An experiment on synthesis and verification of an industrial
process control in the 4SL environment

Bram De Wachter Thierry Massart
Cédric Meuter

Brussels Free University, Computer Science Department

March 3, 2003

Abstract

In this paper, we first give an overview of the concepts and environment of §SL, a sim-
ple imperative and event driven language designed to program distributed industrial control
systems. The advantage of §SL is to provide a transparent code distribution using low level
mechanisms. The behavior of the synthesized distributed system can therefore be formally
modeled or easily monitored. We show that another advantage is the possibility to be able
to verify systems designed with 3SL. As an example, we show how gSL can be used to design
the control system of two canal locks and we use the Spin tool to prove correctness of the
System.

Keywords : Industrial process control, transparent code distribution, verification, Spin

1 Introduction

Industrial process control goes hand in hand with distributed systems. This is due to the physically
distributed nature of the environment that is continuously controlled through various devices such
as sensors and actuators. Development of such distributed systems is a complicated task, even for
experienced programmers. The burden of combining the physical complexity of the process, the
communication schemes of the distributed parts, the need to provide simple and fast control and
the extreme reliability and robustness requirements make the development of such systems hard.

To simplify the work of the distributed systems designer, classical solutions exist, (CORBA,
DCOM, EJB,...) which handle the communication aspects and allows the programmer to con-
centrate on the functionality aspects of the system. Unfortunately, these solutions are generally
quite heavy, and completely hide all the communications aspects, making the monitoring of such
systems difficult.

In this paper, we first introduce JSL which is a simple imperative and event driven language
designed to program distributed industrial control systems. The advantage of JSL is to provide
a transparent code distribution using low level mechanisms. Therefore, most of the time the jSL
programmer can ignore all the communication aspects between controllers of the distributed sys-
tems. Moreover, by the simplicity of the distribution mechanisms, the behavior of the synthesized
distributed system can be formally modeled and easily monitored - which is a main concern for
this kind of systems.

We show that another advantage is the possibility to be able to verify systems designed with
dSL. As an example, we show how JSL was used to design the control system of two canal locks.
We show how a translation can be done between gSL and Promela, the language used by the Spin
tool, and present the verifications we have done with Spin to prove correctness of our system.

The paper is organized as follows. Section 2 describes JSL concepts together with a simplified
syntax and an informal semantics that capture the most of JSL’s possibilities. In section 3, we

2 THE pSL CONCEPT 2

discuss gSL semantics. In Section 4 we present our simple control system of locks. Section 5
presents the translation in Promela of our gSL program. In section 6, we present the results
obtained with Spin. Finally, some concluding remarks are given in section 7.

2 The gSL concept

A control system is generally a distributed system made of one or several sites each of which
can be either a supervisor (typically a computer maybe with a user interface) or a programmable
controller (called automata from here on, which are connected through sensors and actuators to
the industrial equipment to control). The industrial system to control is seen as the environment
of the system.

dSL ! is both a programming language used to design industrial control systems and a pro-
gramming environment, mainly a compiler which synthesizes the actual control systems.

dSL is a simple imperative language with static variables; a variable can be (1) internal to the
program (2) linked to an input (sensor) or (3) linked to an output (actuator). dSL is event driven,
i.e., an event is specified by the change in some variable value. For instance, when x >= 0 then
run_motorl(); will trigger run_motor1() every time the variable x switches from a negative to
a positive value.

At the first glance, a JSL program seems to be designed to control a centralized (i.e. non
distributed) environment. A gSL program is written as if the entire environment can be accessed
without the need for explicit communication or synchronization primitives (we shall see that some
restrictions are imposed to apply this principle).

When the designer has written the gSL program he must also fill in a localization table to specify
the physical localization (site) of each I/O. The gSL compiler can then automatically distribute the
code among the sites (supervisors or automata), trying to minimize the needed communications?.

It is clear that this approach has many benefits such as (1) maintainability (only one language
is used) (2) flexibility (changing an actuator / sensor from one site to another does not imply
changes on the program),(3) simplicity (since communication/distribution is done implicitly, the
programmer does not need to come up with synchronization schemes to handle particular tasks).

dSL example

To illustrate the JSL concepts, let us give a simplified example of a program that receives input
values through an input variable temp, linked for instance to a temperature sensor and switches
on (off) a heater when the temperature is below 0 °C (above 20 °C). Two indicators in a control
panel (led and alarm) are also updated following the state of the heater and the number of times
the heater is turned from one state to the other, respectively. The program will be used in a
physical configuration counting 2 sites; but this is not directly mentioned in the program. The
dSL program of figure 1 corresponds to this simple control system.

A §SL program contains 5 elements. (1) global variables declarations including all I/O variables
(2) method definitions (3) when instructions (4) sequence definitions and (5) an initialization. A
simplified grammar of the JSL syntax can be found in appendix A.

Note that gSL has limited Object-Oriented features. Variables and methods are therefore
structured into object definitions. We will not detail this aspect further in this paper.

Example of figure 1 does not contain any method.

The when construct allows to formulate an event-handler; it is made up of two parts : 1. (expr)
The condition that must change from false to true enabling the handler and 2. (instruction_ list)
the code that has to be executed in that case.

