
Monitoring Distributed Controllers: When an
Efficient LTL Algorithm on Sequences is Needed

to Model-Check Traces

Alexandre Genon, Thierry Massart, and Cédric Meuter?

Université Libre de Bruxelles??

Abstract. It is well known that through code instrumentation, a dis-
tributed system’s finite execution can generate a finite trace as a partially
ordered set of events. We motivate the need to use LTL model-checking
on sequences and not on traces as defined by Diekert and Gastin, to val-
idate distributed control systems executions, abstracted by such traces,
and present an efficient symbolic algorithm to do the job. It uses the
standard method proposed by Vardi and Wolper, which from the LTL
formula, builds a monitor that accepts all the bad sequences. We show
that, given a monitor and a trace, the problem to check that both the
monitor and the trace have a common sequence is NP-complete in the
number of concurrent processes. Our method explores the possible con-
figurations symbolically, since it handles sets of configurations. Moreover,
it uses techniques similar to the partial order reduction, to avoid explor-
ing as many execution interleavings as possible. It works very well in
practice, compared to the standard exploration method, with or without
partial order reduction (which, in practice, does not work well here).

Keywords: testing of asynchronous distributed systems, monitor, global
properties, model checking of traces

1 Introduction

A distributed control system is a set of distributed hardware equipments such
as small computers or Programmable Logic Controllers (PLCs), which run con-
current processes, communicating asynchronously through some network. The
design and implementation of such a distributed reactive system is a non-trivial
task. Validation and debugging techniques can be used during the design and
the implementation to help the developer in his work [DMM04,DGMM05]. Ver-
ification tools (e.g. [Hol97,McM92b,CCG+02]) can be used to validate a model.
Unfortunately in practice, the system’s implementation code contains thousands
of lines and dozens of variables. The state-explosion problem generally prevents

? {tmassart,cmeuter}@ulb.ac.be
?? Boulevard du Triomphe - CP-212, 1050 Bruxelles, Begium - Tel:+32 2 650.5603 -

Fax:+32 2 650.5609

the designer from its exhaustive verification even with efficient exploration tech-
niques such as partial order reduction [God96,Val93] or symbolic model checking
[CGP99,McM92a,Bry92].

The designer generally falls back to testing, which cannot guarantee that a
system is completely bug-free, but if achieved on a large number of test-cases
(e.g. covering all the system’s functionalities), can give a reasonable confidence
that the system is correct. For that purpose, the implementation is generally
instrumented to record relevant events. A special process, called monitor, records
the system’s events and must then check that the observed execution satisfies
the desired properties. This monitoring can either be done offline, i.e. after the
complete trace is recorded, or online, at runtime. Notice that this monitoring
technique can also be used to validate runs of a system’s model, if too complex
to be exhaustively verified. Hence, both at the design and implementation level,
it is an important activity where efficient methods must be provided.

For distributed asynchronous systems [Lyn96], a run is generally not seen
as a totally ordered sequence of events, but as a partially ordered set where
unordered events may have occurred in any order. In a simple approach, the
monitor just assumes that the events happened in the order they are received,
and check that the property is satisfied. In a predictive approach [SRA04], the
monitor must check that every compatible total order of events satisfies the
property. The causal partial order between the fired events can be obtained
through correct code instrumentation using, e.g. vector clocks [Lam78,Mat89].
The collected information of an execution is therefore abstracted as a trace, i.e. a
partially ordered set of events where two consecutive events of the same site are
temporally ordered and where communications (e.g. message transfers or shared
variable manipulations) impose an order between some distributed events.

An important point to note is that even if the control is distributed and
provides a partially ordered trace, the exact sequence the control actions are
taken is generally crucial. One can for instance think to a controlled system
where a valve A must be closed before another valve B can be opened and where
each valve is controlled by another PLC; the controlled environment is therefore
seen as centralized. Testing that an execution satisfies a global property φ reduces
therefore to verifying that every sequential execution compatible with the partial
order satisfies φ or, in other terms, model checking φ on the corresponding
trace. Therefore, we will see that our traces can not be seen as Mazurkiewicz
traces [Maz86] where the order of independent events is meaningless.

Unfortunately, even if the monitor is already built, this problem is hard and
in practice, the number of compatible sequential executions may be exponential
in the number of concurrent processes. Therefore, in the same spirit as what
is done with partial order reduction techniques, which try to minimize the ex-
ploration of execution interleavings as much as possible, we investigate here an
efficient method to practically reduce the verification time. Moreover our pro-
posed method is symbolic since it handles sets of configurations. We show in
practice that our method is very efficient in execution time, compared to the
standard exploration method with or without partial order reduction.

This paper is organized as follows. In section 2, we detail related proposals
and explain why the problem needs model-checking on sequences and not on
traces. In section 3, we introduce our model for traces and monitors, formalize
the trace monitoring problem and show that this problem is hard even with an
already built monitor. In section 4, we present our symbolic method and show
its correctness, and in section 5, we show how this method can be refined into a
symbolic exploration algorithm. Next, in section 6, we present our experimental
results of various examples. Finally, further works are given in section 7.

