
Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Testing Distributed Systems through Symbolic Model Checking

G. Kalyon T. Massart C. Meuter L. Van Begin

Université Libre de Bruxelles
Département d’Informatique

FORTE’07

June 28, 2007

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Need for Validation
Testing
Centralized v.s. Distributed Systems

Need for Validation

Distributed control systems

concurrent processes

running on physically distributed hardware

hard to design in nature

critical systems (e.g. plant control system, ...)

Validation Techniques

Model-Checking:

exhaustive verification

but: not (yet) scalable to
real-sized systems

works on a model of the
system

Testing and Monitoring:

non-exhaustive verification

scalable for real-sized systems

widely used in industry

works on the real system

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Need for Validation
Testing
Centralized v.s. Distributed Systems

Need for Validation

Distributed control systems

concurrent processes

running on physically distributed hardware

hard to design in nature

critical systems (e.g. plant control system, ...)

Validation Techniques

Model-Checking:

exhaustive verification

but: not (yet) scalable to
real-sized systems

works on a model of the
system

Testing and Monitoring:

non-exhaustive verification

scalable for real-sized systems

widely used in industry

works on the real system

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Need for Validation
Testing
Centralized v.s. Distributed Systems

Testing

The System

distributed and asynchronous

instrumented to emit relevant events
(e.g. variable assignments, message transfer)

execution traces are collected

The Tester

analyses the collected traces

checks whether a certain property holds

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Need for Validation
Testing
Centralized v.s. Distributed Systems

Testing

The System

distributed and asynchronous

instrumented to emit relevant events
(e.g. variable assignments, message transfer)

execution traces are collected

The Tester

analyses the collected traces

checks whether a certain property holds

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Need for Validation
Testing
Centralized v.s. Distributed Systems

Centralized v.s. Distributed Systems

Centralized System

only one process

events are totally ordered
Tracee1 e2 e3

P1 Tester

OK

KO

Definition 3 (Formula triggering). An event e triggers a formula φ, if e as-
signs the variable appearing in φ and if φ evaluates to true after the assignment.
Formally, if φ[x ← v] denotes the formula φ where the variable x is substituted
by v, then we have:

(φ |= e)⇔ ((var(e) = var(φ)) ∧ (φ[var(e)← val(e)] = $))

Those basic formulae can be used as propositions to build more complex
temporal constraints, using LTL.

A particular care must be taken to the fact that it will be checked on fi-
nite sequences. This can be done, as explained e.g. in [LMC01] by an obvious
translation of any LTL formula into an “LTL with ∆ actions” (where ∆ is not
in the initial alphabet). Semantically the finite sequences are extended by an
infinite sequence of ∆ actions, to mark the deadlock. For example, intuitively a
system S should satisfy ¬a iff S can not perform a a as next action. Hence S
may either perform only actions b different from a or it may deadlock. Similarly,
if © denotes the next operator in LTL, a system which satisfies ¬©a can either
deadlock immediately or perform some visible action and then satisfy ¬a. To
capture the intuition, any formula ©φ is first translated into (¬∆ ∧ ©φ) and
¬© φ into (∆ ∨ ©¬φ).

Then, the classical procedure defined by Vardi and Wolper [VW86] to build
from a LTL formula a corresponding (Büchi) automaton B able to do all the
sequences of [|¬φ]| can be used to build our monitor (seen as a standard non
deterministic finite automaton). The construction is restricted to our systems
where only one variable is modified at each event. As explained in [LMC01],
the ∆-transitions can be removed from the monitor obtained and a finite au-
tomaton is provided where transitions are labeled by basic formulae and with
a standard and not the Büchi acceptance condition. Note that the size of the
obtained monitor may be exponential in the size of the corresponding LTL for-
mula [VW86]; but generally, since in practice the size of the formula is small, it
is not a problem.

We will show that our main contribution in this paper, is an algorithm which
outperforms classical methods to compose B and T and verify that [|T]|∩[|¬φ]| = ∅,
i.e. check that no sequence of the system has the property φ.

