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Abstract

We introduce general techniques to compute, efficiently, succinct representa-
tions of winning strategies in safety and reachability games. Our techniques
adapt the antichain framework to the setting of games, and rely on the notion
of turn-based alternating simulation, which is used to formalise natural rela-
tions that exist between the states of those games in many applications. Then,
we demonstrate the applicability of our approach by considering an important
problem borrowed from the real-time scheduling community, i.e. the problem
of finding a correct schedule(r) for a set of sporadic tasks upon a multiproces-
sor platform. We formalise this problem by means of a game whose number
of states is exponential in the description of the task set, thereby making it a
perfect candidate for our approach. We have implemented our algorithm and
show experimentally that it scales better than classical solutions. To the best
of our knowledge, this is the first attempt at implementing an exact feasibility
test for this particular problem.

Keywords: Safety games, Succinct strategies, antichains, Real-time
scheduling, Sporadic tasks

1. Introduction

Finite, turn-based, games are a very simple, yet relevant, class of games.
They are played by two players (S and R) on a finite graph (called the arena),
whose set of vertices is partitioned into Player S and Player R vertices. A play
is an infinite path in this graph, obtained by letting the players move a token
on the vertices. Initially, the token is on a designated initial vertex. At each
round of the game, the player who owns the vertex marked by the token decides
on which successor node to move it next. A play is winning for R if the token
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eventually touches some designated ‘bad’ nodes (the objective for R is thus a
reachability objective), otherwise it is winning for S (for whom the objective is
a safety objective), hence the names of the players.

Such games are a natural model to describe the interaction of a potential
controller with a given environment, where the aim of the controller (modelled
by player S) is to avoid the bad states that model system failures. They have
also been used as a tool to solve other problems such as LTL realisability [1],
real-time scheduler synthesis [2] or timed automata determinisation [3].

We consider, throughout the paper, a running example which is a variation
of the well-known Nim game [4]. Initially, a heap of N balls is shared by the
players, and the urn is empty. The players play by turn and pick either 1 or 2
balls from the heap and put them into the urn. A player loses the game if he is
the last to play (i.e. the heap is empty after he has played). An arena modelling
this game (for N = 8) is given in Figure 1 (top), where S-states are circles, R-
states are squares, and the numbers labelling the states represent the number of
balls inside the urn. The arena obtained from Figure 1 without the dotted edges
faithfully models the description of the game we have sketched above (assuming
Player S plays first). From the point of view of player S, the set of states that
he wants to avoid (and that player R wants to reach) is Bad =

{
7 , 8

}
, and

we call winning all the states from which S can avoid Bad whatever R does.
It is well-known [4] that a simple characterisation of the set of winning states1

can be given. For each state v, let λ(v) denote its label. Then, the winning
states (in white in Fig 1) are all the S-states v s.t. λ(v) mod 3 6= 1 plus all the
R-states v′ s.t. λ(v′) mod 3 = 1.

It is well-known that memory-less winning strategies (i.e. that depend only
on the current state) are sufficient for both players in those games. Memory-
less strategies are often regarded as simple and straightforward to implement
(remember that the winning strategy is very often the actual control policy that
we want to implement in, say, an embedded controller). Yet, this belief falls
short in many practical applications such as the three mentioned above because
the arena is not given explicitly, and its size is at least exponential in the size
of the original problem instance. Hence, the computation of winning strategies
might be intractable in practice because it could request to traverse the whole
arena. Moreover, a naive implementation of a winning strategy σ by means of
a table mapping each S-state v to its safe successor σ(v) (like in Figure 1 (a)
for our running example), is not realistic because this table would have the size
of the arena.

In this work, we consider the problem of computing winning strategies that
can be succinctly represented. We call ‘?-strategy’ those succinct representa-
tions, and they can be regarded as an abstract representation of a family of

1In order to make our example more interesting (this will become clear in the sequel), we

have added the three dotted edges from 7 to 6 and 5 respectively, and from 6 to 5
although those actions are not permitted in the original game. However, observe that those
extra edges do not modify the set of winning states.
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(a) Winning strategy
node succ. node succ. node succ. node succ.

0 1 3 4 5 7 7 8

2 4 4 5 6 7

(b) Winning ?-strategy (c) �0-Winning ?-strategy
node succ. node succ.

0 1 5 7

2 4 6 7

3 4

node succ.
5 7

6 7

Figure 1: Urn-filling Nim game with N = 8, and three winning strategies. (a) is a winning
strategy mapping all S nodes to a suitable successor. (b) is a (slightly more compact) winning
?-strategy σ where the nodes n s.t. σ(n) = ? have been omitted. This strategy remembers
the move to be played from the winning and reachable S nodes only. (c) is a �0-monotonic
wining ?-strategy that remembers the moves to be played from the maximal winning nodes
only.

(plain) strategies, that we call concretisations of the ?-strategies. In order to
keep the description of winning ?-strategies succinct, and to obtain efficient al-
gorithms to compute them, we propose heuristics inspired from the antichain
line of research [5]. These heuristics have been developed mainly in the verifica-
tion setting, to deal with automata-based models. Roughly speaking, they rely
on a simulation partial order on the states of the system, which is exploited to
prune the state space that the algorithms need to explore, and to obtain efficient
data structures to store the sets of states that the algorithms need to maintain.
They have been applied to several problems, such as LTL model-checking [5] or
multi-processor schedulability [6] with remarkable performance improvements
of several orders of magnitude.

In this paper, we introduce general antichain-based techniques for solving
safety games, and computing efficiently succinct representations of winning
strategies. We propose a general and elegant theory which is built on top of
the notion of turn-based alternating simulation (tba-simulation for short, a no-
tion adapted from [7]), instead of simulation. In our running example, a tba-
simulation �0 exists and is given by: v�0 v

′ iff v and v′ belong to the same
player, λ(v) ≥ λ(v′) and λ(v) mod 3 = λ(v′) mod 3. Then, it is easy to see
that the winning strategy of Figure 1 (a) exhibits a kind of monotonicity wrt
�0: 5 �0 2 , and the winning strategy asks to put two balls in the urn in both
cases. Hence, we can represent the winning strategy as in Figure 1 (c). Observe
that not all concretisations of this strategy are winning. For instance, playing
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3 from 2 is a losing move, but it is not compatible with �0 because 3 is
not �0-covered by 7 . Moreover, this succinct description of the strategy can
be implemented straightforwardly: only the table in Figure 1 (c) needs to be
stored in the controller, as �0 can be directly computed from the description of
the states.

These intuitions are formalised in Section 4, where we show that, in general,
it is sufficient to store the strategy on the maximal antichain of the reachable
winning states. In Section 5, we present an efficient on-the-fly algorithm to
compute such succinct ?-strategies (adapted from the classical OTFUR algo-
rithm to solve reachability games [8]). Our algorithm generalises the algorithm
of Filiot et al. [1], with several improvements: 1. it applies to a general class of
games whose arena is equipped with a tba-simulation (not only those generated
from an instance of the LTL realisability problem); 2. it contains an additional
heuristic that was not present in [1]; 3. its proof of correctness is straightforward,
and stems directly from the definition of tba-simulation.

Then, in Section 6 we present extensively an application of our theory to a
particular problem, borrowed from the real-time scheduling community, namely
the feasibility problem for sporadic tasks on multiprocessor platforms [9]. In
this problem, a set of real-time tasks release, periodically, jobs that must be
scheduled on a set of m CPUs by a scheduler. Each job is characterised by an
execution time C, which is the amount of CPU time it needs to complete; and by
a deadline D before which it must have been granted these C CPU time units.
The duty of the scheduler is to attribute the jobs that are ready for execution
to the CPUs, in order to avoid missing any deadline (of course, in general, there
can be more jobs than CPUs). It can easily be modelled as a safety game, where
the S player is the scheduler; theR player is the coalition of the task; and the set
of bad states that the scheduler must avoid is the set of states where at least one
job has missed its deadline. Then, a winning strategy is the actual scheduling
policy that must be implemented to avoid deadline misses. So we formalise
this problem by means of scheduling games. Then, building on our previous
works on the related feasibility problem for sporadic tasks [10], we propose a
tba-simulation for scheduling games. Finally, in Section 7, we demonstrate,
by means of experiments that our optimised version of the OTFUR algorithm
scales much better in practice that the exhaustive search, and that the basic
version of OTFUR (i.e. without the optimisation based on tba-simulation). To
the best of our knowledge, this is the first attempt at implementing an exact
feasibility test for sporadic tasks on a multiprocessor platform.

2. Preliminaries

Turn-based games. A finite turn-based game arena is a tupleA = (VS , VR, E, I),
where VS and VR are the finite sets of states controlled by Players S and R
respectively; E ⊆ (VS × VR) ∪ (VR × VS) is the set of edges; and I ∈ VS is the
initial state. We let V = VS ∪ VR. For a finite arena A = (VS , VR, E, I) and
a state v ∈ V , we let Succ (A, v) = {v′ | (v, v′) ∈ E} and Reach (A, v) = {v′ |
(v, v′) ∈ E∗}, where E∗ is the reflexive and transitive closure of E. We write
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Reach (A) instead of Reach (A, I), and lift the definitions of Reach and Succ to
sets of states in the usual way.

The aim of Player R is to reach some designated set of states Bad, while
the aim of S is to avoid it. Throughout this paper, we focus on the objec-
tive of player S, and regard our finite games as safety games because they
correspond to the applications we target (see Section 6 and the discussion
of other potential application in the conclusion). However, safety and reach-
ability games are symmetrical and determined, so, our results can easily be
adapted to cope with reachability games. Formally, A finite turn-based (safety)
game is a tuple G = (VS , VR, E, I,Bad) where (VS , VR, E, I) is a finite turn-
based game arena, and Bad ⊆ V is the set of bad states that S wants to
avoid. The definitions of Reach and Succ carry over to games: for a game
G = (A,Bad), we let Reach (G, v) = Reach (A, v), Reach (G) = Reach (A) and
Succ (G, v) = Succ (A, v). When the game is clear from the context, we often
omit it.

Plays and strategies. During the game, players interact to produce a play, which
is a finite or infinite path in the graph (V,E). Players play turn by turn, by
moving a token on the game’s states. Initially, the token is on state I. At
each turn, the player who controls the state marked by the token gets to choose
the next state. A strategy for S is a function σ : VS → VR such that for all
v ∈ VS , (v, σ(v)) ∈ E. We extend strategies to set of states S in the usual way:
σ(S) = {σ(v) | v ∈ S}. A strategy σ for S is winning for a state v ∈ V iff no
bad states are reachable from v in the graph Gσ obtained from G by removing
all the moves of S which are not chosen by σ, i.e. Reach (Gσ, v)∩Bad = ∅, where
Gσ = (VS , VR, Eσ, I,Bad) and Eσ = {(v, v′) | (v, v′) ∈ E ∧ v ∈ VS =⇒ v′ =
σ(v)}. We say that a strategy σ is winning in a game G = (VS , VR, E, I,Bad)
iff it is winning in G for I.

Winning states and attractor. A state v ∈ V in G is winning (for Player S) iff
there exists a strategy σ that is winning in G for v. We denote by Win the set of
winning states (for Player S). By definition, any strategy such that σ(Win) ⊆
Win is thus winning. Moreover, it is well-known that Win can be computed in
polynomial time (in the size of the arena), by computing the so-called attractor
(for Player R) of the unsafe states. In a game G = (VS , VR, E, I,Bad), the
sequence (Attri)i≥0 of attractors (of the Bad states) is defined as follows. Attr0 =
Bad and for all i ∈ N, Attri+1 = Attri ∪ {v ∈ VR | Succ (v) ∩ Attri 6= ∅} ∪ {v ∈
VS | Succ (v) ⊆ Attri}. For finite games, the sequence stabilises after a finite
number of steps on a set of states that we denote Attr(Bad). Then, v belongs
to Attr(Bad) iff Player R can force the game to reach Bad from v. Thus, the set
of winning states for Player S is Win = V \Attr(Bad). Then, the strategy σ s.t.
for all v ∈ VS ∩Win, σ(v) = v′ with v′ ∈Win is winning.

Partial orders, closed sets and antichains. Fix a finite set S. A relation � ∈
S × S is a partial order iff � is reflexive, transitive and antisymmetric, i.e. for
all s ∈ S: (s, s) ∈ � (reflexivity); for all s, s′, s′′ ∈ S, (s, s′) ∈ � and (s′, s′′) ∈ �
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implies (s, s′′) ∈ � (transitivity); and for all s, s′ ∈ S: (s, s′) ∈ � and (s′, s) ∈ �

implies s = s′ (antisymmetry). As usual, we often write s� s′ and s 6� s′ instead
of (s, s′) ∈ � and (s, s′) 6∈ �, respectively. The �-downward closure ↓� (S′) of
a set S′ ⊆ S is defined as ↓� (S′) = {s | ∃s′ ∈ S′, s′� s}. Symmetrically, the
upward closure ↑� (S′) of S′ is defined as: ↑� (S′) = {s | ∃s′ ∈ S′ : s� s′}.
Then, a set S′ is downward closed (resp. upward closed) iff S′ =↓� (S′) (resp.
S′ =↑� (S′)). When the partial order is clear from the context, we often write
↓(S) and ↑(S) instead of ↓� (S) and ↑� (S) respectively. Finally, a subset α of
some set S′ ⊆ S is an antichain on S′ with respect to � if for all s, s′ ∈ α: s 6= s′

implies s 6� s′. An antichain α on S′ is said to be a set of maximal elements of S′

(or, simply a maximal antichain of S′) iff for all s1 ∈ S′ there is s2 ∈ α: s2 � s1.
Symmetrically, an antichain α on S′ is a set of minimal elements of S′ (or a
minimal antichain of S′) iff for all s1 ∈ S′ there is s2 ∈ α: s1 � s2. It is easy
to check that if α and β are maximal and minimal antichains of S′ respectively,
then ↓ (α) =↓ (S′) and ↑ (β) =↑ (S′). Intuitively, α (β) can be regarded as a
symbolic representation of ↓ (S′) (↑ (S′)), which is of minimal size in the sense
that it contains no pair of �-comparable elements. Moreover, since � is a partial
order, each subset S′ of the finite set S admits a unique minimal and a unique
maximal antichain, that we denote by bS′c and dS′e respectively. Observe that
one can always effectively build a dS′e and bS′c, simply by iteratively removing
from S′, all the elements that are strictly �-dominated by (for dS′e) or that
strictly dominate (for bS′c) another one.