1 4SL is the successor of the language SL (Supervision Language) developed by the Macq Electronique company,
Belgium that was originally designed for controlling and supervising industrial processes.
2The problem to minimize the number of communications is hard; it is not the subject of this paper

2 THE pSL CONCEPT 3

global_var
led, heater : output_byte;
alarm . output_byte;
temp : input_byte;
maintenance : bool;
control : int;

end_var

sequence set_heater(state)
(* Make the led’s state correspond to
the heater’s action *)

control := control+l;

if control == 1000 then
control := 0;
maintenance := true;

end_if

led := state;

heater := state;

end_sequence

when maintenance then
alarm := true;
(x ... %)

end_when

when temp < O then

(* Turn on the heater x*)
launch set_heater (1);

end_when

when temp > 20 then

(* Turn off the heater x)
launch set_heater (0);

end_when

program
control := 0;

(* Initially turn off heater and led indicator *)
launch set_heater (0);

end_program

Figure 1: simple dSL program

atomic and sequential code

The design of JSL has been dictated by the execution paradigm used in the world of industrial
process control that requires a immediate reaction to events and their instantaneous treatment. In
practice, by default, this forbids any hidden synchronization delaying execution and in particular
synchronization which implies inter-site communications (through a relatively slow network). A
clear way must therefore exist to express that inter-site synchronization is allowed.

Hence gSL distinguishes between

e atomic or event-driven code which is executed in an atomic manner and is seen as instanta-
neous and therefore cannot be distributed and

e non atomic or sequential code which can be distributed and use inter-site communications
to synchronize or transfer values between sites.

By default, the code attached to a when is event-driven and therefore must be local to a given
site. To relax this constraints, two mechanisms have been defined: (1) the launch instruction
allows to start sequential code®, and (2) portions of event-driven code may indirectly know the

3A method (which is atomic) can also be launched. This results in a delayed execution of an atomic code

2 THE pSL CONCEPT

Site 1

Site 2

label0:
control:=control+1;
if control == 1000 then

labell:
maintenance:=1;
start 1, label2

control := 0; stop
start 2, labell label3:
stop receive state from 1
label2: led:=state;
end if start 1, label)
send 2, state stop

start 2, label3
stop

labelj:
heater:=state;
stop

Figure 2: Distributed code of the procedure set heater

value of variables using tilded variables (also called asynchronous variables). For instance, the
instruction y := ~x assigns to the local variable y the last value received in the local site of the
distant variable x; even if the value of x has changed since then. More precisely, the instruction
y := "x will stand for y := Z; where y is local to the site S;. The variable Z; is used in an
event-driven code when the corresponding variable x cannot be local to this code (information
given by the compiler when it tries to distribute the code. Tilded variables must be used with care
: only when the exact value of a variable which cannot be local is not needed (e.g. temperature
which evolves slowly) or if the program is built such that it is known that the tilded value is equal
to the real one.
In gSLsequential code is defined through the sequence instruction. A sequence cannot have
more than one instance executed simultaneously.

distributed code

In our example, we suppose the I/O variables led, alarm are governed by the first controller
(site [1]), while heater and maintenance are localized on the second controller (site [2]); these
information are given by the developer in a localization table.

Note that if I/O variables and instructions using them are connected to a given site, the
localization for other variables and instructions is left to the compiler that should be decided
before generating the distributed code. This distributed code should be equivalent to the initial
dSL program in the sense that the possible interactions between the system and the environment
should respect, all along its execution, what is specified by the initial JSL program. For instance,
if the compiler connects the variable control and all “free" instructions to the site 1, then the
resulted distributed code for the set_heater method would be as follows.

[1] control := control+il;
[1] if control == 1000 then
[1] control := 0;

[2] maintenance := 1;
[1] end_if

[2] led := state;

[1] heater := state;

where the value between | and | identifies the localization of each instruction. Remark that
these are indications used to point out the distribution of this particular JSL program, and are
never part of any real gSL program (i.e. they are not present in the JSL grammar). The figure
2 shows the corresponding distributed code. We can also notice there that the value of state is
transmitted from site 1 to site 2 where it is used to update the variable led.

3 SEMANTICS 5

3 Semantics

The semantics of SL is introduced more formally in this section allowing us to motivate the
translation of JSL programs to Promela. This section explains in more detail the insides of JSL’s
sequence, launch and tilded variable. We will therefore skip a complete and formal review of the
language by describing well known program issues like method call, control flow and expression
evaluation.

As we have already seen, the main difference between gSL and any common imperative pro-
gramming language results from its distributed characteristics. To describe the semantics of jSL
independently from the actual distribution (materialized as a localization table described in section
2), we introduce the notion of mazimal distributability, which expresses the most liberal configura-
tion on which a given JSL program could ever run. Indeed, due to atomic code, some instructions
and hence variables must be sticked together in a single site; but in the other case, the code may be
distributed. Using the gSL semantics, we can show that there is a maximal possible distribution.
The principle of maximal distributability expresses that maximal possible distribution allows the
most possible behaviors. Verifying safety properties on this configuration will induce safety for
any other distribution. In this section, we will show how this maximal distribution is obtained.

We will define a partition (P, - -- , Pg) of the event-driven instructions of a gSL program, where
the instructions in each element of the partition govern a set of variables. This partition may be
used to describe k independent processes or sites. Since the partition is maximal, a given 4SL
program may therefore contain less but not more sites than allowed by the partition.

Finding Independent Processes in gSL

Definition 1 Let Instr(W;) denote all instructions that may be reached in the body and condition
of a given when Wy, including all code reachable from that when. This includes all instructions
in the body of the when, together with all whens that may be triggered trough assignment and code
reached trough synchronous method call.

Definition 2 Let Var(instr) be the non tilded global variables used (read) and defined (written)
in instr, and Var(I) = UiesVar(i), Var(W;) = Var(Instr(W;)).

We can now express the locality of instantaneous code with the condition :
VWi, Wiz :
Var(W;) N Var(W;) # ¢ = 3l : Instr(W;) U Instr(W;) C B,
To obtain a correct partition, we augment with the condition that
YW, : 3l : Instr(W;) C P;VInstr : Al : Var(instr) C Var(F)

Now, retain the maximal partition of the event-driven instructions, P, -- - , P, from all partitions
that satisfy these conditions and such that

UiInstr(Wi) = U]'Pj

Each P; defines an independent process that will execute the instructions in P;, and governs
the variables in Var(P;).

