
Université Libre de Bruxelles

Faculté des sciences

Département d’informatique

dSL,

a Language and Environment for the
Design of Distributed Industrial Controllers

Bram De Wachter

November, 2005

Dissertation présentée en vue de l’obtention du grade de

Docteur en Sciences

Abstract

We present dSL (distributed Supervision Language), a language and

environment dedicated to the specification of industrial controllers.

dSL extends an existing language used in the industrial world to al-

low transparent code distribution. We study other existing solutions,

and argue for the need of dSL. Next, we define dSL syntactically and

semantically, and prove some remarkable properties on its seman-

tics. The automatic distribution introduces problems that are hard

to solve for the dSL compiler/distributer, for which we give some

heuristics. Since we give a precise semantics to the dSL language,

formal methods can be applied to assure that controllers are correct.

We show how to use explicit state model checking to perform this

verification. Throughout the presentation, we introduce a set of ex-

amples showing the useability of dSL and its concepts.

Keywords: Distributed systems, language design, compilation, re-

active systems, formal methods.

Contents

1 Introduction 9

2 Motivation and other approaches 15

2.1 Solutions with transparent distribution 16

2.1.1 Process algebra . 16

2.1.2 Unity . 18

2.1.3 Synchronous languages 20

2.1.4 Motivations for dSL 28

2.2 Execution Environment . 29

2.2.1 Distributed Shared Memory 30

2.2.2 Thread Migration . 31

3 Presentation of dSL 33

3.1 dSL’s ancestor SL . 33

3.1.1 Static memory . 36

3.1.2 SL Variables . 37

3.1.3 The WHEN construct and assignment semantics 38

3.1.4 The WHEN IN construct 39

3.1.5 The UNKNOWN value . 40

3.1.6 Looping semantics . 41

3.2 From SL to dSL . 41

3.2.1 Three syntactical additions 44

3.2.2 The UNKNOWN value in dSL 49

3.2.3 Dynamic concepts . 49

3.3 dSL Syntax . 49

3.4 dSL Semantics . 49

3.4.1 Definition of Distribution 51

3.4.2 Preliminary definitions 53

3.4.3 Structural operational semantics 55

3.5 Properties of dSL’s semantics 63

3

4 CONTENTS

3.5.1 A lattice of behaviors 63

3.5.2 Full proof of the one-split simulation 68

3.6 From dSL to dSL♦ . 77

3.7 Examples . 78

3.7.1 A canal lock controller 78

3.7.2 A Conveyor belt . 84

3.7.3 A railway system . 88

4 dSL’s Distribution 93

4.1 Localizing instructions, a coloring problem 93

4.2 Localizing atomic instructions 94

4.2.1 Informal presentation 94

4.2.2 Formal definitions . 94

4.3 Localizing sequential instructions 99

4.3.1 Informal presentation 99

4.3.2 Formal definition . 103

4.3.3 Complexity results . 109

4.3.4 Related work . 114

4.3.5 A generalized global criterion 115

4.3.6 A fast local heuristics 121

4.4 Some remarks on the atomic and sequential coloring problems 135

4.5 Instructions reordering . 136

4.5.1 Informal presentation 137

4.5.2 Formal presentation 138

4.5.3 Results . 139

5 dSL’s implementation 153

5.1 The dSL Environment . 153

5.1.1 Overview . 153

5.1.2 The Frontend . 154

5.1.3 The Optimizer . 154

5.1.4 The Distributer . 158

5.1.5 The Backend . 167

5.1.6 The dSL Virtual Machine 167

5.2 Relation to the formal semantics 170

5.3 The real dSL environment . 173

6 Verification of dSL 179

6.1 The Spin Model Checker . 179

6.2 Translation of dSL to Promela 181

CONTENTS 5

6.2.1 Limitations . 182

6.2.2 State space reduction and the use of atomic 187

6.3 Results . 187

6.3.1 The canal lock controller 187

6.3.2 The conveyor belt . 192

6.3.3 The railway system . 196

7 Discussion and future work 199

7.1 Missing features in dSL . 199

7.1.1 Dynamic elements in dSL 200

7.1.2 Separate compilation 203

7.2 A real time semantics for dSL 204

7.3 Future work on the distribution algorithms 205

7.4 Partial verification and testing 206

8 Conclusions 219

A SL syntax 235

B dSL syntax 241

C Canal locks controller source code 245

D The dSL compiler-distributer frontend 249

E The dSL compiler-distributer distributer 253

F The dSL compiler-distributer backend 257

G An Introduction to Promela 263

6 CONTENTS

Acknowledgments

I would like to thank my promoter Thierry Massart for offering me the

opportunity and grants that allowed me to work at the Université Libre de

Bruxelles. Without this opportunity, this work would not have seen the

light of day.

Thanks to all members of the jury for their time and precious feedback.

The pertinence of their remarks greatly improved this thesis.

I also would like to thank the research and development department of

Macq Electronique. Geert, Bernard and Jean-François thank you for your

involvement in this work. Your valuable expertise and the many hours of

discussion had a major impact on the practical side of this work.

Many grateful thanks go to my fellow researchers, and more particu-

larly Cédric Meuter and Alexandre Genon, for those fruitful moments of

cooperation and discussions that shaped this work.

I could not have managed without the support and the hearth warming

encouragements of all co-workers of the Verification Group. I hope that

those touching moments of fun and fraternity will not fade in memory. I

can not imagine (re)reading this thesis and not thinking of each single one

of you.

Special thanks go to Laurent Van Begin and Clément Daniel. I am

unable to express how much their presence meant to me. They know.

En laatst, maar niet in het minst, wil ik een oprechte en welgemeende

dank aan mijn familie richten. Jullie waren er steeds opnieuw met raad,

liefde en daad. Vava en Moemoe, Vake, Moeke, Nele, Griet en Wouter, ...

zonder jullie zou het voor mij niet mogelijk zijn geweest. Dank je.

Bram De Wachter

7

8 CONTENTS

Chapter 1

Introduction

Context

This work is situated in the world of industrial process control, which aims

at managing real world environments such as traffic lights, domotica, road

signaling, power plant regulations, assembly belts, ... The industrial con-

trollers used to manage these environments observe, decide and react. A

controller observes the environment through a set of captors, which trans-

form the physical state of the environment into data ready to be handled by

the controller. The intelligent part of the controller makes decisions based

upon these measures, hence dictating the controller’s behavior. A controller

reacts to the environment, using the outcome of these decisions, through

actuators which are hardware devices capable of forcing some physical state

of the environment. For a system controlling traffic lights, sensors indicate

the arrival of cars, while actuators consist in green, red and yellow light

bulbs.

Industrial process control goes hand in hand with distributed systems.

This is due to the physically distributed nature of the environment, where

various sensors and actuators may span large distances. Several controllers,

each connected to a set of nearby sensors and actuators, must therefore

cooperate to control the environment. The development of such a network

of controllers is a complicated task, even for experienced programmers. The

burden of combining the physical complexity of the process to control, the

communication schemes of the distributed parts, the need to provide simple

and fast control and the extreme reliability and robustness requirements

make the development of such systems hard.

The need for techniques alleviating the additional task inflicted by the

physical distribution is therefore significant.

9

10 CHAPTER 1. INTRODUCTION

Goal

To simplify the work of the distributed system’s designer, we introduce a

novel programming language with transparent code distribution, hence the

programmer is no longer burdened with the distributed aspects of the sys-

tem, and can therefore concentrate on its functional aspects.

In addition to removing the physical distribution from the designer’s

task, we aim at providing the programmer with a way of establishing func-

tional correctness of the designed system. The nature of the systems consid-

ered in this work requires absolute confidence in their behavioral correctness.

Often these systems are used to control high risk environments where an er-

ror in the controller may have tremendous consequences. The financial and

human impact of an error in an assembly line controller or the catastrophe

due to a malfunctioning controller in a power plant makes the correctness

of these systems indispensable.

A third important goal is that our language must take into consideration

the languages that are actually used in the industry. From the theoretical

side, the above mentioned problems have long been studied before, and

many solutions have been proposed. Our language is not intended to be

yet another automatically distributed design language for reactive systems.

What is unique in this study, is that the design of our language is based

upon an existing industrial language, which in its turn is based upon an

industrial standard.

Constraints

To reach the above mentioned goals, several constraints must be taken into

account. These can be summarized in the following three concerns.

First, there is an efficiency concern since programs designed with our

new language must be able to execute on industrial controllers which have

very limited resources. The limited amount of available processing power

and memory on the controllers requires a design that excels in its simplicity.

Next, a major concern for industrial control systems is the ability to

easily monitor the system. Otherwise stated, the system should be designed

in such a way that one knows, at any time, how the controllers are managing

the environment.

Finally, we are faced with a robustness concern. More particularly, each

controller should be, in some sense, independent of the other controllers.

The breakdown of one controller in the system should have only limited

effect on the other controllers.

11

dSL

dSL is a domain specific language designed to program industrial controllers

providing transparent distribution. This transparent distribution offers the

programmer a view of the environment were all actuators and sensors are

connected to a single controller. The task of the programmer is therefore

reduced to writing a single program, in contrast to writing a set of cooper-

ating programs (one for each controller in the system). The specification of

the behavior of a distributed control system in dSL is basically a two step

process :

1. The functional design of the system is specified in a single program

written in dSL.

2. The programmer specifies the physical location of the actuators and

sensors, possibly connected to different controllers. This is done in a

localization table, which is not part of the program.

The dSL program and the localization table are then fed into the dSL

compiler-distributer which produces a set of cooperating programs perform-

ing the control specified by the programmer.

Since the keyword in the world of control system is robustness, the accent

in the design of dSL has been put on simplicity. We shall see, e.g. that

dynamic features have been avoided as much as possible to allow an easy

monitoring during the execution.

Additionally, dSL has a formal semantics which allows us to give a mathe-

matical description of the behavior of a program written in dSL. This math-

ematical model can then be used by verification tools which are able to

formally prove the correctness of the system with respect to a certain prop-

erty. For a traffic light controller, these tools can for example insure that

the controller is unable to turn on the green lights for crossing directions of

an intersection at the same time.

Advantages

The practical advantages of using transparent code distribution mechanisms

are obvious. First, maintainability is increased since only a single program

is used to specify the behavior of the controller. Next, flexibility is in-

creased, since the reconfiguration of actuators and sensors does only require

the programmer to change the localization table, as opposed to changing

the program. Finally, the simplicity in the design and our formal approach

12 CHAPTER 1. INTRODUCTION

allows to achieve a level of confidence in the correctness of the controller’s

behavior that could never be achieved without it.

Aspects covered in this study

This thesis covers a wide range of different aspects in computer science and

results can surely be used outside the world of process control.

The first element is related to software engineering, with the design of

dSL. Some language aspects in dSL could be improved from a theoretical

point of view. However, bear in mind that this work starts from what is

used in practice (a programming language in contrast to a design language),

and proposes a solution with practical applicability in mind.

Secondly, we enter the domain of formal methods, with the introduc-

tion of dSL’s semantics. These formal semantics are also used to establish

functional correctness of controllers programmed in dSL, using a technique

called model-checking.

A third element explored in this thesis comes from graph theory and

algorithmics, when we introduce and study the algorithmic difficulties intro-

duced by the transparent distribution of dSL. New results for a well known

problem are presented, yielding new insights which open new ways to tackle

this problem.

We also study elements belonging to the distributed systems area of

research. The execution environment of our language uses a technique called

thread migration which, in this work, is adapted for our specific needs.

Finally, the implementation of the dSL compiler-distributer combines all

these matters together, using additional elements from compilation theory.

Plan of the thesis

In chapter 2, we discuss related work and show to what extent this work has

an impact on the design of dSL.

Next, in chapter 3, we present dSL. We first introduce dSL’s ancestor

SL (Supervision Language), a programming language used in the industry

to program industrial controllers. We show how some syntactical additions

to this language allow the transparent code distribution of dSL. Next, we

introduce dSL’s semantics, formalized as a labeled transition system. We

show how the physical distribution of the environment influences this se-

mantics, and introduce a relation between the different behaviors of a given

dSL program with respect to its physical distribution. We end this chapter

13

by introducing a set of examples. The presentation of dSL has also been pre-

sented in [DeWMM03a]. The semantics and its relation with the physical

distribution are presented in [DeWGMM05].

In chapter 4, we study the algorithmic difficulties introduced by the

transparent distribution of dSL. We show that these additional problems

are difficult to solve by relating them to NP-Complete problems defined on

graphs. Since these problems can not be solved in a reasonable amount of

time, we suggest efficient heuristics. The work presented in this chapter was

published in [DeWGM05].

Chapter 5 shows how the theoretical study of the dSL language is used in

practice. We introduce some implementation aspects of the dSL compiler-

distributer. This compiler-distributer transforms a dSL code into a set of

cooperating executable codes. The dSL compiler-distributer presented in

this chapter has been taken over by Macq Electronique who integrated it in

their industrial toolsuite OBViews.

We show how the correctness of a dSL program can be automatically

proved by using verification tools in chapter 6. We study how an explicit

state model checker can be used to establish functional correctness with

respect to a certain property. We therefore show how a dSL program can

be transformed into a formal specification accepted by this model checker.

We illustrate this approach with results in the verification of the examples

given in chapter 3. Some of the verification results presented here are also

published in [DeWMM03b].

Chapter 7 presents future works. This includes a discussion on some

possible extensions of dSL, including a real-time semantics. We also re-

explore the work presented in chapter 4. We end this chapter with a brief

presentation of two techniques combining formal verification and testing.

Finally, Chapter 8 concludes this thesis.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Motivation and other

approaches

The problem of specifying reactive systems with transparent distribution has

extensively been discussed in the literature, and several formal solutions to

the problem have been proposed. Unfortunately, in the industrial world only

very little effort is made in adopting these solutions. Either the proposed

solutions are too abstract, or they have inherent technical issues that make

them unusable in practice. To specify such systems, the industry therefore

uses proprietary programming languages, which are generally based upon

industrial standards.

In order to overcome these problems, we chose to marry both the formal

world and the practical world. We therefore use an existing language used in

the industry as a basis for our new language, extend its syntax and formalize

its semantics using the observations made on the solutions found in the

literature.

In this chapter, we give a critical overview of these existing formal so-

lutions. The observations made in this chapter have a clear impact on the

design of dSL’s syntax and semantics which are presented, together with the

industrial language used as the basis for dSL, in the next chapter. We com-

ment in more detail on process algebra (section 2.1.1), higher level frame-

works such as Unity (section 2.1.2), and synchronous languages (section

2.1.3). The choice of the distributed execution environment used by dSL is

motivated by a discussion on distributed shared memory systems (section

2.2.1) and thread migration (section 2.2.2).

15

16 CHAPTER 2. MOTIVATION AND OTHER APPROACHES

2.1 Solutions with transparent distribution

2.1.1 Process algebra

In the world of process algebras, the problem of automated distribution is

defined as a correctness preserving transformation of a centralized specifi-

cation into a semantically equivalent distributed one. More specifically, a

centralized specification B, which has a certain set of actions A, is trans-

formed into a specification containing two synchronizing processes B1 and

B2 in such a way that the processes B1 and B2 only perform the actions in

A1 and A2, (with A = A1 ∪ A2 ∧ A1 ∩ A2 = ∅). The bi-partition of A in

A1 resp. A2 can for example be based on the geographical distribution of

certain functionalities (actions) at different locations. The result of the com-

position of B1 and B2 must be equivalent, with respect to some equivalence

relation, to the centralized specification B (e.g. for bisimulation equiva-

lence [Mil89], see [Mas92, BL95], for observational equivalence [Mil89], see

[BLB93]). Remark that more complicated subdivisions can be obtained by

repeatedly applying this bi-partition.

We illustrate these concepts using the notations from [BLB93]. Let L

be a set of action labels ({i, δ} ∩ L = ∅) and PN a set of process names.

Let g ∈ L ∪ {i}, a ∈ L ∪ {i, δ}, G ⊆ L, and P ∈ PN . Let H be a function

H : L ∪ {i, δ} 7→ L ∪ {i, δ} with H(i) = i and H(δ) = δ. The syntax of

a process definition is P := B, where B is a behavior expression. A set of

process definitions {P := BP |P ∈ PN} is called a process environment. A

LOTOS [BB87] specification is a behavior expression in the context of a pro-

cess environment. The syntax and operational semantics of Basic LOTOS

behavior expressions is given in figure 2.1.

The problem can now be formally stated as follows : given a process be-

havior B with actions A, and a partition of A into A1 and A2, find processes

B1 and B2 such that

(hide {sync} in B1|[{sync}]|B2) ≈ B
and Actions(B1) = A1, Actions(B2) = A2

where sync is a new action (sync ∈ L\ Actions(B)) which enables B1 and

B2 to synchronize, and ≈ expresses an equivalence relation.

Several solutions for this problem have been proposed. In order to shed

a light on these solutions, we use the results from [BLB93], where ≈ stands

for observational equivalence [Mil89]. In this paper, the transformation of

B into B1 and B2 is defined using two mappings T1 and T2, such that

T1(B) = B1, and T2(B) = B2. These mappings are recursively defined

2.1. SOLUTIONS WITH TRANSPARENT DISTRIBUTION 17

inaction stop

termination exit exit
δ−→ stop

action prefix g;B g;B
g−→ B

choice B1[]B2 B1
a−→ B′

1 ` B1[]B2
a−→ B′

1

B2
a−→ B′

2 ` B1[]B2
a−→ B′

2

enabling B1 � B2 B1
a−→ B′

1, a 6= δ ` B1 � B2
a−→ B′

1 � B2

B1
δ−→ B′

1 ` B1 � B2
i−→ B2

disabling B1[> B2 B1
a−→ B′

1, a 6= δ ` B1[> B2
a−→ B′

1[> B2

B1
δ−→ B′

1 ` B1[> B2
δ−→ B′

1

B2
a−→ B′

2 ` B1[> B2
a−→ B′

2

hiding hide G in B B
a−→ B′, a ∈ G ` hide G in B′ i−→ hide G in B′

B
a−→ B′, a 6∈ G ` hide G in B′ a−→ hide G in B′

renaming B[H] B
a−→ B′ ` B[H]

H(a)−−−→ B′[H]

parallel B1|[G]|B2 B1
a−→ B′

1, a 6∈ G ∪ {δ} ` B1|[G]|B2
a−→ B′

1|[G]|B2

composition B2
a−→ B′

2, a 6∈ G ∪ {δ} ` B1|[G]|B2
a−→ B1|[G]|B′

2

B1
a−→ B′

1, B2
a−→ B′

2, a ∈ G ∪ {δ} `
B1|[G]|B2

a−→ B′

1|[G]|B′

2

instance P P := B,B
a−→ B′ ` P a−→ B′

Figure 2.1: Basic LOTOS syntax and semantics

using the structure of the semantics from figure 2.1. The main ideas can

easily be expressed using the following decomposition rules :

Inaction (B = stop). In this case B is decomposed in T1(B) = stop and

T2(B) = stop.

Termination (B = exit). In this case B is decomposed in T1(B) = exit

and T2(B) = exit.

Action Prefix (B = a;B ′) : suppose a ∈ A1, then B is decomposed in

T1(B) = a; sync!; T1(B
′) and T2(B) = sync!; T2(B

′)

Choice (B = B1[]B2): if there is no global choice (e.g. B1 = a;B′
1,

B2 = b;B′
2, with a ∈ A1, b ∈ A2), then B is decomposed in T1(B) =

T1(B1)[]T1(B2), T2(B) = T2(B1)[]T2(B2).

Parallel (B = B1|[G]|B2) : B is decomposed in T1(B) = T1(B1)|[G]|T1(B2)

and T2(B) = T2(B1)|[G]|T2(B2)

For the other semantic rules, similar decompositions can be given. The

hardest case seems to be the choice, where global choices are hard to dis-

tribute. A possible solution to this problem is proposed in [Lan90].

Note that LOTOS is only a notational vehicle, and that the same prob-

lem has also been studied on various types of labeled transition systems

([CMT99, Mor99, SEM03]).

The main criticism on these works, from an industrial point of view, is

18 CHAPTER 2. MOTIVATION AND OTHER APPROACHES

that in these formalisms, contrary to programming languages, the notion of

assignment to variables does not exist. Other solutions had therefore to be

found.

2.1.2 Unity

In a high level framework, Chandy and Misra have proposed the Unity

approach [KMC88] to model and design asynchronous or synchronous par-

allel programs. Let us recall that the principle in Unity, similar to the one

proposed by the B method [Abr96], is to use a design modeling language

together with a proof system to provide, through several design decisions,

correct parallel programs. Central in this framework is the separation of the

concerns of program development and the physical architecture on which it

is implemented.

unity program ::= “PROG” prog name

“READ” variables set

“WRITE” variables set

“INIT” state predicate

“ASSIGN” actions

actions :: = action | action “[]” actions

| “[]” i : quantificationi : actioni
action ::= assignment | guarded action

assignment ::= variables list “:=” expr list

variables list ::= var (“,” var)∗)
expr list ::= expr (“,” expr) ∗

guarded action ::= “IF” expr “THEN” action

Figure 2.2: Part of Unity Syntax

The program development phase provides the specification of the Unity

program in itself using guarded, multiple assignment statements. A part

of the syntax for Unity programs can be found in BNF notation [ML87]

in figure 2.2. The syntactical elements found in a Unity program are the

following :

• prog states the name of the Unity program that is specified.

• read and write contains the declaration of the variables used in the

program. Variables may be in both read and write declarations.

Variables declared as read are variables governed by the environment

(which updates their values), while variables declared as write are

read by the environment.

2.1. SOLUTIONS WITH TRANSPARENT DISTRIBUTION 19

• init expresses a state-predicate, specifying the set of possible initial

values for the variables of the Unity program.

• assign declares a set of actions separated by the symbol “[]”. The

quantified action expression can be used to abbreviate a set of actions.

The index i in such an expression is instantiated for each element in

the range expressed by quantificationi. Each instance of i results in an

instance of actioni. An example of such an quantified action is : [] i

: 0 ≤ i < 10: A[i] := 0, which generates a set of ten actions

that assign 0 to the first 10 elements of some array A.

PROG Example

READ {a,x,y}

WRITE {x,y}

INIT true

ASSIGN

if a = 0 then x := 1;

[] if a != 0 then x := 1;

[] if x != 0 then y, x := y+1, 0

Figure 2.3: A Unity example program

The execution of a Unity program starts from an initial state, which

satisfies the init predicate. Next, non-deterministically, one action is chosen

and executed in an atomic manner, and the process is repeated. Each action

is infinitely often scheduled for execution, and hence cannot be ignored for-

ever. For illustration, consider the Unity program in figure 2.3. The initial

condition in this program is missing, so any state can be an initial state. As

far as Unity is concerned, the actions of this program can be implemented

sequentially, fully parallel or anything in between, as long as the atomicity

and the fairness condition of Unity are met. One can easily see that during

the execution of this program eventually x = 0 will hold, and that for any

C eventually y > C will hold. Additionally, at any time y ≥ y0, where y0

denotes the initial value of y.

During the second phase, starting from a Unity program, a mapping

to an architecture is used to describe a possible implementation. Various

possibilities are proposed to implement a Unity program on a distributed

architecture. The program variables can be seen as shared variables or com-

munication can be done through FIFO channels. In both cases, a protocol

must be explicitly given to preserve the data integrity or synchronize the

execution flow.

20 CHAPTER 2. MOTIVATION AND OTHER APPROACHES

2.1.3 Synchronous languages

On the programming language side, the most relevant works on automated

distribution of reactive systems have been done in the domain of synchronous

languages such as Esterel [BG92], Lustre [CPHP87] and Signal [LGLL91],

which answered questions on how to specify controllers in a natural and

semantically well defined way. We concentrate on Esterel, since it is the

language best fit for our application domain. The reader should keep in

mind that the situation for the other synchronous languages is very similar.

Informally, all synchronous languages make the assumption that time is a

discrete sequence of instants. Instants take place either periodically or when

the environment changes its state (when observable events are generated by

the environment). When an instant takes place, the system is provided

with a snapshot of the environment, and computes a reaction based on the

local state of the system in addition with the current state of the environ-

ment. The synchronous hypothesis, which is at the basis of all synchronous

languages, states that such instants take no time. When an instant takes

place, the system instantaneously commits the computed reaction back to

the environment.

Informal presentation

We first give an informal overview of the Esterel language, before going

into its semantics.

Modules A module is the programming unit in Esterel. It has the

following shape :

module name :

interface declaration

statement

end module

Modules can be combined together using the run statement which copies

the body of a module into another module (no recursion is allowed). The

interface declaration may consist of (1) data objects, (2) used functions,

procedures and tasks and (3) signals and sensors.

Data Data objects are either primitive or user-defined, and are global to

the program. Primitive data can be of one of the following types : boolean,

integer, float, double and string, with the usual operators defined for

each type. User defined types are handled as abstract types by Esterel.

2.1. SOLUTIONS WITH TRANSPARENT DISTRIBUTION 21

They may find their use when combining an Esterel program with external

(e.g. C) code through the use of functions, procedures and tasks. Such

external codes for functions, procedures and tasks are expected to have no

side-effects, and must return within a fixed amount of time.

There is a major difference between variables and signals in Esterel.

Since many successive actions may take place at a same instant, variables

can hold various values successively at the same instant. This is not possible

for signals: signals are either present or absent at a given instant, and remain

so during the entire instant.

Signals and sensors Interface signals can be input, output or input-

output. The presence of input signals is dictated by the environment, while

the presence of output signals is controlled by the program. Input-output

signals are controlled both by the program and by the environment. Signals

can be pure (they are either present or absent during the entire instant)

or valued signals (when present, they carry a value of a primitive type).

Valued signals can be seen as a set of pure signals, one for each possible

primitive value. Sensors are used like valued signals but they are always

present. Their value remains constant inside an instant, but may change at

each instant, outside the control of the program.

Expressions Data expressions are specified as usual, with one extra op-

erator : ?, which takes the value of a valued signal.

Signal expressions can be built using signal identifiers, which hold a

boolean value indicating its presence or absence, and the usual boolean

operators. They are mainly used in present testing of signals.

Esterel statements Since Esterel is a synchronous language, some

common statements may have a special and thus counter intuitive meaning.

The most important notion in Esterel is the one that expresses instanta-

neous execution. When a statement is started on time t and ends on time

t′, it is said to be instantaneous if t = t′, and will thus start and end in the

same instant. Statements may take time, when t′ > t, while they execute

during several instants. Between two instants, the environment may react.

An Esterel program makes the assumption that the environment cannot

change state during a given instant.

Basic statements There are three basic statements. nothing : termi-

nates instantaneously when started. pause : pauses the execution for 1

instant. halt : pauses forever, and never terminates.

22 CHAPTER 2. MOTIVATION AND OTHER APPROACHES

Signal Emission The following instructions make a signal S present in

the current instant, and terminate instantaneously :

emit S (for pure signals) and emit S(e) for valued signals

Sequencing Sequencing is expressed using the ; operator as in p; q. p

is immediately started, and if p terminates instantaneously, q is started in

the same instant.

Looping The basic construction of a loop is as follows : loop p end loop.

p is immediately started, and when its execution is ended, it is immediately

started anew. Remark that Esterel does not allow p to be able to termi-

nate instantaneously when started : it should take at least one instant to

complete.

Present signal testing The present statement tests for the presence or

absence of a signal, and instantaneously transfers control flow to one of the

specified branches :

present S then p else q end present

Data test The if operates on boolean expressions, transfers the control

flow instantaneously to one of its branches, and takes the common form :

if e then p else q end if

Traps Traps may be seen as exception handling mechanisms :

trap T in p end trap

trap T in p handle T do q end trap

Upon execution, p is immediately executed. If p ends its execution, so does

the trap statement. If p executes an exit T statement, then the trap state-

ment immediately terminates, aborting p. In that case, the second statement

specifies that q is instantaneously started. An exit statement can only be

used inside a trap statement. When a trap statement contains another

trap statement with the same T, the innermost trap will be triggered by

an exit statement.

Parallel statement The parallel operator allows to combine several state-

ments in synchronous parallelism. Signals emitted by one of the branches

are immediately broadcast to all other branches. When a parallel statement

is started, all of its branches are instantaneously started. It terminates when

all of its branches are terminated, or when at least one of the branches exe-

cutes an exit statement, aborting all branches at that time. Variables can

2.1. SOLUTIONS WITH TRANSPARENT DISTRIBUTION 23

only be shared among parallel branches if they are read only. Only signals

may be shared without any restriction.

p || q || r || ...

Module instantiation The run M statement may be seen as the abbre-

viation for the body of M. This allows to combine several modules together.

We do not discuss the rather expressive mechanism offered by Esterel that

allows one to rename signals and variables present in M in order to achieve

modularity. The interested reader may refer to [Ber00] for more details.

Task Execution The use of external code can be expressed in Esterel

by the call statement. Code that is used in this way is supposed to be

instantaneous. In many cases, this is too restrictive. Tasks allow to start an

asynchronous execution of external code that takes time to complete. The

completion of such code is then indicated to the Esterel program by a

return (possibly valued) signal associated with the task.

Small example

Before going into the formal semantics, consider the example (taken from

[Ber98]) in figure 2.4, which has the following behavior : Emit an output O

as soon as two inputs A and B have occurred. Reset this behavior each time

the input R occurs.

The outer loop in this example specifies that the behavior of its body is

aborted each time an input R occurs. Remark that the parallel operator is

used to await both the A and B inputs. The parallel instruction terminates

immediately when both branches terminate, and the output O will therefore

occur on the exact same time that the last one of the two inputs A or B is

present.

module ABRO:

input A, B, R;

output O;

loop

[await A || await B];

emit O

each R

end module

Figure 2.4: A small Esterel example

24 CHAPTER 2. MOTIVATION AND OTHER APPROACHES

Formal presentation

We now explain in detail the semantics of Pure Esterel. The syntax in

BNF form for a Pure Esterel program is presented in figure 2.5. The

annotations on the right indicate terse syntax, which is used to abbreviate

the semantic rules. Pure Esterel is the subset of Esterel obtained by

removing variables, data test, valued signals, tasks and module instantiation

from full Esterel. The Pure Esterel kernel contains the very basics of

Esterel, allowing to build a program that is semantically equivalent to any

other plain Esterel program.

Esterel Prog ::= instr list

instr list ::= instr { “;” instr } p ; q

instr ::= “nothing” 0

| “emit” S !s

| “pause” 1

| “present” S “then” instr list ?s, p, q

“else” instr list “end”

| “suspend” instr list “when” S s ⊃ p
| “loop” instr list “end” p∗
| instr list “||” instr list p|q
| instr list “trap” T “in” {p} and ↑ p

instr list “end”

| “exit” T k with k ≥ 2

| “signal” S “in” instr list “end” p\s

Figure 2.5: Pure Esterel kernel

In Esterel, the state of the environment is encoded by the presence

or absence of signals. Each signal is shared between the system and the

environment. All signals can be manipulated both by the environment and

the system. During an instant, a signal is either present or absent. We

will see that this principle causes some semantic difficulties, including non-

deterministic or incoherent semantics, which are common to all synchronous

languages.

The behavioral semantics presented here formalizes a reaction of a pro-

gram P as a behavioral transition of the form

P
O−→
I
P ′

where I and O are input and output events. P ′ is the remaining of

P after one reaction to the input event I. An event is the assignment of

2.1. SOLUTIONS WITH TRANSPARENT DISTRIBUTION 25

each signal to {+,−} (present or absent). Reactions are computed using an

auxiliary statement transition relation, of the following form :

p
E′,k−−→
E

p′

where E is an event defining the presence/absence of all signals in the

scope of p, E ′ defines all emitted signals in the reaction and k is the comple-

tion code returned by p. Since instances take no time, certain reactions, that

happen inside an instant, will terminate instantaneously. Such reactions are

indicated with k = 0. Some reactions take time, and end an instant. Such

reactions have k > 0.

P
O−→
I
P ′ iff p

O,k−−−→
I∪O

p′ for some k

The program P is logically reactive (resp. logically deterministic) w.r.t.

I if there exists at least (resp. at most) one program transition P
O−→
I
P ′. It

is logically correct if it is logically reactive and logically deterministic.

Essential rules from the behavioral semantics are :

k
φ,k−−→
E

0 (compl)

!s
{s+},0−−−−→
E

0 (emit)

s+ ∈ E, p E′,k−−→
E

p′

s?p, q
E′,k−−→
E

p′
(present+)

s− ∈ E, q E′,k−−→
E

q′

s?p, q
E′,k−−→
E

q′
(present-)

p
E′,k−−→
E

p′ k 6= 0

p; q
E′,k−−→
E

p′; q
(seq1)

p
E′,0−−→
E

p′ q
F ′,l−−→
E

q′

p; q
E′∪F ′,l−−−−−→

E
q′

(seq2)

26 CHAPTER 2. MOTIVATION AND OTHER APPROACHES

p
E′,k−−→
E

p′ q
F ′,l−−→
E

q′

p|q E′∪F ′,max(k,l)−−−−−−−−−−→
E

p′|q′
(parallel)

• The compl rule makes 0 complete with code 0, indicating instantaneous

termination. Since 1 is the shorthand for pause, termination code 1

will indicate pause.

• The emit rule inserts s+ into the signals emitted by the reaction, mak-

ing the signal s present.

• The present+/present- rules redirect control flow instantaneously to

the correct branch, depending on the presence of s.

• The sequence rules make instant execution of several instructions pos-

sible in one transition since control is directly forwarded from p to

q if p immediately terminates (seq2). If p pauses (or exits a trap),

completion code k = 1 (or k ≥ 2), so does the sequential statement

(seq1).

• The parallel rule makes p and q advance one step synchronously. They

use the same environment E which expresses the broadcast of the

common signals. The max(k, l) termination code in the parallel rule is

a technical subtlety used in conjunction with traps. Remark however

that if both p and q terminate instantaneously (completion code 0),

the parallel statement does the same. If p or q pauses (completion

code 1), so does the parallel statement.

Due to the instantaneous execution of some instructions, some programs

may have no meaningful execution, or have several executions for the same

input event. This situation is common to all synchronous languages, and can

be formalized as follows. Given a program and a fixed input event (defining

the presence and absence of all input signals), then control flow is defined,

and each emit statement is either executed or not in the current instant. A

global status, i.e. a status for each signal of the program respecting the given

input event is globally coherent iff at least one emit statement is executed

for each signal assumed present and no emit statement is executed for each

signal assumed absent.

Two obvious logically incorrect programs are represent in figure 2.6.

Module P1 (fig 2.6.a) is not logically reactive (informally, the program states

2.1. SOLUTIONS WITH TRANSPARENT DISTRIBUTION 27

module P1:

output O;

present O then

nothing

else emit O

end present

end module

(a)

module P2:

output O;

present O then

emit O

end present

end module

(b)

Figure 2.6: Logically incorrect programs

that if O is present, than O is not present) while module P2 (fig 2.6.b) is not

deterministic (for a given instant, O might be present or not).

Clearly, deciding logical correctness is not efficiently feasible, the general

case requires an exhaustive trial of all input configurations. Constructive

semantics, a more efficient (and thus more restrictive) approach is therefore

currently used in the Esterel v5 compiler. We don’t discuss constructive

semantics here; for an in depth study we refer to [Ber99].

A program P is strongly deterministic for an input event I if it is reactive

and deterministic for this event and if, furthermore, there exists a unique

derivation for the unique transition P
O−→
I

P ′. The proof of this unique

transition is hard due to the fact that one has to search for an output event

O enabling p
O,k−−−→
I∪O

p′.

An important benefit of the synchronous approach is that the use of

the synchronous broadcast in the parallel composition of processes (cfr. the

semantics of the parallel rule), allows to generate sequential code. The gen-

erated code is therefore single threaded and deterministic [Edw00].

The distribution of Esterel is studied in [Gir94]. The distribution

operates on the sequential automaton code. (1) It duplicates the code on all

sites, (2) Based on a unique location for each variable, it removes code that

does not apply to a given site, (3) data dependencies are fulfilled via Fifo

queues between processes that calculate a value and processes that need

that value (4) synchronization is inserted through dummy message passing

(for example to keep a site that is only producing values in pace).

Unfortunately, because the semantics must be preserved between the

central and distributed program, distributed synchronous languages suffer

from a performance problem [Gir94] which, in practice, may not be accept-

able. We argue that the parallelism used in Esterel is too restrictive (too

synchronous) to be used in a distributed environment. This is illustrated by

28 CHAPTER 2. MOTIVATION AND OTHER APPROACHES

the following abstract example (interface declaration is left aside; O, O2,

O3, ... are outputs).

emit (O); pause; pause; present O then emit(O2) else emit(O3)

||

pause; pause; emit(O)

This program uses the synchronous parallel execution (which combines “con-

currency” and determinism) of Esterel, and therefore never outputs O3.

But is this a real parallel program ? We argue that it is not, and in many

cases the synchrony introduced by the parallel construct of Esterel is not

needed or wanted.

2.1.4 Motivations for dSL

We are convinced that for a large set of control systems it is not necessary

to have synchronism, and therefore it should not be enabled by default, but

in rare cases explicitly asked for by the user.

Furthermore, as pointed out in [WWWK94], we argue that the distribu-

tion cannot be completely transparent. Especially not in real-time system

designs, where network speeds may have a huge impact on the behavior of

the system. It is our opinion that the user should be aware of the distribu-

tion, and should tell the compiler/distributer where one may safely introduce

network communication. If not mentioned, the program should physically

be centralized i.e. run without the use of any network primitive. This

certainly complicates the user’s task, but results in more reliable software.

Furthermore, we are convinced that a controller will almost never be ran-

domly distributed, and that components that are working tightly together

(using the Esterel’s || synchronism for example) will naturally end up

on the same site after distribution (due to the fact that the signals/sensors

they use will physically define an indivisible component).

A analogue problem appears in the Unity framework, since the pro-

grammer has no control on the synchronization between the different Unity

instructions. Each time the target architecture is modified (e.g. adding or

removing processor(s), moving variable(s), refining the distribution, . . .),

the Unity program has to be modified at the communication level, to fit this

new distribution. Therefore, the Unity program must be designed with a de-

sired mapping in mind, which has a negative impact on the reconfiguration

flexibility of applications and the transparency of the physical distribution.

Additionally, concerning the Unity approach, we argue that the industry

needs a language which is based upon industrial standards. At the design

2.2. EXECUTION ENVIRONMENT 29

level, Unity seems more sound than what is proposed with the direct use

of programming languages (among which dSL), since a Unity design goes

through the correctness proof for the design before doing the implementa-

tion. Unfortunately, the industrial control world has not yet integrated this

more formal approach to design real systems, and still uses more specialized

programming languages defined as industrial standards.

Since the use of synchronism has a too important drawback on the perfor-

mance of a distributed system, we reject the use of the synchronous product

[Mil81] as a default. We do however believe that some form of synchronism

should be used, and adopt therefore a semantics based on the asynchronous

composition of local instantaneous code and global distributed code. The

instantaneous code will be used to handle local events, while the global

distributed code will offer a way to perform tasks in a distributed manner.

In what follows, we shortly comment what are the possibilities for the

execution of instantaneous and distributed code, and and how the simplic-

ity, efficiency and robustness concerns affect the choice of our execution

environment.

2.2 Execution Environment

The local instantaneous code will execute in what is commonly called an

Input-Process-Output cycle. Each such cycle performs three tasks : it reads

the inputs connected to the environment, next it processes events and fi-

nally it updates the outputs to the environment. Such a behavior is also

present in the synchronous languages, where the process phase of such a cy-

cle happens during one instant. Hence, the treatment of events is considered

instantaneous in dSL. On the other hand, there is a notion of concurrency

in dSL. Each process in dSL communicates with the other processes over a

communication network, modeled as Fifo queues. We make the hypothesis

that these communications do need time to complete, and put no bound

on the speed at which these communications happen. This means that the

local code, for a given component, must be able to run without any synchro-

nization that would make it wait on other components. This asynchronous

composition has the advantage that the failure of one site does not introduce

deadlocks in atomic code on other sites.

The sequential code, on the other hand, can be executed in a totally

distributed and cooperative manner. These assumptions, of course, imply

some restrictions on code and have consequences on the way data values are

transmitted between distributed processes.

30 CHAPTER 2. MOTIVATION AND OTHER APPROACHES

2.2.1 Distributed Shared Memory

For the distributed code, several models of execution are proposed in the

literature. These models can be divided into two sets based on the way they

achieve data locality : either move the data to the executing processor, or

move the execution to the processor which has the data in memory. Many

systems based on the first solution, such as Distributed Shared Memory sys-

tems [NL91], have been studied. The principle in these systems is to offer a

virtual memory where each address location is accessible on all (distributed)

processors. The distributed memory system then controls the accesses to

the virtual memory by synchronization messages, in order to assure that the

system behaves as if all processes are running on a single processor.

These systems, despite offering a transparent distributed environment,

suffer from undesirable border effects which are generally problematic in an

industrial environment.

The first drawback in these systems is caused by the need to have some

memory consistency model [Lam79, Mos93], which expresses how the dif-

ferent processors see the virtual memory at different moments in time, and

the need to replicate data [HHG99]. This mainly causes two problems in

such systems : thrashing and false sharing. Thrashing is caused when two

(or more) processes are competing for exclusive access to a given location

in the memory. In that case, synchronization messages must be exchanged

between the two processes, resulting in high communication traffic and al-

most no productivity. False sharing is a problem caused by the granularity

of the memory locations in distributed memory systems : several memory

locations are often packed together into memory zones. In the case of false

sharing, several processes access different variables in the same zone, and

since zones must be locked and unlocked as atomic blocks this causes un-

necessary network traffic. Because of these problems, distributed memory

systems have very variable performance at execution, which makes it hard

to predict how the performance will be during execution [NL91].

Secondly, since the data moves around, the supervision of such systems

and its error-recovery - both essential features in industrial applications -

may become too complicated [MP97] on dSL’s target hardware. Indeed,

several versions of the same variable may be present at the same time in

the system. When one site breaks down, a global consistent state can be

reconstructed only when a history of all accesses and updates to all variables

is available. The maintenance of such a history requires important commu-

nication overhead, and substantial memory use. Both resources are scarce

in the dSL environment which is detailed in chapter 5.

2.2. EXECUTION ENVIRONMENT 31

2.2.2 Thread Migration

For these reasons, dSL uses the second solution, a concept known as process

or thread migration [Esk90] where a thread of execution is halted on one

site, its context (local variables and program counter) is sent to another site,

where its context is restored and execution continues. Thread migration is

known to enable dynamic load distribution, fault tolerance, eased system

administration, data access locality and mobile computing [JC02]. However,

in our system, all instructions and global variables are statically assigned to

the participating sites and thread migration, determined at compile time, is

used to obtain data access locality. This has three benefits: (1) following the

state of the system is very easy, (2) all communication and synchronization

messages can statically be calculated, resulting in a predictable execution,

(3) the communication between processes can, in practice, be reduced to

very low level mechanisms. However, we lose the benefits of dynamic load

balancing and fault tolerance1 since the migration policy used in dSL is

static.

The shape of dSL can thus be synthesized as an imperative language

using a hybrid execution scheme composed of two types of code : local or

atomic instantaneous code, and distributed sequential code that executes

using statically calculated thread migration.

1Fault tolerant dSL systems can be obtained through the additional possibility to test

failures in the communications and hardware (see “unknown values” in section 3.1.5); but

needs extra coding and the explicit use of redundancies.

32 CHAPTER 2. MOTIVATION AND OTHER APPROACHES

Chapter 3

Presentation of dSL

In the previous chapter, we presented the problem of automatic distribution

of reactive systems. We showed that existing solutions have shortcomings,

with respect to the kind of systems in our framework, and argued for another

solution. With these observations in mind, we designed dSL, a new language

for the specification of reactive systems.

Because the results in this work are driven by an industrial motivation

to solve the problem, we design dSL starting from a language already in use

in the industry to specify the behavior of such systems.

We first quickly show how the ancestor of dSL, SL, is used in practice.

Next we show how dSL extends SL, and detail its syntax and semantics. We

also show some remarkable properties on the semantics of this new language,

which can be exploited in the formal verification (see chapter 6) and testing

of systems designed with it.

This chapter is based upon two papers. The main ideas from section

3.2 are published in [DeWMM03a]. The results from section 3.4, were also

presented in [DeWGMM05] and [Gen04]. The formal semantics and the

lattice of distributions presented there, are a result of fruitful discussions

with Alexandre Genon and Cédric Meuter, while the technical details of the

proof where handled by Alexandre Genon in [Gen04].

3.1 dSL’s ancestor SL

dSL stands for distributed Supervision Language, where SL (Supervision

Language) is a language currently used in the industry to specify the overall

control of industrial processes. However, SL cannot be used to specify the

behavior of all the different entities in the system. These entities are of

two kinds : on the one hand, there are several controllers with a direct link

33

34 CHAPTER 3. PRESENTATION OF DSL

Figure 3.1: SL setup

to the environment, but with a local view, and on the other hand there is

a centralized supervisor that gathers information about all the controllers.

The supervisor has a global view of the entire system and commands the

controllers. This situation is depicted in figure 3.1.

The controllers

Figure 3.2: A Controller

Each controller (also called Programmable Logic Controller, or PLC in

short) is a piece of hardware, as seen in figure 3.2, consisting of a com-

munication interface, processor, memory and Input-Output devices. Each

input device can observe the environment, i.e. it can read the status of a set

of sensors (monitoring e.g. temperature, speed, angle, position, pressure,

...) while the output devices are able to act upon the environment by forc-

ing some voltage on a set of actuators (controlling e.g. heating elements,

engines, valves, ...). The language used to specify the behavior of the con-

3.1. DSL’S ANCESTOR SL 35

trollers is a different one than the one used on the supervisor. Indeed, the

controllers are specified in an assembly-like language, with a small instruc-

tion set. Instructions include basic arithmetic and PID (for Proportional,

Integral, Derivate) control [AH94], allowing fast local response to the envi-

ronment without the intervention of the supervisor. It is important to notice

that the controllers have only a local view of the environment, and can only

be told about the state of the entire system through the information given

to them by the supervisor.

The supervisor

The supervisor, which typically has a graphical interface to the user, is a

high performance server which communicates over a network with the var-

ious controllers. The language SL is used to specify the behavior of the

supervisor. The idea is that the controllers report their status to the su-

pervisor which is able to construct a global view of the state of the system,

and therefore can give the required feedback to the different controllers. In

practice this means that the controllers send messages over the network con-

taining the state of their own variables, while the supervisor sends messages

to the controllers which have an effect on their behavior.

We will not go into the description of the assembler language used by

the controllers, but focus on SL instead. We will see how this language can

be extended to dSL, in such a way that it is able to be used as a single

source to specify the behavior of the system, without making the difference

between the supervisor and the controllers.

The language SL

The language SL, used by Macq Electronique, is an Object Oriented lan-

guage based on an industrial standard [BMS97], with a syntax much like

Pascal. SL has some constructs allowing to handle the specific needs in the

case of reactive systems. Appendix A presents SL’s syntax. The SL code is

interpreted on the supervisor. There is therefore no compiler of any sort for

this language.

We briefly present SL’s common constructs (in the sense of constructs

that are part of most well known imperative languages). We give more

attention to the domain specific part of SL next.

An SL program has the following parts : (1) An optional USES declara-

tion, which allows to organize programs in separate modules, and will not be

discussed any further. (2) Data type declarations. (3) A global statement

36 CHAPTER 3. PRESENTATION OF DSL

list, which is a list of method declarations and event declarations. (4) The

initialization code for the SL program.

Data Type Declarations SL basic types include BOOL, SINT, USINT,

DINT, UDINT, LINT, ULINT, REAL, LREAL, CHAR and STRING (resp. boolean,

16-bits signed/unsigned-, 32-bits signed/unsigned-, 64-bits signed/unsigned-

integers, 64-bits real numbers, 128-bits real numbers, 8-bits characters and

strings). These types can be combined in more complex types using a

language construct called STRUCTURE1 which is the equivalent of Pascal’s

record. More dynamic types in SL include pointers, arrays and lists. The

other features are not discussed here, since they are not implemented in

dSL. SL has some notion of polymorphism using inheritance by defining

STRUCTUREs that may be DERIVED from other STRUCTUREs. Only single in-

heritance is allowed in SL.

Method Declarations Methods are defined on previously defined STRUC-

TURE types. Parameter passing to methods is always by value. Note that

methods in SL have no return type or value. Methods have an optional

declaration of local variables, and a body which is a list of instructions.

Methods defined on DERIVED types override methods (with the same name)

from the parents and are always virtual. Inside a method, self denotes the

pointer addressing the object on which a method is called.

Event declarations, also called WHEN declarations, are discussed in detail

further on.

Initialization Code The initialization code is marked by the keyword

PROGRAM and contains an optional declaration of local variables and a list of

instructions.

Instructions Next to the common instructions (assignment, IF, WHILE,

REPEAT FOR and method calls), some specific statements exists in SL, which

will not be discussed any further here.

3.1.1 Static memory

There is no dynamic memory allocation mechanism in SL (i.e. there is

no equivalent for the new and dispose operators in Pascal). This means

that the memory needed during execution, except for the call stack that

1In the parser, developed at the ULB, we decided to change STRUCTURE into CLASS, for

obvious reasons

3.1. DSL’S ANCESTOR SL 37

may be unbounded due to recursion, is statically known. Global objects

are allocated once and stay live during the entire execution. SL does know

pointers, but there is no pointer arithmetic as in C.

3.1.2 SL Variables

Internal variables

In SL, one can make the difference between four sets of variables. As is usual

in all imperative programming languages, variables are either local or global

(i.e. variables with a lifetime throughout the whole program, or variables

that are alive only inside the structure of a compound construct such as a

method). These common variables will be called internal variables, and are

readable and writable in their scope.

External variables

In addition to these internal variables, SL contains two sets of external

variables, which are global. These external variables are either input or

output variables.

An input variable is linked to a sensor, i.e. it is linked to a sensor which

is connected on a certain controller. Such a variable is only readable by

the program. The value of such a variable is linked to the physical state

of the sensor on the controller to which it is associated, and the network is

used to communicate updates of the observed values to the supervisor. For

a temperature sensor for example, the input variable temp linked to that

sensor will contain an integer reflecting the temperature of the environment

observed by a controller which is wired to that sensor. The values read

by the controller are communicated to the supervisor which updates the

variable temp with the communicated values.

An output variable is linked through a connected controller to an actu-

ator. Such a variable is readable and writable in the SL program. When

the program changes the value of such a variable, a message is sent over

the network, to make the connected controller apply the new value to the

actuator. In this way, the SL program can influence the environment. For

an engine for example, the output variable speed linked to an engine on a

controller, can be set to a certain value, expressing the rounds per minute

at which the engine will turn in the environment.

External variables may also be linked to a graphical user interface. Input

variables, for example, may be linked to a scroll-bar widget on a graphical

interface. When the user changes the position of the scroll-bar’s cursor, a

38 CHAPTER 3. PRESENTATION OF DSL

message is generated with the new value, which will update the value of

that particular SL variable. Output variables may change the form or color

of polygons on the graphical user interface. Macq Electronique’s Obviews

software allows to specify such interactive graphical user interfaces.

In practice however, no syntactical constructs make the difference be-

tween internal and external variables. These differences, and the mapping

between each external variable and its sensor/actuator on a certain controller

are specified in a database that is read by the SL’s execution environment.

The controllers have to be manually programmed, in addition to their local

control, in the dedicated assembler-like language to communicate variables

to the supervisor. The supervisor interprets these messages automatically,

using the database.

It is not clear in SL exactly when the external variables are updated,

i.e. there seems to be no hard constraints on the time between the update

of an output variable and the physical change of voltages on an actuator,

nor between the time a sensor sees a change, and the time the linked input

variable changes its value on the supervisor.

3.1.3 The WHEN construct and assignment semantics

Since SL is used to handle reactive systems, the language contains compound

instructions allowing to react on changes from the environment. Such ob-

servable changes that require a certain reaction from the system are called

events. In SL, an event is directly associated with its reaction, through the

means of a compound instruction called a WHEN.

The syntactical structure of a WHEN is as follows :

WHEN condition THEN instruction list END WHEN

A WHEN contains two parts : (1) a condition, which expresses the event to

observe, and (2) a body, which is a list of instructions that express the

reaction to the event.

Informally, each such a WHEN is continuously monitored, and when a

rising edge occurs in the condition (a change in the condition from FALSE

to TRUE), the associated instructions are executed. To stress that there has

to be a rising edge in the evaluation of the condition, we sometimes use

the term triggering condition. A WHEN is declared globally, the variables in

its triggering condition can be external or internal global variables and the

global variables referenced to in the condition must be statically computable

(i.e. pointers, list or array access are not allowed).

A typical example of a WHEN is :

3.1. DSL’S ANCESTOR SL 39

WHEN door.opened THEN door.engine.command := FALSE; END WHEN

In this example, the engine controlling an automatic door is shut down when

the door reaches its opened position. Notice that the rising edge semantics

will only shut down the engine when the door changes from not opened to

opened.