In the following, we simply define our monitors as any non deterministic finite
automata with basic formulae on transitions. The formal definition of a monitor
follows.

Definition 4 (Monitor). A monitor M is a tuple (M,m0, B,−→m) where:

– M is a finite set of states,
– m0 ∈M is the initial state,
– B ⊆M is a set of final “bad” states,
– −→⊆M × F ×M is a transition relation.

The monitoring problem We have seen that the monitoring problem reduces
to determine if a given trace T = (E,λ,.) and monitor M = (M,m0, B,−→m)

Distributed System

multiple processes

events are not totally ordered

but a partial order can be obtained
using vector clocks [Lam78, Mat89]

e1

e2

e3 e4

Tester

OK

KO

P1

P3

P2

e5

e6

Definition 3 (Formula triggering). An event e triggers a formula φ, if e as-
signs the variable appearing in φ and if φ evaluates to true after the assignment.
Formally, if φ[x ← v] denotes the formula φ where the variable x is substituted
by v, then we have:

(φ |= e)⇔ ((var(e) = var(φ)) ∧ (φ[var(e)← val(e)] = $))

Those basic formulae can be used as propositions to build more complex
temporal constraints, using LTL.

A particular care must be taken to the fact that it will be checked on fi-
nite sequences. This can be done, as explained e.g. in [LMC01] by an obvious
translation of any LTL formula into an “LTL with ∆ actions” (where ∆ is not
in the initial alphabet). Semantically the finite sequences are extended by an
infinite sequence of ∆ actions, to mark the deadlock. For example, intuitively a
system S should satisfy ¬a iff S can not perform a a as next action. Hence S
may either perform only actions b different from a or it may deadlock. Similarly,
if © denotes the next operator in LTL, a system which satisfies ¬©a can either
deadlock immediately or perform some visible action and then satisfy ¬a. To
capture the intuition, any formula ©φ is first translated into (¬∆ ∧ ©φ) and
¬© φ into (∆ ∨ ©¬φ).

Then, the classical procedure defined by Vardi and Wolper [VW86] to build
from a LTL formula a corresponding (Büchi) automaton B able to do all the
sequences of [|¬φ]| can be used to build our monitor (seen as a standard non
deterministic finite automaton). The construction is restricted to our systems
where only one variable is modified at each event. As explained in [LMC01],
the ∆-transitions can be removed from the monitor obtained and a finite au-
tomaton is provided where transitions are labeled by basic formulae and with
a standard and not the Büchi acceptance condition. Note that the size of the
obtained monitor may be exponential in the size of the corresponding LTL for-
mula [VW86]; but generally, since in practice the size of the formula is small, it
is not a problem.

We will show that our main contribution in this paper, is an algorithm which
outperforms classical methods to compose B and T and verify that [|T]|∩[|¬φ]| = ∅,
i.e. check that no sequence of the system has the property φ.

In the following, we simply define our monitors as any non deterministic finite
automata with basic formulae on transitions. The formal definition of a monitor
follows.

Definition 4 (Monitor). A monitor M is a tuple (M,m0, B,−→m) where:

– M is a finite set of states,
– m0 ∈M is the initial state,
– B ⊆M is a set of final “bad” states,
– −→⊆M × F ×M is a transition relation.

The monitoring problem We have seen that the monitoring problem reduces
to determine if a given trace T = (E,λ,.) and monitor M = (M,m0, B,−→m)

Trace

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Need for Validation
Testing
Centralized v.s. Distributed Systems

Centralized v.s. Distributed Systems

Centralized System

only one process

events are totally ordered
Tracee1 e2 e3

P1 Tester

OK

KO

Definition 3 (Formula triggering). An event e triggers a formula φ, if e as-
signs the variable appearing in φ and if φ evaluates to true after the assignment.
Formally, if φ[x ← v] denotes the formula φ where the variable x is substituted
by v, then we have:

(φ |= e)⇔ ((var(e) = var(φ)) ∧ (φ[var(e)← val(e)] = $))

Those basic formulae can be used as propositions to build more complex
temporal constraints, using LTL.

