
UNIVERSITÉ LIBRE DE BRUXELLES

Faculté des Sciences

Département d’Informatique

Distribution of reactive systems

MEUTER Cédric Mémoire présenté vue de

l’obtention du diplome d’étude

approfondie en informatique

Année académique 2002-2003

Contents

Acknowledgement 3

Introduction 4

1 Action Mealy Machines 6

1.1 Action Mealy Machines . 6

1.2 Synchronized product . 7

1.3 Behavior equivalences . 8

2 General distribution 11

2.1 Preliminaries . 11

2.2 The problem . 11

2.3 More than two sites . 12

2.4 Towards a solution . 13

3 Action driven distribution 14

3.1 The problem . 14

3.2 Restriction . 14

3.3 Merging . 16

3.4 Minimizing state space . 20

3.5 Heuristic framework . 21

4 Event driven distribution 24

4.1 The problem . 24

4.2 Distributability . 24

4.3 Partial event projection and product language . 25

4.3.1 Partial event projection . 26

4.3.2 Product language . 26

4.3.3 Checking for distributability . 27

4.4 Computing the solution . 28

CONTENTS 2

5 Back to general distribution 31

5.1 Partial event projection with actions . 31

5.2 Combining restriction and partial event projection 35

5.3 Discussion . 38

Conclusion 39

Bibliography 40

Index 41

Acknowledgement

This work has been supervised by Prof. Jean-François Raskin, in collaboration with Dr. Franck

Cassez. We wish to address them many thanks for their invaluable support. We would also like to

thank the members of our jury, i.e. Prof. Thierry Massart and Prof. Jean Cardinal.

This document is a revised version, where several mistakes and typos have been corrected. We

would like to thank Prof. Raymond Devillers for a careful review of the original document that

allowed to highlight these mistakes and typos.

This work has been funded by the Région de Bruxelles Capitale 1 (grand no. RBC-BR 227/3298)

and by Macq Electronique, a leading company the design of industrial process control2.

This document has been typeset under LATEX2ε, using the ulbthesis document class, and all

figures were made using MetaPost.

1http://www.bruxelles.irisnet.be/
2http://www.macqel.be

Introduction

In this paper, we focus on reactive systems. Reactive systems react to certain events by performing

some actions, in order to keep the controlled environment in a desirable state. For instance, a

temperature control system will react to the temperature being too low by turning on a heater.

In simple systems, the events monitored by the systems and the actions to be performed are

centralized. However, in most industrial systems, the sensors and actuators (inputs and outputs)

are geographically distributed. In the design of such distributed systems, some error may be

introduced by the distributed nature of these inputs and outputs. One approach to deal with this

is to specify the system in a centralized manner, where the inputs and outputs are all accessible in

one central location, and then automatically synthesize a distributed systems that is behaviorally

equivalent to the initial centralized one. Then if the synthesis process is correct, any property

verified by the centralized system will also be verified by the distributed one.

This problem of distributing a centralized specification has already been studied. In [Mor99], the

problem is examined on the model of asynchronous systems. An asynchronous system is basically

a deterministic labelled transition system along with an independence relation over its alphabet.

The problem studied there is to find a synchronized product of deterministic labelled transition

systems that is isomorphic to the centralized asynchronous system. In [CMT99], they study the

distribution problem on the more general model of labelled transition systems (not necessarily

deterministic). They study the problem of finding a synchronized product of labelled transition

system that is bisimilar to the centralized model. Note that, in both [Mor99] and [CMT99], the

synchronized product operates on common events. In [SEM03], they examine the following problem.

Given a centralized specification of acceptable behavior, represented as a language accepted by a

deterministic labelled transition system, they try to find an asynchronous automaton accepting a

sublanguage of that language. A asynchronous automaton is a finite automaton that can easily

be distributed into communicating local automata. However, the communication paradigm used

between these local automata is more restrictive than simple synchronization on common events.

Indeed, in order to take a transition, the local automata have to communicate not only the event

they synchronize on, but also the local states they are in. Finally note that some other related

problems of decentralized observability and controllability are studied in [RW92, RW95, Tri01b] on

the model of finite transition systems.

INTRODUCTION 5

In this paper, we introduce a new model for reactive systems where the inputs and outputs

are clearly separated and study the automatic distribution on this model. Given a centralized

model of a reactive system, and given the locations of the inputs and outputs, we propose a

method, based on [CMT99], to automatically synthesize a distributed version of this model that

is behaviorally equivalent to the original specification. The components of the distributed systems

will communicate through synchronization on common events, and the behavioral equivalence we

will use is bisimulation.

Plan of the work

The paper is organized as follows. We start, in chapter 1, by introducing the model of Action

Mealy Machines that we use to model reactive systems. We follows, in chapter 2, by presenting

the problem of distribution in its most general form. In chapters 3 and 4 we study two particular

subclasses of this problem where the distribution is only based respectively on the location of

outputs, and on the location of the inputs. Finally, in chapter 5 we explain how the methods

developed in those two chapters can be combined to give a solution to the general problem.

Chapter 1

Action Mealy Machines

In this chapter, we introduce a new model for reactive systems : Action Mealy Machines. This

model was inspired by the model of Fiffo-Automaton that we studied in [Meu02]. This model

of Action Mealy Machines is more abstract than the one we defined in [Meu02]. The reason for

that, is that Fiffo-Automaton are too specific, and we wanted a lighter model to address the

distribution problem. However, we strongly believe that every result presented in this document

can be adapted to Fiffo-Automaton. The rest of this chapter is organized as follows. First in

section 1.1, we define the model of Action Mealy Machines. Then, in section 1.2, we present how

Action Mealy Machine can be combined using synchronized product. Finally, in section 1.3, we

discuss behavior equivalences over this model.

1.1 Action Mealy Machines

To model reactive systems, we introduce Action Mealy Machines, a special class of Mealy Machines.

Intuitively, a Mealy Machine is a finite automaton for which each transition is triggered by an

input and produces outputs. In the case of Action Mealy Machines (AMM), an input models the

occurrence of an event received from the environment and the corresponding output produced is a

finite set of actions to be performed as a reaction to the event occurrence. The order in which those

actions are performed is not important (i.e the actions are totally independent). We formalize this

as follows.

Definition 1.1 - Action Mealy Machine

An Action Mealy Machine (AMM) is a tupleM = (SM, s0
M,ΣM, AM, δM, λM) where:

1. SM is a finite set of states,

2. s0
M is the initial state,

3. ΣM is a finite set of events,

ACTION MEALY MACHINES 7

4. AM is a finite set of actions,

5. δM : SM × ΣM → SM is a partial transition function,

6. λM : SM × ΣM → 2AM is a partial output function; λM(s, e) is defined if and only if δM(s, e)

is defined.

When the control is in a state s ∈ SM, if an event e ∈ ΣM occurs, if δM(s, e) is defined, the

control moves to δM(s, e) and produces a set of actions given by λM(s, e). We will note s
e
−→M the

fact that δM(s, e) is defined. Similarly, we will note s
e/A
−−→M s′ the fact that δM(s, e) = s′ and that

λM(s, e) = A. We will also note outM(s) = {e ∈ ΣM|s
e
−→M} the set of events accepted in state s. A

run of an AMMM is a sequence of transitions σ = s0
M

e1/A1

−−−−→M s1
e2/A2

−−−−→M s2 ... sn−1
en/An

−−−−→M sn.

A state s of SM is reachable if there exists a run ofM ending in s.

Note that Action Mealy Machines are deterministic by definition. The determinism hypothesis

seems reasonable in our case, because we are dealing with industrial controllers, which are deter-

ministic by nature. Therefore, the Action Mealy Machines can be used to model a wide variety of

useful systems.

Example 1.1

Figure 1.1, presents an AMM M, modeling a temperature control system. When the control system

is activated, we assume that the heater is off. In the initial state s1, if the sensor indicates that the

temperature is too low, the heater is turned on and the control moves to state s2. This is modeled by

the transition s1
too low/{heater on}
−−−−−−−−−−−−−→M s2. In state s2, where the heater is on, if the sensor indicates

that a certain acceptable temperature is reached, the heater is turned off and the control moves to the

initial state s1. This is modeled by the transition s2
too high/{heater off}
−−−−−−−−−−−−−−→M s1.

s1 s2

too low / { heater on }

too high / { heater off }

Figure 1.1: AMM modeling a temperature control system

1.2 Synchronized product

Because we will be dealing with distributed systems, we must define the behavior of two AMM’s

M1 and M2 reacting in parallel to the same environment. This behavior can be modeled by a

single AMM which is the synchronized product of M1 and M2. As usual, the synchronizations

between both AMM’s are made on the events they share. But, in our model, when a synchronized

ACTION MEALY MACHINES 8

transition is taken, both M1 and M2 will produce actions. Thus, in the synchronized product,

it is natural to produce the actions produced by both M1 and M2. The synchronized product is

formalized hereafter.

Definition 1.2 - Synchronized product

The synchronized product of two AMM’sM1 andM2 noted M1 ×M2 is an AMM

(SM1
× SM2

, (s0
M1

, s0
M2

),ΣM1
∪ ΣM2

, AM1
∪AM2

, δM1×M2
, λM1×M2

)

where ∀(s1, s2) ∈ SM1
× SM2

,∀e ∈ ΣM1
∪ ΣM2

:

δM1×M2
((s1, s2), e) =





(δM1
(s1, e), δM2

(s2, e)) if e ∈ outM1
(s1) ∩ outM2

(s2)

(δM1
(s1, e), s2) if e ∈ outM1

(s1) ∧ e 6∈ ΣM2

(s1, δM2
(s2, e)) if e ∈ outM2

(s2) ∧ e 6∈ ΣM1

undefined otherwise

λM1×M2
((s1, s2), e) =





λM1
(s1, e) ∪ λM2

(s2, e) if e ∈ outM1
(s1) ∩ outM2

(s2)

λM1
(s1, e) if e ∈ outM1

(s1) ∧ e 6∈ ΣM2

λM2
(s2, e) if e ∈ outM2

(s2) ∧ e 6∈ ΣM1

undefined otherwise

Example 1.2

Figure 1.2 presents an example of synchronized product. Figures 1.2(a) and 1.2(b) presents two AMM’s

M1 andM2 with respective alphabets ΣM1
= {e1, e2, e3} and ΣM2

= {e1, e4, e3}. In the synchronized

product M1 ×M2, presented in figure 1.2(c), the synchronizations are made on common events, that

is ΣM1
∩ ΣM2

= {e1, e2}. For the actions, we can, for instance, observe that from state (s1, s5), on

event e1, both a1 from M1 and a′1 from M2 are performed.

s1 s2 s3 s4

e1/{a1} e2/{a2} e3/{a3}

(a) M1

Figure 1.2: Example of synchronized product

1.3 Behavior equivalences

To address the distribution problem, it is essential that we define some sort of behavioral equivalence

between AMM’s. Indeed, we need a way to determine that the distributed system is correct, that

ACTION MEALY MACHINES 9

s5 s6 s7 s8

e1/{a
′

1
} e4/{a4} e3/{a

′

3
}

(b) M2

s1, s5 s2, s6

s3, s6

s2, s7

s3, s7 s4, s8

e1/{a1, a
′

1
}

e2/{a2}

e2/{a2}e4/{a4}

e4/{a4}

e3/{a3, a
′

3
}

(c) M1 ×M2

Figure 1.2: Example of synchronized product (cont’d)

is behaviorally equivalent to the centralized system. One well known form of behavior equivalence

is language equivalence (or trace equivalence). It can be formalized as follows.