Since the conditions in the WHENs are continuously monitored, this implies

that the semantics of the assignment instructions (lhs := rhs;) in SL may

have side effects. Indeed, in addition to the expected behavior where the

left hand side is updated with the evaluation of the right hand side, all

WHENs are checked in order of appearance in the program text immediately

after the assignment and triggered, in that same order, if needed. The fact

that conditions may be expressed using internal global variables, may cause

problematic behavior: consider the following WHEN,

WHEN x THEN x := FALSE; x := TRUE; y := 1; END WHEN

where x is a global writable variable. With SL’s semantics of assignment,

this program clearly has an infinite sequence of internal events, all of which

trigger this WHEN once x changes from FALSE to TRUE. Moreover, if no cut is

done in these successive triggerings, the assignment y := 1; will never be

reached.

In the implementation of SL, however, this does not seem to bother the

industrials, since a stack is used to handle the recursive behaviors of the

WHENs, and infinite cycles are interrupted by the limited amount of memory

on the stack. They will argue that such a program is incorrect. Notice that

the problem of infinite recursion of triggering conditions in SL is closely

related to the termination problems in active databases [KU96].

Any desired behavior in a SL program is written using this WHEN con-

struct, often resulting in a sequence of WHENs that encode a finite state

machine. Programs written this way are hard to understand and not easy

to maintain. We will see how dSL allows the programmer to avoid having

to use the following programming style :

WHEN state = 1 AND temp > 30 THEN heater := 10; state := 2; END WHEN

WHEN state = 2 AND temp > 60 THEN heater := 1; state := 1; END WHEN

3.1.4 The WHEN IN construct

SL, is an Object Oriented language. In order to specify an event on all

object instances from the same type, one can use the WHEN IN construct :

40 CHAPTER 3. PRESENTATION OF DSL

WHEN IN type definition condition THEN instruction list END WHEN

Since SL has no dynamic object instantiation, this is syntactical sugar,

but can be very helpful for the programmer. If for example, several au-

tomatic doors have to be controlled, the following WHEN IN could be used,

instead of specifying a WHEN for every single door :

WHEN IN Door self.opened THEN self.engine.command := FALSE; END WHEN

3.1.5 The UNKNOWN value

All basic types in SL BOOL, INT, REAL, ... range over the expected do-

mains (cfr. section 3.1), for which we say that a variable contains a known

value. In addition to these values, a special value UNKNOWN is added, in

which case we say that a variable contains an unknown value. Unknown

values model the hardware failure of the physical device to which an ex-

ternal variable is linked, or a breakup in the communications between the

supervisor and the controller to which a linked external variable is attached.

A special instruction IS UNKNOWN allows to check if a variable contains a

known or unknown value.

Unknown values are propagated through expression evaluation, for ex-

ample if x := y + 3; where y carries an unknown value, x will be updated

with an unknown value. See page 49 for a formal definition, and the ways

in which UNKNOWN values are or are not propagated.

As shown in figure 3.3 this allows to construct more robust programs.

In this figure, a sensor is duplicated in order to ensure a correct behavior

in case of hardware failures. The variable handled ensures that only one

of both (the first in order of appearance) is triggered when both sensors

are functioning correctly. Note that the body of a WHEN whose condition

evaluates to UNKNOWN is not executed.

WHEN temp1 > 30 AND

NOT handled THEN

handled := TRUE;

...

END_WHEN

WHEN temp2 > 30 AND

NOT handled THEN

handled := TRUE;

...

END_WHEN

WHEN IS_UNKNOWN(temp1) AND

IS_UNKNOWN(temp2) THEN

alarm := TRUE;

...

END_WHEN

Figure 3.3: Fault tolerance in dSL with UNKNOWN.

3.2. FROM SL TO DSL 41

3.1.6 Looping semantics

A program written in SL has no real entry point, except for a list of in-

structions used for initialization purposes. Once these instructions are ter-

minated, the interpreter takes over control, and waits for messages from the

controllers and the user interface. Incoming messages are buffered into a

Fifo queue, and handled one by one.

Each message is a couple of the form (x, v) where x is a variable and

v its updated value. The interpreter unpacks the message, and executes

the instruction x := v;, which may cause the triggering of several WHENs as

explained before. Each such a treatment is called a message treatment cycle.

Notice that if, for some reason, the time needed for a message treatment

cycle to complete is not finite (infinite WHEN triggering, infinite loops, un-

bounded recursive method calls, ...) no more messages will be handled by

the interpreter, and the system will be in a livelock state. To make sure

that the system remains responsive, a hardware countdown clock is set to

a certain amount of time at the beginning of each message treatment cycle.

When the countdown reaches 0, a hardware alarm is issued, and the message

treatment cycle is interrupted. It is however unclear what will be the state

of the system after such a problematic behavior.

3.2 From SL to dSL

Figure 3.4: dSL organigram

As argued before, dSL has chosen to extend SL, in such a way that it

provides the programmer with transparent distribution. Therefore, in dSL,

there is no difference anymore between controllers and supervisor: both en-

tities are called sites. dSL extends SL in such a way that the programmer

42 CHAPTER 3. PRESENTATION OF DSL

specifies in a single dSL program the behavior of the system, as if all ac-

tuators and sensors were attached to a single site (we shall see that some

restrictions are imposed to apply this principle). Once the system’s behav-

ior is specified, the designer must then fill in a localization table, analogue

to SL’s database with external variable descriptions. This table is used to

specify the physical localization (execution sites) of each external variable.

It is then the task of the compiler-distributer to assign each instruction

to a single site, in order to satisfy the locality constraints given in the local-

ization table (see figure 3.4). Once each global variable and each instruction

is correctly localized on a certain site, the distributer can generate an exe-

cutable code for each site in the system. For technical reasons, which are

mainly based on maintainability, this code is interpreted by a dSL virtual

machine.

The localization of all global variables (external and internal) is at the

center of dSL’s automatic distribution mechanism. Internal variables are

either global, in which case their localization is statically fixed by the dis-

tributer, or local, in which case they can move during execution. Since

global variables do not move during execution, the distributer has to ensure

that an instruction accessing a global variable is executed on the site of that

variable.

dSL is chosen to be backwards compatible with SL, and has therefore

all the language elements presented earlier. However, SL’s pointers and

inheritance are not taken into account by the distributer. The reason for

this omission is that these concepts are rarely used in SL programs. We will

therefore not discuss these concepts any longer, and will only come back to

them as future work in chapter 7.

So what are the syntactical additions and semantics, that make this

transparent distribution possible ? We will answer this questions in detail

in the next sections, but first we present a small complete dSL example in

figure 3.5, that will be used as a running example.

A dSL program contains 5 elements: (1) global variables declarations,

including all external variables (2) method definitions (3) when instructions

(4) sequence definitions and (5) an initialization.

In the example, a temperature sensor is linked to an input variable

temperature. A heater is turned on (off) if the temperature is below 0oC

(above 20oC). The state of the heater (on/off) is controlled by the output

variable heater.state. Moreover, there are two indicators on a control

panel. The first indicator, (linked to the output variable led) is used to in-

dicate the state of the heater, and the second (linked to the output variable

alarm) is updated when the heater has been turned on a certain number

3.2. FROM SL TO DSL 43

01: CLASS Heater

02: control : INT;

03: maintenance, state : BOOL;

04: END_CLASS

05:

06: GLOBAL_VAR

07: heater : Heater;

08: temperature, fuel_cost : INT;

09: alarm, led : BOOL;

10: END_VAR

11:

12: SEQUENCE set_heater(new_state : BOOL)

13: heater.state := new_state;

14: IF heater.state THEN

15: led := TRUE;

16: fuel_cost := fuel_cost + 10;

17: ELSE

18: led := FALSE;

19: END_IF

20: heater.control := heater.control + 1;

21: END_SEQUENCE

22:

23: WHEN IN Heater (control==1000) THEN // W1

24: control := 0;

25: maintenance := TRUE;

26: END_WHEN

27:

28: WHEN heater.maintenance THEN // W2

29: alarm := TRUE;

30: END_WHEN

31:

32: WHEN ~temperature < 0 THEN // W3

33: IF (NOT heater.maintenance) THEN

34: LAUNCH set_heater(1);

35: END_IF

36: END_WHEN

37:

38: WHEN ~temperature > 20 THEN // W4

39: IF (NOT heater.maintenance) THEN

40: LAUNCH set_heater(0);

41: END_IF

42: END_WHEN

43:

44: PROGRAM

45: heater.control := 0;

46: heater.maintenance := FALSE;

47: LAUNCH set_heater(temperature<0);

48: END_PROGRAM

Figure 3.5: A temperature control system in dSL

44 CHAPTER 3. PRESENTATION OF DSL

of times. An additional variable fuel cost estimates the amount of fuel

consumed by the heater.

3.2.1 Three syntactical additions

In the previous chapter, we motivated dSL’s basic design : it uses a hy-

brid execution scheme composed of local or atomic instantaneous code, and

distributed sequential code.

All code inside a WHEN (the instructions inside its body and the evaluation

of the condition) or reachable from a WHEN must a priori be atomic, and

therefore local to a given site.

Sequential code is defined through the use of the SEQUENCE construct.

The code inside a METHOD can be either atomic or sequential depending

on the context in which it is called. If a METHOD can be reached from a

WHEN, then the body of this METHOD is assumed to be atomic. It is assumed

sequential otherwise. Hence, when a METHOD is both called from a SEQUENCE

and from a WHEN, it is atomic.

As explained before, dSL rejects the synchronous product, and atomic

code can therefore not be distributed. This may result in programs that are

not distributable. For instance, without a strong synchronization scheme,

the following code, where the external variables pushbutton and lamp are

fixed by the localization table on different sites, is not distributable :

WHEN pushbutton THEN lamp := TRUE; END WHEN

Indeed, this snippet of code specifies that the lamp must switch on at

the exact same time the button is pressed. With the hypotheses of dSL in

mind, this is clearly not feasible if the lamp and the button are on different

sites: to implement such a behavior the sites must communicate, and by

hypothesis, communication takes time.

In this case, the designer has two options. Obviously, by rewiring the

lamp or the button, such that both are on the same site, the program be-

comes implementable. On the other hand, it might be the case that a

communication delay is acceptable, in which case the designer must have a

syntactical way to relax the atomic constraints imposed by a WHEN. Three

syntactical additions have therefore been defined (see figure 3.5) : (1) the

SEQUENCE keyword, (2) the ∼ operator and (3) the LAUNCH keyword. We

comment these additions in detail in the following sections.

3.2. FROM SL TO DSL 45

The SEQUENCE keyword

The SEQUENCE keyword can be used to state that a certain list of instructions

does not have to be executed on one site, nor in one cycle. Code that is

embodied into a SEQUENCE declaration, can therefore be delayed and thus

distributed. A typical usage for a sequence is to do a list of actions, each of

which may be happening on a different site :

SEQUENCE plant_startup()

pump1.engine := 10;

pump2.engine := 10;

valve1.pressure := 5

...

END_SEQUENCE

The initialization of a dSL program is done in the PROGRAM part, and has

the same semantics as a SEQUENCE.

Since each instruction may be located on a different site, extra code is

generated by the distributer, which makes the execution synchronize be-

tween different sites. The execution of a sequence does not happen instan-

taneously (i.e. in one cycle) since the execution of a SEQUENCE may involve

different sites. Note however that each single instruction in a SEQUENCE must

be located on a single site, and is executed in an atomic manner.

The local variables in the SEQUENCE are moved along with the sequence

during execution, as shown in the following example, where a local variable

flag is tested at the end of the sequence, which contains the combined value

of the status of three pumps. Note that the alarm and the three pumps all

may be on a different site.

SEQUENCE plant_check()

BEGIN_VAR

flag : BOOL;

END_VAR

flag := pump1.heat > 80;

flag := flag AND pump2.heat > 80;

flag := flag AND pump3.heat > 80;

IF flag THEN

alarm := TRUE;

...

END_IF

END_SEQUENCE

46 CHAPTER 3. PRESENTATION OF DSL

Remark that in this example, flag may be true even if one of the pumps

has cooled down during the time that the SEQUENCE reaches the IF condition.

If the programmer absolutely wants to check the combined exact value of

the temperature of the three pumps, the following should be written :

SEQUENCE plant_check2()

BEGIN_VAR

flag : BOOL;

END_VAR

flag := pump1.heat > 80 AND

pump2.heat > 80 AND pump3.heat > 80;

IF flag THEN

alarm := TRUE;

...

END_IF

END_SEQUENCE

Since each dSL instruction must be located on a single site, the only way

for this program to be distributable is to put the three heating sensors on

the same site.

If in addition, the alarm must be raised on the exact same time that the

three pumps overheat, the designer should not use a sequence but use the

following code, which is only implementable if all heating sensors and the

alarm are on the same site:

WHEN pump1.heat > 80 AND pump2.heat > 80

AND pump3.heat > 80

THEN

alarm := TRUE;

END_WHEN

For the programmer’s convenience, dSL has one instruction which does

not exist in SL, and can only be used inside a SEQUENCE. The WAIT instruction

expresses that a SEQUENCE’s execution is paused until a certain condition

occurs.

3.2. FROM SL TO DSL 47

SEQUENCE start_engine()

// Set motor speed to 100

motor.speed_command := 100;

// Wait until speed is reached

WAIT motor.speed_captor = 100;

// ...

END_SEQUENCE

This instruction is syntactical sugar, since it can easily be transformed

through the use of WHEN, as explained in section 3.6. Note that, in contrast

to the rising edge semantics of the triggering condition of a WHEN, if the con-

dition of a WAIT evaluates to TRUE when the instruction is reached, execution

continues.

A given SEQUENCE can have only one running instance at a time. This

restriction is imposed by the limited amount of memory available on dSL’s

target platform. To ensure that this is the case, for a given SEQUENCE, a

flag is raised when the SEQUENCE is started, and lowered when it reaches

the end of the execution. This flag is available to the programmer through

the special variable a sequence.ENDED which allows one to check that a

certain SEQUENCE with the identifier a sequence has ended its execution.

The addition of this variable is syntactical sugar. It is introduced for each

SEQUENCE by the dSL compiler as a global variable residing on the site of

the first instruction of the SEQUENCE. When a SEQUENCE is LAUNCHed while

it is still running, the request is ignored.

The use of the ∼ operator, presented next, in SEQUENCEs is not useful,

and is therefore syntactically forbidden.

The implementation details of how a sequence is translated in executable

code is explained in chapter 5.

The ∼ operator

The ∼ operator can be used to break the atomicity constraints induced

by the instantaneous handling of events. It works much like the way the

supervisor sees the system within the SL setup. There, controllers monitor

the environment, and send messages to the supervisor to inform the changes

in their local states. This is exactly what does the ∼ operator.

When a variable x is located on some site and changes its value, that

site will send an update message to all sites that use ~x. These distant sites

48 CHAPTER 3. PRESENTATION OF DSL

can therefore observe x with a delay induced by the network. Notice that

with the ∼ operator, several sites may have different copies of ~x : suppose

site A governs x, while B and C both use ~x. When x changes, site A sends

update messages to B and C. If B and C do not read the messages at the

same time, they will have different copies for ~x.

Of course, one should be very careful with the ∼ operator, since there

might be a difference between its value and the real value of x, which is

the case when the update message is still traveling over the network. But

in many practical cases, the ∼ operator is very useful. This is the case for

most slowly changing physical measures, such as for example observations

of evolving temperature, pressure, speed, etc.

Consider the following WHEN, where pump1.temp and pump2.speed are

at different sites:

WHEN pump1.temp > 80 THEN pump2.speed := 10

END_WHEN

In order for this program to become implementable, the designer can use

the ∼ operator as follows :

WHEN ~pump1.temp > 80 THEN pump2.speed := 10

END_WHEN

In this case, the entire code of the WHEN will be localized on the site

where pump2.speed is localized, and the site governing pump1.temp will

send updates when the value of pump1.temp changes.

The LAUNCH keyword

The LAUNCH keyword is the dual of the ∼ operator. Instead of operating on

data (as does the ∼ operator), it operates on code. If we take the previous

example again, where pump1.temp and pump2.speed are at different sites:

WHEN pump1.temp > 80 THEN pump2.speed := 10

END_WHEN

The designer can use the LAUNCH keyword to make this program dis-

tributable as follows:

METHOD pump::setspeed(s : int)

self.speed := s;

END_METHOD

WHEN pump1.temp > 80 THEN LAUNCH pump2.setspeed(10);

END_WHEN

3.3. DSL SYNTAX 49

In this case, a message is sent from the site governing pump1.temp to the

site governing pump2.speed, to update the speed. The WHEN will therefore

be located on the site of pump1.temp.

3.2.2 The UNKNOWN value in dSL

The UNKNOWN value has also been adopted in dSL. There are two sources of

an UNKNOWN value in SL. Either it is explicitly introduced using the UNKNOWN

constant in expressions, or it is produced by the environment to signal a

hardware failure.

In dSL, there is an additional source of UNKNOWN, due to communication

failure. Each site in dSL regularly checks that it is still able to communicate

with all other sites. If this is not the case anymore, the execution environ-

ment sets all values of tilded variables for those sites to UNKNOWN. This can

be used (similar to the example given in section 3.1.5) by the programmer

to detect errors in communications and allows to build more robust systems.

3.2.3 Dynamic concepts

Two dynamic features are supported in dSL: the use of the reference self

inside METHODs and the use of arrays. Both features are transformed in such

a way that they become static, i.e. references to objects through the use

of self and dynamic array access are replaced by references to statically

known objects by the dSL compiler.

The self reference in METHODs is removed by the compiler using a tech-

nique we call specialization, which is discussed in section 5.1.3. Specialization

together with a simple code transformation is used to remove the dynamic

aspects of arrays. We also discuss this transformation in section 5.1.3.

3.3 dSL Syntax

The complete dSL syntax can be found in BNF form in appendix B.

3.4 dSL Semantics

In this section, we formally describe the dSL semantics. However, in order to

keep the semantics simple, we present only a subset of the dSL language. In

this subset, called dSL♦, we make the following restrictions: (1) methods are

supposed to be inlined, which implies that recursive calls are forbidden; (2)

since no recursion is allowed, all variables outside SEQUENCEs are considered

50 CHAPTER 3. PRESENTATION OF DSL

to be declared globally; (3) only boolean variables are considered; METHOD

LAUNCHes and WAIT instructions inside SEQUENCEs are not considered, since

they do not increase the expressiveness of the language and can equivalently

be automatically translated into code using WHENs and ∼ as explained in

section 3.6.

From now on, we will use the following notations:

• V ar(P) denotes the set of non tilded variables appearing in the pro-

gram P . This set is partitioned into V arin(P), V arout(P) and V arτ (P)

which correspond respectively to the input, output and internal (i.e.

not I/O) variables.

• V ar(i) denotes the set of variables appearing in instruction i

• V ar(w) denotes the set of non tilded variables appearing in the WHEN

w.

• V ar(e) returns the set of variables (tilded or not) appearing in expres-

sion e.

• V arSeq(P) returns the set of local variables in the SEQUENCEs of P .

We suppose that all these variables have a different name.

• V arSeq(s) returns the set of local variables in the SEQUENCE identified

by s.

• <V (P) denotes the order in which the variables of a program P are

declared. It will be used to determine the order in which the input

variables, respectively output variables, will be sampled, respectively

updated. We denote <V if P is clearly identified.

• Whens(P) denotes the set of WHENs appearing in the program P .

• <W (P) denotes the order in which the WHENs of program P are de-

clared. This order will be used to determine the order in which the

WHENs will be processed.

• Cond(w) denotes the triggering condition of the WHEN w.

• Body(w) denotes the body of the WHEN w

• OldCond(W) = {old condw|w ∈ W ⊆ Whens(P)} where for all

w ∈ Whens(P), old condw is a new id corresponding to the previ-

ous evaluation of Cond(w). OldCond(P) = OldCond(Whens(P))

3.4. DSL SEMANTICS 51

• X̃ denotes the set of tilded variables corresponding to X, X̃ = {x̃|x ∈
X}

• S(s) returns the body of the SEQUENCE identified by s

• InstrSeq(P) denotes the set of all instructions appearing in the

SEQUENCEs of P

Moreover, in order to define the dSL♦ semantics, extended instructions are

added to the language which will be used to describe some internal treat-

ment:

• INPUT id, modeling the sampling of the input variable id,

• OUTPUT id, modeling the update of the output variable id,

• BCAST id, modeling the broadcast of the variable id to all execution

sites,

• MSG, modeling the treatment of messages from the Fifo channel.

Informally, the behavior of a dSL♦ program can be seen as the paral-

lel composition of n processes, one for each site, communicating with the

environment to control. Each process Pi governs a set Vi of variables and

communicates with the other processes through Fifo channels. In particu-

lar, these Fifo channels allow to update the value of the ∼ variables, which

are the local values of the distant variables.

The execution of each process i is an infinite loop of cycles called Input-

Process-Output cycle because it contains three phases. (1) Input : variables

linked to inputs change their value according to the physical state of the

device they are attached to, (2) Process : events are triggered, incoming

messages are processed and SEQUENCEs are executed; and (3) Output : vari-

ables linked to the outputs update the physical state of the devices they are

connected to.

3.4.1 Definition of Distribution

As we have already seen, the main difference between dSL♦ and any common

imperative programming language results from its distributed characteris-

tics. Indeed the behavior of a dSL♦ program depends on the distribution

of its variables. However, the maximal distribution of a dSL♦ program can

be defined. It expresses the most liberal configuration on which the dSL♦
program could ever run. Indeed, due to atomic code, some instructions and

52 CHAPTER 3. PRESENTATION OF DSL

hence variables must be kept on a single site; but in the case of sequential

code, the code may be distributed. We will show that the possible behaviors

of a program with this maximal distribution includes the behavior of that

program with any other distribution. Therefore, verifying safety properties

on this distribution will induce safety for any other distribution. In what

follows, we only consider well-formed dSL programs where each used variable

has been properly defined and each WHEN uses at least one global variable.

Before we can define the maximal distribution, we first need to define

what a distribution is. Intuitively, a distribution of a well-formed dSL♦
program is a partition of the set of its variables respecting the atomic con-

straints imposed by WHENs. That is, if two variables appear un-tilded in the

same WHEN, they must be localized on the same execution site.

Definition 1 (Distribution of a well-formed dSL♦ program) A

distribution of a well-formed dSL♦ program P is a partition D = {V1, V2, ...,

Vn} of V ar(P) such that

∀w ∈Whens(P)∃V ∈ D,V ar(w) ⊆ V
∧∀i ∈ InstrSeq(P)∃V ∈ D,V ar(i) ⊆ V

We note DP the set of all distributions of P . �

In order to define the maximal distribution, we need a way to compare two

distributions. Therefore, we introduce a partial order relation defining a

hierarchy of distribution.

Definition 2 (Distribution hierarchy) Let D = {V1, V2, ..., Vk} and

D′ = {V ′
1 , V

′
2 , ..., V

′
l } be two distributions of a dSL♦ program P . We say that

distribution D′ is a refinement of distribution D, noted D � D ′, if

∀V ′ ∈ D′∃V ∈ D · V ′ ⊆ V

�

Theorem 1 (Distribution Lattice) D and � define a lattice of distribu-

tions. �

Proof. The lattice defined by � has a trivial least element Dmin =

{V ar(P)}, which corresponds to the distribution where all variables are

in one partition. To show that there exists a greatest element Dmax, we

proceed by contradiction. Suppose therefore that D = {V1, ..., Vl} and D′ =

{V ′
1 , ..., V

′
k} both are maximal elements with (D 6= D ′). We have D 6� D′

and D′ 6� D. In that case, we have

3.4. DSL SEMANTICS 53

∃i ∈ [1..l] : ∀j ∈ [1..k] : Vi 6⊆ V ′
j (1)

Let us construct a new distribution D ′′ using Vi as follows : D′′ =

{V ′
1 \ Vi, V ′

2 \ Vi, . . . , V ′
l \ Vi, Vi}.

Because of (1), there is no empty partition in D ′′, and since Vi is a partition

of D, we know that D′′ is a distribution.

Notice that D′ � D′′, which is in contradiction with the fact that D ′ is

maximal. �

In section 3.5.1, we will use this property to show that the semantics, which

is influenced by the distribution, also forms a lattice.

We can now formally define the maximal distribution of a well-formed dSL♦
program, which is the the most refined distribution.

Definition 3 (Maximal distribution of a dSL♦ program) The maxi-

mal distribution of a well-formed dSL♦ program P is the distribution Dmax

such that

@D 6= Dmax : Dmax � D

�

3.4.2 Preliminary definitions

Before we can define the structural operational semantics of a dSL♦ program,

we need some preliminary definitions. First, the semantics will be defined

in terms of a labeled transition system. We briefly recall this notion.

Definition 4 (Labelled transition system) A labeled transition system

L is a tuple (Q, q0,Σ,→) where:

• Q is a set of states,

• qo ∈ Q is the initial state,

• Σ is a set of (visible) symbols called the alphabet, with τ 6∈ Σ (τ is the

internal, invisible or silent action),

• →⊆ Q× (Σ ∪ {τ})×Q is the transition relation.

�

Given two states q, q′ ∈ Q, for any a ∈ (Σ ∪ {τ}), we note q
a−→ q′ if

(q, a, q′) ∈→, and for any w = a1 · a2 · ... · an in (Σ ∪ {τ})∗, we note q
w−→ q′

54 CHAPTER 3. PRESENTATION OF DSL

if there exists a sequence of transitions q0
a1−→ q1 · · · qn−1

an−→ qn with q = q0
and q′ = qn. Note that if w = ε, we have q = q0 = qn = q′.

Then, given a well formed dSL♦ program P and a distribution D of P , we

need to define the distributed environment in which P will execute. Indeed,

the partition of the variables given by D imposes a partition of the set of

WHENs of P . Note that this distributed environment (the distribution of the

global variables and the WHENs) has nothing to do with the environment of

the control system (i.e. the industrial equipment which is controlled). This

distributed environment can be defined as follows.

Definition 5 (Distributed environment)Given a dSL♦ program P , and

a distribution D = {V1, V2, ..., Vn} of P , we define the distributed environ-

ment of P w.r.t. D as follows:

EPD = ((V1,W1), (V2,W2), ..., (Vn,Wn))

where each i ∈ [1..n],Wi = {w ∈ Whens(P)|V ar(w) ⊆ Vi}. In the follow-

ing, we call each (Vi,Wi) a local environment and denote it by (EP
D)i. Note

that, since D is a distribution of P , we have
⋃
i∈[1..n]Wi = Whens(P) and

∀i, j ∈ [1..n], (i 6= j) =⇒ (Wi ∩Wj = ∅) �

Moreover, we need to define some auxiliary functions. We first define the

executability of an instruction, next we define two functions which construct

lists of instructions corresponding respectively to the input and the output

of the variables in a given set V .

Definition 6 (Executability) Given a dSL♦ program P , and a distribu-

tion D = {V1, V2, ..., Vn} of P , we define ExecD(ω) (ω is a list of instruc-

tions) as the set of sites on which the first instruction of ω can execute. If

this first instruction uses a global variable x ∈ Vi, ExecD(ω) = {i}, other-

wise ExecD(ω) = {1, ..., n}. �

Definition 7 (Input sampling, output writing)Given a set of variables

V , we define Sample(V,<V), respectively Write(V,<V), as the list of in-

structions performing the input, respectively output, of the (input, resp. out-

put) variables in V in the total order given by <V , as follows:

Sample(V,<V) = INPUT(v1); INPUT(v2); ...; INPUT(vk)

Write(V,<V) = OUTPUT(v1); OUTPUT(v2); ...; OUTPUT(vk)

3.4. DSL SEMANTICS 55

where ∀i ∈ [1..k − 1], vi <V vi+1 and
⋃
i∈[1..k]{vi} = V .

<V is the order in which the variables are declared in the program text

�

The third function constructs a list of instructions corresponding to the

processing of WHENs of a set W .

Definition 8 (Treatment of WHENs) Given a set of WHENs W , we define

Treat(W,<W) as a list of instructions processing all WHENs in W , in the

order given by <W , as follows:

Treat(W,<W) = ω1;ω2; ...;ω|W |

where ∀i ∈ [1..|W |] :

ωi = IF (Cond(wi) AND NOT old condwi
) THEN old condwi

:= >;Body(wi)

ELSE old condwi
:= Cond(wi) END IF

and where ∀i ∈ [1..|W | − 1], wi <W wi+1 and
⋃
i{wi} = W .

<W is the order in which the different WHENs are defined in the program text

�

3.4.3 Structural operational semantics

The formal structural operational semantics for a well formed dSL♦ pro-

gram P , w.r.t. a distribution D, is given below as a labeled transition

system whose visible actions are updates to/from the environment of the

I/O variables, Σ = V arin × {?} × {>,⊥,]} ∪ V arout × {!} × {>,⊥,]}. >
stands for TRUE, ⊥ for FALSE and] for UNKNOWN. Let us first define a global

state of a dSL♦ program.

Definition 9 (Global state of a dSL♦ program) Given a distribution

D = {V1, V2, ..., Vn} of well formed dSL♦ program P , we define a global state

G of P as follows:

G ≡ ((ω1, ν1, φ1), (ω2, ν2, φ2), . . . , (ωn, νn, φn), σ1, σ2, ..., σ`, µ, ξ)

where ∀i ∈ [1..n], (ωi, νi, φi) is the local state of process i with the following

components:

• ωi is the workload. It gives the sequence of instructions (including

extended instructions) remaining to be executed in the current cycle of

process i.

56 CHAPTER 3. PRESENTATION OF DSL

• νi : (Vi ∪ ˜V ar(P)∪OldCond(Wi)) 7→ {>,⊥,]} is a valuation function

for:

– the global variables owned by process i.

– the tilded (local) copies of all variables.

– the variables containing the old value for the conditions of each

WHEN owned by process i.

• Let Σφ = ((V ar(P) × {>,⊥,]} × N) ∪ {�i|i ∈ [1..n]})∗, then φi ∈ Σ∗
φ

is the receiving communication channel of process i. Each message

indicates the update of a variable. Additionally, �i is used to enforce

the end of the message treatment.

and ∀i ∈ [1..`] : σi is the workload for the SEQUENCE identified by i. It

consists of the sequence of instructions remaining to be executed for it.

µ : V arSeq 7→ {>,⊥,]} is the valuation function for the local variables of

all SEQUENCEs.

ξ : [1..`] 7→ [1..n] indicates on which site a given sequence is running.

We will note GPD the set of global states of a dSL♦ program P, given a

distribution D. �

The valuation functions νi in each process are defined as expected, except

for the evaluation involving the UNKNOWN value (denoted]) :

νi(e) =

⊥ if e = FALSE

> if e = TRUE

] if e = UNKNOWN

νi(e
′)∧νi(e′′) if e = e′ AND e′′

νi(e
′)∨νi(e′′) if e = e′ OR e′′

¬νi(e′) if e = NOT e′

The operators ∧,∨,¬ are defined in figure 3.6.

We also use the notation ν[X 7→ e] which returns a valuation which is the

same as ν, except for all x ∈ X, which are mapped to e. ν[x 7→ e] is a

shorthand for ν[{x} 7→ e].

Note that µ is defined in the same way as νi.

In order to evaluate expressions which may involve both variables which

are defined by the local valuation νi of some process i, and local SEQUENCE

variables, we define Υi, which uses νi to evaluate x /∈ V arSeq(P) and µ to

evaluate x ∈ V arSeq(P).

The following definition will be used to insert delimiters in the Fifo

queues of the processes, in order to model the non instantaneous behavior

of the network.

3.4. DSL SEMANTICS 57

x y x∨y x∧y ¬x
⊥ ⊥ ⊥ ⊥ >
⊥ > > ⊥ >
⊥]] ⊥ >
> ⊥ > ⊥ ⊥
> > > > ⊥
>] >] ⊥
] ⊥] ⊥]

] > >]]

]]]]]

Figure 3.6: dSL boolean operators

Definition 10 (Fifo Shuffle) Given a Fifo queue φ ∈ Σ∗
φ, and a permu-

tation π of [1..n], we define Shuffle(φ)π = {φ1 · �π(1) · φ2 · �π(2) · · ·φn · �π(n) ·
φn+1|∀i ∈ [1..n] : φi ∈ Σ∗

φ ∧ φ1 · φ2 · · ·φn+1 = φ}. �

To keep the semantic rules compact, we introduce only one Fifo for each

process. However, as we shall see, each Fifo is modeled in such a way that

it contains sub-channels for each originating site. The following definition

extracts one subchannel from a given Fifo queue.

Definition 11 (Fifo Subchannel) Let Σφi
= {(x, v, s)|x ∈ V ar(P), v ∈

{>,⊥,]}, s = i}. Given a Fifo queue φ ∈ Σ∗
φ, SubChi(φ) is the projection of

φ on Σφi
, trimming φ at �i, i.e., SubChi(φ) is defined recursively as follows :

1. SubChi(ε) = ε

2. SubChi(m · φ′) =

m · SubChi(φ
′) if m ∈ Σφi

SubChi(φ
′) if m /∈ Σφi

∧m 6= �i
ε if m = �i

with m ∈ Σφ and φ′ ∈ Σ∗
φ

�

We also need to extract the first message from a given site from the Fifo

channel. The following definition extracts the first message, if any, from the

channel.

Definition 12 (Message removal) Given a Fifo queue φ ∈ Σ∗
φ, i ∈

[1..n].

1. If SubChi(φ) = ε, then RemoveMsgi(φ) = φ.

58 CHAPTER 3. PRESENTATION OF DSL

2. Otherwise, RemoveMsgi(φ) = φ′ · φ′′ if φ = φ′ · (x, v, i) · φ′′ with

SubChi(φ
′) = ε

�

The last operation on Fifo queues removes the delimiters introduced by

Shuffle(φ)π.

Definition 13 (Delimitor removal) Given φ ∈ Σ∗
φ. RemoveMark(φ) is

the projection of φ on Σ∗
φ \ {�i|i ∈ [1..n]}. �

We can now introduce the semantic rules which will provide the transi-

tion relation of the labeled transition system. The first two rules are global

rules acting on the entire global state. The first one expresses the interleav-

ing semantics; i.e., if in a local state a transition can be taken, then from any

global state containing this local state, the same transition can be taken,

only modifying that local state. It can be noticed here that, at a global

level, and contrary to synchronous languages like Esterel or Lustre, dSL♦
has an asynchronous semantics

[Interleaving]

(EP
D)

i
` (ωi, νi, φi)

a−→ (ω′

i, ν
′

i, φ
′

i)

EP
D ` ((ω1, ν1, φ1), ..., (ωi, νi, φi), ..., (ωn, νn, φn), σ1, ..., σ`, µ, ξ)

a−→
((ω1, ν1, φ1), ..., (ω

′

i, ν
′

i, φ
′

i), ..., (ωn, νn, φn), σ1, ..., σ`, µ, ξ)

∀a ∈ {τ} ∪ Σ

The second global rule corresponds to the broadcast. If a process has to

perform a broadcast corresponding to a change of value of a variable, then a

τ -transition is taken, leading to a global state where all the receiving com-

munication channels are updated with a message. Note that the message is

also put in the channel of the process performing the broadcast. Indeed, this

local process might have an asynchronous (tilded) copy of its own variable,

and this copy needs to be (asynchronously) updated as well.

[Broadcast]

EP
D ` ((ω1, ν1, φ1), ..., (BCAST(x);ωi, νi, φi), ..., (ωn, νn, φn), σ1, ..., σ`, µ, ξ)

τ−→
((ω1, ν1, φ

′

1), ..., (ωi, νi, φ
′

i), ..., (ωn, νn, φ
′

n), σ1, ..., σ`, µ, ξ)

where ∀j ∈ [1..n] : φ′j = φj · (x, νi(x), i)

The next set of rules are local rules; i.e. defining how a local process makes

a move. The first of these local rules corresponds to the beginning of a new

3.4. DSL SEMANTICS 59

cycle. If, at a point in the execution, the workload of process i becomes

empty (ε), then a new Input-Process-Output cycle is scheduled in the work-

load. Note that all samples are taken before events are triggered. This is

consistent with the idea of instants, where a snapshot is taken from the en-

vironment, and reactions are based upon this snapshot. This rule dictates

the cyclic behavior of each process. Note that, in order to model the non

instantaneous behavior of the network, the �i markers are inserted to delimit

the messages that will be treated during this cycle. The markers also model

the fact that messages which are arriving during the current cycle will not

be treated (cfr message treatment rule further on).

[Cycle start]

(EP
D)i ` (ε, νi, φi)

τ−→ (Sample(V arin(P) ∩ Vi, <V);Treat(Wi, <W);

MSG;Write(V arout(P) ∩ Vi, <V), νi, φ
′

i)

φ′i ∈ Shuffle(φi)π for some π

The second local rule describes the sampling of an input from the environ-

ment. When doing so, the valuation needs to be updated according to this

sampling, and the new value needs to be broadcast to all processes. More-

over, the transition is labeled with the sampled variable and the value that

has been read.

[Input]

(EP
D)i ` (INPUT(x);ωi, νi, φi)

x?a−−→ (BCAST(x);ωi, νi[x 7→ a], φi)

∀a ∈ {>,⊥}

The following two rules describe the message treatment phase. In this phase,

some messages are read from the receiving channel and the local valuation

is updated accordingly (i.e. the local asynchronous - tilded - copy is set

to the new value). Due to this change of valuation, some WHEN’s might

be triggered. Thus, all WHEN’s that might be triggered by this change of

valuation are considered before continuing the message treatment. Note

that messages are of the form (x, v, s) where x is the updated variable, v

is its value, and s is the originating process. The first message from any

sender may be received by the process. This is a technical subtlety to make

the Fifo queue of one process behave as if there was a Fifo queue for each

process.

[Message treatment]

(EP
D)i ` (MSG;ωi, νi, φi)

τ−→ (Treat(Wi/x̃, <W); MSG;ωi, νi[x̃ 7→ v],RemoveMsgj(φi))

60 CHAPTER 3. PRESENTATION OF DSL

For any j ∈ [1..n] such that SubChj(φi) = (x, v, s) · φ′

where Wi/ex = {w ∈Wi | x̃ ∈ V ar(Cond(w))}
[End of message treatment]

(EP
D)i ` (MSG;ωi, νi, φi)

τ−→ (ωi, νi,RemoveMark(φi))

if ∀j ∈ [1..n] : SubChj(φi) = ε

Note that the reception may not be instantaneous, that is, the end of message

treatment rule may be applied while there are still some messages left in the

Fifo channel. The �i markers, inserted when the cycle start rule was fired,

assures that new messages received during this cycle are not treated.

The next rule corresponds to the treatment of an assignment in the work-

load. The assignment has the usual effect (the local valuation is updated).

However, if the assigned variable is not an old condwi
, the new value needs

to be broadcast and the WHENs that may be triggered by this assignment

need to be scheduled for treatment. Notice that the value of x is sent to all

sites, regardless of the use of ∼ x on the destination sites. This is of course

not necessary, and the actual implementation does not.

[Assignment]

(EP
D)i ` (x := e;ωi, νi, φi)

τ−→

(BCAST(x);Treat(Wi/x, <W);ωi, νi[x 7→ νi(e)], φi)

if x ∈ V ar(P)

(ωi, νi[x 7→ νi(e)], φi) if x ∈ OldCond(P)

The following rule corresponds to the treatment of an IF statement. As

expected, if the condition evaluates to>, the code of the THEN part is inserted

in the workload, otherwise (the condition evaluated to ⊥), the code of the

ELSE part is inserted. The statement is skipped if the condition is UNKNOWN.

[If]

(EP
D)i ` (IF e THEN ω> ELSE ω⊥ ENDIF;ωi, νi, φi)

τ−→

(ω>;ωi, νi, φi) if νi(e) = >
(ω⊥;ωi, νi, φi) if νi(e) = ⊥
(ωi, νi, φi) if νi(e) =]

The last local rule corresponds to the output of a variable. In this case,

nothing needs to be done, apart from firing a transition labeled by the

output variable and its new value, and removing this abstract instruction

from the workload.

[Output]

(EP
D)i ` (OUTPUT(x);ωi, νi, φi)

x!νi(x)−−−−→ (ωi, νi, φi)

3.4. DSL SEMANTICS 61

The last set of rules are global rules, describing how SEQUENCEs are han-

dled. Remember that SEQUENCEs can execute in a completely distributed

manner, which is reflected here by the global nature of the rules.

In the first two rules, the activation of a SEQUENCE is formalized. In the

first rule, the SEQUENCE is started from the local workload ωi of process i, by

the instruction LAUNCH s. This instruction is removed from the workload,

and the corresponding SEQUENCE’s body is placed into σs. The local variables

are set to UNKNOWN, by updating µ. Finally, the SEQUENCE is started on any

site that can execute the first instruction, by changing ξ accordingly. Note

that this rule can only be fired when there is no running instance of the

SEQUENCE. The second rule states that if an instance is already running

(σs 6= ε), the LAUNCH instruction is simply removed from the local workload.

[Sequence Activate]

EP
D ` ((ω1, ν1, φ1), ..., (ωi, νi, φi), ..., (ωn, νn, φn), σ1, ..., σs, ..., σ`, µ, ξ)

τ−→ ((ω1, ν1, φ1), ..., (ω
′

i, νi, φi), ..., (ωn, νn, φn), σ1, ..., σ
′

s, ..., σ`, µ
′, ξ′)

for any i ∈ [1..n], s ∈ [1..`], such that σs = ε

ωi = LAUNCH s ; ω′
i

σ′s = S(s)

ξ′ = ξ[s 7→ j] for any j ∈ ExecD(S(s))

µ′ = µ[V arSeq(s) 7→]]

[Sequence Activate’]

EP
D ` ((ω1, ν1, φ1), ..., (ωi, νi, φi), ..., (ωn, νn, φn), σ1, ..., σs, ..., σ`, µ, ξ)

τ−→ ((ω1, ν1, φ1), ..., (ω
′

i, νi, φi), ..., (ωn, νn, φn), σ1, ..., σs, ..., σ`, µ, ξ)

for any i ∈ [1..n], s ∈ [1..`], such that σs 6= ε

where ωi = LAUNCH s ; ω′
i

The following rule describes how an assignment is handled inside a

SEQUENCE. A SEQUENCE will only be executed during the message treatment

phase, hence the abstract instruction MSG must be in front of the local work-

load ωi. When an assignment instruction is executed in a SEQUENCE s, the

local valuation νi is updated, if it updates a global variable. On the other

hand, if the left hand side consists of a local variable, the valuation µ is up-

dated. As usual, the instruction is removed from the instructions remaining

to be executed for this SEQUENCE, and WHENs that may be triggered by the

62 CHAPTER 3. PRESENTATION OF DSL

assignment are scheduled for treatment in the local workload ωi. Finally,

since SEQUENCEs can execute in a distributed manner, they may change

from site to site, which is expressed here by the update of ξ, which moves

the SEQUENCE to any site capable of executing its first (new) instruction.

[Sequence Assign]

EP
D ` ((ω1, ν1, φ1), ..., (ωi, νi, φi), ..., (ωn, νn, φn), σ1, ..., σs, ..., σ`, µ, ξ)

τ−→ ((ω1, ν1, φ1), ..., (ω
′

i, ν
′

i, φi), ..., (ωn, νn, φn), σ1, ..., σ
′

s, ..., σ`, µ
′, ξ′)

for any i ∈ [1..n], s ∈ [1..l], such that ξ(s) = i

ωi = MSG; ω′′
i

σs = x := e; σ′s
ν ′i = νi[x 7→ Υi(e)] if x /∈ V arSeq, otherwise ν ′i = νi
µ′ = µi[x 7→ Υi(e)] if x ∈ V arSeq, otherwise µ′ = µ

ω′
i = BCAST(x);Treat(Wi/x, <W);ωi if x /∈ V arSeq, otherwise ω′

i = ωi
ξ′ = ξ[s 7→ j] for any j ∈ Exec(σ′

s)

The next rule describes how an IF instruction inside a SEQUENCE is han-

dled. When the process on which the SEQUENCE currently executes is in

its message treatment phase, it replaces the IF instruction by the correct

branch, depending on the evaluation of the IF’s condition e. The SEQUENCE

may change sites, which is modeled by the update of ξ.

[Sequence IF]

EP
D ` ((ω1, ν1, φ1), ..., (ωi, νi, φi), ..., (ωn, νn, φn), σ1, ..., σs, ..., σ`, µ, ξ)

τ−→ ((ω1, ν1, φ1), ..., (ωi, νi, φi), ..., (ωn, νn, φn), σ1, ..., σ
′

s, ..., σ`, µ, ξ
′)

for any i ∈ [1..n], s ∈ [1..l], such that ξ(s) = i

ωi = MSG; ω′
i

σs = IF (e) THEN σ> ELSE σ⊥ ENDIF; σ′′s
σ′s = σ> ; σ′′s if Υi(e) = >
σ′s = σ⊥ ; σ′′s if Υi(e) = ⊥
σ′s = σ′′s if Υi(e) =]

ξ′ = ξ[s 7→ j] for any j ∈ Exec(σ′
s)

The last rule describes how a WHILE instruction inside a SEQUENCE is

transformed into an IF instruction. Notice that this is a pure syntactical

transformation, and that µ, ξ, and all local components of process i remain

unchanged.

3.5. PROPERTIES OF DSL’S SEMANTICS 63

[Sequence WHILE]

EP
D ` ((ω1, ν1, φ1), ..., (ωi, νi, φi), ..., (ωn, νn, φn), σ1, ..., σs, ..., σ`, µ, ξ)

τ−→ ((ω1, ν1, φ1), ..., (ωi, νi, φi), ..., (ωn, νn, φn), σ1, ..., σ
′

s, ..., σ`, µ, ξ)

for any i ∈ [1..n], s ∈ [1..l], such that ξ(s) = i

ωi = MSG; ω′
i

σs = WHILE (e) DO σw END WHILE σ′′s
σ′s = IF (e) THEN σw ; WHILE (e) DO σw END WHILE; END IF σ′′

s

Using those semantic rules, given a well-formed dSL♦ program P and a

distribution D of P , we can define a labeled transition system describing

the behavior of P , under D.

Definition 14 (Distributed semantics of a dSL♦ program) Given a

well-formed dSL♦ program P and a distribution D = {V1, ..., Vn} of P , we

define the distributed semantics of P w.r.t. D, noted JP KD as the labeled

transition system (GPD, G0
D, (V (P)× {!, ?} × {>,⊥}),→)

• G0
D = ((ω1, ν1, φ1), ..., (ωn, νn, φn), σ1, ..., σ`, µ, ξ)

where ∀i ∈ [1..n] :

– ωi = ε

– νi(x) =], ∀x ∈ (Vi ∪ ˜V ar(P) ∪OldCond(Wi))

– φi = ε

∀i ∈ [1..l] : σi = ε ∧ ξ(i) = 1

µ(x) =],∀x ∈ V arSeq

• → is such that (G, a,G′) ∈→ if and only if EP
D ` G

a−→ G′ can be

derived from any structural operational semantic rule given previously.

�

3.5 Properties of dSL’s semantics

3.5.1 A lattice of behaviors

For a given program P , we have different possible labeled transition systems,

one for each possible distribution of P . We can compare these structures to

have an idea of how the distribution influences the behavior of P .

64 CHAPTER 3. PRESENTATION OF DSL

Definition 15 (Weak simulation relation) Given two labeled transition

systems L1 = (Q1, q
0
1,Σ,→1), L2 = (Q2, q

0
2 ,Σ,→2). A binary relation R ⊆

Q1 × Q2 is a weak simulation relation for L1 and L2 if and only if for all

q1 ∈ Q1, q2 ∈ Q2, a ∈ Σ ∪ {τ}, if (q1, q2) ∈ R then

∀q′1 :
(
q1

a−→ q′1
)

=⇒
(
∃q′2 : q2

ba−→ q′2 ∧ (q′1, q
′
2) ∈ R

)

where

â ∈
{
τ∗ · a · τ∗ if a ∈ Σ

τ∗ if a 6∈ Σ (i.e. a = τ)

�

A LTS L1 = (Q1, q
0
1 ,Σ,→1) can be simulated by a LTS L2 = (Q2, q

0
2 ,Σ,→2)

noted L1 . L2 if there exists a weak simulation relation R for L1 and L2

such that (q0
1 , q

0
2) ∈ R.

In the previous section, we have defined the behavior of a program P

with distribution D as a labeled transition system. In this section, we use

this structure to prove that if a distribution D ′ of P refines distribution D of

P , then JP KD can be simulated by JP KD′ , and therefore has less behaviors.

For that, we need some intermediate results.

Definition 16 (Workload distribution) Let ω, ω1, ω2 be three workloads

(i.e. sequences of instructions, including abstract instructions). We have

that (ω1, ω2) is a distribution of ω, noted (ω1, ω2) � ω, if and only if

ω = ε ∧ ω1 = ε ∧ ω2 = ε

or

ω = x;ω′ and one of the following holds:

x = MSG ∧ ω1 = MSG;ω′
1 ∧ ω2 = MSG;ω′

2 ∧ (ω′
1, ω

′
2) � ω′

x 6∈ {MSG, ε} ∧ ω1 = x;ω′
1 ∧ (ω′

1, ω2) � ω′

x 6∈ {MSG, ε} ∧ ω2 = x;ω′
2 ∧ (ω1, ω

′
2) � ω′

�

The workload distribution will be used to prove the simulation relation be-

tween JP KD and JP KD′, where D′ is equal to D, except for one site, which is

split into two sites. ω represents the workload of the process which is split

into ω1 and ω2 in distribution D′. The workload distribution states that the

workloads are related when they are empty, or when an instruction is on

workload ω, it should be on either ω1 or ω2, unless it is a MSG instruction,

which must then be on both workloads.

3.5. PROPERTIES OF DSL’S SEMANTICS 65

Definition 17 (Fifo distribution) Let φ, φ1, φ2 be three Fifos. We have

that (φ1, φ2) is a distribution of φ, noted (φ1, φ2) ≈n φ, if and only if one of

the following holds:

1. φ = ε ∧ φ1 = ε ∧ φ2 = ε

2. φ = (x, v, s) · φ′ ∧ φ1 = (x1, v1, s1) · φ′1
∧φ2 = (x2, v2, s2) · φ′2 ∧ (φ′1, φ

′
2) ≈n φ′

with

s 6= n→ (s1 = s ∧ s2 = s)

s = n→ (s1 = s2 = n ∨ s1 = s2 = n+ 1)

3. φ = �i · φ′
∧(i 6= n→ (φ1 = �i · φ′1 ∧ φ2 = �i · φ′2 ∧ (φ′1, φ

′
2) ≈n φ′))

∧(i = n→ (φ1 = �n · �n+1 ·φ′1∧φ2 = �n · �n+1 ·φ′2 ∧ (φ′1, φ
′
2) ≈n φ′))

�

The Fifo distribution will be used in a similar way as the workload distri-

bution. It states that Fifo queues φ, φ1 and φ2 are related if they are the

same, or if there is a message on φ which came from process n, it should

be present on φ1 and φ2, but with possibly a different originating process

(n + 1). The use of n and n + 1 results from the simplification in proof 1,

where the last process in D is split to form D ′.

Lemma 1 (One-split simulation) Given a well-formed dSL♦ program P

and two distributions D = (V1, ..., Vn), D
′ = (V ′

1 , ..., V
′
n, V

′
n+1) of P such that

∀i ∈ [1..n − 1], Vi = V ′
i and Vn = V ′

n ∪ V ′
n+1. We have that JP KD′ simulates

JP KD:

JP KD . JP KD′

Proof sketch. (Complete proof is given in section 3.5.2) We define a relation

R ⊆ GPD × GPD′ such that

if G = ((ωG1 , ν
G
1 , φ

G
1), (ωG2 , ν

G
2 , φ

G
2), ..., (ωGn , ν

G
n , φ

G
n), σG1 , σ

G
2 , ..., σ

G
` , µ

G, ξG)

and

G′ = ((ωG
′

1 , νG
′

1 , φG
′

1), (ωG
′

2 , νG
′

2 , φG
′

2), ..., (ωG
′

n , ν
G′

n , φ
G′

n), (ωG
′

n+1, ν
G′

n+1, φ
G′

n+1),

σG
′

1 , σG
′

2 , ..., σG
′

` , µG
′

, ξG
′

), (G,G′) ∈ R if and only if:

1. (ωGi , ν
G
i , φ

G
i) = (ωG

′

i , ν
G′

i , φ
G′

i), ∀i ∈ [1..n− 1]

2. (φG
′

n , φ
G′

n+1) ≈n φGn

3. ∀x ∈ (V ′
n ∪ ˜V ar(P) ∪OldCond(W ′

n+1)), ν
G
n (x) = νG

′

n (x)

66 CHAPTER 3. PRESENTATION OF DSL

4. ∀x ∈ (V ′
n+1 ∪ ˜V ar(P) ∪OldCond(W ′

n)), ν
G
n (x) = νG

′

n+1(x)

5. (ωG
′

n , ω
G′

n+1) � ωGn

6. ∀i ∈ [1..`] : σGi = σG
′

i

7. µG = µG
′

8. ∀i ∈ [1..`] :

{
ξG(i) < n → ξG(i) = ξG

′

(i)

ξG(i) = n → ξG
′

(i) ∈ {n, n+ 1}

Then we prove that (GD
0 , G

D′

0) ∈ R and that R is a weak simulation relation

for JP KD and JP KD′, i.e. we prove that if (G,G′) ∈ R then, for all a ∈
Σ ∪ {τ}:

∀H ,
(
G

a−→ H
)

=⇒
(
∃H ′ , G′ ba−→ H ′ ∧ ((H,H ′) ∈ R)

)

We must prove that every possible step made from G to H can be simulated

from G′ to H ′. In short, the workload distribution assures that all instruc-

tions executed by the processes in G can also be executed in G′. If process n

executes some instruction in G, then either process n or process n+ 1 must

be able to do so in G′. The Fifo distribution assures that sent messages

in G are also present in G′. Messages sent by process n in G are also sent

in G′, either by process n or process n + 1. A similar reasoning governs

ξ, where a SEQUENCE running on process n in G must either be running on

process n or n+ 1 in G′.