A particular care must be taken to the fact that it will be checked on fi-
nite sequences. This can be done, as explained e.g. in [LMC01] by an obvious
translation of any LTL formula into an “LTL with ∆ actions” (where ∆ is not
in the initial alphabet). Semantically the finite sequences are extended by an
infinite sequence of ∆ actions, to mark the deadlock. For example, intuitively a
system S should satisfy ¬a iff S can not perform a a as next action. Hence S
may either perform only actions b different from a or it may deadlock. Similarly,
if © denotes the next operator in LTL, a system which satisfies ¬©a can either
deadlock immediately or perform some visible action and then satisfy ¬a. To
capture the intuition, any formula ©φ is first translated into (¬∆ ∧ ©φ) and
¬© φ into (∆ ∨ ©¬φ).

Then, the classical procedure defined by Vardi and Wolper [VW86] to build
from a LTL formula a corresponding (Büchi) automaton B able to do all the
sequences of [|¬φ]| can be used to build our monitor (seen as a standard non
deterministic finite automaton). The construction is restricted to our systems
where only one variable is modified at each event. As explained in [LMC01],
the ∆-transitions can be removed from the monitor obtained and a finite au-
tomaton is provided where transitions are labeled by basic formulae and with
a standard and not the Büchi acceptance condition. Note that the size of the
obtained monitor may be exponential in the size of the corresponding LTL for-
mula [VW86]; but generally, since in practice the size of the formula is small, it
is not a problem.

We will show that our main contribution in this paper, is an algorithm which
outperforms classical methods to compose B and T and verify that [|T]|∩[|¬φ]| = ∅,
i.e. check that no sequence of the system has the property φ.

In the following, we simply define our monitors as any non deterministic finite
automata with basic formulae on transitions. The formal definition of a monitor
follows.

Definition 4 (Monitor). A monitor M is a tuple (M,m0, B,−→m) where:

– M is a finite set of states,
– m0 ∈M is the initial state,
– B ⊆M is a set of final “bad” states,
– −→⊆M × F ×M is a transition relation.

The monitoring problem We have seen that the monitoring problem reduces
to determine if a given trace T = (E,λ,.) and monitor M = (M,m0, B,−→m)

Distributed System

multiple processes

events are not totally ordered

but a partial order can be obtained
using vector clocks [Lam78, Mat89]

e1

e2

e3 e4

Tester

OK

KO

P1

P3

P2

e5

e6

Definition 3 (Formula triggering). An event e triggers a formula φ, if e as-
signs the variable appearing in φ and if φ evaluates to true after the assignment.
Formally, if φ[x ← v] denotes the formula φ where the variable x is substituted
by v, then we have:

(φ |= e)⇔ ((var(e) = var(φ)) ∧ (φ[var(e)← val(e)] = $))

Those basic formulae can be used as propositions to build more complex
temporal constraints, using LTL.

A particular care must be taken to the fact that it will be checked on fi-
nite sequences. This can be done, as explained e.g. in [LMC01] by an obvious
translation of any LTL formula into an “LTL with ∆ actions” (where ∆ is not
in the initial alphabet). Semantically the finite sequences are extended by an
infinite sequence of ∆ actions, to mark the deadlock. For example, intuitively a
system S should satisfy ¬a iff S can not perform a a as next action. Hence S
may either perform only actions b different from a or it may deadlock. Similarly,
if © denotes the next operator in LTL, a system which satisfies ¬©a can either
deadlock immediately or perform some visible action and then satisfy ¬a. To
capture the intuition, any formula ©φ is first translated into (¬∆ ∧ ©φ) and
¬© φ into (∆ ∨ ©¬φ).

