
Symbolic Data Structure for sets of k-uples of
integers

Pierre Ganty1, Cédric Meuter1, Laurent Van Begin1, Gabriel Kalyon1,
Jean-François Raskin1, and Giorgio Delzanno2

1 Département d’Informatique,
Université Libre de Bruxelles

2 Dipartimento di Informatica e Scienze dell’Informazione,
Università degli Studi di Genova

Abstract. In this document we present a new symbolic data structure
dedicated to the manipulation of (possibly infinite) sets of k-uples over
integers, initially introduced in [Gan02]. This new data structure called
Interval Sharing Tree (IST), is based on sharing trees [ZL95] where each
node is labelled with an interval of integers. We present symbolic algo-
rithm on IST for standard set operations and also introduce some specific
operation that can be useful in the context of model-checking.

1 Introduction

Many systems like multi-threaded programs and communication protocols are
very complex to devise, hence error prone. For almost three decades a lot of re-
search has been done in order to formalize and prove or refute properties on such
systems. Given a formal description M of the system, we apply model checking
methods [CGP99] to verify automatically that some properties hold onM. Those
automatic methods manipulate (possibly) infinite sets of configurations of M.
In model checking one problem we face off is the state explosion problem. This
problem corresponds to a blow up in the size of the sets of configurations being
manipulated. One way to overcome that problem is to use a compact symbolic
representation of those sets. In our context assuming that those configurations
are k-uples over integers, we define Interval Sharing Tree (IST) [Gan02] which
is a symbolic representation of sets of k-uples. ISTs are directed acyclic graph-
based data structures, where nodes are labelled with intervals of integers. This
symbolic data structure benefits from several advantages. First, algorithms can
be defined to manipulate ISTs symbolically (i.e. without exploring all path of the
graph). Second, the size of an IST I may be exponentially smaller than the size
of the set of k-uples it represent. Finally, an IST I can be (semantically) non-
deterministic whereas other approaches facing to the state explosion problem
traditionally use deterministic data structures (e.g. sharing trees [ZL95], BDD
[CGP99], ...), thus allowing I to be more compact.

The remainder of this document is structured as follows. First, in sec. 2, we
introduce interval sharing trees and their semantics. We follow up, in sec. 3,

by presenting symbolic algorithms for manipulating this data structure. Finally,
in sec. 4, we conclude by presenting a summary of all operations and their
complexity.

2 Interval Sharing Tree

In the following, Z denotes the set of integers and Z∞ = Z ∪ {−∞,+∞}. The
classical order over integer is extended to Z∞ in the usual way: ∀c ∈ Z : −∞ <
c < +∞. An interval is a pair 〈a, b〉 ∈ Z∞ × Z∞ such that a ≤ b, noted [a, b].
As usual, an interval 〈a, b〉 denotes the set {c ∈ Z | a ≤ c ≤ b}. Hence, c ∈ [a, b]
means that c is in the set corresponding to [a, b]. We note I the set of all intervals.
Moreover, we note (a, b] = [a, b] \ {a} and [a, b) = [a, b] \ {b}.

Definition 1 (Interval Sharing Tree). An interval sharing tree (IST in short)
I, is a labelled directed rooted acyclic graph 〈N, ι, succ〉 where:

– N = N0∪N1∪N2∪ ...∪Nk∪Nk+1 is the finite set of nodes, partitioned into
k + 2 disjoint subsets N i called layers with N0 = {root} and Nk+1 = {end}

– ι : N 7→ I ∪ {>,⊥} is the labelling function such that ι(n) = > (resp. ⊥) if
and only if n = root (resp. end).

– succ : N 7→ 2N is the successor function such that:
(i) succ(end) = ∅
(ii) ∀i ∈ [0, k],∀n ∈ N i : succ(n) ⊆ N i+1 ∧ succ(n) 6= ∅
(iii) ∀n ∈ N,∀n1, n2 ∈ succ(n) : (n1 6= n2)⇒ (ι(n1) 6= ι(n2))
(iv) ∀i ∈ [0, k],∀n1 6= n2 ∈ N i : (ι(n1) = ι(n2))⇒ (succ(n1) 6= succ(n2))

In other words, an IST is a directed acyclic graph where the nodes are labelled
with intervals except for two special nodes (root and end), such that (i) the end
node has no successors, (ii) all nodes from layer i have their successors in layer
i+1, (iii) a node cannot have two successors with the same label, (iv) two nodes
with the same label in the same layer do not have the same successors. Condition
(iii) ensures maximal prefix sharing, i.e. the IST is syntactically deterministic.
It does not mean that an IST is semantically deterministic, i.e. a node may have
two distinct successors labeled with intervals that are not disjoint. Condition (iv)
ensures maximal suffix sharing. If a graph satisfies all condition of definition 1
by those two condition, it is called a pre-IST.