Simulation relations. Fix an arena G = (VS , VR, E, I,Bad). A relation � ⊆
VS × VS ∪ VR × VR is a simulation relation compatible2 with Bad (or simply a
simulation) iff it is a partial order3 and for all (v1, v2) ∈ �: either v1 ∈ Bad or:
(i) for all v′2 ∈ Succ (v2), there is v′1 ∈ Succ (v1) s.t. v′1 � v′2 and (ii) v2 ∈ Bad
implies that v1 ∈ Bad. On our example, the relation �0 = {(v, v′) ∈ VS × VS ∪
VR × VR | λ(v) ≥ λ(v′) and λ(v) mod 3 = λ(v′) mod 3} is a simulation relation
compatible with Bad =

{
7 , 8

}
. Moreover, Win = {v ∈ VS | λ(v) mod 3 6=

1} ∪ {v ∈ VR | λ(v) mod 3 = 1} is downward closed for �0 and its complement
(the set of losing states), is upward closed. Finally, Win admits a single maximal
antichain for �0: MaxWin =

{
7 , 6 , 5

}
.

3. Succinct strategies

Let us first formalise our notion of succinct strategy (observe that other works
propose different notions of ‘small strategies’, see for instance [11]). As explained
in the introduction, a naive way to implement a memory-less strategy σ is to
store, in an appropriate data structure, the set of pairs {(v, σ(v)) | v ∈ VS}, and
implement a controller that traverses the whole table to find action to perform

2See [1] for an earlier definition of a simulation relation compatible with a set of states.
3Observe that our results can be extended to the case where the relations are preorders,

i.e. transitive and reflexive relations.
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each time the system state is updated. While the definition of strategy asks that
σ(v) be defined for all S-states v, this information is sometimes redundant, for
instance, when v is not reachable in Gσ. Thus, we want to reduce the number
of states v s.t. σ(v) is crucial to keep the system safe.

?-strategies. We introduce the notion of ?-strategy to formalise this idea: a ?-
strategy is a function σ̂ : VS 7→ VR ∪ {?}, where ? stands for a ‘don’t care’
information. We denote by Supp(σ̂) the support σ̂−1(VR) of σ̂, i.e. the set of
nodes v s.t. σ̂(v) 6= ?. Such ?-strategies can be regarded as a representation of
a family of concrete strategies. A concretisation of a ?-strategy σ̂ is a strategy
σ s.t. for all v ∈ VS , σ̂(v) 6= ? implies σ̂(v) = σ(v). A ?-strategy σ̂ is winning if
every concretisation of σ̂ is winning (intuitively, σ̂ is winning if S always wins
when he plays according to σ̂, whatever choices he makes when σ̂ returns ?).
The size of a ?-strategy σ̂(v) is the size of Supp(σ̂). On our running example,
the strategy σ displayed in Figure 1 (b)—assuming the lines where σ(v) = ?
have been omitted—is a winning ?-strategy of minimal size.

Computing succinct ?-strategies. Our goal is to compute succinct ?-strategies,
defined as ?-strategies of minimal size. To characterise the hardness of this task,
we consider the following decision problem, and prove that it is NP-complete:

Problem 1 (MinSizeStrat). Given a finite turn-based game G and an integer
k ∈ N, decide whether there is a winning ?-strategy of size smaller than k in G.

Theorem 1. MinSizeStrat is NP-complete.

Proof. Let X = {x1, · · · , xm} be a set of m Boolean variables. Let φ =
∧1≤i≤nCi be a propositional formula (with n clauses) such that for all 1 ≤ i ≤ n,
Ci = ∨1≤j≤ni l

i
j with lij ∈ L = {x1, · · · , xm,¬x1, · · · ,¬xm} (L is called the set

of literals). Then, let us build a finite turn-based safety game G and an integer
k in polynomial time as follows. The construction of G is illustrated in Figure 2
for ϕ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) (hence k = 8). Note that the state
‘bad’ and the (¬)xRi ’s have been duplicated to enhance readability

Formally, we let G = (VS , VR, E, I,Bad) where:

• VS = {initS} ∪ LS ∪ X ∪ C, where LS = {xS1 , · · · , xSm,¬xS1 , · · · ,¬xSm},
X = {X1, · · · , Xm} and C = {C1, · · · , Cn}

• VR = {initR,bad} ∪ {xR1 , · · · , xRm,¬xR1 , · · · ,¬xRm}

• E = {(initS , initR)} ∪ {initR} × (X ∪ C)

∪


(Xi, x

R
i ), (Xi,¬xRi ), (xRi , x

S
i ), (¬xRi ,¬xSi ),

(xSi , initR), (¬xSi , initR), (xSi ,bad), 1 ≤ i ≤ m
(¬xSi ,bad), (Xi,bad), (Ci,bad)


∪ (LS ∪ C ∪ X )× {bad}
∪ {(Ci, xRh ) | 1 ≤ i ≤ n, ∃1 ≤ j ≤ ni : lij = xh}
∪ {(Ci,¬xRh ) | 1 ≤ i ≤ n, ∃1 ≤ j ≤ ni : lij = ¬xh}
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• I = initS

• Bad = {bad}

Finally, let k = 2 × m + n. An example of the construction for the formula
φ = (x1∨x2∨¬x3)∧ (¬x1∨x2∨x3) is given in Figure 2 (note that bad and the
(¬)xRi ’s) have been duplicated to enhance readability). States of S are circles
and states of R are squares.

Let us show that φ is satisfiable iff there is a winning ?-strategy of size at
most k in G. To this end, we first make several observations on G. First, there
is a winning strategy in G since all predecessors of bad are Player S states that
have other successors that are not bad. Second, Player S can never avoid the
states of the form Xi nor Cj , i.e. for all strategy σ: X ∪ C ⊆ Reach

(
Gσ, initS

)
.

This entails that, in all winning ?-strategy σ̂, we must have σ̂(v) 6= ? for all
v ∈ X ∪ C. Otherwise, if σ̂(v) = ? for some v ∈ X ∪ C, there is at least one
concretisation σ of σ̂ s.t. σ(v) = bad, and thus bad is reachable in Gσ by the
path initS , initR, v,bad, which contradicts the fact that σ̂ is winning. Finally,
consider a winning ?-strategy σ̂. We have shown above that σ̂(Xi) 6∈ {?,bad}
for all 1 ≤ i ≤ m. This implies that σ̂ maps each Xi either to xRi , or to ¬xRi ,
and those nodes cannot be avoided by Player S, whatever concretisation of σ̂
he plays. Using the same arguments as above, we conclude that σ̂(v) must be
different from ? for exactly m states in LS . More precisely, for all winning ?-
strategies σ̂, let Sσ̂ = {xSi | ∃1 ≤ i ≤ m : σ̂(Xi) = xRi } ∪ {¬xSi | ∃1 ≤ i ≤ m :
σ̂(Xi) = ¬xRi }. Then, for all winning ?-strategies σ̂, for all v ∈ Sσ̂: σ̂(v) 6= ?.
Observe that |Sσ̂| = m for all winning ?-strategies σ̂. We conclude that all
winning ?-strategies σ̂ has size at least k = 2×m+ n in G.

Let us now conclude the proof. First consider a satisfying assignment a :
X 7→ {true, false} for φ. Let σ̂ be the ?-strategy defined as follows. For all
1 ≤ i ≤ m: σ̂(Xi) = xRi if a(xi) = true and σ̂(Xi) = ¬xRi otherwise. For
all 1 ≤ i ≤ n: pick a literal `i from Ci which is true under the assignment a
(such a literal must exist since a makes φ true), and let σ̂(Ci) = `Ri . For all
v ∈ {xS1 ,¬xS1 , . . . , xSn ,¬xSn}, let σ̂(v) = initR if v = σ̂(Xi) for some 1 ≤ i ≤ n,
and let σ̂(v) = ? otherwise. Finally, let σ̂(initS) = ?. It is easy to check that σ̂
is indeed a winning ?-strategy of size exactly k.

Second, we assume a winning ?-strategy σ of size ≤ k. By the above ar-
guments, σ is of size exactly k and σ(v) 6= ? for all v ∈ X ∪ C ∪ Sσ. Let us
consider the assignment of the variables of φ that maps each variable xi to true
iff σ(Xi) = xRi . To show that this assignment satisfies φ it is sufficient to show
that σ(C) ⊆ σ(X ), because this entails, by definition of G, that, under this as-
signment, each clause j contains at least one true literal (the one corresponding
to σ(Cj)). To establish that σ(C) ⊆ σ(X ), we proceed by contradiction. If it
is not the case, let v ∈ C be a state s.t. σ(v) 6∈ σ(X ). Assume σ(v) =∼ xRk
for some k, and where ∼ can be ¬ or nothing. Then, by definition of G, the
corresponding S state ∼ xSk is reachable in Gσ for all concretisations σ of σ.
Moreover, ∼ xSk 6∈ X ∪ C ∪ Sσ, hence σ(∼ xSk ) = ?, and there is at least one
concretisation of σ that maps ∼ xSk to bad. Since ∼ xSk is reachable in this
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initR

initR

X1 X2 X3

bad

bad

xR2 ¬xR2

xR2 ¬xR2

xS2 ¬xS2

xR1 ¬xR1

xR1 ¬xR1

xS1 ¬xS1

xR3 ¬xR3

xR3 ¬xR3

xS3 ¬xS3

C1 C2

Figure 2: Construction for the formula ϕ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3): k = 8. State
bad, and all the states of the form (¬)xRi have been duplicated for readability.

concretisation in particular, we conclude that σ is not winning. Contradiction.
2

Note that this hardness result is even exacerbated in most practical cases
we are aware of, since the arena is usually not given explicitly. This is the case
in particular with the real-time sporadic task feasibility problem we consider
in Section 6 and Section 7, and with the other potential applications that we
discuss in the conclusion, because they can be reduced to safety games whose
sizes are at least exponential in the size of the original problem instance.
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4. Structured games and monotonic strategies

To mitigate the strong complexity identified in the previous section, we pro-
pose to follow the successful antichain approach [12, 5, 1]. In this line of research,
the authors point out that, in practical applications (like the scheduling problem
of Section 6), system states exhibit some inherent structure, which is formalised
by a simulation relation and can be exploited to improve the practical running
time of the algorithms. In the present paper, we rely on the notion of turn-
based alternating simulation, to define heuristics to: (i) improve the running
time of the algorithms to solve finite turn-based games and (ii) obtain succinct
representations of strategies. This notion is adapted from [7]. Here is its formal
definition:

Definition 1. Let G = (VS , VR, E, I,Bad) be a finite safety game. A partial
order � ⊆ VS×VS ∪VR×VR is a turn-based alternating simulation relation for
G [7] (tba-simulation for short) iff for all v1, v2 s.t. v1 � v2, either v1 ∈ Bad or
the three following conditions hold: (i) If v1 ∈ VS , then, for all v′1 ∈ Succ (v1),
there is v′2 ∈ Succ (v2) s.t. v′1 � v′2; (ii) If v1 ∈ VR, then, for all v′2 ∈ Succ (v2),
there is v′1 ∈ Succ (v1) s.t. v′1 � v′2; and (iii) v2 ∈ Bad implies v1 ∈ Bad.

On the running example (Figure 1), �0 is a tba-simulation relation. Indeed,
as we are going to see at then end of the present section, a simulation relation in
a game where player S has always the opportunity to perform the same moves
is necessarily alternating.

Monotonic concretisations of ?-strategies. Let us exploit the notion of tba-
simulation to introduce a finer notion of concretisation of ?-strategies. Let σ̂ be
a ?-strategy. Then, a strategy σ is a �-concretisation of σ̂ iff for all v ∈ VS :
(i) v ∈ Supp(σ̂) implies σ(v) = σ̂(v); and (ii)

(
v 6∈ Supp(σ̂) ∧ v ∈↓� (Supp(σ̂))

)
implies ∃v ∈ Supp(σ̂) s.t. v� v and σ(v)�σ(v). Intuitively, when σ̂(v) = ?,
but there is v′� v s.t. σ̂(v′) 6= ?, then, σ(v) must mimic the strategy σ(v) from
some state v that covers v and s.t. σ̂(v) 6= ?. Then, we say that a ?-strategy is
�-winning if all its �-concretisations are winning.

Because equality is a tba-simulation, the proof of Theorem 1 can be used
to show that computing a �-winning ?-strategy of size less than k is an NP-
complete problem too. Nevertheless, �-winning ?-strategies can be even more
compact than winning ?-strategy. For instance, on the running example, the
smallest winning ?-strategy σ is of size 5: it is given in Figure 1 (b) and high-
lighted by bold arrows in Figure 1 (thus, σ( 4 ) = σ( 7 ) = ?). Yet, one can
define a �0-winning ?-strategy σ̂ of size 2 because states 5 and 6 simulate
all the winning states of S. This ?-strategy4 σ̂ is the one given in Figure 1 (c)
and represented by the boldest arrows in Figure 1. Observe that, while all �-
concretisations of σ̂ are winning, not all concretisations of σ̂ are. For instance,
all concretisations σ of σ̂ s.t. σ( 0 ) = 2 are not �0-monotonic and losing.

4Actually, this strategy is winning for all initial number n of balls s.t. n mod 3 6= 1.
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Obtaining �-winning ?-strategies. The previous example clearly shows the kind
of �-winning ?-strategies we want to achieve: ?-strategies σ̂ s.t. Supp(σ̂) is a
maximal antichain of the winning states. In Section 5, we introduce an efficient
on-the-fly algorithm to compute such a ?-strategy. Its correctness is based on
the fact that we can extract a �-winning ?-strategy from any winning (plain)
strategy, as shown by Proposition 1 below. For all strategies σ, and all V ⊆ VS ,
we let σ|V denote the ?-strategy σ̂ s.t. σ̂(v) = σ(v) for all v ∈ V and σ̂(v) = ?
for all v 6∈ V . Then:

Proposition 1. Let G = (VS , VR, E, I,Bad) be a finite turn-based game and
� be a tba-simulation relation for G. Let σ be a strategy in G, and let S ⊆
VS be a set of S-states s.t.: (i) (S ∪ σ(S)) ∩ Bad = ∅; (ii) I ∈↓� (S); and
(iii) succ(σ(S)) ⊆↓� (S). Then, σ|S is a �-winning ?-strategy.