Definition 1.3 - Language

LetM be a AMM. A trace ofM is a word w = (e1,A1) · (e2,A2) · ... · (en,An) on (ΣM×AM)∗ such

that there exists a run s0
M

e1/A1

−−−−→M s1
e2/A2

−−−−→M s2 ... sn−1
en/An

−−−−→M sn inM. We define the language

of M, noted LM as the set of all traces ofM.

Two AMM’sM1 andM2 are language equivalent if and only if LM1
= LM2

. Note that for any

AMM M, by definition, LM is prefix-closed and therefore always contains the empty trace ε. For

a word w = (e1,A1) · (e2,A2) · ... · (en,An) on (ΣM × AM)∗, the length of w, noted |w|, is n, and

we note, s
w
−→M s′ the fact that there exists a sequence of transitions σ = s

e1/A1

−−−−→M s1
e2/A2

−−−−→M

s1 ... sn−1
en/An

−−−−→M s′.

On finite automata, another well known form of behavior equivalence is bisimulation. We extend

this notion to AMM’s. We introduce action bisimulation which is slightly more restrictive than a

traditional bisimulation, in the sense that it forces two action bisimilar states not only to react to

the same events as in traditional bisimulation, but also to produce the same sets of actions when

reacting to those events. The action bisimulation can be formalized as follows.

Definition 1.4 - Action Bisimulation

Let M1 andM2 be two AMM’s. A binary relation B ⊆ SM1
× SM2

is an action bisimulation relation

if and only if, ∀s1 ∈ SM1
, ∀s2 ∈ SM2

, if B(s1, s2), then:

ACTION MEALY MACHINES 10

1. ∀e ∈ ΣM1
, if s1

e/A
−−→M1

s′1, then s2
e/A
−−→M2

s′2 and B(s′1, s
′
2)

2. ∀e ∈ ΣM2
, if s2

e/A
−−→M2

s′2, then s1
e/A
−−→M1

s′1 and B(s′1, s
′
2)

Two AMM’s M1 and M2 are action bisimilar, noted M1 ≡B M2, if and only if ΣM1
= ΣM2

and if there exists an action bisimulation relation B such that B(s0
M1

, s0
M2

). Actually, since AMM’s

are deterministic by nature, action bisimulation and language equivalence cöıncide. Given two

AMM’s M1 and M2, M1 ≡B M2 if and only if LM1
= LM2

. Therefore, in the rest of the paper,

we will use both forms of behavior equivalence interchangeably.

Chapter 2

General distribution

In this chapter, we present the main problem addressed in this document, the general distribution

problem. This chapter is organized as follows. First we recall some fundamental notions, in section

2.1. We follow, in section 2.2, by formalizing and discussing the general distribution problem. In

this problem, we only consider two execution sites. That is why, in section 2.3, we explain how any

distribution method over two execution sites can be used to distribute a system over more than

two execution sites. Finally, in section 2.4, we discuss our approach to solve the problem.

2.1 Preliminaries

Before we introduce the general distribution problem, we need to recall the notion of partition.

Definition 2.1 - Partition

Given a set S, a partition of S is a non-empty set of subsets of S, P = {S1, S2, ..., Sn} such that

∀i, j ∈ {1..n}, if i 6= j, then Si ∩ Sj = ∅, and such that
⋃

i∈{1..n} Si = S.

We note [s]P the partition Si ∈ P containing s. Moreover, given a set S, an equivalence relation

E over S defines a partition PE given by the set of all equivalence classes of E , that is for all s ∈ S

[s]E = { s′ | E(s, s′) }.

2.2 The problem

Let us consider a reactive system modeled by an AMM M. In M, all events and actions are

implicitly centralized. However, as stated in the introduction, most of the time, those events and

actions are physically distributed over several execution sites. Thus, we would like to distribute the

system described byM over several execution sites. Of course, it is imperative for the distribution

process to be correct, that is, the distributed system must be behaviorally equivalent to the system

described by M. We can formulate the problem a follows.

GENERAL DISTRIBUTION 12

Problem 2.1 - General distribution problem

Given an AMMM, a partition {A1, A2} of AM and two subsets Σ1, Σ2 of ΣM such that Σ1∪Σ2 = ΣM,

do there exist two AMMM1 andM2 with AM1
= A1, AM2

= A2, ΣM1
= Σ1, ΣM2

= Σ2 such that

M1 ×M2 ≡B M.

In problem 2.1, A1 and A2 represent the sets actions to be executed on the two execution

sites. Most of the times, the location of an action is forced by the location of the outputs it

uses (executing an action might even simply be to set an output to a certain value). Thus, A1

and A2 reflect, in some sense, the location of the outputs of the systems. Similarly, Σ1 and Σ2

represent the sets of events that can be monitored on the two execution sites. Thus, they reflect

the location of the inputs of the system. Note that Σ1 and Σ2 are not assumed disjoint. Indeed,

most of the times, the distributed AMM’s will need to communicate (synchronize) in order for

the distributed system to be behaviorally equivalent to the original centralized one. Of course,

in the real physical implementation, an input can only be located on one site. For the actions,

since they are not involved in any communication, it is not necessary to allow one action to be

executed by both execution sites. Therefore, we assume A1 and A2 to be disjoint. Note that we

used action bisimulation as a behavior equivalence. But, as explained in chapter 1, we can used

language equivalence in the same manner.

2.3 More than two sites

In the general distribution problem defined in the previous section, we only consider two execution

sites. If there are more than two execution sites, we can use the following result.

Theorem 2.1

The synchronized product of AMM’s is congruent to action bisimulation. Given four AMM’sM1,M2,

M3,M4, ifM1 ≡B M2 andM3 ≡B M4 thenM1 ×M3 ≡B M2 ×M4.

Proof

Let B(1,2) be a bisimulation relation betweenM1 andM2 and B(3,4), a bisimulation relation betweenM3

andM4. Let B ⊆ (SM1×M3
× SM2×M4

) be such that B((s1, s3), (s2, s4)) if and only if B(1,2)(s1, s2)

and B(3,4)(s3, s4). We prove that B is a bisimulation relation betweenM1×M3 andM2×M4. Indeed,

∀(s1, s3) ∈ SM1×M3
, (s2, s4) ∈ SM2×M4

such that B((s1, s3), (s2, s4)), we have that:

1. ∀e ∈ ΣM1×M3
, if (s1, s3)

e/A
−−→M1×M3

(s′1, s
′
3), then depending on e there are there are three

possibilities:

(i) if e ∈ ΣM1
∩ ΣM3

, then by construction, we have s1
e/A′

−−−→M1
s′1 and s3

e/A′′

−−−→M3
s′3 with

A′ ∪A′′ = A. Since B((s1, s3), (s2, s4)), we have B(1,2)(s1, s2) and B(3,4)(s3, s4). It follows

that s2
e/A′

−−−→M2
s′2 with B(1,2)(s

′
1, s

′
2), and that s4

e/A′′

−−−→M4
s′4 with B(3,4)(s

′
3, s

′
4). Finally,

GENERAL DISTRIBUTION 13

by construction, we have (s2, s4)
e/A
−−→M2×M4

(s′2, s
′
4), and by definition of B, we have

B((s′1, s
′
3), (s

′
2, s

′
4)).

(ii) if e ∈ ΣM1
\ ΣM3

, then by construction, we have s1
e/A
−−→M1

s′1 and s3 = s′3. Since

B((s1, s3), (s2, s4)), we have B(1,2)(s1, s2) and B(3,4)(s3, s4). It follows that s2
e/A
−−→M2

s′2

with B(1,2)(s
′
1, s

′
2). Finally, by construction, we have (s2, s4)

e/A
−−→M2×M4

(s′2, s4), and by

definition of B, we have B((s′1, s3), (s
′
2, s4)).

(iii) if e ∈ ΣM3
\ ΣM1

, the proof is symmetrical to the previous case.

2. ∀e ∈ ΣM2×M4
, if (s2, s4)

e/A
−−→M2×M4

(s′2, s
′
4), we can prove that (s1, s3)

e/A
−−→M1×M3

(s′1, s
′
3)

symmetrically to the proof of (1).

Finally, we have B((s0
M1

, s0
M3

), (s0
M2

, s0
M4

)) �

The previous theorem allows us to use any distribution method developed for two execution

sites to distribute the centralized system over more than two execution sites. The idea is as follows.

Let us consider an AMM M, a partition {A1, A2, ..., An} of AM and n subsets Σ1,Σ2, ...,Σn such

that
⋃

i∈{1..n} Σi = ΣM. First, we distributeM over A1, Σ1 on one execution site, and
⋃

i∈{2..n} Ai,⋃
i∈{2..n} Σi on the other, we will obtain two AMM’sM1 andM′

1. Then we can distributeM′
1 over

A1,Σ2 on one execution site and
⋃

i∈{3..n} Ai,
⋃

i∈{3..n} Σi on the other. We can repeat this process

until we are left with only two execution sites. Theorem 2.1 assures us that the synchronized

product of all the Mi obtained along the way will be bisimilar to M.

2.4 Towards a solution

As stated in the previous section, the distribution process is constrained by two things (1) the

locations of the actions and (2) the locations of the events. In order to solve the general distribution

problem, we chose to first study those constraints separately and then combine the developed

methods to solve the general problem. Therefore, before studying the general distribution problem,

we will concentrate on two subclasses of this problem. In the first one, we will only consider the

constraints on the actions. In this action driven distribution problem, studied in chapter 3, we

will make no assumption on the events. As a matter of fact, we will assume that every event can

be monitored everywhere (Σ1 = Σ2 = Σ). The distribution will only depend on the location of

the actions. Symmetrically, in the second problem, we will only consider the constraints on the

events. In this event driven distribution problem, studied in chapter 4, we will only examine AMM’s

without actions (AM = ∅). Then, in chapter 5, we will combine and extend the methods developed

in chapters 3 and 4 to solve the general distribution problem.

Chapter 3

Action driven distribution

In this chapter we will consider a particular class of the general distribution problem, in which the

distribution is driven by the location of the actions to be performed. This chapter is organized as

follows. We start by formulating the problem in section 3.1. We follow by showing how it can simply

be solved in section 3.2. However we will see that this solution can be greatly improved. That is

why, in section 3.3, in order to improve this solution, we show how we can transform the simple

solution by merging some states together, while respecting the correctness of the distribution. We

follow, in section 3.4, by discussing the optimality of a solution. Finally, in section 3.5, we conclude

by presenting a heuristic approach to the problem of finding this optimal solution.

3.1 The problem

In the action driven distribution problem, we split the set of actions in two, just like in the general

problem, but here we assume that all events can be monitored everywhere. Let us first formalize

the problem.

Problem 3.1 - Action driven distribution problem

Given an AMM M and a partition {A1, A2} of AM, does there exist two AMM’s M1 and M2 with

AM1
= A1, AM2

= A2, ΣM1
= ΣM2

= ΣM such thatM1 ×M2 ≡B M.

3.2 Restriction

Since all events can be monitored everywhere, a simple way to solve the problem 3.1 is to duplicate

the centralized system on each execution site and restrict the actions of the duplicates to respectively

actions of A1 and A2. We formalize the notion of restriction as follows.

