
Efficient algorithms and tools for MITL model-checking and synthesis

Thomas Brihaye
UMons

Mons, Belgium
thomas.brihaye@umons.be

Arthur Milchior
Université libre de Bruxelles

Bruxelles, Belgique
arthur.milchior@ulb.ac.be

Gilles Geeraerts
Université libre de Bruxelles

Bruxelles, Belgique
gilles.geeraerts@ulb.ac.be

Hsi-Ming Ho
University of Cambridge

Cambridge, UK
hsimho@gmail.com

Benjamin Monmege
Aix Marseille Université, CNRS,

Université de Toulon, LIS
Marseille, France

benjamin.monmege@univ-amu.fr

Abstract—Metric Interval Temporal Logic (MITL) is an
extension of the classical Linear Time Logic (LTL) that can be
used to characterise real-time properties of computer systems.
While the practical interest of MITL is undeniable, there is
still today a remarkable lack of tool support for this logic.
In this short paper, we report on our on-going work effort to
complete the theoretical knowledge about MITL. We also report
on our recently introduced tool MightyL, which translates
MITL formulæ into timed automata, enabling efficient model-
checking of this logic. Finally, we sketch the future directions of
our current line of research, which will be to extend MightyL
to support reactive synthesis of MITL properties.

Keywords-MITL; Model-checking; Synthesis; Timed au-
tomata

I. INTRODUCTION

The development of reactive and critical real-time systems
is known to be a difficult problem, since the safety of
those systems does not only rely on their correct interaction
with their environment, but also on the precise timings
of these interactions. Two major approaches have been
advocated by the formal methods community to ensure
strong guarantees about the behaviour of such systems,
namely: model-checking and synthesis. Roughly speaking,
model-checking allows one to check whether some model
of the system satisfies a given property. Synthesis extends
the scope of computer-assisted design of hardware/software
systems beyond the capabilities of model-checking: given a
model of the environment, synthesis amounts to computing
(if possible) a controller that enforces a given property.

In the untimed settings, theoretical and practical contri-
butions on these two problems abound, and many tools are
available to perform model-checking and synthesis when
the system and the environment are specified as (Büchi)
automata, and the properties are given in Linear Temporal
Logic (LTL for short) [18]. See for example [3], [8] for tools
that allow to perform LTL model-checking and synthesis
respectively.

In the real-time setting, timed automata [1] are now
established as the prime automaton model, and several tools

such as Uppaal [15], Uppaal TiGa or LTSMin (with the
Opaal plug-in) [13] support them. Those tools, however,
accept timed automata as the model of the system, but the
properties that they can verify or synthesise are essentially
untimed, which limits their range of applications. For ex-
ample, Uppaal supports mainly CTL properties with some
restricted TCTL queries.

The most natural real-time extension of LTL is arguably
the metric temporal logic (MTL) [14]. In MTL, one can
write properties such as �(a → ♦[x,y]b), where [x, y]
is an interval, and meaning ‘every a should eventually
be followed by a b after at least x and at most y time
units’. Unfortunately, MTL is mostly undecidable [17], a
limitation which has prompted Alur et al. to introduce the
metric interval temporal logic (MITL) as a fragment of MTL
where punctual (i.e singular) intervals are disallowed [2].
They have showed that MITL satisfiability is decidable (in
EXPSPACE) and that MITL formulæ can be translated into
timed automata thereby enabling automata-based model-
checking. MITL thus seems to be an excellent real-time
counterpart to LTL. Unfortunately, and albeit the works of
Alur et al. have appeared 20 years ago, tool support for
MITL is still lacking.

