) and follows σ′
otherwise—indeed, this might mean σ′′ is no longer memoryless—also achieves
at least cValu(H × τ) from u onwards. Notice that this process can be re-
peated for all vertices in which the two structures differ. Further, since both
are finite, it will eventually terminate and yield a strategy of Eve which plays
exactly as sσ and for which, since τ was chosen arbitrarily, Equation (6.8) holds.
Contradiction.

It follows immediately that regsσ
S∃,S1

∀
(G) = 0. Indeed, if we suppose that

this is not the case, then there exists a strategy σ′ ∈ S∃(G) such that

∃τ ∈ S1
∀(G) : Val(sσ, τ) < Val(σ′, τ).

The above directly contradicts Claim 11.

Corollary 6 (Corollary of Lemma 6.5). If no regret-free strategy for Eve exists
in G, then RegS∃,S1

∀
(G) ≥ bG where bG := λ|V |(|E|+1) min{cValu¬v(G × τ) −

w(u, v)− λcValv(G × τ) | ((u,C), (v,D)) ∈ B̃ and τ ∈ S1
∀(G�C)}. �

6.3.2 Deciding r-regret
In this section we present sufficient modifications to our definitions from Sec-
tion 5.4 in order for the techniques used therein to be adapted for this case.
Particularly, our notion of regret of a play and the safety game used to decide
the existence of regret-free strategies need to take into account the fact that
witnessing edges taken by Adam affects previously observed local regrets. That
is, we formalize the intuition that alternative plays must also be consistent with
the behavior of Adam that we have witnessed in the current play.

We are now ready to define the regret of a play in a game against a positional
adversary. Given a play π = v0v1 . . . , we let

reg(π) := sup{λi(cValvi¬vi+1
(G�E∀(π))−Val(π[i..]) | vi ∈ V∃} ∪ {0}.

Consider now a play prefix % = v0 . . . vj . We let the regret of % be

max{λi(cValvi¬vi+1
(G�E∀(%[i..j]))−Val(%[i..j]) | 0 ≤ i < j and vi ∈ V∃} ∪ {0}.

We will now re-prove Lemma 5.2 in the current setting.

Lemma 6.6. For any strategy σ of Eve,

regσS∃,S1
∀
(G) = sup{reg(π) | π is consistent with σ and some τ ∈ S1

∀}.

�
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Proof. Consider any σ, σ′ ∈ S∃ and τ ∈ S1
∀ such that πστ 6= πσ′τ . Let us write

πστ = v0v1 . . . and πσ′τ = v′0v
′
1 . . . and denote by ` the length of the longest

common prefix of πστ and πσ′τ . We claim that

cValv`¬v`+1
(G�E∀(πστ ))−Val(πστ )[`..] ≥ Val(πσ′τ [`..])−Val(πστ [`..]). (6.9)

Indeed, if we assume it is not the case, we then get that

cValv
′
`+1(G�E∀(πστ )) < Val(πσ′τ [`+ 1..]).

However, recall that G × τ is a sub-arena of G�E∀(πστ ). Thus, the co-operative
value Eve can obtain in the former, say by playing σ′, must be at most that
which she can obtain in the latter. Contradiction.

Note that there is another positional strategy τ ′ for Adam and a second
alternative strategy σ′′ for Eve which do give us equality for Equation (6.9).
For this purpose, we choose τ ′ so that τ ′ ∈ S1

∀(G�E∀(πστ ))—so that πστ is also
consistent with τ ′, thus E∀(πστ ) = E∀(πστ ′) (see Lemma 6.4)—and also such
that

cValv
′
`+1(G × τ ′) = cValv

′
`+1(G�E∀(πστ )).

We choose σ′′ so that it follows σ for ` turns, goes to v′, and then plays co-
operatively with τ ′ from v′. More formally, let σ′′ be a strategy for Eve such that
πστ [..`] = πσ′′τ [..`] and therefore, by choice of τ ′, such that πστ ′ [..`] = πσ′′τ ′ [..`]
and so that

Val(πσ′′τ ′ [`..]) = cValv
′
`+1(G × τ ′).

It follows from Equation (6.9) and the above arguments that for all σ ∈ S∃,
if there are τ ∈ S1

∀ and σ′ ∈ S∃ such that πστ 6= πσ′τ then

sup
τ,σ′:πστ 6=πσ′τ

Val(πσ′τ [`..])−Val(πστ [`..]) = cValv`¬v`+1
(G�E∀(πστ ))−Val(πστ ).

(6.10)
We are now able to prove the result. That is, for any strategy σ for Eve:

sup{reg(π) | π is consistent with σ and some τ ∈ S1
∀}

= sup
τ∈S1

∀

reg(πστ = v0v1 . . . ) def. of πστ

= sup
τ∈S1

∀

max

0, sup
i≥0
vi∈V∃

λiXi

 def. of reg(πστ )

where Xi :=
(
cValvi¬vi+1

(G�E∀(πστ ))−Val(πστ [i..])
)

= sup
τ∈S1

∀

max
{

0, sup
σ′:πστ 6=πσ′τ

λ`Y`

}
by Eq. (6.10)

where Y` := (Val(πσ′τ [`..])−Val(πστ [`..]))

= sup
τ∈S1

∀

max
{

0, sup
σ′:πστ 6=πσ′τ

(Val(σ′, τ)−Val(σ, τ))
}

def. of Val(·), `

= sup
τ∈S1

∀

sup
σ′∈S∃

(Val(σ′, τ)−Val(σ, τ)) 0 when πστ = πσ′τ

as required.
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We will now state and prove a restricted version of Lemma 5.3. Intuitively,
for a play π, we will not be able to consider a deviation with respect to a prefix
of π. Rather, we are forced to take the co-operative value with respect to the set
E∀(π)—that is, the edges consistent with any positional strategy Adam might
be playing—even after the bound on where the best deviation occurs.

Lemma 6.7. Let π be a play in G and suppose 0 < r ≤ reg(π). Let

N(r) := b(log r + log(1− λ)− log(2wmax))/ log λc+ 1.

Then reg(π) is equal to

max
0≤i<N(r)
vi∈V∃

{λi(cValvi¬vi+1
(G�E∀(π))−Val(π[i..N(r)])} − λN(r)Val(π[N(r)..]).

�

Proof. Observe that N(r) is such that 2wmaxλ
N(r)

1−λ < r. Hence, we have that for
all i ≥ N(r) such that vi ∈ V∃ it holds that λi(cValvi¬vi+1

(G) − Val(π[i..])) ≤
2wmaxλ

N(r)

1−λ < r. Clearly, since cValvi¬vi+1
(H) ≤ cValvi¬vi+1

(G) holds for any
sub-arena H of G, we have that

λi(cValvi¬vi+1
(G�E∀(π))−Val(π[i..])) ≤ 2wmaxλ

N(r)

1− λ < r.

It thus follows that

reg(π) = sup{λi(cValvi¬vi+1
(G�E∀(π))−Val(π[i..])) | i ≥ 0 and vi ∈ V∃}

= max
0≤i<N(r)
vi∈V∃

λi
(
cValvi¬vi+1

(G�E∀(π))Val(π[i..N(r)])
)

− λN(r)Val(π[N(r)..])

as required.

The main difference between the problem at hand and the one we solved
in Section 5.4 is that, when playing against a positional adversary, information
revealed to Eve in the present can affect the best alternatives to her current
behavior. Some definitions are in order. Let % = v0 . . . vj be a play prefix. The
maximal-regret points of %, denoted by MRP(%), is the set

{0 ≤ i < j | vi ∈ V∃ and λi
(
cValvi¬vi+1

(G�E∀(%[..j]))−Val(%[i..j])
)

= reg(%)};

and the maximal-regret strategies of %, written MRS(%), is equal to{
τ ∈ S1

∀(G�E∀(%[..j])) | τ satisfies ϕ
}

where

ϕ :=
∨

i∈MRP(%)

cValvi¬vi+1
(G�E∀(%[..j])) = cValvi¬vi+1

(G × τ).

The above definitions are meant to capture the intuition that, upon witnessing
a new choice of Adam, we can reduce the size of the set of possible positional



6.3. UPPER BOUNDS FOR DISCOUNTED SUM 93

vI

vj

π π′

vi′
cValvi′¬vi′+1

(G�E∀(π))

vi

cValvi¬vi+1
(G�E∀(π′))

N(bG)

Figure 6.7: Let % denote the play prefix v0 . . . vj . The alternative play from
vi′ is better than the one from vi w.r.t %. However, for play π′ extend-
ing %, the alternative play from vi becomes better than the one from vi′ if
λi
′−icValvi′¬vi′+1

(G�E∀(π′)) is smaller than cValvi¬vi+1(G�E∀(π′))−Val(%[i..i′]).

vI

vj

π π′

vi′
cValvi′¬vi′+1

(G�E∀(%))

vi

cValvi¬vi+1
(G�E∀(π′))

N(bG)
ν(bG)

Figure 6.8: A play π′ extending % in a way such that S1
∀(G�E∀(π′))∩MRS(%) =

∅ cannot have more regret than a play π extending % for which S1
∀(G�E∀(π))∩

MRS(%) 6= ∅—for % longer than ν(bG).
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strategies he could be using. Consider a play prefix %. The maximal-regret
points of % correspond to the positions at which best alternatives to % occur. The
maximal-regret strategies of % is the set of positional strategies of Adam, % con-
sistent with them, such that at least one of the best alternatives to % is consistent
with them. Recall from Lemma 6.4 (ii) that a play prefix % is consistent with a
positional strategy τ ∈ S1

∀(G) if and only if τ ∈ S1
∀(G�E∀(%)). We can, therefore,

think of the set of edges E∀(%) as representing the set of all positional strategies
for Adam in G that % is consistent with, i.e. {τ ∈ S1

∀(G) |% is consistent with τ}.
Let us write S1

∀(G, %) for the set we just described. Let β be the value of one of
the best alternatives to %. If β′ < β is the value of one of the best alternatives to
%′, then we know the best alternatives to % are not consistent with any strategy
from S1

∀(G, %′). Then, according to our definition of maximal-regret strategies,
this also means that MRS(%) ∩S1

∀(G, %′) = ∅. The converse is also true.
As an example, consider the situation depicted in Figure 6.7. If, from vj ,

the play π′ is obtained and we have that S1
∀(G�E∀(π′)∩MRS(%) is empty, then

the deviation from vi′ might no longer be a best alternative. Indeed, there is no
positional strategy of Adam which allows the deviation from vi′ to obtain the
value we assumed (from just looking at the prefix %) and which is also consistent
with π′. In order to deal with this, we need some more definitions.

Assume that RegS∃,S1
∀
(G) ≥ bG . For a play prefix % = v0 . . . vn with n ≥

N(bG), let us define the value δ% (δ for drop) as

min
0≤i≤j<N(bG)

τ,τ ′∈S1
∀(G�E∀(%))

∣∣∣λi (cValvi¬vi+1
(G × τ)−Val(%[i..j])

)
− λjcValvj¬vj+1

(G × τ ′))
∣∣∣ .

Intuitively δ% is the minimal drop of the regret achievable by a better alternative
(given the information we can extract from %).

The smallest possible drop. Let us derive a universal lower bound on δ%
for all % of length at least N(bG). In order to do so we will recall “the shape”
of the co-operative value of G. Recall the cVal in a discounted-sum game can
be obtained by supposing Eve controls all vertices and computing aVal instead.
It then follows from positional determinacy of discounted-sum games that the
cVal is achieved by a lasso in the arena G. More formally, we know that there
is a play π in G of the form

π = v0 . . . vk−1(vk . . . v`)ω

where 0 ≤ k < ` ≤ |V |, and such that Val(π) = cValv0(G). Let us write λ = α
β

with α, β ∈ Z. One can then verify that

Lemma 6.8. For all sub-arenas H of G, for all vertices v ∈ V , there exists
N ∈ Z such that cValv(H) = N

D where D := β|V |(β|V | − α|V |). �

It then follows from the definition of δ% that:

Lemma 6.9. For all play prefixes % = v0 . . . vn such that n ≥ N(bG) we have
that

δ% >
1

βN(bG)D
.

�
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Formalizing our claims. We can now prove a replacement for Lemma 5.3
holds in this context.
Lemma 6.10. Let π be a play in G and assume RegS∃,S1

∀
(G) > 0. Let ν(bG)

denote the value

N(bG) +
⌊

log(1− λ)− logwmax − (N(bG) + |V |) log β − log(β|V | − α|V |)
log λ

⌋
+ 1.

Then for all σ ∈ S∃,

sup
τ∈S1

∀

reg(πστ ) = sup
τ∈S1

∀

reg(πστ [..ν(bG)])− λν(bG)Val(πστ [ν(bG)..]).

�

Proof. Let us consider throughout this argument an arbitrary σ ∈ S∃. From
Lemma 6.7 and the fact that ν(bG) is such that N(bG), it follows that

sup
τ∈S1

∀

reg(πστ = v0v1 . . . )

= sup
τ∈S1

∀

max
0≤i<ν(bG)
vi∈V∃

{λi(cValvi¬vi+1
(G�E∀(πστ ))−Val(πστ [i..ν(bG)])}

− λν(bG)Val(πστ [ν(bG)..]).

Now, also note that ν(bG) was chosen so that

wmaxλ
ν(bG)

1− λ <
1

βN(bG)+|V |D
.

Hence, for all τ ′ ∈ S1
∀ if we write πστ ′ = v′0 . . . , then for all j ≥ ν(bG) such that

v′j ∈ V∃ it holds that

− 1
βN(bG)+|V |D

< λiVal(πστ ′ [i..])) <
1

βN(bG)+|V |D
.

It then follows from Lemma 6.9 and the definition of δπ
στ′

[..ν(bG)] that, if there
exists ` ≥ ν(bG) such that for all 0 ≤ k ≤ ν(bG) with v′k ∈ V∃

cValv
′
k

¬v′
k+1

(G�E∀(π[..`])) < cValv
′
k

¬v′
k+1

(G�E∀(π[..ν(bG)]))

then reg(πστ ′) < reg(πστ ′′) for all τ ′′ ∈MRS(π′[..ν(bG)]). This is due to the
fact that that πστ ′′ [..ν(bG)] = πστ ′ [..ν(bG)] and

cValv
′
k

¬v′
k+1

(G × τ ′′) = cValv
′
k

¬v′
k+1

(G�E∀(πστ ′′ [..ν(bG)])).

The above implies that for all σ ∈ S∀ the value supτ∈S1
∀

reg(πστ = v0 . . . )
equals

max{cValvi¬vi+1
(G�E∀(πστ [..ν(bG)]))− λν(bG)Val(πστ [..ν(bG)])

: 0 ≤ i ≤ N(bG) and vi ∈ V∃}

and therefore (by definition of regret of a prefix) we have that

sup
τ∈S1

∀

reg(πστ ) = sup
τ∈S1

∀

reg(πστ [..ν(bG)])− λν(bG)Val(πστ [ν(bG)..]).

as required.
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Putting everything together. Let us go back to our example to illustrate
how to use ν(bG) and the drop of a prefix. Consider now the situation from
Figure 6.8. Recall we have assumed π′ is a play extending % with S1

∀(G�E∀(π′))∩
MRS(%) = ∅. It follows that all best alternatives to π′ achieve a payoff strictly
smaller than cValv

′

¬vi′+1
(G�E∀(%)). Thus, the regret of π′ can only be bigger

than the regret of a play π with S1
∀(G�E∀(π)) ∩MRS(%) 6= ∅ if the minimal

index k > j such that S1
∀(G�E∀(π′[..j])) ∩MRS(%) = ∅—i.e. the turn at

which Adam revealed he was not playing a strategy from MRS(%)—is small
enough. In other words, the drop in the value of the best alternative has to be
compensated by a similar drop in the value obtained by Eve, and the discount
factor makes this impossible after some number of turns.

Lemma 6.11. If RegS∃,S1
∀
(G) ≥ bG then RegS∃,S1

∀
(G) is equal to

inf
σ∈S∃

sup{reg(π[..ν(bG)])− λν(bG)aValû(Ĥ)

: π = v0v1 . . . cons. with σ and some τ ∈ S1
∀}

where

• û := (vν(bG), E∀(π[..ν(bG)])) and

• Ĥ := Ĝ�{((C, u), (D, v)) |S1
∀(G�D) ∩MRS(π[..ν(bG)]) 6= ∅}.

�

Proof. First, note that if RegS∃,S1
∀
(G) > 0 then there cannot be any regret-

free strategies for Eve in G when playing against a positional adversary. It then
follows from Corollary 6 that RegS∃,S1

∀
(G) ≥ bG .

Now using Lemma 6.10 together with the definition of the regret of a play
we get that RegS∃,S1

∀
(G) is equal to

inf
σ∈S∃

sup{reg(π[..ν(bG)])− λν(bG)Val(π[ν(bG)..]) | π cons. σ and some τ ∈ S1
∀}.

Finally, note that it is in the interest of Eve to maximize λν(bG)Val(π[ν(bG)..])
in order to minimize regret. Conversely, Adam tries to minimize the same value
with a strategy from MRS(π[..ν(bG)]): critically, the strategy is such that the
prefix π[..ν(bG)] is consistent with it. Thus, we can replace it by the antagonistic
value from π[ν(bG)..] discounted accordingly. In this setting we also want to force
Adam to play a positional strategy which is consistent with deviations before
N(bG) which achieve the assumed regret of the prefix π[..ν(bG)]. More formally,
we have

inf
σ∈S∃

sup
τ∈S1

∀

reg(πστ [..ν(bG)])− λν(bG)Val(πστ [ν(bG)..])

= inf
σ∈S∃
σ′∈S∃

sup
τ∈S1

∀
τ ′∈MRS(πστ [..ν(bG)])

reg(πστ [..ν(bG)])− λν(bG)Val(σ′, τ ′)

= inf
σ∈S∃

sup
τ∈S∀

reg(πστ [..ν(bG)])

+ inf
σ′∈S∃

sup
τ ′∈MRS(πστ [..ν(bG)])

(
−λν(bG)Val(σ′, τ ′)

)
.
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It should be clear that the RHS term of the sum is equivalent to

−λν(bG)aValû(Ĥ)

as required.

The above result allows us to claim a Pspace algorithm (EXPspacewhen λ
is given as part of the input) to compute the regret of a game. As in Section 5.4,
we simulate the game using an alternating machine which halts in at most a
pseudo-polynomial number of steps which depends on ν(bG) and, in turn, on
bG . After that, we must compute the antagonistic value of Ĝ. As a first step,
however, we compute the safety game G̃ and determine its winner.

Lemma 6.12. Computing the regret value of a game, playing against a po-
sitional adversary, can be done in time O(max{|V |(|E| + 1), ν(bG)}) with an
alternating Turing machine. �

The memory requirements for Eve are as follows:

Corollary 7. Let η := |∆|d where d = max{|V |(|E|+ 1), ν(bG)}. It then holds
that RegSη∃,S

1
∀
(G) = RegS∃,S1

∀
(G). �
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Chapter 7

Minimizing Regret Against
Eloquent Adversaries

In this chapter we study the regret threshold problem when Eve plays against an
eloquent adversary—so called because a strategy of the adversary corresponds
to an infinite word.

Let us illustrate the usefulness of the variant in which Adam is restricted to
play word strategies. Assume that we need to design a system embedded into
an environment that produces disturbances: if the sequence of disturbances pro-
duced by the environment is independent of the behavior of the system, then it
is natural to model this sequence not as a function of the state of the system
but as a temporal sequence of events, i.e. a word on the alphabet of the distur-
bances. Clearly, if the sequences are not the result of an antagonistic process,
then minimizing the regret against all disturbance sequences is an adequate
solution concept to obtain a reasonable system and may be preferable to a sys-
tem obtained from a strategy that is optimal under the antagonistic hypothesis.
This disturbance-handling embedded system example was first given in [DF11].
In that work, the authors introduce remorsefree strategies. Such strategies cor-
respond to strategies which minimize regret in games with ω-regular objectives.
They do not establish lower bounds on the complexity of realizability or syn-
thesis of remorsefree strategies and they focus on word strategies of Adam only.

In [HP06], Henzinger and Piterman introduce the notion of good-for-games
automata. A non-deterministic automaton is good for solving games if it fairly
simulates the equivalent deterministic automaton. We show below that our
notion of regret minimization for word strategies extends this notion to the
quantitative setting (Proposition 7.2). Our definitions give rise to a natural
notion of approximate determinization for weighted automata on infinite words.

In [AKL10], Aminof et al. introduce the notion of approximate determiniza-
tion by pruning for weighted sum automata over finite words. For α ∈ (0, 1], a
weighted sum automaton is α-determinizable by pruning if there exists a finite
state strategy to resolve non-determinism and that constructs a run whose value
is at least α times the value of the maximal run of the given word. So, they
consider a notion of approximation which is a ratio. We will show that our con-
cept of regret, when Adam plays word strategies only, defines instead a notion

99



100 CHAPTER 7. REGRET AGAINST ELOQUENT ADVERSARIES

of approximation with respect to the difference metric for weighted automata
(Proposition 7.1). There are other differences with their work. First, we con-
sider infinite words while they consider finite words. Second, we study a general
notion of regret minimization problem in which Eve can use any strategy while
they restrict their study to fixed memory strategies only and leave the problem
open when the memory is not fixed a priori.

Finally, the main difference between these related works and our work is
that we study the Inf, Sup, LimInf, LimSup, MP, MP, and DSλ measures while
they consider the total sum measure or Boolean objectives.

Contributions. In this chapter we continue our study of the regret thresh-
old problem when Adam is restricted to playing word strategies. For payoff
functions which admit deterministic automata, there is a simple algorithm to
compute a strategy for Eve to minimize her regret. We now briefly sketch it. For
any given quantitative automaton, we first determinize it—that is, we translate
it into a deterministic automaton which realizes the same mapping from infinite
words to reals—and then play a quantitative simulation game on the product
of both automata. The latter game consists in Adam playing letters and mov-
ing a token on the deterministic automaton (note that he does not have a real
choice, as the machine is deterministic) and Eve responding by resolving non-
determinism in the original automaton. Eve wins the game if, the infinite run
in the original non-deterministic automaton has value r-away from the value as-
signed by the deterministic one to the word given by Adam. Otherwise, Adam
wins and Eve loses. Observe that the determinization step is indeed crucial.
Hence, for the mean-payoff and discounted-sum functions an alternative solu-
tion is needed. Indeed, mean-payoff and discounted-sum are not determinizable
in general.

The structure of this chapter differs somewhat from the previous two. We
will first give additional definitions required for us to make the transition from
games played on graphs to games played on automata. Then, in Section 7.1
we will give lower bounds for the regret threshold problem when considering
a threshold of 0 and in the general case as well. The strongest of these lower
bounds is the one obtained for mean payoff, where we show the problem to be un-
decidable even if further restricting Eve to play using only finite memory. Next,
in Section 7.2 we show that the threshold 0 case coincides with determining
whether Eve has a regret-free strategy and that both are in NP. Finally, we de-
scribe algorithms for the general threshold problem, first for prefix-independent
functions in Section 7.3, and then for discounted sum in Section 7.4.

Additional definitions
We say that a strategy of Adam is a word strategy if his strategy can be expressed
as a function

τ : N→ {1, . . . ,max
v∈V

deg+(v)}.

Intuitively, we consider an order on the successors of each Adam vertex. On
every turn, the strategy τ of Adam will tell him to move to the τ(i)-th successor
(or to a sink state, if its outdegree is less than τ(i)) of the vertex according to the
fixed order. We denote by W∀ the set of all such strategies for Adam. A game



101

in which Adam plays word strategies can be reformulated as a game played on a
weighted automaton G = (Q, qI , A,∆, w) and strategies of Adam—of the form
τ : N→ A—determine a sequence of input symbols to which Eve has to react by
choosing ∆-successor states starting from qI . In this setting a strategy of Eve
which minimizes regret defines a run by resolving the non-determinism of ∆ in
G, and ensures the difference of value given by the constructed run is minimal
w.r.t. the value of the best run on the word spelled out by Adam. (Observe
that Eve and Adam here take the opposite roles as compared to usual games
played on automata. That is, Eve here resolves non-determinism while Adam
“spells”, instead of the other way around.)

For instance, consider once more the example given in Chapter 4. If all
vertices in Figure 4.1 are replaced by states, Eve can choose the successor of v1
regardless of what letter Adam plays and, from v2 and v3, Adam chooses the
successor by choosing to play a or b. Furthermore, his choice of letter tells Eve
what would have happened had the play been at the other state.

Relation to other concepts. Let us extend the definitions of approximation,
embodiment and refinement from [AKL10] to the setting of ω-words. Consider
two weighted automata A = (QA, qI , A,∆A, wA) and B = (QB, qI , A,∆B, wB)
and let d : R × R → R be a metric.1 We say B (strictly) α-approximates A
(with respect to d) if d(B(w),A(w)) ≤ α (resp. d(B(w),A(w)) < α) for all
words w ∈ Aω. We say B embodies A if QA ⊆ QB, ∆A ⊆ ∆B and wA agrees
with wB on ∆A. For an automaton A = (Q, qI , A,∆, w) and an integer k ≥ 0,
the k-refinement of A is the automaton obtained by refining the state space of
A using k Boolean variables. Intuitively, this corresponds to having 2k copies
of every state, with each copy of p transitioning to all copies of q with a if
(p, a, q) ∈ ∆. The automaton A is said to be (strictly) (α, k)-determinizable
by pruning (DBP, for short) if the k-refinement of A embodies a deterministic
automaton which (strictly) α-approximates A. The next result follows directly
from the above definitions.

Proposition 7.1. For α ∈ Q, k ∈ N, a weighted automaton G is (strictly)
(α, k)-DBP (w.r.t. the difference metric) if and only if Reg

S2k
∃ ,W∀

(G) ≤ α

(resp. Reg
S2k
∃ ,W∀

(G) < α). �

In [HP06] the authors define good-for-games automata. Their definition is
based on a game which is played on an ω-automaton by Spoiler and Simula-
tor. We propose the following generalization of the notion of good for games
automata for weighted automata. A weighted automaton A is (strictly) α-good
for games if Simulator, against any word x ∈ Aω spelled by Spoiler, can resolve
non-determinism in A so that the resulting run has value v and d(v,A(x)) ≤ α
(resp. d(v,A(x)) < α), for some metric d. We summarize the relationship that
follows from the definition in the following result:

Proposition 7.2. For α ∈ Q, a weighted automaton G is (strictly) α-good for
games (w.r.t. the difference metric) if and only if RegS∃,W∀

(G) ≤ α (resp.
RegS∃,W∀

(G) < α). �

1The metric used in [AKL10] is the ratio measure.
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⊥0 ⊥2

A, 0 A, 2

A, 0bail, 0 A, 0 bail, 0

A \ {bail}, 0 A \ {bail}, 0

Figure 7.1: Initial gadget used in most reductions.

. . .

. . .

⊥1

1 n

# #

1 n

A, 1

Figure 7.2: Clause-choosing gadget for the SAT reduction. There are as many
paths from top to bottom (⊥1) as there are clauses (n).

7.1 Lower Bounds
We will progress gradually by first showing how the 0-regret threshold problem
is NP-hard for all payoff functions, and working our way towards the undecid-
ability of the general threshold problem for mean payoff.

The following result is shown to be true using an adaptation of the NP-
hardness proof from [AKL10].

Theorem 7.1. Consider a fixed regret threshold r ∈ Q and let C ∈ {<,≤}.
For payoff functions Inf, Sup, LimInf, LimSup, MP, MP, and DSλ, determining
whether RegS∃,W∀

(G) C r for a given weighted automaton G is NP-hard even
if λ is not part of the input. �

Proof. We give a reduction from the SAT problem, i.e. satisfiability of a
CNF formula. The construction presented is based on a proof in [AKL10]. The
argument works for any fixed regret threshold, as long as the weights of the self-
loops on the trap states are adapted accordingly. However, for concreteness, we
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q0

x1

11 10

x2

21 20

⊥1

1, 2, 3 1, 2, 3

# # # #

1 2, 3 1, 2 3

A, 1

Figure 7.3: Value-choosing gadget for the SAT reduction. Depicted is the con-
figuration for (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2).

will assume a regret threshold of r = 0, the Inf payoff function, and consider the
non-strict regret threshold problem. The idea of the reduction is simple: given
Boolean formula Φ in CNF we construct a weighted automaton GΦ such that
Eve can ensure regret value of 0 with a positional strategy in GΦ if and only if Φ
is satisfiable. Indeed, the structure of the constructed game forces Eve to play
positionally. (And, as we show later, memoryless strategies suffice to ensure 0
regret Lemma 7.1.)

Let us now fix a Boolean formula Φ in CNF with n clauses and m Boolean
variables x1, . . . , xm. The weighted automaton GΦ = (Q, q0, A,∆, w) has alpha-
bet A = {bail,#} ∪ {i | 1 ≤ i ≤ n}. GΦ includes an initial gadget such as the
one depicted in Figure 7.1.

Initial gadget. Here, Eve has the choice of playing left or right. If she plays
to the left then Adam can play bail and force her to ⊥0 while the alternative
play resulting from her having chosen to go right goes to ⊥2. Hence, playing
left already gives Adam a winning strategy to ensure regret 2, so she plays to
the right. If Adam now plays bail then Eve can go to ⊥2 and as wmax = 2 this
implies the regret will be 0. Therefore, Adam plays anything but bail.

Left sub-arena. As the left sub-arena of GΦ we attach the gadget depicted
in Figure 7.2. All transitions shown have weight 1 and all missing transitions in
order for GΦ to be complete lead to a state ⊥0 with a self-loop on every symbol
from A with weight 0. Intuitively, as Eve must go to the right sub-arena then
all alternative plays in the left sub-arena correspond to either Adam choosing
a clause i and spelling i#i to reach ⊥1 or reaching ⊥0 by playing any other
sequence of symbols.

Right sub-arena. The right sub-arena of the automaton is as shown in
Figure 7.3, where all transitions shown have weight 1 and all missing transitions
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go to ⊥0 again. Here, from q0 we have transitions to state xj with symbol i if
the i-th clause contains variable xj . For every state xj we have transitions to
j1 and j0 with symbol #. The idea is to allow Eve to choose the truth value of
xj . Finally, every state j1 (or j0) has a transition to ⊥1 with symbol i if the
literal xj (resp. ¬xj) appears in the i-th clause.

The argument to show that Eve can ensure regret of 0 if and only if Φ is
satisfiable is straightforward. Assume the formula is indeed satisfiable. Assume,
also, that Adam chooses 1 ≤ i ≤ n and spells i#i. Since Φ is satisfiable there is
a choice of values for x1, . . . , xm such that for each clause there must be at least
one literal in the i-th clause which makes the clause true. Eve transitions, in
the right sub-arena from q0 to the corresponding value and when Adam plays
# she chooses the correct truth value for the variable. Thus, the play reaches
⊥1 and, as wmax = 1 in Φ it follows that her regret is 0. If Adam does not play
as assumed then we know all plays in GΦ reach ⊥0 and again her regret is 0.
Note that this strategy can be realized with a positional strategy by assigning
to each xj the choice of truth value and choosing from q0 any valid transition
for all 1 ≤ i ≤ n.

Conversely, if Φ is not satisfiable then for every valuation of the variables
x1, . . . , xm there is at least one clause which is not true. Given any positional
strategy of Eve in GΦ we can extract the corresponding valuation of the Boolean
variables. Now Adam chooses 1 ≤ i ≤ n such that the i-th clause is not satisfied
by the assignment. The play will therefore end in ⊥0 while an alternative play
in the left sub-arena will reach ⊥1. Hence the regret of Eve in the game is 1.

To complete the proof we note that the above analysis is the same for payoff
functions Inf, LimInf, LimSup, mean payoff, and discounted sum. For Sup it
suffices to change all the weights in the gadgets from 1 to 0.

We observe that, once more, we can adapt the values of the loops in the
sinks ⊥2, ⊥1, and ⊥0 to get the same result for the non-strict regret threshold
problem and for any regret threshold. For discounted sum, the weights have to
be adapted as a function of r and λ.

Next, for the discounted-sum function we will show that for any fixed λ the
general regret threshold problem is Pspace-hard even if we assume the given
automaton has a specific gap property.

Theorem 7.2. Let C ∈ {<,≤}. For payoff function DSλ, determining whether
RegS∃,W∀

(G) C r for a given δ ∈ [0, 1), regret threshold r ∈ Q, and weighted
automaton G such that either RegS∃,W∀

(G) C r or r + δ 6 RegS∃,W∀
(G), is

Pspace-hard even if λ is not part of the input. �

Proof. Given an instance of the QBF problem—that is, a quantified Boolean
formula—we construct, in polynomial time, a weighted automaton such that
the answer to the regret threshold problem is positive if, and only if, the QBF
is true. The main idea behind our reduction is to build an automaton with two
disconnected sub-arenas joined by an initial gadget in which we force Eve to go
into a specific sub-arena. In order for her to ensure the regret is not too high
she must now make sure all alternative plays in the other part of the arena do
not achieve too high values. In the sub-arena where Eve finds herself, we will
simulate the choice of values for the Boolean variables from the QBF while in
the other sub-arena these choices will affect which alternative paths can achieve



7.1. LOWER BOUNDS 105

. . .

⊥0 ⊥Z

xn

x1

. . .

⊥X ⊥Y

xk

xj xj

A, 0

¬b, 0

A \ ¬b, 0

A, 0

b, 0

A \ b, 0

A, 0 A, 0

¬b, 0

A \ ¬b, 0

b, 0

A \ b, 0

A, 0

¬b, 0
b, 0

A \ {b,¬b}, 0

Figure 7.4: Left and right sub-arenas of the reduction from QBF. Clause i
shown on the left; existential and universal gadgets for variables xj and xk,
respectively, on the right.
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high discounted-sum values based on the clauses of the QBF. We describe the
reduction for C equal to ≤. It will be clear how to extend the result to the strict
version.

Let us start by fixing an instance of the QBF problem:

∃x0∀x1∃x2 . . .Φ(x0, x1, . . . , xn)

where Φ is in 3-CNF.
Our reduction works for values of positive rationals r, X, Y , and Z such

that

(i) λ2 Z
1−λ > r + δ,

(ii) λ2n Z
1−λ − λ

2n X
1−λ > r + δ,

(iii) λ2n Z
1−λ − λ

2n Y
1−λ ≤ r,

(iv) λ3 Y
1−λ − λ

2n X
1−λ ≤ r.