ACTION DRIVEN DISTRIBUTION 15

Definition 3.1 - Restriction of AMM

Given an AMMM, the restriction ofM to a subset A of AM, noted ρ(M, A), is an AMM

(SM, s0
M,ΣM, A, δM, λρ(M,A))

where λρ(M,A) is defined ∀s ∈ SM,∀e ∈ outM(s, e) as follows:

λρ(M,A)(s, e) = λM(s, e) ∩A

We can also adapt the definition of restriction to traces.

Definition 3.2 - Restriction of a trace

Given an AMM M and a trace w of M, the restriction w to a subset A of AM, noted ρ(w,A) is

defined recursively as follows:

1. ρ(ε, A) = ε

2. ρ((e,A) · w′, A) = (e,A ∩A) · ρ(w′, A)

The definition of restriction of traces can easily be extended to sets of traces (languages):

ρ(L, A) = { ρ(w,A) | w ∈ L }. Given these definitions, it is easy to see that ρ(LM, A) = Lρ(M,A).

Intuitively, it seems quite natural that given an AMM M, the synchronized product of the

respective restriction of M on A1 and A2 is bisimilar to M. Indeed, apart from the actions, the

restricted AMM are almost identical to M. We prove this formally hereafter.

Theorem 3.1

Given an AMM M and a partition {A1, A2} of AM, if M1 = ρ(M, A1) and M2 = ρ(M, A2), then

M1 ×M2 ≡B M.

Proof

We define a relation B ⊆ SM1×M2
× SM such that B((s1, s2), s) if and only if s = s1 = s2, and we

prove that B is an action bisimulation relation. Indeed, ∀s ∈ SM,∀(s1, s2) ∈ SM1×M2
, if B((s1, s2), s)

then:

1. ∀e ∈ ΣM, if s
e/A
−−→M s′, by construction s

e/A∩A1

−−−−−→M1
s′ and s

e/A∩A2

−−−−−→M2
s′. Consequently,

since (A ∩ A1) ∪ (A ∩ A2) = A, (s, s)
e/A
−−→M1×M2

(s′, s′) by definition of × and B((s′, s′), s′)

holds trivially.

2. ∀e ∈ ΣM1×M2
, if (s1, s2)

e/A
−−→M1×M2

(s′1, s
′
2) then by definition of ×, s1

e/A1

−−−→M1
s′1 and

s2
e/A2

−−−→M2
s′2 with A1 ∪ A2 = A. Then, since s = s1 = s2, s

e/A
−−→M s′ with s′ = s′1 = s′2 and

B((s′1, s
′
2), s

′) holds trivially.

Finally, B((s0
M1

, s0
M1

), s0
M) holds by construction andM1 ×M2 ≡B M. �

ACTION DRIVEN DISTRIBUTION 16

s1

s2

s3

s4

s5

e1/{a1, a2, a3} e4/{a4}

e1/{a1, a3}

e1/{a1, a2}

e2

e3

e3

e2

(a) M

s1

s2

s3

s4

s5

e1/{a1, a2} e4

e1/{a1}

e1/{a1, a2}

e2

e3

e3

e2

(b) ρ(M, {a1, a2})

s1

s2

s3

s4

s5

e1/{a3} e4/{a4}

e1/{a3}

e1

e2

e3

e3

e2

(c) ρ(M, {a3, a4})

Figure 3.1: Distribution using restriction

Note that this theorem is adapted from [Meu02]. However, the proof has been greatly simpli-

fied. It formally proves that the restriction gives us a (trivial) solution to the general distribution

problem.

Example 3.1

Figure 3.1 present the distribution process using restriction. The original centralized AMM is presented

in figure 3.1(a). The set of action AM = {a1, a2, a3, a4}. The distribution is made by restrictingM to

respectively {a1, a2} and {a3, a4}.

3.3 Merging

In the previous section, we have presented a solution to the action driven distribution problem.

However, in this solution, both distributed AMM’s have the same number of states as the initial

ACTION DRIVEN DISTRIBUTION 17

centralized AMM. It is therefore reasonable to wonder about the existence of a smaller solution in

terms of number of states. This is why we will attempt to merge some states of the distributed

AMM. First, we formalize the notion of merging.

Definition 3.3 - Merging

Given an AMMM and a partition P = {S1, S2, ..., Sn} of SM, the merging ofM by P noted µ(M, P)

is an AMM:

(P, [s0
M]P ,ΣM, AM, δµ(M,P), λµ(M,P))

where ∀Si ∈ P,∀e ∈ ΣM as follows:

δµ(M,P)(Si, e) =

{
Sj if

⋃
s∈Si|e∈outM(s)[δM(s, e)]P is a singleton {Sj}

undefined otherwise

λµ(M,P)(Si, e) =

{
∪s∈Si|e∈outM(s)λM(s, e) if

⋃
s∈Si|e∈outM(s){[δM(s, e)]P } is a singleton {Sj}

undefined otherwise

We need to be careful before merging states together. Indeed, the model of AMM is deterministic

by nature and we need to keep this determinism. If there exists two states s, s ′ in the same

subset of the partition P , such that e is accepted in both, but for which the reached states are

in different subsets, merging those states would not be safe because it would produce a non-

deterministic automaton. That is why, in definition 3.3, δµ(M,P)(Si, e) and λµ(M,P)(Si, e) are left

undefined if more that one subset is reached from a state s of Si on event e, in other words, if⋃
s∈Si|e∈outM(s){[δM(s, e)]P } is not a singleton. Before we can use this transformation to improve

the solution given by the restriction, we need to characterize the partitions for which the merging

is safe. Therefore, we introduce the notion of deterministic partition.

Definition 3.4 - Deterministic partition

Given an AMM M, a partition P = {S1, S2, ..., Sn} of SM is deterministic with respect to M if

∀Si ∈ P,∀e ∈ Σ,∀s, s′ ∈ Si:

(e ∈ outM(s) ∧ e ∈ outM(s′))→ ([δM(s, e)]P = [δM(s′, e)]P)

Now, of course, it is essential that we keep the correctness of the solution. Indeed, by merging

states together in the distributed (i.e. restricted) AMM’s, we might introduce some new transi-

tions in their synchronized product, which would violate the action bisimulation with the initial

centralized AMM. Therefore, before merging states together, we need to check that this does not

happen. We need a way to characterize under which conditions, states can be merged together

while respecting the correctness of the distribution. This is given by the following theorem.

ACTION DRIVEN DISTRIBUTION 18

Theorem 3.2

Given an AMMM, a partition {A1, A2} of AM and two partitions P1 and P2 of SM, both deterministic

w.r.tM, letM1 = µ(ρ(M, A1), P1) andM2 = µ(ρ(M, A2), P2), M1 ×M2 ≡B M if and only if for

all reachable states (S1, S2) ∈ SM1×M2
, for all s ∈ S1 ∩ S2,

(i) outM(s) = outM1
(S1) ∩ outM2

(S2)

(ii) ∀e ∈ outM(s), λM(s, e) = λM1
(S1, e) ∪ λM2

(S2, e)

Proof

(→) We know that M1 ×M2 ≡B M. This implies that there exists an action bisimulation relation

B ⊆ SM1×M2
× SM such that B((S0

M1
, S0

M2
), s0

M). We first prove that for all reachable states

(S1, S2) of M1 ×M2, there exists s ∈ S1 ∩ S2 such that B((S1, S2)s)

– For the initial state, (S0
M1

, S0
M2

) = ([s0
M]P1

, [s0
M]P2

). It follows that s0
M ∈ S0

M1
∩S0

M2
and

by definition of B, we have B((S0
M1

, S0
M2

), s0
M).

– For any reachable state (S1, S2) of M1 × M2 such that there exists s ∈ S1 ∩ S2 with

B((S1, S2), s), if (S1, S2)
e/A
−−→M1×M2

(S′
1, S

′
2), since B((S1, S2), s), s

e/A
−−→M s′ with

B((S′
1, S

′
2), s

′). By construction, since s ∈ S1, s′ ∈ S′
1 and since s ∈ S2, s′ ∈ S′

2. It

follows that s′ ∈ S′
1 ∩ S′

2 with B((S ′
1, S

′
2), s

′).

Then we prove that for all reachable states s of M, we have B(([s]P1
, [s]P2

), s):

– For the initial state s0
M, we have B(([s0

M]P1
, [s0

M]P2
), s0

M) by definition of B.

– For any reachable state s of M such that B(([s]P1
, [s]P2

), s), if s
e/A
−−→M s′ then by con-

struction [s]P1

e/A∩A1

−−−−−→M1
[s′]P1

and [s]P2

e/A∩A2

−−−−−→M2
[s′]P2

since P1 and P2 are de-

terministic w.r.t. M. Consequently, since (A ∩ A1) ∪ (A ∩ A2) = A, we have that

([s]P1
, [s]P2

)
e/A
−−→M1×M2

([s′]P1
, [s′]P2

) by definition of ×. And since B(([s]P1
, [s]P2

), s),

we also have that for s′, B(([s′]P1
, [s′]P2

), s′).

We can deduce that for every reachable states (S1, S2) ∈ SM1×M2
, for all state s ∈ S1 ∩ S2, we

have B((S1, S2), s). Then, it is easy to see that B((S1, S2), s) implies (i) and (ii).

(←) Let B ⊆ SM1×M2
×SM such that B((S1, S2), s) if and only if s ∈ S1∩S2. We prove that B is an

action bisimulation relation. Indeed, for all reachable states (S1, S2) ∈ SM1×M2
, for all s ∈ SM,

if B((S1, S2), s) then:

1. ∀e ∈ ΣM, if s
e/A
−−→M s′, then by construction [s]P1

e/A∩A1

−−−−−→M1
[s′]P1

and [s]P2

e/A∩A2

−−−−−→M2

[s′]P2
since P1 and P2 are deterministic w.r.tM. Consequently, since (A∩A1)∪ (A∩A2) =

A, ([s]P1
, [s]P2

)
e/A
−−→M1×M2

([s′]P1
, [s′]P2

) by definition of × and B(([s′]P1
, [s′]P2

), s′) holds

trivially.

ACTION DRIVEN DISTRIBUTION 19

2. ∀e ∈ ΣM1×M2
, if (S1, S2)

e/A
−−→M1×M2

(S′
1, S

′
2) then by definition of times, S1

e/A1

−−−→M1
S′

1

and S2
e/A2

−−−→M2
S′

2 with A1 ∪ A2 = A. Then by (i) s
e/A′

−−−→M s′ and by (ii) A′ = A. By

construction, since S1
e/A1

−−−→M1
S′

1 with s ∈ S1, we have s′ ∈ S′
1. Similarly s′ ∈ S′

2 and

B((S′
1, S

′
2), s

′).

Finally by construction, we have B(([s0
M]P1

, [s0
M]P2

), s0
M), thusM1 ×M2 ≡B M. �

Theorem 3.2 gives a necessary and sufficient condition to check that, given two deterministic

partitions, the merging of the restricted AMM’s using those partitions keeps the correctness of

the distribution. Note that we can check (i) and (ii) linearly in the number of states in M.

Indeed, from the proof above, we know that the set of reachable states of M1 ×M2 is given by

{([s]P1
, [s]P2

)|s ∈ SM}.