To prove this in detail, we need to consider every possible step described

in the semantics. �

Lemma 1 proves that, having two distributions D and D ′ whose difference

is that the last set of variables of D is split in two in D ′, JP KD . JP KD′ . A

full proof of lemma 1 can be found in section 3.5.2. We now prove for any

distribution D,D′ such that D � D′, JP KD . JP KD′ holds. For this, we first

give a lemma that will allow us to relate this problem to lemma 1.

Lemma 2 (Distribution decomposition) Let D = {V1, V2, ..., Vk} and

D′ = {V ′
1 , V

′
2 , ..., V

′
l } be two distributions such that D � D ′. We have that

there exists a finite sequence of distributions D1, ..., Dn (note that n = l −
k + 1), such that

D = D1 � D2 � ... � Dn = D′

such that ∀i ∈ [2..n] : Di is obtained by one split of Di−1 �

3.5. PROPERTIES OF DSL’S SEMANTICS 67

Proof. Note first that l > k. Indeed, if l < k, clearly D 6� D ′, if l = k and

D � D′, clearly D = D′.
Since l > k ∧D � D′, there must be p, q ∈ [1..l] such that V ′

p (Vi ∧ V ′
q (

Vi for some i ∈ [1..k] (Pigeonhole principle). For simplicity we suppose

p = l, q = l − 1. This implies that V ′
l ∪ V ′

l−1 ⊆ Vi. Hence the distribution

D′′ = {V ′
1 , V

′
2 , ..., V

′
l−2, Vl−1 ∪ Vl} still refines D, but has one element less

than D′. This process can be repeated until D ′′ = D, and consists of only

one split refinements. �

Remark Note that the order of the elements in D is of no importance

in lemma 2. For notational simplicity, we suppose that it is the last partition

that is split.

With this lemma, we know that if D � D′, then we can construct a se-

quence of distributions and we can apply lemma 1 between each consecutive

pair of distributions of this sequence.

Theorem 2 (Simulation) Given a well-formed dSL♦ program P = (V,≺V
,W,≺W), let D = {V1, V2, ..., Vn} and D′ = {V ′

1 , V
′
2 , ..., V

′
l } be two distribu-

tions of P . We have that, if D′ refines D then JP KD′ simulates JP KD:

(D � D′) =⇒ (JP KD . JP KD′)

This is a direct consequence of lemma 1, lemma 2, and the transitivity

of the simulation relation. �

Intuitively, this means that every step that P can perform with distri-

bution D can be simulated by P using a more refined distribution D ′.

Corollary 1 (Distribution lattice) Given a well-formed dSL♦ program.

Let Dmin = {V ar(P)}. We have that 〈 {JP KD|D ∈ DP } , . 〉 is a lattice

with, respectively, JP KDmin
and JP KDmax

as minimal and maximal elements.

�

Corollary 2 (Property preservation) Given a dSL ♦ program P , and

two distributions D,D′ such that D � D′ we have for all next-free ltl

formula φ :

JP KD′ |= φ⇒ JP KD |= φ

�

Therefore, a program P is safe (there is no run which violates a certain

property) for any distribution D if it is safe for the maximal distribution

Dmax. On the other hand, if P is shown not safe for some distribution D it

is also not safe for any more refined distribution D ′.

68 CHAPTER 3. PRESENTATION OF DSL

3.5.2 Full proof of the one-split simulation

Lemma 3 Given a well-formed dSL♦ program P and two distributions of

P , D = (V1, ..., Vn), D
′ = (V ′

1 , ..., V
′
n, V

′
n+1) such that ∀i ∈ [1..n − 1] : Vi =

V ′
i and Vn = V ′

n ∪ V ′
n+1, let (EP

D)n = (Vn,Wn), (EP
D′)n = (V ′

n,W
′
n) and

(EPD′)n+1 = (V ′
n+1,W

′
n+1), we have :

V arin(P) ∩ Vn = (V arin(P) ∩ V ′
n) ∪ (V arin(P) ∩ V ′

n+1)

V arτ (P) ∩ Vn = (V arτ (P) ∩ V ′
n) ∪ (V arτ (P) ∩ V ′

n+1)

V arout(P) ∩ Vn = (V arout(P) ∩ V ′
n) ∪ (V arout(P) ∩ V ′

n+1)

Wn = W ′
n ∪W ′

n+1

�

Proof. Results directly from the definition of distribution, the nature of D,

D′ and the definition of V arin(P), V arτ (P), V arout(P). �

This lemma states that when the last process is split in D, the input, output

and internal variables together with the WHENs are split accordingly.

Lemma 4 (Distributed executability) Given a well-formed dSL♦ pro-

gram P and two distributions D = (V1, ..., Vn), D
′ = (V ′

1 , ..., V
′
n, V

′
n+1) of P

such that ∀i ∈ [1..n− 1], Vi = V ′
i and Vn = V ′

n ∪ V ′
n+1. We have that ∀ω :

ExecD(ω) = {n} ⇒ ExecD′(ω) ∈ {n, n+ 1}
and ExecD(ω) = {i} ∧ i < n ⇒ ExecD′(ω) = {i} �

Proof. This results directly from the definition of ExecD and the nature of

D and D′. �

The following lemma states that if three Fifo queues φ, φ1 and φ2 are

related by ≈n, and a message is in some subchannel i < n of φ, then the

same message can also be found in the same subchannel of φ1 and φ2. For

messages in subchannel n of φ, they are present either in subchannel n or

in subchannel n+ 1 of φ1 and φ2.

Lemma 5 For any three Fifo channels φ, φ1, φ2 ∈ Σ∗
φ, we have that if

φ ≈n (φ1, φ2), then ∀s ∈ [1..n−1] : SubChs(φ) = SubChs(φ1) = SubChs(φ2).

Moreover, if SubChn(φ) = (x, v, n) · φ′, then SubChn(φ1) = SubChn(φ2) =

(x, v, n) · φ′′ or SubChn+1(φ1) = SubChn+1(φ2) = (x, v, n + 1) · φ′′′. �

Proof. We will prove this property by induction on the size of φ. Suppose

φ = ε, then φ1 = φ2 = ε, and the property holds. Now suppose that

φ = m · φ′ and that the lemma holds for φ′ w.r.t. φ′1 and φ′2. Either m is a

message (x, v, s), or m ∈ {�i|i ∈ [1..n]}.

3.5. PROPERTIES OF DSL’S SEMANTICS 69

1. m = (x, v, s). In this case, since φ ≈n (φ1, φ2) we must have that

φ1 = (x, v, s′) · φ′1 and φ2 = (x, v, s′) · φ′2. If s 6= n then s′ = s by

definition of ≈n. It is easy to see by definition of SubChi that this only

modifies SubChs(φ), and that the lemma still holds. On the other

hand, if m = (x, v, n), we must either have (x, v, n) or (x, v, n + 1) in

front of φ1 and φ2 to maintain φ ≈n (φ1, φ2). If (x, v, n) is inserted

in φ1 and φ2, this will only change SubChn. From the definition of

SubChn, we can see that the lemma still holds. For (x, v, n + 1), the

same reasoning holds.

2. m = �i. In this case, for φ ≈n (φ1, φ2) to hold, either i 6= n and

we must have φ1 = �i · φ′1, φ2 = �i · φ′2. By definition of SubChi,

this does not alter any subchannels, except for subchannel i which is

truncated to ε. So the lemma holds for i ∈ [1..n − 1]. If i = n, φ1 =

�n·�n+1·φ′1, φ2 = �n·�n+1·φ′2. By definition of SubChi, remark that this

truncates subchannels n and n + 1. We have therefore SubChn(φ) =

SubChn(φ1) = SubChn(φ2) = SubChn+1(φ1) = SubChn+1(φ2) = ε.

�

The following lemma shows that if three Fifo queues are related by ≈n,
applying RemoveMark keeps the relation intact.

Lemma 6 For any three Fifo channels φ, φ1, φ2 ∈ Σ∗
φ, we have that if φ ≈n

(φ1, φ2), then RemoveMark(φ) ≈n (RemoveMark(φ1),RemoveMark(φ2)). �

Proof. Proof by induction on the number of markers �i in φ. If there are

no markers in φ, ≈n forbids the presence of markers in φ1 and φ2, hence

RemoveMark has no effect and the property holds.

Suppose that the property holds for n markers. If a marker is added in

φ, ≈n only requires the insertion of one or two markers in φ1 and φ2. Since

RemoveMark removes that markers, the same queues are obtained as with

n markers, and the property holds. �

Lemma 1 (One-split simulation). Given a well-formed dSL♦ program

P and two distributions D = (V1, ..., Vn), D
′ = (V ′

1 , ..., V
′
n, V

′
n+1) of P such

that ∀i ∈ [1..n − 1] : Vi = V ′
i and Vn = V ′

n ∪ V ′
n+1. We have that JP KD′

simulates JP KD:

JP KD . JP KD′

We define a relation R ⊆ GPD × GPD′ such that

if G = ((ωG1 , ν
G
1 , φ

G
1), (ωG2 , ν

G
2 , φ

G
2), ..., (ωGn , ν

G
n , φ

G
n), σG1 , σ

G
2 , ..., σ

G
` , µ

G, ξG)

70 CHAPTER 3. PRESENTATION OF DSL

and

G′ = ((ωG
′

1 , νG
′

1 , φG
′

1), (ωG
′

2 , νG
′

2 , φG
′

2), ..., (ωG
′

n , ν
G′

n , φ
G′

n), (ωG
′

n+1, ν
G′

n+1, φ
G′

n+1),

σG
′

1 , σG
′

2 , ..., σG
′

` , µG
′

, ξG
′

), (G,G′) ∈ R if and only if:

1. (ωGi , ν
G
i , φ

G
i) = (ωG

′

i , ν
G′

i , φ
G′

i), ∀i ∈ [1..n− 1]

2. (φG
′

n , φ
G′

n+1) ≈n φGn

3. ∀x ∈ (V ′
n ∪ ˜V ar(P) ∪OldCond(W ′

n)), ν
G
n (x) = νG

′

n (x)

4. ∀x ∈ (V ′
n+1 ∪ ˜V ar(P) ∪OldCond(W ′

n+1)), ν
G
n (x) = νG

′

n+1(x)

5. (ωG
′

n , ω
G′

n+1) � ωGn

6. ∀i ∈ [1..`] : σGi = σG
′

i

7. µG = µG
′

8. ∀i ∈ [1..`] :

{
ξG(i) < n → ξG(i) = ξG

′

(i)

ξG(i) = n → ξG
′

(i) ∈ {n, n+ 1}
In the rest of this proof, this last property will be noted ξG ≡ ξG′

We prove thatR is a simulation relation for JP KD and JP KD′. More precisely,

we prove that if (G,G′) ∈ R, for all a ∈ (V ar(P)× {!, ?} × {>,⊥} ∪ {τ}):

∀H ,
(
G

a−→ H
)

=⇒
(
∃H ′ , G′ τ∗·a−→ H ′ ∧ ((H,H ′) ∈ R)

)

In the rest of the proof, we will use the following notation:

• H = ((ωH1 , ν
H
1 , φ

H
1), (ωH2 , ν

H
2 , φ

H
2), ..., (ωHn , ν

H
n , φ

H
n),

σH1 , σ
H
2 , ..., σ

H
` , µ

H , ξH)

• H ′ = ((ωH
′

1 , νH
′

1 , φH
′

1), ..., (ωH
′

n , νH
′

n , φH
′

n), (ωH
′

n+1, ν
H′

n+1, φ
H′

n+1),

σH
′

1 , σH
′

2 , ..., σH
′

` , µH
′

, ξH
′

).

Moreover, given a global state G, we note (G)i the ith component of G.

The transition G
a−→ H can be derived from the following global seman-

tic rules : Interleaving, Broadcast, Sequence Activate, Sequence Activate ′,
Sequence Assign, Sequence IF or Sequence WHILE.

[Broadcast] According to the broadcast semantic rule, if a global transi-

tion is fired, it means that one of the local processes has a BCAST(x) at the

beginning of its workload. Let i denote that local process. We have two

possibilities:

3.5. PROPERTIES OF DSL’S SEMANTICS 71

1. i 6= n : since (G,G′) ∈ R, we have that (G)i = (G′)i. Since the

broadcast can be fired by (G)i in JP KD, it can also be fired by (G′)i
in JP KD′ . It follows directly that:

G′ τ−→ H ′

The message is added to all Fifo channels. Therefore, Fifo channels

in H and H ′ respect the relation ≈n. None of the σi, µ or ξ change.

It is then easy to see that (H,H ′) ∈ R.

2. i = n : we have that ωGn = BCAST(x);ωHn . Moreover, since (G,G′) ∈ R,

we have that (ωG
′

n , ω
G′

n+1) � ωGn . Thus, by definition of �, there are

two possibilities:

(a) ωG
′

n = BCAST(x);ωH
′

n and ωG
′

n+1 = ωH
′

n+1, then G′ τ−→ H ′ can be

deduced from the broadcast semantic rule. The abstract instruc-

tion BCAST(x) is removed from ωG
′

n , and by definition of �, we

have ωHn � (ωH
′

n , ωH
′

n+1). The message is added to every Fifo

channel and the Fifo channels in H and H ′ respect the relation

≈n. It is then easy to see that (H,H ′) ∈ R (note that all of the

σi, as well as ξ and µ remain unchanged).

(b) ωG
′

n = ωH
′

n and ωG
′

n+1 = BCAST(x);ωH
′

n+1, the case is symmetrical.

[Interleaving] According to the interleaving semantic rule, if a global

transition is fired from G, it means that one of the local processes can fire a

local transition. Let i denote that local process. We have two possibilities:

1. i 6= n : since (G,G′) ∈ R, we have that (G′)i = (G)i. Since the local

transition can be fired by (G)i in JP KD, it can also be fired by (G′)i
in JP KD′ . It follows that:

G′ a−→ H ′

Only the local process i changes, the other local processes remain

unchanged. Therefore, since (H)i = (H ′)i, we have that (H,H ′) ∈ R.

2. i = n : this case must be considered more carefully. As (G,G′) ∈ R, we

have that (ωG
′

n , ω
G′

n+1) � ωGn . Let’s consider each local rule separately :

[Cycle Start] In this case, we have ωGn = ε and a = τ . More-

over, by definition of �, we have that ωG
′

n = ωG
′

n+1 = ε, thus, we

can apply the cycle start rule in both (G′)n and (G′)n+1. Let’s

72 CHAPTER 3. PRESENTATION OF DSL

construct a transition sequence performing both start cycles from

G′ :

G′ τ−→ G′′ τ−→ H ′

Where

Cycle start in local process n :

(G′)n
τ−→ (G′′)n ∧ ∀i 6= n : (G′)i = (G′′)i

Cycle start in local process n+1 :

(G′′)n+1
τ−→ (H ′)n+1 ∧ ∀i 6= n+ 1 : (G′′)i = (H ′)i

Considering G′ and H ′, we have the following equalities :

νGn = νHn

νG
′

n = νH
′

n

νG
′

n+1 = νH
′

n+1

Indeed, the valuations on the variables remain the same when the

cycle start rule is applied. For the Fifo channels, we have the

following equalities :

φHn ∈ Shuffle(φGn)π

φG
′′

n ∈ Shuffle(φG
′

n)π′

φH
′

n+1 ∈ Shuffle(φG
′′

n+1)π′′

φH
′

n = φG
′′

n ∧ φG
′′

n+1 = φG
′

n+1

To obtain φHn ≈n (φH
′

n , φH
′

n+1), we must choose π′ and π′′ as fol-

lows : let k be such that π(k) = n, and ∀i ∈ [1..k] : π ′(i) =

π′′(i) = π(i) ∧ π′(k+ 1) = π′′(k+ 1) = n+ 1∧ ∀i ∈]k+ 1..n+ 1] :

π′(i) = π′′(i) = π(i − 1). Once the markers are in the right or-

der, we can insert them in the right place (by selecting the right

element in the Shuffle() sets) to obtain φHn ≈n (φH
′

n , φH
′

n+1).

Let’s look at ωHn : by lemma 3, we know that every input, output,

and when treatment instruction inserted in ωHn will be inserted

either in ωH
′

n or ωH
′

n+1. More formally, this gives :

(Sample(V arin(P) ∩ V ′
n, <V), Sample(V arin(P) ∩ V ′

n+1, <V))

� Sample(V arin(P) ∩ Vn, <V)

(Write(V arout(P) ∩ V ′
n, <V),Write(V arout(P) ∩ V ′

n+1, <V))

�Write(V arout(P) ∩ Vn, <V)

(Treat(W ′
n, <W), T reat(W ′

n+1, <W))

� Treat(Wn, <W)

3.5. PROPERTIES OF DSL’S SEMANTICS 73

Thus, we have (ωH
′

n , ωH
′

n+1) � ωHn and G′ τ ·τ−→ H ′ and (H,H ′) ∈
R (not that none of the σi changes, as is the case for µ and ξ).

[Input] In this case, we have ωGn = INPUT(x); ηHn and a = x?v.

Then, as (ωG
′

n , ω
G′

n+1) � ωGn , there are two possibilities:

(a) if ωG
′

n = INPUT(x); ηH
′

n and ωH
′

n+1 = ωG
′

n+1, we can apply the

input semantic rule to (G′)n, thus we have (G′)n
a−→ (H ′)n.

The valuation for x is modified accordingly. Thus we have

νHn = νHn [x 7→ v] and νH
′

n = νH
′

n [x 7→ v]. Furthermore, by

definition of �, we have (ηH
′

n , ωH
′

n+1) � ωHn and by interleav-

ing, we can perform G′ a−→ H ′. In conclusion, we have :

ωHn = BCAST(x); ηHn
ωH

′

n = BCAST(x); ηH
′

n

We can conclude that (H,H ′) ∈ R (none of the σi changes,

which is also the case for µ and ξ).

(b) if ωG
′

n+1 = INPUT(x);ωH
′

n+1 and ωH
′

n = ωG
′

n , the case is sym-

metrical.

[Message treatment] In this case, we have ωGn = MSG; ηHn ,

and a = τ . Then, as (ωG
′

n , ω
G′

n+1) � ωGn , we have:

ωG
′

n = MSG; ηH
′

n

ωG
′

n+1 = MSG; ηH
′

n+1

We can then apply the message treatment rule or the end of

message treatment rule to (G′)n and (G′)n+1, we then have a

sequence of transitions :

G′ τ−→ G′′ τ−→ H ′

Where

(G′)n
τ−→ (G′′)n ∧ ∀i 6= n : (G′)i = (G′′)i

(G′′)n+1
τ−→ (H ′)n+1 ∧ ∀i 6= n+ 1 : (G′′)i = (H ′)i

If G
τ−→ H results from the application of the end of message

treatment rule, then we may simply apply this rule to (G′)n and

(G′)n+1.

If the message treatment rule is applied, we have SubChs(φ
G
n) =

(x, v, s) ·φ′′, for some s. Since (φG
′

n , φ
G′

n+1) ≈n φGn , by lemma 5, we

know that the same message can be read by the three processes,

74 CHAPTER 3. PRESENTATION OF DSL

the valuation will be modified accordingly and the list of whens

will be inserted in the workload. We have :

ωHn = Treat(Wn/x̃, <W)ηHn
ωH

′

n = Treat(W ′
n/x̃, <W)ηH

′

n

ωH
′

n+1 = Treat(W ′
n+1/x̃, <W)ηH

′

n+1

Then, by lemma 3, we have Wn/x̃ = W ′
n/x̃ ∪W ′

n+1/x̃. It follows

that

(Treat(W ′
n/x̃, <W), T reat(W ′

n+1/x̃, <W)) � Treat(Wn/x̃, <W)

Moreover (ηH
′

n , ηH
′

n+1) � ηHn , and, thus, (ωH
′

n , ωH
′

n+1) � ωHn . As the

modifications brought to the Fifo channels and the valuations

are the same, we can conclude that (H,H ′) ∈ R.

If the end of message treatment rule is applied, only the Fifo

queues change, and MSG is removed from both workloads. Lemma

6 shows that φHn ≈n (φH
′

n , φH
′

n+1).

In all the cases, we have G′ τ ·τ−→ H ′ and (H,H ′) ∈ R (Again, all

of the σi as well as µ and ξ remain the same).

[Assignment] In this case, we have ωGn = x := e; ηHn and a = τ .

Then, as (ωG
′

n , ω
G′

n+1) � ωGn , there are two possibilities:

(a) if ωG
′

n = x := e; ηH
′

n and ωG
′

n+1 = ωH
′

n+1, we can apply the

assignment rule to (G′)n, thus (G′)n
τ−→ (H ′)n, and, by in-

terleaving, we have G′ τ−→ H ′. We have νHn = νGn [x 7→ νGn (e)]

and νH
′

n = νG
′

n [x 7→ νG
′

n (e)]. Thus, the valuation νHn and νH
′

n

remain coherent. As x is not in the domain of νH
′

n+1, ν
H′

n+1

(since the distribution is based on a partition of the variables,

and each local valuation holds the values of all variables from

one partition) and νHn remain also coherent.

If x ∈ V (P), we need to show that Wn/x = W ′
n/x, that is,

they share the same set of WHENs (partially) conditioned on

this variable. Note that, by construction of W ′
n, we already

have that W ′
n ⊆Wn and, thus, W ′

n/x ⊆Wn/x. Let’s suppose

that ∃w ∈ Wn : w 6∈ W ′
n. Thus, w ∈ W ′

n+1, but w needs

to access x, and the atomicity constraint on the WHEN’s is

violated. Thus, D′ would not be a distribution and we must

have W ′
n/x = Wn/x. In conclusion, we have :

ωHn = BCAST(x);Treat(Wn/x, <W); ηHn
ωH

′

n = BCAST(x);Treat(W ′
n/x, <W); ηH

′

n

3.5. PROPERTIES OF DSL’S SEMANTICS 75

As (ηH
′

n , ωG
′

n+1) � ωH
′

n , we have that

(ωH
′

n , ωH
′

n+1) � ωHn

The case where x ∈ OldCond(P) is trivial, as nothing is

inserted in the workload : we directly have ηHn = ωHn and

ηH
′

n = ωH
′

n .

In the remaining cases (x ∈ V (P) or x ∈ OldCond(P)),

we have G′ τ−→ H ′ and (H,H ′) ∈ R (all of the σi remain

unchanged, as well as ξ and µ).

(b) If ωG
′

n+1 = x := e; ηH
′

n+1 and ωG
′

n = ωH
′

n , the case is symmetri-

cal.

[If] In this case, we have ωGn = IF e THEN ω> ELSE ω⊥ ENDIF; ηHn ,

and a = τ . Then, again, as (ωG
′

n , ω
G′

n+1) � ωGn , there are two

possibilities:

(a) if ωG
′

n = IF e THEN ω> ELSE ω⊥ ENDIF; ηH
′

n and ωG
′

n+1 = ωH
′

n+1,

we can apply the if rule to (G′)n, thus (G′)n
τ−→ (H ′)n and,

by interleaving, we have G′ τ−→ H ′. As (G,G′) ∈ R, we have

νGn (e′) = νGn (e) and the same branch of the IF statement will

be executed afterward. We then have :

ωHn = ω>; ηHn ωH
′

n = ω>; ηH
′

n if νGn (e) = >
ωHn = ω⊥; ηHn ωH

′

n = ω⊥; ηH
′

n if νGn (e) = ⊥
ωHn = ηHn ωH

′

n = ηH
′

n if νGn (e) =]

As (ηH
′

n , ωHn+1) � ηHn , by definition of �, we have (ωH
′

n , ωH
′

n+1)

� ωHn . In conclusion, we have G′ τ−→ H ′ and (H,H ′) ∈ R,

since none of the σi nor µ and ξ changed.

(b) if ωG
′

n+1 = IF e THEN ω> ELSE ω⊥ ENDIF; ηH
′

n+1 and ωG
′

n = ωH
′

n ,

the case is symmetrical.

[Output] In this case, we have ωGn = OUTPUT(x);ωHn , (a = x!v).

Then, as usual, as (ωG
′

n , ω
G′

n+1) � ωGn , there are two possibilities:

(a) if ωG
′

n = OUTPUT(x);ωH
′

n and ωG
′

n+1 = ωH
′

n+1, we can apply the

output rule to (G′)n. Therefore, we have (G′)n
a′−→ (H ′)n

and, by interleaving, G′ a′−→ H ′. As (G,G′) ∈ R, we have

νG
′

n (x) = ν(x)Gn . Thus, a = a′, as the same value will be given

in output. As (by definition of �) (ωH
′

n , ωH
′

n+1) � ωHn , we have

(H,H ′) ∈ R (all of the σi, µ and ξ remain unchanged).

(b) if ωG
′

n+1 = OUTPUT(x);ωH
′

n+1 and ωG
′

n = ωH
′

n , the case is sym-

metrical.

76 CHAPTER 3. PRESENTATION OF DSL

[Sequence Activate] As (G,G′) ∈ R, σGs = σG
′

s = ε. Let i be such that

(G)i fired that rule. We have two possibilities :

1. i < n By definition of R, we must have ωGi = LAUNCH s;wHi . This rule

can be fired from G′ to obtain H ′.

2. i = n By definition of R, we have two possibilities :

• ωG′

n = LAUNCH s;ωH
′

n . This rule can be fired from G′.

• ωG′

n+1 = LAUNCH s;ωH
′

n+1. This case is symmetrical.

Let’s consider ExecD(S(s))), if ExecD(S(s))) = {n}, then by lemma 4,

ExecD′(S(s))) ∈ {n, n + 1}. Thus, ξH
′ ≡ ξH . Finally, we have that σH

′

s =

σHs . In conclusion, we have that (H,H ′) ∈ R.

[Sequence Activate’] As (G,G′) ∈ R, σG′

s 6= ε. Let i be the process that

fired this rule.

1. If i < n, then this rule can be fired fromG′ and we have that ωHi = ωH
′

i .

2. If i = n, then by definition of R, we have two possibilities

• ωG′

n = LAUNCHs;ωH
′

n . This rule can also be fired from G′ and

(H,H ′) ∈ R
• ωG′

n+1 = LAUNCHs;ωH
′

n+1. This case is symmetrical.

[Sequence Assign] Let s be the sequence that contains the assignment,

and let i be such that ξG(s) = i. First, as (G,G′) ∈ R, then it is easy to see

that ΥG
i (e) = ΥG′

i (e). Furthermore, we have that σG
′

s = x := e;σH
′

s .

We have two possibilities for i

1. i < n this rule can be fired from G′. As ΥG
i (e) = ΥG′

i (e), we have that

νHi = νH
′

i and µH = µH
′

Moreover, ωH
′

i = ωHi and σH
′

s = σHs . Finally,

we can easily prove that ξH
′ ≡ ξH

2. i = n, thus, ωGn = MSG; ηn. By lemma 4, we have two possibilities :

• ξG′

(s) = n. By definition of R, we have that ωG
′

= MSG; η′n.
Hence, we can fire this rule from G′. We have that σHs = σH

′

s .

and, using lemma 4 we can easily prove that ξH ≡ ξH
′

. Remark

that since the valuations (µ and νn are coherent between G and

G′, they remain so in H and H ′.

• ξG′

(s) = n+ 1. This case is symmetrical.

In conclusion (H,H ′) ∈ R.

3.6. FROM DSL TO DSL♦ 77

[Sequence IF] Let i be such that ξG(s) = i. First, as (G,G′) ∈ R, then

it is easy to see that ΥG
i (e) = ΥG′

i (e). Thus, in all three cases (>,⊥ or

]), σH
′

= σH . And, using lemma 4, it is easy to see that ξH
′ ≡ ξH . In

conclusion (H,H ′) ∈ R.

[Sequence WHILE] Let i be such that ξG(s) = i. Since (G,G′) ∈ R, and

ξG ≡ ξG
′

, it is easy to see that if i < n, the same process can make fire the

same transition in G′, and (H,H ′) ∈ R. If i = n then either process n or

n+ 1 can take the transition and update σs accordingly. We can therefore

conclude (H,H ′) ∈ R.

Finally, it is easy to prove that (G0
D, G

0
D′) ∈ R. Indeed, according to defini-

tion 14, both in G0
D and G0

D′ , the workloads are empty, the valuations are

assigning all variables to] and the Fifo channel are empty. Therefore, by

definition of R and by definition 16, we have (G0
D, G

0
D′) ∈ R and :

JP KD . JP KD′

�

3.6 From dSL to dSL♦

In this section, we intuitively describe the syntactical transformation from

a full featured dSL program to a simplified dSL♦ program. As said ear-

lier, dSL♦ is a subset of the dSL language. In this subset, we make the

following restrictions: (1) METHODs are supposed to be inlined, which implies

that recursive calls are forbidden; (2) since no recursion is allowed, all vari-

ables outside SEQUENCEs can be considered to be declared globally; (3) only

boolean variables are considered; (4) as we will see in this section, METHOD

LAUNCHes and the WAIT instruction inside SEQUENCEs can equivalently be

translated into code using only WHENs and ∼. Therefore, their semantics are

defined through this translation and no other semantics are given.

Removing METHOD LAUNCH We use the duality between the asynchronous

execution of METHODs using LAUNCH and the ∼ operator, in order to transform

the former into code that only uses the latter.

For any LAUNCH instruction i starting a METHOD M, we introduce a new

global variable Gi,m, initially set to FALSE. The instruction

LAUNCH M();

78 CHAPTER 3. PRESENTATION OF DSL

is then replaced by

Gi,m := TRUE; Gi,m := FALSE;

and a WHEN is used to asynchronously trigger the code of M as follows :

WHEN ∼ Gi,m THEN M(); END WHEN

Removing METHOD calls Method calls in the program text are removed

by means of inlining. Note again that we can not model recursion in dSL’s

semantics.

Removing WAIT instructions A wait instruction can only occur in a

SEQUENCE. We do not give a formal translation of how to remove WAIT in-

structions, but give two examples which should convince that they can be

translated using the concepts available in dSL♦. The basic transformation

goes as follows : (1) Cut the SEQUENCE into two parts, where the first part

contains the WAIT instruction as last instruction. (2) Replace the WAIT in-

struction by a an assignment causing a raising edge on a fresh global variable

(3) insert a WHEN in the program, which combines the condition of the WAIT

and the newly introduced variable (4) in the body of that WHEN, reset the

value of the variable, and start the second part of the SEQUENCE. This is

illustrated in figure 3.7. Notice the introduction of a fresh global variable

S part 1 WAITING, which indicates whether or not S reached the WAIT in-

struction.

A more complex situation to translate happens when the WAIT instruc-

tion is inside some compound IF or WHILE instruction. An example for the

translation in that case is given in figure 3.8, but the basic idea remains the

same.

3.7 Examples

We now present three complete examples of dSL programs, that have been

distributed, compiled and tested with the prototype dSL compiler presented

in chapter 5.

3.7.1 A canal lock controller

The problem

In this example, we study the design of a controller for a canal system

composed of two consecutive locks. As presented in figure 3.9, each lock is

3.7. EXAMPLES 79

SEQUENCE S ()

// ... part1 ...

WAIT condition;

// ... part2 ...

END_SEQUENCE

SEQUENCE S_part1 ()

// ... part1 ...

S_part1_WAITING := TRUE;

END_SEQUENCE

WHEN S_part1_WAITING

AND condition

THEN

S_part1_WAITING := FALSE;

LAUNCH S_part2();

END_WHEN

SEQUENCE S_part2 ()

// ... part2 ...

END_SEQUENCE

Figure 3.7: Removing WAIT instructions from SEQUENCEs

SEQUENCE S ()

// ... part1 ...

WHILE cond DO

// ... part 2 ...

WAIT condition;

// ... part 3 ...

END_WHILE

// ... part4 ...

END_SEQUENCE

SEQUENCE S_part1 ()

// ... part1 ...

LAUNCH S_part_2();

END_SEQUENCE

SEQUENCE S_part2 ()

IF cond THEN

// ... part2 ...

S_part2_WAITING := TRUE;

ELSE

LAUNCH S_part4();

END_IF

END_SEQUENCE

WHEN S_part2_WAITING

AND condition THEN

S_part2_WAITING := FALSE;

LAUNCH_S_part3();

END_WHEN

SEQUENCE S_part3()

// ... part 3 ...

LAUNCH S_part2 ();

END_SEQUENCE

SEQUENCE_S_part4()

// ... part 4 ...

END_SEQUENCE

Figure 3.8: Removing WAIT instructions from within WHILE inside SEQUENCEs

80 CHAPTER 3. PRESENTATION OF DSL

Lock 1�

Bottom
Gate

Top
Gate

Lock 2

Bottom
Gate

Top
Gate

Figure 3.9: Canal locks

composed of two gates, a top and a bottom one. In between the top and the

bottom gates of each lock, the water level can be controlled (i.e. the inside

of a lock can be filled or emptied). The different commands of this system

(opening/closing a gate, emptying/filling a lock) can be accessed via push

buttons on a control panel. For this system to function properly, several

constraints must be satisfied:

1. two consecutive gates cannot be opened at the same time

2. a gate can only be opened if the water level on each side is the same

3. the water level inside a lock can only be changed if both its top and

bottom gates are closed

The purpose of the controller is to ensure that the previous constraints are

verified at all time. Whenever a command is introduced via the control

panel, before taking the appropriate action, the controller must first check

that it will not jeopardize the system, in which case, the action is not taken,

and a red light on the control panel is switched on to indicate that the

command is forbidden.

The solution

We use the following global variables to model the two locks :

CLASS GATE

motor_command : INT;

closed, opened, motor_direction,

button_open, button_close,

order_given : BOOL;

3.7. EXAMPLES 81

END_CLASS

CLASS LOCK

bottom_gate, top_gate : GATE;

water_command : INT;

water_down, water_up, water_direction,

button_fill, button_empty : BOOL;

END_CLASS

GLOBAL_VAR

lock1, lock2 : LOCK;

not_allowed_led : BOOL;

END_VAR

The idea to implement the controller in dSL is the following. Whenever

an order is given, a corresponding boolean variable order given is set (there

is an order given variable for each gate and one for the water level of each

lock). When receiving a command, the controller has to check that all the

requirements are satisfied and, using those order given variables, that no

order on the checked gates and water levels are given (note that an order

to close a gate can never violate a constraint). The order given variables

are, of course, reset when an order is completed. In this implementation,

each command is monitored by a WHEN construct. As an example, figure

3.10 presents the WHEN monitoring the command “open the bottom gate of

lock2” (the complete dSL source can be found in appendix C).

Note that for all the order given variables, the ’~’ operator cannot

be used. For example, in figure 3.10, if lock2.top gate.order given was

tilded, when an order is given to open the bottom gate of lock2, the controller

would check if ~lock2.top gate.order given is false. However, in that

case, because of communication delays, an order might have been given.

The controller would then allow the bottom gate of lock2 to open while

the top gate is ordered to open, which leads to a violation of the given

constraints.

Distribution

In this example, the maximal distribution is composed of 9 sites. We graphi-

cally represent the distribution constraints induced by definition 1 by a graph

where nodes are either WHENs or global variables. Each time a variable ap-

pears in a WHEN, there is an edge between that variable and the WHEN. It is

easy to show that variables in connected components of this graph must be

in the same distribution, to get a correct distribution. Furthermore, the set

82 CHAPTER 3. PRESENTATION OF DSL

WHEN lock2.bottom_gate.button_open THEN

IF (~lock2.top_gate.closed) AND (not lock2.top_gate.order_given) AND

(~lock1.top_gate.closed) AND (not lock1.top_gate.order_given) AND

(~lock2.water.down) AND (not lock2.water_order_given)

THEN

not_allowed_led := false;

lock2.bottom_gate.order_given := true;

LAUNCH lock2.bottom_gate<-open();

ELSE

not_allowed_led := true;

END_IF;

END_WHEN

Figure 3.10: WHEN monitoring the command “open the bottom gate of lock2”

of variables in the connected components defines the maximal distribution.

Figure 3.11 shows this graph for the current example, where the uppercase

letters indicate the different sites. Circle nodes indicate the different WHENs

present in the program (which can be consulted in appendix C), while the

boxes in the figure represent the variable nodes. The solid lines represent

the appearance of a variable in a WHEN. Note that on this representation,

some edges are dotted to indicate the use of tilded variables which break the

atomicity constraints and thus allow a more liberal maximal distribution

than the one obtained without them.

The maximal distribution is composed of :

Site Variables WHENs

A lock1.top gate.{motor command,opened,closed} 9

lock{1,2}.order given

B lock{1,2}.{top,bottom} gate.button open 1,2,3,4

not allowed led

C lock1.bottom gate.{motor command,opened,closed} 10

D lock2.bottom gate.{motor command,opened,closed} 12

E lock2.top gate.{motor command,opened,closed} 11

F lock1.bottom gate.button close 5

G lock1.top gate.button close 6

H lock2.bottom gate.button close 7

I lock2.top gate.button close 8

The actual distribution used in practice for this example contained three

sites : {A ∪ C,D ∪ E,B ∪ F ∪ G ∪ H ∪ I}. This distribution is a natural

3-site distribution, where one controller is used for each lock, and where a

third controller is connected to the control panel in order to let the operator

give orders to the system.

3.7. EXAMPLES 83

Figure 3.11: Maximal distribution of the locks controller

84 CHAPTER 3. PRESENTATION OF DSL

3.7.2 A Conveyor belt

The problem

Figure 3.12: A conveyor belt

In this application, boxes have to be moved from one side of a plant to

the other. The departure point of the plant is on a lower level than the

arrival point. An additional problem is that boxes arrive from two different

sources while there is only one transport belt that allows to lift the boxes

from the lower floor to the upper floor. For this reason, two of the belts are

mobile. There is one elevator belt, which can go up and down, in order to

move packages from the lower floor to the upper floor. The other mobile belt

can move from the left to the right and back, to allow packages to move from

the different sources to the central belt. The complete setup is represented

in figure 3.12.

The problem encountered here is very similar to the problem faced in

the locks controller. However, the major difference here is that the system is

completely standalone, in the sense that there is no operator who supervises

the system and has to issue commands. We also extensively use SEQUENCEs

in this solution, which is not the case in the previous example.

All restrictions on the possible behaviors of the belts can be summarized

in one constraint : if there is a package at the end of a belt, the belt should

stop unless the next belt is in front of it and is running. In the case where no

next belt is present, boxes would fall on the floor. In the other case, where

the next belt is stopped, either the boxes or the belts would get damaged.

3.7. EXAMPLES 85

The solution

To implement this example, we used the following global variables :

CLASS Conveyor_belt

motor : INT; // Linked to the belt’s engine

box_at_end : BOOL; // TRUE when a box is detected

END_CLASS

CLASS Mobile_belt

motor : INT; // Linked to the lateral engine

in_pos1 : BOOL; // TRUE when in position 1

in_pos2 : BOOL; // TRUE when in position 2

belt : Conveyor_belt;

END_CLASS

GLOBAL_VAR

belt_in1, belt_in2,

belt_lower_central,

belt_upper_central : Conveyor_belt;

mobile_hor, mobile_vert : Mobile_belt;

mobile_hor_free : BOOL; // TRUE when no box is

// on the mobile horizontal belt

END_VAR

Some simple methods involve the activation/deactivation of the belts :

METHOD Conveyor_belt::go()

self.motor := 20;

END_METHOD

METHOD Conveyor_belt::stop()

self.motor := 0;

END_METHOD

METHOD Mobile_belt::go1()

IF (NOT self.in_pos1) THEN

self.belt<-stop();

self.motor := -40;

END_IF

END_METHOD // Analogue for go2

METHOD Mobile_belt::stop()

self.motor := 0;

END_METHOD

86 CHAPTER 3. PRESENTATION OF DSL

Next, some WHENs shut down the engines of the belts when needed. Remark

how convenient the WHEN IN structure is to express this global condition.

// The entry belt should always be running, unless a box is

// at its end

WHEN NOT belt_in1.box_at_end THEN belt_in1<-go() END_WHEN

// The same goes for belt_in2

// When a box arrives at the end of a belt, stop that belt

WHEN IN Conveyor_belt self.box_at_end THEN

self<-stop();

END_WHEN

// The mobile belts should stop moving when they reach one of their

// ending positions

WHEN IN Mobile_belt self.in_pos1 OR self.in_pos2 THEN

self<-stop();

END_WHEN

Now, we give three SEQUENCEs that are used to move the boxes from the two

sources to the target. These SEQUENCEs are started using some WHENs that

are given further on.

SEQUENCE belt_in1_to_lower_central()

mobile_hor<-go1();

WAIT mobile_hor.in_pos1;

// Mobile belt is now in front of belt_in1

// Start the two belts

mobile_hor.belt<-go();

belt_in1<-go();

// Wait for the box to be on mobile_hor

WAIT mobile_hor.belt.box_at_end;

// Start both belts. The box will leave

// the mobile_hor belt

belt_lower_central<-go();

mobile_hor.belt<-go();

// Wait for the box to be on lower_central

WAIT belt_lower_central.box_at_end;

END_SEQUENCE // Analogue for belt_in2_to_lower_central

3.7. EXAMPLES 87

SEQUENCE lower_central_to_upper_central()

// Wait for the elevator to be down

WAIT mobile_vert.in_pos1;

mobile_vert.belt<-go();

lower_central<-go();

WAIT mobile_vert.belt.box_at_end;

mobile_vert<-go2();

// Wait for the elevator to be up

WAIT mobile_vert.in_pos2;

belt_upper_central<-go();

mobile_vert.belt<-go();

// Wait for the box to leave the elevator

WAIT belt_upper_central.box_at_end;

mobile_vert<-go1();

END_SEQUENCE

Finally, here are the WHENs that put everything together.

WHEN ~belt_in1.box_at_end

AND mobile_hor_free

THEN

mobile_hor_free := FALSE;

LAUNCH belt_in1_to_lower_central();

END_WHEN // Analogue for belt_in2

WHEN ~belt_in1_to_lower_central.ENDED

mobile_hor_free := TRUE;

END_WHEN // Analogue for belt_in2

WHEN belt_lower_central.box_at_end

AND lower_central_to_upper_central.ENDED

THEN

LAUNCH lower_central_to_upper_central();

END_WHEN

There are some interesting points to observe in this example. First of all,

we make the hypothesis that boxes arrive on belt in1 and belt in2 with

intervals that are larger than the time needed for a box to traverse one belt.

88 CHAPTER 3. PRESENTATION OF DSL

In that case, the variable mobile hor free lets only one box pass from

the source to the central belt by means of the SEQUENCEs belt in{1,2}
to lower central(). Indeed, observe also that this variable is governed

by two WHENS that must be on the same site, which results in the desired

property.

Next, observe that the auto-generated variables .ENDED are used to make

sure that no SEQUENCE is LAUNCHed until it ended its execution.

In the case where both sequences belt in{1,2} to lower central, are

competing to get a box to the central lower belt, only one box will be allowed

to pass. Indeed, atomic code is used to govern the variable mobile hor free,

and therefore only one of both WHENs on that variable will be triggered,

launching the corresponding sequence.

3.7.3 A railway system

The Problem

Figure 3.13: A railway system

In this example, two trains arriving from different directions travel for

some distance over the same track. The example here is much shorter than

the previous ones, but has the benefit of showing exactly what is meant by

the atomic constraints, and how the programmer is confronted with it. The

configuration for the two trains is shown in figure 3.13.

The problem is obvious : at no time, both trains should be on the central

track at the same time.

3.7. EXAMPLES 89

The solution

The simplest way to handle this problem is to make the trains stop when

they want to engage on the central track. Next, the trains ask for the

permission to enter the critical section, and wait until that permission is

granted. We chose this solution and implement it in dSL.

We have the following global variables :

CLASS Train

motor : BOOL; // TRUE: train running, FALSE: train stopped

id : INT; // 1 for train 1, 2 for train 2

enter, exit : BOOL; // Sensors, TRUE when entering/leaving

// the critical section

END_CLASS

CLASS CriticalSection

waiting_1 : BOOL; // Train 1 is waiting

waiting_2 : BOOL; // Train 2 is waiting

flag : INT; // 0 = Central Track free

// 1 = Train 1 on Central Track

// 2 = Train 2 on Central Track

END_CLASS

GLOBAL_VAR

train_1, train_2 : Train;

cs : CriticalSection;

END_VAR

Next, we have some methods to start and stop the trains :

METHOD Train::stop()

self.motor := FALSE;

END_METHOD

METHOD Train::go()

self.motor := TRUE;

END_METHOD

In addition, the critical section is specified as follows :

METHOD CriticalSection::ask_for_1()

self.waiting_1 := TRUE;

END_METHOD

METHOD CriticalSection::ask_for_2()

self.waiting_2 := TRUE;

END_METHOD

90 CHAPTER 3. PRESENTATION OF DSL

METHOD CriticalSection::leave()

self.flag := 0;

END_METHOD

WHEN cs.waiting_1 AND cs.flag == 0 THEN // WHEN 1

cs.waiting_1 := FALSE;

cs.flag := 1;

END_WHEN

WHEN cs.waiting_2 AND cs.flag == 0 THEN // WHEN 2

cs.waiting_2 := FALSE;

cs.flag := 2;

END_WHEN

Finally, the reaction on the events produced by the entrance and exit sensors
for train 1 is specified by the following WHENs (replacing 1 by 2 gives the code
for train 2:

WHEN train_1<-enter THEN // WHEN 3 (3’ for in_2)

train_1<-stop(); LAUNCH cs<-ask_for_1();

END_WHEN

WHEN IN Train self.exit THEN // WHEN 4 for train_1

LAUNCH cs<-leave(); // WHEN 4’ for train_2

END_WHEN

WHEN IN Train ~cs.flag = self.id THEN // WHEN 5 for train_1

self<-go(); // WHEN 5’ for train_2

END_WHEN

The critical section is respected by this implementation, since the trains

immediately stop before entering the central track (train{1,2}<-stop();)
and wait for permission to proceed (WHEN cs.flag = {1,2}). What is

crucial in this example, is that the permission to enter the critical section,

which is asked using LAUNCH cs<-ask for {1,2}, is handled in an atomic

manner. Indeed, the different WHENs on the variables of cs must all be

located on a single site, which means that there will be no concurrency

involved during these decisions.

Once access is granted, the train will be notified through the tilded copy

of cs.flag, and when it sees the right value, it can start moving again. It

is not possible that a train reenters the central track, without having asked

for, and received permission. Indeed, the rising edge semantics on the WHEN’s

condition ensures that the value of flag must change before the train can

reenter its critical section. Once the value of flag changes, it will only come

back to the trains’ id after it asked for permission, and was granted access.

Notice that there is no fairness in the controller. The triggering condi-

tions of the different WHENs are evaluated in the order in which the WHENs

3.7. EXAMPLES 91

are declared in the program text. If train 1 and train 2 approach the critical

section at the same time, train 1 will be granted access.

Distribution constraints

Figure 3.14: Maximal distribution for the train controller

A summary of the graphical representation for the maximal distribution

can be found in figure 3.14. First of all, we can clearly see that the in-

structions which manage the critical section have to be on the same site, as

explained before. Next, one can see that the maximal distribution consists

of 5 sites, which are marked with capital letters in figure 3.14. The real

interesting point however, is that the sensor which captures the train’s en-

trance onto the central track has to be on the site of the train’s engine, due

to the constrains of WHEN 3 and 3′, if not, the controller is not distributable.

The whole point here is that due to communication delays (or maybe

worse, communication failure), the critical section cannot be guaranteed if

the sensor in 1 is not located on the site of the train. Indeed, if the site

with the sensor can only observe the presence of a train, but can only make

the train stop using slow or defectuous communications, the critical section

cannot be guaranteed.

So, if the programmer has a distribution in mind where in 1 is dis-

tributed on a separate site, the distributer will signal the problem by show-

92 CHAPTER 3. PRESENTATION OF DSL

ing that there is a WHEN (3) and a METHOD (train 1<-stop()) through which

atomic control may flow from in 1 to train1.motor. The programmer, then

has different possibilities, which consist in using a ∼, a LAUNCH or changing

the physical distribution of actuators and sensors. Here clearly, the dis-

tributer signals an important issue, saying that if the sensor and actuator

are on different sites, the program cannot assure correct behavior, under

the hypothesis that network delays may be unbounded, which is the basic

hypothesis made in dSL. Therefore, the sensor has to be on the site of the

engine.

In the case where a correct distribution is chosen, and communications

fail to work or are not fast enough, the train will come to a complete halt,

and the trains will wait before until the communications are functioning

correctly. Note that in this case, this is the best possible action to take in

case of communication failure between the different entities in the system.

Generalization

It is straightforward to extend this controller in such a way that it handles

n trains. One can easily add the following WHENs to the program to handle

the sensors of the trains (where ID is changed by the train’s identifier) :

WHEN in_ID THEN

train_ID<-stop(); LAUNCH cs<-ask_for_ID();

END_WHEN

The management of the critical section can be generalized as follows :

METHOD CriticalSection::ask_for_ID()

self.waiting_ID := TRUE;

END_METHOD

WHEN cs.waiting_ID AND cs.flag == 0 THEN

cs.waiting_ID := FALSE;

cs.flag := ID;

END_WHEN

Chapter 4

dSL’s Distribution

In this chapter, we study the algorithmic difficulties that are encountered

with the automatic code distribution of dSL. We show that the problem of

checking the atomicity constraints is easy (i.e. deciding whether a given

dSL program with an associated localization table is distributable or not

can be done efficiently). However, the problem of generating optimal code

is shown to be equivalent to the multiterminal cut problem, a well-known

NP-Complete problem, for which we propose a new and efficient heuristic.

The main results in this chapter were also presented in [DeWGM05].

4.1 Localizing instructions, a coloring problem

In this chapter, we abstract the problem of assigning variables and instruc-

tions to sites to a coloring problem on graphs. There is a one-to-one mapping

between the colors and the sites. We do this, because the problem of pro-

ducing optimal code can be shown (after simplification) to be equivalent to

the multiterminal cut problem.

The assignment of instructions and variables to the set of sites is basically

performed in two steps. Conceptually, the distributer checks the atomic

constraints, and colors atomic code first. This results in an incomplete

assignment, and therefore, a second step colors all remaining instructions

and variables resulting from sequential code. In practice, the distributer

combines the first two steps using the algorithm presented in section 4.3.

In section 4.2, we first present the problem of checking the atomic con-

straints. In section 4.3 we study the problem of localizing sequential instruc-

tions, with respect to a certain performance criterion. This performance

criterion is based on the number of times each instruction is executed. Al-

though this information cannot be computed, we assume a sufficiently ac-

93

94 CHAPTER 4. DSL’S DISTRIBUTION

curate estimation is provided. This can be done for example using profiling

or monitoring tools. In section 4.5 we study how instructions might be

reordered in order to increase the performance during execution.

4.2 Localizing atomic instructions

4.2.1 Informal presentation

The localization of atomic instructions can be seen as the coloring of ver-

tices in an undirected graph. Informally, vertices in this graph are either

instructions or global variables, where some of the variables have a fixed

color : this is the case for all external variables present in the localization

table, since each such variable will be colored with the color of the corre-

sponding site. Edges in the graph represent the atomic constraints: each

instruction has an edge to all of the global variables present in the instruc-

tion, while edges between instructions are inserted when atomic control may

flow from one instruction to another. The resulting graph is then used in a

straightforward manner to color all instructions and variables, or to reject

the program if it is not distributable. Indeed, each connected component in

the graph must be of the same color since atomic control may flow from any

instruction in the component to another, and instructions must have their

variables present to be executed. If two vertices in a connected component

have different imposed colors, the program is not distributable.

4.2.2 Formal definitions

Definition 18 (Localization table) A localization table T for a dSL pro-

gram P is a total assignment from the set of external variables to the set of

sites : T ∈ V arin(P)∪ V arout(P) 7→ S, where S is the set of sites (one can

think of S as [1..k] where k is the number of sites). �

Definition 19 (Compatible coloring) A coloring c is a mapping from

the set of instructions and variables to the set of sites. A coloring c is com-

patible with a localization table T if for all external variables x ∈ V ar in(P)∪
V arout(P) : c(x) = T (x). �

The term instructions in the following definition denotes both simple

instructions such as assignments and function calls, as well as the parts

of compound instructions such as IF and WHILE. For an IF, there is an

instruction evaluating its condition, and a list of instructions for both its

branches. For a WHILE, there is an instruction for the evaluation of its

4.2. LOCALIZING ATOMIC INSTRUCTIONS 95

condition and a list of instructions for its body. To take into account the

global variables which appear in the condition of a WHEN, an instruction here

also designates the evaluation of the condition of a WHEN.