Proof. Let τ be a �-concretisation of σ|S and let us show that τ is winning.
Let us first show that all S-states reachable in G under strategy τ are covered
by some state in S, i.e. that Reach (Gτ ) ∩ VS ⊆↓ (S). Let us consider v ∈
Reach (Gτ ) ∩ VS , and let vS0 , v

R
1 , v

S
1 , . . . , v

R
n , v

S
n be a path in Gτ that reaches v,

i.e. with vS0 = I and vSn = v. Let us prove, by induction on i that vSi ∈↓(S) for
all 0 ≤ i ≤ n.
Base case i = 0: trivial by hypothesis (ii).
Inductive case i = k > 0: let us assume that vSk−1 ∈↓ (S) and let us show

that vSk ∈↓ (S). Since (vSk−1, v
R
k ) is an edge in Gτ , vRk = τ(vSk−1). Since τ is a

�-concretisation of σ|S, there is v ∈ S s.t. v� vSk−1 and σ(v) = τ(v)� τ(vSk−1) =

vRk . Thus, σ(v)� vRk . Since � is a tba-simulation, the successor vSk of vRk can be
simulated by some successor v̂ of σ(v), i.e. v̂� vSk . By hypothesis (iii), v̂ ∈↓� (S).
Hence vSk ∈↓� (S) too.

Next, let us expand that result by showing that all states reachable in Gτ
are covered by some state in S ∪ τ(S), i.e. that Reach (Gτ ) ⊆↓ (S ∪ τ(S)). To
do so, it is sufficient to show that each vR ∈ Reach (Gτ ) ∩ VR ∈↓ (τ(S)). Since
vR ∈ Reach (Gτ ), there is vS ∈ Reach (Gτ ) ∩ VS s.t. (vS , vR) ∈ E. Hence,
vS ∈↓ (S) by the arguments above. Thus, since τ is a �-concretisation of σ|S,
there is v ∈ S s.t. v� vS and τ(vS)� τ(vR). Hence, vR ∈↓� (τ(S)).

We conclude the proof by observing that τ(S) = σ(S), since τ is a �-
concretisation of σ|S. Hence, ↓ (S ∪ τ(S)) =↓ (S ∪ σ(S)). Moreover, hypoth-
esis (i) implies that ↓ (S ∪ σ(S)) ∩ Bad = ∅, by definition of tba-simulation
(compatible with Bad). Hence, since Reach (Gτ ) ⊆↓(S ∪ τ(S)) =↓(S ∪ σ(S)) by
the arguments above, we conclude that Reach (Gτ ) ∩ Bad = ∅, and thus, that τ
is winning. 2

This proposition allows us to identify families of sets of states on which
?-strategies can be defined. One of the sets that satisfies the conditions of
Proposition 1 is the maximal antichain of reachable S-states, for a given winning
strategy σ:
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Theorem 2. Let G = (VS , VR, E, I,Bad) be a finite turn-based game, � be a
tba-simulation relation for G. Let σ be a winning strategy and WRσ be a max-
imal �-antichain on Reach(Gσ) ∩ VS , then the ?-strategy σ|WRσ is �-winning.

Proof. It is straightforward to verify that σ and WRσ satisfy the three prop-
erties of Proposition 1. Indeed: (i) WRσ ∪ σ(WRσ) ⊆ Reach(Gσ) by definition
of WRσ and Reach (Gσ) ∩ Bad = ∅ because σ is winning. Hence (WRσ ∪
σ(WRσ)) ∩ Bad = ∅. (ii) I ∈ Reach (Gσ) ∩ VS and Reach (Gσ) ∩ VS ⊆↓ (WRσ)
by definition, hence I ∈↓ (WRσ). (iii) Succ (σ) (WRσ)) ⊆ Reach (Gσ) and
Reach (Gσ) ⊆↓(WRσ) by definition, hence Succ (σ(WRσ)) ⊆↓(WRσ). 2

5. Efficient computation of succinct winning strategies

Let us now present an efficient algorithm to compute succinct strategies in
safety games. Our algorithm is an optimisation of the OTFUR algorithm [8],
which is an on-the-fly algorithm for reachability (hence also for safety) games.
The on-the-fly features of OTFUR permits, in the best cases, to avoid exploring
(and building) some parts of the game graph, and returns a winning strategy
as soon as one is found. We introduce more aggressive optimisations exploiting
the properties of tba-simulations. Our algorithm generalises the algorithm of
Filiot et al. [1], and our proofs, that rely on the definition of tba-simulations,
are also more elegant and straightforward.

5.1. The original OTFUR algorithm

The On-The-Fly algorithm for Untimed Reachability games (OTFUR) al-
gorithm [8] is an efficient, on-the-fly algorithm to compute a winning strategy
for Player R, i.e. when considering a reachability objective. It is easy to adapt
it to compute winning strategies for Player S instead. We sketch the main
ideas behind this algorithm, and refer the reader to [8] for a comprehensive
description. The intuition of the approach is to combine a forward exploration
from the initial state with a backward propagation of the information when a
losing state is found. During the forward exploration, newly discovered states
are assumed winning until they are declared losing for sure. Whenever a losing
state is identified (either because it is Bad, or because Bad is unavoidable from
it), the information is back propagated to predecessors whose status could be
affected by this information. A bookkeeping function Depend is used for that
purpose: it associates, to each state v, a list Depend(v) of edges that need to be
re-evaluated should v be declared losing. The main interest of this algorithm is
that it works on-the-fly (thus, the arena does not need to be fully constructed
before the analysis), and avoids, if possible, the entire traversal of the arena. In
this section, we propose an optimised version of OTFUR for games equipped
with tba-simulations. Before this, we prove that, when a finite turn-based game
is equipped with a tba-simulation �, then its set of winning states is �-downward
closed. This property will be important for the correctness of our algorithm.
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Algorithm 1: The OTFUR optimised for games with a tba-simulation
Data: A finite turn-based game G = (VS , VR, E, I,Bad)

1 if I ∈ Bad then return false
2 Passed := {I} ; Depend(I) := ∅
3 AntiMaybe := {I} ; AntiLosing := ∅
4 Waiting := {(I, v′) | v′ ∈ bSucc (I)c}
5 while Waiting 6= ∅ ∧ I /∈↑ AntiLosing do
6 e = (v, v′) := pop(Waiting)
7 if v /∈↑ AntiLosing then
8 if v ∈↓ AntiMaybe \ AntiMaybe then
9 choose vm ∈ AntiMaybe s.t. vm� v

10 Depend[vm] := Depend[vm] ∪ {e}
11 else
12 if v′ ∈↓ AntiMaybe then
13 if v′ /∈ AntiMaybe then
14 choose vm ∈ AntiMaybe s.t. vm� v′

15 Depend[vm] := Depend[vm] ∪ {e}
16 else
17 Depend[v′] := Depend[v′] ∪ {e}

18 else
19 if v′ 6∈ Passed then
20 Passed := Passed ∪ {v′}
21 if v′ /∈↑ AntiLosing then
22 if (v′ ∈ Bad) then
23 AntiLosing := bAntiLosing ∪ {v′}c
24 Waiting := Waiting ∪ {e} ; // reevaluation of e

25 else
26 Depend[v′] := {(v, v′)}
27 AntiMaybe := dAntiMaybe ∪ {v′}e
28 if v ∈ VS then

29 Waiting := Waiting ∪ {(v′, v′′) | v′′ ∈
⌊
Succ

(
v′
)⌋
}

30 else

31 Waiting := Waiting ∪ {(v′, v′′) | v′′ ∈
⌈
Succ

(
v′
)⌉
}

32 else // reevaluation of e
33 Waiting := Waiting ∪ {e} ; // reevaluation of e

34 else // reevaluation

35 Losing∗ := v ∈ VS ∧
∧
v′′∈min(Succ(v))

(v′′ ∈↑ AntiLosing)

∨ v ∈ VR ∧
∨
v′′∈max(Succ(v))

(v′′ ∈↑ AntiLosing)

36 if Losing∗ then
37 AntiLosing := bAntiLosing ∪ {v}c
38 AntiMaybe := dPassed\ ↑(AntiLosing)e ; // back propagation
39 Waiting := Waiting ∪ Depend[v] ;

40 else
41 if v′ /∈↑ AntiLosing then Depend[v′] := Depend[v′] ∪ {e}

42 return I /∈↑ AntiLosing
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Proposition 2. Let G be a finite turn-based game, and let � be a tba-simulation
for G. Then the set Win of winning states in G is downward closed for �.

To prove this proposition, we start by an auxiliary lemma that relates tba-
simulations and computation of the attractor set:

Lemma 1. Let G be a finite safety game, and let � be an tba-simulation for G.
Then, for all (v1, v2) ∈ � and for all i ∈ N: v2 ∈ Attri implies v1 ∈ Attri.

Proof. The proof is by induction on i.
Base case: i = 0 By definition, Attr0 = Bad. However v2 ∈ Bad and v1 � v2

imply v1 ∈ Bad = Attr0, by definition of tba-simulations.
Inductive case: i > 0 Assume v2 ∈ Attri. There are two cases:

• In the case where v2 ∈ VR: first of all v1 � v2 implies v1 ∈ VR. Moreover
by definition of Attri, there exists v′2 ∈ VS such that (v2, v

′
2) ∈ E and

v′2 ∈ Attri−1. Then by definition of the tba-simulation relation, there
exists v′1 ∈ VS such that (v1, v

′
1) ∈ E and v′1 � v′2. By induction hypothesis,

v′1 ∈ Attri−1 and hence by definition of Attri, v1 ∈ Attri.

• In the case where v2 ∈ VS : first of all v1 � v2 implies v1 ∈ VS . Moreover by
definition of Attri, for all v′2 ∈ VR such that (v2, v

′
2) ∈ E, v′2 ∈ Attri−1. On

the other hand by definition of the tba-simulation relation, for all v′1 ∈ VR
such that (v1, v

′
1) ∈ E, then there exists v′′2 ∈ VR such that (v2, v

′′
2 ) ∈ E

and v′1 � v′′2 . As a consequence v′′2 ∈ Attri−1, and thus by the induction
hypothesis v′1 ∈ Attri−1. Hence by definition of Attri, v1 ∈ Attri. 2

Now, we can prove Proposition 2:

Proof (Proposition 2). As a consequence of Lemma 1, for all (v1, v2) ∈ �,
v2 ∈ Attr(Bad) implies v1 ∈ Attr(Bad). Since Win is the complementary of
Attr(Bad), v1 ∈Win implies v2 ∈Win, that is Win is �-downward closed. 2

5.2. Optimised version of OTFUR

Let us discuss Algorithm 1, our optimised version of OTFUR for the con-
struction of �-winning ?-strategies. Its high-level principle is the same as in
the original OTFUR, i.e. forward exploration and backward propagation. At
all times, it maintains several sets: (i) Waiting that stores edges waiting to be
explored; (ii) Passed that stores nodes that have already been explored; and
(iii) AntiLosing and AntiMaybe which represent, by means of antichains (see
discussion below) a set of surely losing states and a set of possibly winning
states respectively5. The main while loop runs until either no more edges are
waiting, or the initial state I is surely losing. An iteration of the loop first picks
an edge e = (v, v′) from Waiting, and checks whether exploring this edge can

5We could initialise AntiLosingto Bad, but this is not always practical. In particular, when
the arena is not given explicitly, we want to avoid pre-computing Bad.
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be postponed (lines 8–18, see below). Then, if v′ has not been explored before
(line 19), cannot be declared surely losing (line 21), and does not belong to
Bad (line 22), then it is explored (lines 25–31). If v′ is found to be losing, e
is put back in Waiting for back propagation (either at 24 or at line 33). The
actual back-propagation is performed in lines 34–41 and triggered by an edge
(v, v′) s.t. v′ ∈ Passed. Let us highlight the three optimisations that rely on a
tba-simulation �:

1. By the properties of �, we explore only the �-minimal (respectively �-
maximal) successors of each S (R) state (see lines 4, 29 and 31). We
consider maximal and minimal elements only when evaluating a node in
line 35.

2. By Proposition 2, the set of winning states in the game is downward-
closed, hence the set of losing states is upward-closed, and we store the
set of states that are surely losing as an antichain AntiLosing of minimal
losing states.

3. Symmetrically, the set of possibly winning states is stored as an antichain
AntiMaybe of maximal states. This set allows to postpone, and potentially
avoid, the exploration of some states: assume some edge (v, v′) has been
popped from Waiting. Before exploring it, we first check whether either
v or v′ belongs to ↓ (AntiMaybe) (see lines 8 and 12). If yes, there is
vm ∈ AntiMaybe s.t. vm� v (resp. vm� v′), and the exploration of v (v′)
can be postponed. We store the edge (v, v′) that we were about to explore
in Depend[vm], so that, if vm is eventually declared losing (see line 39),
(v, v′) will be re-scheduled for exploration. Thus, the algorithm stops when
all maximal S states have a successor that is covered by a non-losing one.

Observe that optimisations 1 and 2 rely on the upward closure of the losing
states only, and were present in the antichain algorithm of [1]. Optimisation 3
is original and exploits more aggressively the notion of tba-simulation. It allows
to keep at all times an antichain of potentially winning states, which is crucial
to compute efficiently a winning ?-strategy. If, at the end of the execution,
I 6∈↑ (AntiLosing), we can extract from AntiMaybe a winning ?-strategy σ̂G as
follows. For all v ∈ AntiMaybe∩VS , we let σ̂G(v) = v′ such that v′ ∈ Succ (v)∩ ↓
(AntiMaybe). For all v ∈ VS \ AntiMaybe, we let σ̂G(v) = ?. Symmetrically, if
I ∈↑(AntiLosing), there is no winning strategy for S.

