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Abstract

A reactive control system is a computer system reacting to certain
stimuli emitted by its environment in order to maintain it in a desired
state. Distributed reactive control systems are generally composed of
several processes, running in parallel on one or more computers, com-
municating with one another to perform the required control task.
By their very nature, distributed reactive control systems are hard to
design. Their distributed nature and/or the communication scheme
used can introduce subtle unforeseen behaviours. When dealing with
critical applications, such as plane control systems, or traffic light
control systems, those unintended behaviours can have disastrous
consequences. It is therefore essential, for the designer, to ensure
that this does not happen. For that purpose, rigorous and systematic
techniques can (and should) be applied as early as possible in the
development process. In that spirit, this work aims at providing the
designer with the necessary tools in order to facilitate the development
and validation of such distributed reactive control systems. In partic-
ular, we show how using a dedicated language called dSL (Distributed
Supervision language) can be used to ease the development process.
We also study how validations techniques such as model-checking and
testing can be applied in this context.





Résumé

Un système de contrôle réactif est un système informatique réagissant
a des stimuli de son environnement de façon à maintenir ce dernier
dans un état désiré. Les systèmes de contrôle réactifs distribués sont
en général composés de plusieurs processus s’exécutant en parallèle
sur une ou plusieurs plateforme(s), et communiquent entre eux, de
manière à réaliser la tâche de contôle requise. Par nature, les sys-
tèmes de contrôle réactifs distribués sont difficiles à concevoir. Leur
nature distribuée et/ou les méchanismes de communication utilisés
peuvent introduire des comportements étranges et inattendus. Dans
le cadre d’applications critiques, telle que des systèmes de contrôle
aéronautique ou des systèmes de contrôle de feux de signalisation,
ces comportements inattendus peuvent avoir des conséquences désas-
treuses. Il est dès lors primordial, pour le concepteur de tels systèmes
de s’assurer que ceci ne se produise pas. A ces fins, des techniques
rigoureuses et systématiques peuvent (et devraient) être utilisées aus-
sitôt que possible dans le processus de développement. Dans cette
optique, ce travail tend à fournir au concepteur les outils nécessaires
pour faciliter le développement et la validation de tels systèmes de
contrôle réactif distribués. En particulier, nous montrons comment
l’utilisation d’un language de programmation dédié, appelé dSL (Dis-
tributed Supervision Language) peut être utilisé pour faciliter le pro-
cessus de développement. Nous étudions également comment des
techniques de validation formelles telles que le model-cheking et le
test peuvent être appliquée dans ce contexte.
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« Okay, brain. You don’t like me, and I don’t like you, but let’s get
through this thing and then I can continue killing you with beer. »

Homer Simpson, The Simpsons





Introduction

« Computers are useless. They can only give you answers. »
Pablo Picasso

C
omputers play a very important role in our daily lives. Most equipments
all around us, from cars to coffee machines, toys to nuclear power plants are
controlled using some sort of computer system. Computers have also become

essential in almost all sectors of our service-oriented economy. A huge number of activ-
ity domains rely on them: banks, administration offices, post offices, travel agencies,
telecommunications, etc. In essence, computer systems have become a deep-rooted
part of our existence, without which we would most certainly be at a loss. However,
computers have an inherent flaw. They are only capable of executing programs writ-
ten by humans beings, and are as a consequence subject to human errors. Our recent
history is filled with so-called “computer errors”. Let us mention a few of the most
famous bugs, taken from [Fleury, 2002].

• On July 4th, 1997, the Mars Pathfinder project was put on hold for several days.
One of the main goals of the project was to allow a mobile probe, called Sojourner
to land and collect data from the surface of Mars. Unfortunately, after a couple
of days of exploration, the Sojourner probe started to re-initialize itself randomly.
The error was caused by a problem in the real-time kernel of the probe whereby
two tasks were waiting for each other to complete, thus resulting in a deadlock
situation. The liveness monitor embedded in the system was therefore forced to
re-initialize the probe. After a lot of efforts in isolating the source of the error, by
recreating the conditions in which the bug occurred, the Jet Propulsion Laboratory
engineers at NASA were able to solve the problem.