In this short paper, we present our ongoing research effort,
that aims at providing the formal methods community with
(hopefully efficient) tools to perform MITL model-checking
and synthesis. During the past decade, we have been working
to extend the theory about MITL (we have, for instance,
characterised the decidability of synthesis, and proposed new
translation techniques to timed automata), and to develop
tools based on these new results. The cornerstone of our
contribution is our recently introduced tool MightyL, which
performs efficient translation of MITL into timed automata
[6], [7], thereby enabling efficient automata-based model-
checking of MITL (thanks to efficient model-checking en-
gines such as Uppaal [15] or LTSMin [13] with Opaal plug-
in as back-ends). We plan to continue this line of research by
extending MightyL to perform efficient synthesis of MITL,

based on the techniques presented in [11] for LTL.

II. THE METRIC INTERVAL TEMPORAL LOGIC

We start by defining the syntax of MITL. Let Σ be a finite
alphabet that models the possible actions of the system.
Then, MITL formulae over Σ are generated by the grammar:
ϕ := > | ⊥ | σ | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ϕUIϕ, where σ ∈ Σ
and I is a non-singular interval with endpoints in N≥0∪{∞}.
As in the case of LTL, the UI operator is read ‘until’. So
intuitively (see below for a formal definition), pUIq means
‘p should hold until q holds, and this happens after t time
units, with t ∈ I’. As is usual, also in the case of LTL, we
rely on useful shorthands such as the ‘eventually’ operator
♦Iϕ ≡ >UIϕ and the ‘globally’ operator �Iϕ ≡ ¬♦I¬ϕ.
For example, �(req → (♦(0,3)grant)) is an MITL formula,
while pU[1,1]q is not, because the [1, 1] interval is singular.

Let us now discuss the semantics of MITL. Two se-
mantics have been considered in the literature, namely: the
continuous and the pointwise semantics. In the continuous
semantics [2], MITL formulæ are interpreted over signals,
i.e. functions that associated valuations of propositional
variables to all timestamps (which are modeled by the non-
negative real). In this short paper, we consider the so-called
pointwise semantics only, because it is the most natural when
relying on timed automata for the models of the system. That
is, formulæ of MITL will be interpreted over timed words
which are infinite sequences of pairs of the form (action,
timestamp), where the action is an element from Σ, and
the sequence of timestamps along the timed word is non-
decreasing, in order to model faithfully the elapsing of time.
Formally, a timed word over some alphabet Σ is an infinite
sequence ρ = (σ0, τ0)(σ1, τ1) · · · over Σ×R+ with (τi)i∈N
a non-decreasing sequence of non-negative real numbers. We
let TΣω be the set of timed words over Σ. A timed language
is a subset of TΣω .

We can now define the (pointwise) semantics of MITL
as a timed language. We say that a timed word ρ =
(σ0, τ0)(σ1, τ1) · · · over Σ satisfies ϕ at position i (written
ρ, i |= ϕ) if ρ, i and ϕ respect one of the inductive rules:
• ρ, i |= > and ρ, i 6|= ⊥;
• ρ, i |= σ if σ = σi and ρ, i |= ¬φ if ρ, i 6|= φ;
• ρ, i |= φ1 ∧ φ2 if ρ, i |= φ1 and ρ, i |= φ2;
• ρ, i |= φ1 ∨ φ2 if ρ, i |= φ1 or ρ, i |= φ2;
• ρ, i |= φ1UIφ2 if there exists j > i, ρ, j |= φ2, τj−τi ∈
I , and, for all i < k < j, ρ, k |= φ1.

We write ρ |= ϕ when ρ, 0 |= ϕ. We denote by L (ϕ) the set
of all timed words ρ s.t. ρ |= ϕ, and call L (ϕ) the language
of ϕ. For example, �(req → (♦(0,3)grant)) is satisfied
by ρ = (req , 1)(req , 1.5)(grant , 3.6)(∅, 5)(∅, 6)(∅, 7) · · ·
because the (unique) grant event occurs in the words 2.6
and 2.1 time units after the respective req events.