Theorem 3. When called on game G, Algorithm 1 always terminates. Upon
termination, either I ∈↑ (AntiLosing) and there is no winning strategy for S in
G, or σ̂G is a �-winning ?-strategy.

We split the proof of Theorem 3 into two main propositions establishing
respectively termination and soundness of the algorithm. The proof of soundness
relies on auxiliary lemmata establishing invariants of the algorithm. In those
proofs, we rely on the following notations. First of all, let us denote by Namei
the state of the set Name at the i-th iteration of the while loop in Algorithm 1;
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so, for instance, Waitingi denotes the set Waiting at the i-th iteration. Let
us define two further notations, for all i: StateWaitingi = {v | ∃v′, (v, v′) ∈
Waitingi or (v′, v) ∈ Waitingi}, Visitedi = {v | ∃j ≤ i, v ∈ StateWaitingj}, and
Si = AntiMaybei ∪ StateWaitingi. In words, StateWaitingi is the set of states
which appear in Waiting at the i-th iteration of while, Visitedi is the set of the
states which have appeared in Waiting at some iteration before the i-th one,
and Si is the set of the states which appear in Waitingi or which belong to
AntiMaybei. Finally, we denote by AntiMaybe, Visited, StateWaiting, AntiLosing
and Waiting the state of those sets at the end of the execution of the algorithm.

Proposition 3 (Termination). Algorithm 1 always terminates.

Proof. In order to prove the termination of Algorithm 1, we simply need to
prove that the while loop cannot be iterated infinitely because each iteration
of this loop takes finitely many steps. Let us prove it by contradiction. Let us
assume that there is an infinite execution of Algorithm 1. Observe that for all
indexes i < j, Passedi ⊆ Passedj and ↑(AntiLosing)i ⊆↑(AntiLosing)j . Hence, let
K be s.t. for all i ≥ K, Passedi = PassedK and ↑(AntiLosing)i =↑(AntiLosing)K ,
i.e. after K steps, Passed and AntiLosing stabilise and remain the same along the
rest of the infinite run. Such a K necessarily exists because there are finitely
many states in the arena. Now, we can easily check in the code that if Passed and
↑(AntiLosing) are not modified in an iteration i (i.e. Passedi = Passedi−1 and ↑
(AntiLosingi) =↑

(
AntiLosingi−1

)
) then Waiting decreases strictly, i.e. Waitingi ⊆

Waitingi−1. Indeed, elements can be added to Waiting only in lines 24, 29, 31,
39, or 33. In the last case (Waiting is modified in line 33), AntiLosing has
necessarily increased in line 37. Indeed, in this line, we are sure that v is not
already in ↑(Antilosing), because of the test in line 7. In the other cases, Passed
has necessarily increased in line 20. Thus, each addition to Waiting necessarily
implies an addition to either Passed or AntiLosing, which implies that if Passed
and AntiLosing stay constant, then no element is added to Waiting. However,
since at least one element is removed from waiting at each iteration (line 6), we
conclude that, if Passed and AntiLosing stay constant, then Passed decreases.
Since at step K, WaitingK is necessarily finite, and since AntiLosing and Passed
stay constant from step K, there is a step K ′ ≥ K s.t. WaitingK′ = ∅. However,
this implies that the algorithms stops at step K ′. Contradiction. 2

Let us now turn our attention to soundness. To prove that the algorithm
indeed computes a winning strategy (when one exists) we first establish five
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loop invariants, that hold for all i:

Inv1
i : Visitedi \ StateWaitingi ⊆↓(AntiMaybei)∪ ↑(AntiLosingi)

Inv2
i : ∀v ∈ AntiMaybei ∩ VS ,∃v′ ∈ Succ(v) :

v′ ∈↓(AntiMaybei) ∨ (v, v′) ∈ Dependi[↓(AntiMaybei)] ∪Waitingi

Inv3
i : ∀v ∈ AntiMaybei ∩ VR,∀v′ ∈ Succ(v) :

v′ ∈↓(AntiMaybei) ∨ (v, v′) ∈ Dependi[↓(AntiMaybei)] ∪Waitingi

Inv4
i : AntiLosingi ⊆ Losing

Inv5
i : ∀v,∀(v, v′) ∈ Dependi[v] : v� v′ or (v� v and v 6= v).

Before proving these invariants, let us give some intuitions about them. Inv1
i

says that all visited states (that are not pending exploration in Waiting) are
categorised either as surely losing (in ↑(AntiLosingi)), or as potentially winning
(in ↓ (AntiMaybei)). Inv2

i and Inv3
i tell us that, although we have not fully

developed all the successors of all nodes, we are nonetheless keeping track of
enough information. More precisely, Inv2

i says that, for all Player S node v which
is a maximal, potentially winning node (v ∈ AntiMaybe), there is always at least
one successor v′ s.t. either v′ is itself regarded as potentially winning (v′ ∈↓
(AntiMaybe)), or the edge (v, v′) is in the dependency list of some potentially
winning node ((v, v′) ∈ Dependi[↓ (AntiMaybe)]), or the edge (v, v′) has simply
not been inspected yet and is thus in Waiting. Inv3

i is symmetrical for a Player R
node v: in this case, all successors of v should satisfy one of the three previous
conditions (otherwise, it would imply that v has a successor which has been
detected as surely losing, hence v should be declared surely losing too and
move to AntiLosing). Inv4

i tell us that all nodes that we insert in AntiLosing
are surely losing (remember that nodes in AntiMaybe are not surely winning as
already discussed). Finally, Inv5

i tells us that, whenever an edge (v, v′) is in the
dependency list of some node v, then, either v covers v′, or it strictly covers v.

Let us now prove these invariants.

Proof (of invariant Inv1
i ). We start by observing that the sets ↑(AntiLosing)

and Visited increase monotonically along the execution of the algorithm.
At i = 0, all the states in Visited are in StateWaiting, hence the initialisation

is trivial.
Let us now assume that Inv1

i is true for a given i and let us prove that Inv1
i+1

is also true. Observe that the definition of Visitedi depends only on StateWaiting:
Visitedi = ∪j≤iStateWaitingj . This implies in particular that StateWaitingi ⊆
Visitedi for all i. Thus, we only need to consider the modification of StateWaiting
during one iteration to prove this invariant. At each iteration of the loop, one
edge is taken from Waiting, and several edges are potentially added. Thus, the
sets StateWaitingi+1\StateWaitingi and StateWaitingi\StateWaitingi+1 are both
potentially non-empty. This discussion allows to conclude that, for all states
v ∈ Visitedi+1 \ StateWaitingi+1, we only need to consider two cases: (i) either
v ∈ Visitedi \ StateWaitingi; (ii) or v ∈ StateWaitingi \ StateWaitingi+1 since
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by definition, nodes in StateWaitingi+1 \ StateWaitingi are not in Visitedi+1 \
StateWaitingi+1.

1. Let v be in
(
Visitedi+1\StateWaitingi+1

)
∩
(
Visitedi\StateWaitingi

)
. Since

v ∈ Visitedi \ StateWaitingi, v is in ↓ (AntiMaybe)i ∪ ↑ (AntiLosing)i, by
induction hypothesis.

(a) If v ∈↑ (AntiLosing)i, then v ∈↑
(
AntiLosingi+1

)
(see the beginning

of the proof), hence, v ∈↓ (AntiMaybe)i+1 ∪ ↑ (AntiLosing)i+1, and v
respects the invariant.

(b) Otherwise, v ∈↓ (AntiMaybe)i. Then, either v ∈↓ (AntiMaybe)i+1

(i.e. ↓ (AntiMaybe) has not decreased), which implies that: v ∈↓
(AntiMaybe)i+1 ∪ ↑ (AntiLosing)i+1, and v respects the invariant. Or
v 6∈↓ (AntiMaybe)i+1, i.e. AntiMaybe has decreased. This can oc-
cur only in line 38, but, in this case, all states that are removed
from ↓ (AntiMaybe) are inserted in StateWaitingi+1 (actually, edges
containing those states are inserted in Waitingi+1 in line 39), which
contradicts our hypothesis that v ∈ Visitedi+1 \ StateWaitingi+1.

2. Otherwise, let v be in v ∈ StateWaitingi \StateWaitingi+1. This can occur
only because an edge (v1, v2) has been popped in line 6, with either v = v1

or v = v2. We consider those two cases separately.

(a) If v = v1, then, v is necessarily in Passed because lines 31 and 29 are
the only lines where new edges are built and, if we execute one of
these lines, adding an edge of the form (v1, v2) implies that v1 has
been added in Passed on line 20. One can also check that, in this case,
v1 is either added to AntiMaybe or to AntiLosing. Thus, when a state
is in Passed, then it will always be in ↓ (AntiMaybe)∪ ↑ (AntiLosing).
Hence v belongs to ↓(AntiMaybe)i+1 ∪ ↑(AntiLosing)i+1.

(b) Otherwise, v = v2, and either v ∈↓(AntiMaybe)i+1 ∪ ↑
(
AntiLosingi+1

)
,

or v is not passed yet and the conditional in line 19 is satisfied.
As a consequence, at the end of the iteration, v ∈ AntiMaybei+1 or
v ∈ AntiLosingi+1. 2

Proof (of invariant Inv2
i ). At i = 0, the only state in AntiMaybe is I and

Waiting contains all the edges of the form (I, v) where v is minimal wrt �. Hence,
there is at least one successor v of I s.t. (I, v) ∈Waiting and the invariant holds
for i = 0.

Let us assume that Inv2
i is true for a given i and let us prove that Inv2

i+1

is also true. Let v be a node in AntiMaybei+1 ∩ VS and let us show that there
exists v′ ∈ Succ (v) s.t. either v′ ∈↓

(
AntiMaybei+1

)
or (v, v′) ∈ Dependi+1[↓(

AntiMaybei+1

)
] ∪Waitingi+1. We consider several cases. For the sake of clar-

ity, we use the Xsymbol to mean that a case is closed. First, we assume that
v ∈↓

(
AntiMaybei+1

)
\ ↓ (AntiMaybei). In this case, line 29 has been executed

(since v ∈ VS), and for all v′ ∈ bSucc (v)c: (v, v′) ∈ Waitingi+1, hence the
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invariant holds (X). Thus, it remains to consider the cases where v was al-
ready in AntiMaybei. In this case, we know, by induction hypothesis, that
there exists v′ ∈ Succ (v) s.t. either v′ ∈↓ (AntiMaybei) or (v, v′) ∈ Dependi[↓(
AntiMaybei+1

)
] or (v, v′) ∈ Waitingi. Let us consider these three cases sepa-

rately:

1. Clearly, if v′ ∈↓
(
AntiMaybei+1

)
, then the invariant holds. (X). Thus, we

assume that v′ ∈↓ (AntiMaybei) \ ↓
(
AntiMaybei+1

)
. It is easy to check

that, unless line 38 has been executed, ↓ (AntiMaybe) grows along the
iterations. Hence, the fact that v′ ∈↓ (AntiMaybei) \ ↓

(
AntiMaybei+1

)
implies that line 38 has been executed during the i-th iteration of the
loop. Let us better characterise what occurs when line 38 is executed.
First, observe that the set ↑ (AntiLosing) grows strictly, because a node
v (called v in the code of the algorithm) is added AntiLosing in line 37.
Moreover, at all times, all nodes in Passed are either in ↑(AntiLosing) or in
↓ (AntiMaybe) (by Inv1

i ). Finally, by inspecting the different conditionals
that must hold for line 38 to be executed, one can check that the node v
is necessarily a maximal node of ↓ (AntiMaybe) before executing line 38,
i.e. v ∈ AntiMaybei \ AntiMaybei+1. From these facts, let us show that
↓
(
AntiMaybei+1

)
=↓ (AntiMaybei) \ {v}, i.e. v is the only node which is

removed from ↓ (AntiMaybe) when executing line 38. Indeed, after the
execution of line 38, we have:

↓
(
AntiMaybei+1

)
=↓
(
Passedi\ ↑

(
AntiLosingi+1

))
=↓(Passedi \ (↑(AntiLosingi ∪ {v})))

Now let us consider a state w ∈ Passedi. There are two possibilities:
either w ∈↓ (AntiMaybei), or w ∈↑ (AntiLosingi). In the first case: w ∈↓
(AntiMaybei), then w 6∈↑ (AntiLosingi). Hence, w ∈↓ (AntiMaybei \ {v}).
However, since v ∈ AntiMaybei, this is equivalent to w ∈↓ (AntiMaybei) \
{v}. In the latter case, w ∈↑ (AntiLosingi), it is clear w ∈ Passedi \ (↑
(AntiLosingi ∪ {v})). Thus, we conclude that any node which belongs to
the set ↓ (Passedi \ (↑(AntiLosingi ∪ {v}))) is also in ↓ (AntiMaybei) \ {v}.
Hence:

↓
(
AntiMaybei+1

)
⊆↓(AntiMaybei) \ {v}

Symmetrically, one can check that, at all times at the beginning of the
loop AntiMaybei is included in Passedi. Indeed, the only place where a
node is added to AntiMaybe is line 27, where we have the guarantee that
the node is indeed in Passed (see line 20). Hence, since a node cannot
be in AntiMaybe and in AntiLosing at the same time, we conclude that
↓(Passedi \ (↑(AntiLosingi ∪ {v}))) contains ↓(AntiMaybei) \ {v}:

↓
(
AntiMaybei+1

)
⊇↓(AntiMaybei) \ {v}

Thus, ↓
(
AntiMaybei+1

)
=↓(AntiMaybei) \ {v}, as announced.
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We conclude that, if v′ (in the expression of Inv2
i ) is in ↓ (AntiMaybei) \ ↓(

AntiMaybei+1

)
, then v′ is necessarily the node that has been added to

AntiLosing in line 37, and has triggered the re-evaluation of AntiMaybe in
line 38. Thus, in line 39, Dependi[v

′] is added to Waiting. We conclude
this first point by considering two cases. When v′ has originally been
found in/inserted to ↓ (AntiMaybe) (say at step j < i), two possibilities
might have occurred. The first case is that (v, v′) has been inserted in
Dependj [v

′] (lines 17 or 26). Since the sets Depend never decrease, we
conclude that (v, v′) ∈ Dependi[v

′], hence, by line 39, (v, v′) ∈Waitingi+1,
and the invariant holds (X). The second case is that there was some state
vm ∈ AntiMaybej s.t. vm� v′, and (v, v′) ∈ Dependj [vm]. Observe that it

might be the case that vm does not belong anymore to ↓
(
AntiMaybei+1

)
,

because AntiMaybe might have been re-evaluated several times between
step j and step i. However, if it is the case, either (v, v′) has been inserted
in Waiting at some point, and is still in Waitingi+1, hence the lemma
holds (X), or there is still w ∈ AntiMaybei s.t. w 6= v′, and w� v′ and
(v, v′) ∈ Dependi[w], because if it were not the case, it would mean that
v′ has been discovered as losing at a step before i, and line 38 would
not have been reached during the ith iteration. In this latter case, since
w 6= v′, we conclude that w ∈ AntiMaybei+1, hence (v, v′) ∈ Dependi+1[↓(
AntiMaybei+1

)
], hence the invariant holds (X).