• On November 21st, 1985, a computer malfunction at the Bank of New York
brought the Treasury Bond Market to a standstill. The error happened quickly
after an upgraded version of the Treasury’s software responsible for handling the
transactions with Wall Street was loaded. This bug was due to an overflow in an
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integer variable. As it happened, in the new version of the software, the variable
used to store the number of transactions was encoded as a 16 bits integer, while
in the previous version this variable was encoded on 32 bits. When the 32.768th

transaction request arrived, the variable was reset to 0, as could be expected. The
Bank of New York had to borrow a record $20 billion from the Federal Reserve
to compensate for the loss caused by this error.

• From 1985, a malfunction in a radiation therapy device called the Therac-25
caused the death of 4 patients, and other severe injuries. This malfunction was
caused by a race condition in the control software. Because of this error, a fast
succession of operations could give rise to the delivery of a massive dose of radia-
tions. After 6 major incidents spread over 2 years (!), the decision to stop using
the Therac-25 was finally taken in 1987.

These are only but a few examples, illustrating that a “computer error” can have
disastrous consequences, both from a human and economical viewpoint. That is why
it is imperative that critical computer systems are thoroughly validated. For that
purpose, rigorous and systematical techniques can (and should) be applied, as early as
possible in the development process.

In this work, we place ourselves in the context of distributed reactive control systems.
In particular, we will focus on their development and validation. We will examine how
a dedicated language called dSL (Distributed Supervision Language) can be used to
ease their development, and how model-checking and testing can be used for their
validation.

Distributed Reactive Control Systems

A reactive control system is a computer system reacting to certain stimuli emitted by
the environment it controls in order to maintain it in a desired state. For instance, a
temperature control system will react to a signal indicating that the temperature is
below a certain threshold by turning on a heater, thus ensuring that the temperature
is always adequate. For simple tasks like these, a centralized system can do the job.
However, when dealing with real-size industrial systems, it is often not the case. If the
task is too complex, the designer may choose to decompose it into several sub-tasks
to be performed in parallel. Also, the equipment may be geographically distributed,
in which case, the designer will be forced to distribute the control system over sev-
eral computer platforms. Such distributed systems are generally composed of several
processes, running in parallel on one or several platforms, communicating with one
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another to perform the required control task. Several communication schemes can be
used. If the processes run on the same machine, they can communicate by manipulat-
ing shared variables. Processes running on different machines, on the other hand, can
communicate asynchronously by sending messages to each other over a network.

Intrinsically, distributed reactive control systems are hard to design. Their dis-
tributed nature and/or the communication scheme they use can introduce subtle un-
foreseen behaviours. As argued above, when dealing with critical applications, such as
plane control systems, or traffic light control systems, those unintended behaviours can
have disastrous consequences. It is therefore essential, for the designer, to ensure the
correctness of those systems. The first step towards that goal is to use an appropriate
development environment, that will ease their development as much as possible.

Development Environment

One of the main challenges in the development of distributed applications is the design
of the communication procedures. A development environment that takes care of that
aspect is therefore most beneficial, because it allows the programmer to concentrate
on the functional aspects of systems.

Classical solutions based on this idea exist, e.g. CORBA, DCOM, EJB [Tanenbaum
and van Steen, 2002; Monson-Haefel, 2001]. Unfortunately, these solutions are quite
heavy and completely hide all of the communication process, making the monitoring
of such systems extremely difficult. More dedicated solutions with transparent distri-
bution mechanisms, have been proposed. Examples of such solutions are distributed
shared memory [Nitzberg and Lo, 1991] or, more specifically in the domain of control
systems, synchronous languages like Esterel, Lustre or Signal [Aubry, 1997; Girault,
1994]. Unfortunately, even if shared memory solutions are generally lighter than the
distributed objects ones, due to the cache coherence protocol, the time to access the
memory can vary greatly and is not predictable.

This lead us to dSL (distributed Supervision Language), a new environment and
language designed to program distributed industrial control systems, providing trans-
parent code distribution, and using low level mechanisms adapted for the industrial
world. dSL, developed at Macq Electronique1 in collaboration with the Université Libre
de Bruxelles [De Wachter et al., 2003a; De Wachter et al., 2003b; De Wachter et al.,
2005; De Wachter, 2005], offers advantages both to allow transparent distribution and,
by the simplicity of the distribution mechanisms, to easily monitor the behaviours of

1a Belgian company specialized in industrial process control http://www.macqel.be

http://www.macqel.be
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Figure 1 - The model checking process

the synthesized distributed system. This approach relieves the designer from a con-
siderable burden, thus making the development of distributed reactive control systems
less error-prone. However, this is not the panacea. Thorough validation is still needed.
One of the most prominent techniques for that purpose is model checking.