A path of an IST is a k-uple 〈n1, n2, ..., nk〉 such that n1 ∈ succ(root), end ∈
succ(nk) and ∀i ∈ [1, k) : ni+1 ∈ succ(ni). Given an IST I, we note path(I),
the set of path of I. The semantics of an IST I, noted [[I]] is the set {x ∈ Zk |
∃〈n1, ..., nk〉 ∈ path(I),∀i ∈ [1, k] : xi ∈ ι(ni)}.

3 Operations on IST

In this section we present the operations on IST. Those operation are symbolic,
i.e. they work on the tree instead of the set of k-uples that are represented.

We start in sec. 3.1 by introducing some preliminary operations that will later
on. Then, in sec. 3.2, we introduce basic set operations, i.e. emptiness test,
membership test, union, intersection and complement. Finally, in sec. 3.3, we
present some operations that are useful in the context of model-checking, namely
substitution and downward closure.

3.1 Preliminary operations

Prefix sharing Given a pre-IST I with k layers, we want to modify I so that
it satisfies condition (iii) of definition 1. The idea is to traverse the sharing
tree layer-by-layer and to determinize syntactically the nodes of each layer. This
algorithm has a wost-case time complexity of O(2|I|). Note however, that this
algorithm returns a pre-IST satisfying condition iii, but not necessarily condition
(iv).

Algorithm 1: enforcePrefixSharing(I, k)
data: I = 〈N, ι, succ〉, k ∈ N
post: ∀n ∈ N,∀n1, n2 ∈ succ(n) : (n1 6= n2)⇒ (ι(n1) 6= ι(n2))
begin

for i← 0 to k do
forall n ∈ N i do

S ← ∅
forall I ∈ I s.t. ∃n′ ∈ succ(n) : ι(n′) = I do

let n′′ be a new node
succ(n′′)← ∅, ι(n′′)← I
forall n′ ∈ succ(n) s.t. ι(n′) = I do

succ(n′′)← succ(n′′) ∪ succ(n′)
N i+1 ← N i+1 ∪ {n′′}
S ← S ∪ {n′′}

succ(n)← S

end

Suffix sharing Given a pre-IST I with k layers, we want to transom I so
that it satisfies condition (iv) of definition 1. The idea is to traverse the sharing
tree layer-by-layer (bottom-up). When we encounter two nodes in same layer
with same label and with the same set of sons, we delete one of them (the other
one takes its place). Note that this operation preserves condition iii. Therefore, if
one wants to enforce both conditions, one must start with enforcePrefixSharing().

Algorithm 2: enforceSuffixSharing(I, k)
data: I = 〈N, ι, succ〉, k ∈ N
post: ∀i ∈ [0, k],∀n1 6= n2 ∈ N i : (ι(n1) = ι(n2))⇒ (succ(n1) 6= succ(n2))
begin

for i← k downto 1 do
forall n ∈ N i do

forall n′ ∈ N i \ {n} s.t. ι(n) = ι(n′) ∧ succ(n) = succ(n′) do
forall n′′ ∈ N i−1 s.t. n′ ∈ succ(n′′) do

succ(n′′)← (succ(n′′) \ {n′}) ∪ {n}
N i ← N i \ {n′}

end

Algorithm 3: determinize(I, k)
data: I = 〈N, ι, succ〉, k ∈ N
post: ∀n ∈ N,∀n1 6= n2 ∈ succ(n) : ι(n1) ∩ ι(n2) = ∅
begin

for i← 0 to k do
forall n ∈ N i s.t. ∃n1 6= n2 ∈ succ(n) : ι(n1) ∩ ι(n2) 6= ∅ do

let n′ be a new node
ι(n′)← ι(n)
forall n′′ ∈ N s.t. n ∈ succ(n′′) do

succ(n′′)← succ(n′′) ∪ {n′} \ {n}
L← {ι(n′′) | n′′ ∈ succ(n)}
let L′ ∈ 2I be the smallest partition of ∪I∈LI
forall I ′ ∈ L′ do