2 Related Works and motivation

In the literature, papers on global predicate detection and trace model-checking
have generally a common starting point since the system to verify is composed of
various concurrent processes synchronized by some mean. This system is mod-
eled, possibly after some code instrumentation (using e.g. [Lam78,Mat89]), as a
trace, i.e. a set of temporally partially ordered events.

Global predicate detection initially aims at answering reachability ques-
tions, i.e. does there exist a possible global configuration of the system, that
satisfies a given global predicate φ. Numerous works have been done on the
detection of global predicates. Garg and Chase showed in [CG98] that this prob-
lem is NP-complete for an arbitrary predicate, even when there is no inter-
process communication. Chandy and Lamport [CL85], present a technique for
stable predicates, i.e. predicates that never turn false once they become true.
In [CDF95], Charron-Bost et al present an algorithm for observer independent
predicates. In [GW94,GW96], Garg and Waldecker give polynomial procedures
for conjunctive predicates, i.e. predicates that are conjunctions of local predi-
cates. In [CG98], Chase and Garg introduce the classes of linear and semi-linear
predicates and give an efficient procedure to solve the predicate detection prob-
lem for these classes of systems. In [GM01], Garg and Mittal introduce the notion
of regular predicates, a subset of the linear predicates, for which they present a
procedure that solves the predicate detection problem in polynomial time. This
procedure makes use of computation slicing, that is, computing all cuts compati-
ble with a given execution satisfying a given predicate. They present an efficient
procedure for computing such slices. Computation slicing on regular predicates is
examined in details in [MG01]. In [SG03], A. Sen and Garg present the temporal
logic RCTL (for regular-CTL), which is a subset of the temporal logic CTL (and
an extension, RCTL+). Every RCTL formula is a regular predicate; thus with
RCTL formulae, we can use computation slicing to solve the predicate detection
problem. In [SRA04] K. Sen et al. use an automaton to specify the system’s mon-
itor. The authors provide an explicit exploration of the state space and to limit
this exploration a window is used. The choice of a linear temporal logic as LTL
rather than a branching temporal logic as CTL seems natural since the aim is to
verify that for all total orderings of the occurred events, the corresponding runs
satisfy the property. In [SVAR04] K. Sen et al. define the logic PT-DTL which

is a variant of past time linear temporal logic, suitable for efficient distributed
model-checking on execution traces. However, if it allows efficient check, neither
PT-DTL of K. Sen et al nor RCTL of A. Sen and Garg can verify properties
as LTL (or equivalent CTL formula) �(a→ ♦(b ∧ c)), i.e. every a is eventually
followed by a state (or a transition) where b and c are true; formula that may
be very useful during validation. Our work uses a similar framework to what
is used in [SRA04]. We investigate here on the possibility to define a method,
efficient in practice to be able to model-check any LTL formula. Therefore, we
do not limit the exploration as in [SRA04], but prefer to increase its efficiency
with a symbolic method.

Trace model checking has been studied through the definition of several
linear temporal logics for Mazurkiewicz traces. A Mazurkiewicz trace [Maz86],
over an alphabet Σ with a independence relation I, can be defined as a Σ-
labelled partial order set of events with special properties not explained here.
For Mazurkiewicz traces, local and global trace logics have been defined. Local
trace logics have been proposed in the work of Thiagaranjan on TrPTL [Thi94]
and Alur, Peled and Penczek on TLC [APP95]. Global trace logics include,
among others, LTrL [TW02] proposed by Thiagarajan and Walukiewicz, and
LTL on traces [DG02] defined by Diekert and Gastin.

However, in our problem, the trace is an input which models a run that must
be checked to see if the possible ordering of events is correct. For instance if it
is required that an event a must occur before b, and if, in the trace, actions a
and b are independent and can be executed in any order, the system is seen as
incorrect. But, trace temporal logics are not “designed” to express constraints on
the particular order independent actions are executed. For instance if actions a
and b are independent, the trace T = ab expresses that a and b are concurrent.
Therefore, the LTL formula a→ ♦b which expresses on semantics on sequences,
that a is eventually followed by b is not so easily expressible in trace-LTL. There-
fore, since we do not have a priori the independence relation, these trace logics
are not adapted to model-check our runs.

3 Trace monitoring problem

In this section, we first introduce our framework with the notions of finite trace
which models a run of a concurrent system, and monitor which is an automata
representation of the formula to check. Then, we formalize the trace monitoring
problem and prove its NP-completeness in the number of concurrent processes.

Trace Our runs are obtained by concurrent processes, each executing a finite se-
quence of variables assignments. Moreover, due to inter-process communications,
other causal relations are added. A run is modeled as a finite trace, i.e. a finite
partially ordered set of events, where each event is labeled by the assignment
which took place during this event. Formally:

Definition 1 (Trace). For a set of variables Var, a (finite) trace T is a finite
labeled partially ordered set (E, λ,�) where:

– E is a finite set of events,
– λ : E 7→ V ar × N is a labeling function, mapping each event e to an assign-

ment of the form x := v. For the event e, var(e) and val(e) denote respectively
the simple variable x and value v of the corresponding assignment.