Definition 20 (Synchronous control flow) An instruction i′ is reach-

able through synchronous control flow from i, noted i a i
′ if one of the

following conditions holds

• i and i′ are consecutive in the same WHEN (this includes instructions in

the body of the WHEN and the evaluation of the condition of the WHEN)

• i′ is the condition of a WHEN that might be immediately triggered by the

execution of i, i.e. i affects a non tilded variable which appears, or

may be referenced to, in the i′ condition of a WHEN

• i′ is the first instruction in a method called by i without LAUNCH

�

Definition 21 (Atomic Color Graph) The atomic color graph Ga is a

graph Ga(V,E, T) associated to a dSL program P and a localization table T ,

where V = {i|i is an instruction in P}⋃
V ar(P) is the set of vertices, and

E ⊆ {{v, v′}|v, v′ ∈ V } the set of edges which is characterized as follows :

• ∀x ∈ V ar(P),∀i ∈ instr(P) : x ∈ used(i)⇒ {x, i} ∈ E

• ∀i, i′ ∈ instr(P) : i a i
′ ⇒ {i, i′} ∈ E

�

We do not give a formal definition of used(i), but remark that if i involves

an array access, or self, the entire set of variables that can be referenced

to by these dynamic constructs is also included in used(i).

With these definitions, we can formally state the atomic coloring prob-

lem.

Definition 22 (Atomic Coloring Problem (ACP)) The atomic color-

ing problem consists in, given an atomic color graph Ga, finding a mapping

c : V 7→ S compatible with T such that for all connected components C in

Ga :

n, n′ ∈ C ⇒ c(n) = c(n′)

�

96 CHAPTER 4. DSL’S DISTRIBUTION

Remarks

The definition of Ga and its connected components can easily be matched

with definition 1 of Distribution, given in the previous chapter. The only

difference here is that we use a coloring on instructions and variables, while

the formal definition of distribution involves only variables (and thus WHENs).

Note that, in contrast to the definition of Ga, definition 1 does not have to

take into account the LAUNCH, or METHODS, since those are not defined in

dSL♦.

Note that all instructions are used in the definition of Ga, since all in-

structions (even instructions inside SEQUENCEs) must be able to execute in

an atomic manner. The fact that an instruction x := y, where x and y are

global variables, is present in a SEQUENCE still forces x and y to be on the

same site.

Localizing the remaining atomic instructions

We already presented examples where a complete consistent coloring can not

be found, but note that this coloring, if it exists, is not necessarily unique.

Consider for example the following snippet of code :

WHEN ~x > 10 THEN

LAUNCH M();

END_WHEN

Here, clearly there is no localization constraint on this atomic code, and it

may therefore be located on any site.

In practice, the number of sites is fixed by the localization table. And

these kind of codes must therefore be distributed amongst the sites defined

in the localization table. If all such codes end up on the same site, that

site might get too much load compared to the other sites. In such cases,

we use a load balancing criterion to decide where to put such codes. We

therefore count the number of instructions on each site, and assign the re-

maining chunks of atomic code in such a way that the maximum number of

instructions on any site is kept minimum.

Calculating the optimal distribution, minimizing the maximum number

of instructions on any site, of these remaining atomic codes is hard, since it

requires to solve the NP-Complete Minimum Makespan problem [LKB77].

This problem can be formally stated as follows.

Definition 23 (Minimum Makespan) Given a set J of n jobs, and for

each job a duration wi ∈ Z+, i ∈ [1..n]. The Minimum Makespan problem

consists in an assignment of all jobs to m identical machines, such that

4.2. LOCALIZING ATOMIC INSTRUCTIONS 97

the completion time is minimum, i.e. find a partition of J in m subsets

J1, ..., Jm, such that maxi
∑

k∈Ji
wk is minimum. �

This is the bad news. The good news is that there exists a simple factor

2 approximation algorithm [Gra66], which consists of randomly picking one

job, and scheduling it on the machine having the least weight.

Algorithm

The algorithm that constructs Ga (cfr. fig 4.1) and checks the atomic con-

straints can be made very efficient. If a hashtable is used to hold the vertices

of Ga, the creation or retrieval of a vertex (add vertex) and edge creation

(add edge) can be done with O(1) average complexity and O(N) worst case

complexity.

If, together with this dynamic structure, a one-pass compiler is used to

parse the input dSL program, the creation of Ga can be done with N calls

to parser gettoken, resulting in an average complexity in O(N), where N

is the number of variables and instructions.

OnceGa is constructed, checking the atomic constraints can be combined

with the atomic coloring by simple traversal of the vertices in the graph. This

can be done with complexity in O(|V |+ |E|).
Therefore, we can conclude that the atomic coloring problem can be

solved with average complexity in O(|V |+ |E|).
Remark that the algorithm cannot handle forward calls. A simple solu-

tion to this problem consists in scanning the program text once to obtain all

METHODs and then running the algorithm as presented. Note that this does

not alter the O(|V |+ |E|) complexity.

Running example

Let us take a look at our running example, introduced in figure 3.5 from

section 3.2. Figure 4.2 gives a representation of Ga associated to this pro-

gram, before atomic coloring. Circled vertices represent instructions (here

the line number is used for conciseness), while boxes are used to represent

global variables.

Here, the localization table assigns led and alarm on one site (which is

the site of the control panel), temperature and heater.state are located

on another site (the site of the heater).

Since there are no connected components in Ga with different imposed

colors, we can conclude that the program is distributable, with the resulting

98 CHAPTER 4. DSL’S DISTRIBUTION

prev_instr = nil;

in_atomic_code = FALSE;

while((token=parser_gettoken()) != END) {

if (is_when(token)) {

in_atomic_code = TRUE;

// Creation or retrieval of a vertex for token

prev_instr = add_vertex(token);

for each gvar = non tilded global var in condition(token) {

x = add_vertex(gvar);

add_edge(prev_instr,x);

}

} else if (is_end_when(token) or is_end_method(token)) {

in_atomic_code = FALSE;

prev_instr = nil;

} else if (is_method(token) and is_marked(atomic(token)) {

in_atomic_code = TRUE;

} else if (in_atomic_code && is_instruction(token)) {

// Create a vertex for this instruction

i = add_vertex(token);

// Create an edge with the previous instruction

if (prev_instr) {

add_edge (prev_instr, i);

}

// Create edges to all global variables in the instruction

for each gvar = non tilded global var in token {

x = add_vertex(gvar);

add_edge(i,x);

}

// Create edges to all WHENs that may get triggered

for each WHEN w such that w can be triggered by i {

add_edge (i, condition(w));

}

// Handle synchronous calls

if (token == CALL and not LAUNCH) {

add_edge(token, first(called(token)))

mark_atomic (called(token));

}

prev_instr = i;

}

}

Figure 4.1: Construction of Ga.

4.3. LOCALIZING SEQUENTIAL INSTRUCTIONS 99

Figure 4.2: Ga, T for the heater example.

atomic coloring depicted in figure 4.3. Note that fuel cost and instruc-

tion 16 are not colored after this phase. How this instruction is colored, is

explained in the next section.

4.3 Localizing sequential instructions

In this section, we study how the remaining sequential instructions are col-

ored by the dSL distributer. The main idea used to color these instructions

is performance-related. Indeed, since only sequential instructions remain,

they can be located on any site. However, we show that some colorings

are more interesting than others, since they result in fewer messages during

execution, which improves the performance of the control system.

4.3.1 Informal presentation

Consider our running example of figure 3.5, after atomic coloring, as in fig-

ure 4.3. The only uncolored instruction is defined on line 16 and involves

the global variable fuel cost. If we look closely at the surrounding instruc-

tions, we can see that the previous instruction led := TRUE; is localized on

a certain site, and that the next instruction is localized on the same site. In

section 3.2.1, we briefly argued that between each pair of instructions in a

SEQUENCE that are localized on different sites, the distributer has to insert

extra synchronization code which results in synchronization messages during

100 CHAPTER 4. DSL’S DISTRIBUTION

Figure 4.3: Ga for the heater example, after atomic coloring.

execution.

Clearly, if we assign fuel cost and instruction 16 to the same site as

its preceding and successor instruction, there will be no such additional

synchronization code, resulting in no additional messages during execution.

If we choose to assign the instruction and the global variable to any other

site, extra code will be generated, and more messages will be needed during

execution. The code clearly is more efficient when the first choice is made.

In order to evaluate the number of expected messages associated to a

certain coloring, we must be able to evaluate the expected number of times

control flows between the different instructions. This can be complex in

cases involving IF and WHILE instructions. Once this information is known,

the sequential coloring problem consists in finding a coloring such that the

number of expected messages during execution is minimum. The expected

number of times control flows through an instruction is defined as weight on

the control flow edges between instructions, and is recursively defined using

the grammar of dSL. For each instruction i, this weight is the sum of the

weight inflicted by i and the weights induced by the instructions contained

in i.

We first give an intuitive presentation of weighted control flow, through

a graphical representation, based on the syntax of simple and compound

instructions. We show how the weighted control flow is calculated in the

case of a list of instructions, the IF case, the WHILE case and in the case of a

simple instruction like an assignment. In the next section, we give a formal

4.3. LOCALIZING SEQUENTIAL INSTRUCTIONS 101

definition in terms of an attribute grammar.

Figure 4.4: Weighted control flow for a list of instructions.

Figure 4.4 graphically represents the case of a sequence of instructions.

Such a sequence takes the syntactical form instr list ::= instr “;” instr list.

Each instruction has a first part, which is marked in blue, and a last part,

marked in yellow. The first and last part of a given instruction may be

different in the case of compound instructions, but will be the same for

simple instructions such as assignment.

The definition of the first and last part of the instruction list are sur-

rounded in thick dotted rectangles. In the case of the instruction list, the

first part is defined as the first part of the first instruction in the list. For

example, if the first instruction in the list is an IF instruction, the first part

of the instruction list will be the first part of the IF instruction, which is

defined as the evaluation of the IF’s condition. Similarly, the last part of

the instruction list is defined as the last part of the last instruction in the

list.

The additional weighted control flow introduced by the use of an in-

struction list has weight 1 and is defined between the last part of the first

instruction, and the first instruction of the second part of the list, since

the list makes control flow between those two instructions. To take into

structure of the list’s sub-elements (i.e. an instruction and another list), we

define the total weighted control flow induced by a list of instructions as this

additional weighted control flow and the total weighted control flow induced

by both parts of the list.

Figure 4.5 represents the case of an IF instruction, which is syntactically

defined as instr ::= “IF” expr “THEN” instr list1 “ELSE” instr list2
“END IF”. Again, the thick dotted lines define the first and last part of the

compound IF instruction. In the case of an IF, its first part is the evaluation

of its expression, the last is defined as the END IF part of the instruction.

The additional weighted control flow has weight p− ψ
2 between the evaluation

of the condition and the first instruction from the TRUE branch, and from

the last instruction of the TRUE branch to the END IF. Note that ψ denotes

the probability that the condition evaluates to UNKNOWN, hence this weight

on the control flow between the evaluation of the expression and the END IF.

Similarly, control flow with weight 1− p− ψ
2 is defined for the FALSE branch

102 CHAPTER 4. DSL’S DISTRIBUTION

Figure 4.5: Weighted control flow for an IF instruction.

of the IF instruction. Notice that p− ψ
2 expresses the probability that the

condition of the IF instruction evaluates to TRUE, hence p ≤ 1 − ψ
2 . The

total weighted control flow induced by the IF instruction is its additional

weighted control flow, together with the total weighted control flow induced

by instr list1 multiplied by p− ψ
2 and the same for instr list2 multiplied by

1− p− ψ
2 .

Figure 4.6: Weighted control flow for an WHILE instruction.

Figure 4.6 represents the case of a WHILE instruction, which can be de-

rived from the rule instr ::= “WHILE” expr “DO” instr list “END-

WHILE”. The first and last part are defined as the evaluation of the

condition of the WHILE. The additional weighted control flow introduced by

the use of a WHILE instruction consists of weight k between the evaluation

of the condition and the first instruction of the body, and likewise for the

last instruction of the body. Notice that k models the expected number of

times the condition of the while evaluates to TRUE successively. The total

4.3. LOCALIZING SEQUENTIAL INSTRUCTIONS 103

weighted control flow induced by a WHILE is its additional weighted control

flow, together with the weighted control flow induced by its body, multiplied

by k.

Figure 4.7: Weighted control flow for an assignment instruction.

Figure 4.7 represents the case of any simple instruction, such as assign-

ment, method call or WAIT instruction. The first and last instruction for

such simple instructions is the instruction itself, and no additional weighted

control flow is introduced by such an instruction.

We can use this informal representation to define the expected number of

exchanged messages for a given SEQUENCE. Indeed, given a certain SEQUENCE,

which body is an instruction list, we can recursively enumerate all weighted

control flows. To take a certain coloring into account, we only take the

weights which connect instructions of different colors.

4.3.2 Formal definition

In analogy with the formal definition of the atomic coloring problem, we

define a graph Gs for sequential instructions, where vertices are linked to

instructions, and an edge exists between two vertices if control may flow

from one linked instruction to another. Furthermore, edges are weighted by

the expected number of times control flows from one linked instruction to

another.1 In addition to these control flow edges, extra edges with infinite

weight will model the fact that two instructions must be localized on the

same site.

Formal definition of weighted control flow

In order to formally define the graph Gs, we first need to formalize control

flow and the associated weights. We do this on a subset of the dSL grammar

1We suppose that there exists a factor by which all weights can be multiplied in order

to obtain natural weights.

104 CHAPTER 4. DSL’S DISTRIBUTION

from appendix B, which is depicted in figure 4.8. This subset includes all

control flow-related constructs of the dSL language. Variable, method and

sequence declarations are left out because they do not involve weighted

control flow.

(R1) instruction list ::= instruction “;” instruction list | ε

(R2) instruction ::= assign

| wait

| if then

| if else

| while

| call

(R3) assign ::= lhside “:=” rhside

(R4) wait ::= “WAIT” rhside

(R5) if else ::= “IF” rhside “THEN” instruction list

“ELSE” instruction list “END IF”
(R6) if then ::= “IF” rhside “THEN” instruction list

“END IF”
(R7) while ::= “WHILE” rhside “DO”

instruction list “END WHILE”
(R8) call ::= opt launch opt lhside ID “(”

rhside list “)”
opt launch ::= “LAUNCH” | ε

opt lhside ::= lhside “< −” | ε

Notice that lhside and rhside are not defined here. They are defined in

appendix B, and play no role here.

Figure 4.8: Control flow sensitive subset of dSL.

As illustrated in the previous section, we need to take into account the

evaluation of the conditions of IF and WHILE instructions, through vertices

in Gs. Since the evaluation of an expression technically is not an instruction,

we cannot define the set of vertices in Gs as a subset of the instructions in the

dSL program. We therefore define basic instructions. Each basic instruction

is associated to an instruction in the dSL program and is defined as a tuple

(id,m,D,U) where id uniquely identifies the instruction, m identifies the

method or sequence in which the instruction occurs, D is the set of defined

variables in the instruction, U is the analogue for used variables.

We now define an attribute grammar [Aga76] to calculate (1) the set

of basic instructions which will be vertices in Gs, and (2) the weighted

4.3. LOCALIZING SEQUENTIAL INSTRUCTIONS 105

control flow between these basic instructions which will be the edges in Gs.

The attribute grammar calculating these sets is defined on the subset of dSL

presented earlier, in figure 4.8. We define on each of these rules the following

attributes :

• b which contains the basic instruction associated to each rule.

• first which denotes for compound instructions the basic instruction

executed first.

• last which denotes for compound instructions the basic instruction

executed last.

• e which is the set of basic instructions induced by the rule.

• w which is the set of weighted control flows induced by the rule. w is

a set of tuples (b, b′, u) where b and b′ are basic instructions and u is a

weight.

• t which is the expected number of times control flows through the basic

instruction associated to this rule.

Note that b, first, last, e and w are synthesized attributes, while t is an

inherited attribute. The .m attribute of basic instructions is supposed to be

inherited. We now give for each of these grammar rules, the way in which

these attributes are calculated.

(R1) instruction list0 ::= instruction “;” instruction list1 :

instruction list0.b = ε

instruction list0.e = instruction.e ∪ instruction list1.e,

instruction list0.first = instruction.first,

instruction list0.last = instruction list1.last,

instruction list0.w = {(instruction.last, instruction list1.first,

instruction list0.t)} ∪ instruction list1.w,

instruction list1.t = instruction.t = instruction list0.t

(R2) instruction ::= assign | wait | if | while | call :

For each of these rules, b, first, last, w and e are propagated from the bottom

to the top of the abstract grammar tree, while t is inherited from top to

bottom. For the assign case this results in :

instruction.b = assign.b

instruction.first = assign.first

instruction.last = assign.last

instruction.w = assign.w

106 CHAPTER 4. DSL’S DISTRIBUTION

instruction.e = assign.e

assign.t = instruction.t

(R3) assign ::= lhside “:=” rhside :

assign.b = (assign.id,assign.m,Var(lhside),Var(rhside))

assign.first = assign.b,

assign.last = assign.b,

assign.e = {assign.b}
assign.w = ∅
The .t attribute is inherited, and is not propagated by this instruction.

(R4) wait ::= “WAIT” rhside :

wait.b = (wait.id,wait.m,∅,Var(rhside))

wait.first = wait.b,

wait.last = wait.b,

wait.e = {wait.b}
wait.w = ∅
The .t attribute is inherited, and is not propagated by this instruction.

(R5) if else ::= “IF” rhside “THEN” instruction list1 “ELSE” instruc-

tion list2 “END IF”

if.b = (if.id,if.m,∅,Var(rhside))

if.first = if.b

if.last = (endif.id,if.m,∅,∅) (We suppose that a unique identifier endif is avail-

able for each IF instruction, to denote its END IF part)

if.e = {if.b, if.last}∪ instruction list1.e ∪ instruction list2.e

if.w = {(if.b, instruction list1.first.e, if.t · (p− ψ
2)),

(if.b, instruction list2.first.e, if.t · (1− p− ψ
2)), (if.b, if.last, ψ),

(instruction list1.last, if.last, if.t · (p− ψ
2)), (instruction list2.last, if.last, if.t ·

(1− p− ψ
2))} ∪ instruction list1.w ∪ instruction list2.w

instruction list1.t = (p− ψ
2)·if.t, instruction list2.t = (1− p− ψ

2)·if.t
Remark here that p− ψ

2 is the probability that the condition of the IF eval-

uates to TRUE, while 1− p− ψ
2 is the probability of the opposite. Note also

that ψ is the probability that the condition evaluates to UNKNOWN, in which

case control flows from the evaluation of the condition to the end of the

IF. Note also that different ψ and p values can be used for each IF in the

program text.

(R6) if then ::= “IF” rhside “THEN” instruction list “END IF”

if.b = (if.id,if.m,∅,Var(rhside))

if.first = if.b

if.last = (endif.id,if.m,∅,∅)
if.e = {if.b, if.last}∪ instruction list.e

4.3. LOCALIZING SEQUENTIAL INSTRUCTIONS 107

if.w = {(if.b, instruction list.first.e, if.t · p) , (if.b, if.last, 1− p),
(instruction list.last, if.last, if.t · p)} ∪ instruction list.w

instruction list.t = p·if.t
(R7) while ::= “WHILE” rhside “DO” instruction list “END WHILE” :

while.b = (while.id,while.m, ∅,Var(rhside))

while.first = while.b

while.last = while.b

while.e = { while.b}∪instruction list.e

while.w = {(while.b, instruction list.first, k), (instruction list.last, while.b,

k)} ∪ instruction list.w

instruction list.t = k·while.t Remark here that k is the estimated number of

times the loop will execute. k can be dependent on the context, i.e. different

values for k can be used for different loops.

(R8) call ::= opt launch opt lhside ID “(” rhside list “)” :

call.b = (call.id,call.m,∅,Var(rhside list))

call.first = call.b,

call.last = call.b,

call.e = {call.b}
call.w = ∅
The .t attribute is inherited, and is not propagated by this instruction.

Note that with correct k, p and ψ values, the weighted control flow cal-

culated by the .w attribute of an instruction list amounts to the average

number of times control flow passes between instructions in the list. In gen-

eral, calculating correct k and p values is obviously undecidable. Indeed,

there is no algorithm, in general, which can decide whether a certain point

in the program text is reachable or not. In practice, either profiling tools or

manual input can be used to get approximate values.

The Sequential Color Graph

Each body of a method and sequence has an instruction list, for which we

can use the .e and .w attributes to construct the weighted control flow

graph. The set of vertices induced by each method and sequence are in

instruction list.e, while the weighted edges are defined by instruction list.w.

Note that two instructions using/defining the same global variables, must

necessarily be located on the same site (even if both instructions appear

in different SEQUENCEs or METHODs). We model this by inserting edges of

infinite weight between such instructions. To complete the graph with these

edges, we can use the parts D and U defined in the basic instructions.

108 CHAPTER 4. DSL’S DISTRIBUTION

Definition 24 (Sequential Color Graph) For a given set of sites S, a

sequential color graph is a weighted colored graph Gs(V,E,w) associated to

a dSL program P, and a localization table T , where V = {b|b ∈ instruc-

tion list.e ∧ instruction list ∈ P} is the set of vertices, E ⊆ {{n, n′}|n, n′ ∈
V, } is the arc set and w : E 7→ N gives the weight of the edges. E and w

are defined as follows :

• if b = (id,m,D,U), b′ = (id′,m′, D′, U ′) ∈ V, b 6= b′ and (D ∪ U) ∩
(D′ ∪ U ′) 6= ∅, then {b, b′} ∈ E and w({b, b′}) =∞

• else if (b, b′, p) ∈ instruction list.w, then w({b, b′}) = p

�

The Sequential Coloring Problem

The Sequential Coloring Problem can now be formally stated as follows :

Definition 25 (The Sequential Coloring Problem (SCP)) Given a

dSL program, one if its Sequential Color Graph Gs(V,E,w), a localization

table T . The Sequential Coloring Problem (SCP) consists in finding a col-

oring function c : V 7→ S, compatible with T such that the sum of the edges

in E between vertices of different color is minimum. i.e., such that

∑

{n,n′}∈E,c(n)6=c(n′)

w({n, n′})

is minimum. �

Remark This problem can equivalently be stated as follows : Find a

partition V1, . . . , V|S| of V such that

• ∀n, n′ ∈ V, {n, n′} ∈ E, c(n) 6= c(n′) : @i ∈ 1..|S| : {n, n′} ⊆ Vi

• ∀n, n′ ∈ V, {n, n′} ∈ E, c(n) = c(n′) : ∃i ∈ 1..|S| : {n, n′} ⊆ Vi

minimizing
∑

{{n,n′}∈E|@i:{n,n′}⊆Vi} w({n, n′}). We will use this formulation

in what follows.

We show that the SCP is equivalent to the multiterminal cut problem,

which is known to be an NP-Hard problem. Next, in order to obtain more

general results, we focus on the multiterminal cut problem, and highlight

some interesting observations, which we shall use to design efficient heuris-

tics.

4.3. LOCALIZING SEQUENTIAL INSTRUCTIONS 109

Running example

Before going into the complexity analysis of this problem, let us have a look

again at our running example, the heater from figure 3.5, section 3.2.

As mentioned in the previous section, only one instruction is left uncol-

ored after the atomic coloring problem was solved. Figure 4.9 shows the

interesting part of Gs, which contains that particular instruction. Note that

we chose a probability of 1
2 for both branches of the IF (hence 0 for ψ).

Figure 4.9: Gs of the heater example.

It is clear from the graphical representation of Gs that in this case,

the instruction fuel cost := fuel cost +1; (and the END IF) must be

assigned to the same site as the site of led (site 1) in order to minimize the

number of expected messages during execution.

4.3.3 Complexity results

We use the multiterminal cut problem to show the complexity of the SCP.

Definition 26 (Multiterminal Cut Problem (MCP)) Given a weigh-

ted undirected graph G(V,E,w) : E ⊆ {{u, v}|u, v ∈ V ∧ u 6= v} 2, w : E 7→
2For technical reasons looping edges (v, v) will be omitted in all graphs considered here.

Note that their presence does not change the problem.

110 CHAPTER 4. DSL’S DISTRIBUTION

N0 ∪ {∞} and a set of terminals T = {s1, ..., sk} ⊆ V , find a partition of

V into V1, ..., Vk such that si ∈ Vi ∀i ∈ [1, k] and
∑

v∈Vi,v′∈Vj ,i6=j w(v, v′) is

minimized. �

We know that the multiterminal cut problem is NP-Hard [DJP+94] for

any fixed k > 2, even when all weights are equal to 1. When k = 2, the

problem reduces to the minimum-st cut problem, for which a polynomial so-

lution was first given by Ford and Fulkerson [FF62]. We now show that the

multiterminal cut problem and the sequential coloring problem are equiva-

lent.

Figure 4.10: Merging operation.

In what follows, we frequently use the merging operation on weighted

graphs. A graph G′ is the result of the merging of n and n′ in G, when n

and n′ are replaced in G′ by a new vertex u and all edges {n′′, n} are replaced

by {n′′, u}, likewise for all edges {n′′, n′} which are replaced by {n′′, u}. If

this would result in multiple edges {n′′, u}, then those edges are replaced by

a single edge which is weighted by the sum of all those edges. The merging

operation is also called contraction [Die05] if an edge exists between n and

n′, since that edge disappears from the graph. The graph G′ resulting from

the merging operation of n and n′ in the example graph G is represented

in figure 4.10. Notice that the contraction of edges with infinite weights

between non terminals (in V \T) does not influence the optimal solution for

the SCP and the multiterminal cut problem.

Theorem 3 There exists a polynomial-time reduction from the SCP to the

multiterminal cut. �

Proof. Take the sequential color graph Gs, and merge all vertices which

have edges of infinite weights. This way, we only have at most one vertex

using a given variable, since vertices using the same variables have edges

of infinite weight between them. Furthermore, merge all vertices together

which have the same (fixed) color, in this way there is a single vertex for

4.3. LOCALIZING SEQUENTIAL INSTRUCTIONS 111

each color in the localization table. Let G′ be this new graph, and let

T = {s1, s2, . . . , sk} be the set of vertices of G′ using an external variable.

It is easy to see that G′, T is an instance of the multiterminal cut and that

an optimal solution to this instance is an optimal distribution of the original

program. Indeed, starting from the optimal solution for the multiterminal

cut (V1, . . . , Vk), we can build an optimal partition P1, . . . , Pk such that Pi
is the set of basic instructions such that their vertices in the control flow

graph is in Vi. Note that G′, T can be computed from G in polynomial time

since the merging operation can be implemented in O(|E|) and at most |V |
mergings are needed. �

Remark Theorem 3 shows how an instance of the Sequential Coloring

Problem can be transformed into an instance of the Multiterminal Cut Prob-

lem. In order to do so, the atomic constraints resulting in edges of infinite

weight are safely contracted. In practice, this transformation is also used

for the Atomic Coloring Problem : all instructions (atomic and sequential)

are inserted in a graph, where atomic control flow is modeled with edges of

infinite weight. Next, all edges of infinite weight are contracted and thus

removed from the graph. When such an edge is contracted between two ver-

tices of (fixed) different colors, the program is not distributable and hence

rejected, since this means that there was a connected component in Ga with

vertices of different color. We therefore do not consider this case.

The next lemma states that, starting from an unweighted graph, we can

build a program such that the control flow graph, after merging, is equal to

the original graph (except for a constant factor 2 between the weights on

the edges).

Lemma 7 Let G(V,E) be an unweighted graph, then there exists a program

P such that the control flow graph Gf = (Vf , Ef , wf) of P , after merging,

is such that V = Vf , E = Ef , and ∀{v, v′} ∈ E, wf ({v, v′}) = 2. �

Proof. Let G(V,E). We can build a program P such that, after having

merged vertices using the same variables in the control flow graph, the re-

sulting graph Gf is equal to G. Moreover, this program contains only a list

of assignments. We define the set of global variables as XV = {xv| v ∈ V },
i.e. there is a bijective mapping between the set V and the set of global

variables XV . We show the construction of P by induction on the size of

V . The case where V = {v} (i.e. |V | = 1) is obvious, we only have one

instruction i ≡ xv ← 1.

112 CHAPTER 4. DSL’S DISTRIBUTION

Suppose therefore that |V | = n, and let P be the corresponding program

using instructions {xu ← 1|u ∈ V }. We now build a program P ′ for the

graph G′ = (V ′ = V ∪ {v}, E ′ = E ∪ {{v, v1}, . . . {v, v`}}. For this, we

modify P as follows :

For all j ∈ [1, `] (i.e. for all new edges), let xvj
be the global variable

corresponding to vj , and let i ≡ xvj
← 1 be an instruction of P . In P ′, we

replace i by : i;xv ← 1; i. Note that P ′ is still a list of assignments. Let G′
f

be the control flow graph of P ′, after merging, we have that G′
f contains all

edges of E ′. Note that all edge weights in G′
f are equal to 2. �

Note that the number of assignments of P is polynomial in the size of

G because each edge in E is represented in P using 2 instructions. Since all

edges in Gf have weights equal to 2, it is easy to see that G and Gf have

the same optimal solution for the multiterminal cut. An illustration for this

theorem is depicted in figure 4.11. An example graph G is depicted first.

Next, the figure shows the addition of instructions in P and, for each step,

the corresponding Gf .

Theorem 4 There exists a polynomial-time reduction from multiterminal

cut on unweighted graphs to the SCP. �

Proof. Let G(V,E), T be an unweighted instance of multiterminal cut, by

lemma 7, we can build a program P which has its control flow graph Gf

after merging equal to G (except for the constant factor of 2 on the weights).

Recall that a variable in P is associated to each vertex in G. Let the

number of sites in the SCP be equal to |T |, and let h : T 7→ S be a bijection

from the set of terminals in G to the set of sites. Specify (in the localization

table of the SCP) that for each terminal t ∈ T , the color of the instructions

using the variable associated to t must be h(t).

From theorem 3, we know that it is equivalent to solve the multiterminal

cut on Gf than to solve the SCP on P . �

We know that multiterminal cut on unweighted graphs is NP-hard.

Thus, we can state the following corollary.

Corollary 3 The SCP is NP-hard, even when the program contains only a

sequence of instructions. �

Corollary 4 The SCP is polynomially equivalent to the multiterminal cut

problem on arbitrary graphs. �

This results from theorems 3 and 4. Arbitrary weights 2w can be obtained in

the construction of theorem 4 using the while construct as follows : replace

4.3. LOCALIZING SEQUENTIAL INSTRUCTIONS 113

Figure 4.11: Illustration of lemma 7

114 CHAPTER 4. DSL’S DISTRIBUTION

the sequence i;xv ← 1; i with i;xv ← w; while xv > 1) DO i;xv ← xv−1

; END WHILE; i.

4.3.4 Related work

The multiterminal cut problem has been studied first by Dahlhaus et al. in

[DJP+94]. In this paper, the authors prove that this problem is NP-hard

for any k > 2 even when k is fixed where k is the number of terminals. The

problem is polynomially solvable when k = 2, a well known result proved by

Ford and Fulkerson [FF62], and in the case of planar graphs. The authors

also present a 2− 2
k polynomial time approximation algorithm that relies on

isolating cuts, a technique that is detailed further on. Moreover, they proved

that this problem is MAX SNP-hard, i.e. there is no polynomial time

approximation scheme unless P=NP. In [CKR00], Calinescu, Karloff, and

Rabani, presented a linear programming relaxation. Using this technique

and a well chosen rounding procedure, they obtain an approximation factor

of 1.5− 1
k . This factor was lowered to 1.3438 by Karger et al. in [KKS+99]

who give better approximations when k ≥ 14. These improvements were

found by studying carefully the integrality gap and giving a more precise

rounding procedure. A polyhedral approach [CO96, SC91, Cun91] and a

non-linear formulation [DB95] have also been studied for the multiterminal

cut problem.

Shrinkage, introduced in the next section, has also been studied by

Högstedt and Kimelman in [HK01]. In this paper, the authors give some

optimality-preserving heuristics that allow to reduce the size of the input

graph by contracting some edges. The shrinkage technique presented later

generalizes some of their criteria (such as independent nets and articulation

points).

Here, we consider the multiterminal cut problem on undirected graphs,

but work has also been done on directed graphs. Naor and Zosin presented

a 2-approximation algorithm for this problem in [NZ01]. On the other hand,

Costa, Letocart and Roupin proved in [CLR05] that multiterminal cuts on

acyclic graphs could be computed in polynomial time using a simple flow

algorithm. A generalization of multiterminal cut is minimum multicut where

a list of pairs of terminals is given and we must find a set of edges, of

minimum weight, such that these pairs of terminals are disconnected. Garg

et al. [GVY94] give a O(log k)-approximation algorithm for this minimum

multicut. A survey on multiterminal cuts and its variations can be found

in [CLR05].

The applications that rely on the multiterminal cut fall mainly into two

4.3. LOCALIZING SEQUENTIAL INSTRUCTIONS 115

domains : the domain of parallel computation and the partitioning of dis-

tributed applications. The problems encountered in parallel computation

are concerned with the allocation of tasks on different processors. The to-

tal load must be partitioned in roughly equal sized pieces, characterized by

some load balancing criterion, while some interconnection criterion must be

minimized ([HHLV97] and [HLLR00]). These problems can be formulated

using the strongly related k-cut problem, which asks to partition the graph

in k subsets such that crossing edges are minimized. Since this problem has

no fixed terminals, it is polynomially solvable, for any fixed k ≥ 3 [DJP+94]

and is thus considerably easier than the problem addressed here.

For the distributed applications, the problem is similar, except that it

is the various application’s components that must be distributed among

different processors. Several criteria are studied, such as the inter object

communication load of [HK01]. However, we are not aware of other work

that are based on the static distribution of the instructions where the control

flow is used to minimize the expected communications load. Because of

this fine grain distribution, the scale of our problem is considerably larger

than the studies on the partitioning of objects or functions as is the case in

classical distributed systems. Therefore, we believe that the results of the

heuristics presented here are applicable on these smaller instances as well.

4.3.5 A generalized global criterion

In [DJP+94] the authors design a 2− 2
k approximation algorithm based on

the isolation heuristics which uses st cuts. An st cut (multiterminal cut

with k = 2, the terminals are called s and t) divides the vertices in the

graph into two sets (C,C) where s ∈ C and t ∈ C. The heuristics consists

in finding an optimal isolating cut for each of the k terminals {s1, ..., sk} and

taking the union of the k − 1 smallest of these cuts. An optimal isolating

cut is a minimum st cut where s = si and t is the vertex resulting from the

merging of sj 6=i. We now introduce the original shrinkage theorem proved

by Dahlhaus et al :

Theorem 5 (Shrinkage) Given a graph G(V,E,w) with terminals T =

{s1, ..., sk} ⊆ V . Let G′
i be the graph where all terminals in T \ {si} are

merged into t, and (C,C) a minimum st cut between si and t, then there

exists an optimal multiterminal cut (V1, ..., Vk) of G such that ∃` : C ⊆ V`.

�

Theorem 5 allows us to shrink (i.e. to merge) all vertices in C into one

vertex. Shrinkage is clearly an interesting way to attack the multiterminal

116 CHAPTER 4. DSL’S DISTRIBUTION

cut problem. Indeed, we can apply theorem 5 to all terminal vertices in order

to shrink the graph. And if one can obtain a relatively small instance, then

there may be hope to find the optimal solution by exhaustive search. It can

also be used independently of any other algorithm designed to approximate

the multiterminal cut problem. An example of the application of the shrink-

age theorem is given in figure 4.12. An instance of the multiterminal cut

is given in the upper left corner (V = {t1, t2, t3, n1n2, n3}, T = {t1, t2, t3}).
First, the theorem is applied with si = t1. This is depicted on the right,

where t2 and t3 are merged together, and an st cut is calculated between

s = t1 and t = {t2, t3}. The st cut is represented with a dotted line. In

this example, the theorem states that there exists an optimal multitermi-

nal cut where t1 and n1, n2 are in the same partition. We can therefore

merge these vertices together, and obtain the graph which is represented

in the center left of the figure. The same process is repeated for si = t3,

with the resulting graph represented in the lowermost left corner. In this

graph, only terminals exists, and the optimal solution is found : it consists

of {{t1, n1, n2}, {t2}, {t3, n3}} and has weight 6. Note that in this example,

the shrinkage theorem gives enough reduction to find an optimal solution.

We extend theorem 5 to handle more shrinkage as follows :

Theorem 6 (More shrinkage) Given a weighted graph G(V,E,w) with

terminals T = {s1, ..., sk} ⊆ V . Let v ∈ V (be it in T or not), and G′
v be the

graph where all terminals in T \{v} are merged into t, and (C,C) a minimum

st cut between v and t in G′
v then there exists an optimal multiterminal cut

(V1, ..., Vk) of G such that ∃` : C ⊆ V`. �

Proof. Let us consider a multiterminal cut C∗ = {V1, ..., Vk} and, without

any loss of generality assume v ∈ V1. We define a partition C∗′ of V in

V ′
1 , ..., V

′
k as follows :

V ′
1 = V1 ∪ C (4.1)

V ′
j 6=1 = Vj \ (Vj ∩ C) = Vj \ C = V1 ∩ C (4.2)

We show that C∗′ is a multiterminal cut with a weight not more than

the weight of C∗, proving the existence of a multiterminal cut of the kind

described in the theorem. It is easy to verify that C ∗′ is a multiterminal

cut, since

• V ′
i ∩ V ′

j 6=i = ∅

• ∪iV ′
i = V

4.3. LOCALIZING SEQUENTIAL INSTRUCTIONS 117

Figure 4.12: Illustration of theorem 5.

118 CHAPTER 4. DSL’S DISTRIBUTION

Figure 4.13: Illustration of theorem 6.

• ∀i : si ∈ V ′
i

• ∀i : si is isolated from sj 6=i

Let us show that C∗′ has a weight less than (or equal to) the weight of C ∗,

so that if C∗ is minimal, so is C∗′ . Let A,B ⊆ V, A ∩ B = ∅, we note

w(A,B) =
∑

{(x,y)|x∈A,y∈B} w(x, y). Furthermore, let w(X) = w(X,X),

where X = V \X. Using these notations, we have the following rules :

w(X,Y) = w(Y,X) (4.3)

w(X,Y ∪ Z) = w(X,Y) + w(X,Z) − w(X,Y ∩ Z) (4.4)

w(X,Y ∪ Z) = w(X,Y) + w(X,Z) if Y ∩ Z = ∅ (4.5)

w(X,Y \ Z) = w(X,Y)− w(X,Y ∩ Z) (4.6)

We can naturally extend the definition of w to the evaluation of the weight

of a partition of V . The weights of the two multiterminal cuts C ∗′ and C∗

can be expressed in terms of their partitions (resp. V ′
i and Vi) as follows :

w(C∗′) =
∑

j 6=1

w(V ′
1 , V

′
j) +

∑

j>i>1

w(V ′
i , V

′
j) (4.7)

w(C∗) =
∑

j 6=1

w(V1, Vj) +
∑

j>i>1

w(Vi, Vj) (4.8)

4.3. LOCALIZING SEQUENTIAL INSTRUCTIONS 119

In addition, we use two st cuts for proving w(C∗′) ≤ w(C∗) :

w(C) = w(C, V \ C) = w(C, (∪jVj) \ C) (4.9)

=
∑

j

w(C, Vj \ C) by (4.4), (4.5)

= w(C, V1 \ C) +
∑

j 6=1

w(C, Vj \ C) (4.10)

w(C ∩ V1) = w(C ∩ V1, V \ (C ∩ V1)) (4.11)

= w(C ∩ V1, (∪jVj) \ (C ∩ V1) (4.12)

=
∑

j

w(C ∩ V1, Vj \ (C ∩ V1)) by (4.4), (4.5)

= w(C ∩ V1, V1 \ C) +
∑

j 6=1

w(C ∩ V1, Vj) (4.13)

In order to determine w(C∗′) − w(C∗), we will express all terms of C∗′ in

terms of C∗ :

w(V ′
1 , V

′
j 6=1) = w(V1 ∪C, Vj \ C) by (4.1), (4.2)

= w(Vj \ C, V1) + w(Vj \ C,C)

− w(Vj \ C, V1 ∩C)
by (4.3), (4.4)

= w(V1, Vj)− w(V1, Vj ∩ C) + w(Vj \ C,C)

− w(V1 ∩ C, Vj) + w(V1 ∩C, Vj ∩ C)
by (4.3), (4.6)

(4.14)

w(V ′
i6=1, V

′
j>i) = w(Vi \ C, Vj \ C) by (4.2)

= w(Vi \ C, Vj)− w(Vi \ C, Vj ∩ C) by (4.6)

= w(Vj , Vi)−w(Vj , Vi ∩ C)

− w(Vj ∩ C, Vi) + w(Vj ∩ C, Vi ∩ C)
by (4.3), (4.6)

(4.15)

Using equations (4.14) and (4.15) in (4.7), we can express the difference

between C∗′ and C∗ using (4.8), (4.10) and (4.13) :

120 CHAPTER 4. DSL’S DISTRIBUTION

w(C∗′)− w(C∗) =

w(C)− w(C ∩ V1) (4.16)

+
∑

j 6=1

(−w(V1, Vj ∩ C) + w(V1 ∩ C, Vj ∩ C)) (4.17)

+
∑

i6=1,j>i

(−w(Vj , Vi ∩ C)− w(Vj ∩ C, Vi) + w(Vi ∩ C, Vj ∩ C)) (4.18)

− w(V1 \ C,C) + w(V1 ∩ C, V1 \ C) (4.19)

which proves the theorem since

• (4.16) ≤ 0 because C is a minimum st cut (remark that C ∩ V1 is a

st cut between v and t)

• (4.17) ≤ 0 because (V1 ∩ C) ⊆ V1

• (4.18) ≤ 0 because (Vj ∩ C) ⊆ Vi and w(X,Y) ≥ 0

• (4.19) ≤ 0 because (V1 ∩ C) ⊆ C

�

Theorem 6 differs from theorem 5 because we can apply the latter only

on terminal vertices, while the former can be applied to all vertices in the

graph, possibly resulting in more shrinkage and therefore smaller graphs.

Figure 4.14 shows a graph (V = {t1, t2, t3, n1, n2, n3}, T = {t1, t2, t3}) where

theorem 5 yields no reduction (it is routine to check that each st cut between

a terminal and the merging of the other terminals results in a singleton).

Theorem 6 applied on n1 reduces the graph by 3 vertices.

We now explain how to use theorem 6 to shrink an instance of the mul-

titerminal cut problem. Let v ∈ V , we compute the st cut were v is the

result of the merging of all terminals in T \{v}. The vertices that are in the

same partition as v are merged together, with theorem 6 assuring that this

preserves optimality. A chain of graphs G1, ..., Gl can therefore be calcu-

lated where each graph is the result of the optimal merging with respect to

its predecessor, and where Gl cannot be reduced any further. To compute

these st cuts, one can use the algorithm of Goldberg and Tarjan [GT88],

with complexity O(nm log n2

m) (where n = |V |,m = |E|). With the results

contained in the next section, we can show that when this well known algo-

rithm is used, then l ≤ n, resulting in a total complexity in O(n2m log n2

m).

Once a graph cannot be reduced any further, two options remain, either

search exhaustively and find an optimal solution, or unshackle the graph.

Unshackling means contracting one or more edges that likely connect vertices

4.3. LOCALIZING SEQUENTIAL INSTRUCTIONS 121

Figure 4.14: Theorem 5 and theorem 6 compared.

from the same partition in the optimal cut. Note that if an edge is picked

that is in every optimal multiterminal cut, this operation will not preserve

optimality. Indeed, contraction of such an edge is equivalent to forcing both

vertices in the same partition of the multiterminal cut. Since none of the

optimal multiterminal cuts have both vertices in the same partition, the

optimal solution after contraction must be larger than the optimal solution

before.

Once the graph is unshackled, the resulting graph may be ready for

further optimal reductions. In the following section, we study an implemen-

tation using the shrinkage technique combined with a fast local unshackling

heuristics.

4.3.6 A fast local heuristics

As said in the previous section, we can use the shrinkage technique in combi-

nation with an unshackling heuristics. Figure 4.15 gives a graphical overview

of this technique and figure 4.16 presents an implementation. We first per-

form shrinkage until the graph cannot be reduced any further. Then, we use

an unshackling heuristics to contract one edge from this graph. The shrink-

age technique may thereupon be reused on this unshackled graph. This pro-

122 CHAPTER 4. DSL’S DISTRIBUTION

Figure 4.15: Optimal and non optimal reductions.

cess is repeated until the graph contains only terminal vertices, or is small

enough to exhaustively search an optimal solution. While the resulting mul-

titerminal cut may not be optimal, due to the unshackling heuristics, we

will see that this technique generally computes a fairly good multiterminal

cut and is quite efficient, provided that the unshackling is easy to compute.

reduce(G);

while(non-terminals exist &&

size(G) > exhaustive_search_bound) {

unshackle(G); // Contract 1 edge

reduce(G);

}

Figure 4.16: Unshackling heuristics.

Definition and complexity

Definition 27 (max-min-st cut) Given a weighted graph G(V,E,w) and

two different vertices s, t ∈ V . Define min-ST(s, t) as the set of cuts sepa-

rating s and t with minimum weight. We define the set max-min-st (s, t)

as the set of cuts (C,C) ∈ min-ST(s, t) such that |C| is maximal. �

We can easily extend these definitions for sets of vertices.

Definition 28 (max-min-st cut’) Given a weighted graph G(V,E,w) and

a set T ⊆ V , max-min-st (s, T) is equivalent to max-min-st (s, t) in the

graph G where all vertices in T have been merged into the new vertex t. �

We now prove some interesting properties related to those maximum size

minimum cuts. Theorems 7, 8 and 9 give some remarkable insights on the

structure of these cuts, which leads to a more efficient implementation of

our heuristics.

4.3. LOCALIZING SEQUENTIAL INSTRUCTIONS 123

Theorem 7 Given a weighted graph G(V,E,w) and two vertices s, t ∈ V ,

|max-min-st(s, t)| = 1, i.e. there is only one maximal size minimum st cut

for any couple (s, t). �

Proof. By contradiction. Suppose (S, S), (S ′, S′) ∈ max-min-st(s, t) (S 6=
S′). Let I = S∩S ′ and T = V \(S∪S ′), it is easy to see that S (resp. S ′) 6= I,

since S 6= S ′. As S is a min st cut, we have :

w(I) ≥ w(S)

⇐⇒ w(S \ I, I) + w(S ′ \ I, I) + w(I, T) ≥ w(S, S ′ \ I) + w(S, T)

⇐⇒ w(S \ I, I) + w(S ′ \ I, I) + w(I, T) ≥ w(S, S ′ \ I) + w(S \ I, T)

+ w(I, T)

⇐⇒ w(S \ I, I) + w(S ′ \ I, I) ≥ w(S, S ′ \ I) + w(S \ I, T)

As I ⊆ S, we have that

w(S′ \ I, I) = w(I, S ′ \ I) ≤ w(S, S ′ \ I)

Therefore, we must have

w(S \ I, I) ≥ w(S \ I, T) (4.20)

Now, let’s compute w(S ∪S ′), noticing that S ∪S ′ is also a st cut for (s, t).

w(S ∪ S′) = w(S \ I, T) + w(S ′ \ I, T) + w(I, T)

≤ w(S \ I, I) + w(S ′ \ I, T) + w(I, T)︸ ︷︷ ︸
=w(S′,T)

by 4.20

≤ w(S \ I, I) + w(S ′, T)

≤ w(S \ I, S ′) + w(S′, T) since I ⊆ S ′

≤ w(S′)

Thus, S ∪ S ′ is a minimum st cut for (s, t). But we have S, S ′ (S ∪ S′,
therefore S, S ′ 6∈ max-min-st(s, t) and we have a contradiction. �

Since max-min-st(s, t) contains only a single element {C,C} (s ∈ C, t ∈ C),

we can refer to max-min-st(s, t) as the maximal size minimum cut. In what

follows, we use max-min-st(s, t) to designate C.

Theorem 8 Given three different vertices s, s′, t ∈ V , if s′ ∈ max-min-st

(s, t), then max-min-st (s′, t) ⊆ max-min-st (s, t). �

124 CHAPTER 4. DSL’S DISTRIBUTION

Proof. By contradiction: let S = max-min-st(s, t), S ′ = max-min-st(s′, t)
and suppose that S ′ 6⊆ S. We have that |S ∪ S ′| > |S|. Let I = S ∩ S ′ and

T = V \ (S ∪ S ′), we define the following (cfr. figure 4.3.6 :

A ≡ w(S \ I, T) B ≡ w(I, T) C ≡ w(S ′ \ I, T)

D ≡ w(I, S \ I) E ≡ w(I, S ′ \ I) F ≡ w(S \ I, S ′ \ I)

=⇒ w(S ∪ S′) = A+B + C w(S) = A+B +E + F

w(S′) = B + C +D + F w(I) = B +D +E

From the definition of S and S ′ we have w(S ∪ S ′) > w(S) (as S (S ∪ S ′)
and w(I) ≥ w(S ′), which implies that C > E + F and E ≥ C + F . This

leads to a contradiction. �

Figure 4.17: Illustration for theorem 8.

Theorem 9 Given graph G(V,E,w) and three distinct vertices s, s′, t ∈
V . Let S = max-min-st(s, t), S ′ = max-min-st(s′, t), I = S ∩ S ′, and

T = V \ (S ∪ S ′). If I 6= ∅ and S 6= I and S ′ 6= I, then w(I, S \ I) =

w(I, S′ \ I). Moreover, we have that w(I, V \ (S ∪ S ′)) = 0. The same

results hold when S = max-min-st(s, {t ∪ s′}), S′ = max-min-st(s′, t) or

S = max-min-st(s, {t ∪ s′}), S′ = max-min-st(s′, {s ∪ t}). �

Proof. By contradiction : let’s reuse the equations from proof of theorem 8,

to compute w(S \ I) and w(S) :

w(S \ I) = A+D + F w(S) = A+B +E + F

As S is the max-min-st cut(s, t), we have A+B+E+F ≤ A+D+F and

B+E ≤ D. By applying a similar reasoning with S ′ and S′\I, we can prove

that B+D ≤ E. In conclusion, we have E = D(⇒ w(I, S \I) = w(I, S ′ \I))
and B(≡ w(I, T)) = 0. The two other propositions are proved likewise. �

Theorems 7, 8 and 9 allow us to efficiently calculate the reduction phases

of our unshackling heuristics. We know that the order in which we calculate

4.3. LOCALIZING SEQUENTIAL INSTRUCTIONS 125

the cuts has no effect on the outcome of the algorithm. Moreover, we can

calculate the max-min-st cut for a given vertex n and immediately merge

all vertices on the same side of n in the cut, thus reducing the number

of vertices before calculating the next max-min-st cut for the remaining

unmodified vertices.

Theorem 10 Let G(V,E,w), T be an instance of the multiterminal cut,

and let v, v′ be two different vertices of G. The order in which G is reduced,

relative to v and v′ is irrelevant. I.e., reducing G relative to v followed by a

reduction relative to v′ yields the same graph as the one obtained by reducing

in the opposite order. �

Proof. Let S be the max-min-st cut for s, and S ′ be the max-min-st cut

for s′. We now consider all possibilities for S and S ′. Figure 4.3.6 shows the

different possible configurations (remark that the configuration on the right

is not possible due to theorem 8).

• S ∩ S′ = ∅. This case is trivial, indeed, the contractions of S and S ′

do not interfere with each other. Thus, the order of contraction does

not matter in this case.

• S ⊆ S′. If we first contract S, then S ′, we will end with a single vertex

corresponding to all vertices of S ′. If we first contract S ′, then we will

directly end with a single vertex corresponding to all vertices of S ′.
In both cases, the edges from this single vertex will be the sum of all

edges from S ′. Thus, the resulting graph is the same in both orders.

• S′ ⊆ S′. This case is symmetrical.

• S′ ∩ S = I ∧ I 6= S ∧ I 6= S ′. Let’s analyze the possible orders of

contraction.

If we first contract S, by theorem 8, we have the new max-min-st for s′

is S′ \ I. Thus, we have two vertices, ns, the result of the contraction

of S, and ns′, the result of the contraction of S ′ \ I.

On the other hand, if we first contract S ′, by theorem 8, we have that

the new max-min-st for s is S \I. Thus, we have two vertices, ms′ , the

result of the contraction of S ′, and ms, the result of the contraction

of S \ I.

Let’s analyze the edges from ns and from ms. By theorem 8, we have

that w(I, V \ (S ∪S ′)) = 0, thus all edges from S are edges from S \ I.

126 CHAPTER 4. DSL’S DISTRIBUTION

Hence, we can easily see that the edges from ns are the same than the

edges from ms. In conclusion ms and ns are equivalent.