let s be a new node
forall t ∈ succ(n) s.t. I ′ ⊆ ι(t) do

succ(s)← succ(s) ∪ succ(t)
ι(s)← I ′

succ(n′)← succ(n′) ∪ {s}
N i+1 ← N i+1 ∪ {s}

N i ← N i ∪ {n′} \ {n}

enforceSuffixSharing(I, k)
end

Determinization Given an IST I with k layers, we want to eliminate from I
the semantical non-determinism that can arise in the successors of a given node
while preserving [[I]]. After the determinization of a sharing tree, the intevals de-
fined by the successors of any node must be disjoint. The idea of the algorithm is
to traverses the sharing tree layer-by-layer and for each node n, compute a new
set of disjoint intervals. Then, we create a node s for each such interval and we
compute the successors of s, i.e. the successors of nodes that belongs to succ(n)

and that have a label containing the label of s. This algorithm has a worst-case
complexity of O(2|I|).

3.2 Set operations

Emptiness Given an IST I with k layers, we want to decide if [[I]] = ∅
holds. The algorithm for that is very simple. Indeed, [[I]] = ∅ if and only if
succ(root) = ∅. This algorithm has a worst-case time complexity of O(1).

Algorithm 4: empty(I, k)
data : I = 〈N, ι, succ〉, k ∈ N
returns: true if and only if [[I]] = ∅
begin

return succ(root) = ∅
end

Membership Given an IST I with k layers and a k-uple x = 〈x1, . . . , xk〉 ∈ Zk,
we want to determine if x ∈ [[I]] holds. For that, we present an algorithm for
that problem adapted from Covering Sharing Trees [Van03,DRV04] that has a
worst-case time complexity O(|I|). The algorithm is based on a layer-by-layer
traversal of the graph. We first mark the root node of I. Then for each layer
i ∈ [1, k + 1], we mark all nodes n ∈ Ni such that xi ∈ ι(n) and such that n has
a marked predecessor. At the end of this procedure, x ∈ I holds if and only if
the end node has at least one marked predecessor.

Algorithm 5: memberOf(I, k, x)

data : I = 〈N, ι, succ〉, k ∈ N, x ∈ Zk

returns: true if and only if x ∈ [[I]] holds
begin

M ← {root}
for i← 1 to k do

forall n ∈ N i do
if (xi ∈ ι(n)) ∧ (∃n′ ∈M : n ∈ succ(n′)) then

M ←M ∪ {n}

return (∃n ∈M : end ∈ succ(n))
end

Intersection Given two IST I1, I2 with k layers, we want to compute an IST
I such that [[I]] = [[I1]] ∩ [[I2]]. The algorithm is adapted from the the algorithm
computing the synchronized product of finite automata. Each node in this prod-
uct is a pair of node from both I1 and I2. In this particular case, the interval

of a node 〈n1, n2〉 in the product is the intersection of the interval of n1 and n2.
Unfortunately, this can introduce some prefix and/or suffix redundancy, thus
violating conditions (iii) and/or (iv) of definition 1. Therefore, we must enforce
those two conditions in the algorithm to turn the resulting pre-IST into an IST.
For this reason, this algorithm has a worst-case time complexity of O(2|I1|×|I2|).
It was proven in [Van03, thm. 20, 21] that for Covering Sharing Trees, which is
a subclass of IST, no polynomial algorithm exists for that problem.

Algorithm 6: intersection(I1, I2, k)
data : I1 = 〈N1, ι1, succ1〉, I2 = 〈N2, ι2, succ2〉, k ∈ N
returns: I s.t. [[I]] = [[I1]] ∩ [[I2]]
begin
I ← 〈N0 ∪ ... ∪Nk+1, ι, succ〉
for i← 0 to k do

N i ← ∅
Nk+1 ← {〈end1, end2〉}
ι(〈end1, end2〉)← ⊥
for i← k downto 1 do

forall 〈n1, n2〉 ∈ Nk
1 ×Nk

2 s.t. ι1(n1) ∩ ι2(n2) 6= ∅ do
ι(〈n1, n2〉)← ι1(n1) ∩ ι2(n2)
succ(〈n1, n2〉)← Nk+1 ∩ (succ1(n1)× succ2(n2))
if succ(〈n1, n2〉) 6= ∅ then