Model Checking

Model Checking is an automatic technique for systematically verifying concurrent sys-
tems. It was first introduced in the early 1980s by Clarke and Emerson [Clarke and
Emerson, 1981] and also independently by Queille and Sifakis [Queille and Sifakis,
1982]. As illustrated in Figure 1, the model checking process can be decomposed in
three steps.

The first step is modeling, during which a formal, i.e. mathematical, model is
extracted from the system. This model is generally some finite-state transition system
like Kripke structures [Kripke, 1963] or finite automata. A lot of research efforts
has also been put, in the past two decades, in the study of infinite-state models like
communicating finite state machines [von Bochmann, 1978], timed automata [Alur and
Dill, 1990], well-structured transition systems [Abdulla et al., 1996], Petri nets [Petri,
1962], pushdown automata [Bouajjani et al., 1997], etc.

The next step is specification and consists in stating the properties that the system
must satisfy in order to be correct. Those properties are generally specified in some
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sort of temporal logic [Pnueli, 1977; Sistla and Clarke, 1985]. There are mainly two
categories of properties. The first is that of safety properties. Those are mostly reach-
ability question, e.g “will something bad ever happen?”. The other category is that
of liveness properties, which are mostly responsiveness questions, e.g. “will something
good eventually happen?”. The specification is, to be sure, a crucial step of the model
checking process. Indeed, model checking provides ways to determine if a system sat-
isfies a given specification. However, there is no guarantees that the given specification
is correct, i.e. that the specification describes an actual problem, or complete, i.e. that
all potential problems are covered. One must therefore pay particular attention to
designing good specifications. The last step is the actual verification where the model
is checked against the specification. This results in a yes/no answer indicating if the
model satisfies the given specification. Moreover, if the answer is negative, the user
is usually provided with a proof that the system does not satisfy the specification.
This proof, often given as an error trace, can then be used to identify the source of
the problem. Ideally, this step is completely automated. Various model checking tools
have been developed for that purpose, such as Spin [Holzmann, 2004], SMV [McMillan,
1993], or Uppaal [Bengtsson et al., 1995]. However, in practice, this verification often
involves human assistance. For instance, an error trace provided by the model checker
is generally extensive and quite complicated. It can also be spurious, i.e. the result of
an error in the model. In any case, a meticulous analysis of this error trace is needed
in order to find the cause of the problem. Model checking is an elegant approach to
validation, and has several advantages. However, modeling complex distributed pro-
grams as transition systems has an inherent disadvantage known as the state explosion
problem. The problem is that the number of states of such models grows exponentially
with the number of components of the systems. When dealing with large distributed
systems, this can prevent the designer from an exhaustive verification, even with effi-
cient exploration techniques such as partial order reduction [Godefroid, 1996; Valmari,
1993] or symbolic model checking [McMillan, 1993]. Thankfully, when this happens,
all hope is not lost. The designer can turn back to testing.

Testing

Testing was first regarded2 as a separate task by Glenford J. Myers [Myers, 1979].
Until then, almost no distinction was made between the debugging of a program, i.e.
making sure that the program works as the programmer intended, and the testing of a

2according to http://en.wikipedia.org/wiki/Software_testing

http://en.wikipedia.org/wiki/Software_testing
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Figure 2 - The testing process

program, i.e. making sure that program works correctly. Since then, testing has come
a long way, and is now widely accepted in the industrial world. Probably, one of the
main reasons for that is that it scales very well to large systems.

Depending on the assumptions the developer makes on the system, testing can be
categorized as either black-box or white-box. Black-box testing assumes an external
view of the system, namely its inputs and outputs, whereas white-box testing assumes
a substantial knowledge about the program under test, e.g. access to its source code.
Several levels of testing can also be considered. At the component level, unit testing
consists in inspecting each module of the software individually to determine if it has
been implemented properly. At the intermediate level, integration testing checks for
the presence of bugs introduced by the way modules interact with each other. At the
global level, system testing examines the system under test as a whole in order to
determine if it meets its requirements. Finally, at the user level, acceptance testing is
conducted by the end-user, or client, to decide if the software is accepted or not.