The case is symmetrical for the edges from ns′ and from ms′ . By

theorem 8, we have that w(I, V \ (S ∪S ′)) = 0, thus all edges from S ′

are edges from S ′ \ I. Hence, we can easily see that the edges from ns′

are the same than the edges from ms′ . In conclusion ms′ and ns′ are

equivalent.

�

Figure 4.18: Possible configurations for max-min-st cut

After the calculation and merging of all max-min-st cuts, we have for

all vertices in the reduced graph and terminals s1, . . . , sk, max-min-st cut

(s,∪isi\{s}) = {s}. The only missing link is how to obtain the max-min-st:

Theorem 11 The algorithm of Goldberg and Tarjan [GT88] calculating the

maximum flow in O(nm log(n
2

m))-time also yields max-min-st �

Proof. By contradiction. As for prerequisites, the reader is expected to be

familiar with [GT88], where the authors prove that it is possible to calculate

a minimum st cut (Sg, Sg) with s ∈ Sg ∧ t ∈ Sg in O(nm log(n
2

m))-time. We

will use their notations to prove that the min st cut calculated by their

algorithm is in fact the unique minimum st cut of maximal size.

Let g(v, w) : E 7→ R+ be the preflow function (here we may suppose that

the algorithm terminated and that the preflow is a legal flow). Gg is used

to indicate the residual graph and c(v, w) : E 7→ R+ indicates the capacities

of the edges in E. In addition, (Sg, Sg) is defined as the partition of V such

that Sg contains all vertices from which t is reachable in Gg and Sg = V \Sg.
We use the following lemma by Golberg and Tarjan from [GT88]:

4.3. LOCALIZING SEQUENTIAL INSTRUCTIONS 127

When the first stage terminates, (Sg, Sg) is a cut such that every

pair v, w with v ∈ Sg and w ∈ Sg satisfies g(v, w) = c(v, w).

Suppose that there exists another minimum cut (C ′, C ′) such that |C ′| > |Sg|
which is maximal in size.

Remark that Sg ⊆ C ′ because of theorem 8 and s ∈ C ′ ∩ Sg.
Let I = C ′ ∩ Sg. Note that I 6= ∅ since |C ′| > |Sg|. We split the boundaries

between Sg, I and Sg in three sets (the situation is depicted in figure 4.19) :

• Old Boundary: O ⊆ E = (v, w) : v ∈ Sg \ I ∧w ∈ I

• New Boundary: N ⊆ E = (v, w) : v ∈ I ∧ w ∈ Sg \ I

• Common Boundary: C ⊆ E = (v, w) : v ∈ Sg \ I ∧ w ∈ Sg \ I

By definition of (Sg, Sg), we know that g(O) = c(O). We also know that

since (C ′, C ′) and (Sg, Sg) are both minimum cuts : w(O)+w(C) = w(N)+

w(C)⇒ w(O) = w(N). Remark that since g is a legal flow, the flow entering

I must be equal to the flow getting out of I, which means that g(O) = g(N).

The combination of these tree equations leads to a contradiction: since

the edges in N are saturated, t is not reachable from any n ∈ I in Gg which

means that I = ∅. �

Figure 4.19: Illustration for theorem 11

Lemma 8 Given an instance G(V,E,w), T of the multiterminal cut and an

edge e = {v1, v2} ∈ E. Let G′ be the resulting graph after contraction of e

in G. If G is irreducible (i.e. ∀v ∈ V : max-min-st(v, T) = {v}), then in

G′, ∀v′ ∈ V ′ \ {v1, v2} : max-min-st(v′, T) = {v′}. �

Proof. Proof by contradiction. We denote max-min-st for cuts in G,

max-min-st′ for cuts in G′. Let m′ denote the vertex in G′ that results

from the contraction of e. Suppose that max-min-st′(v′, T) 6= {v′}. Let

128 CHAPTER 4. DSL’S DISTRIBUTION

h : V ′ 7→ 2V be a mapping from the vertices from G′ to G, where ∀u′ ∈
V ′ \ {m′} : h(u′) = {u} ∧ h(m′) = {v1, v2}. We extend h to sets as follows :

h(U) = ∪u∈Uh(u). We show that w(h(max-min-st′(v′, T))) is a cut with

no more weight than w({v}), which is in contradiction with the fact that G

is irreducible.

• If m′ /∈ max-min-st′(v′, T) then this is obvious, since only the edges to

m are changed by the contraction, hence w(h(max-min-st ′(v′, T))) =

w′(max-min-st′(v′, T)).

• If m′ ∈ max-min-st′(v′, T), then we have w(h(max-min-st′(v′, T)) ≤
w(max-min-st′(v′, T)), since the contraction can only increase the

weight of the edges connected to m.

�

Finally, we can prove that the worst execution time for the unshackling

heuristics stays within the complexity of the reduction algorithm :

Theorem 12 The unshackling algorithm from figure 4.16 can be imple-

mented with worst case complexity O(n2m log(n
2

m)) if the complexity of

unshackle() is in O(nm log(n
2

m)). �

Proof. Consider an irreducible graph in which one and only one edge

{v1, v2} is contracted. Before contraction, ∀v ∈ V : max-min-st (v, T) =

{v}. By lemma 8 we know that the contraction only affects the resulting ver-

tex from the contraction, which means that after each contraction only one

max-min-st cut has to be calculated. Since at most n contractions are pos-

sible, the number of max-min-st calculations needed can be bounded by 2n

(n for the initial reduction and n for all subsequent reductions). The worst

case complexity is therefore as stated, if the complexity of unshackle() is

O(nm log(n
2

m)). �

Results

It remains to define the way we will unshackle the graph. We tried several

local procedures, among which : Greedy, Error-reduction, and Balanced

Weight. We comment each of these heuristics in more detail, and present

numerical results.

Greedy The greedy heuristics takes an edge with maximal weight. This

is, a priori, a good choice since it is unlikely that such an edge is in each

4.3. LOCALIZING SEQUENTIAL INSTRUCTIONS 129

optimal multiterminal cut. Unfortunately, the resulting heuristics has no

fixed approximation bound with this unshackling procedure.

This is illustrated in the example of figure 4.20. Consider the 6 × n

toroidal mesh depicted in the first part of the figure. All edges have weight

1, and terminals are represented as black vertices. For clarity reasons, some

edges are not represented in the following iterations of the algorithm. Note

that no reduction is possible in this graph. Since all edges have equal weight,

the algorithm can pick any edge. Suppose therefore that the algorithm picks

the edge marked with a thicker line. The resulting graph after unshackling

is given on the top right. Note that the weights on all edges remain the

same, and that the graph remains irreducible. Successive iterations of the

algorithm are shown, with the end result represented in the lower right corner

of the figure. The optimal solution in the original graph (upper left) consists

of {{t1}, {t2}, {t3}∪V \T} (where T = {t1, t2, t3} is the set of terminals and

V , the set of vertices) and has weight 8. The optimal solution in the graph

obtained after 3 ·n iterations (lower right) consists of the analogue partition

{{t1}, {t2}, {t3} ∪ V ′ \ T} and has a weight of 4 · n. The greedy unshackling

heuristics does not therefore result in an approximation algorithm since

limn→∞
GREEDY
OPT =∞, even for a fixed number of terminals.

Error-Reduction The error reduction unshackling procedure is based on

an upper bound for the error that can be made when contracting a certain

edge. The unshackling procedure picks an edge such that this upper bound

is minimum. The error is expressed as the difference between the cost of the

optimal solution before and after contraction.

Theorem 13 (Error-Reduction upper bound) Given an instance

G(V,E,w), T of the multiterminal cut, and an edge e = {n, n′} ∈ E. Let

G′(V ′, E′, w′), T be the result of the contraction of e in G. The difference

between the cost of the optimal multiterminal cut in G′ and G is bounded

by max{0,min{∑{n,u}∈E\ew({n, u}),∑{n′,u}∈E\ew({n′, u})}−w(e)}, if e∩
T = ∅, and by

∑
{n,u}∈E\ew({n, u}) − w(e) if e ∩ T = {n′}. �

Proof. The case where {n, n′}∩T = {n′} is trivial. Consider therefore that

{n, n′} ∩ T = ∅. Let cost1 be the optimal cost before reduction, cost2 after

reduction. For simplicity, in this proof, instead of removing a vertex from

the graph G, we consider the contraction as a constraint that n and n′ have

to be in the same partition in the optimal solution after contraction. Let

A = {{n, u} ∈ E \ e} and A′ = {{n′, u} ∈ E \ e}.
(1) If there exists an optimal solution before contraction such that n and n ′

are in the same partition, then the reduction has no effect on the cost, and

130 CHAPTER 4. DSL’S DISTRIBUTION

... ...

... ...

... ...

{ n 1

3

5

2

4

3n

Figure 4.20: Greedy and error-reduction do not yield an approximation

algorithm

4.3. LOCALIZING SEQUENTIAL INSTRUCTIONS 131

cost1 = cost2.

(2) Suppose there exists no such optimal solution before contraction. Take

one optimal solution V1, ..., Vk before contraction. Assume without loss of

generality that n ∈ V1 and n′ ∈ V2. Suppose w(A) ≥ w(A′). Consider now

the following multiterminal cut in G′ : V ′
1 = V1 ∪ {n′}, V ′

2 = V2 \ {n′}, V ′
3 =

V3, ..., Vk = V ′
k. Let costr be the cost of this multiterminal cut.

cost2 − cost1 ≤ costr − cost1 (since cost2 is optimal).

costr − cost1 ≤ w(A′)− w(e) (by construction).

Notice that if w(A) < w(A′), choosing V ′
1 = V1 \ {n′}, V ′

2 = V2 ∪ {n′}, V ′
3 =

V3, ..., Vk = V ′
k yields costr − cost1 ≤ w(A) − w(e).

(1) and (2) ⇒ cost2 − cost1 ≤ max{0,min{w(A), w(A′)} − w(e)}. �

Remark Theorem 13 provides us with a fast and local shrinkage crite-

rion. Indeed, if an edge {n, n′} exists such that its weight is larger than the

sum of all other edges connected to n or n′, then that edge can be contracted

and optimality is preserved. However, it is easy to show that our shrinkage

theorem (theorem 6) is more general.

Unfortunately, again, this unshackling procedure has no fixed approxi-

mation bound. To show this, consider the previous example in figure 4.20.

The error bounds on all edges are of weight 2 and we may therefore con-

clude that the algorithm behaves exactly as the greedy heuristics. The

error-reduction unshackling procedure therefore yields no fixed approxima-

tion bound, even for a fixed number of colors. Furthermore, it behaves

poorly on a large set of input graphs. The main reason for this is that

the error-reduction unshackling procedure tends to pick edges for which the

graph after contraction is irreducible w.r.t. theorem 6. A lot of non-optimal

contractions are therefore needed before a multiterminal cut is found, which

results in poor solutions.

Balanced weight Balanced weight contracts the edge {n, n′} such that∑
{{n,u}∈E}w(n, u)+

∑
{{n′,u}∈E}w(n′, u) is maximal. Balanced weight picks

heavy edges (since {n, n′} is counted twice) while the result of the contrac-

tion results in a vertex with many (heavy) edges. Surprisingly, this unshack-

ling procedure behaves best (from a quantitative point of view) on a large

set of examples, but has no fixed approximation bound either.

To show that this is not the case, we use the instances depicted in figure

4.21, where k ≥ 3 and n ≥ 1. Each instance consists of a set T of k

terminals, each of which is connected to a different non-terminal in the set

A. The non-terminals in A are connected to all (k − 1)n− 1 non-terminals

132 CHAPTER 4. DSL’S DISTRIBUTION

Figure 4.21: Balanced weight does not yield an approximation algorithm.

in B. In these instances the edges between vertices in T and A are weighted

by n, and edges between vertices in A and B have weight 1. We first argue

that all these instances are irreducible. Indeed, for all vertices t in T , it is

routine to check that max-min-st (t, T \ {t}) = {t}. For all vertices a in A,

the max-min-st between a and the merging of T can clearly not be a mix of

vertices in A and B. It is either {a} or A∪B. In the first case, max-min-st

has a cost of (k− 1)n− 1 +n = kn− 1, while in the latter case it has a cost

of kn. Therefore, for all a ∈ A, max-min-st (a, T) = {a}. For all vertices

b in B, the same reasoning holds, and max-min-st (b, T) is either {b} or

A ∪ B. In the first case, it is of weight k, while in the latter case, it is of

weight kn. The instances are therefore irreducible for any k ≥ 3 and n > 1.

The optimal solution for these instances clearly is (k−1)n, which is found

by the Dahlhaus approximation algorithm. The heuristics value for edges

between T and A is n+(k−1)n−1 = 2k2−1. The heuristics value for edges

between A and B is (k−1)n−1+k = 2k2−2k−1. The heuristics value for

the edges between T and A is larger, and are picked first by the balanced

weight unshackling procedure. The resulting graph after k iterations of this

heuristics is depicted in figure 4.22. Here the optimal solution is found by

our algorithm, but has weight (k − 1)((k − 1)n− 1). The solution returned

by our algorithm with respect to the optimal solution for instances of figure

4.21 is therefore BALANCED
OPT = (k−1)((k−1)n−1)

(k−1)n , which for k →∞, and any

n > 1 is not bounded.

Hence, unfortunately, as illustrated before, none of these heuristics has

a fixed approximation bound. However, since our calculations include the

4.3. LOCALIZING SEQUENTIAL INSTRUCTIONS 133

Figure 4.22: Instances after k iterations of balanced weight.

 0

 5

 10

 15

 20

 25

 30

 35

Error %

 1 1.5 2 2.5 3 3.5 Mean Degree

414/1111 Instances (37.26% where H94 or H04 != OPT)
H94/OPT (100% non opt)

H04/OPT (64.73% non opt)
Mean H94 (6.83%)
Mean H04 (3.59%)

Figure 4.23: Unshackling heuristics on random graphs

134 CHAPTER 4. DSL’S DISTRIBUTION

 0

 0.5

 1

 1.5

 2

Error %

 2 3 4 5 6 7 8 9 10 Terminals

414/1111 Instances (37.26% where H94 or H04 != OPT)
H94/OPT
H04/OPT

Figure 4.24: Unshackling heuristics on random graphs

ones from the k − 2
k approximation algorithm, we can compare the results

and take the best of both, resulting in the same bound without any extra

cost. In order to compare both heuristics, this has not been done in the

following experiments.

Two sets of experiments were conducted : figures 4.23, 4.24 show the

results on random graphs. These graphs are obtained by a uniform distri-

bution of the edges between the vertices, and with weights uniformly chosen

within a range that is much larger than the set of edges. Figure 4.26 shows

the results on graphs obtained from auto generated programs.

In figure 4.23 we compare the results of our heuristics (indicated byH04)

with the approximation algorithm (called H94) from Dahlhaus et al; about

1000 experiments where conducted on sufficiently small graphs (ranging from

20 to 40 vertices), allowing us to compare with the optimal solution. For

411 hard cases (37%), one of the heuristics failed to find the optimal. We

can see that for increasing mean degree (|E|
|V | , X-axis), the error rate (Y-axis,

in percent w.r.t. the optimal) for both algorithms drops rapidly, caused by

the randomness in the graph. For sparse graphs however, error rates can

be as high as 35%. The mean error rate for H04, for these hard cases, is

3.6% while it raises to 6.8% for H94. Remark that the failure rate for H94

is 100% of the hard cases, while our algorithm failed in 65% of these cases.

In these experiments, there was no instance where H04 performed worse

4.4. SOME REMARKS ON THE ATOMIC AND SEQUENTIAL COLORING PROBLEMS135

compared to H94.

Figure 4.24 shows the mean error rate (Y-axis, in % w.r.t. the opti-

mal solution) for the experiments of figure 4.23, with increasing number of

terminals (X-axis). We can clearly see the gain of our algorithm.

Figure 4.25 shows the mean error rate (Y-axis, in % w.r.t. the optimal

solution) for the same set of instance, with increasing mean degree. Again,

the benefit of our approach is clearly visible.

Figure 4.25: H04 and H94 compared on random graphs.

Figure 4.26 shows results for 25.000 grammar graphs of moderate size

(600 vertices, 3 to 10 terminals), where the two algorithms are compared

to each other. X-axis gives the mean degree. We can observe a difference

of as high as +35% (Y-axis) for some cases, meaning that our algorithm

improves the other by the same amount. For only 2 instances, our algorithm

performed worse (1.3% worse and 14% worse).

4.4 Some remarks on the atomic and sequential

coloring problems

Two remarks can be made on the above described problems. First, for the

atomic coloring problem, for historical reasons, we defined the synchronous

flow between instructions in atomic code. It can be noted that this is not

needed to define the atomic coloring problem. Indeed, the structure of

the code inside a WHEN has no influence on the atomicity of this code. It

136 CHAPTER 4. DSL’S DISTRIBUTION

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

Gain %

 0.5 1 1.5 2 2.5 3 Mean Degree

Grammar Graphs
H94/H04

Figure 4.26: Unshackling heuristics on grammar graphs

is equivalent to model the atomic code inside a WHEN as a single vertex

representing all instructions of its body and its condition, with edges to all

(non tilded) global variables referenced by this instructions and edges to

other WHENs that may be triggered.

The second remark can be made in relation with the load-balancing al-

gorithm, which is applied prior to solving the sequential coloring problem

in contrast to applying it after solving the sequential coloring problem. Al-

though this approach does not alter the distributability of a dSL program,

it may lead to the production of less efficient code. To understand why,

consider the instructions of a WHEN which is in a connected component of

Ga where no vertex is colored by the localization table. Suppose now that

in this WHEN, a reference to a global variable g is made. Clearly, g can be

placed on any site, but the load balancing algorithm will fix g and all in-

structions involving g on a fixed site, hence restraining the possibilities for

further optimizations by the sequential coloring algorithm.

4.5 Instructions reordering

In this section, we consider the problem of increasing the performance of

the compiled dSL program by reordering sequential instructions. This op-

timization can be formulated as a well known scheduling problem, called

4.5. INSTRUCTIONS REORDERING 137

the precedence-constrained class sequencing problem [Tov04]. We first show

how the order in which the sequential instructions are executed may influ-

ence the performance, next we formalize the problem of finding an optimal

total order, and finally we give some theoretical and practical results.

4.5.1 Informal presentation

To show how the order in which the sequential instructions are executed may

influence the performance of a dSL program at runtime, consider the follow-

ing code, where the external variables pump1.engine and pump2.engine are

localized on different sites.

SEQUENCE plant_startup()

...

engine_speed1 := 10; // (1)

engine_speed2 := 20; // (2)

pump1.engine := engine_speed1; // (3)

pump2.engine := engine_speed2; // (4)

...

END_SEQUENCE

Remark that the global variables engine speed1 and engine speed2

are, due to the atomicity constraint, localized on the sites of respectively

pump1.engine and pump2.engine. In this case, because each instruction is

localized on a different site than its successor, synchronization code will be

inserted by the distributer in three points in the code : between instructions

(1,2), (2,3) and (3,4). When executed, each synchronization code generates

messages on the network, which has a serious impact on the performance.

The above code can be reordered in an equivalent code as follows :

SEQUENCE plant_startup()

...

engine_speed1 := 10; // (1)

pump1.engine := engine_speed1; // (3)

engine_speed2 := 20; // (2)

pump2.engine := engine_speed2; // (4)

...

END_SEQUENCE

138 CHAPTER 4. DSL’S DISTRIBUTION

In this example, only one synchronization is needed : between instruc-

tions 3 and 2. Indeed, instructions 1 and 3 are localized on the same site,

which is also the case for instructions 2 and 4.

Note however, that not all instructions can be reordered. Indeed, chang-

ing the order of instructions 3 and 4 can be observed by the environment,

and may lead to different behaviors, since in that case pump2.engine will be

assigned a new value before pump1.engine, which is perhaps not what the

programmer had in mind. Moreover, the dataflow inside a SEQUENCE must

be respected, which means that the following two instructions may not be

reordered :

SEQUENCE some_sequence()

...

x := z;

y := x + 1;

...

END_SEQUENCE

When cycles appear in the control flow (using WHILE for example), we make

the hypothesis that the instructions cannot be moved.

The problem of finding an optimal reordering for an arbitrary sequence

of instructions is hard. We prove this result next.

4.5.2 Formal presentation

Definition 29 (PCCS) Given a directed acyclic graph G(V,A), a set S

of sites, and a surjective coloring function c from V to S. The Precedence

Constrained Class Sequencing problem (PCCS) consists in finding a bijective

function f : V 7→ {1, .., |V |} such that f(u) < f(v) whenever (u, v) ∈ A and

such that
∑|V |

i=2 ∆(f−1(i), f−1(i− 1)) is minimum, where ∆(u, v) = 1 when

c(u) 6= c(v), and 0 otherwise. �

The PCCS problem appeared earlier in the Operations Research liter-

ature under the name station routing problem [LMT91, Lof86] and in the

computer science literature as the loop fusion problem [Dar99]. Typically,

the nodes model a set of tasks that must be performed by a number of

machines which are represented by the colors. The arcs express some prece-

dence constraints on those tasks. The PCCS consists in finding a total

order in which the tasks are handled, minimizing the switchings between

the different machines.

In our case, nodes represent instructions, and the arcs express the con-

straints which must be respected to obtain equivalent programs. These

4.5. INSTRUCTIONS REORDERING 139

constraints are twofold : on the one hand data dependencies must be pre-

served, and on the other hand access to external variables must happen in

the order specified by the program text. The colors model the different sites

on which the instructions must be executed.

Remark that the problem of ordering instructions is not orthogonal to

the problem of coloring instructions. Here, we consider only the case where

all instructions have received a color, and only reordering is allowed.

Lofgren, McGinnis and Tovey proved that PCCS is an NP-Complete

problem [LMT91]. Darte additionally proved that the problem is still NP-

complete even if the number of colors is a constant greater than or equal to

three [Dar99]. In a more recent work, the authors of [CFSM] show that no

approximation algorithm for PCCS with a constant guarantee exists, unless

P=NP. Furthermore, the authors give a |S|+1
2 -approximation algorithm for

PCCS.

In the next section, we give an elegant proof which shows the complexity

of PCCS, and give an overview of existing heuristics for PCCS. We also give

a new set of heuristics, which perform well in practice.

4.5.3 Results

Complexity

The original proof that PCCS is NP-complete for |S| ≥ 3 can be found

in [Dar99]. In that paper, the author adapts a 10 pages long proof from

[RU81], which is based on a reduction from Vertex Cover to Shortest Com-

mon Supersequence. We now give a shorter proof for the NP-completeness

of PCCS.

To prove that PCCS is NP-complete, we focus on a restricted version of

Shortest Common Supersequence (SCS) [GJ90] and show that it is a special

case of PCCS.

Definition 30 (SCS) Given a finite alphabet Σ, a finite set R of strings

from Σ∗ and an integer k. The Shortest Common Supersequence (SCS) asks

for the existence of a string w ∈ Σ∗ with |w| = k, such that each string x ∈ R
is a subsequence of w, i.e. w = w1x1w2x2w2 . . . x|x|w|x|, where each wi ∈ Σ∗

and x = x1x2 . . . x|x|. �

SCS has been proved NP-complete even on a binary alphabet {0, 1}
[RU81]. A restricted version of the SCS may be defined by requiring that

no symbol of the alphabet may occur consecutively in any input string. We

will refer to this as SCS-r. In [LMT91], the authors showed that SCS-r

140 CHAPTER 4. DSL’S DISTRIBUTION

is NP-complete on an alphabet of 2k symbols, if the general SCS (with

consecutive repeated symbols allowed) is NP-complete for k symbols. So,

with the result in [RU81] we can deduce that SCS-r is NP-complete for 4

symbols. More precise results on SCS-r are given in [Dar99], who proves its

NP-completeness with only 3 symbols (note that, with 2 symbols, SCS-r is

easy, and trivial with a single symbol).

Theorem 14 PCCS is NP-complete �

Proof. It is clear that the problem is in NP, since the correctness of any

candidate solution may be verified in polynomial time. To prove the NP-

completeness, we reduce SCS-r to PCCS. Let (Σ, R, k) be an instance of

SCS-r. We construct an instance of PCCS as follows.

First, we consider each symbol of Σ as a color for the vertices of the

constructed graph G (|S| = |Σ|). For each x ∈ R, we form a path of length

|x|, with vertices colored by the corresponding symbol in x. The disjoint

union of all these paths is the graph G = (V,E). Hence, (G,Σ) is an

instance of PCCS. Notice that this construction can be done in polynomial

(more precisely linear) time.

⇐ If there is a solution of PCCS, i.e., a vertex labeling of cost at most

k−1, then there exists a string of length at most k as a solution of SCS-r. In

fact, a solution of PCCS can be interpreted as a sequence of at most k blocks

of vertices of V , that have the same color. If such a solution exists, then it

is possible to construct a string w by replacing each block with its color. w

is clearly a solution of SCS-r. Since there is no consecutive repeated color

in any of the paths of G, the vertices in each block of the solution of PCCS

belong necessarily to different paths. Consequently, by replacing each block

with a single symbol, each x ∈ R will have all its symbols in w. In addition,

the solution of PCCS preserves the precedence constraints of G. So for each

x, w can be written as w1x1w2 · · · x|x|w|x|, which means that w is a common

supersequence.

⇒ If there is a string w of length k as a solution of SCS-r, then there is a

solution of PCCS with cost at most k − 1.

We construct k disjoint subsets B1, B2, ..., Bk of V as follows. Define

B1 as the set of roots of G with the same color as w1, Bi>1 as the set

of vertices of V \ (B1 ∪ B2 ∪ ... ∪ Bi−1) that have their predecessors in

B1 ∪B2 ∪ ... ∪Bi−1 and are of the same color as wi. In order to show that

B1, B2, ..., Bk leads to a solution of PCCS with cost k − 1, we only have to

prove that ∀v ∈ V,∃i : v ∈ Bi, because the construction of the Bi’s preserves

the precedence constraints of the vertices of G.

4.5. INSTRUCTIONS REORDERING 141

It is easy to see that each x = x1x2 . . . xn can be written as x =

wi1wi2 · · ·win . such that 0 < i1 < i2 < ... < in ≤ k. Let us call P the path

in G and v1, v2, ..., vn the vertices of P corresponding to x1, x2, ..., xn respec-

tively. We proceed by induction to prove that each vj is in Bij . By con-

struction, v1 ∈ Bi1 . Suppose now that v1, v2, ..., vj−1 are in Bi1 , Bi2 , ..., Bij−1

respectively. It is clear that vj 6∈ B1∪B2∪ ...∪Bij−1
, so vj ∈ V \ (B1 ∪B2∪

...∪Bij−1
). By hypothesis, vj’s predecessor vj−1 ∈ Bij−1

, and by definition,

vj has the same color as wij . Hence, vj ∈ Bij . �

Heuristics

There exist several known heuristics [LMT91, KM94] for the Station Routing

and the Loop Fusion problems, that may be easily adapted to PCCS. Below,

we give a brief description of the most promising heuristics; but let us first

consider some definitions and notations.

• A vertex with no predecessor (successor, resp.) is defined as a root

(leaf, resp.).

• ready vertices of a given color a are defined as the vertices of color a

which only have predecessors of color a.

• Ga denotes a graph that is obtained by removing from G the ready

vertices of color a.

The idea in all the heuristics that we review in this section is to form a

solution starting from the empty sequence. Then we append all the ready

nodes of a chosen, with respect to some criteria, color c to the solution

replacing G with Gc, and repeat the same process with the new roots until

the graph is completely exhausted.

1. Greedy: At each round, choose the color c for which the number of

roots is the largest. The tie is broken at random.

2. Altruist: At each round, choose the color c for which Gc has the largest

number of roots. The tie is broken at random.

3. Level strategy (LS): At each round, choose the color c for which there

exists a vertex in the highest level, where the ith level is defined as

the set of vertices v such that the length of the longest path from v to

a leaf is i. If there is more than one color in the highest level, the tie

is broken at random.

142 CHAPTER 4. DSL’S DISTRIBUTION

4. Critical path level strategy (CPLS): Same as Level strategy, except

that in the definition of levels, consecutive vertices of the same color

in a path are counted for one.

5. Greedy-Altruist: Apply Greedy, but break ties by the Altruist criterion

and break any remaining ties at random.

6. LS-Greedy: Apply LS, but break ties by the Greedy criterion and

break any remaining ties at random.

7. LS-Altruist: Apply LS, but break ties by the Altruist criterion and

break any remaining ties at random.

8. CPLS-Greedy: Apply CPLS, but break ties by the Greedy criterion

and break any remaining ties at random.

9. CPLS-Altruist: Apply CPLS, but break ties by the Altruist criterion

and break any remaining ties at random.

Before going into discussions, let us illustrate these heuristics by an ex-

ample. Figure 1 shows a small and low-density graph related to a task

labeling problem and table 1 gives a solution provided by each heuristic.

yB

igeca

?
Z

ZZ~
�

��=

A

iea

?

C

igecaM

iea

?

D

y
Z

ZZ~

H

y

?
Z

ZZ~

E y

?
Z

ZZ~

F

i

?

Z
ZZ~

G

igeca
�

��=

L

iI iJ

iK

Figure 4.27: Example instance of PCCS.

The above heuristics run quickly in general, but often fail to provide

“good” solutions in practice. The common weakness in all of them is, in

effect, that their selections at each round are based either on local observa-

tions, or in the best case, on a very limited inspection over the respective

subgraphs of the current roots:

1. The Greedy strategy just focuses on the number of occurrences of each

color in the set of roots in the current state of the graph. This clearly

gives no guarantee that the chosen color at each round may lead to a

potentially better solution than if another color was selected.

4.5. INSTRUCTIONS REORDERING 143

Heuristics Example Solution Min Cost Max Cost

Greedy EF GIJ AL CD BH M K 6 6

Altruist A BEF CD M H GIJ L K 6 7

Greed-Altr Same as Greedy 7 7

LS-Greed EF A GIJ CD BH LM K 6 6

LS-Altr A BEF CD GIJ H LM K 6 6

CPLS-Greed Same as LS-Greed 7 7

CPLS-Altr Same as LS-Altr 6 6

Optimal A CD BEFH GIJ LM K 5

Figure 4.28: Solutions provided by the heuristics.

2. The Altruist strategy looks further in the graph but, its selection at

each round is just based on a superficial “look ahead”. In addition, it

focuses on all the roots in Gc and not those of different colors (see the

remark below). Our tests show that this “myopic” look ahead only

has a little influence on the final solutions.

3. The Level strategy is based on a conceptually better criterion, as color

selections someway result from some investigations in the subgraph

accessible from each vertex. However just the longest paths are taken

into account and not the entire subgraph accessible from each vertex.

In addition (and more importantly), it only considers the vertices in

the highest level, while there may be many roots of the same color in

some lower levels, whose sum of the longest paths altogether is greater

than that of a single root in the highest level.

4. The Critical path level strategy suffers from the same problems as

Level strategy, except that its levels are defined more accurately.

Remark: As in the definition of levels in CPLS consecutive vertices of

the same color in a path are counted for one, it would be nice to use this

concept in the Altruist criterion as well. So, at each round, we may choose

the color c for which Gc has the largest number of roots of different colors.

We call this variant accordingly “Critical Altruist”. Note that, the Critical

Altruist heuristic would find the optimal solution of the graph of figure 4.27.

New heuristics

In our heuristics, we focus on significantly stronger parameters, namely the

entire subgraph accessible from each vertex. In particular, we take into

144 CHAPTER 4. DSL’S DISTRIBUTION

account the “weight” of these subgraphs that may be defined with respect

to various criteria.

Some notations :

• SUB(v) denotes the subgraph accessible from the vertex v.

• W (v) denotes the static weight of SUB(v) (see below for various defi-

nitions).

• WG(c) denotes the weight of the color c with respect to the current

state of the graph G, that is the sum of the weights of all the present

roots of G that are of color c.

The general framework of all our heuristics is the same, and is essentially

similar to that of the heuristics described above. What distinguishes between

the new and previously known heuristics (and also among the new heuristics)

is the weight definitions for the vertices and consequently for the colors.

The general idea is to select at each round a color whose weight, with

respect to the current state of the graph, is maximal and to append all

the roots of that color to the solution. This would make possible that an

“important” portion of the graph becomes “ready” for the next round and so

would give some assurance that other roots with their respective accessible

subgraphs may most probably be “consumed” when processing later that

subgraph. Here is the framework of our heuristics:

PCCSi (G)

T := empty string;

S := {colors of the roots of G};
WHILE S is not empty DO

Set S′ = {c ∈ S : WG(c) = max{WG(b) : b ∈ S}};
Choose a ∈ S′ : # roots of color a = min{# roots of color b : b ∈ S ′};
G := Ga;

T := T ‖ {all newly removed vertices from G} (all of color a);

Update S by removing a and by adding the colors of the new roots;

END

return (T);

Note that to break ties (in S ′), we choose a color with minimal number

of roots. In fact, since some roots of the same color may have subgraphs

with some portions of nodes in common, the weight of a color may be over-

estimated. So, the computed weight of a color with minimal number of roots

4.5. INSTRUCTIONS REORDERING 145

may potentially be more close to the reality. This is actually valid for all

weight definitions below.

As a first attempt, we may merely define W (v) as the number of ver-

tices in SUB(v) (that may be determined in a preprocessing phase) and the

weight WG(c) of a color as the sum of the weights of the roots of that color

(that should clearly be calculated at run-time). One may expect that the

solution based on this criterion is generally as “good” as those returned by

the Greedy, the Altruist or the LS heuristics, since all the related criteria

are taken into account in the calculation of WG(c). However, we believe

that this is too weak to attain sufficiently “good” solutions. For example,

if a root v has a large SUB(v) but with all vertices of the same color, then

it would not be possible to “consume” other roots with their respective ac-

cessible subgraphs when processing SUB(v). Thus, a realistic improvement

would be to count all the roots of a same color for one, as was the motivation

of the CPLS.

In the following, we consider three different criteria that may be com-

bined in various ways to define the weights.

Criterion 1. We define W1(v) as an approximation of the minimal num-

ber of sets of the vertices in SUB(v) that are of the same color and would

become root at the same time. Unfortunately, the exact value of this num-

ber cannot be determined in polynomial time. However, the algorithm of

figure 4.29 yields a good approximation.

W1 (v)

H := SUB(v);

i := −1;

REPEAT

i := i+ 1;

a := color by the Crit-Altruist criterion;

H := Ha;

UNTIL There is no more root in H

return (i);

Figure 4.29: Criterion 1.

Observe that we select a’s color at each round based on the Critical

Altruist criterion. This would make it more probable that at a later stage

more roots may be taken together in a set.

146 CHAPTER 4. DSL’S DISTRIBUTION

Criterion 2. Although defining the weights based on criterion 1 is more

realistic than just the number of vertices in a subgraph, it is still not ac-

curate. For instance, if SUB(v) consists of an alternation of two colors,

then whatever W1(v), it would not be possible to “consume” the rest of

the graph (that may be composed of many colors) when processing SUB(v).

So, another criterion is to take into account the total number of colors in a

subgraph, which is depicted in figure 4.30.

W2 (v)

H := SUB(v);

R1,...,m = (0, . . . , 0);

(R represents the set of colors)

REPEAT

a := random color among the current roots;

Ra := 1;

H := Ha;

UNTIL There is no more root in H

k :=
∑m

j=1Rj ; (the number of colors in SUB(v))

return (k);

Figure 4.30: Criterion 2.

Criterion 3. Another problem with both criteria above is that the internal

structure of the subgraphs is not taken into account when computing the

weights. For example, if SUB(v) is just a chain with many vertices of various

colors and SUB(u) consists of a graph with a vertex and a small number of

direct sons, then both W1(v) and W2(v) would choose v as the root to be

appended to the solution. However, SUB(u) would generally allow the rest

of the graph to be “consumed” within it more “easily” than SUB(v).

This is illustrated in figure 4.31. The subgraph rooted by A can entirely

be consumed when processing SUB(C), while it is not the case with SUB(B),

even though both subgraphs have the same number of colors.

Another improvement is thus to assign a third weight to each vertex

based on the structure of SUB(v):

When we combine the 3 criteria in the same algorithm, we obtain the

algorithm in figure 4.33.

Now we can combine the 3 values i, k and z in various ways to define

the weights of the vertices. We only consider weights that are the products

of any subset of these criteria, i.e. we take them into account similarly

and with the same importance. However, one may define W (v) using other

4.5. INSTRUCTIONS REORDERING 147

y

?iea

igeca
Z

ZZ~
�

��=

A

iea

i

?

B

iea

?y

?igeca

?i

igeca

ihgs
Z

ZZ~
�

��= ?

C

iea y

Figure 4.31: Motivation for criterion 3.

W3 (v)

H := SUB(v);

z := 0;

REPEAT

a := random color among current roots;

H := Ha;

z := z+ number of colors for unmarked roots;

mark new roots;

UNTIL There is no more root in H

return (z);

Figure 4.32: Criterion 3.

W (v)

H := SUB(v);

i := −1;

R1,...,m = (0, . . . , 0);

z := 0;

REPEAT

i := i+ 1;

a := color from the Critical Altruist criterion;

ra := 1;

H := Ha;

z := z+ number of colors for unmarked roots;

mark all the new roots;

UNTIL There is no more root in H

k :=
∑
rj;

return (i, k, z);

Figure 4.33: Criterion 1, 2 and 3 combined.

148 CHAPTER 4. DSL’S DISTRIBUTION

operations as i×
√
z3, or i× k2 ×√z.

Results

Theorem 15 The Greedy, Altruist, Level Strategy (and variants) and Crit-

ical Path Level Strategy (and variants) heuristics do not have a fixed approx-

imation bound in the general case. �

Proof. It is easy to check that none of the mentioned algorithms guarantee

to find the optimal solution for the instances depicted in figure 4.34. Note

that the optimal solution consists of only n blocks (n, n−1, . . . , 1), while any

of the mentioned algorithms may return a solution that consists of n(n−1)
2

blocks (1, 2, . . . , n, 1, 2, . . . n− 1, . . .). Note that our new heuristics finds the

optimal solution for these instances. Indeed, criterion 2 and 3 will pick color

n first since the number of colors and roots is larger for color n. The same

reasoning applies for n− 1, . . . , 1 �

Figure 4.34: Hard PCCS instances for existing heuristics.

Theorem 16 Level Strategy has a |C|-approximation bound in the case

where G consists of a disjoint set of sequences. �

Proof. Suppose that the solution found by LS consists of k blocks of colors

c1, ..., ck . The corresponding sequence of graphs is G0, ..., Gk , where G0 =

G,Gi = Gi−1
ci . Let wi be the highest level in Gi. First note that wk = 0,

since no more nodes exist in Gk. Next, note that the sequence w0, ..., wk is

a decreasing sequence. Indeed, each time a root is removed from the graph,

the highest level is either decreased or remains the same. In the latter case,

roots of other colors in the same level remain in the graph. However, there

can only be |C| roots of different color in the same level at any given time.

Thus, k ≤ |C|w0. Let OPT denote the number of blocks in the optimal

solution. It is clear that OPT ≥ w0. This means that k ≤ |C|OPT , or

4.5. INSTRUCTIONS REORDERING 149

otherwise stated k
OPT ≤ |C|, which proves the announced approximation

bound. �

For a quantitative comparison between the different existing heuristics

and our new heuristics which uses i∗k ∗z as selection criterion, we used two

sets of directed acyclic graphs. The first set consists of permutation graphs

[BFR71]. In these graphs, each vertex corresponds to an element of the

ground set of a permutation, and two vertices are adjacent if and only if the

permutation reverses the relative order of the two corresponding elements.

The results on permutation graphs are comparable to those obtained with

interval graphs [Haj57]. That is, each vertex corresponds to an associated

interval, and two vertices are adjacent if and only if the corresponding in-

tervals intersect. The results for this first set of graphs are presented in

figure 4.35. The rows in the table give the results for each heuristics, while

columns indicate the number of colors in the graph. The different heuris-

tics are compared relative to the best performing heuristics. Note that each

column represents the mean result of 200 experiences, where each experi-

ence consists of running all heuristics on a permutation graphs counting 200

nodes. For example, let us take a closer look at the results using 10 colors :

CPLS-Altr gets the best results, while our heuristics scores 1.1% higher, the

worst heuristics (Altruist) returns solutions that are on average 8% larger.

For this set of graphs, we can conclude that most of the heuristics return

comparable solutions. In our opinion, this has to do with the homogeneous

structure of these graphs, caused by the high amount of randomness.

Colors 2 3 4 5 10 20 30

Altruist 1 1.029 1.082 1.077 1.083 1.086 1.074

Crit. Alt. 1 1.026 1.049 1.042 1.066 1.060 1.062

LS 1 1.031 1.075 1.054 1.061 1.063 1.062

LS-Altr 1 1.032 1.064 1.045 1.030 1.032 1.034

CPLS-Altr 1 1 1 1 1 1.017 1.022

PCCS-i ∗ k ∗ z 1 1.013 1.029 1.010 1.011 1 1

Figure 4.35: PCCS heuristics on permutation graphs.

The second set of graphs are randomly created, but are constructed in

such a way that they are not subject to total homogeneity. Each structured

random graph in this set is constructed by using a set of trees, each having

a variable width and height, and a certain number of colors. To obtain a

random dag, nodes in the different trees are randomly connected (a topolog-

ical sort assures that the obtained graph is a directed acyclic graph). The

150 CHAPTER 4. DSL’S DISTRIBUTION

results for this set of graphs are presented in figure 4.36. Each rows gives the

result for the mentioned heuristics, while the columns indicate the amount

of random arcs that where added between the different trees. Each column

gives the mean value for 200 experiments, each of which consists of an eval-

uation of all heuristics on a structured random graph counting 500 nodes.

Results are given for graphs counting 5 and 30 colors, and are relative to the

best performing heuristics. It is clear from these figures that our heuristics

does not perform well on graphs with a low number of colors, and that the

performance drops when more and more random arcs are added between

the trees. Remark also that the Level Strategy heuristics outperforms the

altruist heuristics with solutions up to almost 40% better. To see the im-

pact of the number of colors and the random arcs in the graph, consider

figure 4.37. Here, we plotted the performance of our heuristics compared to

Critical Path Level Strategy (which is the best performing existing heuris-

tics). In easy cases, our heuristics comes up with solutions that are up to

8% better, while for more complex graphs, it is beaten by the Critical Path

Level Strategy heuristics with roughly the same amount. The best results

are obtained in graphs with a high number of colors.

Random% 20 50 100 150 200

5 colors

Altruist 1.210 1.23 1.30 1.29 1.26

Crit. Alt. 1.375 1.33 1.30 1.26 1.24

LS 1.081 1.08 1.09 1.07 1.07

LS-Altr 1.064 1.07 1.08 1.07 1.07

CPLS-Altr 1.002 1 1 1 1

PCCS-i ∗ k ∗ z 1 1.01 1.04 1.0 1.08

30 colors

Altruist 1.337 1.39 1.38 1.34 1.33

Crit. Alt. 1.523 1.47 1.38 1.31 1.27

LS 1.105 1.09 1.06 1.04 1.04

LS-Altr 1.087 1.06 1.03 1.03 1.03

CPLS-Altr 1.063 1.05 1.02 1 1

PCCS-i ∗ k ∗ z 1 1 1 1.01 1.03

Figure 4.36: PCCS heuristics on random structured graphs.

4.5. INSTRUCTIONS REORDERING 151

Figure 4.37: OTL Compared to CPLS on random structured graphs.

Evaluation

It is hard to evaluate our heuristics since there is no set of representative

instances available. A statistical study of the precedence relation induced by

the def-use chains of real dSL programs would have made this study possible.

However, to the best of our knowledge, in the literature no such statistical

studies have been undertaken for common programming languages. Either

research is conducted in the area of statical analysis, in order to extract

the precedence relation from a program text (i.e. find the most precise

def-use chains), or studies are undertaken to approximate the precedence

constrained class sequencing problem with a general precedence relation

which is supposed to be available. Little is known about the characteristics of

programs conceived by the human mind. We believe however that the class

of our instances is very specific, and the particularities of these instances

should be exploited to find more efficient heuristics.

With the implementation and the use of the dSL compiler-distributer

in the industry, this information could be available in the future, and more

precise knowledge could then be collected : both the particularities of the

precedence constraints and the distribution of colors on the different instruc-

tions could then be studied, resulting in new criteria for our general PCCS-i

framework.

152 CHAPTER 4. DSL’S DISTRIBUTION

Chapter 5

dSL’s implementation

In this chapter, we discuss the dSL environment. More specifically, we give

implementation details about the different steps taken to transform a dSL

source code into an executable code, and show how this code is executed

in dSL’s execution environment. We conclude this chapter by a critical

discussion on the applicability of dSL to complex systems.

5.1 The dSL Environment

5.1.1 Overview

Figure 5.1: Overview of the dSL environment

At first glance, the dSL environment can be divided in two major parts :

the dSL compiler-distributer, and the dSL virtual machine. The compiler-

distributer takes as input a dSL source code, and transforms it in executable

code. This executable code can then be executed on the dSL virtual machine.

153

154 CHAPTER 5. DSL’S IMPLEMENTATION

We first discuss the compiler-distributer, whose functional blocks are

given in figure 5.1. The source code passed to the distributer-compiler is

first analyzed by the frontend, which mainly parses the code. Next, a basic

jump-analysis and optimization is performed. This is followed by an imple-

mentation of the algorithm presented in section 4.3, which assigns all global

variables and instructions to the set of sites. Finally, once all code is colored,

the backend generates executable code for the dSL virtual machine.

Next, the dSL virtual machine is discussed. This virtual machine is

basically a register based CISC architecture interpreting assembler code with

some special features such as event handling and inter-site communication

primitives.

5.1.2 The Frontend

The frontend is the first part of the dSL compiler-distributer. It parses the

source code, and constructs a syntax tree.

While constructing the syntax tree, the frontend checks for syntactical

correctness. These correctness checks include variable declaration checking,

type checking and sanity of METHOD calls and WHEN/WHEN IN declarations

(number of parameters, type of object, the use of declared global variables in

WHEN, ...). If the code passes these tests, the syntax tree is used to statically

transform all WHEN INs into normal WHENs.

Next, the modified program is transformed into a set of control flow

graphs (cfg) [ASU86]. There is a control flow graph for each WHEN, METHOD

and SEQUENCE. A control flow graph is a graph where nodes are called basic

blocks, and edges express the possible ways in which control may flow from

one basic block to another. Each basic block in a control flow graph contains

a sequential list of instructions. At this point, the possible instructions in the

control flow graph are : assignment, call, unconditional jump and conditional

jump.

For modularity reasons, the frontend is a separate program. The set

of control flow graphs, type and variable declarations are organized in an

output file which is fed into the rest of the work flow. A detailed description

of this intermediate code representation and the implementation details of

the frontend can be found in appendix D.

5.1.3 The Optimizer

The optimizer reads the intermediate code resulting from the frontend. It

reads all type and variable declarations, which are put into the compiler-

distributer’s symbol table. Next, each control flow graph is read and stored

5.1. THE DSL ENVIRONMENT 155

in memory.

Simple jump optimization

First, the optimizer optimizes consecutive jumps and eliminates empty basic

blocks. This very simple optimization is not detailed any further.

Code transformation

Next, all instructions are simplified to 3-address code form [ASU86]. Before

transformation, all expressions in the assignment instructions and parame-

ters of the call instructions are complex expressions represented as syntax

trees. The optimizer transforms these instructions, by introducing tempo-

rary variables into simple instructions with at most 3 operands. Figure 5.2

shows how the instruction x := (y*(x+1))/2; is transformed in 3-address

code.

The use of 3-address code and basic blocks is a standard transforma-

tion found in all modern compilers, since it simplifies the static analysis

algorithms used in the following chains of the compiler.

Figure 5.2: Transformation to 3-address code

Specialization of METHODs

With the definition of synchronous flow (cfr. definition 20), many programs
are not distributable. Consider for example the following code :

CLASS Pump

current : INT;

pressure : INT;

END_CLASS

GLOBAL_VAR

156 CHAPTER 5. DSL’S IMPLEMENTATION

pump1, pump2 : Pump;

end_var

METHOD Pump::start()

self.current := 10;

END_METHOD

WHEN pump1.pressure < 10 THEN pump1<-start(); END_WHEN

WHEN pump2.pressure < 10 THEN pump2<-start(); END_WHEN

In this small example, both WHENs make a call to Pump::start(), and thus,

pump1.pressure, pump2.pressure, pump1.current and pump2.current

are in the same connected component. This is caused by the appearance of

self.current in Pump::start(), which involves variables pump1.current

and pump2.current.

This is an unfortunate situation, caused only by the use of self in the

METHOD start(). Notice that there is no physical constraint forcing all these

variables on the same site. What the programmer really wants to express

here is the following :

// ...

METHOD start_pump1()

pump1.current := 10;

END_METHOD

METHOD start_pump2()

pump2.current := 10;

END_METHOD

WHEN pump1.pressure < 10 THEN start_pump1(); END_WHEN

WHEN pump2.pressure < 10 THEN start_pump2(); END_WHEN

In this case, pump1.pressure and pump1.current can be on a different site

than pump2.pressure and pump2.current.

This transformation, called specialization, is implemented and automat-

ically applied by the dSL compiler-distributer.

Definition 31 (Specialization) We define the specialization of METHOD M

for object O as a copy of M, where all references to self in M are replaced by

O. �

For example, the specialization of start() for pump1 is a METHOD containing

the instruction pump1.current := 10.

5.1. THE DSL ENVIRONMENT 157

The automatic specialization is performed as follows. In general, a call to a

METHOD can be made in three different ways :

1. The METHOD is called using a statically known object.

E.g. pump1<-start() or pumparray[1]<-start().

In this case, the METHOD’s body is specialized for the statically known

object, and the METHOD call is replaced by a call to the specialized

version.

2. The METHOD is called using an array.

E.g. pumparray[i]<-start().

There are two possible cases.

• The instruction is in sequential code. In this case, there is a spe-

cialized METHOD for each possible object used for the call. The

instruction is replaced by the following code :

IF i == 1 THEN pumparray[1]<-start();

ELSE IF i == 2 THEN pumparray[2]<-start();

...

• The instruction is in atomic code. In this case, no specialization

is performed, since all objects in the array can be accessed by the

instruction, and all calls must end up on the same site anyway.

3. The METHOD is called using self.

Since this can only be done inside a METHOD, this case is handled when

that METHOD is specialized. The called METHOD is therefore specialized

using the statically known object used to replace self.

Remark that this procedure was implicitly introduced in the formal se-

mantics of dSL, where we stated that METHODs are inlined in the code. Al-

though specialization does not remove METHODs, it has, with respect to the

atomic constraints, the same effect as inlining.

Before the code is passed on to the distributer, the optimizer analyzes the

code and performs the necessary specializations. This is a recursive process,

since introducing a new specialization for a given METHOD, may require more

specializations. This is for example the case when inside a METHOD, another

METHOD of the same class is called.

Care is taken that METHODs are not needlessly specialized. In the cur-

rent implementation, a table keeps track of the different specialized version

for each METHOD. When the METHOD needs to be specialized, the compiler-

distributer checks if that particular specialization does not already exists,

158 CHAPTER 5. DSL’S IMPLEMENTATION

reusing existing specializations if possible. This table is currently based

upon triples (M,O,M ′), where M is the original METHOD, O is the object for

which M is specialized, and M ′ is the resulting specialized METHOD. If a new

specialization is needed, the table is checked and, if possible, M ′ is reused.

The complexity of the specialization and the transformation of array

accesses in sequential code is substantial. Notice that the specialization can

be done in linear time w.r.t. the size of the program text and that the

number of needed specializations and the number of instructions introduced

by the code transformation are both linear in the size of the array. The

overall complexity is therefore in O(|P ||A|), where |P | is the size of the

program, and |A| the number of elements in the array. Nevertheless, if

multidimensional arrays are used, the number of specializations may become

important, resulting in slow compilation times and large executables.

5.1.4 The Distributer

The distributer is the most elaborate part of the dSL compiler-distributer.

It first checks if the program is distributable. Next, it colors all instructions

and global variables using the algorithm from section 4.3. Finally, it modifies

the control flow graphs by adding synchronization code in the SEQUENCEs.

This results in a set of colored control flow graphs, which can be used by

the backend to produce executable code.

Code details about the distributer can be found in appendix E. Here

we discuss, on a higher level, the technical aspects of the last part of the

distributer : how colored code is transformed and synchronization code is

inserted.

All the technical difficulties come from the use of SEQUENCE. As argued

before (section 2.2.2), dSL uses thread migration to handle sequential code.

Thread migration is used in dSL to obtain data locality. For an instruction

to be executable, all its operands (especially variables) must be accessible.

The coloring algorithm ensures that each instruction is assigned on the site

where its operands are localized. However, consecutive instructions may be

located on different sites. When the next instruction needs to be executed on

a different site than the current instruction’s site, the execution is halted and

moved to the other site where execution is continued. Of course, the local

context is moved from one site to the other, including local variables and

call stack. Classically, the entire thread’s local context is moved from one

site to the other. In dSL, since the communication layer can be relatively

slow, only the necessary part of the local environment is moved, saving

bandwidth. The penalty for this compactness is that the distributer must

5.1. THE DSL ENVIRONMENT 159

statically decide what part of the local context is needed. In this section we

explain how this information is calculated and how it is translated in the

so-called synchronization code.