– �⊆ E × E is a partial order relation on E

In the following, we will use the following notations: ↓e denotes {e′ | e′ � e} and
↑e denotes {e′ | e � e′} (the reflexo-transitive closure of resp. causal predecessors
and successors). Moreover, for any set S of events, ↑S = ∪e∈S ↑e and ↓S = ∪e∈S ↓
e. We also define a cut C of a trace T , which models an “execution point” of
the corresponding distributed execution, as a consistent set of already executed
events C ⊆ E such that ↓C = C. We note CT the set of all cuts of T . The set of
enabled events of a cut is defined by: enabled(C) = {e ∈ E \ C | ↓e \ {e} ⊆ C}.
Note that for a cut C and any event e ∈ enabled(C) , the set C ∪ {e} is also a
cut.

As mentioned earlier, even if our systems are finite traces, their particular
nature, i.e., the fact that they come from a distributed controller of a global
environment which can be seen as centralized, induces that their semantics is
defined classically by the sets of (finite) sequences of events they can do.

Definition 2 (Semantics of a trace). For a set of variables Var, and a trace
T = (E, λ,�) defined with these variables, the semantics [|T]| is defined as the
set of sequences of execution T can have. Formally:

[|T]| =
{

σ = e1, e2, ..., e|E| | ∀1 ≤ i, j ≤ |E| : (ei ∈ E) ∧ (ei � ej)⇒ (i ≤ j)∧
(i 6= j)⇒ (ei 6= ej)

}
Remark: if needed we can easily define the value of the variables at some point
in the execution. At the beginning of the execution, we can assume all variables
to be equal to 0. However, with our model, we cannot in general, talk about the
value of a variable x in some cut C; this value can depend on the particular path
σ taken to reach C.

Monitor Now that we have defined the model T of a distributed system, we
need to define how a property can be expressed on T .

Since events in a trace are single assignment, we naturally first define basic
formulae as boolean expressions on variables of the trace. We restrict ourselves to
expressions using arithmetic operators (+,-,*,/), comparison operators (<,>,=)
and boolean connectors (∧, ∨, ¬). Moreover, since each trace’s event is a simple
assignment, each basic formula uses only one variable of the trace. Example of
such basic formulae are (x = 3) or ((0 < 2 ∗ x) ∧ (2 ∗ x < 5)). We denote by
F the set of such basic formulae and by var(φ), the variable appearing in a
basic formula φ. For a given basic formula φ, and an event e which executes the
assignment x := v, we naturally define :

Definition 3 (Formula triggering). An event e triggers a formula φ, if e as-
signs the variable appearing in φ and if φ evaluates to true after the assignment.
Formally, if φ[x ← v] denotes the formula φ where the variable x is substituted
by v, then we have:

(φ |= e)⇔ ((var(e) = var(φ)) ∧ (φ[var(e)← val(e)] = >))

Those basic formulae can be used as propositions to build more complex
temporal constraints, using LTL.

A particular care must be taken to the fact that it will be checked on fi-
nite sequences. This can be done, as explained e.g. in [LMC01] by an obvious
translation of any LTL formula into an “LTL with ∆ actions” (where ∆ is not
in the initial alphabet). Semantically the finite sequences are extended by an
infinite sequence of ∆ actions, to mark the deadlock. For example, intuitively a
system S should satisfy ¬a iff S can not perform a a as next action. Hence S
may either perform only actions b different from a or it may deadlock. Similarly,
if© denotes the next operator in LTL, a system which satisfies ¬©a can either
deadlock immediately or perform some visible action and then satisfy ¬a. To
capture the intuition, any formula ©φ is first translated into (¬∆ ∧ ©φ) and
¬© φ into (∆ ∨ ©¬φ).

Then, the classical procedure defined by Vardi and Wolper [VW86] to build
from a LTL formula a corresponding (Büchi) automaton B able to do all the
sequences of [|¬φ]| can be used to build our monitor (seen as a standard non
deterministic finite automaton). The construction is restricted to our systems
where only one variable is modified at each event. As explained in [LMC01],
the ∆-transitions can be removed from the monitor obtained and a finite au-
tomaton is provided where transitions are labeled by basic formulae and with
a standard and not the Büchi acceptance condition. Note that the size of the
obtained monitor may be exponential in the size of the corresponding LTL for-
mula [VW86]; but generally, since in practice the size of the formula is small, it
is not a problem.

We will show that our main contribution in this paper, is an algorithm which
outperforms classical methods to compose B and T and verify that [|T]|∩[|¬φ]| = ∅,
i.e. check that no sequence of the system has the property φ.

In the following, we simply define our monitors as any non deterministic finite
automata with basic formulae on transitions. The formal definition of a monitor
follows.

Definition 4 (Monitor). A monitor M is a tuple (M,m0, B,−→m) where:

– M is a finite set of states,
– m0 ∈M is the initial state,
– B ⊆M is a set of final “bad” states,
– −→⊆M ×F ×M is a transition relation.

The monitoring problem We have seen that the monitoring problem reduces
to determine if a given trace T = (E, λ,�) and monitor M = (M,m0, B,−→m)

have a common accepted sequence of events; or in other words does there exist
a total order on E, compatible with � such that, if the events of E are executed
in that order,M can reach to a “bad” state. A priori, we need to examine how
the monitor reacts to every interleaving of the events in E compatible with the
partial order �. A monitor reacts to an event e if, in its current state, there exists
an outgoing transition labeled with a guard φ such that e triggers φ. next(e,m)
denotes the set of monitor states reached by triggering an event e, from a monitor
state m. Formally, next is defined as follows:

next(m, e) =

{
{m} if ∀m φ−→m m′ : e 6|= φ

{m′ | ∃m φ−→m m′ : e |= φ} otherwise

This leads us to the following definition of composition of a trace with a
monitor.