To allow a given process to have a view outside its boundaries imposed by the locality con-
straints, asynchronous variables provide a nearly correct value for a variable that is governed by
another process. Intuitively, if a process S; governs z, and another process S; needs a nearly
correct value for z, it uses a tilded version # that keeps S; and S as independent processes. Each
time S; changes x, Sz will be notified of the new value in an asynchronous way. Ss has therefore
a good, but not necessarily correct or latest value of x.

Each occurrence of a tilded variable in the program text does not lead necessarily to a different
asynchronous variable. Since asynchronous variables are associated to processes, all occurrences
of the tilded variable Z in a given process P; are identical.

3 SEMANTICS 6

Definition 3 Let %‘(instr) be the set of tilded (global) variables used and defined in instr,
Var(I) = UierVar(i).

The definition of Var allows us to uniquely identify the different occurrences of & : simply
replace all occurrences of Z in Var(P;) with ;.

In the next section we will informally detail the semantics of gSL, without going into the
description of well known programming concepts such as expression evaluation, method-call, and
control flow. We only emphasize on JSL’s special features : its processes behavior, the processing
of whens and messages, the behavior of assignments, and finally its sequences.

Process behavior
The behavior of a JSL program in conjunction with the environment can be seen as
Sull--- ISkl €

where each S; is an independent process that governs the variables in P; and € is the environment.
We associate to each process S; a fifo queue F; that models the communications between the
different sites and is defined as follows.

F; is tuple < A, f,b > where f,b € N and A is a function N — D. Four operations are defined
on F; :

o First(F;):< A, f,b>— A(f) if f < b, L otherwise

o EnQueue(F;,d € D) < A, f,b>—< A[A(b) » d], f,b+1>
e DeQueue(F;) < A, f,b>—< A f+1,b>

e Size(F;) < A, f,b>—>b—f

D describes the domain of the messages in Fj, and is defined as the set of messages that
update the value of an asynchronous variable and the request to execute a particular portion of
code. D = Drjge U Drgunch- To update a variable, the message contains the designated variable,
and its latest value : Dryq4e = Var x Z. To execute some sequential code, a process receives a
pointer to the code that has to be executed. Drquncn = Lbl, where Lbl is the set of possible labels
for sequential code. Remark that using these primitives models a reliable, but not necessarily
instantaneous, communication channel.

Execution of each S; is an infinite loop that executes the code in figure 3, each iteration of the loop
is called in cycle, or more precisely an Input-Process-Output cycle because it contains tree phases.
(1) Input : variables linked to inputs change their value according the physical state of the device
they are attached to, (2) Process : events are triggered and incoming messages are processed (3)
Output : variables linked to outputs force the physical state of the devices they are connected to.

// Input

for each input variable z € P;, do x =2z, od *
// Process whens

for each W;: Var(W;)NVar(P;) # ¢ do execute W; od
// Process messages

take n in 0,---,Size(F;) °, for each j=0,---,n—1, do
msg € D = First(F;); F; — DeQueue(F;); Handle(msg); od
// Output

for each output variable z € P;, do z. =%z od *

Figure 3: Input-Process-Output behavior

4where z, is the hardware value of the variable £ and :=2 is the usual definition of assignment (ie. without
whens), cfr subsection on assignment.

5Some results in section 6 use instantaneous message passing, which forces n = Size(F;). Remark that choosing
infinitely often 0 models communication breakdown.

4 CASE STUDY : A CANAL LOCK CONTROLLER 7

Processing whens

To each when W; of the form when Cond then Body end_when, we associate a hidden variable
W!. The pseudo code for the execution of W; is

if Cond A—W/ then W/ := true; Body else W, := Cond fi.

Remark that different execution orders of a given set of whens may lead to different results. To
cope with this problem, each site processes its whens respecting their order of appearance in the
program text.

Processing messages

The processing of messages is straightforward, if a message (z,val) € D is received in S;, it executes
Z; := wval (cfr section on assignment). A message containing a label will cause the receiving process
S; to execute the code associated to that label, until it reaches the end of that code.

Assignment

An assignment of the form x := e; executed on site S; has the usual result (x is initialized with
the evaluation of e), but gSL adds two features to the assignment. First of all, all whens W; are
executed such that € Var(W;)NVar(P;). Secondly, if x has an asynchronous distant copy, then
the asynchronous variable(s) is (are) updated. Vj : Z; € P;, do F; = EnQueue(Fj,(z,€))

Remark that the special behavior for assignment may cause infinite recursion in the processing
of whens. A simple static check® allows us to reject programs that may contain unacceptable
recursion.This allows to model the assignment x:= e; by a common assignment followed by an
inlining of all whens that have x in their condition.

Sequences

Sequences are containers for independent sequential code. Because sequences allow atomic ex-
ecutions, they allow to execute consecutive instructions without the locality constraint imposed
on event-driven code. This means that they can contain a sequence of instructions that use and
define variables governed by different S;. However, an instruction in a sequence is actually ex-
ecuted by a particular S; depending on the variables it manipulates. Imagine a label on each
instruction in each sequence, and S; executes instr; on [bly, while instry is the next instruc-
tion with Ibly. If Var(instrs) N Var(P;) = ¢, then S; stops the execution of the sequence, and
F; — EnQueue(Fj;,1bly) for j : Var(P;) N Var(instrs) # ¢.