2. Second, we consider the case where (v, v′) ∈Waitingi. If (v, v′) ∈Waitingi+1,
then the invariant holds (X). Otherwise, let us assume that (v, v′) ∈
Waitingi \Waitingi+1. This implies (v, v′) has been popped (line 6) at the
beginning of the i+ 1th iteration, and there are three possible cases.

(a) (v, v′) ∈ Dependi+1[↓
(
AntiMaybei+1

)
] (because line 10, 15 or 17 has

been executed) (X)

(b) v′ ∈ Passedi+1 \ Passedi (because line 20 has been executed). Then,
either v′ ∈↑(AntiLosingi) and thus the test in line 21 is false, line 33
is executed and (v, v′) ∈Waitingi+1 which contradicts our hypothesis
that (v, v′) 6∈Waitingi+1 (X); or (v, v′) is added to Waiting in line 24,
hence (v, v′) ∈Waitingi+1, which, again is not possible by hypothesis
(X); or line 27 is executed, hence v′ ∈↓

(
AntiMaybei+1

)
(X).

(c) (v, v′) goes in the ‘reevaluation’ part (else block from line 34). Then,
either there is no successor of v outside of ↑ (AntiLosingi) hence
Losing∗ evaluates to true, v is moved to AntiLosing (line 37) and
removed from AntiMaybe (line 38), hence v /∈ AntiMaybei+1 (X);
or there exists a successor w of v which is not in ↑ (AntiLosingi)
(i.e. Losing∗ evaluates to false). In this latter case, either (v, w) has
not been treated yet and thus (v, w) ∈ Waitingi+1 (X), or w ∈↓(
AntiMaybei+1

)
(X).

3. Finally, we consider the case where (v, v′) ∈ Dependi[↓ (AntiMaybei)].
Again, if (v, v′) ∈ Dependi+1[↓

(
AntiMaybei+1

)
], then the invariant holds
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(X). Otherwise, we assume that (v, v′) ∈ Dependi[↓ (AntiMaybei)] \
Dependi+1[↓

(
AntiMaybei+1

)
]. This implies that a state w of AntiMaybei

is found losing and added to AntiLosingi+1 (line 37). One can assume that
w 6= v′ because the case w = v′ is treated in case 1 above. Then, since
(v, v′) /∈ Dependi+1[↓

(
AntiMaybei+1

)
], we conclude (v, v′) ∈ Dependi[w]

because, w is the only state in Passedi which is in ↓ (AntiMaybei) \ ↓(
AntiMaybei+1

)
(this holds since AntiMaybei+1 =

⌈
Passedi+1 \ AntiLosingi+1

⌉
,

and w is the only state identified as losing during iteration i + 1), and
to have Dependi[w] 6= ∅, it is necessary that w is in Passedi. Hence,
line 39 is executed and Dependi[w] is added to Waiting. We conclude that
(v, v′) ∈Waitingi+1 and thus the invariant holds (X) 2

Proof (of invariant Inv3
i ). The proof of Inv3

i can be as for Inv2
i . The only

difference is for the case 2c. Indeed, the case is simpler because when (v, v′)
goes in the ‘reevaluation’ part, it is not necessary to consider other successors,
because v must have only non-losing successors. Then, either there is a successor
of v in ↑ (AntiLosingi) hence v /∈↓

(
AntiMaybei+1

)
(X), or v′ is in Passedi+1\ ↑

(AntiLosingi) and thus belongs to ↓
(
AntiMaybei+1

)
(X). 2

Proof (of invariant Inv4
i ). At i = 0, AntiLosing = ∅, hence the initialisation

is trivial.
Let us assume that Inv4

i is true for a given i and let us prove that Inv4
i+1

is also true. We simply have to check that states in ↑ (AntiLosing) at the i-th
iteration are losing.

There are two lines where states are added to ↑(AntiLosing): lines 23 and 37.

• (line 23) A state v′ can be added in AntiLosing on line 23. In this case,
the conditional on line 22 ensures that the state is in Bad, hence v′ is in
Losing.

• (line 37) A state v can be added in AntiLosing on line 37. In this case,
the definition of Losing∗ and the conditional on line 36 ensures that v
is in Losing. Indeed, if v ∈ VS then all its minimal successors are in
↑(AntiLosingi), hence all its successors are losing by induction assumption
and thus v is in Losing. Otherwise, v ∈ VR and it has a successor in ↑
(AntiLosingi), hence one of its successors is losing by induction assumption
and thus v is in Losing. 2

Proof (of invariant Inv5
i ). The invariant is easily established by checking

lines 10, 15, 17, 26 and 41 which are the only lines where an edge is added to
Depend. 2

We are now ready to prove soundness of the algorithm. Recall the def-
inition of the strategy σ̂Gwe build upon termination of the algorithm (when
I /∈↑ (AntiLosing)): for all v ∈ AntiMaybe ∩ VS : σ̂G(v) = v′ such that v′ ∈
Succ (v)∩ ↓(AntiMaybe); and for all v ∈ VS \ AntiMaybe, we let σ̂G(v) = ?.
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Proposition 4 (Soundness). Upon termination of Algorithm 1:, either I ∈↑
(AntiLosing) and there is no winning strategy for S, or σ̂G is a �-winning ?-
strategy.

Proof. We first consider the case where Algorithm 1 ends with I /∈↑(AntiLosing).
In particular, at the end of the execution, Waiting is empty.

Let us first show that σ̂G is well-defined, i.e. for all v ∈ AntiMaybe ∩ VS ,
there is v′ ∈ Succ (v) s.t. v′ ∈↓ (AntiMaybe). This stems from Inv1

i , Inv2
i and

Inv5
i . Indeed, at the end of the execution, Waiting is empty, hence StateWaiting

is empty. Thus, Inv2
i entails that all v ∈ AntiMaybe∩ VS have a successor v′ s.t.

either v′ ∈↓(AntiMaybe) or (v, v′) ∈ Dependi[↓(AntiMaybe)]. In the former case,
the property is established. In the latter case ((v, v′) ∈ Dependi[↓(AntiMaybe)]),
let v be a node from ↓ (AntiMaybe) s.t. (v, v′) ∈ Dependi(v). By Inv5

i , either
v� v′, or v� v and v 6= v. We first observe that the case ‘v� v and v 6= v’ is
not possible because v ∈ AntiMaybe by hypothesis, and v ∈↓(AntiMaybe). Thus,
v� v′, which implies that v′ ∈↓ (AntiMaybe) since v ∈↓ (AntiMaybe). Thus, σ̂G
is well-defined.

We conclude the proof by invoking Proposition 1. To be able to apply
this proposition, we need a strategy σ. We let σ be any concretisation of σ̂G ,
and S = AntiMaybe ∩ VS . The choice of the concretisation of σ̂G does not
matter, because the hypothesis required by Proposition 1 are properties of σ(v)
for states v ∈ S only, and S = AntiMaybe ∩ VS is exactly the support of σ̂G .
Let us show that σ respects the three hypothesis of Proposition 1, i.e. that:
(i) (AntiMaybe∩VS∪σ̂G(AntiMaybe∩VS))∩Bad = ∅; (ii) I ∈↓� (AntiMaybe ∩ VS);
and (iii) Succ (() σ̂G(AntiMaybe ∩ VS)) ⊆↓� (AntiMaybe ∩ VS).

(i) By definition of tba-simulation, Bad is upward closed (↑ (Bad) = Bad).
No bad state can be added to AntiMaybe during the execution, because
of the conditional in line 22 which is false when a state is added to
AntiMaybe (line 38). Moreover by definition of σ̂G , σ̂G(AntiMaybe∩VS) ⊆↓
(AntiMaybe), hence (i) is satisfied.

(ii) By assumption, I /∈↑ (AntiLosing). As a consequence of Inv1
i , I belongs to

↓(AntiMaybe), hence (ii) is satisfied.

(iii) By definition of σ̂G :

σ̂G(AntiMaybe ∩ VS) ⊆↓(AntiMaybe ∩ VR) . (1)

Let us first show that, upon termination in the case where I /∈↑(AntiLosing):
Succ (AntiMaybe ∩ VR) ⊆↓(AntiMaybe)∩VS . This is a consequence of Inv3

i .
Indeed, at the end of the execution, StateWaiting is empty and (v, v′) ∈
Depend[↓ (AntiMaybe)] implies, by Inv5

i , that either v′ ∈↓ (AntiMaybe),
or v ∈↓ (AntiMaybe) which means that there is a state w s.t. w� v
in AntiMaybe. In this latter case, by definition of the tba-simulation,
there exists v ∈ Succ(v) such that σ̂G(w)� v, therefore v ∈↓ (AntiMaybe).
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Hence, Succ (AntiMaybe ∩ VR) ⊆↓ (AntiMaybe) ∩ VS . However, by defini-
tion of tba-simulation, and since no element from AntiMaybe are in Bad,
this implies that:

Succ (↓(AntiMaybe ∩ VR)) ⊆↓(AntiMaybe) ∩ VS . (2)

Finally, we observe that Succ is a monotonic function in the sense that
A ⊆ B implies Succ (A) ⊆ Succ (B) for all sets A,B. Hence:

Succ (σ̂G(AntiMaybe ∩ VS)) ⊆ Succ (↓(AntiMaybe ∩ VR)) by (1)

⊆↓(AntiMaybe) ∩ VS by (2)

and thus (iii) holds.

Hence, by Proposition 1, the ?-strategy σ|S (with S = AntiMaybe ∩ VS) is a
�-winning ?-strategy. It is easy to check that σ|S = σ̂G , by definition of σ.

We conclude the proof by considering the case where Algorithm 1 ends with
I ∈↑(AntiLosing). By Inv4

i , there is no winning strategy for S in the game. 2

Remark on line 38. As already explained, all nodes that are inserted in AntiLosing
are surely losing, while some nodes inserted in AntiMaybe might later be discov-
ered as losing and moved to AntiLosing. In this case, the set AntiMaybe must
be recomputed: this happens in line 38, and this computation can be costly
(its complexity raises to θ(| Passed | × | AntiLosing |), which is problematic as
Passed contains all visited states). During our experiments (see Section 7), we
found this re-computation of AntiMaybeto be the main bottleneck of our algo-
rithm in term of running time, if line 38 is implemented naively. Instead, we
propose to attach to each state v a list Lt[v] which contains the states removed
from AntiMaybebecause of v, i.e. we let Lt[v] := Lt[v] ∪ {v′} every time we have
v′ ∈ AntiMaybe, and we insert v s.t. v� v′. Then, this information can be used
to speed the computation of line 38: every time after a node v is removed from
AntiMaybe (because v has been found losing), we consider all nodes vm ∈ Lt[v],
and: (i) either insert vm in AntiMaybe if there is no w ∈ AntiMaybe s.t. w� vm;
(ii) or insert vm in AntiMaybe otherwise.

Why simulations are not sufficient. To close the discussion of our optimised
version of OTFUR, let us explain why the notion tba-simulation is crucial for
our optimisations. To this end, we exhibit two games equipped with simulation
relations that are not tba-simulations, and show where our techniques fail. In
Figure 3 (left), Bad = {v′1, v′2}, and the set of winning states is not �-downward
closed (gray states are losing). In the game of Figure 3 (right), Bad = {b1, b2}
and Algorithm 1 does not develop the successors of v′ (because v � v′, and
v ∈ AntiMaybe when first reaching v′). Instead, it computes a purportedly
winning ?-strategy σ̂G s.t. σ̂G(v) = v′′ and σ̂G(v′) = ?. Clearly this ?-strategy
is not �-winning (actually, there is no winning strategy).
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Figure 3: A simulation and the downward closure are not sufficient to apply Algorithm 1.

5.3. Finding tba-simulations

To apply our techniques, the game arena must be equipped with a tba-
simulation. In many cases (see the three practical cases below), a simulation
relation on the states of the game is already known, or can be easily defined.
In general, not all simulation relations are tba-simulations, yet we can identify
properties of the arena that yield this useful property. Intuitively, this occurs
when Player S can always choose to play the same set of actions from all its
states, and when playing the same action a in two states v1 � v2 yields two
states v′1 and v′2 with v′1 � v′2

6. Formally, let G = (VS , VR, E, I,Bad) be a
finite turn-based game and Σ a finite alphabet. A labelling of G is a function
lab : E → Σ. For all states v ∈ VS ∪ VR, and all a ∈ Σ, we let Succa (v) = {v′ |
(v, v′) ∈ E ∧ lab(v, v′) = a}. Then, (G, lab) is S-deterministic iff there is a set
of actions ΣS ⊆ Σ s.t. for all v ∈ VS : (i) |Succa (v) | = 1 for all a ∈ ΣS and
(ii) |Succa (v) | = 0 for all a 6∈ ΣS . Moreover, a labelling lab is �-monotonic
(where � is a simulation relation on the states of G) iff for all v1, v2 ∈ VS ∪ VR
such that v1 � v2, for all a ∈ Σ, for all v′2 ∈ Succa (v2): there is v′1 ∈ Succa (v1)
s.t. v′1 � v′2. Then:

Theorem 4. Let G = (VS , VR, E, I,Bad) be a finite turn-based game, let � be a
simulation relation on G and let lab be a �-monotonic labelling of G. If (G, lab)
is S-deterministic, then � is a tba-simulation relation.