Example 3.2

To illustrate how we can obtain a better solution by merging some states together, consider the AMM

of example 3.1 and the distribution obtained using only restriction. Figure 3.2 presents a solution with

less states but that is still correct. This solution is obtained by merging s1, s3, s4 and s2, s5 in the first

restricted AMM, and by merging s3, s5 in the second restricted AMM. The synchronized product of the

distributed AMM is presented in figure 3.2(c). One can easily check this synchronized product is bisimilar

to the original AMM of figure 3.1(a). Another way to check the correctness of this distribution, is by

using theorem 3.2. For instance, for the initial state (S1, S3), {s1, s3, s4} ∩ {s1} = {s1}. We have that

outM(s1) = {e1, e2, e3} and that outM1
(S1)∩outM1

(S3) = {e1, e2, e3, e4}∩{e1, e2, e3} = {e1, e2, e3}.

For the actions, for e1, we have λM(s1, e1) = {a1, a2, a3} and λM1
(S1, e1)∪λM2

(S3, e1) = {a1, a2}∪

{a3} = {a1, a2, a3}, and for e2, e3 there are no actions from s1, S1 and S3.

S1 S2

e1/{a1, a2}

e3

e4

e2

e1/{a1}

e3

(a) M1 = µ(ρ(M, {a1, a2}), {S1, S2}),

S1 = {s1, s3, s4}, S2 = {s2, s5}

S3

S4

S5

S6

e1/{a3}

e2

e3

e1/{a3}

e3

e2

e1

e4/{a4}

(b) M2 = µ(ρ(M, {a3, a4}), {S3, S4, S5, S6}),

S3 = {s1}, S4 = {s2}, S5 = {s3, s5}, S6 = {s4}

Figure 3.2: Example of a better solution

ACTION DRIVEN DISTRIBUTION 20

S1, S3

S2, S4

S1, S5

S1, S6

S2, S5

e1/{a1, a2, a3} e4/{a4}

e1/{a1, a3}

e1/{a1, a2}

e2

e3

e3

e2

(c) M1 ×M2

Figure 3.2: Example of better solution (cont’d)

3.4 Minimizing state space

Now that we can characterize correct solutions, we can focus on what we mean exactly by minimizing

the solution. An obvious criteria to classify the solution is the number of states in both distributed

AMM’s. We could simply try to find the solution which minimizes the total number of states

|SM1
| + |SM2

|. However, as shown in example 3.3, this could lead to very odd solutions, where

every states are merged in one of the restricted AMM and nothing is merged in the other. This

kind of solution is of course not interesting. This is specially true if the amount of memory on

the implementation platform is critical. Therefore, in order to balance the size of both distributed

AMM’s, we can try to find a solution that minimizes the number of states of both AMM’s at

the same time. One way to achieve this, is by minimizing max(|SM1
|, |SM2

|). We formulate the

problem as follows.

Problem 3.2 - State minimal partitioning problem

Given an AMM M, we would like to build two partition P1 and P2 of SM such that if M1 =

µ(ρ(M, A1), P1) andM2 = µ(ρ(M, A2), P2),M≡B M1 ×M2 and such that max(|SM1
|, |SM2

|) is

minimal.

Example 3.3

Figure 3.3 shows an example of distribution when trying to minimize the total number of states |SM1
|+

|SM2
|. The AMM’s presented respectively in figure 3.3(a) and 3.3(b) indeed minimize the total number

of states. However, nothing is merged in M1, while everything is merged in M2. Note that merging

ACTION DRIVEN DISTRIBUTION 21

s1 s2 s3 s4 s5

e1/{a1} e2/{a2} e3/{a3} e4/{a4}

(a) M

S1 S2 S3 S4 S5

e1/{a1} e2
e3/{a3} e4

(b) M1 = µ(ρ(M, {a1, a3}), {S1, S2, S3, S4, S5}),S1 = {s1},

S2 = {s2}, S3 = {s3}, S4 = {s4}, S5 = {s5}

S6

e1 e2/{a2}

e3

e4/{a4}

(c) M2 = µ(ρ(M, {a2, a4}), {S6}),

S6 = {s1, s2, s3, s4, s5}

Figure 3.3: A solution where everything is merged inM1

everything together in M2 is possible because this does not introduce non-determinism. But it might

not necessarily be the case.

Now the question is, how do we find a solution to problem 3.2. We can take advantage of

theorem 3.2. Since there is a finite number of states in SM, we can enumerate all partitions of

SM. Let PM be the set of all partitions of SM deterministic w.r.t M. We can exhaustively check

for all (P1, P2) ∈ PM × PM that the conditions of theorem 3.2 are verified, as explained earlier,

and keep the couple of partitionings (P +
1 , P+

2) such that max(|P +
1 |, |P

+
2 |) is minimal. The solution

is then given by M1 = µ(ρ(M, A1), P
+
1) and M2 = µ(ρ(M, A2), P

+
2). Note that this method is

exponential in the size of SM. The worst case complexity of the state minimal partitioning remains

unknown.

3.5 Heuristic framework

We do not know, presently if there exists a polynomial method to solve problem 3.2. However,

we conjecture that it is not the case. Thus, we have developed a heuristic framework to avoid

an exhaustive search among all couples of partitions. It works as follows. We start with M1 =

µ(ρ(M, A1), {{s}|s ∈ SM}), andM2 = µ(ρ(M, A2), {{s}|s ∈ SM}). In other words, we start with

the restrictions of the initial machine to the respective sets of actions. In this case, since nothing is

merged, theorem 3.1 assures us that the distribution is correct. One can easily check that, for this

distribution, conditions of theorem 3.2 are verified. Then we examine the distributed machines to

see if we can merge some states Si and Sj of SM1
(SM2

) together. This is the case if and only if (1)

the merging would not introduce non-determinism inM1 (M2) and if (2) the conditions of theorem

3.2 would still hold after the merging. For (2), we could check the conditions for all reachable states

ACTION DRIVEN DISTRIBUTION 22

in M1 ×M2, but this is not necessary. Indeed, not all the reachable states are affected by the

merging of Si and Sj, and since the conditions were verified before the merging, we only need to

check the conditions for the states that are affected by the merging {([s]SM1
, [s]SM2

)|s ∈ Si ∪ Sj}.

We then choose one of the possible candidates according to some criterion and repeat the process,

until no candidates are left. At each step there are several mergings possible, and the order in

which the mergings are made has an influence on the resulting solution. Indeed, merging two states

together can render two previously mergeable (unmergeable) states unmergeable (mergeable).

We thought at first that if at each step, instead of choosing one merging, we explored every

possible mergings (i.e. backtracking), we would come up with the optimal solution. However, this

is not always the case. Indeed, as shown in example 3.4, in some AMM’s, even though P +
1 and P+

2

are deterministic, in all sequences of merging leading to this solution there is a merging leading

to a non-deterministic partition. Therefore, in this case, the optimal solution cannot be found by

backtracking on all the possible mergings. Therefore whichever criteria we use to chose a candidate,

we will never find the optimal solution for all instances of the problem.

Example 3.4

Figure 3.4(a) is an example of AMM where the optimal solution can not be found by exploring all

possible mergings at each step in the heuristic framework. Figures 3.4(b) and 3.4(c) present the optimal

solution while figures 3.4(d) and 3.4(e) present the solution found exploring all possible mergings at each

step. In this solution, max(|SM1
|, |SM2

|) = 3, while in the optimal solution max(|SM1
|, |SM2

|) = 2.

It is the determinism that forbids us from finding the optimal solution. Indeed, in the first step of the

heuristic framework, when selecting candidates in the restricted AMM’s, we can not chose to merge

neither s1 with s3 nor s2 with s4 as done in figure 3.4(b), and neither s1 with s3 nor s2 with s1 as done

in figure 3.4(c), because it would lead to a non-deterministic partition. These candidates are therefore

not taken into account. The mergings left lead us to the solution presented in figures 3.4(d) and 3.4(e)

s1

s2

s4

s3

e1/{a1}

e1/{a1}e2/{a2}

e2/{a2}

e3/{a3}

e4/{a4}

e4/{a4}

e3/{a3}

(a) M

Figure 3.4: Determinism can cause problems - A1 = {a1, a3}, A2 = {a2, a4}

ACTION DRIVEN DISTRIBUTION 23

S1 S2

e2

e4
e1/{a1}

e3/{a3} e2

e4

(b) M1 = µ(ρ(M, {a1, a3}), {S1, S2}),

S1 = {s1, s3}, S2 = {s2, s4}

S3 S4

e1

e3
e2/{a2}

e4/{a4} e1

e3

(c) M2 = µ(ρ(M, {a2, a4}), {S3, S4}),

S3 = {s1, s2}, S4 = {s3, s4}

S′

1
S′

2
S′

3

e1/{a1}

e2

e3/{a3}

e4

e2

e1/{a1}

e4

e3/{a3}

(d) M′
1 = µ(ρ(M, {a1, a3}), {S

′
1, S

′
2, S

′
3}),

S′
1 = {s1}, S

′
2 = {s2, s3}, S

′
3 = {s4}

S′

4
S′

5
S′

6

e2/{a2}

e1

e4/{a4}

e3

e1

e2/{a2}

e3

e4/{a4}

(e) M′
2 = µ(ρ(M, {a2, a4}), {S

′
4, S

′
5, S

′
6}),

S′
4 = {s2}, S

′
5 = {s1, s4}, S

′
6 = {s3}

Figure 3.4: Determinism can cause problems - A1 = {a1, a3}, A2 = {a2, a4} (cont’d)

In the heuristic framework we have presented, we still need a criterion to chose one merging

among all the possible candidates. We have studied several criteria. The best we found is based on

the impact a merging has on the conditions of theorem 3.2. If we merge two states Si, Sj with the

same outgoing transitions, the resulting state will be identical to Si and Sj w.r.t. the conditions

of theorem 3.2. The conditions will be unaffected and the distribution will still be correct. In

some sense, the difference between Si and Sj in terms of outgoing transitions reflects the influence

the merging will have on the rest of the distributed AMM’s. Therefore, at each step, we chose

to merge two states Si, Sj (of either SM1
of SM2

) such that the difference between Si and Sj

in terms of outgoing transitions is minimal. A good approximation of this difference is given by

|(outM1
(Si) \ outM1

(Sj)) ∪ (outM1
(Sj) \ outM1

(Si))| (if the merging is made in M1). Moreover,

in an effort to balance the number of merging in both distributed AMM’s, we keep count of the

number of mergings made in each distributed AMM’s. Then, and at each step, if there are mergings

minimizing the difference in both distributed AMM’s, we chose one in the AMM where the least

number of mergings were made. Experimentally, on relatively small example, this criterion seems to

give good results compared to the optimal solution. On bigger examples, we could not compare our

result with the optimal solution, because the exhaustive search does not terminate in a reasonable

amount of time. That is why we compared it to a method were the candidates are picked at

random. Our heuristic is always better than the random pick. However, the gain over the random

pick method is fairly small.

Chapter 4

Event driven distribution

In this chapter we will consider another particular case of the general distribution problem, in

which the distribution is driven by the locations of the events to be monitored. Contrarily to the

problem we examined in chapter 3, we will see that this problem does not always have a solution.

This chapter is organized as follows. First, in section 4.1, we formulate the problem. Then, in

section 4.2, we give some intuition on why some AMM’s cannot be distributed over certain pairs

of alphabets. We follow, in section 4.3, by presenting a solution to the problem adapted from

[CMT99], and in section 4.4, we give a construction implementing this solution.

4.1 The problem

In the event driven distribution, we specify which events can be monitored on each execution sites

just like in the general problem. However, in here, we will only consider AMM’s without any

actions. We will call these AMM’s action free AMM’s. For the sake of readability, we will simplify

the notation and drop AM and λM of the standard definition of AMM. We will also simplify the

notations of traces and languages by dropping the actions. We can now formulate the problem.