Note that Var() contains only global variables which implies that local variables do not in-
fluence the localization of instructions in sequences. It is the implementation of sequences that
makes sure that these local values are correctly communicated between all intervening sites. We
suppose here that all instructions that can be localized (Vinstr : Var(instr) NU;Var(P;) # ¢).

4 Case study : a canal lock controller

To illustrate JSL concepts, we study the design of a controller for a system composed of two
consecutive locks. Each lock is composed of two gates, a top and a bottom one. In between the
top and the bottom gates of each lock, the water level can be controlled (i.e. the inside of a
lock can be filled of emptied). The different commands of this system (opening/closing a gate,
emptying/filling a lock) can be accessed via a control panel. For this system to function properly,
several constraints must be satisfied: (1) two consecutive gates cannot be opened at the same
time, (2) a gate can only be opened if the water level on each side is the same, and (3) the water
level inside a lock can only be changed if both its top and bottom gates are close. The purpose

6a sufficient condition is that for each W;, Instr(W;) contains at most one assignment to each variable that
appears in the condition of that W;.

5 DSL TO PROMELA 8

of the controller is to ensure that the previous constraints are verified at all time. Whenever a
command is introduced via the control panel, before taking the appropriate action, the controller
must first check that it will not jeopardize the system, in which case, the action is not taken, and
a red light on the control panel is switched on to indicate an error.

The idea to implement the controller in gSL is the following. Whenever an order is given, a
corresponding boolean variable order_given is set (there is an order_given variable for each gate
and one for the water level of each lock). When receiving a command, the controller has to check
that all the requirements are satisfied and, using those order_given variables, that no order on
the checked gates and water levels are given (note that an order to close a gate can never violate
a constraints). The order_given variables are, of course, reset when an order is completed. In
this implementation, each command is monitored by a WHEN construct. As an example, figure 4
presents the WHEN monitoring the command “open the bottom gate of lock2” (the complete SL
source can be found in appendix B).

when lock2.bottom_gate.button_open then
if (“lock2.top_gate.closed) and (not lock2.top_gate.order_given) and
("lockl.top_gate.closed) and (not lockl.top_gate.order_given) and
("lock2.water.down) and (not lock2.water_order_given)

then
not_allowed_led := false;
lock2.bottom_gate.order_given := false;
launch lock2.bottom_gate<-open();

else
not_allowed_led := true;

end_if

end_when;

Figure 4: when monitoring the command “open the bottom gate of lock2”

Note that for all the order_given variables, the *~’ operator cannot be used. For example, in
figure 4, if 1lock2.top_gate.order_given was tilded, when an order is given to open the bottom
gate of lock2, the controller would check if “lock2.top_gate.order_given is false. However, in
that case, because of communication delay, an order might still have been given. The controller
would then allow the bottom gate of lock2 to open while the top gate is ordered to open, which
leads to a violation of the given constraints.

5 JgSL to Promela

The application

The semantics of JSL allows an almost immediate translation of a given 4SL program to Promela.
We show how a real controller application is translated from JSL into Promela, and how, with the
help of Spin, some errors in an initial design were discovered.

Consider the gSL program in appendix B, which reveals eleven independent processes, based
on the maximal partition where one element contains U;c(7,s,9,10,13,14,15,16} Instr(W;), and each
of the other ten elements contains the instructions of one of the ten remaining whens. This is
the maximum number of sites on which the program can be distributed. However, the actual
distribution can use less sites, by forcing some variables on the same site. Here, the physical
distribution uses 3 sites, (e.g. close buttons are part of the site that also governs the open buttons)
: 51,852, S3, that govern respectively the variables

e lockl.{top/bottom}_gate.motor_{command/direction}

lockl.water_{command/direction/up/down},
lockl.{top/bottom}_gate.{opened/closed}.

e lock2.{top/bottom}_gate.motor_{command/direction}
lock2.water_{command/direction/up/down},
lock2.{top/bottom}_gate.{opened/closed}.

5 DSL TO PROMELA 9

e lockl.{top/bottom}_gate.button_{open/close},
lock2.{top/bottom}_gate.button_{open/close},
lockl.button_{empty/fill},
lock2.button_{empty/fill},
lockl.{top/bottom}_gate.order_given,
lock2.{top/bottom}_gate.order_given.

Remark Since the output variable not_allowed_led has no influence on the behavior of the
system, we removed it from the application.

Modeling the environment

If one considers the environment as an individual process that reacts on outputs and continually
changes the inputs of the JSL program, the result is a surprisingly large state space that is much
too big for verification purposes. To cope with this problem, consider the behavior of a process
S;, and more particularly its infinite Input-Process-Output loop. Since inputs are sampled at the
beginning of such a cycle, and outputs are written at the end, the changes of the environment
during the cycle have no effect whatsoever on the process phase. To avoid unnecessary interleavings
between the environment and the different JSL processes, the part of the environment that is
connected to S; is frozen as long as S; is in its process phase. For this particular application, this
simplification is legitimate since we can split the environment up into three independent parts
where each part interacts with only one S;. To simplify the model, the environment is integrated
into the specification of each S; (by means of inlining), and allowed to change state when the
process reaches its input phase.