The argument works for the strict version of the regret threshold problem if we
change the strictness of the above inequalities.

The alphabet of the new weighted arena is A = {bail, b,¬b}.

Example assignment. In order to convince the reader that values which
satisfy the above inequalities indeed exist for all possible valuations of n and δ

we give such a valuation. Let f : Q → Q be defined as f(x) := (1−λ)x
λ2n . Note

that, w.l.o.g., we can assume that n ≥ 2. Consider the valuation

• r := λ3−2n(1 + δ),

• Z := f(r + δ + 2),

• X := f(1),

• Y := f(2 + δ).

Clearly, inequalities (i)–(iii) hold. Regarding (iv), it will be useful to consider
the equivalent inequality

λ3−2nY −X ≤ r(1− λ)
λ2n .

We observe that the LHS is smaller than λ3−2n(Y − X). Furthermore the
difference Y −X is equivalent to (1+δ)(1−λ)

λ2n . Finally, by choice of r we have that
the RHS is equivalent to

λ3−2n
(

(1 + δ)(1− λ)
λ2n

)
.

Hence, (iv) holds as well. Note that the chosen values can be encoded into a
polynomial number of bits w.r.t. λ and n as well as the size of the representation
of δ.

Initial gadget. The weighted arena we construct starts as is shown in Fig-
ure 7.1. Recall that this gadget forces Eve to go into the right sub-arena.
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Choosing values. For each existentially quantified variable xi we will create
a “diamond gadget” to allow Eve to choose a different state depending on the
value she wants to assign to xi. From the corresponding states, Adam will
have to play b or ¬b, respectively, otherwise he allows her to get to ⊥Y . For
universally quantified variables we have a 2-transition path which allows Adam
to choose b or ¬b (in the second step). The right path shown in Figure 7.4
depicts this construction. From (iii) it follows that if Adam cheats at any point
during this simulation of value choosing phase of the QBF game, then the play
reaches ⊥Y and the regret is at most r. Hence, we can assume that Adam does
not cheat and the play eventually reaches ⊥X . Observe that the choice of values
in this gadget is made as follows: at turn 2i after having entered the gadget,
the value of xi is decided.

Clause gadgets. For every clause from Φ we add a path in the new weighted
automaton such that every literal `i in the clause is synchronized with the turn
at which the value of xi is decided in the value-choosing gadget. That is to
say, there are 2i − 1 states that must be visited before arriving at the state
corresponding to `i. At state `i, if the value of xi corresponding to literal `i
is chosen, the play deterministically goes to ⊥0. Otherwise, traversal of the
clause-path continues.

It should be clear that if the QBF is true, then Eve has a value-choosing
strategy such that at least one literal from every clause holds. That means that
every alternative play in the left sub-arena of our construction has been forced
into ⊥0 while Eve has ensured a discounted-sum value of λ2n X

1−λ by reaching
⊥X . From (iv) it follows that Eve has ensured a regret of at most r. Conversely,
if Adam has a value-choosing strategy in the QBF problem so the QBF is show
to be false, then he can use his strategy in the constructed arena so that some
alternative path in the left sub-arena eventually reaches ⊥Z . In this case, from
(ii) we get that the regret value is greater than r + δ, as expected.

We now show EXPtime-hardness for the payoff functions Inf, Sup, LimInf,
LimSup, and mean-payoff, by giving a reduction from countdown games [JSL08].
A countdown game C consists of a weighted graph (S, T ), where S is the set of
states and T ⊆ S × (N \ {0}) × S is the transition relation, and a target value
N ∈ N. If t = (s, d, s′) ∈ T then we say that the duration of the transition t is d.
A configuration of a countdown game is a pair (s, c), where s ∈ S is a state and
c ∈ N. A move of a countdown game from a configuration (s, c) consists in player
Counter choosing a duration d such that (s, d, s′) ∈ T for some s′ ∈ S followed
by player Spoiler choosing s′′ such that (s, d, s′′) ∈ T , the new configuration
is then (s′′, c + d). Counter wins if the game reaches a configuration of the
form (s,N) and Spoiler wins if the game reaches a configuration (s, c) such that
c < N and for all t = (s, d, ·) ∈ T we have that c+ d > N .

Deciding the winner in a countdown game C from a configuration (s, 0)—
where N and all durations in C are given in binary—is EXPtime-complete. We
will show that, given a countdown game, we can construct a game where Eve
ensures regret less than 2 if and only if Counter wins in the original countdown
game.

Theorem 7.3. Let C ∈ {<,≤}. For payoff functions Inf, Sup, LimInf, LimSup,



108 CHAPTER 7. REGRET AGAINST ELOQUENT ADVERSARIES

. . .

xi

xi⊥2

. . .

xn

xn ⊥2

ci+1, 0

bi, 0
ci, 0

A \ {ci+1}, 0

ci+1, 0

ci+1, 0

bi, 0
ci, 0

bn, 0
cn, 0

A, 0

A, 2 A, 2

Figure 7.5: Binary counter gadget.

MP, and MP, determining whether RegS∃,W∀
(G) C r for a given weighted au-

tomaton G and regret threshold r ∈ Q is EXPtime-hard. �

Proof of Theorem 7.3. Let us fix a countdown game C = ((S, T ), N) and let
n = blog2Nc+ 2.

Simplifying assumptions. Clearly, if Spoiler has a winning strategy and the
game continues beyond his winning the game, then eventually a configuration
(s, c), such that c ≥ 2n, is reached. Thus, we can assume w.l.o.g. that plays in
C which visit a configuration (s,N) are winning for Counter and plays which
don’t visit a configuration (s,N) but eventually get to a configuration (s′, c)
such that c ≥ 2n are winning for Spoiler.

Additionally, we can also assume that T in C is total. That is to say, for all
s ∈ S there is some duration d such that (s, d, s′) ∈ T for some s′ ∈ S. If this
were not the case then for every s with no outgoing transitions we could add a
transition (s,N + 1, s⊥) where s⊥ is a newly added state. It is easy to see that
either player has a winning strategy in this new game if and only if he has a
winning strategy in the original game.

Reduction. We will now construct a weighted arena G with wmax = 2 such
that, in a regret game with payoff function Sup played on G, Eve can ensure
regret value strictly less than 2 if and only if Counter has a winning strategy in
C.

As all weights are 0 in the arena we build, with the exception of self-loops
on sinks, the result holds for Sup, LimSup, Inf, and mean payoff, and the strict
threshold problem. We describe the changes required for the Inf and non-strict
problems at the end.

Implementation. The alphabet of the weighted arena G = (Q, q0, A,∆, w) is
A = {bi | 0 ≤ i ≤ n}∪ {ci | 0 < i ≤ n}∪ {bail, choose}∪S. We now describe the
structure of G (i.e. Q, ∆ and w).
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Figure 7.6: Adder gadget: depicted +9.

Initial gadget. Figure 7.1 depicts the initial state of the arena. Once
more, we remind the reader that this gadget forces Eve to play into the right
sub-arena.

Counter gadget. Figure 7.5 shows the left sub-arena. All states from
{xi |0 ≤ i ≤ n} have incoming transitions from the left part of the initial gadget
with symbol A \ {bail} and weight 0. Let y0 . . . yn ∈ B be the “little-endian”
binary representation of N . In other words, (yi)n0 is such that

n∑
0

2iyi = N.

For all xi such that yi = 1 there is a transition from xi to ⊥0 with weight 0 and
symbol bail. Similarly, for all xi such that yi = 0 there is a transition from xi
to ⊥0 with weight 0 and symbol bail. All the remaining transitions not shown
in the figure cycle on the same state, e.g. xi goes to xi with symbol choose and
weight 0.

The sub-arena we have just described corresponds to a counter gadget which
keeps track of the sum of the durations “spelled” by Adam. At any point in
time, the states of this sub-arena in which Eve believes alternative plays are now
will represent the binary encoding of the current sum of durations. Indeed, the
initial gadget makes sure Eve plays into the right sub-arena and therefore she
knows there are alternative play prefixes that could be at any of the xi states.
This corresponds to the 0 value of the initial configuration.

Adder gadget. Let us now focus on the right sub-arena in which Eve finds
herself at the moment. The right transition with symbol A \ {bail} from the
initial gadget goes to state s—the initial state from C. It is easy to see how we
can simulate Counter’s choice of duration and Spoiler’s choice of successor. From
s there are transitions to every (s, c), such that (s, c, s′) ∈ T for some s′ ∈ S
in C, with symbol choose and weight 0. Transitions with all other symbols and
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weight 0 going to ⊥1—a sink with a 1-weight cycle with every symbol—from s
ensure Adam plays choose, lest since wmax = 2 the regret of the game will be
at most 1 and Eve wins.

Figure 7.6 shows how Eve forces Adam to “spell” the duration c of a tran-
sition of C from (s, c). For concreteness, assume that Eve has chosen duration
9. The top source in Figure 7.6 is therefore the state (s, 9). Again, transitions
with all the symbols not depicted go to ⊥1 with weight 0 are added for all states
except for the bottom sink. Hence, Adam will play b0 and Eve has the choice
of going straight down or moving to a state where Adam is forced to play c1.
Recall from the description of the counter gadget that the belief of Eve encodes
the binary representation of the current sum of delays. If she believes a play is
in x1 (and therefore none in x1) then after Adam plays b0 it is important for
her to make him play c1 or this alternative play will end up in ⊥2. It will be
clear from the construction that Adam always has a strategy to keep the play
in the right sub-arena without reaching ⊥1 and therefore if any alternative play
from the left sub-arena is able to reach ⊥2 then Adam wins (i.e. can ensure
regret 2). Thus, Eve decides to force Adam to play c1. As the duration was 9
this gadget now forces Adam to play b4 and again presents the choice of forcing
Adam to play c5 to Eve. Clearly this can be generalized for any duration. This
gadget in fact simulates a cascade configuration of n 1-bit adders.

Finally, from the bottom sink in the adder gadget, we have transitions with
symbols from S with weight 0 to the corresponding states (thus simulating
Spoiler’s choice of successor state). Additionally, with any symbol from S and
with weight 0 Eve can also choose to go to a state qbail where Adam is forced
to play bail and Eve is forced into ⊥0.

Correctness. Note that if the simulation of the counter has been faithful and
the belief of Eve encodes the value N then by playing bail, Adam forces all of the
alternative plays in the left sub-arena into the ⊥0 sink. Hence, if Counter has a
winning strategy and Eve faithfully simulates the C she can force this outcome
of all plays going to ⊥0. Note that from the right sub-arena we have that ⊥2 is
not reachable and therefore the highest payoff achievable was 1. Therefore, her
regret is of at most 1.

Conversely, if both players faithfully simulate C and the configuration N is
never reached, i.e. Spoiler had a winning strategy in C then eventually some
alternative play in the left sub-arena will reach xn and from there it will go
to ⊥2. Again, the construction makes sure that Adam always has a strategy
to keep the play in the right sub-arena from reaching ⊥1 and therefore this
outcome yields a regret of 2 for Eve.

Changes for Inf. For the same reduction to work for the Inf payoff function we
add an additional symbol kick to the alphabet of G. We also add deterministic
transitions with kick, from all states which are not sinks ⊥x for some x, to ⊥0.
Finally, all non-loop transitions in the initial gadget are now given a weight of
2; the ones in the counter gadget are given a weight of 2 as well; the ones in the
adder gadget (i.e. right sub-arena) are given a weight of 1.

We observe that if Counter has a winning strategy in the original game C
then Eve still has a winning strategy in G. The additional symbol kick allows
Adam to force Eve into a 0-loop but also ensures that all alternative plays also
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go to ⊥0, thus playing kick is not beneficial to Adam unless an alternative play
is already at ⊥2. Conversely, if Spoiler has a winning strategy in C then Adam
has a strategy to allow an alternative play to reach ⊥2 while Eve remains in
the adder gadget. He can then play kick to ensure the payoff of Eve is 0 and
achieve a maximal regret of 2.

Once again, we observe that the above reduction can be readily parameter-
ized. That is, we can replace the 2 value, the 1 value and the 0 value from the
⊥2,⊥1,⊥0 sink self-loops by arbitrary values A, B, C satisfying the following
constraints:

• A > B > C,

• A− C ≥ r so that Eve loses by going left in the initial gadget,

• A − B < r so that she does not lose by faithfully simulating the adder if
she has a winning strategy from the countdown game, or in other words:
if Adam cheats then A−B is low enough to punish him,

• B−C < r so that she does not regret having faithfully simulated addition,
that is, if she plays her winning strategy from the countdown game then
she does not consider B − C too high and regret it.

Changing the strictness of the last three constraints and finding a suitable val-
uation for r and A,B,C suffices for the reduction to work for the non-strict
regret threshold problem. Such a valuation is given by A = 2, B = 1, C = 0
with r = 1.

To show undecidability of the problem for the mean-payoff function we give
a reduction from the threshold problem for mean-payoff games with partial ob-
servation. This problem was shown to be undecidable in [DDG+10, HPR14].
(We will recall these results in the second part of this dissertation.)

Theorem 7.4. Let C ∈ {<,≤}. For payoff functions MP and MP, determining
whether RegS∃,W∀

(G)Cr for a given weighted automaton G and regret threshold
r ∈ Q is undecidable. �

We recall the definition of the problem we reduce from. An MPG with
partial observation G is a tuple (Q, qI , A,∆, w,Obs) where Q is a set of states,
qI is the initial state of the game, A is a finite set of actions, ∆ ⊆ Q × A × Q
is the transition relation, w : ∆ → Q is a weight function and Obs ⊆ P(Q) is
a partition of Q into observations. In these games a play is started by placing
a token on qI , Eve then chooses an action from A and Adam resolves non-
determinism by choosing a valid successor (w.r.t. ∆). Additionally, Eve does
not know which state Adam has chosen as the successor, she is only revealed the
observation containing the state. More formally: a concrete play in such a game
is a sequence q0a0q1a1 . . . ∈ (Q ·A)ω such that q0 = qI and (qi, ai, qi+1) ∈ ∆, for
all i ≥ 0. An abstract play is then a sequence ψ = o0a0o1a1 . . . ∈ (Obs ·A)ω such
that there is some concrete play π = q0a0q1a1 . . . and qi ∈ oi, for all i ≥ 0; in
this case we say that π is a concretization of ψ. Strategies of Eve in this game
are of the form σ : (Obs ·A)∗Obs→ A, that is to say they are observation-based.
Strategies of Adam are not symmetrical, he is allowed to use the exact state
information, i.e. his strategies are of the form τ : (Q ·A)∗ → Q.
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The threshold problem for mean-payoff games is defined as follows. Given
ν ∈ Q, determining whether Eve has an observation-based strategy such that, for
all counter-strategies of Adam, the resulting abstract play has no concretization
with mean-payoff value (strictly) less than ν. For convenience, let us denote this
problem by maxMPGPO(> ν) and maxMPGPO(≥ ν) when the inequality
is strict, and non-strict, respectively. Note that in this case Eve is playing
to maximize the mean-payoff value of all concrete runs corresponding to the
abstract play being played while Adam is minimizing the same.

It was shown in [DDG+10, HPR14] that both problems are undecidable
for MP and for MP. That is, determining whether maxMPGPO(> ν) or
maxMPGPO(≥ ν) is undecidable regardless of the definition used for the
mean-payoff function. Further, if we ask for the existence of finite memory
observation-based strategies of Eve only, both definitions (MP and MP) coin-
cide and determining if maxMPGPO(≥ ν) remains undecidable [DDG+10].

Consider a given MPG H = (Q, qI , A,∆, w,Obs), and denote by H′ the
game obtained by multiplying by −1 all values assigned by w to the transi-
tions of H. Clearly, we get that the answer to whether maxMPGPO(> ν)
(resp. maxMPGPO(≥ ν)) in H is affirmative if and only if in H′ Eve has
an observation-based strategy to ensure that against any strategy of Adam,
the resulting abstract play is such that all concretizations have mean-payoff
value2 of strictly less than −ν (resp. ≤ −ν). Denote these problems by
minMPGPO(< µ) and minMPGPO(≤ µ), respectively. It follows that for
any definition of the mean-payoff function, these problems are undecidable.

Simplifying assumptions. We assume, w.l.o.g., that in mean-payoff games
with partial observation the transition relation is total. As the weights in mean-
payoff games with partial observation can be shifted and scaled, we can assume
w.l.o.g. that ν is any integer N > 0. Furthermore, we can also assume that the
mean-payoff value of any concrete play in a game is bounded from below by 0
and from above by M (this can again be achieved by shifting and scaling).3

Proof of Theorem 7.4. We give a reduction from the threshold problem of mean-
payoff games with partial observation that resembles the reduction used for
the proof of Theorem 7.3. More specifically, given a mean-payoff game with
partial observation H = (S, sI , T, B, c,Obs), we construct a weighted automaton
GH = (Q, qI ,∆, A,w) with the same payoff function such that

RegS∃,W∀
(GH) < R

if and only if the answer to minMPGPO(< N) is affirmative. The reduction
we describe works for any R,N,M,C such that

• C < R,

• M
2 − C < R, and

• N
2 = R,

2Technically, this second mean-payoff value must be computed with the lim inf mean-payoff
(MP) function if the original game used MP, and the lim sup mean-payoff (MP) function
otherwise.

3Note that we must have 0 < N < M , otherwise the threshold problem for any mean-payoff
game in which Eve minimizes is trivial.
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for concreteness we consider R = 2, N = 4, M = 5 and C = 1.
Let us describe how to construct the weighted arena GH from G. The al-

phabet of GH is A = B ∪ {bail} ∪ Obs. The structure of GH includes a gadget
such as the one depicted in Figure 7.1. Recall from the proof of Lemma 7.3 that
this gadget ensures Eve chooses to go to the right sub-arena, lest Adam has a
spoiling strategy. As the left sub-arena we have a modified version of H. First,
for every state s ∈ S and every action b ∈ B, we add an intermediate state
(s, b) such that when b is played from s the play deterministically goes to (s, b)
with weight 0. For any transition (s, b, s′) in H we add a transition in GH from
(s, b) to s′ with action os′ and weight w(s, b, s′), where os′ is the observation
containing s′. Second, we add transitions from every s ∈ S to ⊥C for symbol
bail with weight 0 and from every (s, b) to ⊥C with symbol o if there is no s′ ∈ o
such that (s, b, s′) ∈ T . The sink ⊥C has, for every symbol a ∈ A, a weight C
self-loop. As the right sub-arena we will have states qb for all b ∈ B. For any
such qb there are transitions with weight 0 and symbol b to qobs and transitions
with weight 0 and symbols A \ {b} to ⊥C . From qobs with any symbol from
Obs, there are 0-weight transitions to qb′ (for any b′ ∈ B) and transitions with
weight 0 and symbols A \Obs to ⊥C . All qb have incoming edges from the state
of the initial gadget which leads to the right sub-arena.

We claim that Eve has a strategy σ in GH to ensure regret less than R if
and only if the answer to minMPGPO(< N) is affirmative. Assume that the
latter is the case, i.e. in H Eve has an observation-based strategy to ensure
that against any strategy of Adam the abstract play has no concretization with
mean-payoff value greater than or equal to N . Let us describe the strategy of
Eve in GH. First, she plays into the right sub-arena of the game. Once there,
she tries to visit states qb0qb1 . . . based on her strategy for H. If Adam, at some
qbi does not play bi, or at some visit to qobs he plays a non-observation symbol,
then Eve goes to ⊥C . The play then has value C. Since no alternative play in
the left sub-arena can have value greater than M

2 and we have that M
2 −C < R,

Eve wins. Thus, we can assume that Adam, at every qbi plays the symbol bi
and at every visit to qobs plays an observation. Note that, by construction of
the left sub-arena, we are forcing Adam to reveal a sequence of observations to
Eve and allowing her to choose a next action. It follows that the value of the
play in GH is 0. Any alternative play in the right sub-arena would have value
of at most C as the highest weight in it is C. In the left sub-arena, we have
that all alternative plays have value strictly less than N

2 . Indeed, since she has
followed her winning strategy from H, and since by construction we have that
all alternative plays in the left sub-arena correspond to concretizations of the
abstract path spelled by Adam and Eve, if there were some play with value of
at least N

2 this would contradict her strategy being optimal. As C < R and
N
2 = R, we have that Eve wins the regret game, i.e. her strategy ensures regret
strictly less than R.

Conversely, assume that the answer to minMPGPO(< N) is negative.
Then regardless, of which strategy from H Eve decides to follow, we know
there will be some alternative play in the left sub-arena with value of at least
N
2 . If Adam allows Eve to play any such strategy then the value of the play is 0
and her regret is at least N

2 = R, which concludes the proof for the strict regret
threshold problem.

We observe that the restrictions on N,M,R and C can easily be adapted to
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allow for a reduction from minMPGPO(≤ N) to the non-strict regret thresh-
old problem.

We observe that in the construction used in the above proof Eve might re-
quire infinite memory as it is known that, in mean-payoff games with partial
observation, the protagonist might require infinite memory to win. Yet, as we
have already mentioned, even if we ask whether Eve has a winning finite mem-
ory observation-based strategy, the maxMPGPO(≥ ν) problem—and thus the
minMPGPO(≤ µ) problem—remains undecidable. Notice that the above con-
struction, when restricting Eve to play with finite memory, gives us a reduction
from this exact problem. Hence, even when restricting Eve to use only finite
memory, the problem is undecidable.

Proposition 7.3. For payoff functions MP and MP, determining whether

RegS∃,W∀
(G) ≤ r

for a given weighted automaton G and regret threshold r ∈ Q is undecidable even
if Eve is only allowed to play finite memory strategies. �

7.2 Upper Bound for 0-Regret
In this section, our goal is to convince the reader about two facts. First, there
is a strategy for Eve to ensure regret 0 if and only if the regret value of an
automaton, or game, is 0. (Recall that the definition of the regret of a game
allows for regret 0 even if no particular strategy for Eve witnesses regret 0—
instead, a sequence of strategies might have regret approaching 0 in the limit.)
Second, deciding if Eve has a regret-free strategy is in NP for all payoff functions.
The latter is optimal in view of Theorem 7.1.

7.2.1 Existence of regret-free strategies
We will now show that if the regret of an arena (or automaton) is 0, then we
can construct a memoryless strategy for Eve which ensures no regret is incurred.
More specifically, assuming the regret is 0, we have the existence of a family of
strategies of Eve which ensure decreasing regret (with limit 0). We use this
fact to choose a small enough ε and the corresponding strategy of hers from
the aforementioned family to construct a memoryless strategy for Eve with nice
properties which allow us to conclude that its regret is 0.

Lemma 7.1. For payoff functions Inf, Sup, LimInf, LimSup, MP, MP, and DSλ,
in any weighted automaton G we have that RegS∃,W∀

(G) = 0 if and only if there
exists σ ∈ S1

∃ such that regσS∃,W∀(G) = 0. �

Proof. Clearly if regret-free strategies exist, then the regret of the automaton is
0. Hence, we concentrate on the other implication.

Note that for a given automaton G = (Q, q0, A,∆, w) with payoff function
Inf, Sup, LimInf, or LimSup, we have that the set of possible regret values for
the automaton is finite. Indeed, the regret value must be an element from

{|w(d)− w(d′)| : d, d′ ∈ ∆}
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since all runs will have a value from {w(d) : d ∈ ∆}. It follows that there is a
strategy for Eve which ensures regret at most r if and only if the regret of the
automaton is at most r.

We now claim that any regret-free strategy σ with the latter property can be
turned into a positional strategy for Eve which also ensures regret 0.4 Consider
the (possibly infinite) Mealy machine (M,m0, αu, αo) realizing σ and its product
with the automaton: G × σ. The strategy σ can be turned into a positional one
if for all states q ∈ Q, for all pairs (q,m) and (q,m′) from G × σ there is one of
the two which is always ‘better’. More formally, (q,m) is better than (q,m′) if σ,
with internal memory state m, reads from q any infinite word β and constructs
a run with a strictly a higher value than it does if it has internal memory state
m′. Clearly, if (q,m) is better than (q,m′) we can redirect all transitions leading
to (q,m′) so that they now go to (q,m) and the strategy will use less memory
(at least for state q). If this process cannot be repeated to get a positional
strategy, then at some point we must have obtained a strategy σ′ with two
memory elements m,m′ such that for some state q and for some infinite word β,
the value of the run built by σ from q and memory element m is strictly better
than the one built starting with memory element m and for some infinite word
β′ the opposite is true. However, this is a contradiction. Indeed, (q,m) and
(q,m′) are reachable from qI via different runs on different word prefixes κ, κ′
respectively. Nonetheless, q in G is reachable via runs on both prefixes. Hence,
σ′ and therefore σ is cannot be 0-regret if it constructs a run for word κ · β′
(and for κ′ · β) which is not optimal in G. It follows that if G has regret value 0
then Eve has a memoryless regret-free strategy.

This leaves us with mean payoff and discounted sum.

Discounted Sum. Consider a fixed weighted automaton A = (Q, q0, A,∆, w)
and a discount factor λ ∈ (0, 1). Further, we suppose the regret of A is 0.

Let us start by defining a set of values which represent lower bounds on the
regret Eve can get by resolving the non-determinism of A on the fly. First,
let us introduce some additional notation. Define Aq := (Q, q,A,∆, w), i.e.
the automaton A with new initial state q. For states q, q′ ∈ Q, let µ(q, q′) :=
sup

(
{Aq′(α)−Aq(α) | α ∈ Aω} ∪ {0}

)
. We now let M be equal to the set of

values:

{|w(p, a, q′)− w(p, a, q) + λ · µ(q, q′)| : p ∈ Q and q, q′ are a-successors of p}.

Note that since A is assumed to be total (i.e., every state-action pair has at least
one successor) then M cannot be empty. Observe that, by definition, M only
contains non-negative values. Since A has regret 0, then we know that for all
δ ∈ (0, 1), there is a strategy σδ of Eve such that regσδS∃,W∀(A) ≤ δ. If M 6= {0},
we let 0 < ε < λ|Q| · (minM \ {0}). We now define a memoryless strategy σ
of Eve as follows: if M = {0} then σ is arbitrary, otherwise σ(p, a) = q implies
that there is some path τ = q0 . . . qn such that qn = p, n < |Q|, and τ · a · q is
consistent with σε. It is easy to show that for all play prefixes, for all actions,
σ chooses a successor which ensures no other successor can read a word and
obtain a “better” value. Formally,

4The argument we present is in fact an adaptation of one given in [AKL10].
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Claim 12. For all π = q0a0 . . . qn and all a ∈ A, if σ(π, a) = q then for all
q′ ∈ posta(qn) the following holds

∀α ∈ Aω : w(p, a, q′) + λAq
′
(α) ≤ w(p, a, q) + λAq(α).

�

We will see later (in the proof of Theorem 7.5) that, given a finite memory
strategy for Eve, we can reduce the question of whether the strategy is regret-
free to determining the winner of a one-player discounted-sum game. The game
is played on the product of A restricted to the fixed strategy and A. Using
the above claim, we can use the same argument as presented in the previous
chapters. That is, if Adam can read some word in a “better” way from some
other state than the one chosen by σ, then by the above claim, making some
changes to his strategy, we can show that him using σ also has the property of
being “better” and we thus get a contradiction. (See the proofs of Lemma 5.1
and Lemma 6.5. Also note that it suffices to consider ultimately periodic words
and runs since Adam can be assumed to play positionally in the constructed
game.)

Mean payoff. For mean payoff we follow a similar idea as for discounted sum.
The main difference is that we must set M to be

{µ(q, q′) : ∃(p, a) ∈ Q×A and q, q′ are a-successors of p}.

If M 6= {0} we choose ε < min (M \ {0}). We now select some σε which ensures
regret at most ε and define σ as for discounted sum. If M = {0} then we let σ
be any memoryless strategy. In this context, it is easy to see that

Claim 13. For all π = q0a0 . . . qn and all a ∈ A, if σ(π, a) = q then for all
q′ ∈ posta(qn) the following holds

∀α ∈ Aω : Aq
′
(α) ≤ Aq(α).

�

We then, essentially, construct a new mean-payoff game in which σ is fixed as
the strategy for Eve and Adam tries to find a word and a “better” way to read
the word than that prescribed by σ. If we assume such a strategy for him exists,
we can derive a contradiction using the above claim. (Observe that here the
fact that Adam plays positionally is not obvious. It will however be shown to
hold in Lemma 7.2.)

7.2.2 Regular words suffice for Adam
In this section we will argue that, if Eve plays a finite memory strategy, then
the regret of that strategy is witnessed by an ultimately periodic word played
by Adam. This will later allow us to give a simple proof of the 0-regret thresh-
old problem being in NP.5 The main idea of the latter is to guess the strat-
egy of Eve, which will be positional according to the results from the previous
section, and consider the product of the restriction of the automaton—to the

5We will actually prove a more general result with 0-regret being a particular sub-case.
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chosen strategy—with the original automaton. The transitions of the resulting
product automaton are then weighted with the difference of the correspond-
ing weights from the restricted, deterministic, automaton and the original one.
Now, the question of whether the strategy has regret r corresponds to testing
the non-emptiness of the automaton with accepting condition defined by a strict
threshold r. It is not immediate, at first, that the construction is correct. In-
deed, the limit of the differences of weights yielding two mean-payoff values, for
instance, is not necessarily the difference of the two values (limits themselves).
However, when the automaton is finite and the word is regular, this is the case.

Theorem 7.5. Consider a positive integer m ∈ N>0 and let C ∈ {<,≤}.
For payoff functions Inf, Sup, LimInf, LimSup, MP, MP, and DSλ, determin-
ing whether RegSm∃ ,W∀

(G) C r, for a given weighted automaton G and regret
threshold r ∈ Q can be done in NTIME(m2|G|2) even if λ is part of the input.

�

Denote by R∀ ⊆W∀ the set of all word strategies of Adam which are regular.
That is to say, α ∈ R∀ if and only if α is ultimately periodic:

α = β · κω,

where β and κ are both finite words. It is well-known that the mean-payoff
value of ultimately periodic plays in weighted arenas is the same for both MP
and MP.

Before proving the theorem we first show that ultimately periodic words
suffice for Adam to spoil a finite memory strategy of Eve. Let us fix some useful
notation. Given weighted automaton G and a finite memory strategy σ for Eve
in G we denote by Gσ the deterministic automaton embodied by a refinement of
G that is induced by σ.

Lemma 7.2. For r ∈ Q, weighted automaton G, and payoff functions MP and
MP, if RegSm∃ ,W∀

(G)B r then RegSm∃ ,R∀
(G)B r, for B ∈ {>,≥}. �

Proof. We prove the claim for MP and ≥ but the result for MP follows from
minimal changes to the argument (a small quantifier swap in fact) and for >
variations we need only use the strict versions of Equations (7.1) and (7.2). We
assume without loss of generality that all weights are non-negative.

Let σ be a strategy for Eve in G which uses at most memory m. We claim
that if Adam has a word strategy to ensure the regret of such a strategy for Eve
in G is at least r, then he also has a regular word strategy to do so.

Consider the bi-weighted graph G constructed by taking the synchronous
product of G and Gσ while labelling every edge with two weights: the value
assigned to the transition by the weight function of Gσ and the value assigned
to the transition by that of G. For a path π in G, denote by wi(π) the sum of
the weights of the edges traversed by π w.r.t. the i-th weight function. Also,
for an infinite path π, denote by MPi the mean-payoff value of π w.r.t. the i-th
weight function. Clearly, Adam has a word strategy to ensure a regret of at
least r against the strategy σ of Eve if and only if there is an infinite path π in
G such that MP2(π)−MP1(π) ≥ r. We claim that if this is the case then there
is a simple cycle χ in G such that 1

|χ|w2(χ) − 1
|χ|w1(χ) ≥ r. The argument is

based on the cycle decomposition of π (see, e.g. [EM79]).
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Assume, for the sake of contradiction, that all the cycles χ in G satisfy the
following:

1
|χ|
w2(χ)− 1

|χ|
w1(χ) ≤ r − ε, for some 0 < ε ≤ r, (7.1)

and let us consider an arbitrary infinite path π = v0v1 . . . . Let l = MP1(π). We
will show

lim inf
k→∞

w2(〈vj〉j≤k)
k

− l ≤ r − ε, (7.2)

from which the required contradiction follows.
For any k ≥ 0, the cycle decomposition of 〈vj〉j≤k tells us that apart from a

small sub-path, π′, of length at most n (the number of states in G), the prefix
〈vj〉j≤k can be decomposed into simple cycles χ1, . . . , χt such that wi(〈vj〉j≤k) =
wi(π′) +

∑t
j=1 wi(χj) for i = 1, 2. If wmax is the maximum weight occurring in

G, then from Equation (7.1) we have:

w2(〈vj〉j≤k) ≤ nwmax +
t∑

j=1
w2(χj)

≤ nwmax + (r − ε)
t∑

j=1
|χj |+

t∑
j=1

w1(χj)

≤ nwmax + k(r − ε) + w1(〈vj〉j≤k).

Now, it follows from the definition of the limit inferior that for any ε′ > 0 and
any K > 0 there exists k > K such that w1(〈vj〉j≤k) ≤ k(l + ε′). Thus for any
ε′ > 0 and K ′ > 0, there exists k > max{K ′, nwmax/ε

′} such that

w2(〈vj〉j≤k)
k

≤ nwmax

k
+ (r − ε) + (l + ε′) < (l + r − ε) + 2ε′.

Equation (7.2) then follows from the definition of limit inferior.
The above implies that Adam can, by repeating χ infinitely often, achieve a

regret value of at least r against strategy σ of Eve. As this can be done by him
playing a regular word, the result follows.

We now proceed with the proof of the theorem. The argument is presented
for mean payoff (MP) and discounted sum but minimal changes are required
for the other payoff functions. For simplicity, we use the non-strict threshold
for the emptiness problems. However, the complexity of deciding emptiness of
quantitative languages (the result we use from [CDH10]) is independent of this.
Further, the exact same argument presented here works for both cases. Thus,
it suffices to show the result follows for ≥.

Proof of Theorem 7.5. We will “guess” a strategy σ for Eve which uses memory
at most m and verify (in polynomial time w.r.t. m and the size of G) that it
ensures a regret value of strictly less than r.