Observe that MITL can also be interpreted on finite
timed words (or signals [7]) but we omit these alternative
definitions in this short paper.

q0 q1
a

b

c, x ≥ 2, {x}

s0

s1

s2

a,{y}

b,{y}

c, y = 2

c, y = 4

Figure 1. Two example timed automata: a plant and a its controller.

III. MODEL-CHECKING MITL AND THE MIGHTYL TOOL

The first main problem we are interested in about MITL
is the well-known model-checking problem: model-checking
allows one to prove in a mathematical sense that a model
of a computer system is correct wrt a given specification,
or to expose bugs. The family of models that we rely on in
this work are known as timed automata (TA for short) [1].
Roughly speaking, timed automata extend classical (non-
deterministic, Büchi) automata by a finite set X of real-
valued variables called clocks. The values of those clocks
increase spontaneously with time elapsing, all at the same
rate. Then, discrete transitions in a TA can constrain the
value of the clocks (by a condition called a guard) and reset
some clocks.

Formally, let X be a finite set of real-valued clocks. The
set G(X) of clock constraints g over X is defined by g :=
> | g ∧ g | x ./ c, where ./ ∈ {≤, <,≥, >}, x ∈ X and
c ∈ N. A valuation over X is a mapping v : X → R+. We
denote by 0 the valuation that maps every clock to 0. The
satisfaction of a constraint g by a valuation v is defined in
the usual way and noted v |= g. For t ∈ R+, we let v+ t be
the valuation defined by (v+t)(x) = v(x)+t for all x ∈ X .
For R ⊆ X , we let v[R ← 0] be the valuation defined by
(v[R ← 0])(x) = 0 if x ∈ R, and (v[R ← 0])(x) = v(x)
otherwise.

Then, a timed automaton (with Büchi acceptance con-
dition) on the alphabet Σ is a tuple A = (L, `0, T, F)
where: (i) L is a finite set of locations; (ii) `0 ∈ L is
the initial location; (iii) T ⊆ L × Σ × G(X) × 2X × L
is the transition relation, where each transition consists of
the source location, the letter to be read, the clock constraint
(guard) to be checked, the clocks to be reset, and the target
location; (iv) F ⊆ L is a set of accepting locations.

For example, Figure 1 displays two TAs (ignore the
dashed arrows for the moment). The right one has three
states, where s0 is both initial and accepting (s0 ∈ F). The
transition from s0 to s1 has label a, and resets clock y, while
the transition from s1 to s2 has label c, and can be taken
only when y = 2.

As expected, timed automata define timed languages.
Formally, a configuration of a TA A = (L, `0, T, F) is
a pair (`, v) where ` ∈ L is the current location of the
automaton, and v is a valuation of the clocks in X . Given
a configuration (`, v), two sorts of transitions can occur.

First, a continuous transition corresponds to the elapsing of
δ time units and affects the valuation of the clocks only.
Formally, for all configurations (`, v), for all δ ∈ R+, we let
(`, v)

δ−→ (`, v+δ). Second, a discrete transition corresponds
to a change of location of the automaton, and affects both the
current location and the clock valuation (through the resets).
Formally, for a configuration (`, v) and a letter σ ∈ Σ,
we have a discrete transition (`, v)

σ−→ (`′, v′) iff there
exists a transition t = (`, σ, g, R, `′) ∈ T s.t. v |= g and
v′ = v[R← 0]. We write (`, v)

δ,σ−−→ (`′, v′) whenever there
is v′′ s.t. (`, v)

δ−→ (`, v′′)
σ−→ (`′, v′).