Definition 5 (Composition). The composition of a trace T and a monitor
M, noted T ⊗M is a transition system (Q, q0,−→) where:

– Q ⊆ 2E ×M is the set of configurations
– q0 = (∅,m0) is the initial configuration
– −→⊆ Q×E×Q is the transition relation defined as follows: ∀(s,m) ∈ Q,∀e ∈

enabled(s), ∀m′ ∈ next(m, e)

(s,m) e−→ (s ∪ {e},m′)

We note (s,m)
ρ
 (s′,m′) iff ∃(s0,m0), (s1,m1), ..., (sn,mn), such that

(s,m) = (s0,m0), (s′,m′) = (sn,mn) and the path ρ = e1e2 · · · en with
∀ 0 ≤ i < n : (si,mi)

ei−→ (si+1,mi+1). We also note (s,m) (s′,m′) if
∃ρ : (s,m)

ρ
 (s′,m′), and reachable(s,m) = {m′ ∈ M | (s,m) (E,m′)}.

An simple example of composition is presented in figure 1 where e.g. the vactor
[2, 1] represents the cut reached after execution of 2 events in P1 (x:=0; y:=3)
and 1 event in P2 (w:=4).

Using these notations, we can reformulate the monitoring problem.

Definition 6 (Trace monitoring problem (TMP)). Given a trace T =
(E, λ,�) and a monitor M = (M,m0, B,−→m) the trace monitoring problem
(TMP) is to check whether reachable(∅,m0) ∩B = ∅

Remember that, by the definition of reachable, we ask here to execute the
complete trace before checking that the reached state is in B.

NP-completeness We now show that the monitoring problem is NP-complete
in the number of concurrent processes in the trace even if the formula only
uses boolean variables and where every formula on transitions is of the form
x = v. This result is a priori not completely obvious since we consider restricted
monitors that use single variables predicates on each transition and it is known
([GW96,GW94]) that checking conjunction of local predicates is polynomial in
the size of the conjunction. We present a polynomial time reduction from 3-sat
to our problem.

x:=0 y:=3 x:=5

w:=4 w:=0

P1

P2

(a) Trace

badtmp w = 0init
x > 0

(b) Monitor

([0,0],init)

([0,1],init)

([1,0],init)

([1,1],init)

([2,0],init)

([2,1],init)

([3,0],tmp)

([3,1],tmp)

([2,2],init)

([3,2],bad)

x := 0

x := 0

y:= 3 x:=5

y:=3 x:=5

x:=5

w:=4 w:=4 w:=4 w:=4

w:=0 w:=0

([3,2],tmp)

(c) Composition

Fig. 1. Example of composition

Theorem 1 (NP-completeness of TMP). [GMM06] The trace monitoring
problem is NP-complete.

Proof sketch. It is easy to see that the TMP is in NP. Indeed, one could use
a non deterministic algorithm to guess an execution (of size |E|) and check, in
polynomial time, if the corresponding total order is compatible with Tφ and if
this execution leads to a state in B. For NP-hardness, we reduce from 3-sat.
The main idea is to use a monitor to model a 3-sat formula and the trace to
model all possible valuations of its propositions. The only technicality resides in
the fact that the valuations must not contain any pair of complementary literals.
This is accomplished by properly choosing the partial order.

Note on partial order reduction Using partial order reduction [God96] to
improve the explicit exploration will not work to solve the TMP. This is because
in the trace monitoring problem, the monitor expresses constraints on all, or
most of the events of the trace. Therefore, no events is seen as “invisible”; and
the partial order reduction brings no improvement. This was another motivation
to find an effective method for the TMP. Our method is presented in the following
section.

4 Symbolic composition

The main idea behind the symbolic exploration is to exploit the fact that the
monitor is not always sensitive to all events. Indeed, in the classical exploration,
if an event e does not assign any variable appearing in a guard of an outgoing
transition, we consider two cases: one where e is fired, and one where e is not.
But both executions correspond to the same evolution of the monitor. Hence,
it would be more efficient to consider only one execution, where e has been
optionally fired. However, we must remember these events, because they might

∈ z

∈ [t, w] \ z

t

w

e

∈ z

∈ [t, w] \ z

t

w

e

∈ z

∈ [t, w] \ z

t

w

e

t′

w′

t′

w′

(a) e ∈ [t, w]

∈ z

∈ [t, w] \ z

t

w

e

∈ z

∈ [t, w] \ z

t

w

e

∈ z

∈ [t, w] \ z

t

w

e

t′

w′

t′

w′

(b) e ∈ enabled(w)

Fig. 2. Symbolic transition (t, w, m)
e−→s (t′, w′, m′) with e ∈ sensitive(m)

become relevant in the future, i.e. they could become mandatory in the future.
Therefore, in our approach, each symbolic configuration will separate both kinds
of events: optional events, i.e. events that did not produce a monitor move and
do not change its state if they are not taken, and mandatory events, i.e. events
that did produce, directly or indirectly, a monitor move. In practice, a symbolic
configuration is a tuple (t, w, m), where t and w are cuts. Mandatory events
are contained in t, and optional events are contained in w\t (denoted [t, w] in
the following). Such a symbolic configuration represents an entire set of explicit
configurations {(s,m) | s ∈ CT ∧ t ⊆ s ⊆ w}.