For all prefix-independent functions but mean payoff, the result is actually a
corollary of the reduction to parity and Streett games used to prove Lemma 7.3.
There, the product of the original automaton and a deterministic automaton
is considered. Here we shall do the same, however, the deterministic automa-
ton we take is induced by the strategy σ we have guessed for Eve. Here, the
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resulting product game is actually a one-player game since the choices of Eve
have been fixed already. Further, the product game is not exponential (as is
the case in the proof of Lemma 7.3). Since emptiness for Rabin—the dual of
the Streett objective—and parity automata is decidable in polynomial time, the
result follows.

In the sequel we will focus on mean payoff and discounted sum. It will be
clear how to generalize to the non-strict version of the problem.

Let A be the weighted (MP) automaton constructed as the synchronous
product of G and Gσ. The new weight function maps a transition to the difference
of the values of the weight functions of the two original automata. We claim
that the language of A is empty (for accepting threshold ≥ r) if and only if
regσSm∃ ,W∀(G) < r. Indeed, there is a bijective map from every run of A to a
pair of plays π, π′ in G such that both π and π′ are consistent with the same
word strategy of Adam and π is consistent with σ. It should be clear that A
has size at most m|G|. As emptiness of a weighted automaton A can be decided
in O(|A|2) time [CDH10], the result will follow.

Discounted sum. Since the difference of two convergent series is equivalent
to the difference of their limits, every infinite run of A is assigned exactly the
value of the difference of the discounted sum of the corresponding runs π and
π′ from G. The converse is also true. Hence the result follows.

Mean payoff. We now show that if the language of A is not empty then
Adam can ensure a regret value of at least r against σ in G and that, conversely,
if Adam has a spoiling strategy against σ in G then that implies the language
of A is not empty.

Let %x be a run of A on x. From the definition of A we get that MP(%x) =
lim infi→∞ 1

i

∑i
j=0(aj−bj) where αx = 〈ai〉i≥0 and βx = 〈bi〉i≥0 are the infinite

sequences of weights assigned to the transitions of % by the weight functions of
G and Gσ respectively. It is known that if a mean-payoff automaton accepts a
word y then it must accept an ultimately periodic word y′, thus we can assume
that x is ultimately periodic (see, e.g. [CDH10]). Furthermore, we can also
assume the run of the automaton on x is ultimately periodic. Recall that for
ultimately periodic runs we have that MP(%x) = MP(%x). We get the following

MP(%x) = lim sup
i→∞

1
i

i∑
j=0

(aj − bj)

≤ lim sup
i→∞

1
i

i∑
j=0

aj + lim sup
i→∞

−1
i

i∑
j=0

bj sub-additivity of lim sup

≤ lim sup
i→∞

1
i

i∑
j=0

aj − lim inf
i→∞

1
i

i∑
j=0

bj

≤ lim inf
i→∞

1
i

i∑
j=0

aj − lim inf
i→∞

1
i

i∑
j=0

bj ultimate periodicity.

Thus, as x and %x can be be mapped to a strategy of Adam in G which ensures
regret of at least r against σ, the claim follows.
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For the other direction, assume Adam has a word strategy τ in G which
ensures a regret of at least r against σ. From Lemma 7.2 it follows that τ
and the run % of G with value G(τ) can be assumed to be ultimately periodic
w.l.o.g.. Denote by %σ and wσ the run of Gσ on τ and the weight function of Gσ
respectively. We then get that

lim inf
i→∞

1
i
wσ(%σ)− lim inf

i→∞

1
i
w(%)

= lim inf
i→∞

1
i
wσ(%σ) + lim sup

i→∞

−1
i
w(%)

= lim inf
i→∞

1
i
wσ(%σ) + lim inf

i→∞

−1
i
w(%) ultimate periodicity

≤ MP(ψτ ) super-additivity of lim inf,

where ψτ is the corresponding run of A for τ and %. Hence, A has at least one
word in its language.

7.3 Upper Bounds for Prefix-Independent Func-
tions

In this section, we provide tight upper bounds for all the prefix-independent
payoff functions except for mean-payoff: the regret threshold problem is in
EXPtime for Sup, Inf, LimSup, and LimInf.

The following result summarizes the results of this section:

Theorem 7.6. For payoff functions Inf, Sup, LimInf, and LimSup, the regret
of a game played against an eloquent adversary can be computed in exponential
time. �

There is an exponential-time algorithm for solving the regret threshold prob-
lem for Inf, Sup, LimInf, and LimSup. This algorithm is obtained by a reduction
to parity or Streett games. Since all of these payoff functions have a finite
range, one can easily implement a binary search—based on queries to the regret
threshold problem solver—to compute the regret of the game. Furthermore,
the range of the payoff functions is linear with respect to the size of the given
automaton. Hence, it suffices to show the regret threshold problem is solvable
in exponential time for the desired result to follow.

Lemma 7.3. For r ∈ Q, weighted automaton G and payoff function Inf, Sup,
LimInf, or LimSup, determining whether RegS∃,W∀

(G)Cr, for C ∈ {<,≤}, can
be done in exponential time. �

We show how to decide the strict regret threshold problem. However, the
same algorithm can be adapted for the non-strict version by changing strictness
of the inequalities used to define the parity/Streett accepting conditions.

Proof. We focus on the LimInf and LimSup payoff functions. The result for Inf
and Sup follows from the translation to LimInf and LimSup games given in Sec-
tion 5.3. Our decision algorithm consists in first building a deterministic au-
tomaton for G = (Q1, qI , A,∆1, w1) using the construction provided in [CDH10].
We denote by DG = (Q2, sI , A,∆2, w2) this deterministic automaton and we
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know that it is at most exponentially larger than G. Next, we consider a sim-
ulation game played by Eve and Adam on the automata G and DG . The game
is played for an infinite number of rounds and builds runs in the two automata,
it starts with the two automata in their respective initial states (qI , sI), and if
the current states are q1 and q2, then the next round is played as follows:

• Adam chooses a letter a ∈ A, and the state of the deterministic automaton
is updated accordingly, i.e. q′2 = ∆2(q2, a), then

• Eve updates the state of the non-deterministic automaton to q′1 by reading
a using one of the edges labelled with a in the current state, i.e. she chooses
q′1 such that q′1 ∈ ∆1(q1, a). The new state of the game is (q′1, q′2).

Eve wins the simulation game if the minimal weight seen infinitely often in the
run of the non-deterministic automaton is larger than or equal to the minimal
weight seen infinitely often in the deterministic automaton minus r. It should
be clear that this happens exactly when Eve has a regret bounded by r in the
original regret game on the word which is spelled out by Adam.

Let us focus on the lim inf payoff function now. We will sketch how this
game can be translated into a parity game. For completeness, we now recall
the formal definition of the latter. A parity game is a pair (G,Ω) where G is a
non-weighted arena and Ω : V → N is a function that assigns a priority to each
vertex. Plays, strategies, and other notions are defined as with games played
on weighted arenas. A play in a parity game induces an infinite sequence of
priorities. We say a play is winning for Eve if and only if the minimal priority
seen infinitely often is odd.6 The parity index of a parity game is the number
of priorities labelling its vertices, that is |{Ω(v) | v ∈ V }|.

To obtain the translation, we keep the structure of the game as above but
we assign priorities to the edges of the games instead of weights. We do it in
the following way. If X = {x1, x2, . . . , xn} is the ordered set of weight values
that appear in the automata (note that |X| is bounded by the number of edges
in the non-deterministic automaton), then we need the set of priorities D =
{2, . . . , 2n+ 1}. We assign priorities to edges in the game as follows:

• when Adam chooses a letter a from q2, then if the weight that labels the
transition that leaves q2 with letter a in the deterministic automaton is
equal to xi ∈ X, then the priority is set to 2i+ 1,

• when Eve updates the non-deterministic automaton from q1 with an edge
labelled with weight w, then the color is set to 2i where i is the index in
X such that xi−1 ≤ w + r < xi.

It should be clear that along a run, the minimal color seen infinitely often is
odd if and only if the corresponding run is winning for Eve in the simulation
game. So, now it remains to solve a parity game with exponentially many
states and polynomially many priorities w.r.t. the size of G. This can be done
in exponential time with classical algorithms for parity games.

6Equivalently, one could ask for the minimal priority seen infinitely often to be even, just
add 1 to all priorities. However, odd priorities make our argument easier to present here.
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LimSup to Streett games. Let us now focus on LimSup. In this case we will
reduce our problem to that of determining the winner of a Streett game with
state-space exponential w.r.t. the original game but with number of Streett
pairs polynomial (w.r.t. the original game). Recall that a Streett game is a pair
(G,F) where G is a game graph (with no weight function) and F ⊆ P(V )×P(V )
is a set of Streett pairs. We say a play is winning for Eve if and only if for all
pairs (E,F ) ∈ F , if a vertex in E is visited infinitely often then some vertex in
F is visited infinitely often as well.

Consider a LimSup automaton G = (Q, qI , A,∆, w). For xi ∈ {w(d) | d ∈ ∆}
let us denote by A≥xi the Büchi automaton with Büchi transition set equiv-
alent to all transitions with weight of at least xi. We denote by D≥xi =
(Qi, qi,I , A, δi,Ωi) the deterministic parity automaton with the same language
as A≥xi .7 From [Pit07] we have that D≥xi has at most 2|Q||Q||Q|! states and
parity index 2|Q| (the number of priorities). Now, let x1 < x2 < · · · < xl be the
weights appearing in transitions of G. We construct the (non-weighted) arena
ΓG = (V, V∃, E, vI) and Streett pair set F as follows

• V = Q×
∏l
i=1Qi ∪Q×

∏l
i=1Qi ×A ∪Q×

∏l
i=1Qi ×A×Q;

• V∃ = Q×
∏l
i=1Qi ×A;

• vI = (qI , q1,I , . . . , ql,I);

• E contains

–
(
(p, p1, . . . , pl)), (p, p1, . . . , pl, a)

)
for all a ∈ A,

–
(
(p, pl, . . . , pl, a), (p, p1, . . . , pl, a, q)

)
if (p, a, q) ∈ ∆,

–
(
(p, pl, . . . , pl, a, q), (q, q1, . . . , ql)

)
if for all 1 ≤ i ≤ l: (pi, a, qi) ∈ δi;

• For all 1 ≤ i ≤ l and all even y such that Range(Ωi) 3 y, F contains the
pair (Ei, Fi) where

– Ei,y = {(p, . . . , pi, . . . , pl, a, q) | Ωi(pi, a, δ(pi, a)) = y}, and
– Fi,y = {(p, . . . , pj , . . . , pl, a, q) | (Ωi(pi, a, δ(pi, a)) < y ∧ y (mod 2) =

1) ∨ w(p, a, q) ≥ xi − r}.

It is not hard to show that in the resulting Streett game, a strategy σ of Eve
is winning against any strategy τ of Adam if and only if for every automaton
D≥xi which accepts the word induced by τ then the run of G induced by σ has
payoff of at least xi− r, if and only if Eve has a winning strategy in G to ensure
regret is less than r.

Note that the number of Streett pairs in ΓG is polynomial w.r.t. the size of
G, i.e.

|F| ≤
l∑
i=0
|Range(Ωi)|

≤ l · 2|Q|
≤ |Q|2 · 2|Q| = 2|Q|3.

7Since δi is deterministic, we sometimes write δi(p, a) to denote the unique q ∈ Qi such
that (p, a, q) ∈ δi.
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From [PP06] we have that Streett games can be solved in time O(mnk+1kk!)
where n is the number of states, m the number of transitions and k the number
of pairs in F . Thus, in this case we have that ΓG can be solved in

O
(

(2|Q||Q||Q|!)3+2|Q|3 · 2|Q|3 · (2|Q|3)!
)
.

which is still exponential time w.r.t. the size of G.

Memory requirements for Eve and Adam. It is known that positional
strategies suffice for Eve in parity games. On the other hand, for Streett games
she might require exponential memory (see, e.g. [DJW97]). This exponential
blow-up, however, is only on the number of pairs—which we have already argued
remains polynomial w.r.t. the original automaton. It follows that:

Corollary 8. For payoff functions Sup, Inf, LimSup, LimInf, for all weighted
automata A, there exists m which is 2O(|A|) such that:

RegS∃,W∀
(A) = RegSm∃ ,W∀

(A).

�

7.4 Upper Bounds for Discounted Sum
We turn our attention, in this section, to the discounted-sum payoff function.
As discounted-sum automata are not determinizable in general, and partial-
observation discounted-sum games are now known to be undecidable, we cannot
follow the same ideas as for prefix-independent functions. Instead, we consider
several particular cases and solve the problem for those. First, we show that the
regret threshold problem can be solved whenever the discounted sum automata
associated to the game structure can be made deterministic. Second, we show
how to solve an ε-gap promise variant of the regret threshold problem.

7.4.1 Deciding r-regret: determinizable cases
When the weighted automaton G associated to the game structure can be made
deterministic, we can solve the regret threshold problem with the following al-
gorithm. In Section 7.2 we established that, against eloquent adversaries, com-
puting the regret reduced to computing the value of a quantitative simulation
game as defined in [CDH10]. The game is obtained by taking the product of the
original automaton and a deterministic version of it. The new weight function
is the difference of the weights of both components (for each pair of transitions).
In [BH14], it is shown how to determinize discounted-sum automata when the
discount factor is of the form 1

n , for n ∈ N. So, for this class of discount factor,
we can state the following theorem:

Theorem 7.7. Deciding if the regret value is less than a given threshold (strictly
or non-strictly), playing against an eloquent adversary, is in EXPtime for λ of
the form 1

n even if it is part of the input. �

The complexity follows from the state complexity of the determinization proce-
dure from [BH14].
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7.4.2 The ε-gap promise problem
Given a discounted-sum automaton A, r ∈ Q, and ε > 0, the ε-gap promise
problem adds to the regret threshold problem the hypothesis that A will either
have regret ≤ r or > r + ε. We observe that an algorithm that satisfies that:

• a YES answer implies that RegS∃,W∀
(A) ≤ r + ε,

• whereas a NO answer implies RegS∃,W∀
(A) > r.

will decide the ε-gap promise problem.
In [BH14], it is shown that there are discounted-sum automata which define

functions that cannot be realized with deterministic-sum automata. Neverthe-
less, it is also shown in that paper that, given a discounted-sum automaton, it is
always possible to construct a deterministic one that is ε-close in the following
formal sense. A discounted-sum automaton A is ε-close to another discounted
sum automaton B, if for all words x the absolute value of the difference between
the values assign by A and B to x is at most ε. So, it should be clear that
we can apply the algorithm underlying Theorem 7.6 to G and a determinized
version DG of it (which is ε-close to G) and solve the ε-gap promise problem.
We can then prove the following result.

Theorem 7.8. Deciding the ε-gap regret threshold problem is in EXPtime and
in in Pspace if λ is not part of the input. �

The complexity of the algorithm follows from the fact that the value of a
(quantitative simulation) game, played on the product of G and DG we described
above, can be determined by simulating the game for a polynomial number of
turns. Thus, although the automaton constructed using the techniques of Boker
and Henzinger [BH14] is of size exponential, we can construct it “on-the-fly” for
the required number of steps and then stop.

Proof of Theorem 7.8. We reduce the problem to determining the winner of
a reachability game on an exponentially larger arena. Although the arena is
exponentially larger, all paths are only polynomial in length, so the winner
can be determined in alternating polynomial time, or equivalently, polynomial
space.

The idea of the construction is as follows. Given a discounted-sum automa-
ton A, we determinize its transitions via a subset construction, to obtain a
deterministic, multi-valued discounted-sum automaton DA. Then we decide if
Eve is able to simulate, within the regret bound, the DA on A for all finite words
up to a length (polynomially) dependent on ε. If we simulate the automaton
for a sufficient number of steps, then any significant gap between the automata
will be unrecoverable regardless of future inputs, and we can give a satisfactory
answer for the ε-gap regret problem.

More formally, given a discounted-sum automaton A = (Q, q0, A, δ, w), a
regret value r and a precision ε > 0, we construct a reachability game GεA(r) as
follows. Let

N :=
⌊

logλ
(
ε(1− λ)
4wmax

)⌋
+ 1,

where wmax is the maximum absolute value weight occurring in A, so that
λN ·wmax

1−λ < ε
4 . Let P = {DSλ(π) | π ∈ Q∗ is a finite run of A with |π| ≤ N}
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denote the (finite) set of possible discounted payoffs of words of length at most
N . Let F be the set of functions f : Q → R ∪ {⊥}, and for f ∈ F , let
supp(f) = {q ∈ Q | f(q) 6= ⊥}. Intuitively, each f ∈ F represents a weighted
subset of Q (supp(f) being the corresponding unweighted subset), where f(q)
for q ∈ supp(f) corresponds to the maximal weight over all (consistent) paths
ending in q (scaled by a power of λ). Given f ∈ F and α ∈ A the α-successor
of f is the function fα defined as:

fα(q′) :=


max

q∈supp(f)
(q,α,q′)∈δ

{λ−1 · f(q) + w(q, α, q′)} if this set is not empty

⊥ otherwise.

We define F0 = {f0} where f0(q0) = 0 and f0(q) = ⊥ for all q 6= q0; and
for all n ≥ 0, we define Fn+1 := {fα | f ∈ F and α ∈ A}. For convenience, let
F =

⊎N
i=0Fi (i.e. a disjoint union).

The game GεA(r) = (V, V∃, E, v0, T ) is defined as follows:

• V = (Q× F × P ) ∪ (Q× F × P ×A);

• V∃ = (Q× F × P ×A);

•
(
(q, f, c), (q, f, c, α)

)
∈ E for all q ∈ Q, f ∈ F \ FN , c ∈ P , and α ∈ A;

•
(
(q, f, c, α), (q′, f ′, c′)

)
∈ E for all q, q′ ∈ Q, f ∈ F \FN , c ∈ P , and α ∈ A

such that (q, α, q′) ∈ δ, f ′ = fα, and c′ = c+ λ · w(q, α, q′);

• v0 = (q0, f0, 0); and

• (q, f, c) ∈ T if, and only if, f ∈ FN and maxs∈supp(f) λ
N−1 ·f(s) ≤ c+r+ ε

2 .

We claim that determining the winner of GεA(r) yields a correct response for
the ε-gap promise problem.

Claim 14. Let GεA(r) be defined as above. Then:

• If Eve wins GεA(r) then RegS∃,W∀
(A) ≤ r + ε, and

• if Adam wins GεA(r) then RegS∃,W∀
(A) > r.

�

Proof of Claim 14. It is easy to see that a play of GεA(r) results in Adam choos-
ing a word w ∈ A∗ of length N , and Eve selecting a run, π, of w on A by
resolving non-determinism at each symbol. Further, if the play terminates at
(q, f, c) then c = DSλ(π) and, as f contains the maximal weights of all paths
(scaled by a power of λ), A(w) = λN−1(maxs∈supp(f) f(s)). Since |w| = N we
have, for any infinite word w′ ∈ Aω and for any run, π′, of A on w′ from q, π′:

|A(w · w′)−A(w)| ≤ λN · wmax

1− λ <
ε

4 , and

|DSλ(π · π′)− DSλ(π)| ≤ λN · wmax

1− λ <
ε

4 .
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It follows that:

(A(w)−DSλ(π))− ε

2 < A(w ·w′)−DSλ(π · π′) < (A(w)−DSλ(π)) + ε

2 . (7.3)

Now suppose Eve wins GεA(r). Then, for every word w with |w| = N , Eve
has a strategy σ that construct a run, π, on A such that A(w) ≤ DSλ(π)+r+ ε

2 .
We extend this strategy to infinite words by playing arbitrarily after the first
N symbols. It follows from Equation 7.3 that for every infinite word ŵ, the
resulting run, π̂,

A(ŵ)− DSλ(π̂) < (A(w)− DSλ(π)) + ε

2 ≤ r + ε.

Since regσS∃,W∀(A) = supŵ∈Aω (A(ŵ)−DSλ(π)), we have RegS∃,W∀
(A) ≤ r+ε.

Conversely, suppose Adam wins GεA(r). Then for any strategy of Eve, Adam
can construct a word w, with |w| = N such that the run, π, ofA on w determined
by Eve’s strategy satisfies A(w) > DSλ(π) + r+ ε

2 . Again, from Equation 7.3 it
follows that for any infinite word ŵ with w as its prefix and any consistent run
π′,

A(ŵ)− DSλ(π̂) > (A(w)− DSλ(π))− ε

2 > r.

As this is valid for any strategy of Eve, we have RegS∃,W∀
(A) > r as required.

Now every path in GεA(r) has length at most N , and as the set of successors
of a given state can be computed on-the-fly in polynomial time, the winner can
be determined in alternating polynomial time. Hence a solution to the ε-gap
promise problem is constructible in polynomial space.
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Chapter 8

Background II:
Partial-Observation Games
are Hard

The title of this chapter succinctly and accurately summarizes what is known
regarding games with partial observation. Recall that a partial-observation
game is played by Eve and Adam on a weighted automaton with its states
partitioned into observations (i.e. sets of equivalent states). To start the game,
a token is placed on the initial state. Then, the game proceeds in rounds from
the current state p: Eve chooses a letter a and Adam resolves non-determinism
by choosing a transition (p, a, q) and moving the token to q.

In game theory the concepts of imperfect, partial and limited information
indicate situations where players have asymmetric knowledge about the state
of the game. In the context of quantitative games this partial knowledge is
reflected in Eve being unable to determine the precise location of the token
amongst several equivalent states, and such games have also been extensively
studied [Rei84, KV00, BD08, BCD+08, DDG+10].

Adding partial observability to Boolean games greatly increases the complex-
ity of interesting problems related to them. Indeed, already for safety games
with partial observation, determining the winner is EXPtime-complete [CD10].
For reachability and parity games the problem is also EXPtime-complete. The
general recipe which is used to obtain an algorithm for these games is as fol-
lows. First, a subset construction is applied to the game in order to obtain the
belief game. More precisely, note that in a partial-observation game, after Eve
chooses an action and Adam reveals an observation to her, it might be the case
that only a strict subset of the states in the observation are reachable via the
sequence of actions and observations already witnessed. Hence, keeping track of
play prefixes can help Eve have a more accurate belief of what the state of the
game really is. More generally, this first step can be seen as determinizing the
automaton on which the game is played—this can be done for all ω-automata
considered in this dissertation. This yields a new, possibly exponentially bigger,
deterministic parity automaton. Second, we consider a new full-observation par-
ity game played on the product of the belief game and the deterministic parity
automaton (which essentially captures the possible ways in which Adam could
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have resolved non-determinism in the original automaton). One can then show
that Eve has a winning observation-based strategy (which might require mem-
ory) in the original game if and only if she has a winning strategy in the newly
constructed, exponentially larger, full-observation parity game [RCDH07]. It
follows that for quantitative games which extend Boolean games, similar solu-
tions exist. (See Section 7.4, where we implicitly determinize Inf, Sup, LimInf,
and LimSup automata.)

In the present part of this document, we mainly focus on partial-observation
mean-payoff games and the related energy games. Energy games are two-player
quantitative games of infinite horizon played on finite weighted automata with
observations. The game is played in rounds in which one player, Eve, chooses
letters from the automaton’s alphabet whilst Adam, the second player, resolves
non-determinism. The goal of Eve in an energy game is to keep a certain re-
source from being depleted. More specifically, she wins if, for every turn, the
sum of the weights of the transitions traversed so far plus her initial credit is
non-negative. Adam has the opposite objective: witnessing a negative value.
Energy games are useful for systems in which one is interested in the use of
bounded resources such as power or fuel [CdAHS03, BFL+08]. Two decision
problems for energy games have been studied by the formal verification com-
munity: the fixed initial credit and unknown initial credit problems.
In the full-observation setting, it is known that if Eve has a winning strategy in
an energy game, she also has a memoryless winning strategy. Furthermore, in
order to win, Eve essentially has to ensure staying in cycles with non-negative
(total) weight. Using these two facts, one can show the unknown initial credit
reduces in polynomial time to the fixed initial problem. (If there is some initial
credit for which Eve wins, then nwmax should suffice—where n is the number
of states and wmax denotes the maximum absolute value of a transition weight
in the automaton.) It is also known that the fixed initial credit problem is log-
space equivalent to the threshold problem for mean-payoff games [BFL+08]. In
a mean-payoff game, the objective of Eve consists in maximizing the limit (in-
ferior) of the averages of the running sum of transition weights observed along
an infinite play.

It is known that some non-deterministic mean-payoff automata cannot be
transformed into a deterministic mean-payoff automaton. Hence, we cannot
apply to them the same solution as for Boolean games with partial observation.
The study of Degorre et al. [DDG+10] in fact revealed that determining the
winner of a partial-observation mean-payoff game (MPG) is undecidable. They
also showed that a problem regarding energy games with partial observation is
undecidable.

These unfavourable results motivate the main investigation of the following
chapters: identifying classes of MPGs with partial observation where determin-
ing the winner is decidable and where strategies with finite memory, possibly
memoryless, are sufficient. Our focus will be on games at the observation level,
in particular we are interested in observation-based strategies for both play-
ers. Whilst observation-based strategies for Eve are usual in the literature,
observation-based strategies for Adam had not been considered. Such strate-
gies are more advantageous for Adam as they encompass several simultaneous
concrete strategies.

We will now show that although MPGs with partial observation are not
determined under the usual definition of strategy, they are determined when
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q0

q1

q2

q3

a,−1

b,−1

Σ,−1

Σ,−1

b,−1

a,−1

Σ, 1

Figure 8.1: A non-determined MPG with partial observation (Σ = {a, b}).

Adam can use an observation-based strategy.

8.1 Observable Determinacy
One of the key features of MPGs with full observation is that they are deter-
mined, that is, it is always the case that one player has a winning strategy.
This is not true in games of partial observation as can be seen in Figure 8.1.
Any strategy of Adam reveals to Eve the successor of q0 and she can use this
information to play to q3. Conversely Adam can defeat any strategy of Eve by
playing to whichever of q1 or q2 means the play returns to q0 on Eve’s next
choice (recall Eve cannot distinguish q1 and q2 and must therefore choose an
action to apply to the observation {q1, q2}). This strategy of Adam can be en-
coded as an observation-based strategy for Adam: “from {q1, q2} with action a
or b, play to {q0}”.

Definition (Observation-based strategies for Adam). Consider an MPG with
partial observation G = (Q, q0,Σ,∆, w,Obs). An observation-based strategy for
Adam is a function λ∀ : obs(Prefs(G)) × Σ → Obs such that for any abstract
prefix ψ = o0σ0 . . . on ∈ obs(Prefs(G)) and action σ ∈ Σ, if λ∀(obs(π), σ) = o
then obs−1(ψ · σo) �

An abstract play ψ = o0σ0o1σ1 . . . is consistent with λ∀ if λ∀(ψ[..i], σi) = oi+1
for all i ≥ 0.

It transpires that, under an assumption about large cardinals1, any such
counter-play by Adam is always encodable as an observation-based strategy.

Theorem 8.1 (Observable determinacy). Assuming the existence of a measur-
able cardinal, one player always has a winning observation-based strategy in an
MPG with partial observation. �

To prove this we recall the definition of Suslin sets. For a detailed description
of both the Borel and Suslin hierarchies we refer the reader to [Kec95].

Definition (Projective hierarchy). The first level of the Projective hierarchy
consists of Σ1

1 (Suslin) sets, which are those whose preimage is a Borel set, i.e.
1This assumption is independent of the theory of ZFC.
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all sets that can be defined as a projection of a Borel set, and Π1
1 (co-Suslin)

sets: those sets whose complement is the image of a Borel set. �

The existence of a measurable cardinal implies Σ1
1-Determinacy [MS88]—a

weak form of the Axiom of Determinacy. This in turn implies games with Suslin
or co-Suslin winning condition sets are determined [Kec95]. The observable
determinacy of MPGs with partial observation then follows from the following
result:

Lemma 8.1. The set of plays that are winning for Eve in an MPG with partial
observation is co-Suslin. �

Proof. Let G be a MPG with partial observation and W ′ be the set of all
concrete plays in G for which Eve wins, namely W ′ = {π ∈ Plays(G) |MP (π) ≥
0}, and W ′ its complement. Note that W ′ ⊆ Plays(G) is the payoff-set defined
by the MPG winning condition (MP ≥ 0) and is therefore in the class Π0

3 of
Borel sets [Cha07]. Let W be the set of all abstract plays such that Eve wins.
Formally, we have W = {ψ ∈ obs(Plays(G)) | ∀π ∈ obs−1(ψ) : π ∈W ′}.

To show that W is in Π1
1, we adapt the proof from [PP04] (to prove that an

infinite tree is co-Suslin) and consider the set

U = {(ψ, π) ∈ obs(Plays(G))×W ′ | ∃π′ ∈ obs−1(ψ) : π′ = π}

which is in the class Π0
2 of the Borel hierarchy. To demonstrate this, let Un be the

set of pairs (ψ, π) satisfying the following property: there exists π′ ∈ obs−1(ψ)
such that π′[..n] = π[..n], where n ∈ N. Then U =

⋂
n≥0 Un, which proves

U is in the class Π0
2 since the sets Un are open (Σ0

1). Finally, we observe the
projection of U on its first component is the complement of W , which is thus
co-Suslin.

Unfortunately, we do not know if the assumption of such an axiom is nec-
essary for observable determinacy to hold. Therefore, in the following chapters
we do not make direct use of it.

8.2 Contributions
The next three chapters summarize our work on energy games and mean-payoff
games with partial observation. We begin by presenting what is known about
energy games and by providing a tight complexity bound for the fixed initial
credit problem for energy games. Next, we recall the result from [DDG+10]
which shows that some MPG variations are undecidable and complement their
result by further showing that undecidability holds for all cases. In the same
chapter, we shall consider decidable classes of MPGs. Finally, we close this
part of this work by considering approximations of the mean-payoff objective:
window mean-payoff objectives.

The first chapter in what follows is based on our submission to Informa-
tion Processing Letters of a short article with our result on the complexity of
the fixed initial credit problem for energy games with partial observation. The
second chapter summarizes our article presented at the 2014 Reachability Prob-
lems workshop. An extended version of the latter was submitted to Theoretical
Computer Science. The last chapter is based on our paper presented at the
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2015 International Symposium on Automated Technology for Verification and
Analysis which has been extended and submitted to Acta Informatica.
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Chapter 9

Partial-Observation Energy
Games

In this chapter we study partial-observation games with an energy objective.
Such games are played on a weighted automaton by Eve, choosing actions, and
Adam, choosing a transition labelled with the given action. Eve attempts to
maintain the sum of the weights (of the transitions taken) non-negative while
Adam tries to do the opposite. Recall that in partial-observation games Eve
does not know the exact state of the game, she is only given an equivalence
class of states which contains it. In contrast, Adam has full observation.

Two decision problems for energy games have been studied by the formal ver-
ification community: the fixed initial credit and unknown initial credit problems.
The former asks whether, given a fixed initial credit for Eve, she has a strategy
which ensures all plays consistent with it are winning. The latter is more ambi-
tious in that it asks whether there exists some initial credit for which the same
question has a positive answer. Presently, we will first present the proof of un-
decidability for the unknown initial credit problem taken from [DDG+10]. We
will then show the fixed initial credit problem for these games is Ack-complete.

Contributions. Section 9.2 is based on [DDG+10]. However, the proof of
Ack-completeness for the fixed initial credit problem, presented in Section 9.3
is novel and has been submitted to the journal Information Processing Letters.

9.1 The Energy Objective
Though energy games are quantitative games, the classical definition for them
does not use a payoff function. Instead, a direct definition for the objective—
parameterized by an initial credit—is usually given. For uniformity, we follow
this convention as well.

The energy level of a play prefix π = q0σ0 . . . qn is

EL(π) =
n−1∑
i=0

w(qi, σi, qi+1).

135
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The energy objective is parameterized by an initial credit c0 ∈ N and is defined
as:

PosEn(c0) := {π ∈ Plays(G) | ∀i > 0 : c0 + EL(π[0..i]) ≥ 0}.

In other words, the energy objective asks for the energy level of a play never to
drop below 0 when starting with energy level c0.

9.2 Undecidability of the
Unknown Initial Credit Problem

In this section we will argue that the unknown initial credit problem for partial-
observation energy games is undecidable. Let us start by formalizing the prob-
lem we study.

Problem (Unknown initial credit problem). Given a game G, decide whether
there exists an initial credit c0 such that there exists a winning observation-
based strategy for Eve for the objective PosEn(c0). �

To show the above problem is undecidable, we reduce from the halting prob-
lem for 2CMs. We construct, from a given 2CM, a blind energy game in which
Eve has an observation-based winning strategy if and only if the machine halts.
For the rest of this section, let us consider a fixed 2CM M = (Q, qI , qF , C, δ).

Proposition 9.1 (From [DDG+10]). The unknown initial credit problem is
undecidable, even for blind games. �

Proof. Follows from the construction described below and Proposition 9.2.

Energy game simulating the halting problem. We will now construct a
blind energy game GM such that M has a halting run if and only if there is an
initial credit for which there exists a winning observation-based strategy for Eve
in GM. Her winning observation-based strategy will be to perpetually simulate
the halting run of the machine while the initial credit will be the length of the
halting run. We set the alphabet Σ of GM to be the set of transitions of M
plus a fresh symbol #, that is Σ = δ ∪ {#}. The game GM starts with a non-
deterministic transition into one of several gadgets we will describe now. The
weight of the transition into each gadget is shown (labelling the initial arrow)
in the Figures for the gadgets. Each gadget will check the sequence of letters
played by Eve has some specific property, lest some play will get a negative
energy level. Since the game is blind, Eve will not know which gadget has been
chosen and will therefore have to make sure her strategy (infinite word) has all
the properties checked by each gadget.

Forcing Eve to simulate δ: gadget 9.1 & 9.2. The gadget depicted in
Figure 9.1 makes sure that Eve plays # as her first letter. Indeed, if she plays a
strategy which does not comply then there is a play which will end up in the −1
loop and thus get a negative energy level. If she plays #, all plays in this gadget
go to the 0 loop and will never have a negative energy level. To make sure that
after # Eve plays the first transition from M, and then the second, . . . , we
have |δ|+ 1 instances of the gadget from Figure 9.2. (Additionally, after having
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0

#, 0 Σ \ {#}, 0

Σ, 0 Σ,−1

Figure 9.1: Gadget which ensures the first letter played by Eve is #.