Then, a run (of A) on a timed word ρ =
(σ0, τ0)(σ1, τ1) · · · over Σ is an infinite sequence of tran-
sitions of the form π = (`0,0)

δ0,σ0−−−→ (`1, v1)
δ1,σ1−−−→

(`2, v2) · · · s.t. τi =
∑i
j=0 δj for all i ≥ 0. We consider

Büchi acceptance conditions: a word ρ is accepted by a TA
A iff A admits a run π on ρ s.t. at least one accepting
location ` ∈ F occurs infinitely often along π. We denote
by L(A) the timed language made up of all words accepted
by A. As an example, the timed language of the TA on
the left of Figure 1 accepts all timed words of the form
(α0, τ0)(c, τ ′0)(α1, τ1)(c, τ ′1) · · · where each αi is either a
or b, and τi − τi−1 ≥ 2 for all i ≥ 0 (assuming τ−1 = 0).

Finally, we recall that, given two TAs A1 and A2, one
can build a TA A1×A2, called the synchronous product of
A1 and A2, which is s.t. L(A1×A2) = L(A1)∩L(A2) [1].

Now that we have fixed the model of timed automata,
we can define the first main problem we are interested
in, namely the model-checking problem. Given a TA M
(modelling some computer system) and an MITL formula
ϕ (modelling some requirement on the actions of the sys-
tem) on the same alphabet Σ, the model-checking problem
asks whether all executions of M satisfy ϕ, i.e. whether
L(A) ⊆ L(ϕ).

A widely used technique (also in the untimed case)
is automata-based model-checking, which consists in ex-
pressing all inputs of the problem in terms of automata,
and relying on automata-based algorithms to check for
the language inclusion. In our case, this amounts to: first,
computing ¬ϕ (which thus represents all the undesired
behaviours of the system); then, to translate ¬ϕ into a timed
automaton A¬ϕ s.t. L(A¬ϕ) = L(¬ϕ); and finally to check
whether M and A¬ϕ accept a common word, i.e. whether
L(A¬ϕ) ∩ L(M) = L(A¬ϕ × M) = ∅ (observe that
the model-checking problem is thus reduced to a language
emptiness problem for TAs). The answer to the model-
checking problem is positive iff L(A¬ϕ)∩L(M) = ∅, i.e. no
execution of M violates ϕ.

As can be seen from this brief summary, a key ingredient
to automata-based model-checking is the ability to translate
MITL formulæ to equivalent TAs. Such a technique can
already be found (for the continuous semantics) in the
seminal paper of Alur et al. [2], and several other proposals

have been made since then [4], [16], including from some
of the authors of the present paper. We will now discuss
our recently introduced tool MightyL [6], which translates
efficiently MITL formulæ into equivalent timed automata1.
To the best of our knowledge, MightyL is the first such
tool that is freely available, although several translation al-
gorithms have been proposed in the literature during the past
20 years. The main features of MightyL can be summarised
as follows:

1) As explained, MightyL performs the translation of the
MITL specification into a corresponding TA represen-
tation. An automaton equivalent to the MITL formula is
output in the Uppaal XML format [15]. This allows one
to use a broad range of model-checkers as the back-end
to perform the actual verification, such as Uppaal (in
the finite words semantics) or LTSMin [13].

2) The translation algorithm implemented in MightyL
is compositional. Instead of building a single mono-
lithic timed automaton corresponding to the formula,
MightyL builds a network of so-called component
timed automata, one for each sub-formula2. Hence, the
network of TAs retains the structure of the original
MITL formula. The actual composition of these com-
ponent TAs is computed by the model-checker. This
can thus be performed on-the-fly, and benefit from
any optimisation that the model-checker implements. In
future works, we plan to study heuristics that could be
incorporated in the model-checking engine and exploit
the structure of the TAs that are produced by MightyL.

3) The synchronisation between the component TAs is
designed in a way to mitigate the state explosion that
could occur during the composition. To achieve this,
we have drawn inspiration from results on very weak
one-clock alternating timed automata [12].

4) The total number of clocks needed by the resulting
component TAs is reduced by half at most, compared
to previous works [4]. This optimisation is important,
as it is well-known that model-checking tools such as
Uppaal are very sensitive to the number of clocks.