Problem 4.1 - Event driven distribution problem

Given an action free AMM M and two subsets Σ1,Σ2 of ΣM such that Σ1 ∪ Σ2 = ΣM, does there

exist two action free AMM’sM1 andM2 with ΣM1
= Σ1, ΣM2

= Σ2 such thatM1 ×M2 ≡B M.

4.2 Distributability

As stated in the introduction of this chapter, contrarily to the action driven distribution problem,

in the event driven distribution problem, there exist some AMM’s that cannot be distributed, that

is, for which there exists no synchronized products bisimilar to them. This problem arise because

of the way the AMM’s communicate: via synchronization on common events. This implies that for

EVENT DRIVEN DISTRIBUTION 25

s1

s2

s3

s4

s5

s6

s7

e1

e2

e2

e1

e3

e4

(a) Σ1 = {e1, e3, e4} and Σ2 = {e2, e3, e4}

s1

s2

s3

e1

e2

(b) Σ1 = {e1} and Σ2 = {e2}

Figure 4.1: Undistributable AMM’s

one of the distributed AMM to allow or forbid the other to react to a certain event, it must observe

that event. However, in the event driven distribution, the fact that an AMM can or cannot observe

an event is fixed in the instance of the problem. Therefore for some instances of the problem, the

centralized AMM cannot be distributed. In example 4.1, we present two typical cases where the

centralized AMM cannot be distributed over Σ1 and Σ2, and try give some intuition on why those

AMM cannot be distributed.

Example 4.1

Figures 4.1(a) and 4.1(b) present two action free AMM’s that cannot be distributed, given Σ1,Σ2. In

the first AMM of figure 4.1(a) if Σ1 = {e1, e3, e4} and Σ2 = {e2, e3, e4}, after having treated events

e1 and e2, both distributed AMM’s should be able to decide weather to accept e3 or e4 depending on

the order in which e1 and e2 occurred. However, they can only see e1 and respectively e2. Therefore,

since they have no way to communicate their observations, they cannot take that decision. In the

second AMM of figure 4.1(b), if Σ1 = {e1} and Σ2 = {e2}, the problem comes from the fact that the

distributed AMM’s should forbid one another to accept their respective event when they have accepted

their own. For instance, after e1 has occurred, the first distributed AMM should be able to forbid e2

from being accepted in the other distributed AMM. Again, this cannot be because of the way they

communicate.

4.3 Partial event projection and product language

As explained in section 4.1, in the event driven distribution problem, we will only consider action free

AMM’s. Those AMM’s can be viewed as traditional deterministic transition systems. A solution

to the problem of distributing such transition systems modulo bisimulation has been studied in

[CMT99]. In this section we will present this solution adapted to action free AMM’s. We first give

some definitions and then present the main results.

EVENT DRIVEN DISTRIBUTION 26

4.3.1 Partial event projection

Partial event projection is used to describe a trace of the centralized system as observed if only a

subset of events can be monitored. We can formalize this as follows.

Definition 4.1 - Partial event projection of a trace of an action free AMM

The partial event projection of a trace w of an action free AMM to a set of events Σ, noted π(w,Σ) is

defined recursively as follows:

1. π(ε,Σ) = ε

2. π(e · w′,Σ) =

{
e · π(w′,Σ) if e ∈ Σ

π(w′,Σ) if e 6∈ Σ

Informally, π(w,Σ) is the trace w where all events not in Σ are erased. This definition naturally

extends to sets of traces (languages): π(L,Σ) = { π(w,Σ) | w ∈ L }. Using partial event projection,

the language accepted by the synchronized product of two action free AMM’s can be formalized as

follows.

Lemma 4.1 - [CMT99]

Given two action free AMM’sM1,M2, LM1×M2
= {w | π(w,ΣM1

) ∈ LM1
∧ π(w,ΣM2

) ∈ LM2
} �

Informally, the previous lemma states that, given two action free AMM’sM1,M2, a trace w is

accepted by their synchronized product M1 ×M2 if and only if the partial event projection of w

on ΣM1
is accepted byM1 and the partial event projection of w on ΣM2

is accepted byM2.

4.3.2 Product language

In order to characterize the action free AMM’s that are bisimilar to a synchronized product of

action free AMM’s, we need to introduce product languages.

Definition 4.2 - Product Language ([CMT99])

Given an action free AMM M, and two subsets Σ1,Σ2 of ΣM such that Σ1 ∪ Σ2 = ΣM, LM is

a product language w.r.t Σ1, Σ2 if there exists two languages L1 ⊆ Σ∗
1,L2 ⊆ Σ∗

2 such that LM =

{ w | π(w,Σ1) ∈ L1 ∧ π(w,Σ2) ∈ L2 }

In order to check if the language accepted by an action free AMM is a product language, we

can use the fact that a product language (and only a product language) is equal to the language

accepted by the synchronized product of AMM’s accepting its respective partial event projections

on Σ1 and Σ2. This is formalized in the following lemma.

Lemma 4.2 - [CMT99]

Given an action free AMMM, and two subsets Σ1,Σ2 of ΣM such that Σ1∪Σ2 = ΣM, LM is a product

language w.r.t Σ1,Σ2 if and only if LM = {w | π(w,ΣM1
) ∈ π(LM,Σ1)∧π(w,ΣM2

) ∈ π(LM,Σ2)}�

EVENT DRIVEN DISTRIBUTION 27

s′

1
s′

2

s′

3

s′

4

e1

e3

e4

(a) M1 accepting π(LM, {e1, e3, e4})

s′′

1
s′′

2

s′′

3

s′′

4

e2

e3

e4

(b) M2 accepting π(LM, {e2, e3, e4})

s′

1
, s′′

1

s′

2
, s′′

1

s′

1
, s′′

2

s′

2
, s′′

2

s′

3
, s′′

3

s′

4
, s′′

4

e1

e2

e2

e1

e3

e4

(c) M1 ×M2

Figure 4.2: Partial event projection and product language at work

4.3.3 Checking for distributability

We now present the main result adapted from theorem 6.2 of [CMT99], providing us with a necessary

and sufficient condition to check if an action free AMM can be distributed.

Theorem 4.1 - [CMT99]

Given an AMMM with AM = ∅, and two subsets Σ1,Σ2 of ΣM such that Σ1∪Σ2 = ΣM, there exists

two action free AMM’s M1,M2 with ΣM1
= Σ1 and ΣM2

= Σ1 such that M1 ×M2 ≡B M if and

only if LM is a product language w.r.t Σ1,Σ2 �

As specified in [CMT99], theorem 4.1 and lemmata 4.1 and 4.2 yield an effective procedure for

checking that an action free AMM M is distributable over Σ1 and Σ2. Indeed, we have to first

construct two AMM’s, M1,M2 accepting respectively π(LM,Σ1) and π(LM,Σ2), and then verify

that LM = LM1×M2
. If LM = LM1×M2

, the solution is provided by M1 and M2. If, on the

contrary, LM 6= LM1×M2
, theorem 4.1 assures us that M is not distributable over Σ1 and Σ2.

Example 4.2

Let us consider the AMM M presented in figure 4.1(a). The language accepted by M is given by

LM = {ε, e1, e1 · e2, e2 · e1, e1 · e2 · e3, e2 · e1 · e4}. The respective partial event projection of LM

EVENT DRIVEN DISTRIBUTION 28

on Σ1 = {e1, e3, e4} and Σ2 = {e2, e3, e4} are given by π(LM,Σ1) = {ε, e1, e1 · e3, e1 · e4} and

π(LM,Σ2) = {ε, e2, e2 · e3, e2 · e4}. Figures 4.2(a) and 4.2(b) present two AMM’s M1 and M2

accepting those languages. Then, figure 4.2(c) presents their synchronized product M1 ×M2. We

can clearly observe that LM 6= LM1×M2
. For example, e1 · e2 · e4 is in LM1×M2

but not in LM.

Therefore, LM is not a product language by lemmata 4.1 and 4.2. It follows, by theorem 4.1 that M

is not bisimilar to a synchronized product of AMM’s on Σ1 and Σ2.

4.4 Computing the solution

As we have seen in the previous section, in order to solve problem 4.1, given an action free AMM

and a subset Σ of ΣM, we need a way to construct an AMM accepting the partial event projection

of LM on Σ. A simple and natural idea is to replace all transitions s
e
−→M s′ in M with e 6∈ Σ by

ε-transitions s
ε
−→M s′, and then determinize the resulting AMM. This basic idea used in classical

automata theory leads us to the following construction.

Definition 4.3 - Partial event projection of action free AMM

Given an action free AMM M, and a subset Σ of ΣM, the partial event projection of M to Σ, noted

π(M,Σ) is defined by an action free AMM

(2SM ,Σ-closure(s0
M),Σ, δπ(M,Σ))

where ∀S ∈ 2SM ,∀e ∈ Σ:

Σ-closure(s) = {s′ ∈ SM | ∃w ∈ (ΣM \ Σ)∗, s
w
−→M s′}

δπ(M,Σ)(S, e) =

{ ⋃
{s∈S | e∈outM(s)} Σ-closure(δM(s, e)) if {s ∈ S | e ∈ outM(s)} 6= ∅

undefined otherwise

This construction is very similar to the one used for determinizing a non-deterministic finite

automaton with ε transitions. In this case, instead of using ε-closure(s), we use Σ-closure(s) which

is the set of all the states that can be reached from s by accepting only events not in Σ. Each state

of the projected AMM is a set of states from the original AMM. We start with the initial state

given by Σ-closure(s0
M). Then, from a given state S in the projected AMM, we build a transition

accepting an event e if there is a state s ∈ S in which e is accepted in the original AMM. The

reached state is then given by the set of all states reached from a state of S by accepting e and

their Σ-closure’s. From this definition, the partial event projection of an AMM M on a subset Σ

of ΣM should accept exactly the partial event projection of LM on Σ. We prove this hereafter.

Theorem 4.2

Given an action free AMMM and a subset Σ of ΣM, Lπ(M,Σ) = π(LM,Σ).

EVENT DRIVEN DISTRIBUTION 29

Proof

The proof is divided in two parts. We first prove that Lπ(M,Σ) ⊆ π(LM,Σ), or in other words that

∀w ∈ Lπ(M,Σ),∃w
′ ∈ LM such that π(w′,Σ) = w. We prove by induction on |w| that ∀S ∈ Sπ(M,Σ)

if S0
π(M,Σ)

w
−→π(M,Σ) S, then ∀s ∈ S,∃w′ ∈ LM such that s0

M
w′

−→M s with π(w′,Σ) = w.

- For the base case, |w| = 0, and w = ε. By construction, S0
π(M,Σ) = Σ-closure(s0

M), so ∀s ∈

S0
π(M,Σ), ∃w

′ ∈ LM such that s0
M

w′

−→M s. Since w′ ∈ (ΣM \ Σ)∗, we have π(w′,Σ) = ε = w.

- For the inductive step, we assume as inductive hypothesis that with |w| = n, we have that if

S0
π(M,Σ)

w
−→π(M,Σ) S then ∀s ∈ S,∃w′ ∈ LM such that s0

M
w′

−→M s with π(w′,Σ) = w. Now,

if |w| = n + 1, we can write w = u · e. So we have S0
π(M,Σ)

u
−→π(M,Σ) S

e
−→π(M,Σ) S′. By

construction, ∀s′ ∈ S′,∃s′′ ∈ S′,∃s ∈ S such that s
e
−→M s′′

w′

−→M s′ with w′ ∈ (ΣM \ Σ)∗.