In order to define the symbolic composition based on this idea, we first need
to introduce some notations. We define sensitive(m) = {e ∈ E | ∃m φ−→m m′ :
e |= φ}, the set of all events that will trigger a monitor move when it is in state
m.

Definition 7 (Symbolic Composition). The symbolic composition of a trace
T and a monitor M, noted T ⊗sM is a transition system (Qs, q

0
s ,−→s) where:

– Qs ⊆ 2E × 2E ×M is the set of symbolic configurations
– q0

s = (∅, ∅,m0) is the initial symbolic configuration
– −→s⊆ Qs × E × Qs is the transition relation defined ∀(t, w, m) ∈ Qs, as

follows:
(i) if e 6∈ sensitive(m) ∧ e ∈ enabled(w) , then

(t, w, m) e−→s (t, w ∪ {e},m)

(ii) if e ∈ sensitive(m) ∧ e ∈ enabled(w) ∪ [t, w], then ∀m′ ∈ next(m, e)

(t, w, m) e−→s (t ∪ ↓e, (w\ ↑e) ∪ {e},m′)

We note (t, w, m)
ρ
 s (t′, w′,m′) iff ∃(t0, w0,m0), ..., (tn, wn,mn), such that

(t, w, m) = (t0, w0,m0), (t′, w′,m′) = (tn, wn,mn) and such that the path
ρ = e1e2 · · · en with ∀ 0 ≤ i < n : (ti, wi,mi)

ei−→s (ti+1, wi+1,mi+1).
We also note (t, w, m) s (t′, w′,m′) if ∃ρ : (t, w, m)

ρ
 s (t′, w′,m′), and

reachables(t, w, m) = {m′ ∈ M | (t, w, m) (t′, E, m′)}, the set of monitor
states, reachable at the end of a trace’s run.

x := 0 x:=5

w:=4 w:=0

w:=0

([0,0],[0,1],init) ([1,0],[2,2],init) ([3,0],[3,2],init)

([3,2],[3,2],bad)([3,1],[3,1],init)

Fig. 3. Symbolic exploration

From a symbolic configuration (t, w, m), we can fire events that were not
previously examined before (events in enabled(w)), or events that were examined
before as optional and that allows now to change the current minitor state (event
in [t, w]∩ sensitive(m)). When firing an event e, we consider two cases. The first
case is when e is not sensitive in m. In this case, since e becomes optional, it
is simply added to w. On the other hand, if e is sensitive in m, it becomes
mandatory and must be added to t together with all its causal predecessors (↓e).
Moreover, we add e to w in order to keep t included in w, and all events added
to w in the strict future of e must be removed from w since e changed from
optional to mandatory.

We now need to prove that this symbolic composition is correct w.r.t the
classical explicit exploration.

Theorem 2 (Correctness of symbolic composition). [GMM06] The sym-
bolic composition is correct w.r.t the classical explicit composition

reachables(∅, ∅,m0) = reachable(∅,m0)

Proof sketch. First prove that the symbolic composition is consistent,
i.e. that

(
(∅, ∅,m0) s (t, w, m)

)
⇒ ((↓t = t) ∧ (↓w = w) ∧ (t ⊆ w)).

Then, we prove that it is sound, i.e. that
(
(∅, ∅,m0) s (t, w, m)

)
⇒(

∀s : (t ⊆ s ⊆ w) ∧ (↓s = s)⇒ (∅,m0) (s,m)
)
. Finally, we prove

that the symbolic composition is complete, i.e.
(
(∅,m0) (s,m)

)
⇒(

∃t, w : (t ⊆ s ⊆ w) ∧ (∅, ∅,m0) s (t, w, m)
)

5 Symbolic exploration

Taking advantage of the symbolic composition presented in the previous section,
we propose our method, given in algorithm 1, which can efficiently solve the
TMP, i.e. compute if reachables(∅, ∅,m0)∩B = ∅. The idea behind this algorithm
is simple. Given a symbolic configuration (t, w, m), we first explore all non-
sensitive events. Since these events do not influence the monitor when fired, the
order in which they are fired is not important. Therefore, we can just consider
them in any order. In practice, we add to w all non-sensitive event of enabled(w),
and this repeatedly until a stabilization (lines 7–10). Afterwards, from there, we
fire all sensitive events yielding several new symbolic configurations (lines 13–
14). The sets W and T contain the symbolic configuration resp. remaining to
handle and already handled. The resulting state space for the monitor and trace
presented in figure 1 is presented in figure 3

Algorithm 1: Symbolic exploration
input : T = (E, λ,�),M = (M, m0, B,−→m)
output: reachables(∅, ∅, m0) ∩ B 6= ∅
begin1

T ← ∅, W ← {(∅, ∅, m0)}2
while W 6= ∅ do3

let (t, w, m) ∈ W4
W ← W \ {(t, w, m)}5
T ← T ∪ (t, w, m)6
repeat7

x← w8
w ← w ∪ {e ∈ enabled(w) | e 6∈ sensitive(m)}9

until (w = x)10
if (w = E) ∧ (m ∈ B) then11

return false12

forall (t′, w′, m′) : (t, w, m)
e−→s (t′, w′, m′) ∧ (t′, w′, m′) 6∈ T do13

W ← W ∪ {(t′, w′, m′)}14

return true15

end16

In order to prove the correctness of this algorithm, we need to prove that firing
non-sensitive events first is sufficient to detect if reachables(∅, ∅,m0)s ∩B = ∅ is
not empty. For this, we introduce a covering operator.