MightyL has been written in OCaml and is freely available
for download on the web at http://www.ulb.ac.be/

di/verif/mightyl. The website also allows one to test
MightyL online: one can submit MITL formulæ, obtain
the corresponding network of TAs in the Uppaal XML
format, and even run Uppaal or LTSMin online to check for
satisfiability of the formulæ. We are currently working on
refactoring the code of MightyL to make it more readable,
and easier to extend.

1Note that MightyL can also be used to perform MITL model-checking
in the continuous semantics [7], by reducing it to a language inclusion
problem in the pointwise semantics, thereby allowing to rely on the same
model-checking back-end as in the pointwise case.

2Note that this construction subsumes the construction implemented in
LTL2BA for LTL [12].

Table I
RUNNING TIMES OF MIGHTYL ON THE SATISFIABILITY PROBLEM.

Formula MightyL LTSMin

p1U[0,5](p2U[0,5](p3U[0,5](p4U[0,5](p5U[0,5]p6)))) < 1 s. 1.12 s.
((�♦p1) → �(q → ♦[0,5]r)) < 1 s. 1 s.(
(�♦p1 ∧ �♦p2) → �(q → ♦[0,5]r)

)
< 1 s. 1.2 s.

Our experiments show very promising results in practice,
see [6] for more details. As a benchmark, we check satisfi-
ability of MITL formulæ. i.e. whether L(ϕ) = L(Aϕ) 6= ∅
for a given MITL formula ϕ. Satisfiability is thus a good
benchmark for MightyL, since it can be solved by translating
the MITL formula into an equivalent TA, and then checking
for language emptiness, as in the case of model-checking,
our target application. We report on some results in Table I.
In general, the model-checking times are more tractable
with formulæ from the MITL[0,∞] fragment, that consists
of formulæ where all intervals either start with 0 or end
with +∞.

IV. TOWARDS EFFICIENT SYNTHESIS

As already argued in the introduction, model-checking
is a very powerful tool, but it offers very few help to the
designer when a bug is found. While model-checking tools
can produce error traces (i.e. executions of the model that
violate the specification), they do not offer clue as how to
modify the system (and its model) in order to avoid them.

A much more powerful approach has been advocated
by the formal methods community in the past 20 years:
synthesis. In our setting, the reactive synthesis problem
asks, given a (deterministic) TA P called the plant, and
an MITL formula ϕ (the specification), to find, if possible,
a deterministic TA3 C, called the controller, such that,
when C controls the plant P , the whole system respects
ϕ, i.e. L(C × P) ⊆ L(ϕ).

Of course, not any deterministic TA is admissible as a
controller. A proper theoretical framework for the reactive
synthesis problem in the real-time setting has been intro-
duced by D’Souza et al. in [10]; let us highlight their main
ideas. First, the alphabet Σ of the plant P is partitioned
into controllable and uncontrollable actions, i.e. those on
which the controller can and cannot act, respectively. Then,
the conditions on the controller are that: (i) it cannot reset
the clocks of the plant, but it can observe them, and can
have its own set of clocks that it can test and reset at will;
(ii) it cannot restrict the uncontrollable moves of the plant:
whenever such a move is possible in the plant, it should also
be possible under the controller (i.e. in P × C); and (iii) it
must be non-blocking, i.e. it cannot introduce deadlocks.

For example, consider again the automata in Figure 1. The
left one is an example of plant P , where the uncontrollable

3with some additional restrictions, see below.

actions are a and b (dashed arrow), and only c is controllable.
Let us fix the MITL requirement �(a → ♦[2,3]c) ∧ �(b →
♦[4,5]c). That is, the goal of the controller is to ensure the
proper timing of the (controllable) c actions that follow each
of the (uncontrollable) a’s and b’s: when an a has occurred,
the c must take place after at least 2 and at most 3 time
units (and similarly for the b: between 4 and 5 time units).
Then, the TA on the right is a possible controller for this
requirement. Note that it does not restrict the uncontrollable
actions of the plant (which can still perform a’s and b’s at
will), but controls the moment at which the (controllable)
c occurs. To do so, it needs an extra clock y that is reset
whenever an a or b occurs. This clock is necessary because
the x clock in P does not measure the time since the last a
or b, but since the last c.