We can conclude that ∀s′ ∈ S′,∃s′′ ∈ S′,∃s ∈ S such that s0
M

u′

−→M s
e
−→M s′′

w′

−→M s′ with

π(u′ · e · w′,Σ) = π(u′,Σ) · π(e,Σ) · π(w′,Σ). Since e ∈ Σ and w′ ∈ (ΣM \ Σ)∗, we have that

π(e,Σ) = e and π(w′,Σ) = ε. It follows directly that π(u′ · e · w′,Σ) = u · e = w.

Then, we prove that π(LM,Σ) ⊆ Lπ(M,Σ), or in other words that ∀w ∈ LM, π(w,Σ) ∈ Lπ(M,Σ). We

prove by induction on |w|, that if s0
M

w
−→M s then S0

π(M,Σ)

π(w,Σ)
−−−−→π(M,Σ) S with s ∈ S.

- For the base case, |w| = 0, and w = ε. We have π(w,Σ) = ε accepted in s0
M. By construction ε

accepted in S0
π(M,Σ) and that s0

M ∈ S0
π(M,Σ) = Σ-closure(s0

M).

- For the induction step, we assume as inductive hypothesis that with |w| = n, if s0
M

w
−→M

s, ∃S ∈ Sπ(M,Σ) such that S0
π(M,Σ)

π(w,Σ)
−−−−→ S and s ∈ S. Now, if |w| = n + 1, we can

write w = u · e. So we have s0
M

u
−→M s

e
−→M s′. By inductive hypothesis, ∃S ∈ Sπ(M,Σ)

such that S0
π(M,Σ)

π(u,Σ)
−−−−→π(M,Σ) S and s ∈ S. If e 6∈ Σ, we have π(u · e,Σ) = π(u,Σ) and

s′ ∈ Σ-closure(s) ⊆ S. If e ∈ Σ, then by construction, S
e
−→π(M,Σ) S′. So we have that

π(u · e,Σ) = π(u,Σ) · e and by construction s′ ∈ S′ with S0
π(M,Σ)

π(u,Σ)
−−−−→π(M,Σ) S

e
−→π(M,Σ) S′.�

Corollary 4.1

Given an action free AMMM and two subsets Σ1,Σ2 of ΣM such that Σ1 ∪ Σ2 = ΣM, if ∃M1,M2

with ΣM1
= Σ1 and ΣM2

= Σ2 such thatM1 ×M2 ≡B M, then π(M,Σ1)× π(M,Σ2) ≡B M.

Proof

This corollary is a direct consequence of theorems 4.1, 4.2 and lemmata 4.1, 4.2. �

EVENT DRIVEN DISTRIBUTION 30

s1

s2

s3

s4

s5

s6

s7

e1

e2

e2

e1

e3

e4

(a) M

S1 S2

S3

S4

e1

e3

e4

(b) π(M, {e1, e3, e4}), S1 = {s1, s3},

S2 = {s2, s4, s5}, S3 = {s6}, S4 = {s7}

S′

1
S′

2

S′

3

S′

4

e2

e3

e4

(c) π(M, {e2, e3, e4}), S1 = {s1, s2},

S2 = {s3, s4, s5}, S3 = {s6}, S4 = {s7}

Example 4.3

To illustrate the partial event projection of an action free AMM, let us take back the AMM from

example 4.1. We recall this AMM M in figure 4.3(a). Figures 4.3(b) and 4.3(c) present the partial

event projection of M on respectively {e1, e3, e4} and {e2, e3, e4}. We can observe that those two

AMM’s accept the partial event projection of LM on respectively {e1, e3, e4} and {e2, e3, e4}. Indeed,

they are bisimilar (event isomorphic in this case) to the AMM’s we presented in figures 4.2(a) and

4.2(b).

Chapter 5

Back to general distribution

In chapters 3 we studied a first subclass of the general distribution problem driven only by the

location of the actions, and saw how restriction allowed us to solve that problem. In the chapter

4, we studied a second subclass of the general distribution problem driven only by the location of

the events, and saw how partial event projection allowed us to solve the problem. In this chapter,

we explain how those methods (i.e. restriction and partial event projection) can be adapted and

combined to solve the general distribution problem. This chapter is organized as follows. First, in

section 5.1, we extend the partial event projection to AMM’s with actions. Then, in section 5.2,

we explain how this extended partial event projection can be combined with the restriction to give

a solution to the general distribution problem we presented in chapter 2. Finally, in section 5.3, we

discuss our method.

5.1 Partial event projection with actions

We saw in chapter 4 that in order to solve the event driven distribution problem, we had to use

partial event projection. However, in this problem, only action free AMM’s were considered. In

the general distribution problem, this is not the case anymore. Therefore, if we want to use this to

solve the general distribution problem, we need to extend partial event projection to AMM’s with

actions. We formalize this hereafter.

Definition 5.1 - Partial event projection of a trace

The partial event projection of a trace w of an AMM to a set of events Σ, noted π(w,Σ) is defined

recursively as follows:

1. π(ε,Σ) = ε

2. π((e,A) · w′,Σ) =

{
(e,A) · π(w′,Σ) if e ∈ Σ

π(w′,Σ) if e 6∈ Σ

BACK TO GENERAL DISTRIBUTION 32

The only difference between this definition and the one presented in chapter 4 concerns the

actions involved in the trace. These actions are simply erased along with the events not in Σ.

Later in chapter 4, we presented a construction which, given an action free AMMM, allowed to

build an action free AMM accepting the partial event projection LM to a subset Σ of ΣM. Again

we need to extend this construction in order to use it for the general distribution problem. We

formalize this hereafter.

Definition 5.2 - Partial event projection of AMM

Given an AMMM and a subset Σ of ΣM, the partial event projection of M to Σ, noted π(M,Σ) is

defined by an AMM

(2SM ,Σ-closure(s0
M),Σ, AM, δπ(M,Σ), λπ(M,Σ))

where ∀S ∈ 2SM ,∀e ∈ Σ:

Σ-closure(s) = {s′ ∈ SM | ∃w ∈ ((ΣM \ Σ)× 2AM)∗, s
w
−→M s′}

δπ(M,Σ)(S, e) =

{ ⋃
{s∈S | e∈outM(s)} Σ-closure(δM(s, e)) if {s ∈ S | e ∈ outM(s)} 6= ∅

undefined otherwise

λπ(M,Σ)(S, e) =

{ ⋃
{s∈S | e∈outM(s)} λ(s, e) if {s ∈ S | e ∈ outM(s)} 6= ∅

undefined otherwise

This definition is almost identical to the one in the action free case. Each state of the projected

AMM’s is a set of state of the original AMM, and a transition of the projected AMM represents

several transitions of the original AMM. The difference here lies in the added λπ(M,Σ). Given a

state S of the projected AMM, and en event e of Σ, we define λπ(M,Σ)(S, e) as the union of all

the actions that are triggered by e from a state s of S in the original AMM only if δπ(M,Σ)(S, e) is

defined and we leave it undefined otherwise.

In chapter 4, we proved that in the action free case Lπ(M,Σ) = π(LM,Σ). However, in the

present case, it is not always true. The problem does not come from the construction we presented,

but from the sub-alphabet Σ onto which M is projected. Indeed, as illustrated in example 5.1,

for some AMM’s, the partial event projection of LM on some sub-alphabets Σ of ΣM cannot be

accepted by any AMM at all.

Example 5.1

Consider the AMM presented in figure 5.1. If we denote this AMM M, the language of M is given

by LM = {ε, (e1, {a1}), (e1, {a1}) · (e2, {a′2}), (e2, {a2})}. If Σ = {e2}, the partial event projection

of LM onto Σ is given by π(LM,Σ) = {ε, (e2, {a
′
2}), (e2, {a2})}. This language cannot be accepted

by an AMM because of the determinism of the model. Indeed, suppose that there exists an AMM

M′ accepting π(LM,Σ). From the initial state of M′, e2 should be accepted. If the set actions

produced is {a′2}, then (e2, {a2}) 6∈ LM′ . On the other hand if the set actions produced on e2 is {a2},

(e2, {a
′′
2}) 6∈ LM′ . Therefore, no AMM can accept both (e2, {a

′
2}) and (e2, {a2}) at the same time.

BACK TO GENERAL DISTRIBUTION 33

s1 s2

s3

e1/{a1}

e2/{a2} e2/{a
′

2
}

Figure 5.1: Problem with partial event projection, Σ = {e2}

The problem illustrated in example 5.1 arise if there exists two words w1 and w2 of LM observed

in the same manner when only events of Σ are monitored, and if those two words can be prolonged

by an event e of Σ such that the actions triggered by the e after w1 and after w2 are different. We

can formalize this as follows.

Definition 5.3 - Ambiguous alphabet

Given an AMMM and a subset Σ of ΣM, we say that Σ is ambiguous w.r.t LM if ∃w1, w2 ∈ LM, e ∈ Σ

such that π(w1,Σ) = π(w2,Σ), and such that w1 · (e,A1) ∈ LM, w2 · (e,A2) ∈ LM with A1 6= A2.

We now prove that if Σ is ambiguous w.r.t. LM, then there exists no AMM accepting π(LM,Σ)

Theorem 5.1

Given an AMM M and a subset Σ of ΣM, if Σ is ambiguous w.r.t LM, then there exists no AMM

accepting π(LM,Σ).

Proof

If ∃w1, w2 ∈ LM, e ∈ Σ such that π(w1,Σ) = π(w2,Σ), w1 · (e,A1) ∈ LM and w2 · (e,A2) ∈ LM with

A1 6= A2, then π(w1,Σ) · (e,A1) ∈ π(LM,Σ) and π(w2,Σ) · (e,A2) ∈ π(LM,Σ). Let us assume an

AMM M′ accepting π(LM,Σ). Since AMM are deterministic by definition, the state reached in M′

after π(w1,Σ) is the same as the one reached after π(w2,Σ). Let this state be s. If λM′(s, e) = A1

then π(w2,Σ) · (e,A2) 6∈ π(LM,Σ) and LM′ 6= π(LM,Σ). If, on the other hand, λM′(s, e) = A2 then

π(w1,Σ) · (e,A1) 6∈ π(LM,Σ) and LM′ 6= π(LM,Σ). If M′ accepts w1 · (e,A1), it cannot accept

w2 · (e,A2), and ifM′ accepts w2 · (e,A2), it cannot accept w1 · (e,A1). Since both w1 · (e,A1) and

w2 · (e,A2) are in π(LM,Σ), there exists no AMM accepting π(LM,Σ). �

In example 5.1, we have w1 = ε, w2 = (e1, {a1}) with π(ε,Σ) = π((e1, {a1}),Σ) = ε and

(e2, {a2}) ∈ LM, (e1, {a1}) · (e2, {a
′
2}) ∈ LM, with {a2} 6= {a1}. So we have Σ ambiguous w.r.t.

LM and by theorem 5.1, there exists no AMM accepting π(LM, {e2}).

BACK TO GENERAL DISTRIBUTION 34

Corollary 5.1

Given an AMM M and a subset Σ of ΣM, if Σ is ambiguous w.r.t LM, then there exist no AMM

accepting any superset L of π(LM,Σ).