Proof. Since � is a simulation relation, we only need to prove that for all
v1 ∈ VS , for all v2 s.t. v1 � v2, for all v′1 ∈ Succ (v1), there is v′2 ∈ VR s.t.
v′2 ∈ Succ (v2) and v′1 � v′2. Let v1, v2 ∈ VS be s.t. v1 � v2, and let v′1 be a
state from Succ (v1). Since G is S-deterministic, there is v′2 ∈ Succ (v2) s.t.
lab(v1, v

′
1) = lab(v2, v

′
2). Since lab is �-monotonic, we also have v2 � v′2. 2

Thus, when a game G is labelled, S-deterministic, equipped with a simula-
tion relation � that can be computed directly from the description of the states7

6For example, in the urn-filling game (Figure 1), Player S can always choose between
taking 1 or 2 balls, from all states where at least 2 balls are left.

7 This means that one can decide whether v� v′ from the encoding of v and v′ and the
set of pairs {(v, v′) | v� v′} does not need to be stored explicitly.
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and �-monotonic, our approach can be applied out-of-the-box. In this case, Al-
gorithm 1 yields, if it exists, a winning ?-strategy σ̂G . We describe σ̂G by means
of the set of pairs (v, lab(v, σ̂G(v))) s.t. v is in the support of σ̂G . That is, we
store, for all v in the maximal antichain of winning reachable states, the action
to be played from v instead of the successor σ̂G(v)). Then, a controller imple-
menting σ̂G works as follows: when the current state is v, the controller looks
for a pair (v, a) with v� v, and executes a. Such a pair exists by S-determinism
(and respects �-concretisation by �-monotonicity). The time needed to find v
depends only on the size of the antichain, that we expect to be small in practice.

6. Scheduling Games

In this section, we propose Scheduling Games, a framework for modelling
and solving a real-time scheduling problem, namely the feasibility problem of
sporadic tasks on a multiprocessor system. Roughly speaking, scheduling games
are safety games played between a set of real-time tasks (the R player) that are
scheduled one a multiprocessor platform by a real-time scheduler (the S player).
Each task generates jobs that must be executed within a given deadline, and
the duty of the scheduler is to avoid states where one of the jobs has missed
its deadline (hence, the safety game). In such a setting, a winning strategy
is a correct scheduling policy (or, simply, a correct schedule(r)). Since real-
time schedulers must incur very little overhead in the execution of the system,
which is very often implemented in an embedded system with scarce resources,
having a succinct description of the winning strategy is of prime importance.
Unfortunately, the combinatorial nature of the problem yields an explosion of
the number of states of the arena. Hence, this scheduling problem is a perfect
candidate to evaluate our approach in practice. Indeed, we will see in Section 7
that our approach performs much better on this problem than classical solutions
in the literature. We start this section by informally describing the problem,
then give the formal definitions.

Real-time Scheduling of sporadic tasks. We consider the problem of finding an
online scheduler for a set of sporadic tasks on a multiprocessor platform. Here,
online means that the scheduler has no a priori knowledge of the behaviour of
the tasks, but must react, during the execution of the system to the requests
made by the tasks. Intuitively, tasks release, recurrently, new jobs that must
be executed by the system. Each job is equipped with a computation time C
which is a natural number saying how much CPU time the job must consume to
complete. Each job is also assigned a deadline D which is relative to its release
time and says after how long the job must have been granted its C unit of CPU
job lest it misses its deadline, a situation that the scheduler must avoid. Note
that all jobs released by the same task have the same values for their C and D
parameters. Finally, the rate at which jobs are released by the tasks is not fixed
a priori, but a minimal interarrival time T is given.

The duty of the scheduler is to assign, at each time slot, the active jobs
(those that are still waiting for CPU time) to m CPUs. Of course, in general,
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their could be more active jobs than available CPUs. We assume that jobs
can be freely migrated between CPUs, without incurring any delay; and that
scheduler actions come at no cost.

An execution of the system alternates between actions of the tasks (that can
submit new jobs to the system, provided they respect their interarrival time),
and actions of the scheduler, that decides which jobs to assign to which CPU.
When, the tasks have been assigned to the CPUs, some fixed time is allowed to
elapse (depending on the granularity of the system), jobs that are assigned to
the CPU consume one unit of CPU time, while the others do not. Then, the
tasks can submit new jobs, etc. This clearly shows that the problem of finding a
correct scheduler (the so-called feasibility problem) can be modelled by a safety
game, where the S player is the scheduler, the R player is the coalition of the
tasks, and the set of bad states is the set of all states where at least one job has
missed its deadline.

Formally, we consider a set τ = {τ1, τ2, . . . , τn} of sporadic tasks to be sched-
uled on a multiprocessor platform with m identical processors. A sporadic task
τi is a 3-tuple (Ti, Di, Ci) where Ti ∈ N is its minimum interarrival time , Di ∈ N
is its relative deadline and Ci ∈ N is its worst-case execution time. As already
explained, all jobs released by task τi will inherit its computation time Ci and
its relative deadline Di.

Remark that we impose no relation between Ti and Di. So, in particular, if
Di is much larger than Ti, then it is possible that task τi has submitted several
jobs to the system that are not completed yet. For instance, if Ti = 2 and
Di = 5, then, τi can release a job at instants 0, 2 and 4 reaching a total of
three pending jobs at instant 4 without missing a deadline (yet). However, in
this case, we assume that the system serves the jobs of the same task using a
FIFO policy: it waits for the completion of the oldest active job (or, in other
words, the one with the earliest deadline) before granting the CPU to the others.
Nevertheless, in all states where the deadline has not been missed, the number

of pending jobs of τi is always bounded by
†
Di
Ti

£
.

Example 1. Throughout this section, we consider a running example with four
tasks and 2 CPUs, described in Table 1. In this table, for all i: Ui = Ci/Ti
denotes the system utilisation (or system load) of a given task.

Figure 4 illustrates a prefix of an execution of this system. The vertical arrow
on the top of the figure indicates which tasks submit jobs at each instant: τ2 and
τ3 submit at instant 0; τ1 at instant 2; τ4 at instant 3; and τ2 submits a new job
at instant 5, which is allowed since 5 ≥ T2 = 4 time units have elapsed since its
first submission at instant 0. The deadlines of the jobs submitted by τ2 and τ1
are illustrated by the thick arrows (where the origin is the instant of submission,
and the arrow points to the instant of the deadline). The tasks execute on a
platform with two CPUs. At instant 0, the scheduler schedules τ2 on CPU 1
(until it completes in instant 3), and τ3 on CPU 2. On instant 2, the scheduler
preempts τ3 from CPU 2 to schedule τ1 instead, but schedules again τ3 on CPU
2 at instant 3, hence τ1 misses its deadline at instant 4 (marked by ×).
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Table 1: The task set used as our running example.

Ci Ti Di Ui

τ1 2 3 2 2/3
τ2 3 4 3 3/4
τ3 4 12 12 1/3
τ4 3 12 12 1/4

CPU 2

CPU 1

0 1 2 3 4 5

τ2, τ3 τ1 τ4 τ2

τ2 τ4

τ3 τ1 τ3 ×

Figure 4: Illustration of a prefix of execution (for the task system in Table 1), where a deadline
is missed at instant 4.

Related works. The feasibility problem for sporadic tasks is a well-studied prob-
lem in the real-time scheduling community. Apart for the very particular case
where for each task the deadline corresponds to the period (implicit deadline sys-
tems Di = Ti ∀i), where polynomial time feasibility tests exist, it exhibits a high
complexity. For instance, even in the uniprocessor case, the feasibility problem
of recurrent (periodic or sporadic) constrained deadline tasks is strongly co-NP
hard [13]. For constrained/arbitrary deadline and sporadic task systems, several
necessary or sufficient conditions have been identified for feasibility. However,
these criteria are not sufficient to decide feasibility for all systems: there are
some systems that do not meet any sufficient conditions (hence, are not surely
feasible) and respect all identified necessary conditions (hence are not surely
infeasible). We refer the reader to a survey by Davis and Burns [9] for more
details on these conditions.

Since the sufficient and necessary conditions from the literature do not allow
to answer feasibility on all systems, a so-called exact test (i.e. an algorithm to
decide the problem) is highly desirable. To the best of our knowledge, the only
exact test from the literature has been introduced by Bonifacci and Marchetti-
Spaccamela [14]. They too, model the problem as a game and reduce the feasi-
bility problem to finding a winning strategy (that corresponds to the scheduler)
in this game. However, their algorithm is straightforward and no optimisations
are proposed to make it applicable to realistic instances.
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6.1. Game model

Let us now cast the informal definition of the game we have given above
into our framework. Our definition of the game graph is inspired from the
work of Baker and Cirinei [15] (like in [14], see also [10]) where they model a
related problem, namely the sporadic tasks schedulability problem by means of
a graph8.

Set of states. In all states of the system, we store two data for each task τi:
(i) the earliest arrival time nat (τi) relative to the current instant; and (ii) the
remaining processing time rct (τi). Intuitively, at all times, nat (τi) is the delay
before τi can release a new job, while rct (τi) is the amount of computation
time the current job of τi still needs to complete. Observe that we keep, at
all times, one pair (nat(τi),rct(τi)) per task τi. Implicitly, this information is
related to the job (if any) of τi with the earliest deadline, which is the only one
that can be scheduled (see our remark above). Formally:

Definition 2 (System states). Let τ = {τ1, . . . , τn} be a set of sporadic tasks.
A system state S of τ is a pair (natS ,rctS) where: (i) nat S is a function
from τ to N such that for all τi : natS(τi) ≤ Tmax with Tmax = maxi Ti and
(ii) rct S is a function from τ to {0, 1, . . . , Cmax} with Cmax = maxi Ci

We denote by States(τ) the set of all system states of τ . Notice that, for
each task set τ , the set States(τ) is infinite because there is no lower bound
on natS(τi). We will show later that we can restrict ourselves to a finite set of
states to decide our problem. Let us now introduce several definitions related
to the states. First, a task τi is said to be active in state S if it currently
has a job that has not finished in S. Formally, the set of active tasks in S is
Active(S) = {τi | rctS(τi) > 0}. To the contrary, an inactive task in S is
called an idle task, i.e. τi is idle in S if and only if rctS(τi) = 0. A task τi
is eligible in a state S if it can submit a job from this configuration. Formally,
the set of eligible tasks in the state S is: Eligible(S) = {τi | natS(τi) ≤
0 ∧ rctS(τi) = 0}. Finally, The laxity of a task τi in a system state S is
defined by LaxityS(τi) = natS(τi) − (Ti − Di) − rctS(τi). Intuitively, the
laxity of a task measures the amount of forthcoming CPU steps that the task
could remain idle without taking the risk to miss its deadline. In particular,
as we will see, states where the laxity is negative should be declared as losing
states.

Example 2. Let S4 denote the state reached at instant 4 in Figure 4 with
natS4

(τ4) = 11; rctS4
(τ4) = 2. Then, one can check that Eligible(S4) =

{τ2}; Active(S4) = {τ1, τ3, τ4}; and LaxityS4
(τ1) = 1 − (3 − 2) − 1 = −1.

Thus, S4 is a failure state.

8In this problem, one is given a set of real-time sporadic tasks and a real-time scheduler,
and one must determine whether this scheduler guarantees that no task ever miss a deadline.
Hence, this problem can be regarded as a one-player game, or, in other words, as a reachability
problem in a graph.
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Now let us define the possible moves of both players. Let S ∈ States(τ) be
a system state. We first define the possible moves of player S, i.e. the scheduler.
For all τ ′ ⊆ Active(S) s.t. |τ ′| ≤ m (i.e. τ ′ does not contain more tasks than
the m available CPUs), we let SuccS(S, τ ′) be the (unique) state S′ s.t. for all
τi

natS′(τi) =

®
natS(τi)− 1 if rctS(τi) > 0

max{natS(τi)− 1, 0} otherwise

and

rctS′(τi) =

®
rctS(τi) if τi 6∈ τ ′

rctS(τi)− 1 otherwise.

Intuitively, each task τi ∈ τ ′ is elected to be scheduled on a CPU, and consumes
one CPU time unit. So we decrease the rct’s of those tasks only. We also
decrease the nat of all tasks, since one time unit has elapsed, which makes
the potential next job arrival closer. Observe that when the rct of the task is
positive (i.e. the task is still active), we allow the nat to go below zero. This will
be used to model the fact that, when Ti < Di new jobs of τi can be submitted
to the system even before the current job finishes, as will be clear later.

Let us now defined the possible moves of player R, i.e. the tasks. Let S ∈
States(τ) be a system state, and let τ ′ ⊆ Eligible(S) be a set of eligible
tasks. Then, we let SuccR(S, τ ′) ⊆ States(τ) be the set of system states s.t.
S′ ∈ SuccR(S, τ ′) iff, for all τi:

τi 6∈ τ ′ =⇒ natS′(τi) = natS(τi)

and

τi ∈ τ ′ =⇒ natS(τi) + Ti ≤ natS′(τi) ≤ Ti
and

rctS′(τi) =

®
rctS(τi) if τi 6∈ τ ′

Ci otherwise.