0

Σ, 0

σ1, 0
σ2, 0

Σ \ {σ2}, 0

Σ, 0

Σ,−1

Figure 9.2: Gadget which ensures σ1 is followed by σ2.

played a transition leading to qF in M—i.e. of the form (·, ·, ·, qF )—she must
play # once more.) The intuition behind the gadget is simple: if she violates
the order of the sequence of transitions then there will be a play consistent with
her strategy which, in the corresponding gadget, reaches the −1 loop. If she
plays the letters in the correct sequence then all plays in all gadgets can only
stay in the initial state or go to the upper 0 loop.

Forcing Eve to perpetually restart the simulation: gadget 9.3. To
verify that Eve plays the letter # infinitely often, symbolizing the start of a
new simulation of M every time, the game GM includes the gadget shown in
Figure 9.3. If Eve plays the letter # infinitely often and within c0 + |M|3 turns
of each other, all the plays in the gadget will take the only negatively-weighted
transition in the gadget at most c0 + |M|3 times. Hence, all plays in this gadget
will never have a negative energy level. If, however, Eve plays in any other way
(eventually stopping with the letter # or taking too long to produce it) then
there will be a play which reaches the middle state of the gadget and takes the
negative transition enough times to get a negative energy level.

Forcing Eve to correctly simulate zero checks: gadget 9.4. Finally,
we make sure that Eve does not play a transition which executes a zero check
correctly. To do so, for each k ∈ C we add to GM an instance of the gadget
from Figure 9.4. The intuition of how the gadget works is as follows. If Eve

|M|3

Σ, 0

#, 0

Σ \ {#},−1

#, 0

Σ, 0

Figure 9.3: Gadget which ensures that Eve restarts her simulation of M in-
finitely often and that each simulation is of length at most c0 + |M|3.
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s0|M|3 sR

sD `

Σ, 0

#, 0

σ,

{
−1 if σ = (·, inc, k, ·)
1 if σ = (·, dec, k, ·)
0 otherwise

(·, 0?, k, ·), 0

#, 0

Σ, 0

#, 0

#, 0(·, dec, k, ·),−1

σ,

{
1 if σ = (·, inc, k, ·)
−1 if σ = (·, dec, k, ·)
0 otherwise

Figure 9.4: Gadget which ensures Eve correctly resolves the guarded decreases:
executing a deck instruction only when k > 0 and executing the 0?k instruction
otherwise.

executes a 0?k instruction when the counter value is positive (a zero cheat), then
there will be a play which goes to sR in the gadget, then simulates the inverse
of the intended operations on k and moves back to the initial state on the zero
cheat. This play thus far has energy level c0 + |M|3− 1. If Eve executes a deck
instruction when the counter value is 0 (a positive cheat), then there will be a
play which goes to sD in the gadget, then simulates the operations on k and
moves back to the initial state on the positive cheat. The latter play has energy
level c0 + |M|3− 1 at this point as well. It follows that if Eve cheats more than
c0 + |M|3 times, there will be a play in the gadget with negative energy level.
If, however, she correctly simulates the zero checks, then a play can forever stay
in s0—in which case it will never have a negative energy level—or it can move
to sR or sD at some point. There, if Eve is simulating a finite halting run %,
then she will play # again in at most |%| + 1 steps. If the play is still in sR or
sD at that moment, then we know it moves to ` and that it must have seen a
weight of −1 at most |%| times. Clearly, once in ` the play can no longer have
a negative energy level. If the play returned to s0 before that, then since Eve
is not cheating, the energy level of the play must have been at least c0 + |M|3
and it must have seen a weight of −1 at most |%| times.

Proposition 9.2 (From [DDG+10]). M has a halting run if and only if there
exists c0 ∈ N such that there is a winning observation-based strategy for Eve in
GM given initial credit c0. �

Proof. If M does have a halting run %, then by definition % has finite length
n. Eve can then play the blind strategy which corresponds to the infinite word
(#%)ω. Observe that this word satisfies all the constraints ensured by gadgets 9.1
and 9.2. Furthermore, there is an initial credit, namely |%|3, such that the word
satisfies the constraints imposed by gadgets 9.3 and 9.4. Thus, no play will ever
have negative energy level.
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Suppose M has no halting run. Eve cannot play a strategy which does not
correspond to a valid run ofM or there will be a play with negative energy level
in gadgets 9.1, 9.2, or 9.4. Thus, let us assume she does simulate |M| faithfully.
For any initial credit c0, since her simulation of |M| takes longer than c0 + |M|3
steps (because it is not halting), the strategy will not be winning because of
gadget 9.3. Hence, she has no observation-based winning strategy.

9.3 The Fixed Initial Credit Problem
We now turn our attention to the fixed initial credit problem for energy games.

Problem (Fixed initial credit problem). Given a game G and an initial credit
c0, decide whether there exists a winning observation-based strategy for Eve for
the objective PosEn(c0). �

Decidability of the above problem was established in [DDG+10] by describing
a reduction to finite safety games. We will now show that the size of the safety
game used in the algorithm from [DDG+10] is at most Ackermannian with
respect to the size of the input game. We then describe how the Minsky machine
simulation used to show undecidability of the unknown initial credit problem
can be modified to show Ack-hardness of the fixed initial credit problem. This
establishes Ack-completeness of the problem.

9.3.1 Upper bound
The fixed initial credit problem was shown to be decidable in [DDG+10]. To do
so, the problem is reduced to determining the winner of a safety game played
on a finite tree whose nodes are functions which encode the belief of Eve in
the original game. The notion of belief corresponds to the information Eve has
about the current state (at any turn) of a partial-observation game. In this
particular case, the belief of Eve is defined for any prefix π = q0σ0 . . . σn−1qn
with o = obs(qn). It corresponds to the subset of states s ⊆ o which are
reachable from q0 via a prefix π′ with the same observation sequence as π, i.e.
obs(π) = obs(π′), together with the energy levels of all (worst-case) prefixes
ending in q for all q ∈ s. Note that Eve only really cares about the minimal
energy levels of prefixes ending in states from s. This information can thus be
encoded into functions.

In this section we will first formalize the construction described above. We
will then give an alternative argument (to the one presented in [DDG+10]) which
proves that the constructed tree is finite. The latter goes via a translation from
functions to vectors and prepares the reader for the next result. Finally, we will
define an Ackermannian function and show that the size of the tree is at most
the value of the function on the size of the input game.

Throughout the section we consider a fixed partial-observation energy game
G = (Q, q0,Σ,∆, w,Obs) and fixed initial credit c0 ∈ N.

Reduction to safety game

Belief functions. We define the set of belief functions of Eve as F := {f :
Q→ Z ∪ {⊥}}. The support of a function f ∈ F is the set {q ∈ Q | f(q) 6= ⊥}.
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A function f ∈ F is said to be negative if f(q) < 0 for some q ∈ supp(f). The
initial belief function f0 has support {q0} and f0(q0) = c0. Given two functions
f, g ∈ F we define the order f � g to hold if supp(f) = supp(g) and f(q) ≤ g(q)
for all q ∈ supp(f). Additionally, for σ ∈ Σ we say g is a σ-successor of f if

∃o ∈ Obs : supp(g) = postσ(supp(f)) ∩ o, and

g(q) = min{f(p) + w(p, σ, q) | p ∈ supp(f) ∧ (p, σ, q) ∈ ∆} for all q ∈ supp(g).

Intuitively, if Eve has belief function f and she plays σ, then if Adam reveals
observation o to her as the observation of the new state of the game, she now
has belief function g.

Sequences of functions and actions. For a function-action sequence s =
f0σ0f1 . . . σn−1fn we will write fs to denote fn, i.e. the last function of the
sequence. Let S be the smallest subset of (F ·Σ)∗ · F containing f0 and s · σ · f
if s ∈ S, f is a σ-successor of fs, and it holds that: (a) fs is not negative and
(b) fs′ 6� fs for all proper prefixes s′ of s. The desired full-observation safety
game is then H = (S, f0,Σ, E,W ) where

• the transition relation E ⊆ S × Σ × S contains triples (s, σ, s′) where
s′ = s · σ · fs′ , and

• the safe states are W = {s ∈ S | fs is not negative}.

In order for E to be total, we add self-loops (s, σ, s) for any s ∈ S without
outgoing transitions.

Lemma 9.1 (From [DDG+10]). There is a winning observation-based strategy
for Eve for the objective PosEn(c0) in G if and only if there is a winning strategy
for Eve in the safety game H. �

Showing the safety game is finite

Henceforth, let H = (S, f0,Σ, E,W ) be the safety game constructed from the
partial-observation game G and initial credit c0 we have fixed for all of Sec-
tion 9.3.1.

In the sequel, it will be useful to consider vectors instead of functions. We
will therefore define an encoding of belief functions into vectors. Formally, let us
fix two bijective mappings α : {1, . . . , |Q|} → Q and β : P(Q) → {1, . . . , 2|Q|}.
(The latter two mappings essentially corresponding to fixing an ordering on Q
and the set of subsets of Q.) For a belief function f , we will define a vector
~f ∈ Z|Q|+2 which holds in its i-th dimension the value assigned by f to state
α(i) in its support. For technical reasons (see Lemma 9.5), if state α(i) is not
part of the support of f , we will use as place-holder the minimal value assigned
by f to any state. Additionally, we use two dimensions to identify uniquely the
support set of f . More formally, the vector ~f is(

2|Q| − β (supp(f)) , β (supp(f)) , γ ◦ α(|Q|), . . . , γ ◦ α(1)
)

where γ(q) is f(q) if q ∈ supp(f) and min{f(q) | q ∈ supp(f)} otherwise.
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It follows directly from the above definitions that two belief functions being
�-comparable is sufficient and necessary for their corresponding vectors to be
≤-comparable.1 More formally,
Lemma 9.2. For belief functions f, g ∈ F we have that f � g if and only if
~f ≤ ~g. �

Using the above Lemma we can already argue that the safety game H is
finite. Suppose, towards a contradiction, that H is infinite. It follows from
König’s Lemma that there is an infinite function-action sequence s = f0σ0f1 . . .
such that for all i ≥ 0 we have: (i) fi+1 is a σi-successor of fi, (ii) fi is not
negative, and (iii) fj 6� fi, for all 0 ≤ j < i. Now, let us consider the vector
sequence v = ~f0 ~f1 . . . . Note that the two dimensions used to represent the
support of the function cannot be negative. Hence, together with condition (ii)
above, it follows that ~fi ∈ N|Q|+2 for all i ≥ 0. That is, the vectors have no
negative integers. Further, from (iii) together with Lemma 9.2 it follows that
there are no distinct vectors ~fi, ~fj in the sequence v such that ~fi ≤ ~fj . Thus,
we get a contradiction with the fact that ≤ is a well-quasi-order for vectors of
naturals (see Section 2.1).
Proposition 9.3 (From [DDG+10]). The game H has finite state space. �

An Ackermann bound on the size of the safety game

The argument we have presented, to show the safety game is finite, carries the
intuition that any function-action sequence from H should eventually end in a
negative function or a function which is bigger than another function in the se-
quence (w.r.t. �). How long can such sequences be? Using the relation between
functions and vectors that we have established (and formalized in Lemma 9.2)
we can apply results of Schmitz et al. [FFSS11, SS12, Sch16] which have been
formulated for sequences of vectors of natural numbers. Intuitively, the bound
they provide is based on “how big the jump is” from each vector in the sequence
to the next. This last notion is formalized in the following definition.
Definition (Controlled vector sequence). A vector sequence a0a1 · · · ∈

(
Nd
)∗

is t-controlled by a unary increasing function κ : N → N if |ai|∞ < κ(t + i) for
all i ≥ 0.2 �

We will now define a hierarchy of sets of functions. Our intention is to
determine at which level of this hierarchy we can find a function which can be
said to control vector sequences induced by function-action sequences from H.
This will allow us to find a function—also at a specific level of the hierarchy—
that bounds the length of such sequences (see Lemma 9.6).

The fast-growing functions. These can be seen as a sequence (Fi)i≥0 of
number-theoretic functions defined inductively below. [FW98]

F0(x) := x+ 1

Fi+1(x) := F x+1
i (x) =

x+1 times︷ ︸︸ ︷
Fi(Fi(. . . Fi(x) . . . ))

1To be precise, ≤ here denotes the product ordering on vectors of integers (see Section 2.1).
2For a vector a = (ad, ad−1, . . . , a1), the infinity norm is the maximum value on any

dimension, i.e. max{ai | 1 ≤ i ≤ d}.
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The following Lemma summarizes some properties of the hierarchy.

Lemma 9.3 (From [FW98]). For all i ∈ N,

• for all i ≤ j and 0 ≤ n ≤ m, Fj(m) ≥ Fi(n) and the latter is strict if the
inequality between j and i or m and n is strict;

• Fi is primitive-recursive;

• Fi is dominated by Fi+1.3

Furthermore, for all primitive-recursive functions f , there exists i ∈ N such that
Fi dominates f . �

We consider the following variant of the Ackermann function Fω(x) := Fx(x).
It is not hard to show that Fω dominates all Fi—that is, for all i ∈ N—and, in
turn, all primitive-recursive functions.

The Grzegorczyk hierarchy. We now introduce a sequence (Fi)i≥2 of sets
of functions. Using the i-th fast-growing function, we define the i-th level of the
hierarchy [Wai70, Sch16] as follows:

Fi :=
⋃
c∈N

FDtime (F ci (x)) .

In other words, Fi consists of all functions N → N which can be computed by
a deterministic Turing machine in time bounded by any finite composition of
the function Fi. Note that, since F2 is of exponential growth, we could restrict
space instead of time or even allow non-determinism and obtain exactly the
same classes.

The following property of the classes of functions from the hierarchy will be
useful.

Lemma 9.4 (From [LW70, Sch16]). For all i ≥ 2, every f ∈ Fi is dominated
by Fj if i < j. �

We will now show how to control vector sequences induced by function-action
sequences from H (following the Karp-Miller tree analysis from [FFSS11]).

Lemma 9.5. For all non-negative function-action sequences s ∈ S, the cor-
responding vector sequence from

(
N|Q|+2)∗ is (c0 + wmax + |Q|)-controlled by

k(x) := 2x + x2. �

Proof. Let us assume that wmax > 0. (This is no loss of generality as the energy
game is trivial otherwise.) For any sequence s = f0σ0 . . . σn−1fn ∈ S we have
that for all 0 ≤ i ≤ n:

|~fi|∞ ≤ max{2|Q|, c0 + i · wmax}
≤ 2|Q| + (c0 + wmax + i)2

≤ 2|Q|+c0+wmax+i + (|Q|+ c0 + wmax + i)2

which concludes the proof.
3For two functions f, g : N → N, we say g dominates f if g(x) ≥ f(x) for all but finitely

many x ∈ N.
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Note that the control function from Lemma 9.5 is at the second level of the
Grzegorczyk hierarchy. That is, k ∈ F2, since F2 is exponential. We can now
apply the following tool.

Lemma 9.6 (From [FFSS11]). For natural numbers d, i ≥ 1, for all unary
increasing functions κ ∈ Fi, there exists a function Ld,κ : N→ N ∈ Fi+d−1 such
that Ld,κ(t) is an upper bound for the length of non-increasing sequences from(
Nd
)∗ that are t-controlled by κ. �

To conclude, we show how to bound the length of any sequence s ∈ S. By
construction of H, s is a function-action non-increasing sequence f0 . . . fn of
non-negative functions—except for the last function, which might be negative.
The vector sequence ~f0 . . . ~fn−1 is therefore non-increasing and, for all 0 ≤ i < n,
the vector ~fi has dimension |Q|+ 2 and contains only non-negative numbers. It
follows from Lemmas 9.5 and 9.6 that the length of the vector sequence is less
than h(c0 + |Q|+wmax), where h = L|Q|+2,k ∈ F|Q|+3. Hence, the length of s is
bounded by h(c0+|Q|+wmax)+1. Let us write |G| = |Q|+c0+wmax+|∆|+|Obs|.
We thus have that h(|G|) + 1 bounds the length of all s ∈ S. Clearly then, the
size of S is at most |∆|h(|G|)+1. More coarsely, we have that 2(h(|G|)+1)2 bounds
the size of S. It follows from Lemmas 9.3–9.6 that the latter bound is primitive
recursive for all fixed G. Since Fω dominates all primitive-recursive functions,
we conclude |S| is O(Fω(|G|)). As safety games are known to be solvable in
linear time with respect to the size of the game graph (see, e.g., [AG11]), the
desired result then follows from Lemma 9.1.

Theorem 9.1. The fixed initial credit problem is decidable in Ackermannian
time. �

9.3.2 Lower bound
In the sequel we will establish Ackermannian hardness of the fixed initial credit
problem, thus giving a negative answer to the question of whether the problem
has a primitive-recursive algorithm. This question is of particular interest in
light of recent work by Jurdziński et al. [JLS15] in which it is shown the same
problem is 2EXPtime-complete for multi-dimensional games with full observa-
tion.

To begin, we will formally define the Ack complexity class—using the hier-
archies of functions introduced in the previous section. We will then adapt the
translation from Minsky machines to partial-observation energy games presented
in [DDG+10] (to argue the unknown initial credit problem is undecidable) and
reduce the existence of a halting run with bounded counter values in the original
machine to the fixed initial credit problem in the constructed game. Finally,
we will describe how to make sure the bound on the counters is Ackermannian
(without explicitly computing the Ackermann function during the reduction).

The complexity class. We adopt the definition proposed by Schmitz [Sch16]
for the class of Ackermannian decision problems:

Ack :=
⋃

g∈F<ω

Dtime (Fω (g(n)))
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|M| σ,

{
−1 if σ = (·, inc, k, ·)
1 if σ = (·, dec, k, ·)
0 otherwise

Figure 9.5: Gadget which ensures that Eve respects the bound on the counters.

where F<ω :=
⋃
i∈N Fi. Note that we allow ourselves any kind of primitive-

recursive reduction. It was shown in [Sch16] that: for any two functions g, f ∈
F<ω, there exists p in F<ω such that f ◦ Fω ◦ g is dominated by Fω ◦ p. It
follows the distinction between time-bounded and space-bounded computations
is actually irrelevant here since F2 is already of exponential growth.

Minsky machine simulation

We will now prove some intermediate results, regarding the bounded halting
problem for Minsky machines, which will be useful to reduce the Fω-bounded
halting problem to the fixed initial credit problem. As an exercise, we will first
reduce from the f -bounded problem, for f the identity function.

Lemma 9.7. A 2CM M has an f(|M|)-bounded halting run if and only if it
has an f(|M|)-bounded halting run of length at most |M|(f(|M|))2. �

Proof. We focus on the only non-trivial direction. If no f(|M|)-bounded run
of the machine does reach qf in at most |M|(f(|M|))2 steps, then we have two
possibilities. It could be the case that the machine has a counter whose value
goes above f(|M|) before reaching qF . Clearly, M has no f(|M|)-bounded
halting run in this case. Otherwise, the machine must have repeated at least
one configuration. Since the machine is deterministic, this means it will never
halt (i.e. it will cycle without reaching qF ).

Bounding the counters. In Figure 9.5 we can see a very simple gadget which
is instantiated for each k ∈ C. Its task is to ensure Eve does not play a sequence
of inck and deck which results in the value of k being larger than |M|+ c0.

Proposition 9.4. M has an |M|-bounded halting run if and only if there is a
winning observation-based strategy for Eve in GM given initial credit c0 = 0. �

Proof. If M does have an |M|-bounded halting run %, then we can assume
that % has length at most |M|3 (see Lemma 9.7). Eve can then play the blind
strategy which corresponds to the infinite word (#%)ω. Since this word satisfies
all the constraints ensured by the gadgets in GM, no play will ever have negative
energy level.

Suppose M has no |M|-bounded halting run. Eve cannot play a strategy
which does not correspond to a valid run of M or there will be a play with
negative energy level in gadgets 9.1, 9.2, or 9.4. Thus, let us assume she does
simulate |M| faithfully. We now consider two cases depending on whether |M|
has a halting run (which is, necessarily, not |M|-bounded). If |M| has a halting
run which is not |M|-bounded, then a play with negative energy level can be
constructed in gadget 9.5. Similarly, if her simulation of |M| stays |M|-bounded
but takes longer than |M|3 steps (because it is not halting), the strategy will
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not be winning because of gadget 9.3. Hence, she has no observation-based
winning strategy.

We will now generalize the reduction we just presented and use it to prove
the announced Ack-hardness result. In short, we need to make sure the energy
level of plays entering gadget 9.5 becomes Fω(|M|) and the energy level of plays
entering gadgets 9.3 and 9.4 becomes greater than |M|(Fω(|M|))2. The way
in which we propose to do so is to add an initial gadget to GM which allows
Eve to play a specific sequence of letters to get the required energy level—and
no more—and then forces her into the simulation of M which we have already
described. As a first step, we describe a way of computing Fω using vectors.

Vectorial version of the fast-growing functions

We will now give a vectorial-based definition of Fk, for any k ∈ N. Intuitively,
we will use k + 1 dimensions to keep track of how many iterations of Fj (for
0 ≤ j ≤ k) still need to be applied on the current intermediate value. More
formally, for a vector a = (ak, . . . , a0) ∈ Nk+1 we set

Φ(a;x) = Φ(ak, . . . , a0;x) := F akk (. . . F a1
1 (F a0

0 (x))).

It follows that Fω(x) = Φ(1,
x times︷ ︸︸ ︷

0, . . . , 0;x). The following is the key property
associated with Φ.

Lemma 9.8. For vectors a,b ∈ Nk+1 and x, y ∈ N, if a ≤ b and x ≤ y then
Φ(a;x) ≤ Φ(b; y). �

Proof. It is a direct consequence of the definition of Φ and Lemma 9.3.

We consider the following (family of) rewrite rules N0, N1j , and N2:

Φ(a;x)→N0 x

Φ(. . . , aj + 1, aj−1, . . . ;x)→N1j Φ(. . . , aj , x+ 1, . . . ;x)
Φ(ak, . . . , a0 + 1;x)→N2 Φ(ak, . . . , a0;x+ 1)

For simplicity, denote the set of rewrite rules {N1j | 0 < j ≤ k} by N1. Let
us write (b, y)  r (a, x) and (b, y)  N (a, x) if rule r or, respectively, a
sequence of the rules N1 and N2, can be applied to Φ(b; y) to transform it into
Φ(a;x).4 We remark that (b, y)  N (a, x) implies a is smaller than b for the
lexicographical order. It follows that the application of the rewrite rules always
terminates.

Lemma 9.9. For any vector b ∈ Nk+1 and x ∈ N, the set {a ∈ Nk+1 | ∃y ∈ N :
(b, y) N (a, x)} is finite. �

Remark that rule N1j can be applied to Φ(a;x) for any 0 < j ≤ k as long
as aj > 0. We would like to argue that the “best” way to use N1j , in order
to obtain the highest possible final value, is to do so only if all dimensions
0 ≤ ` < j have value 0. Formally, let us write (b, y)→r (a, x) if (b, y) r (a, x)
and, additionally, if r = N1j then it holds that a` = 0 for all 0 ≤ ` < j. We

4Since the rule N0 yields a single number, it cannot be the case that (b, y) N0 (a, x).
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then say the application of the rewrite rule r was proper. Similarly, we write
(b, y) →N (a, x) if Φ(a;x) can be obtained by proper application of rules N1
and N2 to Φ(b; y).

Lemma 9.10. For all vectors a,b ∈ Nk+1 and x, y ∈ N, if (b, y) →N (a, x)
then Φ(b; y) = Φ(a;x). �

Proof. Follows directly from the definitions of Φ and the fast-growing functions,
and proper application of rules N1 and N2.

The above result tells us that the proper application of the rewrite rules to
Φ(ak, . . . , a0;x) give us a correct computation of F akk (. . . (F a0

0 (x))). We will
now argue that improper application of the rules will result in a smaller value.

Lemma 9.11. For all vectors a,b ∈ Nk+1 and x, y ∈ N, if |b|∞ ≤ x and
(b, y) N (a, x) then Φ(b; y) ≤ Φ(a;x). �

Proof. If (b, y) →N (a, x) then the result follows by applying Lemma 9.10. If
this is not the case, the sequence of rules applied to Φ(b; y) to obtain Φ(a;x)
includes at least one improperly applied rule. Since N2 cannot be applied
improperly, we focus on N1. We will show that applying an N1 rule improperly
cannot increase the value. The desired result will then follow by induction.

We will argue that for any z ∈ N and any vector c ∈ Nk+1 such that |c|∞ ≤ z,
it holds that for all 2 ≤ i ≤ k + 1, applying any rule from {N1j | 0 < j < i}
improperly to Φ(c; z), yields a smaller value. For the base case we consider
i = 2. We need to show the property holds for N11. Assume that (c, z)  N11

(ck, . . . , c1 − 1, z + 1, z) and that c0 > 0. By applying c0 times the rule N2 to
Φ(c; z) we obtain Φ(ck, . . . , c1, 0; z+c0). We can now properly apply N11 to the
latter and obtain Φ(ck, . . . , c1−1, z+c0; z+c0). It follows from Lemma 9.8 that
the claim holds for i = 2. To conclude, we show that if it holds for i then it must
hold for i+ 1. We only need to show the property holds for N1i. Assume that
(c, z) N1i (ck, . . . , ci− 1, z+ 1, ci−2, . . . , z) and that c` > 0 for some 0 ≤ ` < i.
By applying the sequence of rules N1`N1`−1 . . . N11N2N1iN1i−1 . . . N11 to
Φ(c; z) we obtain Φ(ck, . . . , ci − 1, z + 1, z + 1, . . . , z + 2; z + 1). It follows from
induction hypothesis and the fact that |b|∞ ≤ z that Φ(c; z) is larger than the
latter, which is in turn larger than Φ(ck, . . . , ci − 1, z + 1, ci−2, . . . ; z) according
to Lemma 9.8. Thus, the claim holds.

In the next section we will detail a new gadget which can be used to pump
an energy level of m up to Fm(m) = Fω(m). The gadget simulates the rewrite
rules to compute Fω vectorially.

Fω-pumping gadget

For convenience, we will focus on the blind gadget as a blind energy game itself.
We will later comment on how it fits together with the Minsky machine game
constructed in Section 9.3.2.

Let us consider a fixed m ∈ N. The blind energy game Im we build has
exactly m+ 5 states, namely: an initial state q0 and states {>, f, χ} ∪ {αi | 0 ≤
i ≤ m}. The game starts with a non-deterministic choice of state from the set
{χ} ∪ {αi | 0 ≤ i ≤ m}. The weight of the transition going to state αm is 1; to
state χ, m; to all other states, 0. The alphabet consists of as many rewrite rules
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αm

1

. . . αj

0

αj−1

0

>

. . . α0

0

χ

m

f

Σ,0 Σ,0

N0,0

N0,0
N0,0N0,0

N0,0

Figure 9.6: Pumping gadget with only transitions for σ = N0 shown for states
{χ} ∪ {αi | 0 ≤ i ≤ m}.

αm

1

. . . αj

0

αj−1

0

>

. . . α0

0

χ

m

f

Σ,0 Σ,0

N1j ,−1
N1j ,0

N1j ,+1

N1j ,0 N1j ,0 N1j ,0

Figure 9.7: Pumping gadget with only transitions for σ = N1j shown for states
{χ} ∪ {αi | 0 ≤ i ≤ m}.

(defined in the previous section) as required to compute Fm. More formally, the
alphabet is Σ = {N0, N2} ∪ {N1j | 1 ≤ j ≤ m}. For clarity, the game has been
split into Figures 9.6–9.8, each Figure showing transitions for different letters.
Intuitively, the game Im allows Eve to simulate the vectorial computation of
Fω(m). Once she plays the letter N0 the play moves to either > or f , and—
as we will argue later—if she has correctly simulated the computation of the
function and the play has reached f , its energy level will be Fω(m).

Let us write ΣN for the restricted alphabet {N2} ∪ {N1j | 1 ≤ j ≤ m} ⊆ Σ
and QN for the set of states {χ}∪{αi | 0 ≤ i ≤ m}. We now prove the property
this game (or gadget) enforces. The idea is that Eve playing a sequence of
rewrite rules ΣN has the effect that all plays consistent with her strategy and
which end in αi have energy level equal to the value of ai after applying the
rules to Φ(a;m).

Lemma 9.12. Consider any play prefix π = q0σ0 . . . σn−1qn in Im such that
σi ∈ ΣN for all 0 < i < n, and αi ∈ QN and EL(π[0..i]) ≥ 0 for all 0 < i ≤ n.
If qn = αj then EL(π) = anj , and if qn = χ then EL(π) = mn, where a0 =

(1,
m times︷ ︸︸ ︷
0, . . . , 0), m0 = m, and (a0

m, . . . , a
0
0,m

0) σ0 · · · σn−1 (anm, . . . , an0 ,mn). �
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αm

1

. . . αj

0

αj−1

0

>

. . . α0

0

χ

m

f

Σ,0 Σ,0

N2,0 N2,0N2,0 N2,1N2,−1

Figure 9.8: Pumping gadget with only transitions for σ = N2 shown for states
{χ} ∪ {αi | 0 ≤ i ≤ m}.

Proof. We proceed by induction on n. Note that if n = 1, i.e. the play prefix
has only two states, the energy level will be equal to 1 if the second state in the
play is αm, m if it is χ, and 0 otherwise. Hence the claim holds for prefixes of
some length n. Let us argue that this also holds for prefixes of length n + 1.
Consider an arbitrary play prefix π = q0σ0 . . . σnqn+1 for which all assumptions
hold. By induction hypothesis we have that EL(π[0..n]) = anj if qn = αj and
mn otherwise. If σn = N2, following the transitions shown in Figure 9.8 we
get that: if qn = αj , and 0 < j ≤ m then the claim holds since qn+1 = αj
and EL(π) = an+1

j = anj ; also, if qn = α0 the claim holds since qn+1 = α0

and EL(π) = an+1
0 = an0 − 1 as expected; finally, if qn = χ then it holds since

qn+1 = χ and EL(π) = mn+1 = mn + 1. Otherwise, if σn = N1`, following
the transitions shown in Figure 9.7 we get that: if qn = αj , and j 6∈ {`, ` − 1}
then the claim holds since qn+1 = αj and EL(π) = an+1

j = anj ; if qn = χ then
it holds since either qn+1 = χ and EL(π) = mn+1 = mn or qn+1 = α`−1 and
EL(π) = an+1

`−1 = mn + 1; it cannot be the case that qn = α`−1 since otherwise
qn+1 must be ⊥ and that would violate our assumptions; finally, if qn = α` then
qn+1 = α` and EL(π) = an+1

` = an` − 1 as required. The result thus follows by
induction.

We are finally ready to prove our main result.

Theorem 9.2. The fixed initial credit problem is Ack-hard, even for blind
games. �

Proof. For any 2CM M we will consider two instances of the new pumping
gadget Im, with m = |M|, and one instance of the 2CM-simulating game GM
from Section 9.3.2. (The first copy of Im will be used to compute the Acker-
mann function while the second one will be used to obtain a value greater than
m(Fω(m))2.) Additionally, we will add two new states, s0 and s1, which have a
0-weighted self-loop on all letters from the alphabet of Im, except for N0, and
a bad sink state, ⊥, which has self-loops with weight −1 on all letters from the
alphabets of Im and GM. The good sink >, in copies of Im now have self-loops
with weight 0 on all letters from the alphabet of GM and Im.

We describe how all five components are connected (see Figure 9.9). From
χ in the first copy of Im with N0 and weight 0 we non-deterministically go to
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Im

χ

Im

χs0s1

gadget 4 gadgets
1–3,5 GM

N0, 0

N0, 0N0, 0

N0, 0 N0, 0

Figure 9.9: Overview of the blind game used to show Ack-hardness.

s0 and the initial state of the second Im; from s0 with N0 and weight 0 we
deterministically go to s1; from s1 with N0 and weight 0 we deterministically
go to the GM gadget from Figure 9.5; from χ in the second copy of Im with
N0 and weight 0 we non-deterministically go to all copies of the gadgets from
Figures 9.1, 9.2, 9.3, and 9.4. Finally, to make sure the transition relation is
total, from both copies of Im, s0, and s1 we add transitions to ⊥ on all letters
from the alphabet of GM. Also, from GM we add transitions to ⊥ on all letters
from the alphabet of Im.

We will now argue that Eve has an observation-based winning strategy for
initial credit c0 = 0 if and only if M has an Fω(|M|)-bounded halting run.

If it halts, she wins. If M has an Fω(|M|)-bounded halting run, then Eve
should play the sequence of proper rewrite rules required to compute m′ =
Fω(|M|) vectorially from Φ(1, 0, . . . , 0;m). She will then play N0 and choose
letters to compute Fm

′+1
m′ (Fm′m′−1(. . . Fm′0 (m′ + m))) which we denote by m′′.

Note that m′′ ≥ |M|(Fω(|M|))2. Finally, she will simulate the halting run of
M. From Lemma 9.12 we have that: after the first time she plays N0 the
play is either in the first copy of > (and will never have negative energy level)
or it has energy level Fω(|M|) and is now in the initial state of the second
copy of Im or s0. By playing N0 the play now moves to s1 or the simulation
of the computation of m′′. After playing a third N0, the play moves from
the second copy of χ—with energy level m′′—and from s1—with m′— to the
corresponding gadgets in GM or it moves to >, where Eve cannot lose. Hence,
any play consistent with this strategy of Eve, and which does not enter GM,
cannot have negative energy level. If the play has entered GM then the same
arguments as presented to prove Proposition 9.4 should convince the reader that
it cannot have negative energy level.

If it does not halt, she does not win. If M has no Fω(|M|)-bounded
halting run then, from Lemmas 9.9 and 9.12 we have that Eve eventually play
three times N0 to exit the copies of Im and enter GM—or end in a > state—lest
we can construct a play with negative energy level. Also, using Lemma 9.11, we
conclude that she cannot exit the two copies of Im and enter GM with energy
level greater than Fω(|M|) for the gadget from Figure 9.5 or energy level greater
than m′′ for the other gadgets, respectively. It thus follows from the proof of
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Proposition 9.4 that she has no observation-based winning strategy.



Chapter 10

Partial-Observation
Mean-Payoff Games

In this chapter, we identify classes of MPGs with partial observation where
determining the winner is decidable and where strategies with finite memory,
possibly memoryless, are sufficient.