We first take an intra procedural approach, where the problem of context

moving is studied inside a single SEQUENCE. Next, we show how this approach

can be integrated into an inter-procedural approach, where function calls

are taken into account. Dynamic features such as arrays and pointers are

discussed in section 7.1.

An intra procedural approach

An illustration of synchronization code inside a simple SEQUENCE is given

in figure 5.3. In this example, the variables x, y, w, u, v are supposed

to be local variables, while Ga, Gb and Gc are global variables localized on

respectively site A, site B and site C. Hence the instructions involving Ga are

localized on site A, instructions involving Gb are on site B and instructions

with Gc are on site C. The transformation of the sequential color graph goes

as follows. The initial control flow graph is divided in parts of maximal

size such that all instructions in each part are on the same site. Next, on

the borders of each such a part, START messages are inserted which allow

control flow to cross the different sites, in the same manner as if there is

only one site. In the example, labels l1, l2 and l3 are used to illustrate

this. Finally, messages are sent between the parts if a variable is updated

in one part and is needed by another part. The extra instructions that are

inserted by the distributer at the end of each part are called synchronization

code. In the example, three synchronization points are inserted. Remark

that the coloring algorithm presented in section 4.3 aims at minimizing the

number of synchronization points, weighted by the number of times control

flows through such a point.

To formally show how synchronization code is inserted by the distributer,

we reuse definition 24 of sequential color graph given in section 4.3.2. We

do not need the edges of infinite weight, since we suppose that a correct

coloring is already obtained. Since we only look at one SEQUENCE at a

time, for the time being, intra-procedural edges (introduced by METHOD call

instructions) are not taken into account either, and only one SEQUENCE at a

time is considered.

With these restrictions in mind, we can define the following :

Definition 32 (Control Flow Path) A control flow path is a list of nodes

n1, ..., nk such that n1 ∈ V ∧ ∀i ∈ [2, k] : ni ∈ V ∧ (ni−1, ni) ∈ E. �

160 CHAPTER 5. DSL’S IMPLEMENTATION

Figure 5.3: Synchronization code inside a SEQUENCE

5.1. THE DSL ENVIRONMENT 161

Definition 33 (Live variable) A variable x is live in node n1 if there

is a control flow path n1, ..., nk such that x is used before it is defined in

it, i.e. ∃i ∈ [1..k] : ni = (idi,mi, Di, Ui) ∧ x ∈ Ui ∧ @j ∈ [1..i] : nj =

(idj ,mj , Dj , Uj) ∧ x ∈ Dj. �

Definition 34 (Definition/Use) We say that a node n′ = (id′,m′, D′, U ′)

in the control flow graph uses a definition of x at node n = (id,m,D,U) if

there exists a path n = n1, ..., nk = n′ such that x ∈ U ′ ∧ x ∈ D and such

that x is live on that path. �

Definition 35 (Def-use chains) We define function DU(n, x) as a func-

tion which gives the set of all nodes n′ such that n′ uses the definition of x

at n. �

Def-use chains are easily obtained by using classical static code analy-

sis, and are widely used in optimizing compilers [ASU86]. The algorithms

calculating DU(n, x) are defined using backwards passes on the basic blocks

in the control flow graph. They allow the compiler to perform (amongst

others) dead code elimination, register allocation and constant propagation.

Here, we use def-use chains to know on which site a live variable may be

used in the future.

We define the set of nodes where synchronization code has to be inserted

(synchronization points) as follows.

Definition 36 (Monochrome set) A monochrome set of a node n is the

maximal set of nodes reachable from n in the sequential color graph, having

the same color, i.e. MC(n) = {nk ∈ V |n = n1, ..., nk is a control flow path

and ∀i ∈ [1..k] : c(n) = c(ni)}. �

Definition 37 (Exit boundaries) The exit boundaries of a monochrome

set MC→(n) is the set of nodes in MC(n) having at least one successor

with a different color, i.e. MC→(n) = {n′ ∈MC(n)|∃(n′, n′′) ∈ E ∧ c(n′) 6=
c(n′′)}. �

To explain how the message constructing algorithm works, consider a

node n in the sequential color graph, that defines a variable x (for example

x := y + z;). For this node, we can use DU(n, x) and obtain the set of

nodes which use this definition of x. For each such a node n′, on a different

site than n, we have to send the new value for x. The total number of

messages to send is the number of colors of the nodes in DU(x, n) that have

a different color than c(n).

162 CHAPTER 5. DSL’S IMPLEMENTATION

Two strategies are possible : we can either send the value of x at once,

or we can postpone the message until we actually leave the current site. We

choose the more efficient second solution. The benefit of this approach is that

bandwidth on the communications network is lower, and processing power

for the composition and emission of messages is spared. Indeed, consider for

example a loop that constantly changes x, while remaining on the same site.

It is easy to see that sending a message each time x changes will introduce

a severe performance penalty.

Clearly, the transmission has to be done in one of the boundary nodes of

the monochrome-set started at n. Indeed, the nodes in MC→(n) are exactly

those nodes that leave the current site, but not all of those nodes may lead to

a use of x. In fact, because we postpone the transmission, we can end up in

a situation where part of the calculated def-use chains do not hold anymore.

This is the case for {n1, n2} ⊆ MC→(n) where x is not live in either n1 or

n2. An example of this case is presented in the right branch of figure 5.4,

where x is a variable not live in n2. Note that for each given destination

site (the color of a node in DU(n, x) is different from c(n)) at least one

boundary node exists where the transmission must be made (if not, the set

DU(n, x) is erroneous). To avoid such undesirable cases, we transform the

sequential color graph and insert dummy nodes (where D = U = ∅) in order

to have for each node in MC→(n) only one successor. For each node n′

which has multiple successors ni (all with different colors than c(n)), we

insert a dummy node di, remove the edge (n′, ni) and insert edges (n′, di)
and (di, ni).

Figure 5.4: Postponing transmissions

Finally, observe that if there is a node n′ ∈ DU(n, x) with c(n) 6= c(n′),

5.1. THE DSL ENVIRONMENT 163

then for all paths n = n1, ..., nj , ..., n
′ = nk where x is live, we can find j

such that c(n1) = c(n2) = ... = c(nj) 6= c(nj+1). Remark that nj is in

MC→(n) and that n′ ∈ DU(nj, x). In other words, all information to con-

struct correct synchronization code is contained in the def-use chains at the

boundary nodes. The algorithm inserting synchronization code can there-

fore be limited to the inspection of all def-use chains at the exit boundary

nodes.

The synchronization code emitting algorithm is therefore extremely sim-

ple :

for each n such that ∃(n, n′) ∈ E ∧ c(n) 6= c(n′) do

for each n′, x ∈ DU(n, x) such that c(n) 6= c(n′) do

EMIT send x to c(n′)
end for each

EMIT start label(n′) to c(n′)
end for each

Restrictions on communications

Two remarks should be made concerning the previous algorithm. First it

is clear that all communications must be made over reliable channels. If a

message is lost, some updates will not be received and old values for local

variables may be used instead of the correct values.

Second, the order in which the messages are sent must be the same as

the order in which messages are received. Indeed, consider the example of

figure 5.5, where x, z are local variables and Ga, Gb, Gc and Gd are global

variable localized respectively on site A, B, C and D. The use of x in node

n′ will depend on the execution. Therefore, the message from A to D should

be received before the message from B to D. If this is not the case, D will

use a stale version of x.

This ordering can be obtained easily if acknowledgments are awaited for

each message before sending the next one.

An alternative is to use message clocks, inspired by vector clocks [Mat89]

which are used in distributed systems to obtain a logical clock. A message

clock c is a vector of n counters where n is the number of processes in

the distributed system. Each process i maintains one message clock ci =

(ci,1, . . . , ci,n). The algorithm goes as follows :

• Initially all clocks are set to 0

• Each time a process i sends a message to j, before sending the message,

164 CHAPTER 5. DSL’S IMPLEMENTATION

it increments its counter ci,j by one and appends the message clock ci
to the message.

• Each time a process i receives a message from j with message clock

cj, it checks that ci,i = cj,i − 1. If this is condition does not hold, the

message is suspended for later treatment. If the condition holds, the

process accepts the message and updates ci := cj.

The entry ci,i maintains the number of messages received by process i, while

ci,j 6=i keeps track of the number of messages sent to j by process i. Note

that if a process can send messages to itself (which is the case in dSL), a

separate counter in each process should be used instead of ci,i to keep track

of the number of received messages.

Figure 5.5: Message ordering must be respected

Code details about the distributer can be found in appendix E.

Interprocedural approach

Now that we know how to efficiently move execution from one site to another

inside a SEQUENCE, we can discuss how METHODs are handled.

Two important restrictions are made upon the coloring of sequential

instructions that simplify the execution of SEQUENCEs with METHOD calls.

The first restriction concerns the first and last instruction of each METHOD

with sequential code, which must be of the same color. To ensure that this

is the case, a dummy instruction with the color of the first instruction is

added at the end of each METHOD, for METHODs where the coloring algorithm

did not come up with such a coloring.

The second restriction makes METHOD calls always happen on the same

site as the first instruction of the called METHOD, and must be followed by

an instruction on that site. Note that, by the previous restriction, this is

5.1. THE DSL ENVIRONMENT 165

also the same site as the last instruction of that METHOD. This hypothesis

can easily be fulfilled by inserting a dummy instruction after the call, and

instructions with the desired color before each METHOD call, not respecting

this restriction. If no parameters are passed, these instructions amount to a

single dummy instruction, if parameters are passed, each parameter is stored

into a local variable created for that purpose. In this way, the METHOD call,

with the local variables as parameters, can entirely happen on the site on

which the first and last instruction of the called METHOD are localized.

We already argued that memory allocation is done statically in dSL,

which results in the restriction that only one instance of a given SEQUENCE

can be active at a certain time. A statical, interprocedural, analysis of the

code assembles the set of sites on which a given SEQUENCE may execute. For

each SEQUENCE and each site on which it executes, memory is allocated by

the dSL virtual machine to contain the execution stack of that SEQUENCE.

When a SEQUENCE is started, all intervening sites are informed by mes-

sages over the network. These messages contain the unique identifier for

that SEQUENCE and are sent from the site which contains the first instruc-

tion of that SEQUENCE. Upon reception of such a message, the receiving site

uses the previously allocated memory to initialize the stack pointer and ex-

ecution stack for that SEQUENCE. From that point on, all sites can receive

local variables by the mechanism described before.

When a call instruction is encountered on a certain site, all sites on

which the SEQUENCE may execute are informed to create a stack frame for

the called METHOD. This is done by sending messages to all concerned sites,

containing the unique identifier for the SEQUENCE and the METHOD. Next, the

METHOD call is executed. This means that the address of the next instruction

is pushed upon the stack of the current site, and parameters, which are

local variables inside the called METHOD, are inserted in the newly created

stack frame. Finally, the execution pointer is updated to the first instruction

of the called METHOD. Remark that all sites are now ready to receive local

variables if execution passes through them.

When the end of a METHOD is reached, the return address is fetched from

the current stack. Remark that this is only possible because of our two

initial hypothesis. Next, all concerned sites are asked to remove the last

stack frame. Finally, the stack frame on the current site is removed as

well, and the instruction pointer is updated according to the fetched return

address, which is an instruction on the same site.

A small example of this mechanism is given in figure 5.6. In this example,

global variables Ga, Gb and Gc are localized on site A, B and C respectively,

and a SEQUENCE S calls a METHOD M.

166 CHAPTER 5. DSL’S IMPLEMENTATION

Figure 5.6: Illustration of the interprocedural approach.

5.1. THE DSL ENVIRONMENT 167

5.1.5 The Backend

The backend is the last part of the dSL compiler-distributer. At this point,

all instructions are in 3-address form, colored, and synchronization code is

generated.

The task of the backend is to produce executable code. Three different

versions of the backend have been implemented, one for the dSL virtual

machine platform, which is used in the industry, one for the production of

Promela code, which can be used for the automated verification of dSL,

and one for the production of Lego Mindstorm code, which is used for

educational purposes. The translation to Promela is discussed in the next

chapter. The Lego Mindstorm backend and its execution environment is

presented in [Dev04].

The dSL Virtual Machine backend is much like any classical compiler

backend. The backend produces a set of files, one for each site in the sys-

tem. Each file contains type definitions, global variable declarations, and

executable code. It manages register allocation by graph coloring [Bri92]

and liveness analysis. Stack frame organization is based upon the ideas

presented in [ASU86]. The production of executable code from 3-address

instructions in control flow graphs is straightforward, and also presented in

[ASU86]. Details about the file format produced by the backend and code

details can be found in appendix F.

5.1.6 The dSL Virtual Machine

The dSL virtual machine has been designed as a compromise between perfor-

mance, debugging possibilities and ease of communication between different

Virtual Machines. The high performance requirements result in a register

based machine, as opposed to a stack machine. The use of CISC 3-operand

instructions makes it possible to do a step-by-step debugging. The commu-

nication primitives all use unique global identifiers for METHODs, SEQUENCEs

and global variables, which are translated into addresses in local memory

for those objects which are accessible on a given virtual machine.

The dSL Virtual Machine is developed for execution in the environments

AIX/PowerPC, PC using Linux and Windows. It implements a 32-bit CISC

architecture and uses registers.

The Virtual Machine’s Context

The dSL Virtual Machine’s main target platform is an industrial controller,

which is never halted. For this reason, each Virtual Machine contains two

168 CHAPTER 5. DSL’S IMPLEMENTATION

contexts : the running context, and the shadow context. A virtual machine

which is executing its running context is able to load a new program in its

shadow context. When the shadow context is ready for execution, it can

become the new running context. By this mechanism, a new version of a

program can be prepared offline, and almost instantly activated.

The context contains all objects which are handled by a virtual machine :

type definitions, variable declarations, constants, code segments, events, se-

quences and I/O definitions.

The type definitions which are currently in use by the dSL virtual machine

include all basic types BOOL, DINT, SINT, REAL, DATE, ... and more com-

plex types such as ARRAY and STRUCTURE.

A global variable in dSL is identified with a unique distributed identifier

(a 32-bit integer), which is attributed by the dSL compiler-distributer. For

each global variable, the Virtual Machine maintains a list of events (cfr.

WHENs) for which the variable appears in the condition, and a list of sites

to which the Virtual machine has to send updates when the value of the

variable changes (cfr. the ∼ operator). These lists are passed to the Virtual

machine by the compiler-distributer.

Constant definitions are treated in the same way as global variables, with

the difference that they cannot be affected to.

A code segment is basically a list of dSL assembler instructions. Each code

segment is identified by a unique distributed identifier, which allows one

virtual machine to start code on another virtual machine. There is a segment

for each WHEN condition and body, for each SEQUENCE and each METHOD. The

instructions inside a segment are coded as 4 words of 32 bits of the form

<Opcode, Operand 1, Operand 2, Operand 3>.

Events are triggered by the change in some global variable’s value. There is

an event for each WHEN in the program source. Each event has two segments

of code to which it is linked : a segment which evaluates the WHENs condition,

and a segment containing its body. In addition to those segments, the Vir-

tual Machine allocates memory to store the previous value of its condition.

This allows to execute the body of an event only when a rising edge occurs.

When a new value is assigned to a global variable, the list of events is used

to check for a rising edge in the event’s condition. When such a rising edge

occurs, the execution is interrupted, and the event’s body is executed. An

event stack is used to handle recursive triggerings.

5.1. THE DSL ENVIRONMENT 169

Tasks1 are the executable processes in a Virtual Machine. A task is also

identified by a unique distributed identifier. Each task contains an execution

stack and a segment, containing its code. There is at least one task on each

virtual machine, which is called the 0-task. It is used to handle events caused

by changes in external and ∼ variables and LAUNCHed code.

I/O variables represent the external global variables in the dSL program.

Input variables can only be read. They contain the UNKNOWN value when the

hardware to which they are attached is malfunctioning. Output variables

can only be written. When a UNKNOWN value is written to them, a predefined

neutral value for that output is copied to the hardware. I/O variables can

be binary in case of digital circuitry, or integer in case of analog hardware.

General Behavior

The dSL Virtual Machine executes an infinite loop, which performs two

tasks.

The first task for the virtual machine is to listen for incoming configura-

tion messages. These messages are used for debugging purposes and allow

the initialization and activation of the shadow context.

The second Virtual Machine’s task is to execute one Input-Process-

Output cycle. Each such cycle performs the following four steps :

1. Copy all hardware inputs to the associated external variables (no

events are triggered).

2. Trigger events caused by the new state of the external variables.

3. Inspect and handle pending incoming messages. Incoming messages

may be of tree kinds: ∼ messages, LAUNCH messages, or SEQUENCE

messages.

4. Copy all external output variables to the associated hardware devices.

A ∼ message contains the updated value of a distant global variable for

which a tilded version exists on the current site. It is sent by that distant site

because the value of the distant variable changed. The treatment of such a

message consists in assigning the new value to the tilded local version, and

triggering events if necessary.

1In the Virtual Machine documentation, the word sequence is used to refer to the

processes inside the Virtual Machine. To avoid confusion with the language construct

SEQUENCE, we refer to them as tasks.

170 CHAPTER 5. DSL’S IMPLEMENTATION

A LAUNCH message asks for the execution of some code segment which

is localized on this site. The treatment of such a message ends when the

activated code returns from execution.

A SEQUENCE message is related to synchronization code, or stack-frame

creation/deletion. Treatment for this messages is discussed in section 5.1.4.

Remark however, that when the message contains a START command, the

corresponding segment and label is activated, and treatment ends only when

the SEQUENCE ends its execution, or switches to another site.

Note that all steps of the Input-Process-Output cycle, except the treat-

ment of SEQUENCE messages, happens inside the previously introduced 0-

task.

Note also that no multitasking is needed inside the dSL virtual machine.

This design choice increases performance stability, simplifies the implemen-

tation and eases debugging.

5.2 Relation to the formal semantics

It is clear from the formal semantics that the implementation of dSL can-

not, and should not, include all behaviors given in the formal semantics of

dSL. For example, the implementation has limited memory, while the formal

semantics describes an infinite state system. This is the case for example

when recursive WHEN triggerings occur. Another difference is that the for-

mal semantics describes the system as a composition of fully asynchronous

processes, whereas the implementation respects some synchronization due

to timing constraints : the cycle time of each site in the implementation,

for example, will be in a given bounded range, which is not modeled in the

formal semantics.

The point is that the formal semantics describes a set of behaviors that

must be a superset of the set of possible behaviors of the real implementation.

In other words, anything the implementation can do must be captured in

the formal semantics.

It is hard to formally show that this is the case for dSL (or any complex

programming language), since a formal proof showing that the possible be-

haviors of the implementation are contained in the behaviors given in the

semantics, would require a formal description of the implementation, which

raises the same question. For this reason, we do not give a formal proof

here. We will give solid arguments for each rule in the semantics showing

that the implementation respects the semantics.

• [Interleaving]

5.2. RELATION TO THE FORMAL SEMANTICS 171

The interleaving rule states that whenever a process can make a move,

the global state of the system can make the same move.

This is obviously the case for the implementation since no blocking

synchronization whatsoever is used in the implementation.

• [Broadcast]

The broadcast rule instantly inserts messages in the Fifo channels of

all processes.

This is not the case in the implementation, since an asynchronous net-

work is used, and messages are sent one after the other. However, in

the semantics, these messages can be picked in any order, and may

take an arbitrary amount of time before being inspected by the pro-

cesses. This correctly models the asynchronous network used in the

implementation

• [Cycle start]

The cycle start rule schedules a new cycle, consisting of

1. Input

2. Treatment

3. Message Treatment

4. Output

Moreover, the different (sub)channels of the process starting a new

cycle are frozen by the insertion of delimiters �i.
In the implementation, an infinite loop schedules the same actions.

The insertion of the �i markers are automatically handled by the

execution environment, which does not accept new messages in the

queue2.

• [Input,Output]

The input and output rules express the interface with the environment.

These rules are handled by the underlying hardware of the execution

environment, and behaves exactly the same.

• [Message treatment]

The message treatment rule describes how messages in the (frozen)

Fifo channel are removed, from any sender, respecting the order in

which they where sent. Each message updates the value of a tilded

2in fact, it is the underlying operating system that buffers incoming messages during

the cycle

172 CHAPTER 5. DSL’S IMPLEMENTATION

variable, and WHENs are triggered if necessary.

The implementation takes messages one by one, from any site, and for

a given site, in the order in which they where sent by that site. The

behavior is the same (the variable’s value is updated and WHENs are

triggered)

• [End of message treatment]

The end of message treatment rule can be fired when no more messages

are in the (frozen) Fifo queue.

The same happens in the implementation.

• [Assignment], [If]

It should be clear that these rules are respected by the implementation

• [Sequence Activate(′)]
The sequence activate (activate′) rules are triggered when a SEQUENCE

is LAUNCHed by a process. σs is updated to contain the instructions to

execute and ξ is set to any site capable of executing the first instruction

and µ is updated for all local variables inside the SEQUENCE.

In the implementation, SEQUENCEs are not global objects. Instead

they are distributed amongst the different sites. Each instruction is

assigned to a certain site, using the the algorithm described before.

The LAUNCH instruction causes an activation message to be sent to the

site containing the first instruction of the SEQUENCE. Since this site is

clearly in ExecD(σs), this is consistent with the semantics. Note that

the destination site does not receive this message immediately, which

is not the case in the semantics where the change of ξ is instantly

visible to all processes. However, the semantics for the execution of

SEQUENCEs states that the process can wait an arbitrary amount of

time before executing the SEQUENCE. This models the fact that the

activation messages takes time to travel to the destination site.

The update of µ is respected by the implementation, as described in

the intra-procedural approach of section 5.1.4.

• [Sequence Assign]

The sequence assign rule can be executed when a process is in its mes-

sage treatment phase. It performs the assignment from a SEQUENCE,

sends updated values and triggers WHENs if necessary. µ is updated if

the left hand side is a local SEQUENCE variable, and the SEQUENCE is

migrated to any site capable of executing the next instruction.

The implementation handles the assignment in the exact same way

(sending messages and WHEN triggering). The difference resides in the

5.3. THE REAL DSL ENVIRONMENT 173

fact that µ is not instantly known to all sites. Instead, synchronization

code sends messages to update the value of local variables from the

SEQUENCE. Another difference is that the SEQUENCE cannot instantly

migrate in the implementation since an activation message is sent in-

stead. The reasoning is the same as the one held above : in the se-

mantics, processes can postpone the execution of the SEQUENCE which

models the time needed for the activation message to reach the des-

tination site. The fact that µ is not updated instantly has no effect,

since the messages containing the new values of the local SEQUENCE

variables will be treated before the activation message, as argued in

section 5.1.4.

Again, all instructions are localized at compile time, the SEQUENCE can

only migrate to a single destination site (i.e. the one on which the next

instruction is localized). But since this site must necessarily be part

of ExecD(σ′i), this behavior is included in the semantics.

Remark that if the SEQUENCE remains on the same site, no migration

is done, and the site immediately executes the next instruction. This

is also possible in the semantics when ξ ′ = ξ. The next instruction

can then immediately be treated by firing the Sequence If, Sequence

While or Sequence Assign rule.

• [Sequence IF, Sequence WHILE]

The reasoning is the same as the one held above.

5.3 The real dSL environment

The prototype dSL compiler-distributer has been taken over by Macq Elec-

tronique, and is integrated in their tool worksuite called OBViews. This

worksuite consists (amongst others) of a database, a history server, a syn-

optical viewer and a programming console. These tools run on a server,

which is connected to the network of PLCs, as depicted in figure 5.7.

The database

The database is the main source of information for the dSL compiler-distri-

buter. It contains all type definitions, all global variables (with their types),

kind (internal, external input or external output) and their localization if

applicable. When a dSL program needs to be compiled, this information is

extracted from the database and is passed to the dSL compiler-distributer.

A graphical user interface (cfr. figure 5.8) enables access to the database.

174 CHAPTER 5. DSL’S IMPLEMENTATION

Figure 5.7: dSL and OBViews

The console

The programming console is used as a management tool for dSL programs.

The console gives access to the database, the dSL compiler-distributer, the

dSL virtual machines and the PLC hardware. A screenshot of the console is

given in figure 5.9.

A graphical user interface allows one to remotely administrate the dif-

ferent PLCs connected on the network. This part of the console gives access

to the configuration of all input/output cards on a given PLC. The tool can

also be used to make a quick diagnostics of the status of a certain PLC.

The console also allows one to browse the database, and to compile a

dSL program. If the compilation terminates successfully, a set of executables

are ready to be sent over to the different PLCs; otherwise, the user interface

displays the compilation errors to the user.

Additionally, the console allows to load the different executables into

the set of PLCs. The set of executables is sent over the network to the dSL

virtual machines, which load them into their shadow context. Once all the

codes are in place, the console can be used to make the dSL virtual machines

switch from their running context to their shadow context.

5.3. THE REAL DSL ENVIRONMENT 175

Figure 5.8: Interface to the Database

176 CHAPTER 5. DSL’S IMPLEMENTATION

Figure 5.9: The Programming Console

The History Server

The history server is responsible for maintaining the relevant changes in the

dSL global variables.

The interactions between the history server and the dSL virtual machines

are implemented using messages which travel over the network. These com-

munications are completely asynchronous, and for each global variable can

be configured to use one of the following modes :

• Not relevant : The value of the variable is kept in the memory of the

dSL virtual machine, and is never communicated.

• By value : The current value of the variable is sent over to the history

server when the dSL virtual machine is asked for it. The history server

only periodically asks for the value of the variable in order to limit

communication bandwidth. Remark that when this mode is used, not

all changes are guaranteed to be observed by the viewer.

• By perturbation : When the variable’s value changes, the dSL virtual

machine appends the triple (x, v, t) to a buffer in memory, where x is

the variable, v its value and t a time stamp recording the time at which

x was changed. When the buffer is full, or when a timeout expires,

the buffer is sent over to the history server.

5.3. THE REAL DSL ENVIRONMENT 177

The Synoptic Viewer

The synoptic viewer allows the end user to supervise and interact with the

controlled system. It displays a synoptic, which is an animated, interac-

tive graphical representation of the real system. An editor allows to create

these synoptics, and allows - through the database - to link the graphical

animations with the state of the global variables in the dSL program. Addi-

tionally, the synoptic can contain interactive graphical objects which allow

to update the value of some global variables in the dSL program. A synoptic

can therefore be seen as a part of the environment which, in contrast with

the PLCs controlling industrial equipments, interacts with the user.

An image of a synoptic which is used to control a complex crossroad

using dSL, is given in figure 5.10.

178 CHAPTER 5. DSL’S IMPLEMENTATION

Figure 5.10: A synoptic for a crossroad.

Chapter 6

Verification of dSL

6.1 The Spin Model Checker

A model checker [EC99] is a software tool used to formally verify the cor-

rectness of a certain specification. A specification is usually an abstracted

presentation of the real system, describing the behavior of the suspect part

of the real system. The abstract model (M) is then used by the model

checker to verify whether a certain property (Φ) holds or does not hold in

the model.

M |=? Φ

Properties are often specified in temporal logical formulae, such as ltl or

ctl [Eme90], and can be divided in two sets. On the one hand, one can ask

questions on the reachability of some state in the model. These properties

are called safety properties. A typical example of a safety property in ltl is

[] ! bad, expressing that a certain bad condition never happens. On the

other hand, questions about the responsiveness of the system can be asked,

in the form of liveness properties. A typical example in ltl is [] (req

-> <> ack), stating that whenever a request is made, an acknowledge is

followed at some point in the future. For an in depth study of these two

kinds of properties, we refer the reader to [NC00].

The model checker terminates either with a positive answer, which means

that the model satisfies the property, or with a negative answer together with

a counter-example showing how the model violates the property.

To establish the (in)correctness of a model, the model checker performs

an exhaustive exploration of the state space of the model. There are basically

two different types of model checkers, based on the way they represent states.

Explicit state model checkers represent each state explicitly, while symbolic

179

180 CHAPTER 6. VERIFICATION OF DSL

model checkers use a symbolic representation of sets of states[McM93]. Ex-

plicit state model checkers are therefore limited to finite state models, while

symbolic model checkers can be used to establish the correctness of infinite

state systems such as real-time systems [HHW97, BLL+96] or systems with

an unbounded number of processes [Beg03].

In this thesis, we use Spin [Hol03], an explicit state model checker, which

uses ltl to describe properties, and Promela as a specification language.

The underlying mathematical concepts used in the Spin model-checker

are based on communicating finite state machines [BZ83]. These finite state

machines are specified by the user in a compact description using the specifi-

cation language Promela. When the model is checked for correctness with

respect to a certain property Φ, it is first translated into a Büchi automata

([Buc60]) S. Next, the resulting automata A of the product of all concurrent

finite state machines is calculated. Each run in A can be seen as a possible

execution of the system. All possible executions of the system are therefore

captured in the language produced by A. If these behaviors are a subset

of all behaviors described by the property, we can conclude that the system

is correct with respect to that property. In short, the system is correct if

L(A) ⊆ L(S). Let L(S) be the inverse language; we can now reduce the

verification to checking the following equation

L(A) ∩ L(S) = ∅

In order to verify a system with this approach, one must be able to (1)

complement S, that is, construct an automaton S that recognizes L(S) and

(2) construct the automaton that accepts the intersection of the languages

L(A) and L(S).

In Spin, the first operation is done by the user, who has to specify the

bad behaviors as an ltl formula. The second operation requires to perform

the product of the property automaton and the system. However, if the

complete automaton A has to be calculated prior to the verification, it

may result in an automaton that is exponentially bigger than the system’s

description. To avoid this, the product of all communicating processes and

the property is calculated on-the-fly. Therefore, an error may be found

before the complete state space is constructed. Another advantage is that

not necessarily all states in A have to be constructed to prove correctness

of the system [CVWY92].

In addition to its on-the-fly model checking algorithm, the Spin model

checker uses a partial order reduction algorithm during verification. Partial

order reduction methods [Val91, Pel94, God91] are based upon the observa-

6.2. TRANSLATION OF DSL TO PROMELA 181

tion that in concurrent systems, many runs are equivalent with respect to

some property, i.e. two or more runs cannot be distinguished by the prop-

erty. This is because the property is often insensible to the order in which

the different events in the run happen. If this is the case, and the events are

independent, i.e. switching the order in which they take place leads to the

same state, then only one order has to be checked. The results of applying

this method when verifying the system may cause an exponential reduction

of the explored state space during verification.

In conclusion, we can state that Spin is an explicit on-the-fly finite state

model checker. It uses communicating finite state machines specified in

Promela as specification language, and ltl as a language to specify prop-

erties. During verification, partial order reduction is used to tackle the state

space explosion problem.

For a short overview of Promela, we refer the reader to appendix G. In

what follows we show how Promela can be used to capture the behavior

of dSL programs (section 6.2). We then give some results for the examples

given in chapter 3.

6.2 Translation of dSL to Promela

The semantics of dSL usually allows an almost immediate translation of a

given dSL program into Promela. Remark, however, that this translation

depends on the distribution used to run this program, meaning that the

Promela specification will change every time another distribution is used.

For a given distribution, the number of sites, and for each site, the global

variables and instructions on that site are known. We translate each site as

a proctype in Promela. Each such a process executes the Input-Process-

Output phases presented earlier. The Input and Output phases have a direct

link to the environment, while the process phase uses message channels as

specified by the semantics of dSL.

In this section, we first give the restrictions imposed by the use of

Promela. Next, we describe how to efficiently model the environment.

Finally, we detail the translation of the code for the different dSL sites into

Promela. The dSL compiler-distributer’s Promela backend performs this

translation automatically for programs without SEQUENCEs, except for the

environment which must still be specified manually. To model the envi-

ronment, the programmer (1) must be able to specify non-deterministic

behavior (2) have the possibility to inverse the function of inputs and out-

puts (inputs for the system would become outputs for environment and vice

versa) (3) must have a possibility to specify instantaneous reactions, even for

182 CHAPTER 6. VERIFICATION OF DSL

distributed inputs and outputs. Those 3 elements are not available in dSL,

and the designer must therefore encode the environment’s behavior directly

into the specification. A preliminary study on how dSL could be extended

to allow the specification of the environment can be found in [God05].

6.2.1 Limitations

Translating full dSL into Promela is difficult for two reasons. First, recur-

sive functions are difficult to translate into Promela. However, recursion

is generally not a desired feature for industrial controllers. The second diffi-

culty arises from the restrictive finite state space representation used by the

Spin model checker which imposes a bound on the sizes of the communica-

tion channels. Static analysis techniques [LMW04] or testing [Jér91, JJ93]

can be used to detect problematic systems, where no such bound exists.

The constructs omitted in the semantics presented in section 3.4 (LAUNCH,

WAIT) can easily be translated, either by replacing them using the constructs

that are included in the semantics, since they do not contribute to the ex-

pressiveness of the language, or by direct translation into Promela.

Modeling the environment

We have several solutions to model the environment of a dSL program in

Promela. We could consider the environment as an individual process that

reacts on outputs and continually changes the inputs of the dSL program.

But this approach is quite inefficient. Indeed, consider the behavior of a

process P (site) in the system, and more particularly its infinite Input-

Process-Output loop. Since inputs are sampled at the beginning of such a

cycle, and outputs are written at the end, the changes of the environment

during the cycle have no effect whatsoever on the process phase of P . Thus,

to avoid unnecessary interleaving between the environment and the different

dSL processes, the part of the environment connected to this process should

be frozen as long as process P is in its process phase. To achieve this, we

integrate this part of the environment into the specification of process P (by

means of inlining). Doing so allows the environment to change state only

when the process reaches its input phase. The communications between the

process and its part of the environment is done through shared variables

(representing the I/O variables).

6.2. TRANSLATION OF DSL TO PROMELA 183

Modeling the processes

The processes described in the semantics can be coded almost as-is into

Promela processes using a straightforward syntactical transformation. In-

deed, each dSL process can be translated into a Promela process that

consists of an infinite loop performing the following steps : input-process-

output. There is one important difference between the formal semantics and

the Promela model, concerning the Fifo channels. In order to keep the

semantic rules as concise as possible, we introduced only one Fifo channel

for each process, and tagged each message with its sender. In the Promela

model, we introduce a Fifo channel, chan_r_s, for each receiving process

r and sending process s.

The input and output phases are interactions with the environment as

described above. The process phase does the following steps :

• Input treatment : the triggering conditions of all WHENs owned by the

process are considered consecutively successively in order to react to

the input changes.

• Message treatment : reads the messages sent by other processes. This

message treatment is translated into a loop reading a non-deterministic

number of messages from the input channel for this process. Every

time a message is read, WHENs depending on the updated variable are

checked for execution.

For this translation to work, we must have a special treatment for all

assignments in the dSL program. Hence, an assignment x:=e;, executed by

process s, is translated into Promela as follows :

• x:=e;: the assignment is also performed in Promela.

• chan_1_s!x,e ..., chan_n_s!x,e: broadcasts the new value to all

sites (1..n) that use ~x.

• consider all WHENs conditioned on x.

Figure 6.1 shows the general skeleton in Promela of the behavior of a

site X in the system.

According to the formal semantics, communications between the differ-

ent processes are modeled using Promela’s chan and are kept reliable but

not instantaneous. They have a maximal size MAX CHANNEL SIZE in the fig-

ure. Note that the messages inside the communication channels are of the

form { byte, byte }, which corresponds to the tuple (x, v), where x is the

184 CHAPTER 6. VERIFICATION OF DSL

variable, v the new value. Instead of sending the name of the variable, we

use the distributed unique identifier of the variable.

The specification of input X and output X has to be written manually

for each site X in the system. Besides the initialization (init site X()),

which initializes some variables for internal housekeeping, the behavior of a

site is exactly an infinite loop of Input-Process-Output cycles.

The read msg X part of the behavior is technically more tricky. It han-

dles the message channel for site X as follows. First, observe that the length

of the message queue is inspected when a new cycle starts. Recall the behav-

ior given in the formal semantics, where �i markers are inserted to limit the

number of messages in each subchannel, and where the message treatment

phase ends when all markers are in front of the queue. We do not use mark-

ers here, but use the length of the queues to ensure that messages arriving

during message treatment are not handled before the next cycle. Addition-

ally, the message treatment can be ended anytime, due to the break guard

of the loop. The reception of a message can be done from any originating

process (this is modeled by the if with N SITES guards). Once the message

is removed from the queue, it is passed to assign X, which contains a switch

on all the distributed identifiers for the global variables, and assigns val to

the variable with identifier var (assign X is not included in the skeleton).

Finally, the call to when X(), enforces that the triggering conditions of all

WHENs are checked, and their bodies are executed if necessary.

In addition to the treatment of ∼ variables, we also handle SEQUENCEs in

read msg X. A global variable seq i exists for each SEQUENCE, indicating on

which site the SEQUENCE resides (cfr. ξ in the formal semantics). If it points

to the current site, the SEQUENCE can be executed, and the call to seq i X()

executes a single instruction of the SEQUENCE. We detail the insides of this

inlined function next.

Verification of programs with SEQUENCEs

The inlined function seq i X contains the behavior of SEQUENCE i on site X.

Its purpose is to execute a single instruction of the SEQUENCE. Following the

formal semantics, it must also change the value of seq i, which indicates the

site on which the SEQUENCE is active (cfr ξ in the formal semantics). For the

translation of the workload σi of the SEQUENCE, we introduce an additional

global variable for each SEQUENCE called PC i. This variable reflects the

instructions remaining to be executed for SEQUENCE i. The translation of

the global valuation µ is straightforward : all local variables in SEQUENCEs

are declared as shared global variables.

6.2. TRANSLATION OF DSL TO PROMELA 185

chan chan_X_1 = [MAX_CHANNEL_SIZE] of { byte, byte, byte };

//...

chan chan_X_N_SITES = [MAX_CHANNEL_SIZE] of { byte, byte, byte };

inline input_X() {

// environment dependent behavior goes here

} // Analogue for output_X()

inline when_X() {

// These are calls to all WHENs on site X

// to check for a raising edge

when_X1(); when_X2(); ... when_Xn();

}

inline read_msg_X() {

byte var, val;

do :: atomic {

if :: sz1 -> sz1--; chan_X_1 ? var, val;

:: sz2 -> sz2--; chan_X_2 ? var, val;

// ...

:: sz_N_SITES ->

sz_N_SITES--;

chan_X_N_SITES ? var, val;

fi;

assign_X (var, val);

when_X();

}

:: atomic { seq_1 == X -> seq_1_X(); }

:: /...

:: atomic { seq_L == X -> seq_L_X(); }

:: break;

od

}

proctype site_X() {

atomic { init_site_X(); }

byte sz1, sz2, /*...*/, szN_SITES;

do :: atomic {

d_step {

sz1 = len (chan_X_1);

sz2 = len (chan_X_2);

// ...

sz_N_SITES = len (chan_X_N_SITES);

}

input_X(); // Read inputs

when_X(); // Treat events

}

read_msg_X(); // Treat X’s message queue

atomic {

output_X(); // Write outputs

}

od

}

Figure 6.1: Promela skeleton for a site

186 CHAPTER 6. VERIFICATION OF DSL

A skeleton of the Promela specification for seq i is given in figure 6.2.

First the instruction is executed, then the next instruction is selected, by

changing PC i. There is a branch in the if for each instruction of the

SEQUENCE executable on site X. Finally, the SEQUENCE is migrated to any

site that is able to execute this next instruction. This is modeled by the

nondeterministic if with all guards evaluating to 1.

inline seq_i_X() {

if :: PC_i == j -> // execute j-th instruction

... // Trigger WHENs, send updated values

// if necessary

// update the program counter

PC_i = next_instruction(j);

// nondeterministically change site

if :: 1 -> seq_i = site_1;

:: 1 -> seq_i = site_2;

// ...

:: 1 -> seq_i = site_l;

fi;

:: // ...

fi

}

Figure 6.2: Promela specification skeleton for SEQUENCEs.

For programs including SEQUENCEs, the backend produces a model that

is much closer to the implementation. Indeed, since the compiler is used

to produce the Promela code, all instructions are assigned to a certain

site, using the coloring algorithm of section 4.3. Synchronization code is

inserted, and messages are sent over the channels, as described in chapter 5.

The set of possible behaviors described by this model is smaller than, but

included in, the set of behaviors of the semantic model. The lattice of

behaviors presented in chapter 3 does not hold for the models produced by

the compiler-distributer’s Promela backend.

The lack of the automatic translation of dSL’s semantics for SEQUENCEs

is a historical fact. There are no unsuperable difficulties, and we hope that

with the future development of our tool this feature will be integrated.

6.3. RESULTS 187

6.2.2 State space reduction and the use of atomic

We use Promela’s atomic construct to merge all transitions in the process

phase of a particular process together into one meta transition1. To justify

this reduction, observe that exterior processes cannot have any effect on the

behavior of the process phase and that its progression has no influence on

other processes. Indeed, a process is only influenced by its Fifo channels

and the environment, and neither of them are consulted during processing.

On the other hand, the environment remains unchanged during this phase,

and another process can only observe the modification of the Fifo channels

when messages are sent. Although the introduction of atomic groups such

messages together, this has no effect since the number of messages received

in the input phase is non deterministic. Unfortunately, not the entire cycle

can be placed inside an atomic block. Indeed, the semantics of SEQUENCEs

is such that it can influence a process while it is in its message treatment

phase.

Caused by our asynchronous execution scheme which imposes that pro-

cesses can only observe their own local variables, this reduction can be ap-

plied to any dSL program. Notice that the process phase contains most of

the controller’s behavior, and that this reduction is therefore substantial.

6.3 Results

6.3.1 The canal lock controller

We now explain how to translate the dSL program for the canal lock con-

troller into Promela. Remember that this translation depends on a given

distribution. Here, we have considered several possible distributions, from

the minimal distribution to the maximal one. For this particular applica-

tion, the maximal distribution consists of 11 sites, where 4 of the 11 sites

each monitor a single control button responsible for sending the command

to close one of the gates. Results for this extreme configuration are hard

to obtain since the number of processes makes the state space size explode.

In the 7-sites distribution, the control panel, each gate and each water level

is controlled by a single site, while the 3-sites distribution has the control

panel on one site, and each lock controlled by another site. The 2-sites

distribution has one site for both locks, and one for the control panel.

Note that each distribution with more sites is a refinement of a distri-

1Note that, since messages are sent during the process phase and Fifo channels might

be full, the use of Promela’s d step is prohibited

188 CHAPTER 6. VERIFICATION OF DSL

inline flip_flop_behavior(sensor_flipped, sensor_flopped,

order_cmd, order_dir) {

if :: order_cmd && sensor_flopped ->

if :: order_dir == ORDER_TO_FLOP -> skip;

:: order_dir == ORDER_TO_FLIP -> sensor_flopped = false;

fi;

:: order_cmd && !sensor_flopped && !sensor_flipped ->

if :: order_dir == ORDER_TO_FLOP -> sensor_flopped = true;

:: order_dir == ORDER_TO_FLIP -> sensor_flipped = true;

:: skip;

fi;

:: order_cmd && sensor_flipped ->

if :: order_dir == ORDER_TO_FLOP -> sensor_flipped = false;

:: order_dir == ORDER_TO_FLIP -> skip;

fi;

:: skip;

fi;

}

Figure 6.3: Flip flop behavior

bution with less sites, which allows us to illustrate the simulation relation

used in theorem 2. Note however that, in practice, due to this theorem, the

correctness of the 7-sites distribution (if feasible) is sufficient to prove the

correctness of the 3-sites, 2-sites and 1-site distribution.

The gates and the water levels are modeled using a flip-flop behav-

ior (see figure 6.3) that has four states : flipped (1,0), flopped(0,1), flip-

ping(0,0) and flopping(0,0). It can receive an order to flip, to flop or to

do nothing. The behavior is obvious, and can easily be adapted for the

gates (flipped ≡ opened, flopped ≡ closed) as for the water level (flipped ≡
up, flopped ≡ down). A nondeterministic choice makes the gate (and the

water) move from opened (up) to closed (down) by allowing the model to

stay in the flipping, respectively flopping state. Modeling the operator is

straightforward : a nondeterministic choice lets the operator choose one of

the twelve buttons (lock{1/2}.{top/btm}_gate.btn_{open/close} and

lock{1/2}.btn_{empty/fill}).

Problem in the locks controller! At first glance, this implementation

seems to work. However, after modeling it in Promela as explained be-

fore and using Spin model checker to verify the given constraints, we found

out that it is faulty. Indeed, as shown in figure 6.4, two consecutive gates

(top gate of lock 1 and bottom gate of lock 2) can be opened at the same

time. In this case, three orders are given to the top gate of lock 1: an or-

der to open, followed by an order to close (before the gate is completely

6.3. RESULTS 189

lock1 lock2 controler

lock1.top_gate.reset_order_given()
~lock1.top_gate.closed = true

lock1.top_gate.open()
lock1.top_gate.closed = false

(top gate opening)

lock2.bottom_gate.button_open = true
lock2.bottom_gate.order_given := true

lock1.top_gate.button_open = true
lock1.top_gate.order_given := true

lock1.top_gate.close()

lock1.top_gate.closed = true

(top gate closing)

lock1.top_gate.open()
lock1.top_gate.closed = false

(top gate opening)

lock2.bottom_gate.open()
lock1.bottom_gate.closed := false

(bottom gate opening)

both the top gate of lock1 and the
 bottom gate of lock2 are opening!

(top gate closed)

lock1.top_gate.button_close = true
lock1.top_gate.order_given := true

lock1.top_gate.button_open = true
lock1.top_gate.order_given := true

Figure 6.4: Error trace

opened) and finally an order to open. Because of communication, the

reset order given() and the value of ~lock1.top_gate_closed are de-

layed (respectively because of the launch and ’~’). Therefore when the

order to open the bottom gate of lock 2 is given, the controller believes

that the top gate of lock 1 is closed and that no order has been given to

it. This allows the opening of the bottom gate of lock 2, which violates the

constraints.

An easy way to correct this, would be to allow a command to a gate (or

a water level) only if its order given is false (in other words, only allowing

one order at a time). However, this would not be a viable solution. Indeed,

imagine a boat gets stuck while the gate is closing, the controller would

not allow to open a gate until it is completely closed, and the boat would

be crushed! So, instead of blocking all commands while an order is pro-

cessed, we disable the commands only during the time needed to verify the

(distributed) constraints. To achieve this, a sequential execution checks that

the issued command can be executed, by migrating the condition to all inter-

vening sites. As illustrated in figure 6.5, this is done by means of a SEQUENCE

that evaluates, in the local variable check, that all the conditions are satis-

fied. In the example of figure 6.5, the first part of the constraint (check :=

(lock2.top gate.closed and lock2.water down);) will be evaluated on

the site where lock2 is localized, then the value of check will be migrated

to the site where lock1 is localized to evaluate the second part (check :=

(check and lock1.top gate.closed);). Since the control panel is dis-

abled during this task, we can be sure that the variable check is true if

and only if the constraints are satisfied, in which case, the corresponding

action(s) is (are) taken.

190 CHAPTER 6. VERIFICATION OF DSL

WHEN lock2.bottom_gate.btn_open and not disabled THEN

disabled := true;

launch open_bottom_gate_lock2;

END_WHEN

SEQUENCE open_bottom_gate_lock2()

VAR

check : bool;

END_VAR

check := (lock2.top_gate.closed AND lock2.water_down);

check := (check AND lock1.top_gate.closed);

IF check THEN

not_allowed_led := false;

LAUNCH lock2.bottom_gate<-open();

ELSE

not_allowed_led := true;

END_IF;

disabled := false;

END_SEQUENCE

Figure 6.5: WHEN / SEQUENCE monitoring the command “open the bottom

gate of lock2”

Verification Two properties were checked on the model. the first property

expresses all the constraints imposed on the system. It is expressed in ltl

using the formula [] !global bad where global bad is defined in Spin as

follows:

#define global_bad (

(!lock1_top_gate_closed && !lock1_bottom_gate_closed) ||

(!lock1_top_gate_closed && !lock2_bottom_gate_closed) ||

(!lock2_bottom_gate_closed && !lock2_top_gate_closed) ||

(!lock1_bottom_gate_closed && !lock1_water_down) ||

(!lock1_top_gate_closed && !lock1_water_up) ||

(!lock2_bottom_gate_closed && !lock2_water_down) ||

(!lock2_top_gate_closed && !lock2_water_up) ||

)

The second property expresses only the fact that the two middle gates (i.e

top gate of lock1 and bottom gate of lock 2) of the locks are opened at the

same time. It is expressed in ltl using the formula [] !middle bad where

middle bad is defined in Spin as follows:

#define middle_bad (

!lock1_top_gate_closed && !lock2_bottom_gate_closed

)

The verification was made using Spin version 4.2.4, on a 3 GHz Intel

Xeon machine with 4GB of memory. Some representative results corre-

6.3. RESULTS 191

sponding to the verification of these properties on the first (faulty) version

of the canal lock controller are shown in figure 6.6. The first column indi-

cates the number of execution sites, respectively 1 (minimal), 2, 3, 7 and

finally 11 (maximal). The second column indicates the maximum number of

times each button can be pressed. The next column indicates whether or not

messages are taken from their queues as soon as possible. The fourth and

fifth columns show respectively the property that was checked, and whether

or not partial order reduction was used. The four remaining columns show

respectively, whether the property was verified or not, the time needed for

the verification, the number of states explored and the memory usage. First

of all, by examining the first two sets of experiments, we can observe that

the results are coherent with theorem 2. That is, if the error in figure 6.4

is found in a distribution (indicated by × in column 6), it is also found in

more refined distributions. Next, note that if the property is verified with a

more refined distribution (indicated by
√

), it is also correct for less refined

distributions. Finally, in the third set of experiments, we can observe that

the gain due to partial order reduction on time and used memory is limited.

The gain is substantial only for the maximal distribution. This is because,

in the specification, we intensively use atomic blocks to reduce the state

space, therefore reducing the efficiency of the partial order reduction.

Sites Btn Channels Property P.O. Verif Time States Memory

1 2 Instant global yes
√

0:03.25 1.41e+04 1.432 MB

2 2 Instant global yes × 0:14.52 8.37e+04 3.064 MB

3 2 Instant global yes × 0:08.00 9.54e+04 3.569 MB

7 2 Instant global yes × 0:09.74 7.82e+04 3.645 MB

11 2 Instant global yes × 5:38.48 1.41e+06 68.56 MB

1 1 Normal middle yes
√

0:07.80 3.98e+04 2.457 MB

2 1 Normal middle yes
√

0:43.22 1.29e+05 4.908 MB

3 1 Normal middle yes
√

0:37.13 1.39e+05 5.311 MB

7 1 Normal middle yes × 21:14.36 1.91e+06 77.581 MB

11 1 Normal middle yes × 0:54.93 2.07e+05 10.383 MB

1 1 Instant middle no
√

0:00.15 437 0.409 MB

1 1 Instant middle yes
√

0:00.15 437 0.409 MB

2 1 Instant middle no
√

0:01.04 8133 0.709 MB

2 1 Instant middle yes
√

0:01.08 8132 0.709 MB

3 1 Instant middle no
√

0:00.72 10136 0.805 MB

3 1 Instant middle yes
√

0:00.73 10133 0.805 MB

7 1 Instant middle no
√

0:11.46 146401 6.206 MB

7 1 Instant middle yes
√

0:11.96 146338 6.206 MB

11 1 Instant middle no N/A * 2.10+07 1 GB

11 1 Instant middle yes
√

18:03.57 5.43e+06 261.7 MB

Figure 6.6: Results of the verification of global bad and middle bad on the

first (faulty) version of the canal lock controller.

192 CHAPTER 6. VERIFICATION OF DSL

6.3.2 The conveyor belt

Consider the conveyor belt system presented in section 3.7.2. We show

here how the system can formally be verified with Spin, using the compiler-

distributer’s Promela backend.

Manual intervention Several modifications had to be done to make the

dSL program verifiable with Spin.

First of all, there is a cyclic triggering of WHENs which cannot be trans-

lated by the Promela backend of the compiler-distributer, since Promela

does not have a straightforward way of handling recursive calls. These WHENs

are as follows :

WHEN ~belt_in1.box_at_end

AND mobile_hor_free

THEN

mobile_hor_free := FALSE;

LAUNCH belt_in1_to_lower_central();

END_WHEN

WHEN ~belt_in2.box_at_end

AND mobile_hor_free

THEN

mobile_hor_free := FALSE;

LAUNCH belt_in2_to_lower_central();

END_WHEN

Indeed, the assignment to mobile hor free could cause cyclic triggering.

Without a semantic analysis, the Promela backend cannot decide that

there is no problem with this code. Note that the assignment indeed does not

cause problematic behavior since the triggering conditions of all intervening

WHENs evaluates to false. The removal of the cyclic triggering has therefore

to be made by hand in the produced Promela code. In practice, the

Promela backend produces a call to an inline function, which computes

the condition of the WHEN, and triggers its body if necessary. This call has

to be removed and replaced by an assignment to the variable storing the old

condition of that WHEN (which evaluates to FALSE).