Then, the classical procedure defined by Vardi and Wolper [VW86] to build
from a LTL formula a corresponding (Büchi) automaton B able to do all the
sequences of [|¬φ]| can be used to build our monitor (seen as a standard non
deterministic finite automaton). The construction is restricted to our systems
where only one variable is modified at each event. As explained in [LMC01],
the ∆-transitions can be removed from the monitor obtained and a finite au-
tomaton is provided where transitions are labeled by basic formulae and with
a standard and not the Büchi acceptance condition. Note that the size of the
obtained monitor may be exponential in the size of the corresponding LTL for-
mula [VW86]; but generally, since in practice the size of the formula is small, it
is not a problem.

We will show that our main contribution in this paper, is an algorithm which
outperforms classical methods to compose B and T and verify that [|T]|∩[|¬φ]| = ∅,
i.e. check that no sequence of the system has the property φ.

In the following, we simply define our monitors as any non deterministic finite
automata with basic formulae on transitions. The formal definition of a monitor
follows.

Definition 4 (Monitor). A monitor M is a tuple (M,m0, B,−→m) where:

– M is a finite set of states,
– m0 ∈M is the initial state,
– B ⊆M is a set of final “bad” states,
– −→⊆M × F ×M is a transition relation.

The monitoring problem We have seen that the monitoring problem reduces
to determine if a given trace T = (E,λ,.) and monitor M = (M,m0, B,−→m)

Trace

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Partial Order Traces
Global Predicate Detection

Partial Order Traces

Model

partially ordered set of events

events are labelled with assignments

two restrictions:

1 two events of the same process must be ordered

2 two events assigning the same variable must be ordered

P1 x:=1 y:=3 z:=4

P2 w:=4 x:=0

Semantics

a lattice of configurations called cuts

x:=1 y:=3 z:=4

x:=1 y:=3 z:=4

z:=4

w:=4 w:=4 w:=4 w:=4

x:=0 x:=0

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Partial Order Traces
Global Predicate Detection

Partial Order Traces

Model

partially ordered set of events

events are labelled with assignments

two restrictions:

1 two events of the same process must be ordered

2 two events assigning the same variable must be ordered

P1 x:=1 y:=3 z:=4

P2 w:=4 x:=0

Semantics

a lattice of configurations called cuts

x:=1 y:=3 z:=4

x:=1 y:=3 z:=4

z:=4

w:=4 w:=4 w:=4 w:=4

x:=0 x:=0

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Partial Order Traces
Global Predicate Detection

Partial Order Traces

Model

partially ordered set of events

events are labelled with assignments

two restrictions:

1 two events of the same process must be ordered

2 two events assigning the same variable must be ordered

P1 x:=1 y:=3 z:=4

P2 w:=4 x:=0

Semantics

a lattice of configurations called cuts

each cut has a unique valuation of the variables

x:=1 y:=3 z:=4

x:=1 y:=3 z:=4

z:=4

w:=4 w:=4 w:=4 w:=4

x:=0 x:=0

v :

8><>:
w 7→ 4
x 7→ 1
y 7→ 3
z 7→ 0

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Partial Order Traces
Global Predicate Detection

Global Predicate Detection

So far...

Efficient techniques have been developed for several classes of predicate:

Stable predicates [CL85] (such that φ =⇒ AGφ)

Disjunctive predicates (of the form EF(p1 ∨ p2 ∨ · · · ∨ pn))

Conjunctive predicates [GW94, GW96] (of the form EF(p1 ∧ p2 ∧ · · · ∧ pn))

Observer independent predicates [CDF95] (such that AFφ ⇐⇒ EFφ)

Linear, semi-linear predicates [CG98]

Regular predicates (RCTL logic) [GM01, SG03]

φ ::= > | p | ¬p | φ ∧ φ | EFφ | EGφ | AGφ | EX[i]φ

Our goal

Provide an efficient technique for full CTL (Computational Tree Logic):

φ ::= > | p | ¬φ | φ ∨ φ | φ ∧ φ | EXφ | AXφ | EGφ | AGφ | E[φUφ] | A[φUφ]

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Partial Order Traces
Global Predicate Detection

Global Predicate Detection

So far...