Definition 8 (Covering operator v). A symbolic configuration (t, w, m) is
covered by a symbolic configuration (t′, w′,m′), noted (t, w, m) v (t′, w′,m′), iff

(t′ ⊆ t) ∧ (w ⊆ w′) ∧ (m = m′)

Intuitively, (t′, w′,m′) covers (t, w, m) if (t′, w′,m′) represents more explicit
configurations than (t, w, m).

Lemma 1 (Monotonicity of v). [GMM06] The covering operator is mono-
tonic w.r.t the symbolic composition.(

(t1, w1,m1)
e−→s (t′1, w

′
1,m

′
1) ∧ (t1, w1,m1) v (t2, w2,m2)

)
⇒(

∃(t′2, w′2,m′2) : (t2, w2,m2)
e−→s (t′2, w

′
2,m

′
2) ∧ (t′1, w

′
1,m

′
1) v (t′2, w

′
2,m

′
2)

)
Theorem 3 (Correctness of algorithm 1). Given a trace T = (E, λ,�) and
a monitor M = (M,m0, B,−→m), algorithm 1 terminates and returns true iff
reachables(∅, ∅,m0) ∩B 6= ∅.

Proof. First, we can see that E and M are finite, so is the set of possible symbolic
configurations. Therefore, termination is guaranteed since we do not explore a
symbolic configuration more than once. Moreover, theorem 2 ensures soundness,
since only valid symbolic transition are taken. However, completeness is not that
trivial, because the algorithm explore only a subset of all symbolic configurations.
This comes from the fact that non-sensitive events are always fired first. However,

p1:=1 q1:=1

p2:=1 q2:=1

P1

P2

(a) Trace

bad

m1 p2 = 1m0
p1 = 1

m2

m3

q1 = 1

q2 = 1

(b) Monitor

([0,1],m0)

([0,2],m0)

p2:=1

q2:=1

([1,1],m1)

([1,2],m1)

q2:=1

([2,1],m1)

([2,2],m1)

q2:=1

p1:=1

p1:=1

q1:=1

q1:=1

([0,0],m0) ([1,0],m1)
p1:=1

([1,1],m2)

p2:=1

([2,0],m1)
q1:=1

([2,1],m1)

([2,2],m1)

p2:=1

q2:=1

([1,2],m2)

q2:=1

([2,2],m2)
q1:=1

([2,1],m3)
q1:=1

([2,2],m4)

q2:=1

(c) Composition

([0,0],[0,2],m0)

p1:=1

([1,0],[2,2],m1)

p2:=1

([1,1],[2,2],m2)

q1:=1
([1,2],[2,2],m3)

q1:=1

([2,2],[2,2],m4)

(d) Symbolic exploration

Fig. 4. Example of where algorithm 1 leads to an exponential gain

if c denotes the configuration after the loop at lines 7–10, then any configuration
c′ computed during the loop is covered by c. Therefore, lemma 1 guarantees that
any configuration reachable from c′ is covered by a configuration reachable from
c. Thus, only exploring c is sufficient.

Note that using lemma 1, we could improve algorithm 1 by replacing the test
(t′, w′,m′) ∈ T , in line 13, by (t′, w′,m′) v T , i.e does there exist a configuration
in T that covers (t′, w′,m′). An efficient data structure which handles set of
tuples-intervals (see [DRV04] and its variant [Gan02]) can be used to perform
efficiently these tests. The same efficient data structure can be used to represent
W ; then the union in line 14 adds a new configuration only if it is not already
covered by W .

Possible exponential improvement In practice, as shown in the next section,
our symbolic method, given in algorithm 1, allows generally to reduce signifi-
cantly the explored state space and the verification time. We show here the
simple example given in figure 4 which provides a state space which is linear
with our symbolic method while exponential in the explicit method. Note that
this example can be extended to k processes. Hence, by using algorithm 1, we
benefit from an exponential improvement (w.r.t. k) for the state space size. For
instance for 8 processes, 17 states are explored by the symbolic algorithm against
8020 for the explicit one.

6 Experimental results

In this section, we experimentally validate our method. We compared on ran-
domly generated traces, both in time and in number configurations, our sym-
bolic algorithm with a straightforward explicit trace exploration. Moreover, we
compared our testing method with a complete model-checking using the tool
spin [Hol97], with partial order reduction.

We conducted experiments on several examples (seen as distributed con-
trollers). For each example, we examined a correct model and a faulty model,
where a bug was intentionally introduced. Traces were generated by instrument-
ing the code to emit relevant events (i.e. assignments). The partial order relations
were obtained using vector clocks.