A more elaborate manipulation is needed for the suppression of the

WAIT instructions inside the SEQUENCEs, since those are not supported by

the Promela backend. We illustrate this with the beginning of belt in1

to lower central(), which is changed according to the translation pre-

sented in section 3.6, as follows :

6.3. RESULTS 193

SEQUENCE belt_in1_to_lower_central_part1()

mobile_hor<-go1();

_belt_in1_to_lower_central_part1.WAITING := TRUE;

END_SEQUENCE

WHEN _belt_in1_to_lower_central_part1.WAITING AND

mobile_hor.pos1 THEN

_belt_in1_to_lower_central_part1.WAITING := FALSE;

LAUNCH belt_in1_to_lower_central_part2();

END_WHEN

SEQUENCE belt_in1_to_lower_central_part2()

// Waited until the mobile horizontal belt

// is in the right position

// ...

END_SEQUENCE

Remark that this translation requires the introduction of a fresh variable for

each suppressed WAIT.

Choice of distribution The distribution used for the verification of this

system consists of 6 sites, each sites governs a given conveyor belt. The two

sites each connected to a mobile belt have 3 inputs (belt.pos1, belt.pos2

and belt.box at end) and two outputs (motor and belt.motor) assigned

to it. The sites controlling a fixed belt govern one input (box at end) and

one output (motor).

Modeling the environment The environment is modeled using two

inline Promela constructs : one describing the behavior of a fixed belt,

and one for a mobile belt.

inline mobile_belt_behavior(motor, pos1, pos2) {

if :: motor > 0 && pos1 -> pos1 = 0; // Going to pos2

:: motor > 0 && !pos1 -> pos2 = 1; // In pos2 now

:: motor < 0 && pos2 -> pos2 = 0; // Going to pos1

:: motor < 0 && !pos2 -> pos1 = 1; // In pos1 now

:: skip; // Nondeterministically let time pass

fi

}

inline fixed_belt_behavior(motor, belt_box_at_end, box,

194 CHAPTER 6. VERIFICATION OF DSL

next_box, next_is_running) {

if :: motor && !belt_box_at_end && box

// Motor is running, a box is on the belt

// make it appear on the end of the belt

-> belt_box_at_end = 1;

:: motor && belt_box_at_end

// Motor is running, a box is on the end of

// the belt. Make it go onto the next belt

-> belt_box_at_end = box = 0; next_box = 1;

// Check constraint

assert (next_is_running);

:: skip; // Nondeterministically let time pass

fi

}

To keep track of the boxes in the system, six global boolean variables

(box on1 through box on6) are added in the Promela specification of the

environment. Each such a variable will be set to true when a box is on

the associated belt. Using these variables and the previous two pieces of

Promela code, the environment’s behavior is easy to specify :

inline input_1() { // Behavior of belt in1

if :: !box_on1 -> box_on1 = 1; // Box created on belt in1

:: skip; // Non deterministically do nothing

fi;

// Check constraints

if :: belt_in1_motor && belt_in1_box_at_end ->

assert (mobile_hor_pos1);

:: else; // To avoid deadlock

fi;

fixed_belt_behavior(belt_in1_motor,

belt_in1_box_at_end,

box_on1, box_on3, mobile_hor_belt_motor);

} // Equivalent for input_2() modeling belt in2

inline input_3() { // Behavior of mobile_horizontal belt

mobile_belt_behavior(mobile_hor_motor,

mobile_hor_pos1, mobile_hor_pos2);

fixed_belt_behavior(mobile_hor_belt_motor,

mobile_hor_belt_box_at_end,

box_on3, box_on4, belt_central_lower_motor);

6.3. RESULTS 195

}

// ...

Notice that the safety constraints for this system (a box can only leave a

belt when the next belt is in front of it and is moving) are incorporated in the

description of the environment by means of Promela’s assert instructions.

When an exhaustive traversal of the state-space is performed with Spin,

these assert instructions are checked for all applicable states and an error

is reported with a counter-example if a condition in an assert instruction

is not verified.

Results The 6 sites distribution of the conveyor system respects the previ-

ously mentioned constraints imposed on the system. The above Promela

specification can be checked in a reasonable amount of time using Spin.

Spin’s output can be found in figure 6.7. Execution times are obtained on a

3 GHz Intel Xeon machine running Linux with 4GB of memory. The results

are obtained using 2.95 GB of memory, and less than 6 minutes of CPU

time. The complete state space consists of 4.79 · 107 states.

Depth= 3060 States= 4.78553e+07 Transitions= 5.1146e+07 Memory= 2945.991

(Spin Version 4.2.4 -- 14 February 2005)

+ Using Breadth-First Search

+ Partial Order Reduction

+ Compression

State-vector 256 byte, depth reached 3062, errors: 0

4.78553e+07 states, stored

425294 nominal states (stored-atomic)

3.29074e+06 states, matched

5.11461e+07 transitions (= stored+matched)

4.743e+07 atomic steps

hash conflicts: 2.91227e+06 (resolved)

Stats on memory usage (in Megabytes):

12825.224 equivalent memory usage for states

2677.875 actual memory usage for states (compression: 20.88%)

2945.991 total actual memory usage

341.07user 4.19system 5:45.32elapsed

Figure 6.7: Spin’s output for the Conveyor system model

The model could however not be verified using normal depth first search,

since verification times using this standard exploration appear to be very

long (the verification was halted after 3 days, with only 7 · 105 states ex-

plored). Breath first search had to be used to get the results. A quick

196 CHAPTER 6. VERIFICATION OF DSL

investigation leads us to suspect that the state space has a particularly deep

structure (the length of the search stack in depth first search is over 5 · 105

states long). This deep structure is combined with an important number

of transitions that go back to states that are already on the depth first

search stack. This results in an inefficient exploration, since these transi-

tions have to be undone (backtracked). Since a lot of transitions are inside

the atomic construct, many of them have to be calculated and backtracked,

which worsens the exploration time.

6.3.3 The railway system

Manual intervention In order to check the railway system, using the

Promela backend of the dSL compiler-distributer, a small change to the

produced Promela code had to be made. The problem is caused by re-

cursive WHENs and is analogue to the one encountered in the conveyor belt

example:

WHEN cs.waiting_1 AND cs.flag == 0 THEN // WHEN 1

cs.waiting_1 := FALSE;

cs.flag := 1;

END_WHEN

WHEN cs.waiting_2 AND cs.flag == 0 THEN // WHEN 2

cs.waiting_2 := FALSE;

cs.flag := 2;

END_WHEN

Note that the assignment to the waiting variables does not introduce prob-

lematic (recursive) WHEN triggerings, and can therefore safely be modified by

hand.

Chosen distribution The verification results of the railway system are

performed using the following 4 site-distribution

Site Variables

1 out 1, cs flag, cs waiting {1,2}
2 out 2

3 in 1, train 1.motor

4 in 2, train 2.motor

Modeling the environment To model the environment, i.e. both trains,

two additional boolean variables are used : train 1 in cs and train 2 in cs.

Each of these variables decides whether or not a train is in its critical section.
The specification of the environment is as follows :

6.3. RESULTS 197

inline env_1() {

if :: out_1 && train_1_motor ->

// When the train is before the out_1 sensor

// And it is running, make it leave the sensor

out_1 = 0;

:: else -> if :: train_1_in_cs && train_1_motor ->

// When the train is in its critical section

// and is running, make it pass before

// the out_1 sensor, and leave the critical

// section

out_1 = 1; train_1_in_cs = 0;

:: skip;

// Let time pass

fi

fi

}

inline env_3() {

if :: train_1_motor && ! train_1_in_cs ->

// Make the train go in front of the in_1 sensor

// (i.e. the train approaches the critical section

in_1 = 1;

:: in_1 && train_1_motor ->

// If the train approached the critical section,

// and is moving, make it enter the critical section

in_1 = 0; train_1_in_cs = 1;

:: skip;

// Let time pass

fi

}

The behavior for env 2() and env 4() is analogue.

Results The railway system is correct: it is not possible that both trains
are in the critical section at the same time. In order to automatically verify
this constraint with the previously described model, we use Promela’s
never claim. The never claim can be seen as an additional process which
monitors the system. ltl formulae can automatically be transformed into
never claims by the Spin tool. The never claim corresponding to the critical
section property is as follows :

never {

do :: (train_1_in_cs) && (train_2_in_cs) -> break;

:: else;

od;

198 CHAPTER 6. VERIFICATION OF DSL

// When the end of a never claim is reached,

// an error occurs

}

The results of the verification are presented in figure 6.8. The verification

is performed on a 3 GHz Intel Xeon machine running Linux with 4GB of

memory. The verification takes less than 30 seconds, and uses not more

than 60MB of memory. Note that most of the memory is needed for the

depth first search stack (38MB). As is the case in the previous example, the

statespace has a very deep structure. The total size of the state space is

relatively small, counting 5.07 · 105 states. Results with breath first search

are comparable to the ones obtained by using depth first search.

State-vector 172 byte, depth reached 1037646, errors: 0

506853 states, stored

5.86972e+06 states, matched

6.37657e+06 transitions (= stored+matched)

6.871e+07 atomic steps

hash conflicts: 1.40206e+06 (resolved)

Stats on memory usage (in Megabytes):

93.261 equivalent memory usage for states (stored*(State-vector + overhead))

17.854 actual memory usage for states (compression: 19.14%)

2.097 memory used for hash table (-w19)

38.400 memory used for DFS stack (-m1200000)

58.315 total actual memory usage

27.00user 0.09system 0:27.10elapsed

Figure 6.8: Results of Spin’s verification of the railway system

Chapter 7

Discussion and future work

In this chapter, we discuss the open questions concerning dSL. We first

comment the features present in SL, but missing in dSL. All of these features

are hard to implement due to the static distribution used in dSL. These

features are discussed in section 7.1.

Next, in section 7.2, we give some hints on how the dSL semantics (cfr.

chapter 3) could be extended to include real-time. Indeed, the semantics of

dSL is currently untimed, and real-time semantics could be interesting since

they give a more detailed and realistic description of systems implemented

with dSL.

In section 7.3, we discuss future work concerning the distribution algo-

rithms of dSL (cfr. chapter 4). Both algorithms, the shrinkage algorithm

from section 4.3 and the instruction reordering algorithm from section 4.5

are subject to further study.

Finally, in section 7.4, we discuss the verification of dSL, presented in

chapter 6. This verification is valuable for assuring the correctness of the

system. Unfortunately, the state space explosion problem makes it hard to

obtain results for large systems when an exhaustive search of the state space

is performed. We give therefore some alternatives to increase the confidence

in the correctness of a system implemented with dSL. These alternatives do

not necessarily perform a complete exploration of the state space.

7.1 Missing features in dSL

The fact that the localization of instructions and global variables is decided

at compile time has a major impact on several features of SL. As a result

of this choice, all dynamic elements of the language SL are hard to imple-

ment in dSL. These elements include pointers, arrays, polymorphism and

199

200 CHAPTER 7. DISCUSSION AND FUTURE WORK

inheritance. These problems are addressed in section 7.1.1.

Next to those language elements, the static distribution makes modular

compilation of dSL programs impossible, which has a drawback on the main-

tenance of large projects and code reusability. We look into these matters

in section 7.1.2.

7.1.1 Dynamic elements in dSL

Problems

SL is an object oriented language including all the fundamental concepts of

an OO language : objects, abstraction, encapsulation, polymorphism and

inheritance. However, dSL’s static distribution makes these concepts hard

to implement.

The static distribution used in dSL requires all global variables and in-

structions to be located on a certain site at compile time. Moreover, method

calls have to be resolved at compile time, which means that when a method

is called, the compiler has to know the site on which that method resides.

With SL’s inheritance, the instructions that are executed when a method

is called depends on the object that is used to make the call. For example,

when a hydraulic pump is called to start, it will initialize its pressure, while

the same action for an electric pump may involve initializing currents and

voltages. This means that the call to the method start on an object of

type pump may lead to the execution of different codes, which may reside on

different sites.

Even if it would be possible to find out the type of object that is called

at compile time to know what instruction to call, this information would not

suffice to solve the problem. Indeed, consider for example two objects pump1

and pump2 of type pump having their attributes localized on different sites.

Suppose further that a method start is defined for objects of type pump,

initializing the pump’s attribute current. Supposing that this attribute

is an external variable, it might be localized on different sites depending

on the particular instances of the type pump. Obviously, when a call to

pump1<-start() or pump2<-start() is made, there is no problem for the

compiler to know which code is called. However, if a pointer pump ptr is

used to make the call pump ptr<-start(), the compiler needs to know what

instance of pump is used to produce correct code. Solving this problem is

obviously undecidable in general. An analogue problem, to the one caused

by the use of pointers, occurs when arrays are used.

The need for pointers is substantial since the lack of them limits code

reuse. A typical situation in which pointers could come in handy arises when

7.1. MISSING FEATURES IN DSL 201

one object, say a pump, is part of another larger object, for instance a lock.

Often, the child object wants to invoke methods on its parent object, which

is easy to achieve using pointers.

Without pointers, the user either has to duplicate the code, or can use

arrays instead. In the latter case, all global objects of the same type are

put into a global array. In our lock and pump example, this would mean

that all locks are in an array called lockarray. Then, instead of using a

pointer lock ptr to a lock, the pump can use an integer lock idx, which

is the index of that lock in the lockarray. The call to lock_ptr<-M() is

then equivalently replaced by lockarray[lock_idx]<-M().

Possible solutions

A possible solution to the above described problems consists in generalizing

the specialization approach of section 5.1.3. Notice that with specialization,

array access is removed from the code. This approach can be used to remove

pointers as well.

Remark that the solution for arrays is simplified by the fact that the

number of objects to which an array access refers is statically known. While

this solution could be applied to pointers, the situation is more complex.

The compiler-distributer would need to have a list of possible objects to

which a pointer points at a given location in the program. Using this list,

METHODs could be specialized and code transformed as explained for arrays.

Techniques that try to find for each pointer and each program location an

as small as possible set of objects to which a pointer may point are known

in the literature as points-to-analysis techniques [HP00].

Although the problem of finding the exact set of possible objects is un-

decidable in general, many approximating algorithms exist. The most naive

conservative approximation supposes that each pointer may point to all ob-

jects of compatible types (including subtypes). More elaborate algorithms

which implement points-to-analysis range from very simple [IH97] to expen-

sive and more accurate [EGH94] approximations.

Remark however that in dSL, points-to-analysis is simpler than the gen-

eral case considered in the above cited work. Indeed, dSL does not include

dynamic allocation, and does not allow pointer arithmetic.

Atomic code in the presence of pointers

Consider the following snippet of code :

202 CHAPTER 7. DISCUSSION AND FUTURE WORK

CLASS Engine

current : INT;

END_CLASS

CLASS Pump

ptr_engine : POINTER_TO Engine;

temp : INT;

valve : BOOL;

END_CLASS

GLOBAL_VAR

pump1, pump2 : Pump;

engine1, engine2 : Engine;

ptr_pump : POINTER_TO Pump;

END_VAR

WHEN pump1.temp > 80 THEN

ptr_pump := ADDRESS OF pump1;

pump1.ptr_engine<-stop();

END_WHEN

WHEN pump2.temp > 80 THEN

ptr_pump := ADDRESS OF pump2;

pump2.ptr_engine<-stop();

END_WHEN

METHOD Engine::stop()

current := 0;

ptr_pump.valve := FALSE;

END_METHOD

// ...

In this example, the first WHEN forces pump1.temp and pump1.ptr engine

on the same site. But what about engine1.current and engine2.current?

The call to stop on pump1.ptr engine is ambiguous. If pump1.ptr engine

only points to engine1, then engine1.current and engine2.current can

be localized on different sites. If it may point to both engines, both current

variables must be localized on the same site as pump1.temp. Although we

cannot answer this question in general, points-to-analysis can be used as

an approximation. The program remains distributable with both pumps

on different sites if it turns out that pump1.ptr engine points to engine1

and pump2.ptr engine to engine2. In that case, the method stop will be

duplicated and will exist in two versions : one for each engine.

7.1. MISSING FEATURES IN DSL 203

It is however not clear if the distributability of a program should depend

or not on the efficiency of the points-to-analysis. We think it should not,

and more work is therefore needed to define clearly how atomic code in

the presence of pointers (cfr. definition 20 of synchronous flow) affects the

distributability of a dSL program.

7.1.2 Separate compilation

Separate compilation is a desired functionality which enables modularity

and code reuse [GBJL02]. With separate compilation, code can be pre-

compiled and organized into libraries, each library providing a number of

functionalities which can be reused in different applications.

In a typical imperative language, the code inside a library has gone

through all compilation phases including parsing, syntax and semantic check-

ing, transformation into control flow graphs, generation of intermediate

code, optimization and finally generation of executable code. When the

precompiled code is used in conjunction with a program, only very small

changes have to be made to the code inside the library. A linker performs

this job, which consists in relocating addresses of global variables and code

in memory in such a way that variables and code residing in the library can

be accessed by the program [PW72].

The benefit of using libraries is twofold. On the one hand, a library

can be used by a program which only has to know the interface, i.e. the

functionalities provided by the library, without knowing the internal imple-

mentation details of the code inside the library. On the other hand, there

is a reduction in the compilation time : since the code inside a library has

gone through all compilation phases, the time spent by the compiler can be

replaced by the time needed by the linker. Since linking is far less expensive

than compiling, the compilation time of a program in conjunction with a

library is far inferior than the time needed compiling both as an indivisible

whole.

Both advantages are non existing in dSL in general. The modularity

advantage is broken by the atomic constraints which are introduced when

a program makes synchronous calls to code which would be in a library.

These calls may introduce additional constraints between variables inside

the library, making the conjunction of the program and the library non dis-

tributable. When this happens, the programmer is faced with the internals

of the library, which may involve its implementation details. The advantage

of having small linking times compared to compilation times is also non

existing in dSL. Indeed, the localization of variables in dSL has an impact

204 CHAPTER 7. DISCUSSION AND FUTURE WORK

on the executable code inside a library. The localization of variables which

would reside in the library are dependent on how the library is used. This

results in the fact that the precompiled code would have to undergo substan-

tial changes depending on how the code is used. These changes include the

synchronization code inside dSL’s SEQUENCEs (section 5.1.4), sites to con-

tact when code is LAUNCHed (section 5.1.5) and duplication of code (section

5.1.3). These changes, in contrast to the knowledge required by a common

linker, are fundamental and can only be performed with deep knowledge of

the code to compile.

7.2 A real time semantics for dSL

In [Mic05], the author performs a preliminary study on how the dSL seman-

tics can be extended to include real-time.

The first step in this approach consists in the extension of dSL’s syntax,

by adding temporal keywords, including duration keywords which measure

elapsed time, and time of day keywords which allow to express an absolute

time reference.

Next, the semantics is adapted to include real-time. The semantics is no

longer expressed as a labeled transition system. Instead, it is expressed as

a network of timed automata. Timed automata are introduced by Rajeev

Alur and L. Dill in [AD90, AD94] and are a special case of linear hybrid

systems [ACH+95]. Three aspects of time are modeled using these timed

automata: transmission time, instruction time and current time.

Transmission time models the time needed for messages to travel over

the network. This is modeled by adding a timestamp to each message,

and changing the message treatment rule by accepting only messages who’s

timestamp is in a certain interval of time.

The instruction time models the speed of the processor executing the

dSL instructions. The principle is similar to that of a timeout clock. A

clock is added to every process, which is reset on each transition described

by the semantics. This clock is used to express that the following transition

can only happen when the clock is within a certain interval of time.

The current time models the real world time, and is global to all pro-

cesses. It allows the dSL program to trigger events when a certain global

time is reached.

We refer the reader to [Mic05] for further reading, as well as the prelim-

inary results on the formal verification of real-time dSL systems.

7.3. FUTURE WORK ON THE DISTRIBUTION ALGORITHMS 205

7.3 Future work on the distribution algorithms

Two algorithms are presented in chapter 4. The first algorithm is reduced

to the NP-Complete multiterminal cut problem (cfr section 4.3), and we

generalized theorem 5 due to Dahlhaus in such a way that it handles more

cases, resulting in theorem 6. Two interesting questions remain.

The first question is how our shrinkage theorem could be applied into a

branch and bound context [LW66]. The idea is the following : (1) shrink the

graph (2) branch: select a remaining edge, contract that edge and shrink

the graph (3) bound: Use a linear relaxation as a lower bound. Using this

scheme, the shrinkage theorem could be used to reduce the state space in

a branch and bound search. For the linear relaxation, one could use the

formulation presented in [CKR00] or [KKS+99].

The best approximation algorithm known is the one from [KKS+99].

This algorithm is based on a linear relaxation of the {0, 1} formulation of

the multiterminal cut problem. A rounding procedure is used to come up

with an integral solution, which is proved to be within 1.3438 of the optimal

solution. Without going into the details of this paper, we can state that the

rounding procedure is central in their approach. This rounding procedure

divides a set of nodes into two subsets, each resulting set ending up into

a different partition in the final solution. It would be interesting to study

if their rounding procedure is sensitive to our shrinkage theorem. In other

words : could their rounding procedure end up separating two nodes for

which we are sure that there is an optimal solution which keeps them in the

same partition ? If this is the case, then we can improve their algorithm,

if this is not the case, then it would be interesting to relate our result with

theirs.

Another point that could be interesting to study with the shrinkage

algorithm is how the max-min-st cuts relate to each other in the differ-

ent iterations of our unshackling heuristics. More precisely, suppose that

max-min-st cutG(n, n′) is known for two nodes n, n′ in G. Now suppose

that G is transformed into G′ by contraction of a certain edge e in G. We

have currently no knowledge of a relation between max-min-st cutG(n, n′),
max-min-st cutG′(n, n′) and e. It would be interesting to study if there is

a relation between these elements, and if such a relation exists, how it could

be exploited to speed up our unshackling heuristics.

The other algorithm presented in chapter 4 is used to reorder sequential

instructions in order to increase the performance of a dSL program during

execution. This problem is related (cfr. section 4.5) to the Precedence Con-

206 CHAPTER 7. DISCUSSION AND FUTURE WORK

strained Class Sequencing problem (PCCS). We could further study both

the theoretical and the practical point of view of our heuristics. From the

practical point of view, with this problem, it is hard to measure the quality

of a heuristics since a realistic set of instances is hard to obtain. Remember

that we use def-use chains as the input for the precedence constraints. To

the best of our knowledge, no statistical information exists on the presence

of these chains in common programming languages. Using this information,

we could finetune our heuristics, and compare them better with existing

ones. From the theoretical point of view, the heuristics presented are hard

to grasp. Their behavior is hard to generalize, and we therefore have not

found hard instances, nor were we able to prove the existence of an approx-

imation bound.

7.4 Partial verification and testing

In the previous chapter, we presented the verification of dSL. However, even

for small examples, the state space explosion problem was already problem-

atic. In this section, we present new ideas on how to handle the state space

explosion problem.

In the literature, several solutions are proposed. One idea concentrates

on building a sound abstraction of the system, either manually or automati-

cally. A sound abstraction aims at finding a compromise between functional

preciseness and functional correctness. An abstracted model of the system

has a less detailed description of the system’s behavior, and may therefore

include behaviors that do not occur in the reality. However, if the abstrac-

tion is sound and no errors are found, then one can automatically conclude

that no errors are present in the detailed description of the system, since

the abstraction includes all behaviors of the complete system. On the other

hand, due to the abstraction, the verification may come up with errors in

the abstract model which are not present in the real system.

In what follows, we will not use the concept of abstraction, instead we

introduce the notion of partial verification. Partial verification aims at ex-

ploring those parts of the state space that are interesting. The interesting

parts of the state space should be defined in such a way that when these

parts are explored, one can gain confidence in the correctness of the system.

It is clear that if we do not perform an exhaustive exploration of the state

space, there is no guarantee that when no errors are found, the system is

correct.

We introduce two options for partial verification, which are based upon

two different interpretations of what we call interesting parts of the state

7.4. PARTIAL VERIFICATION AND TESTING 207

space.

Related work

The work presented here is related to heuristic or directed model checking, a

technique used to quickly find errors in large state spaces. In that work, an

evaluation function is used that guides the model checker into the direction

of bad states, resulting in shorter error traces.

Many of such heuristics are tailored to find a certain kind of error (e.g.

[LCL88], [YD98]) while others use the structure of the property or the model

to direct the model checker (e.g. [ELL01b], [GV02]).

Closely related to this work, is the technique presented in [ELL01b]

and [ELL01a]. The authors propose an extension to Spin for the heuristic

exploration of large state spaces. As is the case here, the authors use the

model checker as a debugging aid to find residual design and code faults.

Using A∗ [HNR68], an estimation of the distance from a given state to a

bad state and the structure of the property, the model checker’s state space

exploration is guided in order to find short counter-examples. In [ELL01c],

very similar techniques are used in order to obtain short counterexamples

given a long trace to an error state.

Another ongoing area of research is to use the model checker’s ability to

find counter-examples in order to produce test cases [ADG+03]. Related to

this work is the use of verification techniques to establish the conformance

of the implementation with the formal specification by deriving test cases

from the specification [JCTG96]. This can also be done by stimulating the

implementation and observing its behavior [FJJV97].

In [GV02], the structure of the program is exploited to explore inter-

esting parts of the state space. In this particular paper, branch coverage

is used to direct the model checker : all high level branches are covered

during exploration. This work is directly related to the test coverage guided

verification presented in the next section.

Test coverage guided verification

With test coverage guided verification, we try to gain confidence in the soft-

ware which is being verified by looking in those parts of the state space that

are needed to satisfy some test coverage criterion. The complete description

is used as the specification, meaning that exhaustive verification can not be

performed a priori. Next, a test coverage metric is picked which will be used

to guide the model through the state space. When several new states have

208 CHAPTER 7. DISCUSSION AND FUTURE WORK

to be explored, the model checker chooses that state that most likely gives

an increase in the chosen test coverage metric.

In this way, the model checker is used as an automatic testing tool. If

the complete state space can be searched in a reasonable amount of time and

memory, the model checker can perform an exhaustive state space search,

and correctness can be proved. If this is not the case, the model checker

terminates prematurely due to lack of memory or time, the test metric will

indicate how much has been explored and confidence in the system may

be increased. Notice that upon premature termination, the guided model

checker will terminate with a higher coverage for the chosen metric than the

standard model checker performing depth first search.

The most widely accepted test metrics [Pat05, Nta88] that can be used

to guide the model checker are the following :

• Statement coverage, this measure reports whether each executable

statement is encountered

• Decision coverage, this measure reports whether boolean expressions

tested in control structures evaluated to both true and false.

• Condition coverage, this coverage reports the true and false outcome

of each boolean sub-expression.

• Multiple condition coverage, reports whether every possible combina-

tion of the outcome of boolean sub-expressions occurs.

• Modified Condition/Decision Coverage (MC/DC) requires enough test

cases to verify every condition can affect the result of its encompassing

decision[CM94]. More specifically, every decision in the program must

have taken all possible outcomes at least once, and each condition

in a decision must been shown to independently affect the decision’s

outcome. A condition is shown to independently affect a decision’s

outcome by varying just that condition while holding all fixed all other

possible conditions. For a formal definition, see [VB02]. This measure

is required for aviation software [RCT92].

• Path coverage, which reports whether each of the possible paths in

each function have been followed

Guiding the model checker to satisfy any of these metrics is not easy.

Basically, the model checker’s depth first search should be changed into a

more general search method. For safety properties, the model checker could

be changed as follows : using a priority queue, the model checker takes the

7.4. PARTIAL VERIFICATION AND TESTING 209

node with the highest priority from the queue. Initially, only the initial state

is in the queue. When a node is taken from the queue, the model checker

verifies the safety condition, and expands all successor nodes, for which it

calculates the heuristics value, and puts them into the priority queue with

their respective heuristics value.

Two interesting questions can be investigated in an in depth study of this

approach. First, there is the question of finding a good heuristics function.

Next, suppose that a good heuristic function is used, then it remains to see

to what degree a certain test coverage metric is able to uncover errors. Note

that with this approach the model checker is guided to increase the test

coverage metric, in contrast to a guided search in the direction of the error.

The strength of this approach relies on the strength of the test coverage

metric. It would be interesting to use this method on faulty models, and

study how efficient a certain test coverage metric is at finding errors.

We give here a simple approach, based upon the ideas of [GV02], which

could be used to find a good heuristic value in order to make the model

checker go into the right direction. In that paper, the authors define a set of

distances between states in the state space. We will use two of the distances

defined: the most simple distance metric is the hamming distance [Ham50]

between the binary representation of two states s, s′, let it be denoted by

H(s, s′). The second distance is defined as the local control location dis-

tance, which is the shortest path inside a single process between two control

locations l, l′ (i.e. the smallest number of transitions one must fire to go

from one control location to the other), let it be noted D(l, l ′).

Now consider the MC/DC coverage metric which is the most general test

coverage metric presented above. Suppose that the set M of tuples (c, v, l, p)

is given, where c is a sub-expressions that must take value v to satisfy the

MC/DC coverage metric, l is the control location of process p in which c

is used1. A heuristic value h(s) for a given state s could be calculated as

follows : ∑

(c,v,l,p)∈M
D(sp.loc, l) ·H(s(c), v)

where sp.loc is the current control location of process p and s(c) is the value

of c in s. Notice that high priority means lowest values with this heuristic

function.

This heuristic search method has been plugged into Spin. Very prelimi-

nary studies have revealed the insufficiency of the MC/DC criterion. Indeed,

its definition does not involve concurrency, and when this heuristic is used

1Multiple tuples with different p and l can be used if necessary

210 CHAPTER 7. DISCUSSION AND FUTURE WORK

on faulty models, the model checker almost always reaches 100% coverage

before finding the error. This means that even when 100% MC/DC cover-

age is achieved using a certain number of test cases, the errors where not

uncovered. Otherwise stated, the MC/DC coverage has little impact on the

confidence one can have in a certain system.

More work needs to be done to confirm these findings. If this obser-

vation would be confirmed, one should define better test coverage metrics,

especially if concurrent systems are involved.

Trace guided verification

The trace guided verification is also a partial verification approach which

can be seen as a hybrid solution between a debugging and a verification aid.

It can be used to discover early bugs in the design cycle. Spin allows for

instance to limit the search in the state space of the system to some fixed

depth. But, if the system is erroneous in one of its phases after a (long)

initialization, this limited search will not find the error.

We briefly present a technique which extends the principle of limited

search; it forces the model checker to verify safety properties on certain areas

in the state space that are believed to be dangerous. In order to do so, we

suppose that an interesting trace can be obtained, either by automatic test

case generation or by simulation or monitoring of the real system. Using this

trace and a simple transformation of the system’s specification, we make the

model checker explore all states on that trace, and within a certain diameter

of that trace (c.f. figure 7.1).

One advantage of this method is that we can target a precise part of the

model. Therefore, the designer, who has extended knowledge of the system,

can guide the model checker to the parts that are potentially dangerous.

Another advantage of our method is that the error traces are generally short

and easy to understand. Indeed, since we use an existing trace and the error

is not too far away, the error trace can easily be mapped to the original

input trace. We also show how Spin can be used as it is to perform this

kind of exploration.

We first show how to transform Promela specifications to enable this

technique. We then present a toy example of a faulty token ring leader

election protocol [Lan77].

Guiding a Promela Process Using a Trace

A central concept in this technique is to determinize a non deterministic

Promela specification. The aim is to make a Promela process go into the

7.4. PARTIAL VERIFICATION AND TESTING 211

Figure 7.1: Trace centered state space exploration

direction of the trace. This is done by forcing its non deterministic actions

to be the same (or within the diameter) of the ones dictated by the trace.

Supposing that non determinism is caused by interleaving, if and do

statements, we will add a synchronization channel sync to each process

that will dictate the choices the model has to make to respect the given

trace. A non deterministic if choice :

if :: C1 -> A1;

:: C2 -> A2;

fi

is determinized by the messages on this channel. If for example A1 is the

next action of the used trace, it can force the model to follow that path with

the sync!lbl C1 in the transformed code, presented hereafter.

chan sync = [0] of { int }
if :: sync?lbl_C1 ->

assert(C1); A1;

:: sync_lbl_C2 ->

assert(C2); A2;

fi

Note that traces have to be compatible with the model. On the previous

example, incorrect traces could force the model to execute A1 even if C1 is

not satisfied. The assert(C1) instruction checks for this possibility.

212 CHAPTER 7. DISCUSSION AND FUTURE WORK

To enable the search up to a distance MAXD of the trace, a global variable

d is added to the specification, and is incremented each time the specifi-

cation makes a move away from the trace. If d reaches MAXD, the system

is deadlocked and the model checker backtracks. Notice that forcing the

model to follow the trace should only happen when d is equal to 0. Fig-

ure 7.2 shows this transformation on an if and a do construct. The trace

is represented by a Promela process performing a sequence of d==0 ->

synch!... instructions guiding the model.

if :: C1 -> A1;

:: C2 -> A2;

fi

do :: C1 -> A1;

:: C2 -> A2;

od
⇓ ⇓

chan sync = [0] of { int };
int d = 0;

if :: d == 0 ->

if :: sync?lbl_C1 ->

assert(C1); A1;

:: sync?lbl_C2 ->

assert(C2); A2;

fi;

:: d < MAXD -> d++;

if :: C1 -> A1;

:: C2 -> A2;

fi

fi

do :: d == 0 ->

if :: sync?lbl_C1 ->

assert(C1); A1;

:: sync?lbl_C2 ->

assert(C2); A2;

fi;

:: d < MAXD -> d++;

if :: C1 -> A1;

:: C2 -> A2;

fi

od

Figure 7.2: Trace centered transformation of Promela specifications

Token Ring leader election

We present here a token ring leader election algorithm proposed in [Lan77].

Consider several stations that have to access a network in a mutual exclusive

way. To keep access exclusive, a unique token travels between the stations,

the owning station having the right to access the network. In this particular

case, we take the model of 3 stations, communicating on lossy asynchronous

channels with a bounded size of 3 messages. Since the channels may loose

messages, the token can get lost and a new one has to be generated. Each

process can be in a eligible and non-eligible state. The non-eligible state is

the normal state of a process, where no election is needed. In this state, the

7.4. PARTIAL VERIFICATION AND TESTING 213

station can access the network when it has the token and when it is done,

it passes the token to the next station. Claims are forwarded by a station

in this state if they did not originate from that station. Note that a station

in its non-eligible state can send a claim and then passes in eligible state.

This models the timeout if a station did not receive a token for a certain

period of time. The id of the station that started the election is added to

this message. A station in eligible state receiving a claim behaves as follows :

1. If the id is smaller than its own, the station switches to eligible mode

knowing that someone started the election.

2. If the id is greater than its own, the station destroys the claim, since

the claim is definitely not going to win the election, and the station

itself is in eligible state.

3. If the id is equal to its own, the station knows that all other stations

transmitted its claim and that it is the new leader. It can therefore

generate a new token and then changes its state to non-eligible.

An erroneous Promela specification of the election algorithm is given in fig-

ure 7.4, where a station generates a token even if it is not elected. (The error

introduced in the specification is marked with #ifdef ERROR IN MODEL).

Note that with this example, it is hard to find a meaning for a dangerous

trace. It is not our goal to promote our method on this example, but only

use it to show how our technique behaves. We therefore consider random

traces, generated from the example, by a random walk through the state

space performed by Spin (cfr. figure 7.5). The output produced by the

printfs during this random walk will be used to guide the exploration.

Figure 7.6 shows a snippet of the code transformed using the description

given before. The previously generated trace, is put into a process and the

complete system is verified.

The results of the tests are represented in figure 7.3, where L is the length

of the trace, d is the diameter of the search, and the %-success is the mean

number of times the model checker found the error (mean results for 50

instances). Remark that increasing length makes the search more accurate

because of the probability that the trace is passing close to an error. Remind

that using random traces is not the strength of this method : only interesting

traces should be used during verification. Also note that, because more

states are covered, increasing the diameter increases the chances of finding

the error.

This first experiment shows that our approach can be useful, but, in its

present form, it is far from being optimal. It has the advantage of being

214 CHAPTER 7. DISCUSSION AND FUTURE WORK

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

90

100

Success = f(d)

L=50

L=70

L=90

L=110

L=130

L=150

L=170

L=190

L=210

d

%
 s

uc
ce

ss

Figure 7.3: Results of the token ring example

applicable without the need to change the model checker. However, the

drawbacks are serious. Introducing d in the model makes the method in-

complete : even if the complete state space for the initial model could be

searched in a reasonable amount of time and memory, the trace centered

model will not. Indeed, remark that d is part of each state in the state

space, which causes the state space to be unfolded with increasing values of

d. In essence, if d may become arbitrary large, it introduction in the state

descriptor makes finite systems become infinite. The same reason deterio-

rates the partial order reduction algorithm, since transitions are less likely to

be independent. A direct implication of these two drawbacks causes greater

memory usage than actually needed.

If d would be removed from the specification, and the model checker’s

search strategy changed to directly take into account d, these drawbacks

would no longer be present. The complexity of such a search algorithm

compared to standard depth first search is comparable, since the same num-

ber of states would be visited, and no state is visited twice. However, the set

of open states, (i.e. states for which not all successors are visited) would be

much larger compared to standard depth first search where the open states

are only those that are on the search stack. In light of these remarks, an

efficient implementation would therefore not take more time, but would be

more memory consuming.

7.4. PARTIAL VERIFICATION AND TESTING 215

chan c_1_2 = [3] of { int, int };

show int network = 0;

inline station_eligible(c_in, c_out,

my_id, state) {

if :: // Receive a claim

atomic {

c_in ? CLAIM, id;

if :: id < my_id ->

c_out ! CLAIM, id;

state = LEADER;

#ifdef ERROR_IN_PROTOCOL

:: id >= my_id ->

#else

:: id > myid -> skip;

:: id == my_id ->

#endif

state = LEADER;

// New token

c_out ! TOKEN, 0;

fi

}

:: // Receive a token

c_in ? TOKEN, 0;

:: // ReStart election

c_out ! CLAIM, my_id;

fi

}

inline station(c_in, c_out,

my_id) {

int id, a, b;

byte state = LEADER;

do

:: state == ELECTION ->

station_eligible(c_in, c_out,

my_id, state);

:: state == LEADER ->

station_non_eligible(c_in, c_out,

my_id, state);

:: // Drop message

c_in ? a, b;

od

}

chan c_2_3 = [3] of { int, int };

chan c_3_1 = [3] of { int, int };

inline station_eligible(c_in,c_out,

my_id, state) {

if :: // Receive a claim

atomic {

c_in ? CLAIM, id ->

if :: id != my_id ->

c_out ! CLAIM, id;

:: else;

fi

}

:: // Receive a token

atomic {

c_in ? TOKEN, 0 ->

network=network+1;

}

// Access to the network

assert(network == 1);

atomic {

network=network-1;

c_out ! TOKEN, 0;

}

:: // Start election

c_out ! CLAIM, my_id;

state = ELECTION;

fi

}

active proctype p1() {

station (c_3_1,c_1_2,1); }

active proctype p2() {

station (c_1_2,c_2_3,2); }

active proctype p3() {

station (c_2_3,c_3_1,3); }

Figure 7.4: Token Ring leader election in Promela

216 CHAPTER 7. DISCUSSION AND FUTURE WORK

inline station_eligible(c_in, c_out, my_id, state) {

if :: // Receive a claim

atomic {

c_in ? CLAIM, id;

printf("d==0->sync%d!DO_RECEIVE_CLAIM;\n", my_id);

if :: id < my_id ->

...

fi

}

// Receive a token

:: atomic {

c_in ? TOKEN, 0;

printf("d==0->sync%d!DO_RECEIVE_TOKEN;\n", my_id);

}

// Start election

:: atomic {

c_out ! CLAIM, my_id;

printf("d==0->sync%d!DO_SEND_CLAIM;\n", my_id);

}

fi

}

Figure 7.5: Token Ring leader election producing a trace

7.4. PARTIAL VERIFICATION AND TESTING 217

chan sync = [0] of { int };

inline station_eligible(c_in, c_out, my_id, state) {

if :: atomic{ d < MAXD -> d++; } // Explore diameter

if :: // Receive a claim

atomic {

c_in ? CLAIM, id;

if :: id < my_id ->

...

fi

}

:: // Receive a token

c_in ? TOKEN, 0;

:: // ReStart election

c_out ! CLAIM, my_id;

:: d==0 -> // Explore trace

if :: // Receive a claim

atomic {

sync ? DO_RECEIVE_CLAIM;

c_in ? CLAIM, id;

if :: id < my_id ->

...

fi

}

:: // Receive a token

atomic {

sync ? DO_RECEIVE_TOKEN;

c_in ? TOKEN, 0;

}

:: // ReStart Election

atomic {

sync ? DO_SEND_CLAIM

c_out ! CLAIM, my_id;

}

fi

fi

Figure 7.6: Token Ring leader election transformed

218 CHAPTER 7. DISCUSSION AND FUTURE WORK

Chapter 8

Conclusions

In this thesis, we studied the language and environment dSL. This language

is designed upon an exiting industrial language used for the design of indus-

trial controllers. dSL has two benefits with respect to the existing language :

its automatic distribution allows the programmer to concentrate on the func-

tional aspects of the controller’s design, and its underlying formal semantics

offers the possibility to formally verify the correctness of systems designed

with dSL. Both aspects answered existing needs, and the implementation of

dSL has therefore received a positive feedback from the industry.

The problems faced in this work are multiple :

1. designing dSL to allow transparent distribution, taking into account

an already existing language

2. formalizing the semantics of dSL, studying the influence of the physical

distribution on the behavior of a given dSL program

3. generating efficient executable code

4. implementing dSL’s execution environment

5. exploiting dSL’s formal semantics to formally verify the correctness of

a dSL program

Each of these problems has been studied and solutions have been proposed

in this work.

The design of dSL is based upon a study of solutions presented in the

literature. An overview of the most important works is presented in chap-

ter 2. We adopted a hybrid execution of atomic (non distributable) code

which involves instantaneous reaction to events, together with sequential

(distributable) code. For the execution of the sequential code we chose a

219

220 CHAPTER 8. CONCLUSIONS

statically calculated thread migration which allows an easy implementation,

insures stable performances and offers eased monitoring and debugging. Our

approach of using a programming language used in the industry has a prac-

tical interest which should not be neglected. This language is presented

in chapter 3, and we show how a few additions to this language enable the

programmer to manage the co-existence of both sequential and atomic code.

The semantics of dSL is given as a labeled transition system, which is

defined using structural operational semantics. We showed how the distri-

bution influences the behavior of a given dSL program, more particularly, we

related the physical distribution of captors and actuators in a dSL program

to the behaviors of that program. For this purpose, we proved the existence

of a lattice of distributions, and proved a corresponding lattice of behav-

iors. This strong result states that when a program is more distributed, its

possible behaviors are extended with new behaviors, but include all those

of the less distributed program. The existence of a maximal element in the

lattice of distributions is therefore of capital importance, since its associated

behavior contains the behaviors for any possible distribution.

The generation of the most efficient code is shown to be equivalent to

solving NP-Complete problems. This bad news is tackled by introducing,

in chapter 4, efficient heuristics approximating these problems. Two prob-

lems were addressed. First, we studied the production of efficient sequential

distributed code, using a static estimation of the number of times each in-

struction is executed. Solving this problem is shown to be equivalent to

solving the Multiterminal Cut Problem. The best combinatorial algorith-

mic solution previously known used a shrinkage technique, which allows to

safely reduce the size of an instance of the Multiterminal Cut problem. We

introduced the notion max-min-st cut, which allowed us on the one hand to

generalize the existing shrinkage theorem, and on the other hand to design

a fast heuristics which gives better results in practice. The second problem

addressed consists in the reordering of instructions while maintaining an

equivalent interface with the environment, in order to increase the perfor-

mance during execution. This problem is related to the known Precedence

Constrainted Class Sequencing Problem. We studied the efficiency of exist-

ing heuristics, and introduced a new heuristics which takes advantage of the

structure of a given instance.

dSL’s implementation, presented in chapter 5, is based on a framework

using a compiler-distributer and a virtual machine. We covered in detail

how the sequential code is handled using static flow analysis based on def-

use chains.

Finally, in chapter 6, the formal verification of dSL programs is per-

221

formed using a translation from dSL to Promela, the specification language

used by the model checker Spin. We showed how this translation can be done

automatically, and illustrated our approach on three case studies. Although

the state space explosion problem is a major problem for the verification

of large dSL programs, we profit from the fact that the processing phase,

which contains the most elaborate part of the controller’s behavior, can be

done in a single transition. This results in a major state space reduction

which allow us to exhaustively verify moderate size programs.

We ended our study of dSL with a discussion on the missing features of

dSL, and some future works. The missing features all are related to dynamic

concepts, which are difficult to implement because of our design choice to

use static distribution. Further work include the addition of these dynamic

concepts,

Although several questions remain, dSL has reached a ready-to-use sta-

tus, and fits the specific needs (i.e. transparent distribution, a way to for-

mally verify dSL programs and industrial applicability) that where formu-

lated during the first discussions on dSL.

222 CHAPTER 8. CONCLUSIONS

Bibliography

[Abr96] J.-R. Abrial. The B-Book: Assigning Programs to Meanings.

ISBN 0-521-49619-5. Cambridge University Press, UK, 1996.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger,

P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine.

The algorithmic analysis of hybrid systems. Theor. Comput.

Sci., 138(1):3–34, 1995.

[AD90] Rajeev Alur and D. L. Dill. Automata for modeling real-

time systems. In Proceedings of the seventeenth international

colloquium on Automata, languages and programming, pages

322–335, New York, NY, USA, 1990. Springer-Verlag New

York, Inc.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.

Theor. Comput. Sci., 126(2):183–235, 1994.

[ADG+03] C. Artho, D. Drusinsky, A. Goldberg, K. Havelund,

M. Lowry, C. Pasareanu, G. Rosu, and W. Visser. Exper-

iments with test case generation and runtime analysis. In

Abstract State Machines, Advances in Theory and Practice,

10th International Workshop, ASM 2003, volume 2589 of

LNCS, pages 87–107, Tormina, Italy, March 2003. Springer.

[Aga76] V. N. Agafonov. On attribute grammars. In

A. Mazurkiewicz, editor, Mathematical Foundations of Com-

puter Science, volume 45 of Lecture Notes in Computer Sci-

ence, pages 169–172, New York-Heidelberg-Berlin, Septem-

ber 1976. Springer-Verlag.

[AH94] Karl J. Astrom and Tore Hagglund. Pid Controllers. Num-

ber 1556175167 in ISBN. Instrumentation Systems, 1994.

223

224 BIBLIOGRAPHY

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Com-

pilers: Principles, Techniques and Tools. Addison-Wesley,

Inc., Reading, Mass., 1986.

[BB87] Tommaso Bolognesi and Ed Brinksma. Introduction to the

iso specification language lotos. Comput. Netw. ISDN Syst.,

14(1):25–59, 1987.

[Beg03] Laurent Van Begin. Efficient Verification of Counting Ab-

stractions for Parametric systems. PhD thesis, Université

Libre de Bruxelles, 2003.

[Ber98] G. Berry. The esterel v5 language primer. available at

http://www.inria.fr/meije/esterel, March 1998.

[Ber99] G. Berry. The constructive semantics of pure

esterel. Draft book, July 1999. available at

http://www.inria.fr/meije/esterel/esterel-eng.html.

[Ber00] G. Berry. The Foundations of Esterel. MIT Press, 2000.

Editors: G. Plotkin, C. Stirling and M. Tofte.

[BFR71] K.A. Baker, P.C. Fishburn, and F.S. Roberts. Partial orders

of dimension 2. Networks, 2:11–28, 1971.

[BG92] Gerard Berry and Georges Gonthier. The esterel syn-

chronous programming language: Design, semantics, imple-

mentation. Science of Computer Programming, 19(2):87–

152, 1992.

[BL95] H. Brinksma and R. Langerak. Functionality decomposi-

tion by compositional correctness preserving transformation.

South African Computer Journal, 13:2–13, 95.

[BLB93] Ed Brinksma, Rom Langerak, and Peter Broekroelofs. Func-

tionality decomposition by compositional correctness pre-

serving transformation. In CAV, pages 371–384, 1993.

[BLL+96] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pet-

tersson, and Wang Yi. Uppaal a tool suite for automatic

verification of real-time systems. In Proceedings of the DI-

MACS/SYCON workshop on Hybrid systems III : verifica-

tion and control, pages 232–243, Secaucus, NJ, USA, 1996.

Springer-Verlag New York, Inc.

BIBLIOGRAPHY 225

[BMS97] F. Bonfattti, P.D. Monari, and U. Sampieri. IEC 1131-

3 programming methodology. Software engineering methods

for industrial automated systems. ISBN 2-9511585-0-5. CJ

International Editions, 1997.

[Bri92] Preston Briggs. Register allocation via graph coloring. PhD

thesis, Rice University, Houston, TX, USA, 1992.

[Buc60] J. R. Buchi. On a decision method in restricted second order

arithmetic. In E. Nagel et al., editor, Proceeding of the In-

ternational Congress on Logic, Methodology and Philosophy

of Science, pages 1–11, Stanford, CA, 1960.

[BZ83] Daniel Brand and Pitro Zafiropulo. On communicating

finite-state machines. ACM, 30(2):323–342, 1983.

[CFSM] J.R. Correa, S. Fiorini, and N. Stier-Moses. A note on

the precedence-constrained class sequencing problem. To

be published.

[Cha82] G. J. Chaitin. Register allocation & spilling via graph col-

oring. In SIGPLAN ’82: Proceedings of the 1982 SIGPLAN

symposium on Compiler construction, pages 98–101, New

York, NY, USA, 1982. ACM Press.

[CKR00] Gruia Calinescu, Howard Karloff, and Yuval Rabani. An im-

proved approximation algorithm for multiway cut. J. Com-

put. Syst. Sci., 60(3):564–574, 2000.

[CLR05] M. Costa, L. Letocart, and F. Roupin. Minimal multicut

and maximal integer multiflow: a survey. European Journal

of Operational Research, 162(1):55–69, 2005.

[CM94] John Joseph Chilenski and Steven P. Miller. Applicabil-

ity of modified condition/decision coverage to software test-

ing. Software Engineering Journal, 9(5):193–200, September

1994.

[CMT99] I. Castellani, M. Mukund, and P. S. Thiagarajan. Synthe-

sizing Distributed Transition Systems from Global Specifica-

tion. In Foundations of Software Technology and Theoretical

Computer Science, pages 219–231, 1999.

[CO96] Sunil Chopra and Jonathan H. Owen. Extended formula-

tions for the a-cut problem. Math. Program., 73:7–30, 1996.

226 BIBLIOGRAPHY

[CPHP87] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: A

declarative language for programming synchronous systems.

Conf Rec 14th Ann ACM Symp on Princ Prog Langs, 1987.

[Cun91] W.H. Cunningham. The optimal multiterminal cut prob-

lem. DIMACS series in discrete mathematics and theoretical

computer science, 5:105–120, 1991.

[CVWY92] Constantin Courcoubetis, Moshe Y. Vardi, Pierre Wolper,

and Mihalis Yannakakis. Memory-efficient algorithms for

the verification of temporal properties. Formal Methods in

System Design, 1(2/3):275–288, 1992.

[Dar99] Alain Darte. On the complexity of loop fusion. In PACT ’99:

Proceedings of the 1999 International Conference on Parallel

Architectures and Compilation Techniques, page 149, Wash-

ington, DC, USA, 1999. IEEE Computer Society.

[DB95] R. Vohra D. Bertsimas, C. Teo. Nonlinear formulations and

improved randomized approximation algorithms for multi-

cut problems. In Proc. 4th conference on integer program-

ming and combinatorial optimization, volume 920 of LNCS,

pages 29–39, 1995.

[Dev04] Nicolas Devos. Génération de code de systemes distribués.

Master’s thesis, Université Libre de Bruxelles, 2004.

[DeWGM05] Bram De Wachter, Alexandre Genon, and Thierry Massart.

From static code distribution to more shrinkage for the mul-

titerminal cut. In Sotiris E. Nikoletseas, editor, WEA, vol-

ume 3503 of LNCS, pages 177–188. Springer, 2005.

[DeWGMM05] Bram De Wachter, Alexandre Genon, Thierry Massart, and

Cédric Meuter. The formal design of distributed controllers

with dsl and spin. Formal Aspects of Computing, 17(2):177–

200, August 2005.

[DeWMM03a] Bram De Wachter, Thierry Massart, and Cédric Meuter.

dsl: An environment with automatic code distribution for

industrial control systems. In Marina Papatriantafilou and

Philippe Hunel, editors, OPODIS, volume 3144 of Lecture

Notes in Computer Science, pages 132–145. Springer, 2003.

BIBLIOGRAPHY 227

[DeWMM03b] Bram De Wachter, Thierry Massart, and Cédric Meuter.

An experiment on synthesis and verification of an industrial

process control in the dsl environment. Proceedings of the

3rd Automated Verification of Critical Systems (AVoCS03),

Technical Report DSSE-TR-2003-2, DSSE, Southampton

(GB), April 2-3 2003.

[Die05] Reinhard Diestel. Graph Theory, volume 173 of Graduate

Texts in Mathematics. Springer-Verlag, 2005.