Proof

If Σ is ambiguous w.r.t LM, from the proof of theorem 5.1, we can see that the problem is caused

by π(w1,Σ) · (e,A1) and π(w2,Σ) · (e,A2) of π(LM,Σ) that cannot be accepted by the same AMM.

However, every superset L of LM contains those two problematic words as well. Therefore, for any

superset L of LM, there exist no AMM accepting L. �

Theorem 5.1 characterizes the problematic cases. However, we still need to prove that if Σ is

not ambiguous w.r.t LM, then our extended partial event projection construction allows us to build

an AMM accepting the partial event projection of LM onto Σ. This is formalized in the following

theorem.

Theorem 5.2

Given an AMMM and a subset Σ of ΣM, if Σ is not ambiguous w.r.t LM then Lπ(M,Σ) = π(LM,Σ).

Proof

The proof is divided in two parts. We first prove that if Σ is not ambiguous w.r.t LM then Lπ(M,Σ) ⊆

π(LM,Σ), or in other words that ∀w ∈ Lπ(M,Σ),∃w
′ ∈ LM such that π(w′,Σ) = w. We prove

by induction on |w| that ∀S ∈ Sπ(M,Σ) if S0
π(M,Σ)

w
−→π(M,Σ) S, then ∀s ∈ S,∃w′ ∈ LM such that

s0
M

w′

−→M s with π(w′,Σ) = w.

- For the base case, |w| = 0, and w = ε. By construction, S0
π(M,Σ) = Σ-closure(s0

M), so

∀s ∈ S0
π(M,Σ), ∃w

′ ∈ LM such that s0
M

w′

−→M s. Since w′ ∈ ((ΣM \ Σ) × 2AM)∗, we have

π(w′,Σ) = ε = w.

- For the inductive step, we assume as inductive hypothesis that with |w| = n, we have that if

S0
π(M,Σ)

w
−→π(M,Σ) S then ∀s ∈ S,∃w′ ∈ LM such that s0

M
w′

−→M s with π(w′,Σ) = w. Now,

if |w| = n + 1, we can write w = u · (e,A). So we have S0
π(M,Σ)

u
−→π(M,Σ) S

e/A
−−→π(M,Σ) S′.

By inductive hypothesis, ∀s ∈ S,∃u′ ∈ LM, such that s0
M

u′

−→M s with π(u′,Σ) = u. In other

words, all states s ∈ S can be reached from s0
M by accepting words with the same projection

(i.e u). Therefore, since Σ is not ambiguous w.r.t LM, ∀s ∈ S such that e ∈ outM(s), we have

λM(s, e) = A. It follows by construction that ∀s′ ∈ S′,∃s′′ ∈ S′,∃s ∈ S such that s
e/A
−−→M s′′

and such that s′ ∈ Σ-closure(s′′), that is ∃v ∈ ((ΣM \ Σ) × 2AM)∗ such that s′
v
−→M s′′. We

can conclude that ∀s′′ ∈ S′,∃s′′ ∈ S′,∃s ∈ S such that s0
M

u′

−→M s
e/A
−−→M s′′

v
−→M s′ with

π(u′ · (e,A) · v,Σ) = π(u′,Σ) · π((e,A),Σ) · π(v,Σ) = u · (e,A) = w.

BACK TO GENERAL DISTRIBUTION 35

Then, we prove that if Σ is not ambiguous w.r.t LM then π(LM,Σ) ⊆ Lπ(M,Σ), or in other words

that ∀w ∈ LM, π(w,Σ) ∈ Lπ(M,Σ). We prove by induction on |w|, that if s0
M

w
−→M s then

S0
π(M,Σ)

π(w,Σ)
−−−−→π(M,Σ) S with s ∈ S.

- For the base case, |w| = 0, and w = ε. We have π(w,Σ) = ε accepted in s0
M. By construction ε

is accepted in S0
π(M,Σ) and s0

M ∈ S0
π(M,Σ) = Σ-closure(s0

M).

- For the induction step, we assume as inductive hypothesis that with |w| = n, if s0
M

w
−→M s,

∃S ∈ Sπ(M,Σ) such that S0
π(M,Σ)

π(w,Σ)
−−−−→ S and s ∈ S. Now, if |w| = n + 1, we can write

w = u · (e,A). So we have s0
M

u
−→M s

e/A
−−→M s′. By inductive hypothesis, ∃S ∈ Sπ(M,Σ)

such that S0
π(M,Σ)

π(u,Σ)
−−−−→π(M,Σ) S with s ∈ S. If e 6∈ Σ, we have π(u · (e,A),Σ) = π(u,Σ)

and s′ ∈ Σ-closure(s) ⊆ S. If e ∈ Σ, similarly to the first part of the proof, since Σ is not

ambiguous w.r.t LM, we have that ∀s ∈ S such that e ∈ outM(s), λM(s, e) = A. It follows by

construction that S0
π(M,Σ)

π(u,Σ)
−−−−→π(M,Σ) S

e/A
−−→π(M,Σ) S′ with π(u · (e,A),Σ) = π(u,Σ) · (e,A)

and by construction s′ ∈ S′. �

5.2 Combining restriction and partial event projection

First, in chapter 3, we proved that restriction gave us a solution to the action driven distribution

problem. Then, in chapter 4, we proved that if an AMM was action free, the partial event projection

gave us a solution to the event driven distribution problem. In the previous section, we have

explained how to extend partial event projection to AMM’s with action. This is because we believe

that, if we combine these two constructions, it would allows us to solve the general distribution

problem. Given an AMMM, a partition {A1, A2} of AM and two subsets Σ1, Σ2 of ΣM such that

Σ1∪Σ2 = ΣM, it is our intuition that by (1) duplicatingM on each site, (2) restricting the actions

to respectively A1 and A2 and (3) projecting the restricted duplicates to respectively Σ1 and Σ2,

we would obtain a solution to the problem if one exists. However, before we can formally prove

this intuition, we need some preliminary result.

Lemma 5.1

Given two AMM’s M1, M2 such that AM1
∩ AM2

= ∅, LM1×M2
= { w | π(ρ(w,AM1

),ΣM1
) ∈

LM1
∧ π(ρ(w,AM2

),ΣM2
) ∈ LM2

}.

Proof

This proof is divided in two parts. First we prove that if w ∈ LM1×M2
then π(ρ(w,AM1

),ΣM1
) ∈ LM1

and π(ρ(w,AM2
),ΣM2

). We prove by induction on |w| that if (S0
M1

, S0
M2

)
w
−→M1×M2

(S1, S2), then

S0
M1

π(ρ(w,AM1
),ΣM2

)
−−−−−−−−−−−−→M1

S1 and S0
M1

π(ρ(w,AM2
),ΣM2

)
−−−−−−−−−−−−→M2

S2.

BACK TO GENERAL DISTRIBUTION 36

- For the base case, we have |w| = 0 and w = ε. We have that ε is accepted from (S 0
M1

, S0
M2

) in

M1 ×M2. We also have that π(ρ(w,AM1
),ΣM1

) = ε is accepted from S0
M1

in M1 and that

π(ρ(w,AM2
),ΣM2

) = ε is accepted from S0
M2

inM2.

- For the induction step, we assume as inductive hypothesis that with |w| = n, the implica-

tion above holds. Now if |w| = n + 1, we can write w = u · (e,A). Since w ∈ LM1×M2
,

we have (S0
M1

, S0
M2

)
u
−→M1×M2

(S1, S2)
e/A
−−→M1×M2

(S′
1, S

′
2) and by inductive hypothesis,

S0
M1

π(ρ(u,AM1
),ΣM1

)
−−−−−−−−−−−−→M1

S1 and S0
M2

π(ρ(u,AM2
),ΣM2

)
−−−−−−−−−−−−→M2

S2. Then, depending on e there

are three possibilities:

(i) if e ∈ ΣM1
∩ ΣM2

, by construction, we have S1
e/A1

−−−→M1
S′

1 and S2
e/A2

−−−→M2
S′

2 with

A1∪A2 = A. Since AM1
and AM2

are disjoint, we can deduce thatA1 = A∩AM1
andA2 =

A∩AM2
. Therefore, we have π(ρ(u,AM1

),ΣM1
) · (e,A∩AM1

) = π(ρ(w,AM1
),ΣM1

) ∈

LM1
and π(ρ(u,AM2

),ΣM2
) · (e,A ∩AM2

) = π(ρ(w,AM2
),ΣM2

) ∈ LM2
.

(ii) if e ∈ ΣM1
\ ΣM2

, by construction, we have S1
e/A
−−→M1

S′
1 and S2 = S′

2. Therefore, we

have π(ρ(u,AM1
),ΣM1

) · (e,A) = π(ρ(w,AM1
),ΣM1

) ∈ LM1
and π(ρ(u,AM2

),ΣM2
) =

π(ρ(w,AM2
),ΣM2

) ∈ LM2
.

(iii) if e ∈ ΣM2
\ ΣM1

, the proof is symmetrical to the previous case.

Then, we prove that if π(ρ(w,AM1
),ΣM1

) ∈ LM1
and π(ρ(w,AM2

),ΣM2
) ∈ LM2

then w ∈

LM1×M2
. We prove that if S0

M1

π(ρ(w,AM1
),ΣM2

)
−−−−−−−−−−−−→M1

S1 and S0
M1

π(ρ(w,AM2
),ΣM2

)
−−−−−−−−−−−−→M2

S2 then

(S0
M1

, S0
M2

)
w
−→M1×M2

(S1, S2) by induction on |w|.

- For the base case, we have |w| = 0 and w = ε. We have that π(ρ(w,AM1
),ΣM1

) = ε is accepted

from S0
M1

inM1 and that π(ρ(w,AM2
),ΣM2

) = ε is accepted from S0
M2

inM2. We also have

that ε is accepted from (S0
M1

, S0
M2

) inM1 ×M2.

- For the induction step, we assume as inductive hypothesis that with |w| = n the implication

above holds. Now if |w| = n + 1, we can write w = u · (e,A). Depending on e, there are three

possibilities:

(i) if e ∈ ΣM1
∩ ΣM2

, then π(ρ(w,AM1
),ΣM1

) = π(ρ(u,AM1
),ΣM1

) · (e,A ∩ AM1
) ∈

LM1
and π(ρ(w,AM2

),ΣM2
) = π(ρ(u,AM2

),ΣM2
) · (e,A ∩ AM2

) ∈ LM2
. It follows

directly that S0
M1

π(ρ(u,AM1
),ΣM1

)
−−−−−−−−−−−−→M1

S1

e/A∩AM1−−−−−−→M1
S′

1 and S0
M2

π(ρ(u,AM2
),ΣM2

)
−−−−−−−−−−−−→M2

S2

e/A∩AM2−−−−−−→M2
S′

2. By inductive hypothesis, we have that (S0
M1

, S0
M2

)
u
−→M1×M2

(S1, S2),

and by definition of ×, since (A∩AM1
)∪(A∩AM2

) = A, we have that (S1, S2)
e/A
−−→M1×M2

(S′
1, S

′
2).

(ii) if e ∈ ΣM1
\ ΣM2

, then π(ρ(w,AM1
),ΣM1

) = π(ρ(u,AM1
),ΣM1

) · (e,A ∩ AM1
) ∈

LM1
and π(ρ(w,AM2

),ΣM2
) = π(ρ(u,AM2

),ΣM2
) ∈ LM2

. It follows directly that

BACK TO GENERAL DISTRIBUTION 37

S0
M1

π(ρ(u,AM1
),ΣM1

)
−−−−−−−−−−−−→M1

S1
e/A∩AM1−−−−−−→M1

S′
1 and S0

M2

π(ρ(u,AM2
),ΣM2

)
−−−−−−−−−−−−→M2

S2. By in-

ductive hypothesis, we have that (S0
M1

, S0
M2

)
u
−→M1×M2

(S1, S2), and by definition of ×,

we have that (S1, S2)
e/A
−−→M1×M2

(S′
1, S

′
2) with S′

2 = S2.