Efficient techniques have been developed for several classes of predicate:

Stable predicates [CL85] (such that φ =⇒ AGφ)

Disjunctive predicates (of the form EF(p1 ∨ p2 ∨ · · · ∨ pn))

Conjunctive predicates [GW94, GW96] (of the form EF(p1 ∧ p2 ∧ · · · ∧ pn))

Observer independent predicates [CDF95] (such that AFφ ⇐⇒ EFφ)

Linear, semi-linear predicates [CG98]

Regular predicates (RCTL logic) [GM01, SG03]

φ ::= > | p | ¬p | φ ∧ φ | EFφ | EGφ | AGφ | EX[i]φ

Our goal

Provide an efficient technique for full CTL (Computational Tree Logic):

φ ::= > | p | ¬φ | φ ∨ φ | φ ∧ φ | EXφ | AXφ | EGφ | AGφ | E[φUφ] | A[φUφ]

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Symbolic Representation
Symbolic Computation

Symbolic Representation

Multirectangles

Cuts can be viewed as tuples of naturals:

in a tuple 〈x1, ..., xn〉, xi = the number of events process i has executed

〈0, 0〉 〈1, 0〉 〈2, 0〉 〈3, 0〉

〈0, 1〉 〈1, 1〉 〈2, 1〉 〈3, 1〉

〈2, 2〉 〈3, 2〉

x:=1 y:=3 z:=4

x:=1 y:=3 z:=4

z:=4

w:=4 w:=4 w:=4 w:=4

x:=0 x:=0P1 x:=1 y:=3 z:=4

P2 w:=4 x:=0

1

2

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Symbolic Representation
Symbolic Computation

Symbolic Representation

Multirectangles

Cuts can be viewed as tuples of naturals:

in a tuple 〈x1, ..., xn〉, xi = the number of events process i has executed

sets of cut can be represented as a union of multirectangles

= ([1, 2]× [0, 1]) ∪ ([2, 3]× [1, 2])

〈0, 0〉 〈1, 0〉 〈2, 0〉 〈3, 0〉

〈0, 1〉 〈1, 1〉 〈2, 1〉 〈3, 1〉

〈2, 2〉 〈3, 2〉

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Symbolic Representation
Symbolic Computation

Symbolic Representation (cont’d)

Interval Sharing Tree (IST)

Symbolic data structure for representing sets of tuples:

directed acyclic graph

nodes are labelled with intervals

each path from > to ⊥ encodes a multirectangle

([0, 1]× [0, 1]) ∪ ([2, 3]× [0, 1]) ∪ ([2, 3]× [2, 2])

>

[0, 1] [2, 3]

[0, 1] [2, 2]

⊥

Using IST for CTL

For each CTL formula φ, we build symbolically an IST Iφ representing [[φ]]

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Symbolic Representation
Symbolic Computation

Symbolic Representation (cont’d)

Interval Sharing Tree (IST)

Symbolic data structure for representing sets of tuples:

directed acyclic graph

nodes are labelled with intervals

each path from > to ⊥ encodes a multirectangle

([0, 1]× [0, 1]) ∪ ([2, 3]× [0, 1]) ∪ ([2, 3]× [2, 2])

>

[0, 1] [2, 3]

[0, 1] [2, 2]

⊥

Using IST for CTL

For each CTL formula φ, we build symbolically an IST Iφ representing [[φ]]

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Symbolic Representation
Symbolic Computation

Symbolic Computation

Tautology

If φ = >, we build I> iteratively:

x:=1 y:=3 z:=4

w:=4 x:=0

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Symbolic Representation
Symbolic Computation

Symbolic Computation

Tautology

If φ = >, we build I> iteratively:

start as if the trace had no communications x:=1 y:=3 z:=4

w:=4 x:=0

>

[0, 3]

[0, 2]