Nk ← Nk ∪ {〈n1, n2〉}

N0 ← {〈root1, root2〉}
ι(〈root1, root2〉)← >
succ(〈root1, root2〉)← N1

enforcePrefixSharing(I, k)
enforceSuffixSharing(I, k)
return I

end

Union Given two IST I1, I2 with k layers, we want to compute an IST I such
that [[I]] = [[I1]] ∪ [[I2]]. This can be done using the algorithm to compute the
union of two sharing trees defined in [ZL95]. This algorithm uses two recursive
functions recUnion() and recCopy(). The function recUnion() computes the union
of a sub-tree of I1 rooted in n1 and a sub-tree of I2 rooted in n2. The roots
of these sub-trees must have the same labels. The function recCopy() copies a
sub-tree of I1 or I2 in I. Those two function make use of a hashing table T
to remember previous computations. When the union of two sub-trees rooted
respectively in n1 and n2 is computed and added in I, the resulting node is
stored in T , indexed by the pair 〈n1, n2〉. Similarly, when a sub-tree rooted in n
is copied in I, the copied node is stored in T , indexed by the pair 〈n, n〉. This is
essential in order treat every pair of nodes only once, thus allowing a polynomial

complexity. Note that condition iv does not necessarily holds on the result and
must therefore be enforced. This algorithm has a worst-case time complexity of
O((|I1|+ |I2|)3).

Algorithm 7: recUnion(n1, n2, i)

begin
if T (n1, n2) is defined then

n← T (n1, n2)
else

let n be a new node
ι(n)← ι1(n1)
N i ← N i ∪ {n}
forall n′1 ∈ succ1(n1) do

if ∃n′2 ∈ succ2(n2) s.t. ι1(n′1) = ι2(n′2) then
succ(n)← succ(n) ∪ {recUnion(n′1, n

′
2, i + 1)}

else
succ(n)← succ(n) ∪ {recCopy(n′1, 1, i + 1)}

forall n′2 ∈ succ2(n2) do
if ∀n′1 ∈ succ1(n1) : ι1(n′1) 6= ι2(n′2) then

succ(n)← succ(n) ∪ {recCopy(n′2, 2, i + 1)}

T (n1, n2)← n

return n
end

Algorithm 8: recCopy(n, x, i)

begin
if T (n, n) is defined then

n′ ← T (n, n)
else

let n′ be a new node
ι(n′)← ιx(n)
Ni ← Ni ∪ {n′}
forall n′′ ∈ succx(n) do

succ(n′)← succ(n′) ∪ {recCopy(n′′, x, i + 1)}
T (n, n)← n′

return n′

end

Algorithm 9: union(I1, I2, k)
data: I1 = 〈N1, ι1, succ1〉, I2 = 〈N2, ι2, succ2〉, k ∈ N
returns: I s.t. [[I]] = [[I1]] ∪ [[I2]]
begin
I ← 〈N0 ∪ ... ∪Nk+1, ι, succ〉
forall i← 0 to k do

N i ← ∅
recUnion(root1, root2, 0)
enforceSuffixSharing(I, k)
return I

end

Algorithm 10: complement(I, k)
data : I = 〈N, ι, succ〉, k ∈ N
returns: I1 such that [[I1]] = Zk \ [[I]]
begin
I1 ← I
determinize(I1)
M ← Nk−1

1

for i← 0 to k do
forall n ∈ N i

1 do
L← {ι1(n′) | n′ ∈ succ1(n)}
let L′ ∈ 2I be the smallest partition of Z \ (∪I∈LI)
forall I ′ ∈ L′ do

let n′ be a new node
ι1(n′)← I ′, succ1(n)← succ1(n) ∪ {n′}
N i+1

1 ← N i+1
1 ∪ {n′}

forall n ∈M do
succ1(n)← ∅;

forall n ∈ Nk−1
1 \M do

succ1(n)← end1

for i← k downto 1 do
forall n ∈ N i do

if succ1(n) = ∅ then
N i

1 ← N i
1 \ {n}

forall n′ ∈ N i
1 s.t. n ∈ succ1(n′) do

succ1(n′)← succ1(n′) \ {n}

enforceSuffixSharing(I1, k)
return I1

end

Complement Given an IST I with k layers, we want to compute an IST I1
such that [[I1]] = Zk \ [[I]]. First, we take a copy I1 of I, and determinize it.
Then, for each node n of I1, we complement the set of intervals defined by the
successors of n to obtain a partition of Z. We create a new node for each of these
new intervals and add these new nodes to succ(n). In fact, these new nodes
allow to consider the k-uples that do not belong to [[I]]. To delete the k-uples
that belong to [[I]], we delete the edges between the nodes of the layer Nk

1 that
were copied from I1 and the node end1. Finally, we delete from the IST all path
not ending in end1.