(iii) if e ∈ ΣM2
\ ΣM1

, the proof is symmetrical to the previous case. �

This lemma is the equivalent of lemma 4.1 of chapter 4. It allows us to characterize the language

of a synchronized product of AMM’s with disjoint sets of actions. The hypothesis of disjoint sets

of actions are necessary for the proof’s purpose. But this is not a problem since A1 and A2 are

disjoint, in the general distribution problem. We can now prove that our construction is correct,

and most importantly, complete.

Theorem 5.3

Given an AMMM, a partition {A1, A2} of AM and two subsets Σ1, Σ2 of ΣM such that Σ1∪Σ2 = ΣM,

letM1 = π(ρ(M, A1),Σ1) andM2 = π(ρ(M, A2),Σ2). If there exists M̂1, M̂2 such that Σ cM1

= Σ1,

Σ cM2

= Σ2, A cM1

= A1, A cM2

= A2 and such that M̂1 × M̂2 ≡B M, thenM1 ×M2 ≡B M

Proof

We will prove equivalently that LM1×M2
= LM. First since A1 and A2 are disjoint, by lemma

5.1, we have that LM1×M2
= { w | π(ρ(w,A1),Σ1) ∈ LcM1

∧ π(ρ(w,A2),Σ2) ∈ LcM2

}. But,

since M̂1 × M̂2 ≡B M, we also have that LcM1× cM2

= LM. We can deduce that ∀w ∈ LM,

π(ρ(w,A1),Σ1) ∈ LcM1

and π(ρ(w,A2),Σ2) ∈ LcM2

. It follows directly that π(ρ(LM, A1),Σ1) ⊆ LcM1

and that π(ρ(LM, A2),Σ2) ⊆ LcM2

. By contraposition of corollary 5.1, it follows that Σ1 is not

ambiguous w.r.t ρ(LM, A1) and that Σ2 is not ambiguous w.r.t ρ(LM, A2). It follows, by theorem 5.2,

that LM1
= Lπ(ρ(M,A1),Σ1) = π(ρ(LM, A1),Σ1) and that LM2

= Lπ(ρ(M,A2),Σ2) = π(ρ(LM, A2),Σ2).

We can deduce that ∀w ∈ LM, we have π(ρ(LM, A1),Σ1) ∈ LM1
and π(ρ(LM, A2),Σ2) ∈ LM2

. As

a consequence, we have that LM ⊆ { w | π(ρ(w,A1),Σ1) ∈ LM1
∧ π(ρ(w,A2),Σ2) ∈ LM2

} and by

theorem 5.1, LM ⊆ LM1×M2
. It is left to prove that LM1×M2

⊆ LM. For that, we have proven earlier

that LM1
= π(ρ(LM, A1),Σ1) ⊆ LcM1

and that LM2
= π(ρ(LM, A2),Σ2) ⊆ LcM2

. Then, we have:

LM1×M2
= { w | π(ρ(w,A1),Σ1) ∈ LM1

∧ π(ρ(w,A2),Σ2) ∈ LM2
}

(by lemma 5.1)

⊆ { w | π(ρ(w,A1),Σ1) ∈ LcM1

∧ π(ρ(w,A1),Σ1) ∈ LcM1

}

(because LM1
⊆ LcM1

and LM2
⊆ LcM2

)

⊆ LcM1× cM2

(by lemma 5.1)

⊆ LM

(because M̂1 × M̂2 ≡B M)

Finally, LM ⊆ LM1×M2
and LM1×M2

⊆ LM implies that LM = LM1×M2
. �

BACK TO GENERAL DISTRIBUTION 38

s1 s2

s3

e1/{a1, a
′

1
}

e2/{a2} e3/{a3}

Figure 5.2: Finer grain distribution

This theorem leads to an effective procedure to solve the general distribution problem. Given

an AMMM, a partition {A1, A2} of AM and two subsets Σ1, Σ2 of ΣM such that Σ1 ∪Σ2 = ΣM,

we must first computeM1 = π(ρ(M, A1),Σ1) andM2 = π(ρ(M, A2),Σ2), and then compute their

synchronized product M1 ×M2. Finally, theorem 5.3 assures us that LM1×M2
6= LM then there

exists no solution and if it is not the case, M1, M2 is a solution. Actually, instead of computing

M1 = π(ρ(M, A1),Σ1) and M2 = π(ρ(M, A2),Σ2) separately and then check that LM1×M2
6=

LM, we can directly compute π(ρ(M, A1),Σ1)× π(ρ(M, A2),Σ2) and check the bisimilarity along

the way .

5.3 Discussion

In chapter 4, we have seen that an action free AMM M can be viewed as deterministic transition

system over ΣM. In a certain way, an arbitrary AMM (possibly with actions) M′ can also be

viewed as a deterministic transition system, but this time over ΣM′ × 2A
M′ . Therefore, one might

ask why not simply use the results of [CMT99] on distributing transition systems, for our model of

AMM, instead of the method we have described in the previous section. One main advantage of our

method over [CMT99]’s method is that we allow a finer grain distribution. Indeed, the distribution,

in our framework, allows to set the locations of each action independently from the locations of

the events. As illustrated in example 5.2, if M contains a transition s
e/{a,a′}
−−−−−→M s′ then, using

[CMT99]’s method one would not be allowed to separate a and a′. However, in our framework, it

is possible.

Example 5.2

Let M be the AMM presented in figure 5.2. This AMM can be viewed as a transition system over

{(e1, {a1, a
′
1}), (e2, {a2}), (e3, {a3})}. Therefore, using [CMT99]’s method, we could not distribute this

AMM is a1 and a2 are located on different execution site, whereas, in our framework, we can.

Conclusion

In this work, we have studied the problem of distributing reactive systems. We have introduced

the model of Action Mealy Machine which is very well adapted to describe those reactive systems.

After formalizing the problem in chapter 2 in its most general form, we have studied and solved

two subclasses of this problem in chapter 3 and 4. This study allowed us to better understand the

problem inherent to our model and lead us to a solution for the general problem. In chapter 5,

we have presented this solution and proved its correctness and its completeness. There remains

however several open issues:

• In chapter 1, we stated that the model of Action Mealy Machine was inspired from the

model of Fiffo-Automaton. It would be interesting to adapt the distribution techniques

we presented in this paper to this model.

• In chapter 3, the worst case complexity of the problem 3.2 of state minimal partitioning

remains unknown.

• In chapter 4 and 5, we have seen that some AMM’s are not distributable w.r.t the locations

of the events and the actions. Could something be done to work around this situation? We

could try to introduce some internal communication events in order to make those AMM’s

distributable. Given an AMM M, it would therefore be interesting to study the problem of

finding two AMM’sM1 andM2 with ΣM ⊂ ΣM1
∪ΣM2

such that π(LM1×M2
,ΣM) = LM.

• In chapter 5, we have presented a solution to the general distribution problem. However, it

would be interesting to examine if and how this solution can imporved, maybe by merging

states together as we did in chapter 3, for the action driven distribution problem.

• In our framework, the distributed AMM’s communicate through synchronization. It would be

interesting to investigate other forms of communication such as asynchronous communication.

Events could for example be communicated by the means of FIFO channels1.

1First In First Out

Bibliography

[CMT99] Ilaria Castellani, Madhavan Mukund, and P. S. Thiagarajan. Synthesizing Distributed

Transition Systems from Global Specification. In Foundations of Software Technology

and Theoretical Computer Science, pages 219–231, 1999.

[Meu02] Cédric Meuter. Compilation et Répartition de programmes Electre pour Lego Mind-

storm(tm). Master’s thesis, Université Libre de Bruxelles, 2002.

[Mor99] René Morin. Decompositions of Asynchronous Systems. In Proc. CONCUR’98, Springer

Lect. Notes in Comp. Sci. 1466, pages 549–565. Springer, 1999.

[RW92] Karen Rudie and W. Murray Wonham. Think Globally, Act Locally: Decentralized

Supervisory Control. IEEE Transactions on Automatic Control, Vol. 37, No. 11, 1992.

[RW95] Karen Rudie and Jan C. Willem. The Computational Complexity of Decentralized

Discrete-Event Control Problems. IEEE Transaction on Automatic Control, Vol. 40,

No. 7, 1995.

[SEM03] Alin Stefănescu, Javier Esparza, and Anca Muscholl. Syntesis of Distributed Algorithm.

In To appear at 14th international conference on concurrency theory (CONCUR 2003),

2003.

[Tri01a] Stavros Tripakis. Problems and Examples of Decentralized Observation and Control for

Discrete Event systems. In Symposium on the Supervisory Control of Discrete Event

Systems, 2001, 2001.

[Tri01b] Stavros Tripakis. Undecidable Problems in Decentralized Observation and Control. IEEE

Transaction Conference on Decision and Control, 2001.

Index

Symbols

AM .7

SM . 6

[s]P .11

Σ-closure(s) . 28

Σ-closure(s0
M) .32

ΣM .6

δM(s, e) . 7

≡B . 10

λM(s, e) . 7

B . 9

LM . 9

µ(M, P) . 17

π(L,Σ) . 26

π(M,Σ) . 28, 32

π(w,Σ) . 26, 31

ρ(LM, A) . 15

ρ(M, A) . 15

ρ(w,A) . 15

× . 8

outM(s) . 7

s
e/A
−−→M s′ . 7

s
w
−→M s′ .9

s0
M . 6

A

Action bisimulation . 9

Action driven distribution problem.14

Action free AMM. 24

partial event projection 28

product language . 26

Action Mealy Machine . 6

action bisimulation . 9

action free AMM . 24

definition . 6

language. 9

merging . 17

partial event projection 32

restriction . 15

run . 7

synchronized product 8

trace . 9

Ambiguous alphabet . 33

B

Behavior equivalence . 8

action bisimulation . 9

language equivalence. 9

D

Definition

action bisimulation . 9

Action Mealy Machine 6

ambiguous alphabet 33

deterministic partition 17

language. 9

merging . 17

partial event projection

of action free AMM 28

of AMM. 32

of a trace . 31

of a trace of an action free AMM . . . 26

partition . 11

product language . 26

INDEX 42

restriction

of AMM. 15

of trace. .15

synchronized product 8

Deterministic partition 17

Distributability . 24

Distribution

action driven distribution 14

event driven distribution.24

general distribution 12

more that two sites 12

E

Event driven distribution problem 24

G

General distribution problem 12

L

Language . 9

M

Merging . 17

P

Partial event projection 26

of action free AMM.28

of AMM. 32

of a trace . 31

of a trace of an action free AMM 26

of language of action free AMM 26

Partition . 11

deterministic . 17

Problem

action driven distribution 14

event driven distribution.24

general distribution 12

state minimal partitioning 20

Product Language . 26

R

Reactive systems. .4

Restriction . 14

of AMM. 15

of language . 15

of trace . 15

Run . 7

S

State minimal partitioning problem 20

heuristic . 21

Synchronized product . 8

T

Trace . 9

partial event projection 31

restriction . 15