Table 1 presents the results of these experiments. For each experiment, the
first four columns respectively present the model, the number of processes, the
number of events in the trace and the property. Next, for both the explicit, and
symbolic method, columns 5 to 10 show if an error was found or not, the time
needed for exploration and the number of configurations used. The last column
present the times needed for the complete model-checking with partial order
reduction. A “-” in the table indicates that no result could be obtained because
the process ran out of memory1

The first example we considered was the Peterson mutual exclusion protocol
with two processes, where communication is done through shared variables. We
used a monitor to check mutual exclusion (a safety property).

The second model we considered was the Alternating-bit protocol between two
process, i.e. a sender and a receiver. This time the communication is achieved
using asynchronous channel. We used a monitor to check that every message
sent was correctly received.

On those two examples, we can see that the symbolic exploration works well
in practice, compared to the explicit exploration method, both with safety and
liveness property. It is worth noting that, in the faulty version of both models,
the error was detected rapidly. However, on those two examples, the complete
spin model checking can be done very efficiently. This should be expected since
the model is relatively small.

The last example we considered was the Dining Philosopher problem. The
monitor was used to check that when the first philosopher takes his left fork, then
his left neighbor cannot eat until he has finished to eat. Note that this property
cannot be expressed in RCTL+ of [SG03] because it involves an until operator.
We considered 3, 5 and 10 philosophers. On this example, we can see that using
the symbolic method allows to handle a larger number of processes. Indeed,
when dealing with 10 philosophers, the explicit exploration fails to terminate,
whereas the symbolic method still works. Moreover, in the faulty model, with 10
philosophers, the complete spin model checking fails to terminate, whereas the
symbolic exploration still detects the error that was introduced.

1 explorations and model-checking were limited to 1GB of memory

Experiment Explicit Symbolic Spin
Model Processes Events Property Error Time Conf. Error Time Conf. Error
Peterson 2 10000 Mutex NO 1.39s 21551 NO 0.35s 4001 0.06s

2 100000 Mutex NO 16.88s 215544 NO 3.45s 40001 0.06s
2 1000000 Mutex - - - NO 34.75s 400002 0.06s

Peterson 2 10000 Mutex YES 1.11s 21384 YES 0.01s 4 0.05s
Faulty 2 100000 Mutex YES 15.95s 214727 YES 0.05s 4 0.05s

2 1000000 Mutex - - - YES 0.53s 4 0.05s
ABProtocol 2 10000 Received NO 2.17s 31185 NO 0.42s 4654 0.15s

2 100000 Received NO 31.08s 316414 NO 4.25s 46684 0.15s
2 1000000 Received - - - NO 43.09s 466887 0.15s

ABProtocol 2 10000 Received YES 2.06s 31495 YES 0.01s 5 0.13s
Faulty 2 100000 Received YES 29.70s 315808 YES 0.06s 5 0.13s

2 1000000 Received - - - YES 0.53s 5 0.13s
Philosopher 3 100 Fork NO 1.03s 6190 NO 0.05s 299 0.40s

5 100 Fork NO 87.02s 60727 NO 0.21s 2875 12.01s
10 100 Fork - - - NO 1.52s 26791 -

Philosopher 3 100 Fork YES 0.09s 1187 YES 0.01s 63 0.38s
Faulty 5 100 Fork YES 78.72s 55982 YES 0.01s 78 11.01s

10 100 Fork - - - YES 0.01s 55 -

Table 1. Experimental results (“-” means that the execution ran out of memory)

7 Future works

Our symbolic method will be integrated into our distributed controllers design
environment dSL [DMM04,DGMM05] to allow efficient testing of real industrial
distributed controllers. For this purpose, our method should be extended to
online monitoring, and further developed to handle more complex formulae. A
comparison between our tool and other existing tools could then be done both
at the expressivity and performance levels.

We also intend to investigate the use of our method in different frameworks.
A first candidate is the validation of Message Sequence Charts (MSC). We must
study how our method can improve the efficiency of existing MSC validation
methods. Moreover, we would like to explore the possibility of integrating other
techniques such as computation slicing [MG05], in order to gain in time an space
during the validation.

Finally, we are also interested in the extension of our method to the model-
checking of complete systems. The combined use of our method with unfold-
ing technique developed by McMillan [McM95] and further refined by Es-
parza [ERV96] seems a priori a promising approach.

Acknowledgments We would like thank the anonymous reviewers, whose com-
ments allowed us to significantly improve the quality of this paper.

References

[APP95] Rajeev Alur, Doron Peled, and Wojciech Penczek. Model checking of
causality properties. In Proceedings of the 10th Annual IEEE Symposium
on Logic in Computer Science (LICS’95), pages 90–100, San Diego, Cali-
fornia, 1995.

[Bry92] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Comput. Surv., 24(3):293–318, 1992.

[CCG+02] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Ar-
mando Tacchella. Nusmv 2: An opensource tool for symbolic model check-
ing. In CAV, pages 359–364, 2002.

[CDF95] Bernadette Charron-Bost, Carole Delporte-Gallet, and Hugues Fauconnier.
Local and temporal predicates in distributed systems. ACM Trans. Pro-
gram. Lang. Syst., 17(1), 1995.

[CG98] Craig M. Chase and Vijay K. Garg. Detection of global predicates: Tech-
niques and their limitations. Distributed Computing, 11(4):191–201, 1998.