Unfortunately, MITL synthesis has been shown undecid-
able in [9], a result recently refined in [5]. More precisely,
MITL synthesis is undecidable in the general case both on
finite and infinite words, and even for very restricted frag-
ments of the logic. Decidability can be recovered, however,
when we bound a priori the resources that the controller
can use. In our setting the resources mean: (i) the number
of clocks that the controller can use; and (ii) the maximal
constant that can appear in the guards of the controller.
The reader familiar with timed automata will understand
that these restrictions allow to bound a priori the number
of regions that any potential controller can have. We call
this new problem the bounded resources reactive synthesis
problem (BRRS for short). A 3EXPTIME solution to BRRS
is readily obtained by combining the algorithm of D’Souza
and Madhusudan [10] with any procedure to translate MITL
formulæ into timed automata (such as the one implemented
in MightyL). Unfortunately, this complexity (together with
the fact that one needs to build the full region automaton
of the potential controller) makes this algorithm a very poor
candidate for practical implementation. The next step in our
research will thus be to look for a more feasible solution.
Our aim is to adapt the efficient techniques of Jin et al. [11]
(for LTL synthesis), as we are about to explain now.

As in the case of LTL, our plan is to obtain an iterative
algorithm that, given an instance (P,ϕ) of BRRS (assuming
fixed resources), creates a finite sequence G1, G2, . . . , Gn of
games played between some protagonist (that can take all
the possible actions that a potential controller could chose)
against the plant. Those games have the following properties:
(i) if there is a winning strategy for the protagonist in
some game Gi, then, this winning strategy can be readily
translated into a correct controller for the specification ϕ;
(ii) if no such controller exists, then, the protagonist has no
winning strategy in any game of the sequence. Moreover,
the size of those games increases along the sequence, with
the first ones G1, G2. . . being of relatively small sizes,
hence very easy to analyse using standard tools. In some
sense, each Gi can be seen as an approximation of the full

instance, each step in the sequence being a refinement of
the approximation. In the LTL case, experimental evidence
shows that, on most instances, a controller can be computed
from the coarsest approximations G1 or G2, which yields a
very efficient algorithm in practice.

Concretely, those games Gi could be: (i) either untimed
(Büchi) games that can be solved using classical algorithms.
This is the most straightforward approach, however, to obtain
such untimed games we will need to rely on the region
construction, which will probably yield an undesired state
explosion; (ii) or timed games, such as the one that can be
solved by Uppaal TiGa (in the finite words setting). Relying
on such tools will allow us, as in the case of model-checking,
to benefit from their efficient implementation (in the case of
Uppaal TiGa, this means relying on its on-the-fly zone-based
algorithm for solving timed games). We will investigate the
relative merits of these different techniques, and plan to
implement them as an extension of our tool MightyL.

REFERENCES

[1] Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[2] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The
benefits of relaxing punctuality. Journal of the ACM,
43(1):116–146, 1996.

[3] Aaron Bohy, Véronique Bruyère, Emmanuel Filiot, Naiyong
Jin, and Jean-François Raskin. Acacia+, a tool for LTL syn-
thesis. In Proceedings of the 24th International Conference,
(CAV 2012), number 7358 in Lecture Notes in Computer
Science, pages 652–657. Springer, 2012.

[4] Thomas Brihaye, Morgane Estiévenart, and Gilles Geeraerts.
On MITL and alternating timed automata of infinite words. In
Proceedings of the 12th International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS 2014),
volume 8711 of LNCS, pages 69–84. Springer, 2014.