To simplify our definitions and algorithmic results, we initially consider a
restriction on the set of observations which we term limited observation. In
games of limited observation the current observation contains only those vertices
consistent with the observable history, that is the observations are the belief
set of Eve (see, e.g. [CD12]). This is not too restrictive as any MPG with
partial observation can be realized as a game of limited observation via a subset
construction. In Section 10.4 we consider the extension of our definitions to
MPGs with partial observation via this construction.

In games of full observation one aspect of MPGs that leads to simple (but
not quite efficient) decision procedures is their equivalence to finite cycle-forming
games. Such games are played as their infinite counterparts, however when the
play (or, the token Eve and Adam move on the automaton) revisits a state, the
game is stopped. The winner is determined by a finite analogue of the mean-
payoff condition on the cycle now formed; that is, Eve wins if the average weight
of the edges traversed in the cycle exceeds a given threshold. Ehrenfeucht and
Mycielski [EM79] used this equivalence to show that positional strategies are
sufficient to win MPGs with full observation. The latter leads to a NP∩coNP
procedure for determining the winner. Critically, a winning strategy in the finite
game translates directly to a winning strategy in the MPG, so such games are
especially useful for strategy synthesis.

We extend this idea to games of partial observation by introducing a finite,
full observation, cycle-forming game played at the observation level. That is, the
game finishes when an observation is revisited (though not necessarily the first
time). In this reachability game, winning strategies can be translated to finite-
memory winning strategies in the MPG. This leads to a large, natural subclass
of MPGs with partial observation, which we name forcibly terminating games,
where determining the winner is decidable and finite memory observation-based
strategies suffice.

Unfortunately, recognizing if an MPG is a member of this class is unde-
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cidable, and although determining the winner is decidable, we show that this
problem is complete (under polynomial-time reductions) for the class of all de-
cidable problems. Motivated by these negative algorithmic results, we investi-
gate two natural refinements of this class for which winner determination and
class membership are decidable. The first, forcibly first abstract cycle games
(forcibly FAC games, for short), is the natural class of games obtained when
our cycle-forming game is restricted to simple cycles. Unlike in full-observation
mean-payoff games, we show that winning strategies in this finite simple cycle-
forming game may require memory, though this memory is at most exponential
in the size of the game. The second refinement, first abstract cycle (FAC) games,
is a further structural refinement that guarantees a winner in the simple cycle-
forming game. We show that in this class of games positional observation-based
strategies suffice.

Preliminaries
Let make explicit the assumptions and define some notation which will be used
in this chapter.

Assumptions. In this chapter, when we study the problem of deciding a
game, we assume a threshold ν = 0. This is no loss of generality in mean-
payoff games. Indeed, given any instance of the problem in which ν 6= 0, we
can ‘shift’ and ‘scale’ the weight function to obtain a second game in which Eve
wins with threshold 0 if and only if she wins the original game with threshold ν.
Additionally, we assume that all weights are integral. Once more, this is no loss
of generality since it can be achieved by ‘scaling’ all the weights of the original
automaton.

Weight of a play prefix. For a concrete prefix π = q0a0 . . . qn we write w(π)
for the sum of the weights of its transitions:

w(π) :=
n−1∑
i=0

w(qi, ai, qi+1).

Let us now formally defined the limited-observation games we have men-
tioned in the introduction.

Definition (Limited observation). We say an MPG with partial observation
G = (Q, qI ,Σ,∆, w,Obs) has limited observation if Obs satisfies the following:

(1) {qI} ∈ Obs, and

(2) For each (o, σ) ∈ Obs×Σ the set {q′ | ∃q ∈ o and (q, σ, q′) ∈ ∆} is a union
of elements of Obs.

�

Note that the second condition is equivalent to saying that if q ∈ o, q′ ∈ o′ and
(q, σ, q′) ∈ ∆ then for every r′ ∈ o′ there exists r ∈ o such that (r, σ, r′) ∈ ∆.

We now show how to transform a game with partial observation into a game
with limited observation. The idea behind the translation is to take subsets
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of the observations and restrict transitions to those that satisfy the limited-
observation requirements. More formally, given an MPG with partial obser-
vation G = (Q,Σ,∆, qI , w,Obs) we construct a second MPG with the prop-
erty that it has limited observation. Formally, the limited-observation MPG is
G′ = (Q′,Σ,∆′, q′I , w′,Obs′) where:

• Q′ = {(q,K) ∈ Q× P(Q) | q ∈ K and K ⊆ o ∈ Obs},

• q′I = (qI , {qI}),

• Obs′ =
{
{(q,K) | q ∈ K} |K ⊆ o for some o ∈ Obs

}
,

• ∆′ contains the transitions ((q,K), σ, (q′,K ′)) such that (q, σ, q′) ∈ ∆ and
K ′ = postσ(K) ∩ o for some o ∈ Obs, and

• w′((q,K), σ, (q′,K ′)) = w(q, σ, q′) for all ((q,K), σ, (q′,K ′)) ∈ ∆′.

It is folklore to show that this knowledge-based subset construction (also known
as a belief construction) preserves observation-based winning strategies of Eve.
The terms belief and knowledge are used to denote a state from any variation of
the classic “Reif construction” [Rei84] to turn a game with partial observation
into a game with full observation. Other names for similar constructions include
“knowledge-based subset construction” (see e.g. [DDG+10]). In this case the
resulting game is not one with full observation but one with limited observation.

Lemma 10.1 (Equivalence). Let G be an MPG with partial observation and G′
be the corresponding MPG with limited observation as constructed above. Eve
has a winning observation-based strategy in G if and only if she has a winning
observation-based strategy in G′. �

Abstract and concrete cycles. An abstract (respectively concrete) cycle is
an abstract (concrete) path χ = o0σ0 . . . on where o0 = on. We say χ is simple
if oj 6= oi for 0 ≤ i < j < n. Given k ∈ N define χk to be the abstract
(concrete) cycle obtained by traversing k times χ. That is, χk = o′0σ

′
0 . . . o

′
nk

where for all j ≥ 0, o′j = oj (mod n) and σ′j = σj (mod n). A cyclic permutation
of χ is an abstract (concrete) cycle o′0σ′0 . . . o′n such that o′j = oj+k (mod n) and
σ′j = σj+k (mod n) for some k. If χ′ = o′0σ

′
0 . . . o

′
m is a cycle with o′0 = oi for

some i, the interleaving of χ and χ′ is the cycle o0σ0 . . . oiσ
′
0 . . . o

′
mσi . . . on.

Non-zero-sum reachability games. A (non-zero-sum) reachability game
G = (Q, qI ,Σ,∆, T∃, T∀) is a tuple where Q is a (not necessarily finite) set of
states; Σ is a finite set of actions; ∆ ⊆ Q × Σ × Q is a finitary transition
function (that is, for any q ∈ Q and σ ∈ Σ there are finitely many q′ such that
(q, σ, q′) ∈ ∆); qI ∈ Q is the initial state; and T∃, T∀ ⊆ Q are the terminating
states. The game is played as follows. We place a token on qI ∈ Q and start
the game. Eve chooses an action σ ∈ Σ and Adam chooses a σ-successor of the
current location as determined by ∆. The process is repeated until the game
reaches a state in T∃ or T∀. In the first case we declare Eve as the winner whereas
the latter corresponds to Adam winning the game. Notice that the game, in
general, might not terminate, in which case neither player wins. Notions of
plays and strategies in the reachability game follow from the definitions for
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mean-payoff games, however we extend plays to include finite paths that end in
T∃ ∪ T∀.

10.1 Undecidability of Mean-Payoff Games with
Partial Observation

MPGs with partial observation were extensively studied in [DDG+10]. In that
paper the authors show that, with the mean payoff condition defined using MP
and >, determining whether Eve has a winning strategy is undecidable and when
defined using MP and ≥, strategies with infinite memory may be necessary. The
analogous questions using MP and ≥ were left open. In this section we answer
these questions, showing that both results still hold.

Let us start by formally stating the results already known from [DDG+10].

Proposition 10.1 (From [DDG+10]).

• There are MP games with partial observation for which Eve requires infi-
nite memory observation-based strategies to ensure a non-negative mean-
payoff value (i.e. ≥ 0).

• Determining if Eve has an observation-based strategy to ensure a posi-
tive mean-payoff value (i.e. > 0), given an MP or MP game with partial
observation, is undecidable even for blind games.

• Determining if Eve has an observation-based strategy to ensure a non-
negative mean-payoff value (i.e. ≥ 0), given an MP game with partial
observation, is undecidable.

• Determining if Eve has a finite-memory observation-based strategy to en-
sure a non-negative mean-payoff value (i.e. ≥ 0), given a MP or MP game
with partial observation, is undecidable even for blind games.

�

We will now argue that infinite memory is also necessary for Eve in some
MP games. Furthermore, as a corollary of a construction we present later in
this chapter, we obtain undecidability for general MP games and ≥ 0.

Proposition 10.2. There are MP games with partial observation for which Eve
requires infinite memory observation-based strategies to ensure a non-negative
mean-payoff value. �

Proof of Proposition 10.2. Consider the game G in Figure 10.1. We will show
that Eve has an infinite memory observation-based strategy to win this game,
but no finite memory observation-based strategy.

Consider the strategy that plays (regardless of location) aba2ba3ba4b . . . As
b is played infinitely often in this strategy, the only concrete paths consistent
with this strategy are π = q0q

ω
1 and π = q0 · qk1 · ql2 · qω3 for non-negative integers

k, l. In the first case we see that 1
nw(π[..n]) → 0 as n → ∞, and for all paths

matching the second case we have 1
nw(π[..n]) → 1 as n → ∞. Thus MP ≥ 0

and so the strategy is winning.
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q0

q1

q2

q3

a, 0
b,−1

a,−1

Σ, 0

Σ, 0

b,−1

b, 0

Σ, 1

Figure 10.1: A limited-observation MPG in which Eve requires infinite memory
to win.

Now suppose Eve has a finite memory observation-based winning strategy
for G. Consider the observation-based strategy of Adam that ensures the game
remains in {q1, q2}. The resulting play can now be seen as choosing a word w ∈
{a, b}ω, but as Eve’s strategy has finite memory, this word must be ultimately
periodic, that is w = w0 · vω for words w0, v ∈ {a, b}∗. But then Adam has a
concrete winning strategy as follows. If w contains finitely many b’s then Adam
moves to q2 on the final b and 1

nw(π[..n]) → −1 as n → ∞. Otherwise Adam
remains in q1 and 1

nw(π[..n]) → − m
|v| as n → ∞ where m is the number of b’s

in v.

Theorem 10.1. Determining whether Eve has an observation-based strategy to
ensure non-negative mean-payoff value, given a MP game with partial observa-
tion, is undecidable. �

The proof of this result is based on a similar construction to the one used in
the proof of Theorem 10.4, so we defer it to Section 10.3.1.

10.2 Strategy Transfer from an
Extended Weighted Unfolding

In this section, we will construct a reachability game from an MPG with limited
observation in which winning strategies for either player are sufficient (but not
necessary) for observation-based finite-memory winning strategies in the original
MPG. It is known that if a finite-memory winning strategy exists for a player
in an MPG with partial observation, then it is winning for both versions of
the mean-payoff function, i.e. MP and MP. For consistency with the previous
section, let us assume the lim inf mean payoff henceforth.

Let us fix a mean-payoff game with limited observation G = (Q, qI , Σ,∆,
Obs, w). We will define a reachability game on the weighted unfolding of G.
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Let F be the set of functions f : Q → Z ∪ {+∞,⊥}. Our intention is
to use functions in F to keep track of the minimum weight of all concrete
paths ending in the given state. A function value of ⊥ indicates that the given
state is not in the current observation, and a function value of +∞ is used to
indicate (to Eve) that the token is not located at such a state. Intuitively, +∞
will allow our reachability winning condition to include games where Adam
wins by ignoring paths going through the given state. The support of f is
supp(f) = {q ∈ Q | f(q) 6= ⊥}. We say that f ′ ∈ F is a σ-successor of f ∈ F if:

• supp(f ′) ∈ Obs ∧ supp(f ′) ⊆ postσ(supp(f)); and

• for all q ∈ supp(f ′), f ′(q) is either min{f(q′) + w(q′, σ, q) | q′ ∈ supp(f) ∧
(q′, σ, q) ∈ ∆} or +∞.

We define a family of partial orders, �k (k ∈ N), on F by setting f �k f ′ if
supp(f) = supp(f ′) and f(q) + k ≤ f ′(q) for all q ∈ supp(f) (where +∞ + k =
+∞).

Denote by FG the set of all sequences f0σ0f1 . . . σn−1fn ∈ (F · Σ)∗ · F such
that for all 0 ≤ i < n, fi+1 is a σi-successor of fi. Observe that for each
function-action sequence % = f0σ0 . . . fn ∈ FG there is a unique abstract path
supp(%) = o0σ0 . . . on such that oi = supp(fi) for all i. Conversely, for each
abstract path ψ = o0σ0 . . . on there may be many corresponding function-action
sequences in supp−1(ψ).

Reachability game. The reachability game associated with G, i.e. ΓG =
(ΠG ,Σ, fI , δ, T∃, T∀), is formally defined as follows:

• The function fI ∈ F is such that f(q) = 0 if q = qI and f(q) = ⊥
otherwise.

• ΠG is the subset of FG where for all f0σ0f1 . . . σn−1fn ∈ ΠG we have
f0 = fI and for all 0 ≤ i < j < n we have fi 6�0 fj and fj 6�1 fi;

• δ is the natural transition relation, that is, if x and x · σ · f are elements
of ΠG then (x, σ, x · σ · f) ∈ δ;

• T∃ is the set of all f0σ0f1 . . . σn−1fn ∈ ΠG such that for some 0 ≤ i < n
we have fi �0 fn; and

• T∀ is the set of all f0σ0f1 . . . σn−1fn ∈ ΠG such that for some 0 ≤ i < n
we have fn �1 fi and fi(q) 6= +∞ for some q ∈ supp(fi).

Note that the directed graph defined by ΠG and δ is a tree, but not necessarily
finite. To gain some intuition about ΓG , let us say an abstract cycle % is good
if there exists f0σ0 . . . fn ∈ supp−1(%) such that fi(q) 6= +∞ for all q and all i
and f0 �0 fn. Let us say % is bad if there exists f0σ0 . . . fn ∈ supp−1(%) such
that f0(q) 6= +∞ for some q ∈ supp(f0) and fn �1 f0. Then it is not difficult
to see that ΓG is essentially an abstract cycle-forming game played on G which
is winning for Eve if a good abstract cycle is formed and winning for Adam if a
bad abstract cycle is formed.

Our main result for this section is the following:
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Theorem 10.2. Let G be an MPG with limited observation and let ΓG be the
associated reachability game. If Adam (Eve) has a winning strategy in ΓG then
(s)he has a finite-memory observation-based winning strategy in G. �

The idea behind the strategy for the mean-payoff game is straightforward.
If Eve wins the reachability game then she can transform her strategy into one
that plays indefinitely by returning, whenever the play reaches T∃, to the nat-
ural previous position—namely the position that witnesses the membership of
T∃. By continually playing her winning strategy in this way Eve perpetually
completes good abstract cycles and this ensures that all concrete paths consis-
tent with the play have non-negative mean-payoff value. Likewise if Adam has a
winning strategy in the reachability game, he can continually play his strategy
by returning to the natural position whenever the play reaches T∀. By doing
this he perpetually completes bad abstract cycles and this ensures that there
is at least one concrete path consistent with the play that has strictly negative
mean-payoff value.

The following definitions will be used throughout this section.

Definition (Proper σ-successor). A proper σ-successor of a function f is a
�0-minimal σ-successor of f . �

Note that σ-successors that are not proper assign +∞ to some state.
We observed earlier that for an abstract play ψ = o0σ0o1 . . . there may

be many function-action sequences in supp−1(ψ). However, for every f with
supp(f) = o0 there is a unique �0-minimal sequence in supp−1(ψ) starting at
f obtained by taking proper successors with appropriate supports. We denote
this sequence by ξ(ψ, f).

For convenience given a finite function-action sequence % = f0σ0 . . . fn, let
f% denote fn.

We will repeatedly use the next result which follows by induction immedi-
ately from the definition of a σ-successor.

Lemma 10.2. Let % = f0σ0 . . . fn ∈ FG be a sequence such that fi+1 is a proper
σi-successor of fi, for all i. Then for all q ∈ supp(fn)

fn(q) = min{f0(π[0]) + w(π) | π ∈ obs−1(supp(%)) and π[n] = q}.

�

The following simple facts about �n will also be useful:

Lemma 10.3. For any f1, f2 ∈ F with f1 �k f2:

(i) For all k′ ≤ k, f1 �k′ f2,

(ii) For all k′ ≥ 0, if f2 �k′ f3 for some f3 ∈ F then f1 �k+k′ f3, and

(iii) If f ′1 is a proper σ-successor of f1 and f ′2 is a σ-successor of f2 with
supp(f ′2) = supp(f ′1), then f ′1 �k f ′2.

�

Proof. (i) and (ii) are trivial. For (iii), let di,j = w(qi, σ, qj) for qi ∈ supp(f1) and
qj ∈ supp(f ′1) where such a transition exists and +∞ otherwise. We now observe
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that as f ′1 is�0-minimal, f ′1(qj) can be defined as min{f1(qi)+di,j |qi ∈ supp(f1)}
for all qj ∈ supp(f ′1). As f1(qi) ≤ f2(qi)−k for any qi ∈ supp(f1), it follows that

f ′1(qj) ≤ min{f2(qi) + di,j | qi ∈ supp(f1)} − k ≤ f ′2(qj)− k,

where the second inequality follows from the definition of a σ-successor. Thus
f ′1 �k f ′2.

Although the following results are not used until Section 10.3.2, they already
give an intuition toward the correctness of the strategies described above. In
words, we will show that repeating good cycles is itself, in some sense, good,
while repeating bad ones is bad.
Lemma 10.4. Let % be an abstract cycle.

(i) If % is good (bad) then an interleaving of % with another good (bad) cycle
is also good (bad).

(ii) If % is good then for all k and all concrete cycles π ∈ obs−1(%k), w(π) ≥ 0.

(iii) If % is bad then ∃k ≥ 0, π ∈ obs−1(%k) such that w(π) < 0.
�

Proof. (i) follows from Lemma 10.3. For (ii), let f0σ0 . . . fn ∈ supp−1(%) be such
that fi(q) 6= +∞ for all i and q and f0 �0 fn. In particular this means that fi+1
is a proper σi-successor of fi. Now fix k and let χ ∈ obs−1(%k) be a concrete
cycle. From Lemma 10.2 we have, for all 0 ≤ i < k,

w(χ[ni..n(i+ 1)]) ≥ fn(χ[n(i+ 1)])− f0(χ[ni])

and
fn(χ[n(i+ 1)])− f0(χ[ni]) ≥ f0(χ[n(i+ 1)])− f0(χ[ni]).

Hence

w(χ) =
k∑
i=1

w(χ[ni..n(i+ 1)]) ≥ f0(χ[nk])− f0(χ[0]) = 0.

(iii) Let f0σ0 . . . fn ∈ supp−1(%) and q0 ∈ supp(f0) be such that f0(q0) 6= +∞
and fn �1 f0. It follows that fn(q0) < +∞. From the definition of a σ-successor,
it follows that there exists r ∈ supp(fn−1) such that fn−1(r) < +∞, and there
is an edge from r to q0 with weight fn(q0) − fn−1(r). Proceeding this way
inductively we find there is a q1 ∈ supp(f0) with f0(q1) < +∞ and a concrete
path π0 ∈ obs−1(%) from q1 to q0 with w(π0) = fn(q0)−f0(q1). As f0(q1) < +∞
and fn �1 f0 we have fn(q1) ≤ f0(q1)−1 < +∞. Repeating the argument yields
a sequence of states q0, q1, . . . such that there is a concrete path πi ∈ obs−1(%)
from qi+1 to qi with

w(πi) = fn(qi)− f0(qi+1) ≤ f0(qi)− f0(qi+1)− 1.

As Q is finite it follows that there exists i < j such that qi = qj . Then the
concrete path π = πj · πj−1 · · ·πi+1 ∈ obs−1(%j−i) is a concrete cycle with

w(π) =
j∑

k=i+1
w(πk) ≤ f0(qi)− f0(qj)− (j − i) < 0.

Corollary 9. No cyclic permutation of a good abstract cycle is bad. �
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10.2.1 Strategy transfer for Eve
We note that, as a play prefix in ΓG is completely described by the last state in
the sequence, it suffices to consider positional strategies for both players.

Let us first assume that Eve has a (positional) winning strategy in ΓG , λ :
ΠG → Σ. Let Γλ denote the restriction of ΓG to plays consistent with λ, and let
M = Π′λ, the corresponding restriction of ΠG . From Lemma 10.9, M is finite.
We will define a strategy with memory |M |, λ∗, for Eve in G. Given a memory
state µ = f0σ0f1 · · ·σn−1fn ∈M let

µ′ =
{

the proper prefix of µ such that fµ′ �0 fµ if µ ∈ T∃
µ otherwise.

The initial memory state is µ0 := fI . We define the output function αo :
M × Obs → Σ as αo(µ, o) = λ(µ′). Finally we define the update function
αu : M × Obs → M as αu(µ, o) = µ′ · λ(µ′) · f where f is the proper λ(µ′)-
successor of fµ′ with supp(f) = o. Observe that we maintain the invariant that
the current observation is supp(fµ), consequently the Obs input to αo is not
used.

We will show shortly that λ∗ is a winning strategy for Eve in G. First we
require some definitions and a result about finite prefixes of plays consistent
with λ∗. Given a play % = o0σ0o1 . . . consistent with λ∗, let µ%i denote the i-th
memory state reached in the generation of %. That is, µ%0 = µ0 and µ%i+1 =
αu(µ%i , σi); so αo(µ%i , oi) = σi. Recall the definition of ξ(·, ·) from the start of
the section. For convenience, let ξ%i = ξ(%[..i], fI).

Lemma 10.5. Let % ∈ obs(Plays(G)) be a play consistent with λ∗. Then for all
i, fµ%

i
�0 fξ%

i
. �

Proof. We prove this by induction. Let % = o0σ0o1 . . . For i = 0 we have

fµ%0 = fµ0 = fI = fξ(o0,fI) = fξ%
i
.

Now suppose fµ%
i
�0 fξ%

i
. Let f ′ = fξ%

i+1
, so f ′ is the proper σi-successor of fξ%

i

with supp(f ′) = oi+1. Assume first that µ%i /∈ T∃. Then µ%i+1 = αu(µ%i , oi) =
µ%i · σi · f , where f is the proper σi-successor of fµ%

i
with supp(f) = oi+1. Then,

by Lemma 10.3 (iii) we have fµ%
i+1

= f �0 f
′.

Now assume µ%i ∈ T∃, and let µ′ denote the proper prefix of µ%i such that
fµ′ �0 fµ%

i
. Then µ%i+1 = αu(µ%i , oi) = µ′ ·σi ·f where f is the proper σi-successor

of fµ′ with supp(f) = oi+1. From Lemma 10.3 (ii) we have fµ′ �0 fξ%
i
, so by

Lemma 10.3 (iii) we have fµ%
i+1

= f �0 f
′ as required.

We now proceed with the proof of strategy transfer for Eve.

Lemma 10.6. Let G be a mean-payoff game with limited observation and let
ΓG be the associated reachability game. If Eve has a winning strategy in ΓG then
she has a finite memory winning strategy in G. �

Proof. We will show that λ∗ described above is a winning strategy for Eve. Let
% = o0σ0 · · · ∈ obs(Plays(G)) be any play consistent with λ∗. We will show that
there exists a constant β ∈ R such that for all concrete paths π ∈ obs−1(%) and
all n ≥ 0, w(π[..n]) ≥ β. It follows that MP(π) ≥ 0, and so % is winning for Eve.
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Let W = {fµ(q) | µ ∈ M, q ∈ Q, and fµ(q) 6= ⊥}. Note that W is finite
because M and Q are finite, and non-empty because fµ0(qI) = 0 ∈ W . Let
β = minW . As 0 ∈W , β < +∞.

As with Lemma 10.5, let ξ%n = ξ(%[..n], fI). As supp(fI) = {qI} and fI(qI) =
0, Lemma 10.2 implies for all q ∈ supp(fξ%n), fξ%n(q) 6= +∞. Hence, for all
concrete paths π ∈ obs−1(%) we have:

w(π[..n]) ≥ fξ%n(π[n])− fI(π[0]) from Lemma 10.2
= fξ%n(π[n])
≥ fµ%n(π[n]) from Lemma 10.5
≥ β as required.

10.2.2 Strategy transfer for Adam
To complete the proof of Theorem 10.2, we now show how to transfer a winning
strategy for Adam in ΓG to a winning strategy in G. So let us assume λ :
ΠG × Σ → ΠG is a (positional) winning strategy for Adam in ΓG . The finite-
memory observation-based strategy for Adam is similar to that for Eve in that it
perpetually plays λ, returning to a previous position whenever the play reaches
T∀. However, the proof of correctness is more intricate because we need to
handle the +∞ function values.

Formally, the finite-memory strategy λ∗ is given as follows. As before, let
M = Π′λ and µ0 = fI . Given µ ∈M , let

µ′ =
{

the proper prefix of µ such that fµ �1 fµ′ if µ ∈ T∀
µ otherwise.

The output function αo : M × Obs × Σ → Obs is defined as: αo(µ, o, σ) =
supp(λ(µ′, σ)). The update function αu : M × Obs × Σ → M is defined as:
αu(µ, o, σ) = µ′ · σ · λ(µ′, σ). Note that as the current observation is stored in
the memory state, the Obs input to αo and αu is obsolete.

To show that λ∗ is winning for Adam in G we require an analogue to
Lemma 10.5. Given a play % = o0σ0 . . . in G consistent with λ∗, let µ%i be
the i-th memory state reached in the generation of %. That is, µ%0 = µ0 and
µ%i+1 = αu(µ%i , oi, σi), so αo(µ%i , oi, σi) = oi+1. Let r%i denote the number of
times the memory is “reset” in the first i steps. That is, r%0 = 0, and if µ%i ∈ T∀
then r%i+1 = 1+r%i , otherwise r%i+1 = r%i . Rather than relate fµ%

i
with functions in

ξ(%, fI), we need to consider more general sequences which are �0-minimal after
some point. Let us say a function-action sequence f0σ0f1 · · · ∈ FG is ultimately
proper from k if for all i ≥ k, fi+1 is a proper σi-successor of fi.

Lemma 10.7. Let % ∈ obs(Plays(G)) be a play consistent with λ∗ and ζ =
z0σ0z1 · · · ∈ supp−1(%) be ultimately proper from k. If zk �r fµ%

k
for some r,

then for all i ≥ k, zi �r′
i
fµ%

i
where r′i = r + r%i − r

%
k. �

Proof. We prove this by induction on i. For i = k the result clearly holds. Now
suppose i ≥ k and zi �r′

i
fµ%

i
where r′i = r + r%i − r

%
k. We consider two cases

depending on whether µ%i ∈ T∀. If µ%i /∈ T∀ then µ%i+1 = µ%i ·σi ·f where f is a σi-
successor of fµ%

i
with supp(f) = oi+1, and r%i+1 = r%i . Then, by Lemma 10.3 (iii)
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we have zi+1 �r′
i
f = fµ%

i+1
and r′i = r + r%i − r

%
k = r + r%i+1 − r

%
k = r′i+1 as

required.
Otherwise if µ%i ∈ T∀, let µ′ be the proper prefix of µ%i such that fµ%

i
�1 fµ′ .

From Lemma 10.3 (ii) we have zi �r′
i
+1 fµ%

i+1
. We also have µi+1 = µ′ · σi+1 · f

where f is a σi+1-successor of fµ′ with supp(f) = oi+1. So by Lemma 10.3 (iii)
we have zi+1 �1+r′

i
f = fµ%

i+1
, and as r′i+1 = r+r%i −r

%
k+1 = r+r%i+1−r

%
k = r′i+1

the result holds for i+ 1.

We now show how to transfer strategies of Adam.

Lemma 10.8. Let G be a mean-payoff game with limited observation and let
ΓG be the associated reachability game. If Adam has a winning strategy in ΓG
then he has a finite memory winning strategy in G. �

Proof. We will show that the strategy λ∗ constructed above is winning for Adam.
Let % = o0σ0 . . . be any play consistent with λ∗. As M is finite, there exists
µ ∈ M and an infinite set I ⊆ N of indices such that for all i ∈ I, µ%i = µ.
We will show that this implies there exists π ∈ obs−1(%) such that MP(π) < 0.
As MP(π) ≥ MP(π) the result follows. For convenience, given n ∈ N, let
sI(n) = min{i ∈ I | i > n}. Also, let o = {q ∈ supp(fµ) | fµ(q) 6= +∞}. Note
that from the definition of T∀ it follows that o is non-empty.

We will use a function-action sequence to find a concrete path where the
weights of the prefixes can be identified and seen to be strictly decreasing. In
Lemma 10.6 the sequence ξ(%, fI) fulfilled this role. However, to handle +∞
values, which correspond to irrelevant paths, here we require a sequence more
complex than ξ(%, fI). The sequence we construct will be piecewise proper in
the sense that for all i ∈ I the sequence will consist of proper successors in the
interval [i, sI(i)). When the sequence reaches an element of I we “reset” the
values of the vertices not in o to +∞. More formally, the required sequence,
ζ = z0σ0 · · · ∈ supp−1(%), is constructed inductively as follows. Initially, let z0 =
z′0 = fI . For i ≥ 0, let z′i+1 be the proper σi-successor of zi with supp(zi+1) =
oi+1. If i /∈ I then zi = z′i. Otherwise,

zi(q) =
{

+∞ if q /∈ o
z′i(q) otherwise.

We claim that for all i ∈ N: zi �r%
i
fµ%

i
. From Lemma 10.7 it follows that

we only need to show that for all i ∈ I: zi �r%
i
fµ. Induction and Lemma 10.7

imply that for all i ∈ I we have z′i �r%i fµ. As zi differs from z′i only on states
where fµ is equal to +∞, we therefore have zi �r%

i
fµ as required.

We will now show that there is an infinite concrete path q0σ0 . . . consistent
with % such that qi ∈ o for all i ∈ I. To do this we will show for any i ∈ I
and any q ∈ o there is a concrete path, consistent with %[i..sI(i)], that ends in
q and starts at some state in o. The result then follows by induction. Let us
fix i ∈ I, q ∈ o, and let j = sI(i). As z′j �r%j fµ, we have that z′j(q) 6= +∞.
From Lemma 10.2, there is a concrete path π = q0σ0 . . . qn from q0 ∈ oi ending
at qn = q such that z′j(q) = zi(q0) + w(π). As z′j(q) 6= +∞ it follows that
zi(q0) 6= +∞, and as zi(q0) = +∞ if and only if fµ(q0) = +∞, it follows that
q0 ∈ o. Note that Lemma 10.2 implies for all k ≤ |π|: w(π[..k]) = z′i+k(qk) −
zi(q0) = zi+k(qk)− zi(q0). In particular w(π) = zj(q)− zi(q0).
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Now let π = q0σ0 . . . be the infinite path implied by the above construction
and for convenience for i ∈ I let πi = qiσi . . . qj where j = sI(i). To show
MP(π) < 0 we need to show lim sup

n→∞
1
nw(π[..n]) < 0. To prove this, we will show

there exists a constant β < 0 such that for all sufficiently large n: w(π[..n]) ≤
β · n.

For convenience, let i0 = min I and let in = max{i ∈ I | i ≤ n}. From
Lemma 10.2 and the construction of πi we have for all n:

w(π[..n]) = w(π[..i0]) + w(π[in..n]) +
∑
i∈I
i<n

w(πi)

= w(π[..i0]) + (zn(qn)− zin(qin))

+
∑
i∈I
i<n

zsI(i)(qsI(i))− zi(qi)

= w(π[..i0]) + zn(qn)− zi0(qi0)
≤ w(π[..i0]) + fµ%n(qn)− r%n − zi0(qi0)

There are only finitely many values for fµ%n(qn) and from Lemma 10.9, r%n ≥ b nN c.
Hence

w(π[..n]) ≤ α− β′ · n

for constants α and β′ > 0. Thus there exists β < 0 such that for sufficiently
large n we have w(π[..n]) ≤ β · n. Hence MP(π) ≤ MP(π) < 0.

The finiteness of the size of the memory required for this strategy follows
from the following result.

Lemma 10.9. If λ is a winning strategy for Adam or Eve in ΓG, then there
exists N ∈ N such that for all plays π consistent with λ, |π| ≤ N . �

Proof. Let Γλ be the restriction of ΓG to plays that are consistent with λ.
Suppose there is no bound on the length of paths in Γλ. As ΓG , and hence Γλ,
is acyclic, it follows that Γλ contains infinitely many states. However, as ΓG is
finitely-branching, it follows from König’s lemma that there exists an infinite
path in Γλ. As this path is not winning for either player and it is consistent
with λ, this contradicts the fact that λ is a winning strategy.

10.3 Decidable Classes of MPGs with Limited
Observation

10.3.1 Forcibly terminating games
The reachability game defined in the previous section gives a sufficient condition
for determining the winner in an MPG with limited observation. However,
as there may be plays where no player wins, such games are not necessarily
determined. The first subclass of MPGs with limited observation we investigate
is the class of games where the associated reachability game is determined.
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Definition (Forcibly terminating games). An MPG with limited observation is
forcibly terminating if in the corresponding reachability game ΓG either Adam
has a winning strategy to reach locations in T∀ or Eve has a winning strategy
to reach locations in T∃. �

It follows immediately from Theorem 10.2 that finite memory strategies suffice
for both players in forcibly terminating games. Note that an upper bound on the
memory required is the number of vertices in the reachability game restricted
to a winning strategy, and this is exponential in N , the bound obtained in
Lemma 10.9.

Theorem 10.3 (Finite-memory determinacy). One player always has a win-
ning observation-based strategy with finite memory in a forcibly terminating
MPG. �

We now consider the complexity of two natural decision problems associ-
ated with forcibly terminating games: the problem of recognizing if an MPG is
forcibly terminating and the problem of determining the winner of a forcibly ter-
minating game. Both results follow directly from the fact that we can accurately
simulate a Turing machine with an MPG with limited observation.