In our application, the environment contains four gates, two water levels and an operator
that can press twelve buttons. The gates and the water levels are modeled using a flip-flop
behavior (cfr figure 5) that has four states (with the corresponding bits for sensor flipped and
sensor _flopped) : flipped (1,0), flopped(0,1), flipping(0,0) and flopping(0,0). It receives an order
to flip, to flop or to do nothing. The behavior is obvious, and can easily be adapted for the gates
(flipped = opened, flopped = closed) as for the water level (flipped = up, flopped = down). A
nondeterministic choice makes the gate (and the water) move from opened (up) to closed (down)
by allowing the model to stay in the flipping, respectively flopping state. Modeling the operator
is straightforward, a nondeterministic choice lets the operator choose between the twelve buttons
({1ock1/lock2}.{top/bottom}_gate.button_{open/close} and
{lockl/lock2}.button_{empty/fill}).

inline flip_flop_behavior(sensor_flipped, sensor_flopped, order_cmd, order_dir) {
if :: order_cmd && sensor_flopped ->
if :: order_dir == ORDER_TO_FLOP -> skip;
:: order_dir == ORDER_TO_FLIP -> sensor_flopped = false;

fi;
:: order_cmd && !sensor_flopped && !sensor_flipped ->
if :: order_dir == ORDER_TO_FLOP -> sensor_flopped = true;
:: order_dir == ORDER_TO_FLIP -> sensor_flipped = true;

: skip;
fi;
: order_cmd && sensor_flipped ->
if :: order_dir == ORDER_TO_FLOP -> sensor_flipped = false;
:: order_dir == ORDER_TO_FLIP -> skip;
fi;
:: ! order_cmd -> skip;
fi;
}

Figure 5: Flip flop behavior

5 DSL TO PROMELA 10

Modeling the Processes S;

The processes S; described in the semantics can be coded almost as-is in Promela using a set
of macros interpreted by the C precompiler. To reduce the size of the state space, note that
all actions taking place in the process phase of a given process are deterministic (gSL does not
allow non-determinism, by imposing an ordering on the processing of the whens for example),
and intermediate states have no effect on the behavior of the other processes. In other words,
the process phase, which contains most of the controller’s behavior, is a deterministic sequence
of internal states. Using the d_step feature from Promela allows to merge all such trails into
single nodes in the state space. Unfortunately, when the JSL semantics is modeled in Promela
the limited size of the queues associated to each process make the d_step illegal when a message
is sent to a full queue. Replacing it with atomic is a less but still good alternative that yields a
spectacular reduction of the state space by not allowing any interleaving of atomic executions of
different processes (cfr fig 6).

Communications between the different processes are modeled using Promela’s chan and are
kept reliable but not instantaneous.

chan ch_1 = [MAX_CHANNEL_SIZE] of { byte, int, int };
active proctype VM_1 () {
atomic { init_1(Q); }
do::
// Read Inputs
atomic { input_1(); }
// Handle whens for changed Inputs)
atomic { when_1(); }
// Read messages
atomic { read_msg_1(); }
od;
}
inline input_1() {
// Environment for lockl.top_gate
flip_flop_behavior (
lockl_top_gate_opened, lockl_top_gate_closed,
lockl_top_gate_motor_command, lockl_top_gate_motor_direction);
... // Same for lockl.bottom_gate, and lockl.water
}
inline when_1() {
// Processing for WHEN lockl.top_gate.closed || lockl.top_gate.opened THEN

// lockl.top_gate.moter_command := false
// END_WHEN
if :: !(lockl_top_gate_closed || lockl_top_gate_opened)
Il _old_cond ->
_old_cond = lockl_top_gate_closed || lockl_top_gate_opened;
: else ->

_old_cond = true;
lockl_top_gate_moter_command = false;
fi;
... // Same for the other whens on site 1
}
inline read_msg_1 () {
byte msg_id; int parl, par2;
do
:: ch_1 ? msg_id, parl, par2;
// Dispatch the message
if :: msg_id == VAR_CHANGED ->
// The message contains an update for the variable ~“x1
if parl == ID_x -> x = par2;

: msg_id == REXEC ->
// The message contains a label that must start sequencel at 1bll
if parl == 1bll -> start_sequence_1_1b11();

fi;
:: skip-> break;
od;

Figure 6: Model for S;

6 RESULTS 11

6 Results

Problem in the locks controller!

At first glance, the implementation presented in section 4 seems to works. However, after modeling
it in Promela as explained in section 5 and using Spin model checker to verify the given constraints,
we found out that it is faulty. Indeed, as shown in figure 7, two consecutive gates (top gate of lock
1 and bottom gate of lock2) can be opened at the same time. In this case, three orders are given to
the top gate of lock 1: an order to open, followed by an order to close (before the gate is completely
opened) and finally an order to open. Because of communication, the reset_order_given() and
the value of “lockl.top_gate_closed are delayed (respectively because of the launch and ’~’).
So when the order to open the bottom gate of lock 2 is given the controller believes that the top
gate of lock 1 is closed and that no order has been given to it, so it allows the opening of the
bottom gate of lock 2, which violates the constraints.

|I0ck1 | |Iock2 | | controler |

lockl.top_gate.button_open = true
lockl.top_gate.order_given := true

lock1.top_gate.open() /

lockl.top_gate.closed = false lockl.top_gate.button_close = true

(top gate opening) lockl.top_gate.order_given := true

lock1.top_gate.close() 4/

(top gate closing)
lock1.top_gate.button_open = true

lockl.top_gate.closed = true lockl.top_gate.order_given := true
(top gate closed)
lock1.top_gate.reset_order_given()
lock1.top_gate.open() ~lockl.top_gate.closed = true

lockl.top_gate.closed = false

lock2.bottom_gate.button_open = true

(top gate opening) lock2.bottom_gate.order_given := true

lock2.bottom_gate.open()
lockl.bottom_gate.closed := false

(bottom gate opening)

" both the top gate of lockl and the
bottom gate of lock2 are opening!