⊥

I0

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Symbolic Representation
Symbolic Computation

Symbolic Computation

Tautology

If φ = >, we build I> iteratively:

start as if the trace had no communications

treat communications one at a time

x:=1 y:=3 z:=4

w:=4 x:=0

>

[0, 3]

[0, 2]

⊥

\ (
>

[0, 1]

[0, 2]

⊥

∩
>

[0, 3]

[2, 2]

⊥

)
I0 B(y := 3) A(x := 0)

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Symbolic Representation
Symbolic Computation

Symbolic Computation

Tautology

If φ = >, we build I> iteratively:

start as if the trace had no communications

treat communications one at a time

stop when all communications have been treated

x:=1 y:=3 z:=4

w:=4 x:=0

>

[0, 3]

[0, 2]

⊥

\ (
>

[0, 1]

[0, 2]

⊥

∩
>

[0, 3]

[2, 2]

⊥

) =

>

[0, 1] [2, 3]

[0, 1] [2, 2]

⊥

I0 B(y := 3) A(x := 0) I>

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Symbolic Representation
Symbolic Computation

Symbolic Computation (cont’d)

Predicate

If φ = p ≡ (x • c) with • ∈ {=, 6=, <,≤, >,≥}, we build Ip as follows:

x:=1 y:=3 z:=4

w:=4 x:=0

p(x 6= 0)

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Symbolic Representation
Symbolic Computation

Symbolic Computation (cont’d)

Predicate

If φ = p ≡ (x • c) with • ∈ {=, 6=, <,≤, >,≥}, we build Ip as follows:

we know that all events assigning x are totaly ordered

x:=1 y:=3 z:=4

w:=4 x:=0

p(x 6= 0)

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Symbolic Representation
Symbolic Computation

Symbolic Computation (cont’d)

Predicate

If φ = p ≡ (x • c) with • ∈ {=, 6=, <,≤, >,≥}, we build Ip as follows:

we know that all events assigning x are totaly ordered

some events sets p to true
x:=1

↗

y:=3 z:=4

w:=4 x:=0

p(x 6= 0)

>

[1, 3]

[0, 2]

⊥

A(x := 1)

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Symbolic Representation
Symbolic Computation

Symbolic Computation (cont’d)

Predicate

If φ = p ≡ (x • c) with • ∈ {=, 6=, <,≤, >,≥}, we build Ip as follows:

we know that all events assigning x are totaly ordered

some events sets p to true

some events sets p to false
x:=1

↗

y:=3 z:=4

w:=4 x:=0
↘

p ≡ (x 6= 0)

>

[1, 3]

[0, 2]

⊥

>

[1, 3]

[0, 1]

⊥

A(x := 1) B(x := 0)

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Symbolic Representation
Symbolic Computation

Symbolic Computation (cont’d)

Predicate

If φ = p ≡ (x • c) with • ∈ {=, 6=, <,≤, >,≥}, we build Ip as follows:

we know that all events assigning x are totaly ordered

some events sets p to true

some events sets p to false

compute the union of all slices where:
p was set to true,

but not yet to false

x:=1

↗

y:=3 z:=4

w:=4 x:=0
↘

p ≡ (x 6= 0)

(
>

[1, 3]

[0, 2]

⊥

∩
>

[1, 3]

[0, 1]

⊥

) =

>

[0, 1] [2, 3]

[0, 1] [2, 2]

⊥

A(x := 1) B(x := 0) Ip

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Symbolic Representation
Symbolic Computation

Symbolic Computation (cont’d)

Boolean Operators

We can use standard set operations on IST:

[[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]
[[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2]]

[[¬φ]] = [[φ]]

Existential Modalities

symbolic computation for EXφ using [[EXφ]] =
S

i∈[1,k][[EX[i]φ]]:

IEXφ =
S

i∈[1,k](I
[xi←(xi−1)]
φ ∩ I>)

for EGφ and E[φ1Uφ2], use classical fixed point:

[[EGφ]] = gfp λψ · [[φ]] ∩ [[EXψ]]
[[E[φ1Uφ2]]] = lfp λψ · [[φ2]] ∪ ([[φ1]] ∩ [[EXψ]])

for EFφ
def
= E[>Uφ], we can compute IEFφ =↓Iφ ∩ I>

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Symbolic Representation
Symbolic Computation

Symbolic Computation (cont’d)

Boolean Operators

We can use standard set operations on IST:

[[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]
[[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2]]

[[¬φ]] = [[φ]]

Existential Modalities

symbolic computation for EXφ using [[EXφ]] =
S

i∈[1,k][[EX[i]φ]]:

IEXφ =
S

i∈[1,k](I
[xi←(xi−1)]
φ ∩ I>)

for EGφ and E[φ1Uφ2], use classical fixed point:

[[EGφ]] = gfp λψ · [[φ]] ∩ [[EXψ]]
[[E[φ1Uφ2]]] = lfp λψ · [[φ2]] ∪ ([[φ1]] ∩ [[EXψ]])

for EFφ
def
= E[>Uφ], we can compute IEFφ =↓Iφ ∩ I>

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Symbolic Representation
Symbolic Computation

Symbolic Computation (cont’d)

Universal Modalities

symbolic computation for AXφ using [[AXφ]] = [[¬EX¬φ]]:

IAXφ = IEX¬φ

for AGφ and A[φ1Uφ2], use classical fixed point:

[[AGφ]] = gfp λψ · [[φ]] ∩ [[AXψ]]
[[A[φ1Uφ2]]] = lfp λψ · [[φ2]] ∪ ([[φ1]] ∩ [[AXψ]])

for AGφ, since [[AGφ]] = [[¬EF¬φ]], we can compute IAGφ = ↓I¬φ ∩ I>

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Experimental Results

Model #proc #events IST NuSMV
(in sec.) (in sec.)

Peterson 2 2000 0.46 349.57
2 5000 7.53 ↑↑
2 15000 189.65 ↑↑

Peterson 2 2000 0.20 294.46
Generalized 2 5000 6.44 ↑↑

2 20000 390.90 ↑↑
5 1000 2.04 13.74
5 1500 6.82 ↑↑
5 5000 176.62 ↑↑
10 1500 7.53 150.23
10 2000 27.01 ↑↑
10 5000 147.89 ↑↑
↑↑ indicates (> 10 min.)

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Experimental Results

Model #proc #events IST NuSMV
(in sec.) (in sec.)

Alternating 2 1000 13.60 297.28
Bit Protocol 2 2000 27.56 ↑↑

2 5000 257.29 ↑↑
Dining 3 100 0.15 6.36

Philosophers 3 200 1.11 ↑↑
3 2000 366.22 ↑↑
5 100 0.25 ↑↑
5 200 27.05 ↑↑
5 500 125.56 ↑↑
10 100 1.67 ↑↑
10 200 26.94 ↑↑
10 500 ↑↑ ↑↑

↑↑ indicates (> 10 min.)

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Conclusion

What has been done?

we proposed a symbolic technique for testing full CTL properties on
distributed systems

has been implemented and works well in practice

Future Work

integration of the methods in our tool TraX

interface with our industrial design environment dSL [DMM03,DGMM05]

investigate possible further improvements of our technique

investigate similar models (MSC...)

comparison with other symbolic data structures (IDD,...)

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

Introduction
The Testing Problem
A Symbolic Approach
Experimental Results

Conclusion

Conclusion

Questions?

G. Kalyon, T. Massart, C. Meuter, L. Van Begin Testing Distributed Systems through Symbolic Model Checking

	Introduction
	Need for Validation
	Testing
	Centralized v.s. Distributed Systems

	The Testing Problem
	Partial Order Traces
	Global Predicate Detection

	A Symbolic Approach
	Symbolic Representation
	Symbolic Computation

	Experimental Results
	Conclusion