Theorem 10.4. Let M be a 4CM guaranteed to halt. Then there exists an
MPG with limited observation G, constructible in polynomial time, such that
Eve wins ΓG if and only if M halts in the accept state and Adam wins ΓG if
and only if M halts in the reject state. �

Proof. Recall that a Minsky machineM consists of a finite set of control states
S, an initial state sI ∈ S, a final accepting state sA ∈ S, a final rejecting
state sR, a set C of integer-valued counters and a finite set δM of instruc-
tions manipulating the counters. The transitions relation δM contains tuples
(s, instr, c, s′) where s, s′ ∈ S are source and target states, respectively, and
instr ∈ {inc, dec, 0?} applies to counter c ∈ C.

Given a 4CM M, we now show how to construct an MPG with limited
observation GM in which Eve wins ΓGM if and only if M has an accepting
run, and Adam wins ΓGM if and only if M has a rejecting run. Plays in GM
correspond to executions of M. As we will see, the tricky part is to make
sure that zero-check instructions are faithfully simulated by one of the players.
Initially, both players will be allowed to declare how many instructions the
machine needs to execute in order to reach an accepting or rejecting state. Either
player can bail out of this initial “pumping phase” and become the Simulator.
The Simulator is then responsible for the faithful simulation of M and the
opponent will be monitoring the simulation and punish him if the simulation is
not executed correctly. Let us now go into the details.

Control structure. First, the control structure of the machineM is encoded
in the observations of our game, i.e. to each location of the machine, there will
correspond at most three observations in the game. We require two copies of
each such observation since, in order to punish Adam or Eve (whoever plays
the role of Simulator), existential and universal gadgets have to be set up in a
different manner. For technical reasons that will be made clear below, we also
need two additional observations. Formally, the observation set in our game
contain observations {b+, b0, b−}, {a+, a−} and {qI}, which do not correspond
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c+i c−i α+ α− s

c+i c−i α+ α− s′

Σ′, 1 Σ′,−1 Σ′, 1 Σ′,−1

Figure 10.2: Observation gadget for (s, inc, ci, s′) instruction. For (s, q) ∈ Q
only the q component is shown.

to instructions from the 4CM but they are used in gadgets that will make sure
that zero tests are faithfully executed.

Counter values. Second, the values of counters will be encoded using the
weights of traversed edges that reach designated states. We will associate to
each observation (so to each location in the 4CM) two states for each counter:
c+i and c−i , i ∈ {1, 2, 3, 4}. Intuitively, an abstract path, corresponding to the
simulation of a run of the machine, will encode the value of counter i, at each
step, as the weight of the shortest suffix from the initial pumping gadget to c+i .
GM starts in {{qI}} and ∆ contains σ-transitions (for all σ ∈ Σ′) from qI

to b+, b0, b−. This observation represents the pumping phase of the simula-
tion. From here each player will be allowed to declare how many steps they
require to reach a halting state that will accept or reject. If Adam bails, we
go to the initial instruction of M on the universal side of the construction
(s∀I ), if Eve does so then we go to the analogue in the existential side (s∃I ).
Σ′ contains a symbol bail which represents Eve choosing to leave the gadget
and try simulating an accepting run of M, that is ∆ 3 (b+, bail, (s∃I , α−)),
(b−, bail, (s∃I , α+)), (b0, bail, (s∃I , c)) where c ∈ {c+i , c

−
i } for all i. For all

other actions in Σ′, self-loops are added on the states b+, b0, b− with weights
+1, 0,−1 respectively. Meanwhile, Adam is able to exit the gadget at any
moment—via non-deterministic transitions (b+, σ, (s∀I , α−)), (b−, σ, (s∀I , α+)),
(b0, σ, (s∀I , c)) where c ∈ {c+i , c

−
i } for all i and σ ∈ Σ′ \ {bail}—to the uni-

versal side of the construction, i.e. he will try to simulate a rejecting run of the
machine. Bailing transitions (transitions going to states (s∃I , ·) or (s∀I , ·)) have
weight 0.

Note that after these initial transitions the simulated value of all the counters
is 0. Indeed, this corresponds to the beginning of a simulation of M starting
from configuration (sI , v) where v(c) = 0 for all c ∈ C.

Counter increments & decrements. Let us now explain how Eve simu-
lates increments of counter values using this encoding (decrements are treated
similarly). The gadget we explain below actually works the same in both sides
of the construction, i.e. the universal and existential gadgets for increments and
decrements are identical. For that, consider Figure 10.2, the upper part of the
figure is related to the location (instruction) s of M, while the bottom part is
related to the location s′ of M, and assume that (s, inc, ci, s′) ∈ δM.
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c+i c−i α+ α− sqI

c+i c−i α+ α− s0

z, 0 z, 0 z, 1 z,−1

z,−1

z, 0

Figure 10.3: Existential observation gadget for (s, 0?, ci, s0) and (s, dec, ci, s′)
instructions. Transitions to s′-observation not shown.

c+i c−i α+ α− s

c+i
. . . sz

c−i
. . . sz

qI

s0 s′

Σ′, 0
Σ′, 0

bail,−1

bail, 0

Σ′ \ {bail} Σ′ \ {bail}

Figure 10.4: Universal observation gadget for (s, 0?, ci, s0) and (s, dec, ci, s′) in-
structions. Transitions to s′, s0 observations are weighted as with the existential
observation gadget.
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As can be seen in the figure, the observation related to the instruction s
contains: the states c+i , c

−
i are used to encode of the value of counter ci. The

additional states α+, α− are used to encode the number of steps in the simulation
(again one positive ending in α+ and one negative encoding in α−). Now, let
us consider the transitions of the gadget. The increment of the counter ci from
location s to location s′ is encoded using the weights on the transitions that go
from the observation s to the observation s′. As you can see, the weight on the
edge between the copy of state c+i of observation s to the copy of this state in
observation s′ is equal to +1, while the weight on the edge between the copy
of state c−i of observation s to the copy of this state in observation s′ is equal
to −1. As you can see from the figure, when going from location s to location
s′, we also increment the additional counter that keeps track of the number of
steps in the simulation ofM. As the machine is deterministic there is no choice
for Eve in observation s, since only an increment can be executed, this is why,
regardless of the action chosen from Σ′, the same transition is taken.

Existential zero checks. Now, let us turn to the gadget of Figure 10.3,
that is used to simulate zero-check instructions. We first focus on the case in
which it is the duty of Eve to reveal if the counter has value zero or not, by
forcibly choosing the next letter to play in {z, z} ⊂ Σ′. In the observation that
corresponds to the location s of M, Eve decides to declare that the counter
ci is equal to zero (by issuing z) or not (by issuing z), then Adam resolves
non-determinism as follows. If Eve does not cheat then Adam should let the
simulation to continue to either s0 or s′ depending on Eve’s choice (the figure
only depicts the branching to s0, the branching to s′ is similar). Now if Eve
has cheated, then Adam should have a way to retaliate: we allow him to do so
by branching to observation {qI} from state (s, c−i ) with weight 0 in case z has
been issued and the counter ci is not equal to zero and with weight −1 in case
z has been issued and the counter ci is equal to zero. It should be clear that in
both cases Adam closes a bad abstract cycle.

Universal zero checks. A similar trick is used for the gadget from Fig-
ure 10.4, where Adam is forced to simulate a truthful zero check or lose ΓGM .
Since Adam can control non-determinism and not the action chosen, we have
transitions going from (s, ·) to states in both (sz, ·) and (sz) with weight 0 and
all actions in Σ′. Eve is then allowed to branch back to {qI} as follows. If
Adam does not cheat, then Eve will play any action in Σ′ \ {bail} and transi-
tions, with weights similar to those used in the the existential check gadget, will
take the play from (sz, ·) to (s0, ·) and from (sz, ·) to (s′, ·). Now if Adam has
cheated by taking the play to (sz, ·) when ci was not zero, then Eve—by playing
bail—can go from (sz, c+i ) to the initial observation with weight −1 and close
a good abstract cycle. If Adam cheated by taking the play to (sz, ·) when ci
was indeed zero, Eve can go (with the same action) from (sz, c−i ) to the initial
observation with weight 0 again and close a good abstract cycle. Indeed, Adam
can escape the zero check gadget by choosing a non-proper successor. We will
shortly explain why this is not a viable option for him.

Stopping Simulator. It should be clear also from the gadgets, that the op-
ponent of Simulator has no incentive to interrupt the simulation if there is no
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cheat. Doing so is actually beneficial to Simulator, who can get a function-action
sequence which makes him win ΓGM .

Finally, ∆ also contains self-loops at all (sA, ·) with all Σ′ and with 0 weights
and at all (sR, ·) with all Σ′ and with −1 weights. Thus, if the play reaches the
observation representing state sF or sR from M then Simulator will be able to
force function-action sequences which allow him to win ΓGM .

Bound on the length of the simulation. All that is left is to explain the
idea behind observation gadget {a+, a−} and to show how we allow the opponent
of Simulator to stop the simulated run of M in case Simulator exhausts the
number of instructions he initially declared would be used to accept or reject.
Note that Adam could break Eve’s simulation of an accepting run by declaring
the value of functions from ΓGM , which are actually our means of encoding
the values of the counters, to be +∞ (or at least some subset of the values
of the functions). We describe how we obtain the final set of actions for the
constructed game and mention the required transitions from every observation
in the game so that Adam is unable to do so—he is able to, but in doing so
allows Eve to win the reachability game. Denote by (o, qi) the i-th state in
observation o. Observe that in our construction we need at most 10 states per
observation: two copies of every counter state and two additional step counters.
Σ = Σ′ ∪ {qi | 0 ≤ i < 6} ∪ {ex}. For every observation o in GM we add the
transitions ((o, qi), qi, a−), ((o, qj), qi, a+) for all qi, qj in o where qi 6= qj .

The ex action is used in transitions ((o, α+), ex, {qI}) ∈ ∆ for all observation
gadgets o in the universal side of the construction. This allows Eve to stop
Adam (who is playing Simulator) in case he tries to simulate more steps than
he said were required for M to reject. Similarly, in the existential part of the
construction, we add a transition ((o, α−), σ, {qI}) for all observation gadgets o
and all σ ∈ Σ, which lets Adam stop Eve’s simulation if she tries to cheat in the
same way.

To finish, we add the self-loops (a+, σ, a+) and (a−, σ, a−) as part of ∆ for all
σ ∈ Σ. Clearly, Adam cannot choose anything other than proper σ-successors in
ΓGM or he gives Eve enough information for her to win the game. To have the
game be limited observation we let all missing σ-transitions on the existential
(resp. universal) side of the simulation go to a sink state in which Adam (Eve)
wins.

Correctness. Now, let us prove the correctness of the overall construction.
Assume that M has an accepting or rejecting run. Then, Simulator, by simu-
lating faithfully the run of M has a strategy that allows him to force abstract
paths which induce good or bad abstract cycles depending on who is simulating.
Clearly, in this case even if the opponent decides to interrupt the simulationM
at a zero check gadget, he will only be helping Simulator.

IfM has no accepting or rejecting run, then by simulating the machine faith-
fully, Simulator will be generating cycles in the control state of the machine and
such abstract paths are “mixed” because of concrete paths between correspond-
ing α−, α+ states. Cheating does not help him either since after the opponent
catches him cheating and restarts the simulation of the machine (by returning
to the initial observation), the corresponding paths is losing for him.
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Corollary 10 (Class membership). Let G be an MPG with limited observation.
Determining if G is forcibly terminating is undecidable. �

Corollary 11 (Winner determination). Let G be a forcibly terminating MPG.
Determining if Eve wins G is R-complete. �

Proof. R-hardness follows from Theorem 10.4. For decidability, Lemma 10.9
implies that an alternating Turing machine simulating a play on ΓG will termi-
nate.

We will now give a proof of Theorem 10.1 using a modified version of the
above construction.

Proof of Theorem 10.1. We give a reduction from the non-terminating problem
for two counter machines using a construction similar to the construction above.
Given a two-counter machine M, we construct a game GM as in the proof of
Theorem 10.4, with the following adjustments:
• We only consider the universal side of the simulation;

• The observation corresponding to the accept state of M is a sink state
winning for Adam;

• The α− states are replaced with β states which have transitions to other
β states of weight 0 except in one case specified below;

• The pumping gadget has self loops of weights 0, 0,−1 and the transition
from b+ to β has weight −1 if Eve exits and weight 0 if Adam exits;

• The reset transition also goes from β states to qI .
Suppose the counter machine halts in N steps. The strategy for Adam is as
follows. Exit the pumping gadget after N steps and faithfully simulate the
counter machine. Suppose Eve can beat this strategy. If she allows a faithful
simulation for N steps then Adam reaches a sink state and wins, so Eve must
play reset within N steps of the simulation. Let us consider each cycle of
at most 2N steps. If she waits for Adam to exit the pumping gadget then
the number of steps in the simulation is less than the number of steps in the
pumping gadget, so a negative cycle is closed. On the other hand if she exits
the pumping gadget before N steps then the cycle through the β vertices has
negative weight. In both cases, a negative cycle is closed in at most 2N steps,
so the limit average is bounded above by − 1

2N . Thus this strategy is winning
for Adam.

Now suppose the counter machine does not halt. The (infinite memory)
observation-based strategy for Eve, which we claim is winning for her, is defined
as follows. For increasing n, exit the pumping gadget after n steps and faithfully
simulate (i.e. call any, and only, cheats of Adam) the counter machine for n
steps. Then play reset and increase n. Cheating in the simulation does not
benefit Adam, so we can assume Adam faithfully simulates the counter machine.
Likewise, if Eve always waits until the number of steps in the simulation exceeds
the number of steps in the pumping gadget, then there is no benefit for Adam
to exit the pumping gadget. However if the play proceeds as Eve intends then
the weight of the path through the α+ states is non-negative and although the
weight through the β states is negative, the limit average is 0. Thus the strategy
is winning for Eve.
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10.3.2 Forcibly first abstract cycle games
In this section and the next we consider restrictions of forcibly terminating
games in order to find sub-classes with more efficient algorithmic bounds. The
negative algorithmic results from the previous section largely arise from the
fact that the abstract cycles required to determine the winner are not neces-
sarily simple cycles. Our first restriction of forcibly terminating games is the
restriction of the abstract cycle-forming game to simple cycles.

More precisely, let G be an MPG with limited observation and ΓG be the
associated reachability game. Define Π′G ⊆ ΠG as the set of all sequences x =
f0σ0f1σ1 . . . fn ∈ ΠG such that supp(fi) 6= supp(fj) for all 0 ≤ i < j < n and
denote by Γ′G the reachability game (Π′G ,Σ, fI , δ′, T ′∃, T ′∀) where δ′ is δ restricted
to Π′G , T ′∃ = T∃ ∩Π′G and T ′∀ = T∀ ∩Π′G .

Definition (Forcibly first abstract games). An MPG with limited observation
is forcibly first abstract cycle (or forcibly FAC) if in the associated reachability
game Γ′G either Adam has a winning strategy to reach locations in T ′∀ or Eve
has a winning strategy to reach locations in T ′∃. �

One immediate consequence of the restriction to simple abstract cycles is
that the bound in Lemma 10.9 is at most |Obs|. In particular an alternating
Turing machine can, in linear time, simulate a play of the reachability game
and decide which player, if any, has a winning strategy. Hence the problems of
deciding if a given MPG with partial observation is forcibly FAC and deciding
the winner of a forcibly FAC game are both solvable in Pspace. The next
results show that there is a matching lower bound for both these problems.

Theorem 10.5 (Class membership). Let G be an MPG with limited observation.
Determining if G is forcibly FAC is Pspace-complete. �

Proof. For Pspace membership we observe that a linear bounded alternating
Turing machine can decide whether one of the players can force to reach T ′∃
or T ′∀ in ΓG . To show hardness we use a reduction from the QBF problem.
Let us assume an instance of the problem: a fully quantified Boolean formula
Ψ = ∃x0∀x1 . . .Qxn−1(Φ), where Q ∈ {∃,∀} and Φ is a Boolean formula ex-
pressed in conjunctive normal form (CNF). We simulate the QBF game (see sub-
section 2.5.1) with the use of “diamond” gadgets that allow Eve to choose a value
for existentially quantified variables by letting her choose the next observation.
Similarly, the same gadget—except for the labels on the transitions, which are
completely non-deterministic in the following case—allow Adam to choose val-
ues for variables that are universally quantified.

We construct a game GΨ = (Q, qI ,Σ,∆,Obs, w) in which there are no con-
crete negative cycles, hence it follows from Lemma 10.4 that there are no bad
cycles. The game will thus be forcibly FAC if and only if Eve is able to force
good cycles. If Eve is unable to prove the QBF is true, Adam will be able to
avoid such plays. For this purpose, the “diamond” gadgets employed have two
states per observation. This will allow two disjoint concrete paths to go from
the initial state qI through the whole arena and form a simple abstract cycle
that is either good or not good depending on where the cycle started from.

Universally quantified variables. Concretely, let x1 be a universally quan-
tified variable from Ψ. We add a gadget to GΨ consisting of eight states grouped
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into four observations: {b−0 , b00}, {x1, z1}, {x1, z1}, {b−1 , b00}. We also add the
following transitions:

• from b−0 to x1 and x1, b00 to z1 and z1, with all Σ and weight 0;

• from x1 and x1 to b−1 , z1 and z1 to b01, with all Σ and the first two with
weight −1 while the last two have weight 0.

Figure 10.5 shows the universal “diamond” gadget just described. The ob-
servation {x1, z1} corresponds to the variable being given a false valuation,
whereas the {x1, z1} observation models a true valuation having been picked.
Observe that the choice of the next observation from {b−0 , b00} is completely
non-deterministic, i.e. Adam chooses the valuation for this variable.

Existentially quantified variables. For existentially quantified variables,
the first set of transitions from the gadget is slightly different. Let xi be an
existentially quantified variable in Ψ, then the upper part of the gadget includes
transitions from b−i to xi and from b0i to zi with action symbol ¬xi and weight
0; as well as transitions from b−i to xi and from b0i to zi with action symbol xi
and weight 0.

A play in GΨ traverses gadgets for all the variables from the QBF and even-
tually gets to the observation {b−n−1, b

0
n−1} where the assignment of values for

every variable has been simulated. At this point we want to check whether the
valuation of the variables makes Φ true. We do so by allowing Adam to choose
the next observation (corresponding to one of the clauses from the CNF formula
Φ) and letting Eve choose a variable from the clause (which might be negated).
Let xi (resp. xi) be the variable chosen by Eve, in GΨ the next observation will
correspond to closing a good abstract cycle if and only if the chosen valuation
of the variables for Ψ assigns to xi a true (false) value. For this part of the
construction we have 2 · m states grouped in m observations, where m is the
number of clauses in the formula. The lower part of figure 10.5 shows the clause
observations we just described.

Denote by {ci, c0i } the observation associated to clause ci. The game has
transitions from ci to xi (or xi) and from c0i to zi (zi) with action symbol xi
(¬xi) and weight n− i for the first, 0 for the latter, if and only if the clause ci
includes the (negated) variable xi.1

Correctness. After Eve and Adam have chosen values for all variables (and
the game reaches observation {b−n−1, b

0
n−1}) there are two concrete paths corre-

sponding to the current play: one with payoff 0 and one with payoff −n. When
Adam has chosen a clause and Eve chooses a variable xi from the clause, the
next observation is reached with both concrete paths having payoffs 0 and −i.
Observe, however, that if we consider the suffix of said concrete paths starting
from {xi, zi} or {xi, zi}—depending on which valuation the players chose—both
payoffs are 0. Indeed, if the observation was previously visited, i.e. Eve has
proven the clause to be true, then a good cycle is closed. On the other hand, if
the observation has not been visited previously, then Eve has no choice but to
keep playing. We note that traversing the lower part of our “diamond” gadgets

1All missing transitions for GΨ to be complete go to a dummy state with a negative and
0-valued non-deterministic transitions.
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qI

x0 z0 z0x0

b−0 b00

¬x0, 0 ¬x0, 0 x0, 0 x0, 0

Σ,−1 Σ, 0 Σ,−1

Σ, 0

z1x1 x1 z1

b−1 b01

Σ, 0 Σ, 0 Σ, 0 Σ, 0

Σ,−1
Σ, 0 Σ,−1 Σ, 0

...

b−n−1 b0n−1

c01c1 c2 c02
. . .

Σ, 0Σ, 0
Σ, 0

Σ, 0

x0, n

x0, 0

¬x1, n− 1

¬x1, 0

Figure 10.5: Corresponding game for QBF ∃x0∀x1 . . . (¬x0) ∧ (x1) · · ·
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results in a mixed payoff of −1 and 0 and since {b−i , b0i } must have already been
visited, a cycle is closed that is not good.

Therefore, if Ψ is true then Eve has a strategy to close a good cycle, so GΨ
is forcibly FAC. Conversely, if Ψ is false then Adam has a strategy to force Eve
to close a cycle that is not good. Hence GΨ is not forcibly FAC.

We can slightly modify the above construction in such a way that if the
game does not finish when the play returns to a variable then Adam can close
a bad cycle. This results in a forcibly FAC game that Eve wins if and only if
the formula is satisfied. Hence,
Theorem 10.6 (Winner determination). Let G be a forcibly FAC MPG. De-
termining if Eve wins G is Pspace-complete. �

Proof. We describe the modifications required to the construction described
above.

First, we augment every observation with 2n states corresponding to vari-
ables from Φ and their negation (say, y and y for 0 ≤ i < n).

We then add transitions from every new state yi (yi) to its counterpart in
the next observation so as to form 2n new disjoint cycles going from qI through
the whole construction—up to this point obs(Plays(GΨ)) remains unchanged.
These transitions all have weight zero except for a few exceptions:
• the transition corresponding to the lower part of the gadget which repre-

sents the variable itself, i.e. the transition from augmented observation
{xi, zi, . . . } to {b−i , b0i , . . . } (resp. {xi, zi, . . . } to {b−i , b0i , . . . }) now has
weight of +1 for the yi-transition (yi-transition);

• outgoing transitions from clause observations have weight −1 on the yi-
transition going to the xi-gadget; and

• at every {xi, zi, . . . } and {xi, zi, . . . } augmented observation, Adam is al-
lowed to resolve non-determinism by going back to qI—i.e. in these ob-
servations we add a transition from yi and yi, respectively, back to the
initial state.

In this new game, we see that when the play reaches {xi, zi, . . . } (or {xi, zi, . . . })
after Eve has chosen a variable from a clause then the concrete path ending at
yi (resp. yi) has weight 0 if the observation was previously visited, and weight
−1 if it was not. The concrete paths ending at all the other new states have
weight 0 or +1 depending on the choices made by the players. Thus if the
observation was previously visited then the cycle closed is good as before, and
if the observation was not previously visited then Adam can choose to play to
qI and close a bad cycle. Note that if Adam chooses to play to qI before the
clause gadgets are reached then he will only be closing good cycles. Following
the same argument as before, if Ψ is true then Eve has a winning strategy and
if Ψ is false then Adam has a winning strategy. So GΨ is forcibly FAC and Eve
wins if and only if Ψ is true.

It also follows from the |Obs| upper bound on plays in Γ′G that there is
an exponential upper bound on the memory required for a winning strategy
for either player. Furthermore, we can show this bound is tight—the games
constructed in the proof of Theorem 10.6 can be used to show that there are
forcibly FAC games that require exponential memory for winning strategies.
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Theorem 10.7 (Exponential memory determinacy). One player always has a
winning observation-based strategy with exponential memory in a forcibly FAC
MPG. Further, for any n ∈ N there exists a forcibly FAC MPG, of size polyno-
mial in n, such that any winning strategy has memory at least 2n. �

Proof. For the upper bound we observe that plays in Γ′G are bounded in length
by |Obs|. It follows that the strategy constructed in Theorem 10.2 has memory
at most |Σ||Obs|.

For the lower bound, consider the forcibly FAC game Gn constructed in the
proof of Theorem 10.6 for the formula

ϕn = ∀x1∀x2 . . . ∀xn∃y1 . . . ∃yn :
n∧
i=1

(xi ∨ ¬yi) ∧ (¬xi ∨ yi).

As ϕn is satisfied, Eve wins Gn. Now consider any strategy of Eve with memory
< 2n. As there are 2n possible assignments for the values of x1, . . . xn it follows
there are at least two different assignments of values such that Eve makes the
same choices in the game. Suppose these two assignments differ at xi and assume
w.l.o.g. that Eve’s choice is at (n+ i)-th gadget to play to yi. Then Adam can
win the game by choosing values for the universal variables that correspond to
the assignment which sets xi to false, and then playing to the clause (xi,∨¬yi).
Thus any winning strategy for Eve must have size at least 2n.

In a similar way the game defined by the formula ¬ϕn is won by Adam, but
any winning strategy must have size at least 2n.

10.3.3 First abstract cycle games
We now consider a structural restriction that guarantees Γ′G is determined.

Definition (First abstract cycle games). An MPG with limited observation is
a first abstract cycle game (FAC) if in the associated reachability game Γ′G all
leaves are in T ′∀ ∪ T ′∃. �

Intuitively, in an FAC game all simple abstract cycles (that can be formed)
are either good or bad. It follows then from Corollary 9 that any cyclic permu-
tation of a good cycle is also good and any cyclic permutation of a bad cycle
is also bad. Together with Lemma 10.4, this implies the abstract cycle-forming
games associated with FAC games can be seen to satisfy the following three
assumptions: (1) A play stops as soon as an abstract cycle is formed; (2) The
winning condition and its complement are preserved under cyclic permutations;
and (3) The winning condition and its complement are preserved under inter-
leavings. These assumptions correspond to the assumptions required in [AR14]
for positional strategies to be sufficient for both players2. That is,

Theorem 10.8 (Positional determinacy). One player always has a positional
winning observation-based strategy in an FAC MPG. �

As we can check in polynomial time if a positional strategy is winning in an
FAC MPG, we immediately have:

2These conditions supersede those of [BSV04] which were shown in [AR14] to be insufficient
for positional strategies.
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Corollary 12 (Winner determination). Let G be an FAC MPG. Determining
if Eve wins G is in NP ∩ coNP. �

A path in Γ′G to a leaf not in T ′∀ ∪ T ′∃ provides a short certificate to show
that an MPG with limited observation is not FAC. Thus deciding if an MPG is
FAC is in coNP. A matching lower bound can be obtained using a reduction
from the complement of the Hamiltonian Cycle problem.

Theorem 10.9 (Class membership). Let G be an MPG with limited observation.
Determining if G is FAC is coNP-complete. �

Proof. For coNP membership, one can guess a large enough simple abstract
cycle ψ and (in polynomial time with respect to Q) check that it is neither good
nor bad. To show coNP-hardness we use a reduction from the complement of
the Hamiltonian Cycle problem.

Given graph G = (V,E) where V is the set of vertices and E ⊆ V × V the
set of edges. We construct a directed weighted graph with limited observation
G = (Q, qI ,Σ,∆,Obs, w) where:

• Q = V ∪ {qI , q+, q−};

• Obs = {{v} | v ∈ V } ∪ {{q−, q+}, {qI}};

• Σ = V ∪ {τ};

• ∆ contains transitions (u, v, v) such that (u, v) ∈ E and self-loops (u, v′, u)
for all (u, v′) /∈ E, transitions (with all σ) from qI to both q+ and q− and
from these last two to all states v ∈ V , as well as τ -transitions from every
state v ∈ V to q+ and q−;

• w is such that all outgoing transitions from q+ and q− have weight 1−|V |,
(u, v, v) transitions where (u, v) ∈ E have weight +1, τ -transitions to q−
from states v ∈ V have weight −1 and all other transitions have weight 0.

Notice that the only non-deterministic transitions in G are those incident on
and outgoing from the states q+,q−. Clearly, the only way for a simple abstract
cycle to be not good and not bad (thus making G not FAC) is if there is a path
from {q−, q+} ∈ Obs that traverses |V | unique observations and ends with a
τ -transition back at {q−, q+}. Such a path corresponds to a Hamiltonian cycle
in G. If there is no Hamiltonian cycle in G then for any play π in G, a bad cycle
will be formed (hence, G is FAC).

10.4 Decidable Classes of MPGs with Partial
Observation

In the introduction it was mentioned that an MPG with partial observation
can be transformed into an MPG with limited observation. The translation
from partial observation to limited observation games allows us to extend the
notions of FAC and forcibly FAC games to the larger class of MPGs with partial
observation. In this section we will investigate the resulting algorithmic effect
of this translation on the decision problems we have been considering.
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We say an MPG with partial observation is (forcibly) first belief cycle, or
FBC, if the corresponding MPG with limited observation is (forcibly) FAC.

Our first observation is that FBC MPGs generalize the class of visible-weights
games studied in [DDG+10]. An MPG with partial observation is considered
a visible-weights game if its weight function satisfies the condition that all σ-
transitions between any pair of observations have the same weight. We base
some of our results for FBC and forcibly FBC games on lower bounds established
for problems on visible-weights games.

Lemma 10.10. Let G be a visible-weights MPG with partial observation. Then
G is FBC. �

We now turn to the decision problems we have been investigating throughout
the Chapter. Given the exponential blow-up in the construction of the game of
limited observation, it is not surprising that there is a corresponding exponential
increase in the complexity of the class membership problem.

Theorem 10.10 (Class membership). Let G be an MPG with partial observa-
tion. Determining if G is FBC is coNEXP-complete and determining if G is
forcibly FBC is in EXPspace and NEXP-hard. �

Proof. Membership of the relevant classes is straightforward, they follow directly
from the upper bounds for MPGs with limited observation and the (at worst)
exponential blow-up in the translation from games of partial observation to
games of limited observation.

Lower bound for FBC games. For coNEXP-hardness we reduce from the
complement of the Succinct Hamilton Cycle problem: Given a Boolean
circuit C with 2N inputs, does the graph on 2N nodes with edge relation en-
coded by C have a Hamiltonian cycle? This problem is known to be NEXP-
complete [PY86].

The idea is to simulate a traversal of the succinct graph in our MPG: if we
make 2N valid steps without revisiting a vertex of the succinct graph then that
guarantees a Hamiltonian cycle. To do this, we start with a transition of weight
−2N and add 1 to all paths every time we make a valid transition. We include a
pair of transitions back to the initial state with weights 0 and −1 and ensure this
is the only transition that can be taken that results in paths of different weight.
The resulting game then has a mixed lasso if and only if we can make 2N valid
transitions. If we encode the succinct graph vertex in the knowledge set then
the definition of an FAC game will give us an automatic check if we revisit a
vertex. In fact, we store several pieces of information in the knowledge sets of
the observations: the current (succinct) graph vertex, the potential successor,
and the evaluation of the edge-transition circuit up to a point. We now describe
the construction in detail.

Simplifying assumptions. Let us assume inputs of the circuit C are labelled
x1, . . . x2N and that it has k gates G1, . . . , Gk numbered in an order that respects
the circuit graph, so Gj has inputs from {xi,¬xi : 1 ≤ i < 2N + j} where, for
convenience, x2N+i indicates the output of gate Gi. We may assume each gate
has two inputs and (as we are allowing negated inputs) we may assume we only
have AND and OR gates. The overall (i.e. observation-level) structure of the
game is shown in Figure 10.6.
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S

O1

G0 (+N)

G1 (+1) · · · Gk (+1)

Chk (+1)

O2

−2N

−N

−1
−1 −1

−1

+1
0

−1

0

Figure 10.6: Overall structure of the game for Succinct Hamiltonian Cycle

Construction. The game consists of two external actions primarily for tran-
sitions between observations: σ (solid lines) and σ′ (dotted lines); and a number
of internal actions denoted with τ and χ for transitions primarily within obser-
vations (not shown). The numbers in parentheses indicate the maximum weight
that can be added to the total with internal transitions, and the edge weights
indicate the weight of all transitions between observations.

Our game proceeds in several stages:

1. The transition from S to O1 sets the initial (succinct) vertex (stored in a
subset of the states of O1) and initializes the vertex counter to −2N .

2. Internal transitions in G0 select the next vertex, the transition from O1
to G0 initializes this procedure.

3. For i > 0, internal transitions in Gi evaluate gate i, incoming transitions
initialize this by passing on the previous evaluations (including the current
and next vertices).

4. Internal transitions in Chk test if the circuit evaluates to 1.

5. The next succinct vertex (chosen in G0) is passed to O2, where there is an
implicit check that this vertex has not been visited before, and the counter
is incremented.

6. The play can return to S, generating a mixed lasso if and only if the vertex
counter is 0, i.e. 2N vertices have been correctly visited, or return to O1
with a new current succinct vertex.

The weights on the incoming transitions to an observation are designed to im-
pose a penalty that can only be nullified if the correct sequence of internal
transitions is taken. We observe that if there is a penalty that is not nullified
then the game can never enter a mixed lasso (as the vertex counter will still be
negative when a vertex is necessarily revisited). We now describe the structure
of the observations.
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Figure 10.7: Gadget for G0

(O1). O1 contains 2N states: {xi, xi | 1 ≤ i ≤ N}. For convenience we will
use the same labels across different observations, using observation membership
to distinguish them. There are σ-transitions from S to {xi | 1 ≤ i ≤ N} with
weight −2N .

(O2). O2 contains 2N + 1 states: {xi, xi | 1 ≤ i ≤ N} ∪ {⊥}. There are σ-
transitions from each state in O2 other than ⊥ to its corresponding state in O1
with weight 0. There is a σ′-transition from each state in O2 other than ⊥ to S
with weight 0, and a σ′-transition from ⊥ to S with weight −1.

(G0). G0 contains 5N states: {xi, xi |1 ≤ i ≤ 2N}∪{yi |N < i ≤ 2N}. There
is a σ-transition from each state in O1 to its corresponding state in G0 of weight
−N and in addition, σ-transitions from every state in O1 to {yi |N < i ≤ 2N}
also of weight −N . For N < j ≤ 2N there is a τ+

j transition of weight 1 from
yj to xj and a τ−j transition of weight 1 from yj to xj . For all states in G0

other than yj there is a τ+
j and τ−j loop of weight 1. Figure 10.7 shows the

construction.