[DJP+94] Elias Dahlhaus, David S. Johnson, Christos H. Papadim-

itriou, P. D. Seymour, and Mihalis Yannakakis. The com-

plexity of multiterminal cuts. SIAM J. Comput., 23(4):864–

894, 1994.

[EC99] D.A. Peled E.M. Clarke, O. Grumberg. Model Checking.

MIT Press, 1999.

[Edw00] Stephen A. Edwards. Compiling esterel into sequential code.

In DAC ’00: Proceedings of the 37th conference on De-

sign automation, pages 322–327, New York, NY, USA, 2000.

ACM Press.

[EGH94] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren.

Context-sensitive interprocedural points-to analysis in the

presence of function pointers. In SIGPLAN Conference on

Programming Language Design and Implementation, pages

242–256, 1994.

[ELL01a] S. Edelkamp, A. Lafuente, and S. Leue. Protocol verifica-

tion with heuristic search. In AAAI Symposium on Model-

basedValidation of Intelligence, 2001.

[ELL01b] Stefan Edelkamp, Alberto Lluch Lafuente, and Stefan Leue.

Directed explicit model checking with HSF–SPIN. Lecture

Notes in Computer Science, 2057:57–79, 2001.

[ELL01c] Stefan Edelkamp, Alberto Lluch Lafuente, and Stefan Leue.

Trail-directed model checking. In Scott D. Stoller and

Willem Visser, editors, Electronic Notes in Theoretical Com-

puter Science, volume 55. Elsevier, 2001.

[Eme90] E. Allen Emerson. Temporal and modal logic. MIT Press,

Cambridge, MA, USA, 1990.

228 BIBLIOGRAPHY

[Esk90] M. Rasit Eskicioglu. Design issues of process migration fa-

cilities in distributed systems. In IEEE Computer Society

Technical Committe on Operating Systems and Application

Environments Newsletter, volume 4, pages 3–13, 1990.

[FF62] L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton

University Press, Princeton, NJ, 1962.

[FJJV97] Jean-Claude Fernandez, Claude Jard, Thierry Jéron, and

Cesar Viho. An experiment in automatic generation of test

suites for protocols with verification technology. Science of

Computer Programming, 29(1-2):123–146, 1997.

[Flo62] Robert W. Floyd. Algorithm 97: Shortest path. Commun.

ACM, 5(6):345, 1962.

[GBJL02] Dick Grune, Henri E. Bal, Ceriel J. H. Jacobs, and Koen

Langendoen. Modern Compiler Design. John Wiley, 2002.

[Gen04] Alexandre Genon. On the verification of dsl, a language

to design distributed industrial control systems. Technical

report, U.L.B., September 2004.

[Gir94] A. Girault. Sur la Répartition de Programmes Synchrones.

Phd thesis, INPG, Grenoble, France, January 1994.

[GJ90] Michael R. Garey and David S. Johnson. Computers and

Intractability; A Guide to the Theory of NP-Completeness.

W. H. Freeman & Co., New York, NY, USA, 1990.

[God91] Patrice Godefroid. Using partial orders to improve auto-

matic verification methods. In CAV ’90: Proceedings of the

2nd International Workshop on Computer Aided Verifica-

tion, pages 176–185, London, UK, 1991. Springer-Verlag.

[God05] Olivier Godart. Testing automatique de programmes de

contrôle d’équipement industriels écrits en langage dsl. Mas-

ter’s thesis, Université Libre de Bruxelles, 2005.

[Gra66] R. L. Graham. Bounds for certain multiprocessor anomalies.

Bell System Technical Journal, 45:1563–1581, 1966.

[GT88] Andrew V. Goldberg and Robert E. Tarjan. A new ap-

proach to the maximum-flow problem. Journal of the ACM

(JACM), 35(4):921–940, October 1988. ISSN:0004-5411.

BIBLIOGRAPHY 229

[GV02] Alex Groce and Willem Visser. Model checking java pro-

grams using structural heuristics. In International Sympo-

sium on Software Testing and Analysis, pages 12–21, July

2002.

[GVY94] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis.

Multiway cuts in directed and node weighted graphs. In Pro-

ceedings of the 21st International Colloquium on Automata,

Languages and Programming, pages 487–498. Springer-

Verlag, 1994.

[Haj57] G. Hajos. Uber eine art von graphen. Intern. Math., 11,

1957.

[Ham50] Richard W. Hamming. Error-detecting and error-correcting

codes. Bell System Technical Journal, 29(2):147–160, 1950.

[HHG99] J. Hennessy, M. Heinrich, and A. Gupta. Cache-coherent

distributed shared memory: Perspectives on its development

and future challenges. Proc. of the IEEE, Special Issue on

Distributed Shared Memory, 87(3):418–429, 1999.

[HHLV97] Lisa Hollermann, Tsan-sheng Hsu, Dian Rae Lopez, and

Keith Vertanen. Scheduling problems in a practical allo-

cation model. J. Comb. Optim., 1(2):129–149, 1997.

[HHW97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi.

HYTECH: A model checker for hybrid systems. Interna-

tional Journal on Software Tools for Technology Transfer,

1(1–2):110–122, 1997.

[HK01] K. Hogstedt and D. Kimelman. Graph cutting algorithms for

distributed applications partitioning. SIGMETRICS Perfor-

mance Evaluation Review, 28(4):27–29, 2001.

[HLLR00] Tsan-sheng Hsu, Joseph C. Lee, Dian Rae Lopez, and

William A. Royce. Task allocation on a network of pro-

cessors. IEEE Trans. Computers, 49(12):1339–1353, 2000.

[HNR68] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for

heuristic determination of minimum path cost. IEEE Trans-

actions Syst. Science and Cybernetics 4(2):100-107, 1968.

230 BIBLIOGRAPHY

[Hol03] G. J. Holzmann. The SPIN Model Checker : Primer and

Reference Manual. Addison-Wesley Professional, September

2003. ISBN: 0321228626.

[HP00] Michael Hind and Anthony Pioli. Which pointer analysis

should i use? In ISSTA ’00: Proceedings of the 2000 ACM

SIGSOFT international symposium on Software testing and

analysis, pages 113–123, New York, NY, USA, 2000. ACM

Press.

[IH97] Marc Shapiro II and Susan Horwitz. Fast and accurate flow-

insensitive points-to analysis. In Symposium on Principles

of Programming Languages, pages 1–14, 1997.

[JC02] H. Jiang and V. Chaudhary. On improving thread migration:

Safety and performance. In Proceedings: 9th International

Conference on High Performance Computing 2002, volume

2552 of LNCS, pages 474–484, Berlin, Germany, December

2002. Springer-Verlag.

[JCTG96] J. C. Fernandez, C. Jard, T. Jéron, and G. Viho. Using

on-the-fly verification techniques for the generation of test

suites. In Rajeev Alur and Thomas A. Henzinger, editors,

Proceedings of the Eighth International Conference on Com-

puter Aided Verification CAV, volume 1102, pages 348–359,

New Brunswick, NJ, USA, / 1996. Springer Verlag.

[Jér91] Thierry Jéron. Testing for unboundedness of FIFO channels.

In STACS 91: Proceedings of the 8th annual symposium on

Theoretical aspects of computer science, pages 322–333, New

York, NY, USA, 1991. Springer-Verlag New York, Inc.

[JJ93] Thierry Jéron and Claude Jard. Testing for unbounded-

ness of FIFO channels. Theor. Comput. Sci., 113(1):93–117,

1993.

[KKS+99] David R. Karger, Philip Klein, Cliff Stein, Mikkel Thorup,

and Neal E. Young. Rounding algorithms for a geometric

embedding of minimum multiway cut. In STOC ’99: Pro-

ceedings of the thirty-first annual ACM symposium on The-

ory of computing, pages 668–678, 1999.

[KM94] Ken Kennedy and Kathryn S. McKinley. Maximizing loop

parallelism and improving data locality via loop fusion and

BIBLIOGRAPHY 231

distribution. In Proceedings of the 6th International Work-

shop on Languages and Compilers for Parallel Computing,

pages 301–320, London, UK, 1994. Springer-Verlag.

[KMC88] J. Misra K. Mani Chandy. Parallel program design: a

foundation. Addison-Wesley Longman Publishing Co., Inc.,

1988.

[KU96] Anton P. Karadimce and Susan Darling Urban. Refined

triggering graphs: A logic-based approach to termination

analysis in an active object-oriented database. In ICDE ’96:

Proceedings of the Twelfth International Conference on Data

Engineering, pages 384–391, Washington, DC, USA, 1996.

IEEE Computer Society.

[Lam79] Lamport. How to make a multiprocessor computer that

correctly executes multiprocess programs. IEEE Trans. on

Computers, 28(9):690–691, sept. 1979.

[Lan77] G. Le Lann. Towards a formal approach. Distributed Sys-

tems, IFIP Congress, pages 155–160, 1977.

[Lan90] Rom Langerak. Decomposition of functionality: a

correctness-preserving lotos transformation. In Proceedings

of the IFIP WG6.1 Tenth International Symposium on Pro-

tocol Specification, Testing and Verification X, pages 229–

242. North-Holland, 1990.

[LCL88] F. J. Lin, P. M. Chu, and M. T. Liu. Protocol verification us-

ing reachability analysis: the state space explosion problem

and relief strategies. In Proceedings of the ACM workshop

on Frontiers in computer communications technology, pages

126–135. ACM Press, 1988.

[LGLL91] P. LeGuernic, T. Gautier, M. LeBorgne, and C. LeMaire.

Programming real time applications with signal. Proceed-

ings of the IEEE, 79(9):1321-1336, September 1991.

[LKB77] Lenstra, J. and A. Rinnooy Kan, and P. Brucker. Com-

plexity of machine scheduling problems. Annals of Discrete

Mathematics, 1:343–362, 1977.

232 BIBLIOGRAPHY

[LMT91] Christopher B. Lofgren, Leon F. McGinnis, and Craig A.

Tovey. Routing printed circuit cards through an assembly

cell. Oper. Res., 39(6):992–1004, 1991.

[LMW04] S. Leue, R. Mayr, and W. Wei. A scalable incomplete test

for the boundedness of UML RT models. In K. Jensen and

A. Pdelski, editors, Proceedings: 10th International Con-

ference, TACAS 2004, volume 2988 of LNCS, pages 327–

341, Barcelona, Spain, March 2004. ETAPS 2004, Springer-

Verlag.

[Lof86] C.B. Lofgren. Machine configuration of flexible printed cir-

cuit board assembly systems. PhD thesis, School of ISyE,

Georgia Institute of Technology, Atlanta (GA), USA, 1986.

[LW66] E. L. Lawler and D. E. Wood. Branch-and-bound methods:

A survey. Operations Research, 14(4):699–719, 1966.

[Mas92] T. Massart. A calculus to define correct transformations

of LOTOS specifications. In Proceedings of the FORTE’91

conference, pages 281–296, 1992.

[Mat89] Friedemann Mattern. Virtual time and global states of dis-

tributed systems. In Cosnard M. et al., editor, Proc. Work-

shop on Parallel and Distributed Algorithms, pages 215–226,

North-Holland / Elsevier, 1989. (Reprinted in: Z. Yang,

T.A. Marsland (Eds.), ”Global States and Time in Dis-

tributed Systems”, IEEE, 1994, pp. 123-133.).

[McM93] K. McMillan. Symbolic Model Checking. Kluwer Academic

Press, 1993.

[Mic05] Nicolas Micheli. Design and verification of real-time dis-

tributed industrial control systems. Master’s thesis, Univer-

sité Libre de Bruxelles, 2005.

[Mil81] R. Milner. On relating synchrony and asynchrony. Techni-

cal Report CSR-75-80, Computer Science Dept., Edinburgh

Univ., 1981.

[Mil89] R. Milner. Communication and Concurrency. PHI Series in

Computer Science. Prentice Hall, 1989.

BIBLIOGRAPHY 233

[ML87] Michael Marcotty and Henry Ledgard. The world of pro-

gramming languages. Springer-Verlag New York, Inc., New

York, NY, USA, 1987.

[Mor99] René Morin. Decompositions of Asynchronous Systems.

In Proc. CONCUR’98, Springer Lect. Notes in Comp. Sci.

1466, pages 549–565. Springer, 1999.

[Mos93] David Mosberger. Memory consistency models. Operating

Systems Review, 27(1):18–26, 1993.

[MP97] C. Morin and I. Puaut. A survey of recoverable distributed

shared memory systems. IEEE Trans. on Parallel and Dis-

tributed Systems, 8(9):959–969, 1997.

[NC00] Gleb Naumovich and Lori A. Clarke. Classifying properties:

an alternative to the safety-liveness classification. In SIG-

SOFT ’00/FSE-8: Proceedings of the 8th ACM SIGSOFT

international symposium on Foundations of software engi-

neering, pages 159–168, New York, NY, USA, 2000. ACM

Press.

[NL91] B. Nizeberg and V. Lo. Distributed shared memory: A sur-

vey of issues and algorithms. IEEE Computer, vol. 24, no.8,

pp. 52-60, Aug. 1991.

[Nta88] S. C. Ntafos. A comparison of some structural testing strate-

gies. IEEE Trans. Softw. Eng., 14(6):868–874, 1988.

[NZ01] J. Naor and L. Zosin. A 2-approximation algorithm for

the directed multiway cut problem. SIAM J. Comput.,

31(2):477–482, 2001.

[Pat05] Ron Patton. Software Testing. Sams, 2005. ISBN :

0672327988.

[Pel94] Doron Peled. Combining partial order reductions with on-

the-fly model-checking. In CAV ’94: Proceedings of the 6th

International Conference on Computer Aided Verification,

pages 377–390, London, UK, 1994. Springer-Verlag.

[PW72] Leon Presser and John R. White. Linkers and loaders. ACM

Comput. Surv., 4(3):149–167, 1972.

234 BIBLIOGRAPHY

[RCT92] RCTA/DO-178B. Software Considerations in Airborne Sys-

tems and Equipment Certification, December 1992.

[RU81] K.-J. Raiha and E. Ukkonen. The shortest common super-

sequence problem over binary alphabet is NP-complete. J.

THEOR-COMP-SCI, 16(2):187–198, November 1981.

[SC91] M.R. Rao S. Chopra. On the multiway cut polyhedron.

Networks, 21:51–89, 1991.

[SEM03] Alin Stefănescu, Javier Esparza, and Anca Muscholl. Syn-

thesis of distributed algorithms using asynchronous au-

tomata. In CONCUR, 2003.

[Tov04] Craig A. Tovey. Non-approximability of precedence-

constrained sequencing to minimize setups. Discrete Appl.

Math., 134(1-3):351–360, 2004.

[Val91] Antti Valmari. A stubborn attack on state explosion. In

CAV ’90: Proceedings of the 2nd International Workshop on

Computer Aided Verification, pages 156–165, London, UK,

1991. Springer-Verlag.

[VB02] Sergiy A. Vilkomir and Jonathan P. Bowen. From MC/DC

to RC/DC: Formalization and analysis of control-flow test-

ing criteria. Technical Report SBU-CISM-02-17, South Bank

University, CISM, London, UK, 2002.

[WWWK94] J. Wald, G. Wyant, A. Wollrath, and S. Kendall. A note

on distributed computing. Technical Report SMLI TR-94-

29, Sun Microsystems Laboratories, Inc., M/S 29-01, 2550

Garcia Avenue, Mountainview, CA 94043, November 1994.

[YD98] C. Han Yang and David L. Dill. Validation with guided

search of the state space. In Design Automation Conference,

pages 599–604, 1998.

Appendix A

SL syntax

program ::= uses declaration data type declaration

global program var declarations

global statement list “PROGRAM” ID

program var declarations statement list

“END PROGRAM”
uses declaration ::= [“USES” uses list “END USES”]

uses list ::= [ID “;”]

data type declaration ::= [“TYPE” type declaration list

“END TYPE”]
type declaration list ::= { type declaration “;” }
rule statement ::= when statement

| global globalisation statement

| typed when statement

| typed globalisation statement

when statement ::= “WHEN” expression “THEN”

local variables statement list

“END WHEN”
typed when statement ::= “WHEN” “IN” simple specification

expression “THEN” local variables

statement list “END WHEN”
global globalisation statement ::= “CONTROL” variable “WITH”

expression
typed globalisation statement ::= “CONTROL” “IN” simple specification

variable “WITH” expression
statement list ::= { statement “;” } statement “;”

235

236 APPENDIX A. SL SYNTAX

statement ::= [“NIL” | assignment statement |
method call statement | call all statement

| iteration statement | selection statement

| print statement | error statement |
say statement | log statement |
alias statement | nature statement |
domain statement |
set push variable statement]

print statement ::= “PRINT” value list

error statement ::= “ERROR” value list

say statement ::= “SAY” value list

log statement ::= “LOG” value list

iteration statement ::= while statement

| repeat statement

| for statement

| exit statement

selection statement ::= if statement

| case statement

method call statement ::= variable “<−” ID “(” value list “)”

assignment statement ::= variable “:=” expression

call all statement ::= “ALL” simple specification “<−” ID “(”

value list “)”
alias statement ::= “ALIAS” expression expression

expression
nature statement ::= “SET NATURE” variable expression

domain statement ::= “SET DOMAIN” variable expression

set push variable statement ::= “SET PUSH VARIABLE” variable

expression expression expression
do particle ::= “DO”

until particle ::= “UNTIL”

exit statement ::= “EXIT”

while statement ::= “WHILE” expression do particle

statement list “END WHILE”
repeat statement ::= “REPEAT” statement list until particle

expression “END REPEAT”
for statement ::= “FOR” variable “:=” expression “TO”

expression (do particle statement list

“END FOR” | “BY” expression

do particle statement list “END FOR”)
elsif block ::= “ELSIF” expression “THEN”

statement list (“ENDIF” | “ELSE”

statement list “ENDIF” | elsif block)
if statement ::= “IF” expression “THEN” statement list

(“ENDIF” | “ELSE” statement list

“ENDIF” | elsif block)
signed integer constant ::= UNSIGNED INTEGER

237

| INTEGER

| “−” UNSIGNED INTEGER

| “+” UNSIGNED INTEGER

case list element ::= signed integer constant [“:”

signed integer constant]
case list ::= { case list element “,” } case list element

case element ::= case list “:” statement list

list of case elements ::= { case element } case element

case statement ::= “CASE” expression “OF”

list of case elements (“END CASE” |
“ELSE” statement list “END CASE”)

value list ::= [expression [“,” value list]]

int rval ::= add expression

expression ::= or expression

equal operator ::= “=”

| “<>”

comparison operator ::= “<”

| “>”

| “<=”

| “>=”

comparison ::= equ expression { equal operator

equ expression }
equ expression ::= add expression { comparison operator

add expression }
or operator ::= “OR”

or expression ::= xor expression { or operator

xor expression }
xor operator ::= “XOR”

xor expression ::= and expression { xor operator

and expression }
and operator ::= “AND”

| “&”

and expression ::= comparison { and operator comparison }
add expression ::= { term (“+” | “−”) } term

term ::= power expression

| term “∗” unary expression

| term “/” unary expression

| term “MOD” unary expression

power expression ::= unary expression [“POWER”

unary expression]
unary expression ::= primary expression

| “−” primary expression

| “+” unary expression

| “NOT” unary expression

| “IS UNKNOWN” unary expression

| “ADDRESS” unary expression

238 APPENDIX A. SL SYNTAX

primary expression ::= INTEGER

| UNSIGNED INTEGER

| LONG INTEGER

| UNSIGNED LONG INTEGER

| FLOATING POINT

| “TRUE”

| “FALSE”

| “UNKNOWN BOOL”

| “UNKNOWN SINT”

| “UNKNOWN INT”

| “UNKNOWN DINT”

| “UNKNOWN LINT”

| “UNKNOWN USINT”

| “UNKNOWN UINT”

| “UNKNOWN UDINT”

| “UNKNOWN ULINT”

| “UNKNOWN REAL”

| “UNKNOWN LREAL”

| “UNKNOWN STRING”

| “UNKNOWN TIME”

| “UNKNOWN TIME OF DAY”

| “UNKNOWN DATE AND TIME”

| “UNKNOWN DATE”

| “NULL”

| QUOTED STRING

| TIME CONSTANT

| DATE CONSTANT

| DATE AND TIME CONSTANT

| TIME OF DAY CONSTANT

| variable

| “(” expression “)”

| function call

function call ::= function name “(” value list “)”

function name ::= ID

variable ::= variable “^”

| variable “.” ID

| variable “[” int rval “]”

| ID

global variable declarations ::= “GLOBAL” a var decl list

“END VAR”
other var declarations ::= var declarations

program var declaration ::= global variable declarations

| other var declarations

program var declarations ::= { program var declaration }
global program var declarations ::= { global variable declarations }

239

a var decl list ::= a var decl { “;” a var decl }
a var decl ::= [ID (“:” type specification | “,”

a var decl)]
structure specification ::= structure declaration

enum specification ::= enum declaration

enum declaration ::= “(” enum element declaration list “)”

enum element name ::= ID

enum element declaration ::= enum element name

enum element declaration list ::= enum element declaration { “,”

enum element declaration }
sub range ::= signed integer constant “:”

signed integer constant
sub range list ::= sub range { “,” sub range }
type specification ::= array specification

| structure specification

| pointer specification

| list specification

| enum specification

| simple specification

array specification ::= “ARRAY” “[” sub range list “]” “OF”

type specification
list specification ::= “LIST” “[” UNSIGNED INTEGER “]”

“OF” type specification
pointer specification ::= “POINTER” “TO” type specification

structure declaration ::= “STRUCT”

structure element declaration list

“END STRUCT”
structure element name ::= ID

structure element declaration ::= structure element name “:”

type specification
structure element declaration list ::= structure element declaration “;” [

structure element declaration list]
a type name ::= ID

type declaration ::= a type name “:” type specification

global statement ::= method declaration

| rule statement

global statement list ::= { global statement }
local variables ::= [“VAR” a var decl list “END VAR”]

var declarations ::= “VAR” a var decl list “END VAR”

method declaration ::= “METHOD” simple specification “::”

ID “(” a var decl list “)” (local variables

statement list “END METHOD” |
“FORWARD”)

simple specification ::= “BOOL”

| “SINT”

| “INT”

240 APPENDIX A. SL SYNTAX

| “DINT”

| “LINT”

| “USINT”

| “UINT”

| “UDINT”

| “ULINT”

| “REAL”

| “LREAL”

| “TIME”

| “TIME OF DAY”

| “DATE AND TIME”

| “DATE”

| “STRING”

| ID

Remarks

[T] Means 1 at least one T.

{ T } Means T or ε

“T” is a literal.

T is a terminal.

Appendix B

dSL syntax

root ::= dsl program

| localizable lhside list

dsl program ::= declaration list

declaration list ::= { declaration }
declaration ::= class

| global variables

| site

| when

| when in

| method

| sequence

class ::= “CLASS” ID variable declaration list

“END CLASS”
global variables ::= “GLOBAL VAR”

variable declaration list “END VAR”
local variables ::= [“LOCAL VAR”

variable declaration list “END VAR”]
variable declaration list ::= { variable declaration “;” }
variable declaration ::= non empty id list “:” type

non empty id list ::= ID { “,” ID }
site ::= “SITE” ID localization list

“END SITE”
localization list ::= { localization “;” }
localization ::= kind localizable lhside “:” NUMBER “.”

NUMBER “.” NUMBER
localizable lhside ::= ID

| localizable lhside “.” ID

| localizable lhside “[” constant “]”

localizable lhside list ::= { localizable lhside }
kind ::= “INPUT”

| “OUTPUT”

241

242 APPENDIX B. DSL SYNTAX

when ::= “WHEN” rhside “THEN”

local variables w instruction list

“END WHEN”
when in ::= “WHEN” “IN” ID rhside “THEN”

local variables w instruction list

“END WHEN”
method ::= “METHOD” ID “::” ID “(”

parameter declaration list “)”

local variables instruction list

“END METHOD”
sequence ::= “SEQUENCE” ID (“(”

parameter declaration list “)”

local variables s instruction list

“END SEQUENCE” | “::” ID “(”

parameter declaration list “)”

local variables s instruction list

“END SEQUENCE”)
parameter declaration list ::= [variable declaration [“,”

parameter declaration list]]
type ::= “LONG”

| “INT”

| “BOOL”

| ID

| “ARRAY” “[” NUMBER “:” NUMBER

“]” “OF” type
instruction list ::= { instruction “;” }
w instruction list ::= { w instruction “;” }
s instruction list ::= { s instruction “;” }
instruction ::= while

| w instruction

s instruction ::= instruction

| wait

w instruction ::= assign

| if

| call

assign ::= lhside “:=” rhside

wait ::= “WAIT” rhside

if ::= “IF” rhside “THEN” instruction list else

else ::= [“ELSE” instruction list] “END IF”

while ::= “WHILE” rhside “DO” instruction list

“END WHILE”
lhside ::= ID

| lhside “.” ID

| lhside “[” rhside “]”

rhside ::= lhside

| constant

243

| “(” rhside “)”

| rhside “OR” rhside

| rhside “AND” rhside

| rhside “<” rhside

| rhside “>” rhside

| rhside “<=” rhside

| rhside “>=” rhside

| rhside “<>” rhside

| rhside “=” rhside

| rhside “MOD” rhside

| rhside “+” rhside

| rhside “−” rhside

| rhside “∗” rhside

| rhside “/” rhside

| “NOT” rhside

| “−” rhside

| “IS UNKNOWN” rhside

| “∼” lhside

constant ::= “TRUE”

| “FALSE”

| NUMBER

call ::= (lhside “<−” | “LAUNCH” lhside

“<−” | “LAUNCH”) ID “(” rhside list

“)”
rhside list ::= [rhside [“,” rhside list]]

Remarks

[T] Means 1 at least one T.

{ T } Means T or ε

“T” is a literal.

T is a terminal.

244 APPENDIX B. DSL SYNTAX

Appendix C

Canal locks controller source

code

CLASS Gate

motor_direction, motor_command, opened, closed,

order_given : BOOL;

button_open, button_close : BOOL;

END_CLASS

CLASS Lock

water_up, water_down, water_command, water_direction,

water_order_given : BOOL;

bottom_gate, top_gate : GATE;

button_fill, button_empty : BOOL;

END_CLASS

GLOBAL_VAR

lock1, lock2 : Lock;

not_allowed_led : BOOL;

END_VAR

(* Gates *)

METHOD GATE::move(direction : BOOL)

self.motor_direction := direction;

self.motor_command := TRUE;

END_METHOD

METHOD GATE::reset_order_given()

self.order_given := FALSE;

not_allowed_led := FALSE;

END_METHOD

(* Equivalent to WHEN G.closed OR G.opened THEN ...

for every object G of class GATE *)

WHEN IN GATE self.closed OR self.opened THEN (* W1 = lock1.bottom_gate *)

self.motor_command := FALSE; (* W2 = lock1.top_gate *)

LAUNCH self<-reset_order_given(); (* W3 = lock2.bottom_gate *)

END_WHEN (* W4 = lock2.top_gate *)

245

246 APPENDIX C. CANAL LOCKS CONTROLLER SOURCE CODE

(* Locks *)

METHOD LOCK::water_move(direction : BOOL)

IF NOT self.water_down THEN

self.water_command := TRUE;

self.water_direction := direction;

END_IF;

END_METHOD

METHOD LOCK::reset_water_order_given()

self.water_order_given := FALSE;

not_allowed_led := FALSE;

END_METHOD

WHEN IN LOCK self.water_up OR self.water_down THEN (* W5 = self -> lock1 *)

self.water_command := FALSE; (* W6 = self -> lock2 *)

LAUNCH self<-reset_water_order_given();

END_WHEN

WHEN lock1.bottom_gate.button_open THEN (* W7 *)

IF (~lock1.top_gate.closed) AND (NOT lock1.top_gate.order_given) AND

(~lock1.water_down) AND (NOT lick1.water_order_given)

THEN

not_allowed_led := FALSE;

lock1.bottom_gate.order_given := TRUE;

LAUNCH lock1.bottom_gate<-move(TRUE); (*open*)

ELSE

not_allowed_led := TRUE;

END_IF;

END_WHEN

WHEN lock1.top_gate.button_open THEN (* W8 *)

IF (~lock1.bottom_gate.closed) AND (NOT lock1.bottom_gate.order_given) AND

(~lock2.bottom_gate.closed) AND (NOT lock2.bottom_gate.order_given) AND

(~lock1.water_up) AND (NOT lock1.water_order_given)

THEN

not_allowed_led := FALSE;

lock1.top_gate.order_given := TRUE;

LAUNCH lock1.top_gate<-move(TRUE); (*open*)

ELSE

not_allowed_led := TRUE;

END_IF;

END_WHEN

WHEN lock1.bottom_gate.button_close THEN (* W9 *)

LAUNCH lock1.bottom_gate<-move(FALSE); (*close*)

END_WHEN

WHEN lock1.top_gate.button_close THEN (* W10 *)

LAUNCH lock1.top_gate<-move(FALSE); (*close*)

END_WHEN

WHEN lock1.button_fill THEN (* W11 *)

IF (~lock1.bottom_gate.closed) AND (NOT lock1.bottom_gate.order_given) AND

(~lock1.top_gate.closed) AND (NOT lock1.top_gate.order_given)

247

THEN

not_allowed_led := FALSE;

lock1.water_order_given := TRUE;

LAUNCH lock1<-water_move(TRUE);

ELSE

not_allowed_led := TRUE;

END_IF;

END_WHEN

WHEN lock1.button_empty THEN (* W12 *)

IF (~lock1.bottom_gate.closed) AND (NOT lock1.bottom_gate.order_given) AND

(~lock1.top_gate.closed) AND (NOT lock1.top_gate.order_given)

THEN

not_allowed_led := FALSE;

lock1.water_order_given := TRUE;

LAUNCH lock1<-water_move(FALSE);

ELSE

not_allowed_led := TRUE;

END_IF;

END_WHEN

WHEN lock2.bottom_gate.button_open THEN (* W13 *)

... (* Same as W8, replace lock1 with lock2 ;

switch top, bottom; switch up, down *)

WHEN lock2.top_gate.button_open THEN (* W14 *)

... (* Same as W7, replace lock1 with lock2 ;

switch top, bottom; switch up, down *)

WHEN lock2.bottom_gate.button_close THEN (* W15 *)

LAUNCH lock2.bottom_gate<-move(FALSE); (*close*)

END_WHEN

WHEN lock2.top_gate.button_close THEN (* W16 *)

LAUNCH lock2.top_gate<-move(FALSE); (*close*)

END_WHEN

WHEN lock2.button_fill THEN (* W17 *)

... (* Same as W11, replace lock1 with lock2 *)

WHEN lock2.button_empty THEN (* W18 *)

... (* Same as W12, replace lock1 with lock2 *)

(* main program *)

SEQUENCE init

not_allowed_led := FALSE;

END_SEQUENCE

248 APPENDIX C. CANAL LOCKS CONTROLLER SOURCE CODE

Appendix D

The dSL compiler-distributer

frontend

In this appendix we discuss the implementation details of the frontend part

of the compiler-distributer. The frontend is depicted in the global workflow

of the compiler distributer which is represented in figure D.1.

Figure D.1: The frontend in the compiler-distributer workflow

The parser is written in C++ using Lex and Yacc. It first constructs a

global symbol table, in which all program elements are stored. During this

process, syntactic and semantic checks are performed. Next, all WHEN IN

declarations are translated into WHENs. Finally, the parser generates inter-

mediate code. The generator outputs a text file which is of the following

form :

249

250APPENDIX D. THE DSL COMPILER-DISTRIBUTER FRONTEND

intermediate ::= “BEGIN DSL INTERMEDIATE CODE” classlist

arraylist gvarlist sitelist methodlist sequencelist whenlist

“END DSL INTERMEDIATE CODE”

classlist ::= “BEGIN DSL CLASSES [” nbr classes “]” (class)∗

“END DSL CLASSES”

class ::= “CLASS” id name “[” nbr fields “]” fieldlist

fieldlist ::= (id name type id “LINE” line nbr)∗

arraylist ::= “BEGIN DSL ARRAYS [” nbr arrays “]” (array)∗

“END DSL ARRAYS”

array ::= “ARRAY [” from “:” to “] OF” type id “LINE”

line nbr

gvarlist ::= “BEGIN DSL GLOBAL VARIABLES [” nbr gvars

“]” (var decl)∗

“END DSL GLOBAL VARIABLES”

var decl ::= id name type id “LINE” line nbr

sitelist ::= “BEGIN DSL SITES [” nbr sites “]” (site)∗

“END DSL SITES”

site ::= “LOCALIZE” lhside card rack slot “LINE” line nbr

methodlist ::= “BEGIN DSL METHODS [” nbr methods “]”

(method)∗ “END DSL METHODS”

method ::= “METHOD” id name “[” nbr params “/”

nbr local vars “] LINE” line nbr paramlist lvarlist cfg

paramlist ::= “PARAM” (var decl)∗

lvarlist ::= “LOCAL VAR” (var decl)∗

cfg ::= “BEGIN CFG” (node)∗ “END CFG”

node ::= “NEW NODE” id (instr)∗

instr ::= (assign | if | jmp | | call | wait) “LINE” line nbr

assign ::= “ASSIGN” lhside rhside

if ::= “IF” rhside then node else node end if node “MEAN”

proba then proba else proba end if

jmp ::= “JMP” node “MEAN” proba

call ::= “CALL” id (“SYNCH” | “ASYNCH”) “[”

nbr params “] PARAM” (rhside)* “END CALL”

wait ::= “WAIT” rhside

251

rhside ::= lhside | constant | unop rhside | binop rhside rhside

lhside ::= field sel | array sel | (“G” | “L”) id

field sel ::= “.” constant rhside

array sel ::= “[]” rhside rhside

unop ::= “-” | “IS UNKNOWN” | “∼” | “NOT”

binop “OR” | “AND” | “<” “>” | “<=” | “>=” “EQ” |
“NEQ” | “+” “−” | “∗” | “/” | “MOD”

sequencelist ::= “BEGIN DSL SEQUENCES [” nbr seqs “]”

(sequence)∗ “END DSL SEQUENCES”

sequence ::= “SEQUENCE” id name “[” nbr params “/”

nbr local vars “] LINE” line nbr paramlist lvarlist cfg

whenlist ::= “BEGIN DSL WHENS [” nbr whens “]” (when)∗

“END DSL WHENS”

sequence ::= “WHEN” id name “[” nbr local vars “] LINE” line nbr

“CONDITION” rhside lvarlist cfg

Remark that the parser already transforms the code inside SEQUENCEs

and METHODS into control flow graphs (called cfg) which contain basic blocks

(called nodes in the intermediate representation). Possible instructions pro-

duced by the parser are : assignment, conditional jump (called if in the

intermediate representation), unconditional jump, call, and wait. Addition-

ally, the parser simplifies the work by transforming complex expressions into

prefix (also called polish) notation, and by using numerical identifiers instead

of symbolic names. The distributer, who is next in the workflow, can read

this intermediate code much more easily than the original dSL source code,

and does not have to worry about syntactical correctness.

Also note that it is possible to give an estimation of the weighted control

flow introduced in chapter 4. These values are indicated with the keyword

MEAN in the intermediate representation. These values, however, are not

really estimated by the current implementation of the parser. Instead, the

parser estimates the probability of the THEN and ELSE branches of an IF

instruction to 49.5%, while the probability of UNKNOWN is estimated to 1 %.

The number of times a WHILE is executed is estimated to 100 by the parser.

Obviously these values (and especially the k value for the WHILE instruc-

tion) should be estimated more correctly. Remember that these values are

multiplied in the case of nested IF and WHILE instructions.

252APPENDIX D. THE DSL COMPILER-DISTRIBUTER FRONTEND

Appendix E

The dSL compiler-distributer

distributer

In this appendix we discuss the implementation details of the distributer

part of the compiler-distributer. The distributer is depicted in the global

workflow of the compiler distributer which is represented in figure E.1.

Figure E.1: The distributer in the compiler-distributer workflow

The coloring algorithm

The coloring algorithm used by the distributer is the one presented in chapter

4. We give some technical details here.

253

254APPENDIX E. THE DSL COMPILER-DISTRIBUTER DISTRIBUTER

The first step in coloring all instructions and variables consists in con-

structing the sequential color graph presented in section 4.3.2. In the im-

plementation, this graph is called dependency graph, for historical reasons.

Recall that the atomicity constraints are expressed in this graph by edges

of infinite weight. The graph is constructed using the instructions and vari-

ables from each control flow graph produced by the parser. There is a pointer

in each variable in the compiler’s symboltable and each instruction in the

control flow graphs to the a node in the dependency graph, and vice versa.

When a control flow graph is encountered which is marked atomic, edges

of infinite weight are inserted between all instructions and variables involved.

Next, synchronous calls are inspected and more infinite edges are inserted,

conform to the definition of synchronous flow (definition 20). Once the de-

pendency graph is entirely constructed, traversal using only infinite weighted

edges of the dependency graph is performed. If two nodes are found with

different color in the same connected component, an error is issued and the

compiler-distributer ends its task.

For the moment, the error contains (1) the description of the entire con-

nected component, which rapidly becomes huge and is difficult to compre-

hend and (2) a shortest path between two colored nodes is given, calculated

using the all-pairs shortest path algorithm of Floyd-Warshall [Flo62] which

runs in O(n3) (where n is the size of the component).

A third option has been implemented as a debugging aid, which consists of

the graphical presentation of the dependency graph using the open source

toolkit graphviz1.

If the atomic constraints are satisfied, all nodes having edges of infinite

weight are merged together, and the coloring algorithm of section 4.3.2 can

be applied to the graph. Two options are available : either the full shrinkage

technique using max-min-st cuts, or the faster shrinkage resulting from

theorem 13 can be applied. The implementation using max-min-st cuts uses

a subroutine calculating max-flow with Tarjan’s algorithm. This procedure

was taken from the GOBLIN project (Graph Object Library for Network

Programming Problems)2, which is developed at the Universität Augsburg.

However, we found the library unstable, and therefore implemented the

faster shrinkage algorithm.

Upon termination of one of these coloring algorithms, some instructions

may be left uncolored (cfr. section 4.2.2) because they are in a connected

component without a fixed color. We implemented a greedy heuristics to

approximate the underlying Minimum Makespan problem, thus coloring all

1http://www.graphviz.org
2http://www.math-uni-augsburg.de/opt/goblin.html

255

instructions and variables.

Synchronization code

Once all instructions are colored, the control flow graphs are altered to in-

sert synchronization code as explained in chapter 4. In practice, the control

flow graphs containing sequential code are modified in such a way that all

instructions inside a basic block are of the same color. This involves split-

ting some basic blocks in different parts. At the end of each such part,

synchronization code is inserted. However, the insertion of synchronization

code is not fully terminated at this point. Recall that computation of the

set of local variables to transmit involves the rather complex (i.e. time and

memory consuming) process of calculating def-use chains. Since these chains

are also needed to calculate the register allocation during code generation,

this step is postponed until then.

256APPENDIX E. THE DSL COMPILER-DISTRIBUTER DISTRIBUTER

Appendix F

The dSL compiler-distributer

backend

In this appendix we discuss the implementation details of the frontend part

of the compiler-distributer. The frontend is depicted in the global workflow

of the compiler distributer which is represented in figure F.1.

Figure F.1: The backend in the compiler-distributer workflow

Def-use analysis

The compiler-distributer backend proceeds by iterating over all control flow

graphs. Recall that these control flow graphs are now colored, i.e. all in-

structions are assigned to a certain site, and that synchronization code is

inserted. For each graph, three steps are performed :

1. Definition-use chains are calculated

2. Registers are allocated

257

258 APPENDIX F. THE DSL COMPILER-DISTRIBUTER BACKEND

3. Code is generated

The first task performed by the compiler-distributer backend consists in

calculating the def-use chains. These are calculated by a backwards traversal

of the basic blocks in the control flow graph. To each instruction i, we

associate the set of instructions that use the value defined by i. At each

program point p, a function Up maps each variable x in the program to the

set of instructions J that use x after p, such that x is not redefined between

the point p and the instructions j ∈ J . This function is represented as a

set of pairs (x, i), where x is a variable and i an instruction. For efficiency

reasons, this set is not maintained at each program program point, but is

stored only at the entry and exit of each basic block. Let IN [B] and OUT [B]

denote the value of this function at, respectively, the entry and the exit from

a basic block B in the control flow graph. The analysis proceeds as follows :

• Propagation of the information across a basic block B.

Consider a 3-address assignment instruction i ≡ x := y op z. Let

the program points immediately before and after i be p′ and p respec-

tively. Let the U at the point p be Up. Then we can define Up′ as

follows :

Up′(v) =

∅ if v = x ∧ v 6= y ∧ v 6= z

{i} if v = x ∧ (v = y ∨ v = z)

Up(v) ∪ {i} if v 6= x ∧ (v = y ∨ v = z)

Up(v) otherwise

(1)

• Propagation of the information between basic blocks.

For any basic block B, let the successor of that block be denoted by

succ(B). Then we have :

OUT [B] = ∪B′∈succ(B)IN [B′]. (2)

This defines a backward dataflow analysis that can be solved iteratively.

Starting with IN [B] = OUT [B] = ∅, a backwards traversal of all basic

blocks calculates IN [B] for each basic block B using equation (1). Next,

OUT [B] can be calculated using the newly calculated sets IN [B], with equa-

tion (2). If any of the sets IN [B] or OUT [B] changed, a new iteration is

performed.

Register allocation

Once the def-use chains are computed, the second task of the compiler-

distributer backend can take over. This task consists of assigning a register

number to all local variables. These variables are either local variables

259

introduced by the programmer, or may result from the simplification of

complex expressions into 3-address code, as explained in section 5.1.3. The

problem of assigning a minimum number of registers to these variables is

formalized as the well known NP-Complete minimum graph coloring problem

[GJ90] :

Definition 38 (Minimum graph coloring problem)

Given a graph G(V,E), find a coloring of G, i.e. a partition of V into

disjoint sets V1, V2, . . . , Vk such that each Vi is an independent set for G,

minimizing the number of disjoint independent sets Vi. �

The formulation of register assignment as a graph coloring problem is

introduced in [Bri92]. In this paper, Briggs defines a register interference

graph, where nodes are variables and edges between nodes express the fact

that two variables can not remain in the same register at the same time.

With this formulation, minimizing the number of needed registers for a given

control flow graph reduces to finding a minimum coloring of the underlying

interference graph.

Two variables can not be in the same register if they are live at the same

time. A variable x is live at program point p if there is a path in the control

flow graph, starting from p, where x is used before it is optionally redefined

[ASU86]. Liveness information can easily be obtained from the previously

computed definition-use chains : if Up(x) 6= ∅, then x is live at p. This

information is recorded for each program location p when solving the data

flow analysis presented above.

We can therefore construct the register interference graph, and use it

to minimize the number of used registers. As stated above, this requires

solving an NP-complete problem, and a heuristics is therefore used in the

implementation. We implemented the heuristics from [Cha82], which is

represented in figure F.2.

Note that the coloring heuristics may fail to find a coloring if there are

nodes with more neighbors than available registers. In this case, additional

code must be added which spills the local variable into memory. This opera-

tion removes some edges from the interference graph, and a coloring may be

found [GBJL02]. This is not implemented in the compiler-distributer. We

do not believe that there is a strong need for this operation since the dSL

virtual machine counts 32 registers for each basic type (BOOL, INT, DINT,

LINT, ...). Remark that because of this particular architecture, no edges

exist between variables of different types, even if they are live at the same

time.

260 APPENDIX F. THE DSL COMPILER-DISTRIBUTER BACKEND

let

k = number of available registers.

G(V,E) = register interference graph.

S = empty Stack.

while (V not empty) {

v = node in G with fewer than k neighbors;

S.push(v,G);

E = E \ { e | e = (x,v) };

V = V \ {v};

}

while (S not empty) {

(v,G) = S.pop();

assign color c to v such that

no neighbor exists in G with the same color.

}

Figure F.2: Heuristics for the minimum graph coloring problem

Completing the synchronization code

The next step performed by the backend completes the synchronization code.

Recall that synchronization instructions are added to the end of basic blocks,

if they have at least one successor which contains instructions of a different

color (this transformation is performed by the distributer). Since these

instructions are at the end of the basic blocks we can use the previously

calculated sets OUT [B] for each such a basic block, in order to complete

the synchronization code with the set of variables that need to be send (cfr.

section 5.1.4).

Code generation

Finally, the backend terminates by generating executable dSL virtual ma-

chine code. In contrast to normal compilers, where normally a single ex-

ecutable is generated, the backend generates as many executables as there

are sites in the system. For each site, the output file contains

1. The description of all sites in the system.

2. The description of all types in the program.

3. The description of all constants used in the program (this may include

261

strings and floating point numbers).

4. The description of all global variables allocated on the current site.

5. The contents of all segments (i.e. basic blocks of the control flow

graphs) known on this site. These segments may come from WHENs,

METHODs and SEQUENCEs.

6. A list of triggers, which are triples (x, c, s), where x identifies a global

variable, c identifies the segment containing the code which evaluates

the condition of a WHEN, and s identifies the segment to execute if a

raising edge is detected in the condition.

262 APPENDIX F. THE DSL COMPILER-DISTRIBUTER BACKEND

Appendix G

An Introduction to Promela

This overview is mainly based upon the document which can be found on

the website of the Spin tool1.

Promela programs consist of processes, message channels, and vari-

ables. Processes are global objects. Message channels and variables can be

declared either globally or locally within a process. Processes specify be-

havior, channels and global variables define the environment in which the

processes run.

Executability

In Promela there is no difference between conditions and statements, even

isolated boolean conditions can be used as statements. The execution of

every statement is conditional on its executability. Statements are either

executable or blocked. The executability is the basic means of synchroniza-

tion. A process can wait for an event to happen by waiting for a statement

to become executable. For instance, instead of writing a busy wait loop:

while (a != b) skip one can achieve the same effect in Promela with

the statement (a == b).

Variables

Variables are used to store either global information about the system as a

whole, or information local to one specific process, depending on where the

declaration for the variable is placed. The scope of a variable is global if it

is declared outside all process declarations, and local if it is declared within

a process declaration.

1http://www.spinroot.com

263

264 APPENDIX G. AN INTRODUCTION TO PROMELA

Data types

The names bit and bool are synonyms for a single bit of information. A

byte is an unsigned quantity that can store a value between 0 and 255.

shorts and ints are signed quantities that differ only in the range of values

they can hold.

Array variables

Variables can be declared as arrays. For instance, byte state[N] declares

an array of N bytes that can be accessed in statements such as state[0] =

state[3] + 5 * state[3*2/n] where n is a constant or a variable declared

elsewhere. The index to an array can be any expression that determines a

unique integer value.

Declarations and assignments are always executable. Conditions are only

executable when they hold.

Process types

The state of a variable or of a message channel can only be changed or

inspected by processes. The behavior of a process is defined in a proctype

declaration. The following, for instance, declares a process with one local

variable state.

proctype A() {

byte state;

state = 3

}

The process type is named A. The body of the declaration is enclosed

in curly braces. The declaration body consists of a list of zero or more

declarations of local variables and/or statements. The declaration above

contains one local variable declaration and a single statement: an assignment

of the value 3 to variable state.

The semicolon is a statement separator (not a statement terminator,

hence there is no semicolon after the last statement). Promela accepts

two different statement separators: an arrow ‘->’and the semicolon ‘;’. The

two statement separators are equivalent. The arrow is sometimes used as

an informal way to indicate a causal relation between two statements.

265

Process Instantiation

A proctype definition only declares process behavior, it does not execute

it. Initially, in the Promela model, just one process will be executed: a

process of type init, that must be declared explicitly in every Promela

specification. A typical init declaration looks as follows.

init

{ run A(); run B()

}

run is used as a unary operator that takes the name of a process type

(e.g. A). It is executable only if a process of the type specified can be

instantiated. It is unexecutable if this cannot be done, for instance if too

many processes are already running. The run statement can pass parameter

values of all basic data types to the new process.

Run statements can be used in any process to spawn new processes, not

just in the initial process. Processes are created with the run statements.

An executing process disappears again when it terminates (i.e., reaches the

end of the body of its process type declaration), but not before all processes

that it started have terminated.

Atomic and deterministic Sequences

By prefixing a sequence of statements enclosed in curly braces with the key-

word atomic the user can indicate that the sequence is to be executed as one

indivisible unit, non-interleaved with any other processes. If the sequence

of statements is fully deterministic, and no statement can be blocking, then

the keyword d step may be used. atomic and d step are powerfull features

of the Promela language, because they allow to considerably reduce the

size of the state space of the underlying model. We come back to this point

further on.

Message Passing

Message channels are used to model the transfer of data from one process to

another. They are declared either locally or globally, for instance as follows:

chan qname = [16] of { short, short }.
This declares a channel that can store up to 16 messages, each of which

is a pair of type short. Channel names can be passed from one process to

another via channels or as parameters in process instantiations.

266 APPENDIX G. AN INTRODUCTION TO PROMELA

The statement qname!expr1,expr2 sends the value of expression expr1

together with the value of expr2 to the channel that we just created, that is:

it appends the pair of values to the tail of the channel. qname?r1,r2 receives

the message, it retrieves it from the head of the channel, and stores it in the

variables r1 and r2. The channels pass messages in first-in-first-out order.

Constants can be used in the receive statement. In that case, the receive

statement is executable only if the first message matches all corresponding

constants.

Messages can also be taken inside the message queue by the statement

qname ?? <recv args>, where recv args is a list of receive arguments.

In that case, the first message in the queue that matches the arguments is

taken. If none exist, the statement is not executable. If only variables are

used in recv args, the behavior is the same as qname ? <recv args>.

The send operation is executable only when the channel addressed is not

full. The receive operation, similarly, is only executable when the channel

is non empty.

A predefined function len(qname) returns the number of messages cur-

rently stored in channel qname. Note that if len is used as a statement,

rather than on the right hand side of an assignment, it will be unexecutable

if the channel is empty: it returns a zero result, which by definition means

that the statement is temporarily unexecutable.

Rendez-Vous Communication

So far we have talked about asynchronous communication between processes

via message channels, declared in statements such as chan qname = [N] of

{ byte } where N is a positive constant that defines the buffer size. Rendez-

vous communication is obtained when the channel size is zero, that is, the

channel port can pass, but can not store messages. Message interactions

via such rendezvous ports are by definition synchronous. Rendez-vous com-

munication is binary: only two processes, a sender and a receiver, can be

synchronized in a rendezvous handshake.

Control Flow

Between the lines, we have already introduced three ways of defining con-

trol flow: concatenation of statements within a process, parallel execution

of processes, and atomic sequences. There are four other control flow con-

structs in Promela to be discussed. They are case selection, repetition,

267

unconditional jumps, and inlining.

Case Selection

The simplest construct is the selection structure. Using the relative values

of two variables a and b to choose between two options, for instance, we can

write:

if

:: (a != b) -> option1

:: (a == b) -> option2

fi

The selection structure contains two execution sequences, each preceded

by a double colon. Only one sequence from the list will be executed. A

sequence can be selected only if its first statement is executable. The first

statement is therefore called a guard.

Guards can be mutually exclusive, but they need not be. If more than

one guard is executable, one of the corresponding sequences is selected non-

deterministically. If all guards are unexecutable the process will block until

at least one of them can be selected. There is no restriction on the type of

statements that can be used as a guard. A process of the following type will

either increment or decrement the value of variable count once.

byte count;

proctype counter() {

if :: count = count + 1

:: count = count - 1

fi

}

The special guard else can be used, and is executable when all other

guards are false.

Repetition

A logical extension of the selection structure is the repetition structure. We

can modify the above program as follows, to obtain a cyclic program that

randomly changes the value of the variable up or down.

268 APPENDIX G. AN INTRODUCTION TO PROMELA

byte count;

proctype counter() {

do :: count = count + 1

:: count = count - 1

:: (count == 0) -> break

od

}

Only one option can be selected for execution at a time. After the option

completes, the execution of the structure is repeated. The normal way to

terminate the repetition structure is with a break statement. In the example,

the loop can be broken when the count reaches zero. Note, however, that it

need not terminate since the other two options always remain executable.

Unconditional Jumps

Another way to break the loop is with an unconditional jump: the infamous

goto statement.

do :: count = count + 1

:: count = count - 1

:: (count == 0) -> goto enddo;

od

enddo: ...

Inlining

Inlining is a pure syntactical addition which allows one to better organize

the Promela specification. By means of the keyword inline, a piece of the

specification can be named and substituted in any part of the specification

that follows it. Just like functions in common programming languages, pa-

rameters may be passed, but no recursion is allowed. Inlining is performed

during macro-preprocessing.

inline behavior(my_id) {

a_channel ! my_id;

}

proctype proc_1() {

behavior(1); // a_channel ! 1; is substitued here

}

proctype proc_2() {

behavior(2); // a_channel ! 2; is substitued here

}

269

Assertions

Statements of the form assert(any boolean condition) are always ex-

ecutable. If the boolean condition specified holds, the statement has no

effect. If, however, the condition does not necessarily hold, the statement

will produce an error report during verifications with Spin.