[CGP99] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press,
1999.

[CL85] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining
global states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–
75, 1985.

[DG02] Volker Diekert and Paul Gastin. LTL is expressively complete for
Mazurkiewicz traces. Journal of Computer and System Sciences, 64(2):396–
418, March 2002.

[DGMM05] Bram De Wachter, Alexandre Genon, Thierry Massart, and Cédric Meuter.
The formal design of distributed controllers with dsl and spin. Formal
Aspects of Computing, 17(2):177–200, 2005. (24 pages).

[DMM04] Bram De Wachter, Thierry Massart, and Cédric Meuter. dsl : An environ-
ment with automatic code distribution for industrial control systems. In
Lecture Notes in Computer Sciences, volume 3144, pages 132–145. Springer,
2004. (14 pages).

[DRV04] Giorgio Delzanno, Jean-François Raskin, and Laurent Van Begin. Cover-
ing sharing trees: a compact data structure for parameterized verification.
STTT, 5(2-3):268–297, 2004.

[ERV96] Javier Esparza, Stefan Römer, and Walter Vogler. An improvement of
mcmillan’s unfolding algorithm. In TACAS, pages 87–106, 1996.

[Gan02] Pierre Ganty. Algorithmes et structures de données efficaces pour la ma-
nipulation de contraintes sur les intervalles. Master’s thesis, Université
Libre de Bruxelles, 2002.

[GM01] Vijay K. Garg and Neeraj Mittal. On slicing a distributed computation.
In ICDCS, pages 322–329, 2001.

[GMM06] Alexandre Genon, Thierry Massart, and Cédric Meuter. Monitoring dis-
tributed controllers : When an efficient ltl algorithm on sequences is needed
to model-check traces. Technical Report 2006-59, CFV - Université Libre
de Bruxelles, 2006.

[God96] P. Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems - An Approach to the State-Explosion Problem, volume 1032 of
Lecture Notes in Computer Science. Springer, 1996.

[GW94] Vijay K. Garg and Brian Waldecker. Detection of weak unstable predicates
in distributed programs. IEEE Trans. Parallel Distrib. Syst., 5(3):299–307,
1994.

[GW96] Vijay K. Garg and Brian Waldecker. Detection of strong unstable pred-
icates in distributed programs. IEEE Trans. Parallel Distrib. Syst.,
7(12):1323–1333, 1996.

[Hol97] Gerard J. Holzmann. The model checker spin. IEEE Trans. Software Eng.,
23(5):279–295, 1997.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[LMC01] M. Leuschel, T. Massart, and A. Currie. How to make fdr spin : Ltl model
checking of csp by refinement. In Lecture Notes in Computer Sciences,
volume 2021, pages 99–118. Springer, 2001. (20 pages).

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1996.

[Mat89] Friedemann Mattern. Virtual time and global states of distributed systems.
In Cosnard M. et al., editor, Proc. Workshop on Parallel and Distributed
Algorithms, pages 215–226, North-Holland / Elsevier, 1989.

[Maz86] Antoni W. Mazurkiewicz. Trace theory. In Advances in Petri Nets, pages
279–324, 1986.

[McM92a] K. L. McMillan. Symbolic model checking: an approach to the state explo-
sion problem. Carnegie Mellon University, 1992.

[McM92b] K.L. McMillan. The smv system. Technical Report CMU-CS-92-131,
Carnegie Mellon University, 1992.

[McM95] Kenneth L. McMillan. A technique of state space search based on unfolding.
Formal Methods in System Design, 6(1):45–65, 1995.

[MG01] Neeraj Mittal and Vijay K. Garg. Computation slicing: Techniques and
theory. In DISC, pages 78–92, 2001.

[MG05] Neeraj Mittal and Vijay K. Garg. Techniques and applications of compu-
tation slicing. Distributed Computing, 17(3):251–277, 2005.

[SG03] Alper Sen and Vijay K. Garg. Detecting temporal logic predicates in dis-
tributed programs using computation slicing. In OPODIS, pages 171–183,
2003.

[SRA04] Koushik Sen, Grigore Rosu, and Gul Agha. Online efficient predictive safety
analysis of multithreaded programs. In TACAS, pages 123–138, 2004.

[SVAR04] K. Sen, A. Vardhan, G. Agha, and G. Rosu. Efficient decentralized mon-
itoring of safety in distributed systems. In Proceedings of 26th Inter-
national Conference on Software Engineering (ICSE’04), Edinburgh, UK,
pages 418–427. IEEE, May 2004.

[Thi94] P. S. Thiagarajan. A trace based extension of linear time temporal logic.
In Samson Abramsky, editor, Proceedings of the Ninth Annual IEEE Symp.
on Logic in Computer Science, LICS 1994, pages 438–447. IEEE Computer
Society Press, July 1994.

[TW02] P. S. Thiagarajan and I. Walukiewicz. An expressively complete linear
time temporal logic for mazurkiewicz traces. Inf. Comput., 179(2):230–
249, 2002.

[Val93] Antti Valmari. On-the-fly verification with stubborn sets. In CAV, pages
397–408, 1993.

[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proc. 1st Symp. on Logic in Computer Science,
pages 332–344, Cambridge, June 1986.