Figure 7: Error trace

An easy way to correct that, would be to allow a command to a gate (or a water level) only if its
order_given is false (in other words, only allowing one order at a time). However, this would not
be a viable solution. Indeed, imagine a boat breaks down while the gate is closing, the controller
would not allow to open a gate until it is completely closed, and the boat would be crushed down!
So, instead of blocking all commands while an ordered is processed, we disable the commands only
during the time needed to verify constraints. To achieve this, a sequential execution checks that
the issued command can be executed, by migrating the condition to all sites intervening sites. As
illustrated in figure 8, this is done by means of a sequence construct that evaluates, in the local
variable check, that all the conditions are satisfied. In the example of figure 8, the first part of the
constraint (check := (lock2.top_gate.closed and lock2.water_down) ;) will be evaluated on
the site where 1ock2 is localized, then the value of check will be migrated to the site where 1ock1 is
localized to evaluate the second part (check := (check and lockl.top_gate.closed);). Since
the control panel is disabled during this task, we can be sure that the variable check is true if
and only if the constraints are satisfied, in which case, the corresponding action(s) is (are) taken.
This introduces the need for classical distributed systems mechanisms such as semaphores.

Verification

The constraints expressed in section 4 are expressed in LTL as a safety property using the formula
[1 !'bad and checked with spin using
#define bad ((!lockl_top_gate_closed && !lockl_bottom_gate_closed)

RESULTS 12

when lock2.bottom_gate.button_open and not disabled then

disabled := true;
launch open_bottom_gate_lock2;
end_when

sequence open_bottom_gate_lock2
begin_var
check : bool;
end_var
check := (1ock2.top_gate.closed and lock2.water_down);
check := (check and lockl.top_gate.closed);
if check then
not_allowed_led := false;
launch lock2.bottom_gate<-open();
else
not_allowed_led := true;
end_if;
disabled := false;
end_sequence

Figure 8: when / sequence monitoring the command “open the bottom gate of lock2”

('lockl_top_gate_closed && !lock2_bottom_gate_closed)
('lock2_bottom_gate_closed && !lock2_top_gate_closed)
('lockl_bottom_gate_closed && !lockl_water_down)
('lockl_top_gate_closed && !lockl_water_up)
('lock2_bottom_gate_closed && !lock2_water_down)
('lock2_top_gate_closed && !lock2_water_up))

| Model | Chan Size | Delay | Buttons | Verified | Time | States | Memory (MB)]

1 5 No 8 Yes 0:1 7103 0.6
1 10 No 8 Yes 0:1 7 10° 0.6
1 10 No 12 Yes 0:4 8103 3.4
1 5 Yes 8 Yes 0:1 12 103 0.8
1 10 Yes 8 Yes 0:1 12 108 0.8
1 10 Yes 12 Yes 0:11 144 103 5.7
1 10 No 2x8 No! 0:13 250 10° 8
1 10 Yes 2x8 No! 0:52 673 10° 23
1 10 No 2x12 No! 0:26 524 10° 18
1 10 Yes 2x12 No! 1:23 1.14 108 39
2 5 No 8 Yes 0:1 8103 0.6
2 10 No 8 Yes 0:1 8 103 0.6
2 10 No 12 Yes 0:9 286 103 8.6
2 5 Yes 8 Yes 0:1 810° 0.6
2 10 Yes 8 Yes 0:1 8 103 0.6
2 10 Yes 12 Yes 0:9 290 10° 8.8
2 10 No 2x8 Yes 1:22 3.14 10° 89
2 10 Yes 2x8 Yes 1:54 3.46 10° 98
2 10 Yes 2x12 - 6:41:00 | +1.7 108 +1500

Figure 9: Results

Results for the actual verification with the simplifications described before, can be found in

figure 9. The first column indicates which model was taken, followed by the number of messages
the channels can hold, a flag that indicates whether messages are emptied as soon as possible from
their queues, next the number of buttons the operator can press. The last four columns show

7 CONCLUSIONS 13

whether the safety constraints were verified, the time it took Spin to do so, and the memory it
needed expressed in number of states and actual memory.

Closer inspection of the results in figure 9 reveal first of all that the size of the channels used
for message passing has no influence on the size of the state space. Secondly, remark that the use
of instantaneous message passing (a process never executes a cycle without emptying its queue)
has an impact on the state space of model 1 but makes almost no difference for model 2. This
is due to the fact that no tilded variables are used in model 2, and because the model does not
progress until the launch messages are treated. A site that executes a cycle without reading such
a message creates almost no new states in the state space.

More critical information is contained in the number of buttons the operator may press on.
Since the problem is completely symmetric, the constraints may be checked on a part of the system
that does not contain the water level and the outermost gate of one of the locks. In that case,
four buttons can be disabled : open/close for the omitted gate and up/down for the water in the
lock. Note that, to find the error, one must allow the operator to press more than once on each
button (indicated in figure 9 by 2x). Unfortunately, to keep the verification acceptable both in
time and memory, the operator is restricted to press each button no more than twice. Even with
such a restrictive behavior, we were unable to verify the entire second model, and had to verify the
constraints on the 2x8 version. The reason for the explosion of the state space in model 2 is the
absence of restrictions on the behavior of the process that controls the control panel. In model 1,
pressing a button does not necessarily trigger the event since the conditions on the tilded variables
must be satisfied. In model 2, only the disabled variable can stop an event from being triggered
when a button is pressed. Finally, note that the results revealing the violation of the property
are hard to interpret in relation to the other results, since the verifier did not have to explore the
complete state space.