[5] Thomas Brihaye, Morgane Estiévenart, Gilles Geeraerts, Hsi-
Ming Ho, Benjamin Monmege, and Nathalie Sznajder. Real-
time synthesis is hard! In Formal Modeling and Analysis of
Timed Systems - 14th International Conference, (FORMATS
2016), volume 9884 of Lecture Notes in Computer Science,
pages 105–120. Springer, 2016.

[6] Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Ben-
jamin Monmege. MightyL: A compositional translation
from MITL to timed automata. In Rupak Majumdar and
Viktor Kunčak, editors, Proceedings of the 29th International
Conference on Computer Aided Verification, Part I (CAV
2017), volume 10426 of Lecture Notes in Computer Science,
pages 421–440, Heidelberg, Germany, July 2017. Springer.

[7] Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Ben-
jamin Monmege. Timed-automata-based verification of MITL
over signals. In Sven Schewe, Thomas Schneider, and Jef
Wijsen, editors, Proceedings of the 24th International Sympo-
sium on Temporal Representation and Reasoning (TIME’17),
volume 90 of LIPIcs, pages 7:1–7:19, Dagstuhl, Germany,
October 2017. Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik.

[8] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia,
Fausto Giunchiglia, Marco Pistore, Marco Roveri, Roberto
Sebastiani, and Armando Tacchella. NuSMV2: An open-
source tool for symbolic model checking. In Proceedings
of the 14th International Conference on Computer Aided
Verification (CAV 2002), volume 2404 of Lecture Notes in
Computer Science, pages 359–364. Springer, 2002.

[9] Laurent Doyen, Gilles Geeraerts, Jean-François Raskin, and
Julien Reichert. Realizability of real-time logics. In Proceed-
ings of the 7th International Conference on Formal Modeling
and Analysis of Timed Systems (FORMATS 2009), volume
5813 of Lecture Notes in Computer Science, pages 133–148.
Springer, 2009.

[10] Deepak D’Souza and P. Madhusudan. Timed control synthesis
for external specifications. In Proceedings of the 19th An-
nual conference on Theoretical Aspects of Computer Science
(STACS 2002), volume 2285 of Lecture Notes in Computer
Science, pages 571–582. Springer, 2002.

[11] Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. An
antichain algorithm for LTL realizability. In Proceedings of
the 21st Internationl Conference on Computer Aided Verifica-
tion, (CAV 2009), volume 5643 of Lecture Notes in Computer
Science, pages 263–277. Springer, 2009.

[12] Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata
translation. In Proceedings of the 13th Internationl Confer-
ence on Computer Aided Verification, (CAV 2001), volume
2102 of Lecture Notes in Computer Science, pages 53–65.
Springer, 2001.

[13] Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol,
Stefan Blom, and Tom van Dijk. LTSmin: High-performance
language-independent model checking. In Proceedings of the
21st International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2015), volume
9035 of Lecture Notes in Computer Science, pages 692–707.
Springer, 2015.

[14] Ron Koymans. Specifying real-time properties with metric
temporal logic. Real-Time Systems, 2(4):255–299, 1990.

[15] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal
in a nutshell. International Journal on Software Tools for
Technology Transfer, 1(1-2):134–152, 1997.

[16] Oded Maler, Dejan Nickovic, and Amir Pnueli. From MITL
to timed automata. In Proceedings of the 4th International
Conference on Formal Modeling and Analysis of Timed
Systems (FORMATS 2006), volume 4202 of Lecture Notes
in Computer Science, pages 274–289. Springer, 2006.

[17] Joël Ouaknine and James Worrell. On the decidability of
metric temporal logic. In Proceedings of the 20th Annual
Symposium on Logic in Computer Science (LICS’05), pages
188–197. IEEE Computer Society Press, 2005.

[18] Amir Pnueli. The temporal logic of programs. In Proceedings
of the 18th Annual Symposium on Foundations of Computer
Science (FOCS 1977), pages 46–57. IEEE, 1977.