Example 3. As an example, consider the R state (S3,R) reached at instant
3 in the execution in Figure 4. First, let’s see how player R moves from S3

to S′3. We have Eligible(S3) = {τ2, τ4}. One possible move for R is to have
τ ′ = {τ4}, i.e. that τ4 submits a job, as in the figure. Then, natS′3(τ4) = T4 = 12
and rctS′3(τ4) = C4 = 3. Meanwhile, the nat and rct of the other tasks are
unchanged, i.e. natS′3(τ1) = 3 − 1 = 2,rctS′3(τ1) = 2 − 1 = 1;natS′3(τ2) =
4−3 = 1,rctS′3(τ2) = 3−3 = 0,natS′3(τ3) = 12−3 = 9,rctS′3(τ3) = 4−2 = 2.
Then player S can play from S′3 to S4. Note that fl(S′3) = {τ1, τ3, τ4}. In the
figure, Player S has decided to schedule τ ′ = {τ3, τ4}. So, that natS4(τ3) =
natS′3(τ3)−1 = 8;rctS4(τ3) = rctS′3(τ3)−1 = 1 and natS4(τ4) = natS′3(τ4)−
1 = 11;rctS4

(τ4) = rctS′3(τ4) − 1 = 2. For τi 6∈ τ ′, we have: natS4
(τ1) =

natS′3(τ1)−1 = 1;rctS4
(τ1) = rctS′3(τ1) = 1 and natS4

(τ2) = natS′3(τ2)−1 =
0;rctS4

(τ2) = rctS′3(τ2) = 0.
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Let us now briefly explain why we allow the value of nat(τi) to become
negative. As explained above, it models the fact that a new job of τi has been
submitted to the system while another job of the same task was not completed
(this can happen without missing a deadline if Ti < Di). Consider an example
where Di = 5, Ti = 2 and Ci = 1. When this task submits a first job, say, at
instant t = 0, we have nat(τi) = 2 and rct(τi) = 1. Then, assume that the job
idles during the next 2 time units, reaching a state where nat(τi) = 0 and still
rct(τi) = 1, without missing a deadline which will occur at time t = 5. Thus, at
time t = 2, τi could submit a new job which will anyway not be scheduled until
the current one finishes. Then, assume the job gets scheduled, reaching a state
where nat(τi) = −1 and rct(τi) = 0, just before the tasks can submit new
jobs. The value nat(τi) = −1 records the fact that τi could have (because tasks
are sporadic) submitted a job one time unit ago (at instant t = 2), but it can
also submit the new job right now (at instant t = 3). This is why the possible
moves in SuccR allow the tasks to reach all the states where rct(τi) = 1 and
nat(τi) ∈ {Ti − 1, Ti} = {1, 2}.

Finally, we need to define the notion of failure states, which are the losing
states of the games. A state S is a failure state if there exists a task τi ∈
Active(S) such that Laxity(τi) < 0. From the definition of the laxity, it is
easy to check (see [15, 10]) that those states are exactly the losing states, i.e.
if a task has missed a deadline in a state S then S is a failure state; and if S
is a failure state, then some task will miss its deadline whatever the scheduler
does, because there isn’t enough time left for the task to complete before the
deadline.

We can now define the safety game in which we need to find a winning strat-
egy in order to solve the feasibility problem for sporadic tasks on multiprocessor
platforms. Given a set τ = {τ1, . . . , τn} of sporadic tasks, and a number m of
CPUs, we let Gτ,m be the safety game (VS , VR, E, I,Bad) where:

• VS = {S ∈ States(τ) | ∀1 ≤ i ≤ n : LaxityS(τi) ≥ −1} × {S} is the set
of states controlled by the scheduler.

• VR = {S ∈ States(τ) | ∀1 ≤ i ≤ n : LaxityS(τi) ≥ −1} × {R} is the set
of states controlled by the environment.

• E = ES ∪ ER is the set of edges where:

– ES is the set of scheduler moves. It contains an edge
(
(S,S), (S′,R)

)
iff there is τ ′ ⊆ Active(S) s.t. |τ ′| ≤ m and S′ = SuccS(S, τ ′). In
this case, we sometimes abuse notations, and consider that this edge
is labelled by τ ′, denoting it

(
(S,S), τ ′, (S′,R)

)
.

– ER is the set of tasks moves. It contains an edge
(
(S,R), (S′,S)

)
iff there exists τ ′ ⊆ Eligible(S) s.t. v′ ∈ SuccR(S, τ ′). Again, we
abuse notations and denote this edge by

(
(S,R), τ ′, (S′,S)

)
.

• I = (S0,R), where for all 1 ≤ i ≤ n: rctS0
(τi) = natS0

(τi) = 0 is the
initial state.
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• Bad = {(S,P) ∈ VS ∪VR | ∃τi ∈ Active(S) such that LaxityS(τi) < 0},
i.e. Bad is the set of failure states.

Observe that the set of states of the game is indeed finite, since we restrict
ourselves to states where the laxity of all tasks is bounded below by −1. This
implies that for all tasks τi and all states S: LaxityS(τi) = natS(τi) − (Ti −
Di)−rctS(τi) ≥ −1. Hence, natS(τi) ≥ Ti−Di+rctS(τi)−1. However, since
rctS(τi) ≥ 0 for all S and τi, we conclude that natS(τi) ≥ Ti −Di − 1. This
provides us with a lower bound on nat that was not present in the definition
of States(τ). We conclude that in the game Gτ,m, all states are of the form
(S, P ), with P ∈ {S,R}; and for all task τi: natS(τi) ∈ {Ti−Di−1, . . . Ti} and
rctS(τi) ∈ {0, . . . , Ci}. Hence, Gτ,m has at most 2 ×

(
(Dmax + 2) × (Cmax +

1)
)n

= O
(
(Dmax × Cmax)n

)
states, and Gτ,m is thus finite. The correctness of

this restriction stems from the definition of the set of edges (see [10] for more
detailed arguments): at each time step, the laxity can decrease of 1 at most.
Hence, any play in the game reaching a Bad state must necessarily visit a (Bad)
state where the laxity of at least one task is −1.

6.2. Turn-based alternating simulation for Scheduling Games

Now that we have defined the safety game we need to solve, we define a tba-
simulation on the states of the game Gτ,m. Note that our definition of w extends
the idle-task simulation relation defined in [10]. Our new relation is stronger
and thus allows to optimise more aggressively the performance of our algorithm.
From now on, we will often abuse notations, and write, for a state v = (S,P) of
a scheduling game Gτ,m, natv, rctv, Eligible(v), Active(v), and Laxity(v)
instead of natS , rctS , Eligible(S), Active(S), and Laxity(S) respectively.

Definition 3 (Idle-ext task simulation). Let τ be a set of sporadic tasks on
a platform of m processors and let G = (VS , VR, E, I,Bad) be a scheduling game
of τ on the platform. Then, the idle-ext tasks preorder w⊆ VS×VS∪VR×VR is a
simulation relation; for all v1 = (S1,P), v2 = (S2,P ′): v1 w v2 iff P = P ′ and,
for all τi ∈ τ , the three following conditions hold: (i) rctS1

(τi) ≥ rctS2
(τi);

and (ii) rctS2
(τi) = 0 implies rctS1

(τi) = 0; and (iii) natS1
(τi) ≤ natS2

(τi).

The intuition of the idle-ext task simulation is that given v1 w v2 then ∀τi ∈
τ,rctv1(τi) ≥ rctv2(τi) means that processors need more time for scheduling
v1 than v2. Moreover, ∀τi ∈ τ,natv1(τi) ≤ natv2(τi) means that there are more
tasks to schedule in v1 than v2. Therefore, it is more difficult to schedule v1

than v2. In other words, processors must work ‘harder’ for solving v1 than v2.
In consequence, if v2 is a losing state, then v1 is a losing state as well. Similarly,
v1 is a winning state also implies v2 is a winning state.

We start by proving two properties of this w relation before showing that it
satisfies the definition of a tba-simulation. The properties are formalised by the
next lemma, which relates the sets of active and eligible tasks of two states v1

and v2 s.t. v1 w v2:
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Lemma 2. Let v1 and v2 be two states such that v1 w v2, then:
(i) Active(v1) = Active(v2); and (ii) Eligible(v1) ⊇ Eligible(v2).

Proof. For the first item, we prove that Active(v1) ⊇ Active(v2) and that
Active(v2) ⊇ Active(v1). First, given τi ∈ Active(v2), then rctv2(τi) > 0.
As rctv1(τi) ≥ rctv2(τi), then rctv1(τi) > 0, i.e τi ∈ Active(v1). Hence,
Active(v1) ⊇ Active(v2).

Second, given τi ∈ Active(v1), then rctv1(τi) > 0. We assume that τi /∈
Active(v2), then rctv2(τi) = 0. However, rctv2(τi) = 0, implies rctv1(τi) =
0, which is a contradiction. So, τi ∈ Active(v2), and Active(v2) ⊇ Active(v1).
This proves the first item: Active(v1) = Active(v2).

For the second item, given τi ∈ Eligible(v2), then rctv2(τi) = 0 and
natv2(τi) ≤ 0. We deduce that rctv1(τi) = 0. Moreover natv2(τi) ≥ natv1(τi),
then natv1(τi) ≤ 0. In consequence τi ∈ Eligible(v1). 2

Theorem 5. Given τ = {τ1, . . . , τn} a set of sporadic tasks and a multiproces-
sor platform with m processors. Let Gτ,m = (VS , VR, E, I,Bad) be the scheduling
game for τ on a platform with m processors. Then, w is a turn-based alternating
simulation for Gτ,m.

Proof. To establish the property, we consider two states v1 and v2 in VS ∪VR
s.t. v1 w v2, and we show that v1 and v2 respect Definition 1. We consider
several cases. First, if v1 ∈ Bad, then Definition 1 holds trivially. From now
on, let us assume that v1 6∈ Bad, and let us consider separately the cases where
v1 ∈ VS and v1 ∈ VR.

First, assume v1 ∈ VS . Let us show that for all v′1 ∈ SuccS(v1), there exists
v′2 ∈ SuccS(v2) s.t. v′1 w v′2. Assume v′1 is s.t. (v1, τ

′, v′1) ∈ E, i.e. v′1 has
been obtained from v1 by scheduling τ ′ ⊂ Active(v1). Let τ ′′ be the set of
tasks τ ′′ = {τi ∈ τ ′ | rctv1(τi) = rctv2(τi)}. Since τ ′′ ⊆ τ ′ ⊆ Active(v1), by
definition, and since Active(v1) = Active(v2) by Lemma 2, we conclude that
τ ′′ ⊆ Active(v2), and the state v′2 s.t. (v2, τ

′′, v′2) ∈ E exists, by definition of
SuccS . Let us show that v′1 w v′2. To do so, we first prove that the requested
properties on rctv′1 and rctv′2 (i.e. points i and ii of Definition 3) hold for all
task τi. We consider three cases depending on τi:

1. Let τi be a task s.t. τi /∈ τ ′ (hence, also, τi 6∈ τ ′′). In this case, by defini-
tion of SuccS , we have rctv′1(τi) = rctv1(τi) and rctv′2(τi) = rctv2(τi).
Since (rctv1(τi) ≥ rctv2(τi)) and (rctv2(τi) = 0 implies rctv1(τi) =
0) because v1 w v2, we conclude that the same holds for v′1 and v′2:
(rctv′1(τi) ≥ rctv′2(τi)) and (rctv′2(τi) = 0 implies → rctv′1(τi) = 0).
Thus, for all τi /∈ τ ′, points i and ii of Definition 3 hold.

2. Let us now consider the case where τi ∈ τ ′ \τ ′′. In this case, we know that
rctv1(τi) 6= rctv2(τi), by definition of τ ′′. In addition, since rctv1(τi) ≥
rctv2(τi) (because v1 w v2), we conclude that:

rctv1(τi) > rctv2(τi). (3)
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Then, by definition of SuccS again, we have:

rctv′1(τi) = rctv1(τi)− 1 (4)

rctv′2(τi) = rctv2(τi). (5)

Combining (3), (4) and (5), we conclude that rctv′1(τi) ≥ rctv′2(τi).
Moreover, rctv′2(τi) is necessarily different from 0 because otherwise,
by (5), we would have rctv2(τi) = 0, hence τi 6∈ Active(v2), hence
τi 6∈ Active(v1) by Lemma 2; which is a contradiction with the hypoth-
esis that τi ∈ τ ′ ⊆ Active(v1). Thus, the property on rct holds. The
same arguments as in the case where τi /∈ τ ′ can be applied to prove
that natv′1(τi) ≤ natv′2(τi). Thus, for all τi ∈ τ ′ \ τ ′′ points i and ii of
Definition 3 hold.

3. Finally, let us consider the case where τi ∈ τ ′′ ⊆ τ ′. In this case,
rctv′1(τi) = rctv1(τi)− 1 and rctv′2(τi) = rctv2(τi)− 1 by definition of
SuccS . Moreover, since τi ∈ τ ′′, we have rctv1(τi) = rctv2(τi). Hence,
rctv′1(τi) = rctv′2(τi), and thus points i and ii hold trivially.

Let us now turn our attention to natv′1 and natv′2 , and let us show that
point iii of Definition 3 holds. We consider two cases:

1. If rctv1(τi) > 0, then τi ∈ Active(v1). However, since Active(v1) =
Active(v2) by Lemma 2, we have rctv2(τi) > 0. then, by definition of
SuccS : natv′1(τi) = natv1(τi) − 1 and natv′2(τi) = natv2(τi) − 1. Since
v1 w v2, we have natv1(τi) ≤ natv2(τi). Hence, natv′1(τi) ≤ natv′2(τi)

2. If rctv1(τi) = 0, then, τi 6∈ Active(v1). By Lemma 2 again, we conclude
that τi 6∈ Active(v2), hence rctv2(τi) = 0. Then, by definition of SuccS ,
natv′1(τi) = max{natv1(τi) − 1, 0} and natv′2(τi) = max{natv2(τi) −
1, 0}. Since natv1(τi) ≤ natv2(τi) as v1 w v2, we conclude again that
natv′1(τi) ≤ natv′2(τi).

Thus, when v1 and v2 are in VS , we have shown that there is v′2 with (v1, v
′
2) ∈ E

s.t. v′1 w v′2.