7 Conclusions

In this paper, we presented JSL, a distributed environment for designing industrial process control.
We pointed out the main advantages of using qSL. This is achieved by offering a transparent code
distribution that simplifies the designer’s task. After briefly presenting JSL semantics, which is
based on the notion of mazimal distributability, we showed how a JSL program can be modeled in
Promela. This allowed us, using the Spin model checker, to detect some non trivial flaws in the
initial design of a locks controller. Finally, we commented some verification results, and showed
that this technique can not be applied as is : great efforts to reduce state space are required in
order to obtain a verifiable model. In the future, we would like to automate the entire translation
of §SL to Promela, and to apply various algorithms such as slicing and abstraction to reduce the
complexity of the resulting model. In an effort to simplify the designer’s task, we must find a
intuitive and accessible way to model the environment. Since control of industrial processes often
uses standard devices, we could provide the designer with a library of common pre-modeled and
parametrized environment behaviors. We should also provide a dSL library of classical distributed
mechanisms (i.e. semaphores, mutex).

References

[AO91] Krzysztof R. Apt and Ernst-Rudiger Olderog. Verification of Sequential and Concur-
rent Systems. Texts and Monographs in Computer Science. Springer-Verlag, Berlin,
New York, 1991.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques
and Tools. Addison-Wesley, Inc., Reading, Mass., 1986.

[DWO03] Bram De Wachter. Code Distribution in the dsl Environment for the Synthesis of
Industrial Process Control. Technical report, U.L.B., 15 January 2003.

A GRAMMAR

[EC99]

D.A. Peled E.M. Clarke, O. Grumberg. Model Checking. MIT Press, 1999.
[GMM™*01]| F. Geurts, F. Macq, T. Massart, A. Piron, and G. Vanstraelen. Présentation du projet

distributed sl (qSL). Technical Report 444, ULB, 2001.

[Hol91]
1991.

[Hol97]

Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,

G. J. Holzmann. The model checker spin. IEEE Trans. on Software Engineering,

23(5):279-295, May 1997.

[Mil89]
[PWO1]

A. Piron and B. De Wachter. The §SL language proposition :

R. Milner. Communication and concurrency. Prentice-Hall, Inc., 1989.

Report XX1, ULB, 2001.

A Grammar

Remark This grammar is a reduced version of the complete 4SL grammar, and to keep it compact,

some rules may introduce ambiguity.

Dsl_ Program
dsl_element_ list
dsl_element

it

global wvar -
declaration
var_list

id_ list

var_ type

method__ declaration

instruction_ list

instruction

if
while
assign

synchronous-
__method_call

when

sequence

asynchronous-
__method_ call

sequence_ call
expr
bin_op

un_ op

O e

Ll

dsl_element_list init
dsl_element dsl_element_list | dsl_ element
global_wvar_declaration | method _declaration | when | sequence

“program” “begin_var” id_list “end var” instruction list
“end program”

“global _var” var list “end var”

1)

id_list “3” wvar_type | id_list “ var_type “;

id | id)" id_list

var_list

»

“int”, “input__byte”, “output_byte”

“begin_method” id “(” id_list “)” “begin_var” id_ list “end _var”
instruction_ list “end _method”
instruction instruction_list | instruction

if | while | assign “5” | synchronous _method_ call “3” |
asynchronous _method_ call “5” | end_if “;” | sequence_ call “3” |

“if” ezpr “then” instruction list “else” instruction list “end if”
“while” ezpr “do” instruction_list “end while”
id “:=" expr

id “(77 Zd_ list u)::

“when” ezpr “then” instruction_ list “end _when”

“sequence” id “begin__var” id_list “end _var” instruction_ list
“end sequence”

“launch” synchronous method call

“launch” id “(? id_list ©)”
ezpr bin_op expr | un_op expr | “(” expr “)” | id | cst
“_l_” | 6‘_7’ | [1% 33 | “/” ‘ 13 <7’ | 113 >77 | “< >7’ | “ <:” | ‘£>:77 | “and” | “Or”

w_» | “not”

Grammar. Technical

B LOCK CONTROLLER : pSL SOURCE

B Lock controller : gSL source

First attempt
CLASS Gate

motor_direction, motor_command, opened, closed, order_given : BOOL;

button_open, button_close : BOOL;
END_CLASS;

CLASS Lock

water_up, water_down, water_command, water_direction, water_order_given : BOOL;

bottom_gate, top_gate : GATE;
button_fill, button_empty : BOOL;
END_CLASS;

GLOBAL_VAR
lockl, lock2 : Lock;
not_allowed_led : BOOL;
END_VAR;

(x Gates *)

METHOD GATE::move(direction : BOOL)
self .motor_direction := direction;
self .motor_command := TRUE;

END_METHOD

METHOD GATE::reset_order_given()
self.order_given := FALSE;
not_allowed_led := FALSE;

END_METHOD

(* Equivalent to WHEN G.closed OR G.opened THEN ...

WHEN IN GATE self.closed OR self.opened THEN

self .motor_command := FALSE;
LAUNCH self<-reset_order_given();
END_WHEN
(* Locks *)

METHOD LOCK::water_move(direction : BOOL)
IF NOT self.water_down THEN

self.water_command := TRUE;
self.water_direction := direction;
END_IF;
END_METHOD

METHOD LOCK::reset_water_order_given()
self.water_order_given := FALSE;
not_allowed_led := FALSE;

END_METHOD

WHEN IN LOCK self.water_up OR self.water_down THEN

self .water_command := FALSE;
LAUNCH self<-reset_water_order_given();
END_WHEN

WHEN lockl.bottom_gate.button_open THEN

for every object G of class GATE x)

W1 = self -> lockl.bottom_gate *)
W2 = self -> lockl.top_gate *)
W3 = self -> lock2.bottom_gate *)
W4 = self -> lock2.top_gate *)
(* Wo = self -> lockl *)

(* W6 = self -> lock2 *)

(*x W7 *)

IF ("lockl.top_gate.closed) AND (NOT lockl.top_gate.order_given) AND
("lockl.water_down) AND (NOT lickl.water_order_given)