Gj (j > 0). The observation corresponding to gate j contains 4N + 2j + 8
states: {xi, xi | 1 ≤ i ≤ 2N + j} ∪ {vm, vm | 0 ≤ m ≤ 3}. Recall gate j has
inputs from {xi, xi | 1 ≤ i < 2N + j}. Suppose these inputs are yl ∈ {xl, xl}
and yr ∈ {xr, xr}, and for convenience let yl and yr denote the other member
of the pair (i.e. the complement of the input). We have a σ-transition of weight
−1 from {xi, xi | 1 ≤ i < 2N + j} ⊆ Gj−1 to the corresponding state in Gj .
In addition we have σ-transitions of weight −1 from yl, yl, yr, yr ∈ Gj−1 to
v0, v0, v1, v1 ∈ Gj respectively. We have the following internal transitions:
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Figure 10.8: Gadget for gate xl ∧ ¬xr (self-loops not shown)

• τ+ (weight 0): v1 to v2, v1 to v3, v0 to x2N+j , v0 to x2N+j if gate j is an
AND gate, v0 to x2N+j if it is an OR gate,

• τ− (weight 0): v1 to v3, v1 to v2, v0 to x2N+j , v0 to x2N+j if gate j is an
AND gate, v0 to x2N+j if it is an OR gate,

• χ (weight 1): v2 to v3, v2 to v3.

For all other states in Gj these transitions loop with the same weight (i.e. χ
loops have weight 1, τ± loops have weight 0).

Figure 10.8 shows an example of the construction of Gj for the gate xl∧¬xr
(self-loops not shown).

(Chk). Chk contains 4N + 2 states: {xi, xi | 1 ≤ i ≤ 2N} ∪ {y, z}. There is a
σ-transition of weight −1 from {xi, xi |1 ≤ i ≤ 2N} ⊆ Gk to their corresponding
states in Chk, and a σ-transition of weight −1 from x2N+k ∈ Gk to y. There is
a χ-transition of weight 1 from y to z and for all other states in Chk there is a
χ-loop of weight 1. There is a σ-transition of weight 1 from all states in Chk to
⊥ ∈ O2 and for N < i ≤ 2N there is a σ-transition of weight 1 from xi ∈ Chk
to xi−N ∈ O2 and from xi ∈ Chk to xi−N ∈ O2.

Lower bound for forcibly FBC games. Suppose we make the following
adjustments to the construction:

• Change the weights of incoming transitions to Gi (i > 0) to −5 and the
weights of all internal τ -transitions to 1,
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• Change the weight of the σ′-transition from ⊥ ∈ O2 to S to 0,

• Add a new state ⊥ to all observations other than S (and O2),

• Add a σ-transition of weight 2N from S to ⊥ ∈ O1, and

• Whenever there is a transition of weight w from xi ∈ o to xj ∈ o′ (o, o′
and i, j possibly the same) add a transition of weight −w from ⊥ ∈ o to
⊥ ∈ o′.

Then the only possible non-mixed lasso in the resulting graph3 is one that would
correspond to a successful traversal of a Hamiltonian cycle. Eve can force the
play to this cycle if and only if the succinct graph has a Hamiltonian cycle.

Somewhat surprisingly, for the winner determination problem we have an
EXPtime-time algorithm matching the EXPtime-hardness lower bound from
games with visible weights. This is in contrast to the class membership problem
in which an exponential increase in complexity occurs when moving from limited
to partial observation.

Theorem 10.11 (Winner determination). Let G be a forcibly FBC MPG. De-
termining if Eve wins G is EXPtime-complete. �

Proof. The lower bound follows from the fact that forcibly FBC games are a gen-
eralization of visible-weights games (see Lemma 10.10), shown to be EXPtime-
complete in [DDG+10]. For the upper bound, rather than working on Γ′G′ , which
is doubly-exponential in the size of G, we instead reduce the problem of deter-
mining the winner to that of solving a safety game which is only exponential in
the size of G. Given an MPG with partial observation G, let G′ be the corre-
sponding limited observation game. Let E = {−1, 0, . . . , 2w′max · |Obs′|} ∪ {⊥},
and let F ′ ⊆ F be the set of functions f : Q→ E .

The safety game will be played on F ′ with the transitions defined by σ-
successors. The idea is that a given position f ∈ F ′ of the safety game cor-
responds to being in an observation of G′, namely supp(f). Similar to before
(in ΓG), the non-negative integer values of f give a lower bound for the mini-
mum weights of the concrete paths ending in the given state (see Lemma 10.2),
that is: if f(q) 6= ⊥ and f(q) ≥ 0 then the minimum weight over all concrete
paths starting at qI and ending at q is at least f(q) + w′max · |Obs′|; whereas if
f(q) = −1 then there is a concrete path of weight at most −w′max · |Obs′|−1. As
the winner of a forcibly FAC game can be resolved in at most |Obs′| transitions
it turns out that this is sufficient information to determine the winner.

Formally, the safety game is SG = (F ′, f ′I ,Σ,∆succ,F ′neg) where f ′I(qI) =
w′max · |Obs′| and f ′I(q) = ⊥ for all other q ∈ Q; (f, σ, f ′) ∈ ∆succ if f ′ is a
proper σ-successor of f where we let

a+ b =


⊥ if a = ⊥ or b = ⊥,
−1 if a = −1, b = −1, or a+ b < 0, and
min{a+ b, 2w′max · |Q|} otherwise.

F ′neg is the set of all functions f ∈ F ′ such that f(q) = −1 for some q ∈ supp(f).
The game is played similar to the reachability game ΓG , i.e. Eve chooses an

3We assume dead-ends go to a dummy state with a single mixed self-loop.
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action σ and Adam resolves non-determinism by selecting a proper σ-successor.
In this case, however, Eve’s goal is to avoid visiting any function in F ′neg.

The above observation that non-negative values give lower bounds for con-
crete paths ending at the given state implies that if Eve has a strategy to always
avoid F ′neg then lim infn→∞ π[..n]

n ≥ 0 for all concrete paths π consistent with
the play. That is, if Eve has a winning strategy in SG then she has a winning
strategy in G.

Now suppose Eve has a winning strategy in G. It follows from the determi-
nacy of forcibly FAC games and Theorem 10.2 that she has a winning strategy
λ in Γ′G′ . Let λ∗ be the translation of λ to G′ as per Theorem 10.2, and let M
denote the set of memory states required for λ∗. Clearly λ∗ induces a strategy
in SG . We claim this induced strategy is winning in SG . Let % = f0σ0 . . . be any
play in SG consistent with λ∗, and let µi denote the i-th memory state obtained
in the generation of % (as in Lemma 10.5). Then, with a slight adjustment to the
proof of Lemma 10.5 to account for function values not exceeding 2 ·wmax · |Obs′|
we have for all i and all q:

fi(q)− w′max · |Obs′| ≥ fµi(q)
= min{w(π) | π ∈ obs−1(supp(µi)) and π ends at q}4

≥ −w′max · |Obs′|

because |µi| ≤ |Obs′| from the definition of Γ′G′ . Thus fi(q) ≥ 0 for all i. Hence
% does not reach F ′neg and is winning for Eve. Thus λ∗ is a winning strategy
for Eve.

So to determine the winner of G, it suffices to determine the winner of SG .
This is just the complement of alternating reachability, known to be decidable
in polynomial time (see e.g. [Pap03]). As

|SG | = O(|F ′|2) = O
(

(2w′max · |Obs′|+ 1)|Q|
)

= 2O(|Q|2),

determining the winner of SG , and hence G, is in EXPtime.

Corollary 13. Let G be an FBC MPG. Determining if Eve wins G is EXPtime-
complete. �

4The step follows from Lemma 10.2.



Chapter 11

Partial-Observation
Window Mean-Payoff
Games

Window mean payoff (WMP) objectives were recently introduced in [CDRR13]
as an alternative to the classical MP objectives. In a WMP objective instead
of considering the long-run average along the whole play, payoffs are consid-
ered over a local bounded window sliding along the play. The objective is then
to make sure that the average payoff is at least zero over every window. The
WMP objectives enjoy several nice properties. First, in contrast to classical MP
objectives, WMP games are decidable even in the partial-observation setting.
Second, they can be considered as “approximations” of the classical MP objec-
tives in the following sense: (i) they are a strengthening of the MP objective,
i.e. winning for the WMP objective implies winning for the MP objective, (ii) if
a (finite memory) strategy guarantees an MP with value ε > 0 then that strat-
egy also achieves the WMP objective for a window size that is bounded by a
function of ε, the size of the game, and the memory of the strategy. We remark
that, indeed, this is a very weak type of “approximation”. However, one cannot
hope for much better considering that in [Gen14] it was shown the existence of
a polynomial-time approximation scheme for MP objectives would imply that
MPGs are solvable in polynomial time.

From a practical point of view, WMP objectives present several advantages.
First, they are algorithmically more tractable: in the setting of perfect informa-
tion games, WMP games can be solved in polynomial-time while the classical
MP objectives are only known to be in NP ∩ coNP. Second, WMP objec-
tives provide stronger guarantees to the system designer: while classical MP
objectives only ensure good performances in the limit (long run), variants of
WMP objectives provide good performance after a fixed or bounded amount of
time. As we show in this chapter, these advantages transfer to the setting of
games with incomplete information, and this is highly desirable for practical
purposes. Indeed, to apply synthesis in practice, our models should be as close
as possible to the systems that we want to simulate. As classical MPGs with
partial-observation leads to undecidability, it is natural to investigate WMP
objectives, and in this respect there are two pieces of good news: first, they
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lead to decidability, and second, there is a potential of algorithmic support with
symbolic implementation.

Contributions. In this chapter we consider the extension of WMP objectives
to games with partial-observation. We show that, in sharp contrast with classi-
cal MP objectives, some of the WMP objectives are decidable for such games.
As in [CDRR13], we consider several variants of the window MP objectives. For
all objectives, we provide complete complexity results and optimal algorithms.
More precisely, our main contributions are as follows:

• First, we consider a definition in which the window size is fixed and the
sliding window is started at the initial move of the game, this is called the
direct window objective. For this definition we give an optimal EXPtime-
time algorithm (Theorem 11.3) in the form of a reduction to a safety
game. Additionally, we show that this safety game has a nice structure
that induces a natural partial order on game positions. In turn this partial
order can be used to obtain a symbolic algorithm based on the antichain
approach [DR10]. This shows that WMP objectives allow us not only to
recover decidability but they also lead to games that have the potential
to be solved efficiently in practice. The antichain approach has already
been applied and implemented with success for LTL synthesis [BBF+12],
omega-regular games with partial observation [BCW+09], and language
inclusion between non-determinisitic Büchi automata [DR09].

• Second, we consider two natural prefix-independent definitions for the win-
dow objectives, the (uniform) fixed window objectives. We also give op-
timal EXPtime-time algorithms for these two definitions (Theorem 11.5
and Theorem 11.6), when weights are polynomially bounded in the size of
the game arena. For these objectives, we show that the sets of good ab-
stract plays (i.e. observation-action sequences) form regular languages
whose complements can be recognized by non-deterministic Büchi au-
tomata of pseudo-polynomial size (Proposition 11.2 and Proposition 11.3).
These automata can then be turned into deterministic parity automata
that can be used as observers to transform the game of partial-observation
into a game of perfect information with a parity objective.

• Finally, we show that, when the size of the window is not fixed but rather
left as a parameter, then for all the objectives that we consider the decision
problems are undecidable (Theorem 11.2).

Preliminaries
Given a WA G and a threshold ν ∈ Q, the mean-payoff (MP) objectives as

MPSupG(ν) = {ψ ∈ obs(Plays(G)) | ∀π ∈ obs−1(ψ) : MP(π) ≥ ν}

and

MPInfG(ν) = {ψ ∈ obs(Plays(G)) | ∀π ∈ obs−1(ψ) : MP(π) ≥ ν}

require the mean-payoff value be at least ν. We omit the subscript in the
objective names when the WA is clear from the context. Let ν = a

b , w′ be a



11.1. WINDOW MEAN-PAYOFF OBJECTIVES 183

weight function mapping t ∈ ∆ to b ·w(t)− a, for all such t, and G′ be the WA
resulting from replacing w′ in G for w. We note that Eve wins the MPSupG′(0)
(respectively, MPInfG′(0)) objective if and only if she wins MPSupG(ν) (resp.,
MPInfG(ν)).

11.1 Window Mean-Payoff Objectives
In what follows we recall the definitions of the window mean-payoff (WMP)
objectives introduced in [CDRR13] and adapt them to the partial-observation
setting. For the classical MP objectives Eve is required to ensure the long-
run average of all concretizations of the play is at least ν. WMP objectives
correspond to conditions which are sufficient for this to be the case. All of them
use as a main ingredient the concept of concrete paths being “good”. Formally,
given i ≥ 0 and window size bound `max ∈ N>0, let the set of concrete paths χ
with the good window property be

GW(ν, i, `max) = {χ | ∃j ≤ `max : w(χ[i..(i+ j)]) ≥ ν · j}.
As in [CDRR13], we assume the value of `max is polynomially bounded by the
size of the arena.

For the first of the WMP objectives Eve is required to ensure all suffixes
of all concretizations of the play can be split into concrete paths of length at
most `max and average weight at least ν. The MP objectives are known to be
prefix-independent, therefore a prefix-independent version of this first objective
is a natural objective to consider as well. We study two such candidates. One
which asks of Eve that there is some i such that all suffixes—after i—of all
concretizations of the play can be split in the same way as before. This is
quite restrictive since the i is uniform for all concretizations of the play. The
second prefix-independent version of the objective we consider allows for non-
uniformity.

Formally, the fixed window mean-payoff (FWMP) objectives for a given WA
and threshold ν ∈ Q are defined below. For convenience we denote by ψ plays
from obs(Plays(G)) and concrete plays by π, i.e. elements of Plays(G).

DirFix(ν, `max) = {ψ | ∀π ∈ obs−1(ψ),∀i ≥ 0 : π ∈ GW(ν, i, `max)}
UFix(ν, `max) = {ψ | ∃i ≥ 0,∀π ∈ obs−1(ψ),∀j ≥ i : π ∈ GW(ν, j, `max)}

Fix(ν, `max) = {ψ | ∀π ∈ obs−1(ψ),∃i ≥ 0,∀j ≥ i : π ∈ GW(ν, j, `max)}
For the FWMP objectives, we consider `max to be a value that is given as

input. Another natural question that arises is whether we can remove this input
and consider an even weaker objective in which one asks if there exists an `max.
This is captured in the definition of the bounded window mean-payoff (BWMP)
objectives which are defined for a given threshold ν ∈ Q.

UDirBnd(ν) = {ψ | ∃`max,∀π ∈ obs−1(ψ),∀i ≥ 0 : π ∈ GW(ν, i, `max)}
DirBnd(ν) = {ψ | ∀π ∈ obs−1(ψ),∃`max,∀i ≥ 0 : π ∈ GW(ν, i, `max)}

UBnd(ν) = {ψ | ∃`max,∃i ≥ 0,∀π ∈ obs−1(ψ),∀j ≥ i : π ∈ GW(ν, j, `max)}
Bnd(ν) = {ψ | ∀π ∈ obs−1(ψ),∃`max,∃i ≥ 0,∀j ≥ i : π ∈ GW(ν, j, `max)}

As with the mean-payoff objectives we can assume, without loss of generality,
that ν = 0. Henceforth, we omit ν.
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DirFix UFix Fix

UDirBnd DirBnd UBnd Bnd MPInf (⊂ MPSup)

⊂ ⊂

⊂ ⊂ ⊂ ⊂

Figure 11.1: Implications among the objectives

q0 q1

Σ,0

Σ,-1

Σ,0

Figure 11.2: Blind WA where, for any `max ∈ N0, the only possible abstract
play is in Fix(`max) but not in UFix(`max).

11.1.1 Relations among objectives
Figure 11.1 gives an overview of the relative strengths of each of the objectives
and how they relate to the mean-payoff objective. The strictness, in general,
of most inclusions was established in [CDRR13], and Figure 11.2 provides an
example for the remaining case between Fix and UFix.

In general the mean-payoff objective is not sufficient for the FWMP or
BWMP objectives, e.g. see Figure 11.3. Our first result shows that if, how-
ever, Eve has a finite memory winning strategy for a strictly positive threshold,
then this strategy is also winning for any of the FWMP or BWMP objectives.
A specific sub-case of this was first observed in Lemma 2 of [CDRR13].

Theorem 11.1. Given a WA G, if Eve has a finite memory winning strategy
for the MPInf(ε) (or MPSup(ε)) objective, for ε > 0, then the same strategy
is winning for her in the DirFixG(µ) game—where µ is bounded by the memory
used by the strategy. �

Proof. In [DDG+10] the authors show that if Eve is only allowed to play finite
memory strategies then she wins the MPInf(ν) game if and only if she wins
the MPSup(ν) game, for any ν ∈ Q. We show the claim holds for MPInf(ε).
Let λ∃ = (M,m0, αu, αo) be the deterministic Mealy machine representation of
Eve’s finite memory winning strategy. Consider the product of the arena with

q0 q1

Σ,-1

Σ,1

Σ,0

Figure 11.3: Perfect information WA where Eve wins both MP objectives but
none of the FWMP or BWMP objectives.
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Eve’s finite memory winning strategy, G×λ∃, constructed in the obvious manner,
i.e. every path in G × λ∃ corresponds to a concrete path consistent with her
strategy. Clearly all cycles in G × λ∃ have weight of at least ε, otherwise Adam
can create a concrete path with mean-payoff value less than ε by “pumping” the
cycles with value less than ε. As any path in G × λ∃ corresponds to concrete
plays consistent with Eve’s strategy, this contradicts the fact that the strategy
is winning for her. By Pigeonhole Principle we have that for any path in G×λ∃:
if a window opens at step i, then after i there is a sequence of length at most
|M ||Q| − 1 that is not involved in any cycle. Now, since every cycle has weight
ε > 0, after at most

µ = wmax · |M ||Q|
ε

· |M ||Q|

steps the window will have closed. It follows that for all ψ ∈ obs(Plays(G))
consistent with her strategy:

∀π ∈ obs−1(ψ),∀i ≥ 0 : π ∈ GW(i, µ)

which concludes our argument.

11.1.2 Lower bounds
In [CDRR13] it was shown that in multiple dimensions, with arbitrary window
size, solving games with the (direct) fixed window objective was complete for
EXPtime-time. We now show that in our setting this hardness result holds,
even when the window size is a fixed constant and the weight function is given
in unary.

Lemma 11.1. Let `max ∈ N>0 be a fixed constant. Given a WA G, deter-
mining if Eve has a winning strategy for the DirFix(`max), UFix(`max) or the
Fix(`max) objectives is EXPtime-hard, even for unary weights. �

Proof. We give a reduction from the problem of determining the winner of a
safety game with imperfect information, shown in [CD10] to be EXPtime-
complete.

A safety game with imperfect information is played on a non-weighted game
arena with partial-observation G = (Q, qI ,Σ,∆, w,Obs). A play of G is winning
for Eve if and only if it never visits the unsafe state set U ⊆ Q. Without loss
of generality, we assume unsafe states are trapping, i.e. (u, σ, q) ∈ ∆ and u ∈ U
imply that u = q.

Let w be the transition weight function mapping (u, σ, q) ∈ ∆ to −1 if
u ∈ U and all other t ∈ ∆ to 0. Denote by Gw the resulting WA from adding
w to G. It should be clear that Eve wins the safety game G if and only if she
wins MPInfGw(0), DirFixGw(`max), UFixGw(`max), and FixGw(`max)—for any `max.
That is, all objectives are equivalent for Gw.

In [CDRR13] the authors show that determining if Eve has a winning strat-
egy in the k-dimensional version of the UDirBnd and UBnd objectives with per-
fect information is non-primitive recursive hard. We show that, in our setting,
these decision problems are undecidable.

Theorem 11.2. Given a WA G, determining if Eve has a winning strategy for
any of the BWMP objectives is undecidable, even if G is blind. �
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q1 q2 q3

Σ ∪ {#},0

Σ,-1

Σ,-1

#,1

Σ ∪ {#},1

Figure 11.4: Gadget which forces Eve to play infinitely many #.

q4 q5

Σ ∪ {#},0

#,-1

Σ,0

#,1

Figure 11.5: Gadget which, given that Eve will play # infinitely often, forces
her to play # in intervals of bounded length.

q5 qI q ∈ Q N

Σ,−1

#, 1
2

#, 1
2

Figure 11.6: Blind gadget to simulate the weighted automaton N .
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Proof. We provide a reduction from the universality of weighted finite automata
which is undecidable [ABK11]. A weighted finite automaton is a tuple N =
(Q,Σ, qI ,∆, w). A run of the automaton on a word x = σ0σ1 . . . σn ∈ Σ∗ is a
sequence r = q0q1 . . . qn ∈ Q+ such that (qi, σi, qi+1) ∈ ∆ for all 0 ≤ i < n.
The cost of the run r is w(r) =

∑n−1
i=0 w(qi, σi, qi+1). If the automaton is non-

deterministic, it may have several runs on x. In that case, the cost of x in N
(denoted by N (x)) is defined as the minimum of the costs of all its runs on x.

The universality problem for weighted automata is to decide whether, for a
given automaton N , the following holds:

∀x ∈ Σ∗ : N (x) < 0.

We construct a blind WA, GN , so that:

• if N is universal, then Eve has an observation-based winning strategy for
the objective UDirBnd,

• if N is not universal, then Adam has a winning strategy for the comple-
ment of the objective Bnd.

As shown in Figure 11.1, UDirBnd ⊆ Bnd and all the other BWMP objectives
lie in between those two. So, our reduction establishes the undecidability of all
BWMP objectives at once.

Our reduction follows the gadgets given in Figures 11.4, 11.5, and 11.6.
When the game starts, Adam chooses to play from one of the three gadgets. As
the game is blind for Eve, she does not know what is the choice of Adam and
so she must be prepared for all possibilities. Note also that as Eve is blind, her
strategy can be formalized by an infinite word w ∈ Σ∪ {#}ω. Let us show first
that the two first gadgets force Eve to play a word w such that:

(C1) there are infinitely many # in w, and

(C2) there exists a bound b ∈ N such that the distance between two consecutive
# in w is bounded by b.

Assume that Eve plays a word w = #w1#w2#w3# . . .#wn# . . . that re-
spects conditions C1 and C2, with each wi ∈ Σ∗. First, if Adam decides to play
in the first gadget (Figure 11.4), then either Adam stays in state q1 forever, and
he does not open any window, or he decides at some point to go from q1 to
q2, whereupon he does open a window. However, after at most b steps Adam
has to leave q2 for q3 at the next occurrence of the # symbol, the bound b is
guaranteed by C2. After at most b additional steps, the open window will be
closed as the self loop on q3 is labelled with the weight +1. So in this case,
Eve wins the objective UDirBnd. Second, if Adam decides to play in the second
gadget (Figure 11.5), then he can go from q4 to q5 on the # symbols. The
windows that open on those transitions will all close within b steps according
to condition C2 and the game moves back to q4. So again, Eve wins for the
objective UDirBnd.

Now assume that Eve plays a word w that violates either condition C1
or condition C2. First, if w violates C1, then Adam chooses the first gadget
(Figure 11.4), and just after Eve has played her last #, Adam moves from q1 to
q2. As there will be no # anymore, Adam can loop on q2 and the window that
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he has opened will never close. Hence, Adam wins for the complement of the
objective Bnd. Second, if w violates C2 then there exists an infinite sequence
of indices i1 < i2 < · · · < in < · · · such that |wi1 | < |wi2 | < · · · < |win | < · · ·
Then Adam can read this sequence of sub-words using runs of the form q4(q5)∗q4.
Each such run will open a window that closes at the end of the sub-word. But
as the sequence of lengths of the sub-words is strictly increasing and infinite,
Adam wins for the complement of the objective Bnd.

Now, we will assume that Eve plays a word w = #w1# . . .#wn# . . . that
respects conditions C1 and C2, and we consider what happens when Adam plays
in the third gadget (Figure 11.6).

Assume first the automaton N is non-universal. Then by definition, there
exists a finite word w1 ∈ Σ∗ such that all runs of N on w1 have a non-negative
value, i.e. N (w1) ≥ 0. In that case, w = (#w1)ω is a finite memory winning
strategy for Eve for the objective Bnd. Indeed, regardless of which run on w
Adam simulates, the mean-payoff of the outcome is at least 0.5

b > 0 as each
new # brings +1

2 and we know that N (w1) ≥ 0. So Eve wins for the objec-
tive UDirBnd by Theorem 11.1, as Eve obtains a strictly positive mean-payoff
bounded away from zero with a finite memory strategy.

Finally, assume that automaton N is universal and let us show then that
Adam has a winning strategy for the complement of the Bnd objective. Indeed, if
Eve plays a word w = #w1#w2#w3# . . .#wn# . . . that respects conditions C1
and C2, then we know that N (wi) < 0 for each i ≤ 0. On such word, Adam can
follow runs in the gadget of Figure 11.6. As the length between two consecutive
# is at most b, we know that the mean-payoff of the run constructed by Adam
is less than or equal to −0.5

b . It follows that Adam wins the complement of the
Bnd objective as claimed, as Bnd objective implies the mean-payoff objectives
(as shown in Figure 11.1).

11.2 DirFix games
In this section we establish an upper bound to match our lower bound of Sec-
tion 11.1.2 for determining the winner of DirFix games. We first observe that
for WAs with perfect information the DirFix(`max) objective has the flavor of
a safety objective. Intuitively, a play π is winning for Eve if every suffix of π
has a prefix of length at most `max with average weight of at least 0. As soon
as the play reaches a point for which this does not hold, Eve loses the play.
In WAs with partial-observation we need to make sure the former holds for all
concretizations of an abstract play.

Consider an abstract path ψ and a positive integer n. We say a window of
length l is open at q ∈ obs−1(ψ[n]) if there is some concretization χ of ψ[..n]
with q = χ[n] such that χ 6∈ GW(n− l, l).

We construct a non-weighted game arena with perfect information G′ from G.
Eve’s objective in G′ will consist in ensuring the play never reaches locations in
which there is an open window of length `max, for some state. This corresponds
to a safety objective. Whether Eve wins the new game can be determined in
time linear w.r.t. the size of the new game (see, e.g. [Tho95]). The game will
be played on a set of functions F which is described in detail below. We then
show how to transfer winning strategies of Eve from G′ to G and vice versa in
Lemmas 11.5 and 11.6. Hence, this yields an algorithm to determine if Eve wins
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the DirFix(`max) objective which runs in exponential-time.

Theorem 11.3. Given a WA G, determining if Eve has a winning strategy for
the DirFix(`max) objective is EXPtime-complete. �

Let us define the functions which will be used as the state space of the game.
Intuitively, we keep track of the belief of Eve as well as the windows with the
minimal weight open at every state of the belief.

For the rest of this section let us fix a WA with partial-observation G and a
window size bound `max ∈ N>0. We begin by defining the set of functions F as
the set of all functions f : Q→ ({1, . . . , `max} → {−wmax · `max, . . . , 0}) ∪ {⊥}.
Denote by supp(f) the support of f , i.e. the set of states q ∈ Q such that
f(q) 6= ⊥. For q ∈ supp(f), we denote by f(q)i the value f(q)(i). The function
fI ∈ F is such that fI(qI)l = 0, for all 1 ≤ l ≤ `max, and fI(q) = ⊥ for all
q ∈ Q \ {qI}. Given f1 ∈ F and σ ∈ Σ, we say f2 ∈ F is a σ-successor of f1 if

• supp(f2) = postσ(supp(f1)) ∩ o for some o ∈ Obs;

• for all q ∈ supp(f2) and all 1 ≤ j ≤ `max we have that f2(q)j maps to
max{−wmax · `max,min{0, ζ(q)}}, where ζ(q) is defined as follows

ζ(q) =


min

p∈supp(f1)∧(p,σ,q)∈∆,
f1(p)j−1<0

f1(p)j−1 + w(p, σ, q) if j ≥ 2

min
p∈supp(f1)∧(p,σ,q)∈∆

w(p, σ, q) otherwise.

Lemma 11.2. The number of elements in F is at most 2|Q|·`max·log(wmax·`max).
�

Proof.

|F| ≤ (wmax · `max)|Q|·`max

=
(

2log(wmax·`max)
)|Q|·`max

= 2|Q|·`max·log(wmax·`max).

Hence, the result holds.

We extend the supp operator to finite sequences of functions and actions.
In other words, given %′ = f0σ0f1σ1 ∈ (F · Σ)∗, supp(%′) = s0σ0s1σ1 . . . where
si = supp(fi) for all i ≥ 0. In an abuse of notation, we define the function
supp−1 : (Obs ·Σ)∗×F → (F ·Σ)∗ which maps abstract paths to function-action
sequences. Formally, given % = o0σ0o1σ1 · · · ∈ obs(Prefs(())G) and ϕ ∈ F with
supp(ϕ) ⊆ o0, supp−1(%, ϕ) = f0σ0f1σ1 . . . where f0 = ϕ and for all i ≥ 0 we
have that fi+1 is the σi-successor of fi such that supp(fi+1) ⊆ oi+1. Both supp
and supp−1 are extended to infinite sequences in the obvious manner.

The following two results enunciate the key properties of sequences of the
form (F · Σ)∗. Intuitively, the set of all those sequences corresponds to the
windowed, weighted unfolding of G with information about reachable states as
well as open windows.
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Lemma 11.3. Let % = o0σ0 . . . on be an abstract path, ϕ ∈ F such that
supp(ϕ) ⊆ o0 and supp−1(%, ϕ) = f0σ0 . . . fn ∈ (F ·Σ)∗. A state q ∈ Q is reach-
able from some state q0 ∈ supp(ϕ) through a concrete path q0σ0 . . . qn ∈ obs−1(%)
if and only if q ∈ supp(fn). �

Proof. (⇒) We proceed by induction. We will show that for all 0 ≤ j ≤ n, for
all qj ∈ supp(fj) there is a concrete path q0σ0 . . . qj such that qk ∈ ok for all
1 ≤ k ≤ j and q0 ∈ supp(ϕ). Note that for j = 0 the claim trivially holds.
Assume the claim holds for j. From the definition of σ-successor and supp−1

we have that supp(fj+1) = postσj (supp(fj)) ⊆ oj+1. This means that for all
qj+1 ∈ supp(fj+1) there must be some qj ∈ supp(fj) such that (qj , σj , qj+1) ∈ ∆.
Hence any qj+1 is reachable from some qj via σj which, by inductive hypothesis,
is in turn reachable from some q0 ∈ supp(ϕ) via a concrete path of the desired
form.

(⇐) We now show—once more by induction on j—that for all 0 ≤ j ≤ n,
if there is a concrete path q0σ0 . . . qj such that q0 ∈ supp(ϕ) and qk ∈ ok for
all 1 ≤ k ≤ j, then qj ∈ supp(fj). The claim holds for j = 0. Assume that
it holds for some j. From the assumptions we have that (qj , σj , qj+1) ∈ ∆
and qj+1 ∈ ok+1. Further, we know that qj ∈ supp(fj) by inductive hypothesis.
Hence, qj+1 ∈ postσj (supp(fj)) ⊆ oj+1 which means that qj+1 ∈ supp(fj+1).

Lemma 11.4. Let % = o0σ0 . . . on be an abstract path, ϕ ∈ F such that
supp(ϕ) ⊆ o0 and supp−1(%, ϕ) = f0σ0 . . . fn ∈ (F · Σ)∗. Given state p ∈
supp(fn) and 1 ≤ l ≤ `max such that l ≤ n, then there is a window of length l
open at p if and only if fn(p)l < 0. �

Proof. Instead of directly providing a proof of Lemma 11.4, we prove a more
general result below. Consider the three conditions stated in Claim 15. We shall
prove that C1 ⇒ C2 ⇒ C3 ⇒ C1. Since C1 corresponds to having a window of
length l open at p from supp(ϕ), the desired result follows from transitivity.

Claim 15. Let % = o0σ0 . . . on be an abstract path, ϕ ∈ F such that supp(ϕ) ⊆
o0 and supp−1(%, ϕ) = f0σ0 . . . fn ∈ (F · Σ)∗. Given state p ∈ supp(fn) and
1 ≤ l ≤ `max such that l ≤ n, let λ = n− l. The following three statements are
equivalent.

C1. There is a concrete path q0σ0 . . . qn ∈ obs−1(%) with qn = p and q0 ∈
supp(ϕ) and

m∑
j=n−l

w(qj , σj , qj+1) < 0

for all n− l ≤ m < n.

C2. fn(p)l < 0.

C3. There is a concrete path q0σ0 . . . qn ∈ obs−1(%) with qn = p and q0 ∈
supp(ϕ) such that

(a) fj(qj)j−λ < 0 for all λ < j ≤ n, and
(b) fk(qk)j−λ + w(qk, σk, qk+1) = fk+1(qk+1)k−λ+1 for all λ < k < n.

�
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(C3⇒ C1). We will apply induction on m. From the definition of σ-successor
we have that fλ+1(qλ+1)1 = min{0, w(qλ, σλ, qλ+1)}. From assumption (a) we
know that fλ+1(qλ+1)1 < 0. Thus, the claim holds for m = λ. Assume it holds
for m. To conclude the proof, we now show that the claim holds for m + 1 as
well.

m+1∑
j=n−l

w(qj , σj , qj+1) = fm(qm)m−λ + w(qm, σm, qm+1) ind. hyp.

= fm(qm)m−λ+1 from (b)
< 0 from (a).

(C1 ⇒ C2). We show, by induction on m, that for all λ ≤ m < n

fm+1(qm1)m−λ+1 ≤
m∑
j=λ

w(qj , σj , qj+1).

The desired result follows. As the base case, consider m = λ and note that by
definition of σ-successor we have that

fλ+1(qλ+1)1 = min({0} ∪ {w(p, σλ, qλ+1) | p ∈ supp(fλ) ∧ (p, σλ, qλ+1) ∈ ∆})
≤ w(qλ, σλ, qλ+1).

Thus the claim holds. Assume that the claim is true for m. From the definition
of σ-successor we have that

fm+2(qm+2)λ−m+2 ≤ fm+1(qm+1)m−λ+1 + w(qm+1, σm+1, qm+2).

From the inductive hypothesis we get have that the right hand side of the
inequality is equivalent to

m+1∑
j=λ

w(qj , σj , qj+1).

Thus the claim holds for m+ 1 as well.

(C2 ⇒ C3). We inductively construct a concrete path q0σ0 . . . qnobs−1(%)
with qn = p and q0 ∈ supp(ϕ) such that

(1) fn−k(qn−k)l−k < 0 for all 0 ≤ k < l, and

(2) fn−k(qn−k)l−k = w(qn−k+1, σn−k+1, qn−k) + fn−k+1(qn−k+1)l−k+1 for all
1 ≤ k < l.