Let us now consider the case where v1, v2 ∈ VR. Let us assume that τ ′′ ⊆
Eligible(v2) is s.t. (v2, τ

′′, v′2) ∈ E, i.e. v′2 has been obtained from v2 by letting
the tasks in τ ′′ submit new jobs. Since v1 w v2, we know, by Lemma 2 that
Eligible(v1) ⊇ Eligible(v2). Thus, the same set τ ′′ of tasks can submit jobs
from v1. Let v′1 be the state s.t. (v1, τ

′′, v′1) ∈ E, and where: (1) rctv′1(τi) =
rctv1(τi) for all τi 6∈ τ ′′; (2) rctv′1(τi) = Ci for all τi ∈ τ ′′; (3) natv′1(τi) =
natv1(τi) for all τi 6∈ τ ′′; and (4) Otherwise, natv1(τi) + Ti = natv′1(τi) for all
τi ∈ τ ′′. It is easy to check that such a v′1 exists by definition of SuccR. Let
us show that v′1 w v′2. To this end, we show that all points of Definition 3 are
satisfied for each task τi. We consider two cases:

1. First, let us assume that τi /∈ τ ′′. Then, by definition of SuccR, rctv′1(τi) =
rctv1(τi), rctv′2(τi) = rctv2(τi), natv′1(τi) = natv1(τi) and natv′2(τi) =
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natv2(τi). Hence, since v1 w v2, points i and ii of Definition 3 hold on
rctv′1(τi) and rctv′2(τi), and point iii holds on natv′1(τi) and natv′2(τi).

2. Second, let us assume that τi ∈ τ ′′. In this case, rctv′1(τi) = rctv′2(τi) =
Ci, by definition of SuccR. So, points i and ii of Definition 3 hold trivially
on rctv′1(τi) and rctv′2(τi). Moreover, natv2(τi) + Ti ≤ natv′2(τi) ≤ Ti
and natv1(τi) + Ti = natv′1(τi), again by definition of SuccR. Since
natv1(τi) ≤ natv2(τi), as v1 w v2, we conclude that natv′1(τi) = natv1(τi)+
Ti = natv2(τi) + Ti ≤ natv′2(τi). Hence, natv′1(τi) ≤ natv′2(τi) and
point iii of Definition 3 holds on natv′1(τi) and natv′2(τi)

Thus, we shown that v′1 defined as above is s.t. v′1 w v′2 and (v1, v
′
1) ∈ E.

To conclude the proof, we need to show that, if v2 ∈ Bad, then v1 ∈ Bad too.
Let τi ∈ fl(v2) be a task s.t. Laxityv2(τi) < 0. Such a task necessarily exists, by
definition of Bad. Hence, natv2(τi)−(Ti−Di)−rctv2(τi) < 0. However, v1 w v2

implies that, for all task τi, rctv1(τi) ≥ rctv2(τi) and natv1(τi) ≤ natv2(τi).
Hence, natv2(τi) − (Ti − Di) − rctv2(τi) < 0 implies that natv1(τi) − (Ti −
Di)−rctv1(τi) < 0, i.e. Laxityv1(τi) < 0. Thus, v1 ∈ Bad. This concludes the
proof. 2

7. Experimental Results

In order to assess the potential usefulness of our methods in practice, we
have performed a series of experiments, that we report now. In this section,
we denote by otfur-tba our implementation of Algorithm 1 using the tba-
simulation w defined in the previous section. For the sake of comparison, we
have implemented two other algorithms. The first one is the exhaustive search
(denoted es) technique that consists in first building the whole game graph9,
then applying the attractor algorithm to compute the losing states. If the initial
state of the graph is not losing, we can then extract a winning strategy that
consists in selecting, in all winning nodes, any winning successor. In order
to keep the comparison fair with otfur-tba, the resulting strategy is then
minimised wrt w. Second, we have implemented the plain otfur algorithm,
i.e. without our optimisations based on w.

Our implementations are made in C++ using the STL. We run tests of a
benchmark on a server equipped with Mac Pro (mid 2010) with OS X Yosemite,
processor of 3.33 GHz, 6 core Intel xeon and memory of 32 GB 1333 MHz DDR3
ECC. Our programs were compiled with Apple Inc.’s distribution of g++ 4.2.1.

Experiments with T varying. Our first set of experiments consists in generating,
randomly, sets of tasks (we keep feasible sets only), grouping the sets of tasks
by values of T , the interarrival time. In these experiments, we always consider
n = 2 CPUs and m = 3 tasks. For each i taking values in {5, 7, 9, 11, 13, 15, 17},

9The size of the whole game graph also provides us with a measure of the difficulty of the
instance.
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Figure 5: Search space explored by the three algorithms. The x-axes shows the range of T ,
corresponds to 300 game instances generated. Each column represents the average number of
states explored for each range of T .

we generate a set, called τ [i,i+2] of 300 tasks, s.t. in each set of τ [i,i+2], the
T parameters of all tasks ranges in the interval [i, i + 2]. Thus, we produce a
total of 2,100 task sets. To generate τ [i,i+2], we proceed as follows. We first
generate 20 tuples (T1, T2, T3) giving the interarrival time of the three tasks.
Then, from each tuple, we generate 15 task sets. To do so, we generate five task
sets with a value10 U = 1; 5 task sets with U = 1.5; and 5 task sets with U = 2.
To achieve these values of U , we first compute, using the UUnifast algorithm
[16], a tuple (U1, U2, U3) s.t. U = U1 + U2 + U3 has the desired value11, then
deduce suitable values of C1, C2 and C3. The deadlines Di are chosen between
Ci and Ti, uniformly at random. Finally, we also discard all task sets that do
not meet the following necessary condition for the feasibility of any sporadic
arbitrary-deadline system: λsum(τ) ≤ m and λmax(τ) ≤ 1, where for all tasks
τi: λi = Ci/min(Di, Ti); λsum(τ) = (

∑
τi∈τ λi); and λmax(τ) = (maxτi∈τ λi).

For all these generated tasks sets, we run the three algorithms, and collect
several metrics: the number of explored states (in the case of es, it will be
the number of states in the whole graph), the running time and the size of the
winning strategy (i.e. the number of states v for which we need to store the
value σ(v), see Figure 1 for an example).

Figure 5 presents the average number of states explored in each set τ [i,i+2]

by the three algorithms. From this figure, we can already derive two obvious

10Recall that the utilisation factor U =
∑n

i=1
Ui where each Ui = Ci

Ti
11We also discard the tuples where Ui > 1 for some task τi.
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Figure 6: Comparison of the search space explored for each instance: otfur vs otfur-tba.

conclusions. First, otfur-tba clearly outperforms the two other algorithms
es and otfur. The average number of states explored by otfur-tba is ap-
proximately 7% of the average number of states explored by es and otfur, on
all experiments. Second, it is interesting to remark that the number of states
explored by es and otfur are almost the same. This phenomenon can be
explained by the following reasons. The main optimisation of otfur consists
in back propagating the losing states, that is, when a state is declared losing
during the forward exploration, it is surely losing, and this information is prop-
agated towards the root, thereby allowing to declare the initial state losing as
soon as possible. Since our main goal is to compute schedulers, we have con-
sidered only feasible instances, in our experiments, where initial state is always
winning. Thus, although there can be reachable losing states in such games,
the optimisations of otfur have limited impact in those cases. Moreover, the
arenas of scheduling games contain many cycles (from all winning states, it is
always possible to reach the initial state, as the tasks can always play in such
a way that they do not submit jobs anymore). This prevents otfur from con-
cluding quickly that the initial state is winning. From theses experiments, we
can conclude that positive instances of the feasibility problem are apparently a
class of worst cases for otfur, which further supports the importance of our
contribution.

Since otfur and es explore set of states that are very close to each other,
we will henceforth present only a comparison between otfur-tba and otfur
(which can be regarded as the state-of-the-art algorithm). For the sake of com-
pleteness, figures presenting a comparison between otfur-tba and es are given
in Appendix A.
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Let us now turn our attention to Figure 6: it compares the number of states
explored by otfur-tba (in green) and otfur (in red). Each point on the
graphics represent one task set. The indexes of the task sets have been assigned
sequentially, following the possible values of T : the one with the highest indexes
have their interarrival times in the interval [i, i+2] with the largest i. As can be
seen, even on such simple task sets (2 CPUs, 3 tasks), the number of states grows
very quickly and peaks at nearly 2 millions. Clearly, otfur-tba outperforms
otfur (hence, also es), and scales much better.

Next, we compare, in Figure 7, the sizes of the winning strategies computed
by the two algorithms. The former figure compares the size of the winning
strategy computed by otfur before minimising, to that computed by otfur-
tba (which is minimal by construction). The latter compares the winning
strategies computed by otfur after minimising to that of otfur-tba. These
experiments further support our approach: while it is always possible to extract
reasonably sized strategies from the strategies computed by otfur (and es),
this algorithm needs to explore redundant states, which might be prohibitive
in practice. On the other hand, otfur-tba keeps, at all times, sets that are
minimal, and avoid exploring as much as possible redundant portions of the
graph.

Finally, Figure 8 compares the running times of the algorithms—remember
that, to ensure a fair comparison, the running time of otfur include a minimi-
sation (wrt w) of the computed strategy. As expected from the report on the
number of explored states, otfur-tba runs fastest and it takes only 20% the
execution time the other two algorithms, in average.

Experiments with the number of tasks varying. Our goal with this second set
of experiments is to determine the limit of all the algorithms, i.e. the biggest
instance they are able to solve within 48h. We now let the number of tasks vary
while the others parameters are fixed. The number of CPUs is set to 2, and we
generate instances with U = 2 only. Again, the Ui parameters of the tasks was
computed by the UUnifast algorithm. The minimum interarrival time Ti of
each task was randomly generated in the range [4, 6] and Di in the rang [3, 5].
We generate only one instance (task set) for each value of n (number of tasks).
The results are shown in Table 2.

As we can see in the table, both the search space and the running time
explode very quickly. Furthermore, es and otfur fail to solve the instance of 8
tasks because of the out of memory error. Meanwhile, our algorithm successes
in solving this instance with a relatively small set AntiMaybe containing 26,648
states.

8. Conclusion and future works

We have introduced a framework to compute, efficiently, succinct strategies
in safety (and reachability) games. We have demonstrated the potential of
our approach by applying it to the feasibility problem for sporadic tasks on
multiprocessor platforms, and important problem from the real-time scheduling
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Figure 7: Comparison of the size of winning strategies: otfur vs otfur-tba, for each game
instance in the benchmark. On the top: the sizes for otfur are reported before minimisation.
In the bottom: after minimisation.
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Figure 8: Comparison of the running times (top) and of the ratio of the running times (bot-
tom): otfur vs otfur-tba, for each game instance in the benchmark.
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Table 2: Average number of states explored and time taken by the three algorithms for each
number n of tasks.

n
es otfur otfur-tba

#States Time (s.) #States Time (s.) #State Time (s.)

3 1,742 0.126 1,741 0.137 257 0.039
4 23,502 5.622 23,315 7.038 1,153 0.537
5 316,779 395.996 314,384 566.489 11,573 37.740
6 1,537,393 3,262.967 1,518,267 5,075.207 12,306 50.034
7 7,651,916 46,980.900 7,476,556 86,925.399 91,955 1,295.175
8 – – – – 1,037,341 172,587.313

community. Our experiments show that our approach has the potential to push
further the limit on the size of instances that can be handled in practice: while
the number of states explored by es and otfur are almost the same, otfur-
tba outperforms es and otfur.

Yet, our algorithm has potentially other applications: we suggest two of
them, that share the following characteristics, making our technique particularly
appealing: (i) they have practical applications where an efficient implementation
of the winning strategy is crucial; (ii) the arena of the game is not given explicitly
and is at least exponential in the size of the problem instance; and (iii) they
admit a natural tba-simulation �, that can be computed directly from the
descriptions of the states.

LTL realisability. roughly speaking, the realisability problem of LTL asks to
compute a controller that enforces a specification given as an LTL formula. As
already explained, Filiot, Jin and Raskin reduce [1] this problem to a safety
game whose states are vectors of (bounded) natural numbers. They show that
the partial order � where v � v′ iff v[i] ≥ v′[i] for all coordinates i is a simulation
relation and rely on it to define an efficient antichain algorithm (based on the
OTFUR algorithm). Our technique generalises these results: Theorem 4 can
be invoked to show that � is a tba-simulation and Algorithm 1 is the same as
the antichain algorithm of [1], except for the third optimisation (see Section 5)
which is not present in [1]. Thus, our results provide a general theory to explain
the excellent performance reported in [1], and have the potential to improve it.

Determinisation of timed automata. Timed automata extend finite automata
with a finite set of real-valued variables that are called clocks, whose value
evolves with time elapsing, and that can be tested and reset when firing tran-
sitions [17] . They are a popular [18] model for real-time systems. One of the
drawbacks of timed automata is that they cannot be made deterministic in gen-
eral. Hence, only partial algorithms exist for determinisation. So far, the most
general of those techniques has been introduced in [3] and consists in turning
a TA A into a safety game GA,(Y,M) (parametrised by a set of clocks Y and a
maximal constant M). Then, a deterministic TA over-approximating A (with
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set of clocks Y and maximal constant M), can be extracted from any strategy
for Player S. If the strategy is winning, then the approximation is an exact
determinisation. Using Theorem 4, we can define a tba-simulation �det on the
states of this game.

Future works. Besides these potential applications, we believe we could further
enhance the performance of our prototype for the feasibility of sporadic tasks by
using more efficient data structures. One possibility would be to use Covering
Sharing Trees (CSTs) [19] to store efficiently sets of states. A version of the
attractor algorithm using should also be investigated. Finally, another line of
research would consists in devising an ad hoc data structure to store compactly
sets of sets, in the spirit of zones and DBMs [20] for timed automata.
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Appendix A. Detailed comparison between es and otfur-tba

For the sake of completeness, this section compares the performances of es
and otfur-tba. Since es performs very close to otfur, the conclusions we
can draw from these experiments are the same than the ones we have obtained
when comparing otfur-tba to otfur.
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Figure A.10: Comparison of the size of winning strategies: es vs otfur-tba, for each game
instance in the benchmark.

44



 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  300  600  900  1200  1500  1800  2100

 R
u
n
n
in

g
 T

im
e
  

Instances Index

 Running Time 

ES
OTFUR-TBA

 0

 20

 40

 60

 80

 100

 0  300  600  900  1200  1500  1800  2100

 R
u
n
n
in

g
 T

im
e
  

Instances Index

 Rate of Running Time 

 Rate of time taken 

Figure A.11: Comparison of the running times (top) and of the ratio of the running times
(bottom): es vs otfur-tba, for each game instance in the benchmark.
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