THEN
not_allowed_led := FALSE;
lockl.bottom_gate.order_given := TRUE;

LAUNCH lockl.bottom_gate<-move(TRUE); (*open%*)

ELSE
not_allowed_led := TRUE;
END_IF;
END_WHEN

WHEN lockl.top_gate.button_open THEN

(x W8 *)

IF ("lockl.bottom_gate.closed) AND (NOT lockl.bottom_gate.order_given) AND
("lock2.bottom_gate.closed) AND (NOT lock2.bottom_gate.order_given) AND
("lockl.water_up) AND (NOT lockl.water_order_given)

THEN
not_allowed_led := FALSE;
lockl.top_gate.order_given := TRUE;
LAUNCH lockl.top_gate<-move(TRUE); (*openx)
ELSE
not_allowed_led := TRUE;
END_IF;
END_WHEN

B LOCK CONTROLLER : pSL SOURCE 16

WHEN lockl.bottom_gate.button_close THEN (* WO *)
LAUNCH lockl.bottom_gate<-move(FALSE); (*closex)
END_WHEN

WHEN lockl.top_gate.button_close THEN (* W10 *)
LAUNCH lockl.top_gate<-move(FALSE); (*closex*)
END_WHEN

WHEN lockl.button_fill THEN (* Wil *)
IF ("lockl.bottom_gate.closed) AND (NOT lockl.bottom_gate.order_given) AND
("lockl.top_gate.closed) AND (NOT lockl.top_gate.order_given)
THEN
not_allowed_led := FALSE;
lockl.water_order_given := TRUE;
LAUNCH locki<-water_move(TRUE);

ELSE
not_allowed_led := TRUE;
END_IF;
END_WHEN
WHEN lockl.button_empty THEN (* W12 =)

IF ("lockl.bottom_gate.closed) AND (NOT lockl.bottom_gate.order_given) AND
("lockl.top_gate.closed) AND (NOT lockl.top_gate.order_given)
THEN
not_allowed_led := FALSE;
lockl.water_order_given := TRUE;
LAUNCH lockl<-water_move(FALSE);

ELSE
not_allowed_led := TRUE;
END_IF;
END_WHEN
WHEN lock2.bottom_gate.button_open THEN (* W13 *)
(*x Same as W8, replace lockl with lock2 ; switch top, bottom; switch up, down *)
WHEN lock2.top_gate.button_open THEN (* W14 *)
(* Same as W7, replace lockl with lock2 ; switch top, bottom; switch up, down *)
WHEN lock2.bottom_gate.button_close THEN (* W15 *)
LAUNCH lock2.bottom_gate<-move(FALSE); (*closex)
END_WHEN
WHEN lock2.top_gate.button_close THEN (* W16 *)
LAUNCH lock2.top_gate<-move(FALSE); (*closex*)
END_WHEN
WHEN lock2.button_fill THEN (* W17 *)

(* Same as Wil, replace lockl with lock2 *)

WHEN lock2.button_empty THEN (* W18 *)
(* Same as W12, replace lockl with lock2 *)

(* main program *)

PROGRAM LOCK
not_allowed_led := FALSE;

END_PROGRAM

Second attempt

(* Same as attempt 1, without the order given instructions : *)

METHOD GATE::open(), METHOD GATE::close(), METHOD GATE::reset_order_given()
WHEN IN GATE self.closed OR self.opened, METHOD LOCK::empty(), METHOD LOCK::£ill()

(* Commands on lockl *)

WHEN lockl.bottom_gate.button_open AND NOT disabled THEN
disabled := true;
LAUNCH open_bottom_gate_locki;

END_WHEN

SEQUENCE open_bottom_gate_lockl
VAR
check : bool;
END_VAR
check := (lockl.top_gate.closed AND lockl.water_down);
IF check THEN
not_allowed_led := FALSE;
LAUNCH lockl.bottom_gate<-open();

B LOCK CONTROLLER : pSL SOURCE

ELSE
not_allowed_led := TRUE;
END_IF;
disabled := false;
END_SEQUENCE

WHEN lockl.top_gate.button_open AND NOT disabled THEN
disabled := true;
LAUNCH open_top_gate_lockl;

END_WHEN

SEQUENCE open_top_gate_lockl
VAR
check : bool;
END_VAR
check := (lockl.bottom_gate.closed AND lockl.water_up);
check := (check AND lock2.bottom_gate.closed);
IF check THEN
not_allowed_led := FALSE;
LAUNCH lockl.top_gate<-open();
ELSE
not_allowed_led := TRUE;
END_IF;
disabled := false;
END_SEQUENCE

WHEN lockl.bottom_gate.button_close THEN
LAUNCH lockl.bottom_gate<-close();
END_WHEN

WHEN lockl.top_gate.button_close THEN
LAUNCH lockl.top_gate<-close();
END_WHEN

WHEN lockl.button_fill AND NOT disabled THEN
disabled := true;
LAUNCH £ill_locki;

END_WHEN

SEQUENCE fill_lockl
VAR
check : bool;
END_VAR
check := (lockl.top_gate.closed AND lockl.bottom_gate.closed);
IF check THEN
not_allowed_led := FALSE;
LAUNCH lock1<-£fill();
ELSE
not_allowed_led := TRUE;
END_IF;
disabled := false;
END_SEQUENCE

WHEN lockl.button_empty AND NOT disabled THEN

disabled := true;
LAUNCH empty_lockl;
END_WHEN

SEQUENCE empty_lockl
(* same as fill_lockl, replace empty() with £ill() *)

(* Commands on lock2 : same as commands on locki,
replace lockl with lock2,
switch top and bottom,
switch up and down. *)

PROGRAM LOCK
not_allowed_led := FALSE;
END_PROGRAM

17