As these conditions are equivalent to (a)-(b) from C3, the result follows. Note
that for k = 0 we have that (1) holds trivially since p ∈ supp(fn) and fn(p)l < 0
by hypothesis. If fn−k(qn−k)l−k < 0 then, by definition of σ-successor, it follows
that there is some q′ ∈ supp(fn−k+1) ⊆ on−k+1 such that fn−k+1(q′)l−k+1 <
0 and fn−k(qn−k)l−k = w(qn−k+1, σn−k+1, qn−k) + fn−k+1(qn−k+1)l−k+1. In
other words, q′ is the source of the minimal σn−k+1-transition of a state from
supp(fn−k+1) to qn−k. Let qn−k+1 = q′. Continue in this fashion defining every
qi up to qn−l. Now, from Lemma 11.3, we have that qn−l is reachable from some
state in supp(ϕ) via a concrete path of the desired form. Any such path is a
valid prefix for the sequence qn−lσn−l . . . qn we constructed above.
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Formally, the arena G′ = (F , fI ,Σ,∆′). The transition relation ∆′ contains
the transition (f1, σ, f2) if f2 is the σ-successor of f1. Eve, in G′, is required to
avoid states U = {f ∈ F | ∃q ∈ supp(f) : f(q)`max < 0}.

Lemma 11.5. If Eve wins the safety objective in G′, then she also wins the
DirFix(`max) objective in G. �

Proof. Assume λ′ is a winning strategy for Eve in G′. We define a strategy λ
for her in G as follows: λ(%) = λ′(supp−1(%, fI)) for all % ∈ obs(Prefs(())G).
We claim that λ is winning for her in G. Towards a contradiction, assume
ψ ∈ obs(Plays(G)) is consistent with λ and that ψ 6∈ DirFix(`max). Recall that
this implies there are n ∈ N, q ∈ Q such that there is a window of length
`max open at q ∈ obs−1(ψ[n]). By Lemma 11.4 we then get that fn from
supp−1(ψ, fI) = f0σ0f1σ1 . . . is in U . As supp−1(ψ, fI) is consistent with λ′,
this contradicts the assumption that λ′ was winning.

Lemma 11.6. If Eve wins the DirFix(`max) objective in G, then she also wins
the safety objective in G′. �

Proof. Assume λ is a winning strategy for Eve in G. We define a strategy λ′ for
her in G′ as follows: λ′(%′) = λ ◦ obs ◦ supp(%′) for all %′ ∈ obs(Prefs(())G′). We
claim that λ′ is winning for her in G′. Again, towards a contradiction, assume
ψ′ ∈ obs(Plays(())G′) is consistent with λ′ and that ψ′ visits some f ∈ U . This
implies, by Lemma 11.4, that there is a window of length `max open at some
q ∈ supp(f) in ψ = obs(supp(ψ′)). As ∆ is total, for any σ ∈ Σ Eve plays then
there is valid σ-successor of q that Adam can choose as the next state. Hence
there is some χ ∈ obs(Plays(G)) consistent with λ such that χ and ψ have the
same prefix up to iq, where q ∈ obs−1(χ[iq]), and there is a concretization π
of χ such that π[iq] = q. As χ is consistent with λ and χ 6∈ DirFix(`max), this
contradicts the fact that it was a winning strategy.

11.2.1 A symbolic algorithm for DirFix games
We note that the state space of the construction G′ presented in Section 11.2
admits an order such that if a state is smaller than another state, according
to said order, and Eve has a strategy to win from the latter, then she has a
strategy to win from the former. In this section we formalize this notion by
defining the order and, in line with [CDHR06, BBF+12], propose an antichain-
based algorithm to solve the safety game on G′.

We define the uncontrollable predecessors operator UPre : P(F)→ P(F) as

UPre(S) = {p′ ∈ F | ∀σ ∈ Σ,∃q′ ∈ S : (p′, σ, q′) ∈ ∆′}.

For S ∈ P(F), we denote by µX.(S∪UPre(X)), the least fixpoint of the function
F : X → S ∪ UPre(X) in the µ-calculus notation (see [EJ91]). Note that F is
defined on the power-set lattice, which is finite. The following is a well-known
result about the relationship between safety games and the UPre operator (see
e.g. [Grä04]).

Proposition 11.1. Eve wins a safety game with unsafe state set U if and only
if the initial state of the game is not contained in µX.(U ∪ UPre(X)). �
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Definition (The partial order). Given f ′, g′ ∈ F we say f ′ � g′ if and only if
supp(f ′) ⊆ supp(g′) and

∀q ∈ supp(f ′),∀i ∈ {1, . . . , `max},∃j ∈ {i, . . . , `max} : f ′(q)i ≥ g′(q)j .

�

An antichain is a non-empty set S ∈ P(F) such that for all x, y ∈ S we
have x 6� y. We denote by A the set of all antichains. Given a, b ∈ A, denote
by a v b the fact that ∀x ∈ b,∃y ∈ a : y � x. For S ∈ P(F) we denote by bSc
the set of minimal elements of S, that is bSc = {x ∈ S | ∀y ∈ S : y � x implies
y = x}. Clearly bSc is an antichain.

Given S ∈ P(F) we denote by S↑ the upward-closure of S, that is S↑ =
{t ∈ F | S � t}. We say a set s ∈ P(F) is upward-closed if S = S↑. Note that
bSc↑ = S↑ and therefore, if S is upward-closed, the antichain bSc is a succinct
representation of S.

Lemma 11.7. The following assertions hold.

1. U is upward-closed.

2. If S, T ∈ P(F) are two upward-closed sets, then S ∪ T is also upward-
closed.

�

The usual way of showing an antichain algorithm works dictates that we
now prove the UPre operator, when applied to upward-closed sets, outputs an
upward-closed set as well. Unfortunately, this is not true in our case. The
following example illustrates this difficulty.

Example 7. Consider the WA from Figure 11.3 and let `max = 2. We note that
the function f such that f(q0) = ⊥ and f(q1)1 = 1, f(q1)2 = 0 is in UPre(U). We
also have that for the function g such that g(q0) = ⊥ and g(q1)1 = 0, g(q1)2 = 1
we get that f � g. It is easy to verify g 6∈ UPre(U). Hence, UPre(U) is not
upward-closed. �

However, we claim that one can circumvent this issue by ignoring elements
from U . Thus we are able to prove that, under some conditions, UPre does
preserve “upward-closedness”.

Lemma 11.8. Given upward-closed set S ∈ P(F) and f, g ∈ F \ U , if f ∈
UPre(S) and f � g, then g ∈ UPre(S). �

Proof. We have that for all σ, there is hσ ∈ S such that (f, σ, hσ) ∈ ∆′. By
construction of ∆′ we also know that there is iσ such that (g, σ, iσ) ∈ ∆′, and
furthermore, since supp(f) ⊆ supp(g), we get that

supp(hσ) = postσ(supp(f)) ∩ o
⊆ postσ(supp(g)) ∩ o
= supp(iσ)

for some o ∈ Obs. Note that:
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(1) since f, g 6∈ U , then f(p)`max = g(p)`max = 0 for all p ∈ supp(f); and

(2) iσ(q)1 = hσ(q)1 for all q ∈ supp(hσ).

From (1) and since f � g, there is a function α : {1, . . . , `max} → {1, . . . , `max−
1} such that for all 1 ≤ x < `max we have that α(x) ≥ x and f(p)x ≥ g(p)α(x)
holds for all p ∈ supp(f). Observe that for all q ∈ supp(hσ) and any 2 ≤ x ≤
`max, we have that

hσ(q)x = min
p∈supp(f)

({0} ∪ {f(p)x−1 + w(p, σ, q) | f(p)x−1 < 0}

≥ min
p∈supp(f)

({0} ∪ {g(p)α(x−1) + w(p, σ, q) | g(p)α(x−1) < 0}

≥ iσ(q)α(x−1)+1.

It follows that hσ � iσ and that, since S is upward-closed, iσ ∈ S. Thus, we
have shown that for all σ, there is iσ ∈ S such that (g, σ, iσ) ∈ ∆′, which implies
that g ∈ UPre(S).

We define a version of the uncontrollable predecessors’ operator which ma-
nipulates antichains instead of subsets of F .

bUPrec(a) = b{p′ ∈ F \ U | ∀σ ∈ Σ,∃q′ ∈ a,∃r′ ∈ F : (p′, σ, r′) ∈ ∆′ ∧ q′ � r′}c

Given a, b ∈ A we denote by a t b the least upper bound of a and b, i.e.
a t b = b{q′ ∈ F | q′ ∈ a or q′ ∈ b}c. It is easy to check that (a t b)↑ = a↑ ∪ b↑
for any a, b ∈ A.

Theorem 11.4. Given a WA G, Eve wins the DirFix(`max) objective if and only
if {q′I} 6w µX.(bUc t bUPrec(X)). �

Before proving the above theorem, we first argue the following holds.

Lemma 11.9. Given upward-closed set S ∈ P(F), bUPrec(bSc) = bUPre(S) \
Uc. �

Proof. We first show that if f ∈ bUPrec(bSc) then f ∈ UPre(S) \ U . We have
that f 6∈ U and ∀σ ∈ Σ,∃q′ ∈ bSc,∃r′σ ∈ F : (f, σ, r′σ) ∈ ∆′ and q′ � r′σ. Since
S is upward-closed and q′ � r′σ, we know that r′σ ∈ S. Hence, we get that
∀σ ∈ Σ,∃r′σ ∈ S : (f, σ, r′σ) ∈ ∆′, which implies that f ∈ UPre(S) \ U .

Next, we show that if f ∈ bUPre(S) \ Uc then f ∈ {p′ ∈ F \ U | ∀σ ∈
Σ,∃q′ ∈ a,∃r′ ∈ F : (p′, σ, r′) ∈ ∆′ and q′ � r′}. We know that f 6∈ U and
∀σ ∈ Σ,∃r′ ∈ Q : (f, σ, r′) ∈ ∆′. By definition of bSc, we know there is qr′ ∈ bSc
such that qr′ � r′. Thus, we get that ∀σ ∈ Σ,∃r′σ ∈ S,∃qr′ ∈ bSc : (f, σ, r′) ∈ ∆′
and qr′ � r′.

Finally, we note that if f ∈ bUPrec(bSc) then not only is it true that f ∈
UPre(S)\U , but furthermore f ∈ bUPre(S)\Uc. Indeed, if this were not the case,
then there would be g ∈ bUPre(S)\Uc such that g � f and f 6= g. Then, by the
argument explained in the previous paragraph, this would contradict minimality
of f in bUPrec(bSc). Similarly, if f ∈ bUPre(S) \ Uc then f ∈ bUPrec(bSc), as
otherwise, by the argument from the first paragraph of the proof, minimality in
the first set would be contradicted. Thus, the claim holds.

We are now ready to present our proof for the theorem.
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Figure 11.7: For n > `max + 1 the abstract path (o0 . . . on)ω is winning for the
Fix condition but infinitely often visits an unsafe state in the construction from
Section 11.2.

of Theorem 11.4. We note that for any upward-closed set S ⊆ F such that
U ⊆ S we have, from Lemma 11.8 that U ∪UPre(S) is again upward-closed and
a superset of U . In fact, it holds that

U ∪ UPre(S) = (bUc t bUPre(S)c)↑
= (bUc t bUPrec(bSc)↑ from Lemma 11.9.

It is easy to show by induction that µX.(U ∪ UPre(X)) =
(
µX.(bUc t

bUPrec(bXc))
)
↑. Thus, {q′I} 6w µX.(bUc t bUPrec(bSc)) if and only if qI 6∈

µX.(U ∪ UPre(S)). From Proposition 11.1 and Lemmas 11.5 and 11.6 we know
this is the case if and only if Eve has a winning strategy in the safety game in
G′ if and only if she wins the DirFix(`max) objective in G.

11.3 Fix games
Since Fix games are a prefix-independent version of DirFix games, it seems logical
to consider an analogue of the perfect information game from the previous sec-
tion with a prefix-independent condition. Indeed, the reader might be tempted
to extend the approach used to solve DirFix games by replacing the safety ob-
jective with a co-Büchi objective in order to solve UFix or Fix games. However,
we observe that although Eve winning in the resulting game is sufficient for
her to win the original Fix game, it is not necessary. Indeed, an abstract play
visits states from U infinitely often if and only if for infinitely many i there is
a concretization of the play prefix up to i which violates GW(i, `max). Never-
theless, this does not imply there exists one (infinite) concretization of the play
which violates GW(i, `max) for infinitely many i. Figure 11.7 illustrates this
phenomenon.

For the reasons stated above, we propose to solve Fix games in a different
way. We first introduce the notion of observer. Let A be a deterministic parity
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automaton.1 We say A is an observer for the objective V if the language of A is
V , i.e. LA = V . In [CD10], the authors show that the synchronized product of
G and an observer for V is a parity game of perfect information which is won by
Eve if and only if she wins G. Thus, it suffices to find an algorithm to construct
an observer for Fix(`max) to be able to solve Fix games.

For convenience, we start by describing a non-deterministic machine that
accepts as its language the complement of Fix(`max). Note that all elements of
Fix(`max) start with the observation {qI} so it suffices to describe the machine
that accepts any word w ∈ (Σ · Obs)ω such that {qI} · w ∈ obs(Plays(G)) \
Fix(`max). The construction is similar to the one used in [CD10] to make ob-
jectives of imperfect information games visible. Intuitively, at each step of the
game and after Adam has revealed the next observation we will guess his actual
choice of state using non-determinism. Additionally, we shall guess whether or
not a violating window starts at the next step. The state space of the automa-
ton will therefore consist of a single state from Q, a negative integer to record
the weight of the tracked window, and the length of the current open window.

Formally, let N be the automaton consisting of the state space F = Q ×
{1, . . . , `max} × {−wmax · `max, . . . ,−1} ∪ {⊥}; initial state (qI , 1,⊥); input al-
phabet Σ′ = Σ× Obs; and ∆′′ ⊆ F × Σ′ × F . The transition relation ∆′′ has a
transition ((p, i, n), (σ, o), (q, j,m)) if (p, σ, q) ∈ ∆, q ∈ o,

m =


w(p, σ, q) if w(p, σ, q) < 0
n+ w(p, σ, q) if n 6= ⊥ ∧ n+ w(p, σ, q) < 0 ∧ i < `max

⊥ otherwise,

j =
{
i+ 1 if m = n+ w(p, σ, q)
1 otherwise.

We say a state (q, i, n) ∈ F is accepting if i = `max and n 6= ⊥. The automaton
accepts a word x if and only it has a run (q0, i0, n0) (σ0, o1) (q1, i1, n1) (σ1, o2) . . .
on x such that for infinitely many j we have that (qj , ij , nj) is accepting.

Proposition 11.2. The non-deterministic Büchi automaton N accepts a word
ψ ∈ obs(Plays(G)) if and only if ψ 6∈ Fix(`max). �

Proof.

(⇒). Assume N accepts ψ. Let r = (q0, i0, n0)(σ0, o1)(q1, i1, n1)(σ1, o2) . . . be
one of the accepting runs of the automaton on ψ. By construction of N we
have that q0σ0q1σ1 · · · ∈ obs−1(ψ). Let πr denote this concrete play and J =
{j0, j1, j2, . . . } be an infinite set of indices such that jk < jk+1 and (qjk , ijk , njk)
is accepting for all k ≥ 0. Such a sequence is guaranteed to exist since r is
accepting. One can easily verify by induction on the definition of ∆′′ that for
all k ≥ 0 it holds that πr 6∈ GW(ijk − `max, `max). It follows that ∀m ≥ 0,∃n ≥
m : πr 6∈ GW(n, `max), which concludes our argument.

(⇐). Assume that ψ = o0σ0o1σ1 · · · 6∈ Fix(`max). Let π = q0σ0q1σ1 ∈
obs−1(ψ) be the concrete play such that for infinitely many i it is the case

1We refer the reader who is not familiar with parity automata or games to [Tho95].
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that π 6∈ GW(i, `max). We describe the infinite run of N on ψ that accepts.
Let J = {j0, j1, j2, . . . } be an infinite set of indices such that jk + `max < jk+1
and π 6∈ GW(jk, `max) for k ≥ 0. The sequence is guaranteed to exist because
of our choice of π. Observe that this implies there is a run r = (q0, i0, n0)
(σ0, o1) (q1, i1, n1) (σ1, o2) . . . of the automaton where for all k ≥ 0 we have
that njk+1 = w(qjk , σjk , qjk+1) and for all 1 < l < `max then

njk+l = njk+l−1 + w(qjk+l, σjk+l, qjk+l+1).

Furthermore, in this run it holds that for all k ≥ 0 we have ijk+`max = `max.
Hence, said run is such that for all k ≥ 0 the state (qjk+`max , ijk+`max , njk+`max)
is accepting. We conclude that the automaton accepts ψ.

At this point we determinize N and complement it to get a deterministic
automaton with state space of size exponential in the size of N and parity
index polynomial w.r.t. the size of Q (see [Saf88, Saf92, Pit07]). The synchro-
nized product of G and the observer yields a parity game with the same size
bounds. The desired result follows from the parity games’ algorithm and results
of [Jur00].

Theorem 11.5. Given a WA G, determining if Eve has a winning strategy for
the Fix(`max) objective can be decided in time exponential in wmax and the size
of G. �

Corollary 14. Given a WA G with unary encoded weights, deciding if Eve has
a winning strategy for the Fix(`max) objective is EXPtime-complete. �

11.4 UFix games
In order to determine the winner of UFix games, we proceed as in the previous
section by finding a non-deterministic Büchi automaton that recognizes the set
of bad abstract plays. However, in this case the situation is more complicated
because a bad abstract play might arise from a violation in the uniformity,
rather than because of a concrete path with infinitely many window violations.
Figure 11.2 illustrates this issue. To overcome this, we first provide an al-
ternative characterization of the bad abstract plays for Eve. Consider some
ψ ∈ obs(Plays(G)). We say π ∈ obs−1(ψ) merges with infinitely many violating
paths if for all i ≥ 0, there are j ≥ i, k ≥ j + `max and some χ ∈ obs−1(ψ[..k])
such that π[k] = χ[k] and χ 6∈ GW(j, `max). We refer to j as the position of
the violation and to k as the position of the merge. Our next result formally
states the relationship between concrete plays merging for multiple violations
and UFix games.

Lemma 11.10. Given a WA G and ψ ∈ obs(Plays(G)), there is π ∈ obs−1(ψ)
merging with infinitely many violating paths if and only if ψ 6∈ UFix(`max). �

Proof.

(⇒). Assume there is a π ∈ obs−1(ψ) merging with infinitely many violating
paths. We have that there are two infinite sequences of indices J = {j0, j1, . . . }
and K = {k0, k1, . . . } such that jl < jl+1 and jl + `max ≤ kl, for all l ≥ 0,
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and for which we know that there is concrete path χl ∈ obs−1(ψ[..kl]) such that
χ[jl..jl + `max] realizes an open window of length `max and χl[kl] = π[kl], for all
l ≥ 0. Observe that for all l ≥ 0 we have that χl · π[kl..] ∈ obs−1(ψ) and that
χl · π[kl..] 6∈ GW(jl, `max). In other words, ∀l ≥ 0,∃α ∈ obs−1(ψ),∃m ≥ l : α 6∈
GW(m, `max) which implies that ψ 6∈ UFix(`max).

(⇐). Assume ψ 6∈ UFix(`max). We have that there is a infinite sequence of
indices J = {j0, j1, . . . } such that jk < jk+1, for all k ≥ 0, and for which we
know there is a concrete play πk ∈ obs−1(ψ) such that πk 6∈ GW(jk−`max, `max),
for all k ≥ 0. Observe that for all i ≥ 0 the set obs−1(ψ[i]) is finite and bounded
by |Q|. Thus, by Pigeonhole Principle we have that, for all n ≥ 0 there is
ηn ∈ {πm | 1 ≤ m ≤ |Q| · n} ⊆ obs−1(ψ) which merges with at least n violating
paths. Consider an arbitrary η1. If η1 merges with infinitely many violating
paths then we are done and the claim holds. Otherwise it only merges with a
finite number of violating paths, say a1. From the previous argument we know
there is an ηa′1 ∈ obs−1(ψ) that merges with at least a′1 = a1 + 1. Clearly η1
and ηa′1 are disjoint at every point after a′1, lest η1 would merge with a new
violating path. We inductively repeat the process, if ηa′

i
merges with infinitely

many violating paths then we are done. Otherwise it only merges with some
finite number of violating paths, say ai. In that case we turn our attention to
ηa′
i+1

. Note that since Q is finite this process can only be done a finite number of
times. Indeed, after having discarded at most |Q| − 1 concrete plays (which are
disjoint after some finite point) it must be the case the last remaining possible
concrete play has the desired property or we would have a contradiction with
our assumptions. Thus, there is some concrete play π ∈ obs−1(ψ) that merges
with infinitely many violating paths.

We now construct the non-deterministic Büchi automaton N ′ that recog-
nizes plays which contain a concrete path merging with infinitely many violating
paths. The idea is that we non-deterministically keep track of two paths: one
that will eventually witness a violation and then merge with the other, which
ultimately serves as the witness for the path that merges with infinitely many vi-
olating paths. When the two paths merge, the automaton non-deterministically
selects a new path to witness the violation. This is achieved by guessing a state
in the belief set of Eve, as these states represent the end states of any concrete
play consistent with the abstract play so far. To avoid the double exponential
associated with taking the Reif construction before determinizing the automa-
ton, we instead compute the belief set on-the-fly using a Mealy machine that
feeds into our non-deterministic automaton. By transferring the exponential
state increase to an exponential increase in the alphabet size, the overall size of
the determinized automaton (after composition with the Mealy machine) will
be at most singly exponential in the size of our game and W .

More specifically, denote by B the machine that, given ψ = o0σ0o1σ1 · · · ∈
obs(Plays(G)) as its input yields the infinite sequence o0σ0s0o1σ1s1 · · · ∈ (Obs·Σ·
P(Q))ω such that s0 = {qI} and for all i ≥ 0 we have si+1 = postσi(si). One can
easily give a definition of B—which closely resembles a subset construction—
with a state space at most exponential w.r.t. G. Observe that B realizes a
continuous function, in the sense that every prefix of length i of the input
uniquely defines the next si+1 annotation. Thus, the annotation can be done
on-the-fly.
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Formally, N ′ consists of the state space F ′ = Q × Q × {1, . . . , `max} ×
{−wmax, ·`max, . . . ,−1}∪{⊥,>}; initial state (qI , qI , 1,⊥); input alphabet Σ′′ =
Σ × Obs × P(Q); and ∆′′′ ⊆ F × Σ′′ × F . The transition relation ∆′′′ has a
transition ((p, p′, i, n), (σ, o, s), (q, q′, j,m)) if (p′, σ, q′) ∈ ∆, q ∈ s, q′ ∈ o,

m =


w(p, σ, q) if (p, σ, q) ∈ ∆ ∧ w(p, σ, q) < 0
n+ w(p, σ, q) if (p, σ, q) ∈ ∆ ∧ n 6= ⊥ ∧ n+ w(p, σ, q) < 0 ∧ i < `max

> if (p, σ, q) ∈ ∆ ∧ (n 6= > ∨ p 6= p′) ∧ n 6= ⊥ ∧ i = `max

⊥ otherwise,

j =


`max if m = >
i+ 1 if m = n+ w(p, σ, q)
1 otherwise.

We say a state (q, q′, i, n) ∈ F ′ is accepting if q = q′, n = >. N ′ accepts a word
x if and only it has a run (q0, q

′
0, i0, n0) (σ0, o1, s1) (q1, q

′
1, i1, n1) (σ1, o2, s2) . . .

on x such that for infinitely many j we have that (qj , q′j , ij , nj) is accepting.

Proposition 11.3. The non-deterministic Büchi automaton N ′ accepts a word
α = B(ψ), where ψ ∈ obs(Plays(G)), if and only if ψ 6∈ UFix(`max). �

Proof.

(⇒). Assume N ′ accepts α. Let r = (q0, q
′
0i0, n0) (σ0, o1, s1) (q1, q

′
1i1, n1)

(σ1, o2, s2) . . . be one of the accepting runs of the automaton on α. By construc-
tion of N ′ we have that q′0σ0q

′
1σ1 · · · ∈ obs−1(ψ). Let πr denote this concrete

play, J = {j0, j1, . . . } and K = {k0, k1, . . . } be two infinite sets of indices such
that jl < jl+1 and jl + `max ≤ kl, for all l ≥ 0, and for which we know that
• (qkl , q′kl , ikl , nkl) is accepting for all l ≥ 0, and

• njl+`max < 0 ∧ ijl+`max = `max.
Such sequences are guaranteed to exist since r is accepting. Assuming the

correctness of B, one can easily verify by induction on the definition of ∆′′′ that
for all l ≥ 0 we have that πr, at kl merges with a path having a violation at jl. It
follows that πr merges with infinitely many violating paths. From Lemma 11.10
we get that ψ 6∈ UFix(`max).

(⇐). Assume that ψ = o0σ0o1σ1 · · · 6∈ UFix(`max). Let π = q0σ0q1σ1 ∈
obs−1(ψ) be the concrete play that merges with infinitely many violating paths
(see Lemma 11.10. We describe the infinite run of N on α = B(ψ) that ac-
cepts. Let J = {j0, j1, . . . } and K = {k0, k1, . . . } be two infinite sets of indices
such that jl < jl+1 and jl + `max + 1 < kl, for all l ≥ 0, and for which we
know that there is some χl ∈ obs−1(ψ[..kl]) such that π[kl] = χl[kl] and for all
jk < m ≤ jk + `max + 1 we have w(χ[jk..m]) < 0. The sequences are guaranteed
to exist because of our choice of π. Observe that this implies there is a run
r = (q0, q

′
0i0, n0)(σ0, o1, s1)(q1, q

′
1i1, n1)(σ1, o2, s2) . . . of the automaton where

for all l ≥ 0 we have that njl+1 = w(qjl , σjl , qjl+1) and for all 1 < b < `max then

njl+b = njl+b−1 + w(qjl+b, σjl+b, qjl+b+1).
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Furthermore, we have that njl+b = > for all `max ≤ b ≤ kl and qkl = q′kl . Hence,
said run is such that for all l ≥ 0 the state (qkl , q′kl , ikl , nkl) is accepting. We
conclude that the automaton accepts ψ.

We recall that determinizing N ′ and complementing it yields an exponen-
tially bigger deterministic automaton. Its composition with B, itself exponen-
tially bigger, accepts the desired set of plays and is still singly exponential in
the size of the original arena and wmax. Once more, the desired result follows
from the algorithm presented in [Jur00].

Theorem 11.6. Given a WA G, determining if Eve has a winning strategy for
the UFix(`max) objective can be decided in time exponential in wmax and the size
of G. �

Corollary 15. Given a WA G with unary encoded weights, deciding if Eve has
a winning strategy for the UFix(`max) objective is EXPtime-complete. �



Chapter 12

Conclusion and Future
Work

In this dissertation, we have summarized our work on the complexity of mini-
mizing regret in quantitative games and computing winning observation-based
strategies in quantitative games with partial observation.

We have focused on energy and mean-payoff games in our study of partial
observability. However, recall that for Inf, Sup, LimInf, and LimSup one can
always solve them by reduction to a Boolean game. Hence, solutions for them
are implied by results found in the literature for parity games with partial
observation. On the other hand, we have not considered discounted-sum games
with partial observation. We comment on this in the proposed future research
directions (Section 12.3) below.

12.1 Summary
For the first part of this document we have focused on regret. There, we have
given algorithms to compute optimal regret-minimizing strategies for Eve when
we assume she plays against an unrestricted adversary, a positional adversary,
or an eloquent adversary. We have considered this problem in quantitative
games with classical payoff functions Inf, Sup, LimInf, LimSup, mean payoff,
and discounted sum. We have grouped all but discounted sum into prefix-
independent functions. For the latter class of functions algorithms and lower
bounds are almost uniform. There is one case, in particular, for which this does
not hold: minimizing regret in mean-payoff games against eloquent adversaries.
The latter, turns out to be undecidable in general. However, decidability can
be recovered by fixing the amount of memory Eve is allowed to use. The reason
why the solution for other payoff functions does not extend to mean payoff
is that mean-payoff automata are not always determinizable. That is, for a
given mean-payoff automaton, there might not be a deterministic mean-payoff
automaton realizing the same function.

In the second part of this work we have considered energy and mean-payoff
games with partial observation. These had been studied before by Degorre et
al. [DDG+10], but several open questions remained. In that setting, we have
established tight complexity bounds for the fixed initial credit problem for en-
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ergy games. We have also completed the picture regarding decidability vs.
undecidability of mean-payoff games with partial observation. In particular,
we have given a reduction from the halting problem for Minsky machines to
determining the winner in a non-strict lim inf mean-payoff game, showing that
all partial-observation mean-payoff games are undecidable. Motivated by this
negative result, we have defined several decidable sub-classes and studied the
complexity of determining if a game is in one of those classes. We have con-
cluded our study of quantitative games with partial observation by showing that
window mean-payoff objectives are conservative approximations for mean-payoff
(this was already known in the full-observation setting). We have also classified
those objectives according to their decidability and given optimal algorithms to
determine their winner—for the decidable cases.

12.2 Conclusion
To conclude, we have made several contributions to the game-theoretical founda-
tions of reactive synthesis. Our work on regret has opened several new research
directions which, we believe, should be investigated. We have given the first al-
gorithms to compute regret-minimizing strategies for quantitative games played
on finite arenas. The concept of regret is widely used in artificial intelligence
and yet strategies with regret guarantees are mostly “template-based”, in the
following sense. An algorithm is proposed and a regret bound is shown for all
instances of a problem that fulfill some set of assumptions. Our approach to
regret minimization has been more general and has yielded some very interest-
ing solutions via two-player zero-sum quantitative games. Regarding our work
on partial-observation games, we have closed several open problems which re-
mained from the initial study of them. We have shown the fixed initial credit
problem to be Ackermann complete. Also, we have given several decidable sub-
classes of mean-payoff games and studied approximations of them. As is almost
always the case, though, there are several interesting open problems and new
research directions, which we believe should now be investigated.

12.3 Future Work
We present here a non-exhaustive list of research problems which have arised
during the preparation of this dissertation and which we believe to be interesting
and well-motivated.

Concerning regret minimization, there is the question of whether one can
build on our algorithms to compute a strategy which survives n steps of iterated
regret minimization. This would, of course, require to consider games in which
each player has its own objective.

We have also not implemented our algorithms. It would be most interesting
to test them empirically and compare them against ‘regret-minimal’ strategies
proposed by the artificial intelligence and machine learning communities.

In terms of computational complexity, our algorithms for discounted-sum
games seem to leave space for improvement. Indeed, when the discount factor is
given as part of the input (in binary) the bounds given in this work are not tight,
and in some instances we only solve particular cases and not the general regret
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threshold problem. We believe, however, that much work on discounted-sum
games and automata must take place before the behavior of the infinite-horizon
discounted-sum payoff function is better understood and more properties of it
are known.

Finally, there are some classes of adversary which we did not consider but
which have been pointed out by other colleagues as interesting scenarios. The
first of these is that of counting adversaries. Counting strategies are realizable
by a 1-state Mealy machine with an unbounded counter (used to keep track of
the number of turns elapsed). The second one is that of ‘average adversaries’. In
other words, we could assume the environment assigns a uniform probabilistic
distribution to all his possible choices at every vertex. This would allow us to
give ‘average regret guarantees’. (The latter is open to interpretation as there
might be several formalizations for the idea.)

Concerning partial-observation games, there are four main questions which
we did not address in this work. First, are blind mean-payoff games undecid-
able if we do not restrict Eve to play finite-memory strategies only? Second,
what happens in partial-observation mean-payoff games if we allow Eve to play
mixed strategies? Third, are partial-observation mean-payoff games provably
observably determined in ZFC? And fourth, what is the complexity of partial-
observation discounted-sum games? The latter is related to some open problems
for discounted-sum automata and games and will probably be the one which will
remain unanswered the longest. For example, universality of discounted-sum au-
tomata and deciding the winner for a multi-dimensional discounted-sum game
are problems which have not yet been solved but can be reduced to games with
partial observation (see [BHO15] and references therein).
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John Schulman, and Dan Mané. Concrete problems in AI safety.
CoRR, abs/1606.06565, 2016.

[AR14] Benjamin Aminof and Sasha Rubin. First cycle games. In Strategic
Reasoning, volume 146 of EPTCS, pages 83–90, 2014.
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[BMR14] Véronique Bruyère, Noémie Meunier, and Jean-François Raskin.
Secure equilibria in weighted games. In CSL-LICS, pages 26:1–
26:26, 2014.

[BRS14] Romain Brenguier, Jean-François Raskin, and Mathieu Sassolas.
The complexity of admissibility in omega-regular games. In CSL-
LICS, pages 23:1–23:10. ACM, 2014.

[BRS15] Romain Brenguier, Jean-François Raskin, and Ocan Sankur.
Assume-admissible synthesis. In CONCUR, volume 42 of LIPIcs,
pages 100–113. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2015.

[BSV04] Henrik Björklund, Sven Sandberg, and Sergei Vorobyov. Mem-
oryless determinacy of parity and mean payoff games: a simple
proof. TCS, 310(1):365–378, 2004.



BIBLIOGRAPHY 207

[CD10] Krishnendu Chatterjee and Laurent Doyen. The complexity of
partial-observation parity games. In LPAR, pages 1–14. Springer,
2010.

[CD12] Krishnendu Chatterjee and Laurent Doyen. Partial-observation
stochastic games: How to win when belief fails. In LICS, pages
175–184. IEEE Computer Society, 2012.

[CdAHS03] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and
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[Grä04] Erich Grädel. Positional determinacy of infinite games. In STACS,
pages 4–18. Springer, 2004.

[HM15] Axel Haddad and Benjamin Monmege. Why Value Iteration Runs
in Pseudo-Polynomial Time for Discounted-Payoff Games. Tech-
nical note, Université libre de Bruxelles, 2015.



BIBLIOGRAPHY 209

[HP06] Thomas A. Henzinger and Nir Piterman. Solving games without
determinization. In CSL, pages 395–410. Springer, 2006.

[HP12] Joseph Y. Halpern and Rafael Pass. Iterated regret minimiza-
tion: A new solution concept. Games and Economic Behavior,
74(1):184–207, 2012.

[HPR14] Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin.
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