3.3 Dedicated operations

Substitution Given an IST I with k layers, we want to compute an IST I1
where a certain variable xi is replaced by xi + d with d ∈ Z. Formally, we want
that [[I1]] = [[I]][xi+d/xi] = {〈x1, ..., xi + d, ..., xk〉 | x ∈ I}. This operation can be
done very simply, by shifting all interval of layer i. Note that this transformation
does not violate condition (iv) of (iii).

Algorithm 11: substitution(I, k, i, d)
data : I = 〈N, ι, succ〉, k ∈ N, i ∈ [1, k], d ∈ Z
returns: I1 s.t. [[I1]] = [[I]][xi+d/xi]

begin
I1 ← 〈N, ι1, succ〉
forall n ∈ N \N i do

ι1(n)← ι(n)
forall n ∈ N i do
〈l, u〉 ← ι(n)
ι1(n)← 〈l + d, u + d〉

return I1
end

Downward Closure Given a subset S ⊆ Zk, the downward closure of S, noted
↓S is the set with k-uple smaller than a k-uple of S. Formally, ↓S = {x ∈ Zk |
∃x′ ∈ S ∀i ∈ [1, k] : xi ≤ x′i}. Hence, given an IST I with k layers, we want to
compute an IST I1 such that [[I1]] =↓[[I]]. The algorithm works as follows. The
left bound of all nodes is set to −∞. This transformation can introduce some
prefix and/or suffix redundancy, thus violating conditions (iii) and/or (iv) of
definition 1. Therefore, we must enforce those two conditions in the algorithm.
The algorithm has a worst-time complexity O(2|I|).

Operation Effect Complexity

enforcePrefixSharing(I, k) enforce condition (iii) on I O(2|I|)
enforceSuffixSharing(I, k) enforce condition (iv) on I O((|I|)2)

determinize(I, k) semantically determinize I O(2|I|)

empty(I, k) test if [[I]] = ∅ holds O(1)
memberOf(I, k, x) test if x ∈ [[I]] holds O(|I|)

union(I1, I2, k) compute I s.t. [[I]] = [[I1]] ∪ [[I2]] O((|I1| + |I2|)3)
intersection(I1, I2, k) compute I s.t. [[I]] = [[I1]] ∩ [[I2]] O(2|I1|×|I2|)
substitution(I, k, i, d) computes I1 s.t. [[I1]] = [[I]][xi+d/xi] O(|I|)

complement(I, k) compute I1 s.t. [[I1]] = Zk \ [[I]] O(2|I|)

downwardClosure(I, k) compute I1 s.t. [[I1]] =↓[[I]] O(2|I|)

Table 1. Operations on IST and their complexity

Algorithm 12: downwardClosure(I, k)
data : I = 〈N, ι, succ〉, k ∈ N
returns: I1 s.t. [[I1]] =↓[[I]]
begin

forall n ∈ N do
〈l, u〉 ← ι(n)
ι1(n)← 〈−∞, u〉

I1 ← 〈N, ι1, succ〉
enforcePrefixSharing(I1)
enforceSuffixSharing(I1)
return I1

end

4 Conclusion

In this paper, we defined a symbolic data structure for sets of k-uples of in-
tegers, called Interval Sharing Trees. We presented algorithms in order to ma-
nipulate this data structure symbolically. Those operations include traditional
set operations as well as specific operation dedicated to model-cheking, and are
summarized, along with complexity in tab. 1.

References

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT
Press, Cambridge, MA, USA, 1999.

[DRV04] Giorgio Delzanno, Jean-Francois Raskin, and Laurent Van Begin. Covering
sharing trees: A compact data structure for parameterized verification. Soft-
ware Tools for Technology Transfer manuscript, 2004.

[Gan02] Pierre Ganty. Algorithmes et structures de données efficaces pour la manip-
ulation de contraintes sur les intervalles. Master’s thesis, Université Libre de
Bruxelles, 2002.

[Van03] Laurent Van Begin. Efficient Verification of Counting Abstractions for Para-
metric systems. PhD thesis, Université Libre de Bruxelles, 2003.

[ZL95] Denis Zampunieris and Baudouin Le Charlier. Efficient handling of large sets
of tuples with sharing trees. In Proceedings of the 5th Data Compression Con-
ference (DCC’95), page 428. IEEE Computer Society Press, 1995.