In this work, we will concentrate our attention on checking that the system meets
its requirements, i.e. system testing. We will also assume access to the internals of the
system under test, i.e. white-box testing. In this particular context, as illustrated in
Figure 2, the testing process can be decomposed in several steps.

The first two steps are instrumentation and execution. The system under test is
instrumented to emit certain events. Of course the relevance of those events depends on
the specifications. Then, the system is executed, possibly in a controlled environment
and the events emitted by the system are collected together to form an execution
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trace. The next step, as in model checking, is specification, where the requirements
are formalized. In this study, we will use the same formalism as for model checking,
namely formal logic. This is, however, not always the case. Other formalisms like UML
use-case or sequence diagrams [Oestereich, 2002] can be used. Finally, the last step is
trace analysis where the trace is examined to determine if it meets the specification.
This step can be done automatically or manually, in which case, the specification step
can be overlooked.

Contrarily to model-checking, testing is not an exhaustive technique. This implies
that some bugs might be left unnoticed. However, if performed on a large number
of traces, it can still give a reasonable confidence in the correctness of the system.
Moreover, software testing can be used to unveil certain implementation errors that
were not previously detected using model checking. Indeed, as mentioned earlier, model
checking works on a model of the system. If the model is too coarse, it might therefore
abstract away some errors, which would pass undetected.

Structure of this Thesis

The remainder of this dissertation is structured as follows.

Chapter 1 - Preliminaries. In the first chapter, we briefly present the few funda-
mental mathematical concepts and results that will be needed throughout this study.

Chapter 2 - Distributed Supervision Language. In the next chapter, we introduce
dSL (distributed Supervision Language), the development environment and program-
ming language dedicated for distributed reactive control systems. First, we present
the various constructs of the language. Then, we briefly detail one of its main feature:
the automatic distribution. Finally, we discuss some related works. The content of
this chapter is based on a joint work with Bram De Wachter and Thierry Massart and
published in the following two articles.

[De Wachter et al., 2003a] De Wachter, B., Massart, T., and Meuter, C. (2003a). An
Experiment on Synthesis and Verification of an Industrial Process Control in the
dSL Environment. In Proceeding of the 3rdInternational Workshop on Automated
Verification of Critical Systems (AVoCS’03), Southampton (UK).

[De Wachter et al., 2003b] De Wachter, B., Massart, T., and Meuter, C. (2003b). dSL:
An Environment with Automatic Code Distribution for Industrial Control Systems.
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In Proceedings of the 7thInternational Conference on Principles of Distributed Sys-
tems (OPODIS’03), La Martinique (France), volume 3144 of Lecture Notes in Com-
puter Sciences, pages 132–145. Springer.

Chapter 3 - Model Checking dSL Programs. Then, we study the problem of model
checking dSL programs. For that purpose, we start by introducing a formal operational
semantics for dSL programs. We then study the properties of this model, and show their
impact in the context of model-checking. Finally, we explain how the model-checking
can be performed in practice. Most of this chapter is based on a joint work with Bram
De Wachter, Alexandre Genon and Thierry Massart, published in the following article.

[De Wachter et al., 2005] De Wachter, B., Genon, A., Massart, T., and Meuter, C.
(2005). The Formal Design of Distributed Controllers with dSL and Spin. Formal
Aspect of Computing, 17(2):177–200.

Chapter 4 - Testing dSL Programs In this chapter, we examine how the test of
distributed concurrent systems in general, and dSL programs in particular, can be
achieved. For that purpose, we explain how a dSL program can be instrumented
to collect a distributed execution trace. Then, in order to capture these distributed
execution traces, we introduce the model of partial order trace. Furthermore, we
examine how to specify temporal and non-temporal properties on this model. This
leads to define the problem of determining whether a given partial order trace satisfies
a given property. In the case of non-temporal properties, this problem is known as
the predicate detection problem, for which we give the theoretical complexity. In the
case of temporal properties, we call this problem the trace checking problem, for which
we also give the theoretical complexity. The content of this chapter is based on a
joint work with Thierry Massart and Laurent Van Begin, which has been accepted for
publication.

[Massart et al., 2007] Massart, T., Van Begin, L., and Meuter, C. (2007). On the
Complexity of Partial Order Trace Model Checking. Accepted for publication in
Information Processing Letters, to appear

Chapter 5 - Predicate Detection Then, we review the work that has been accom-
plished on the predicate detection problem and adapt it to our framework. In particu-
lar, we identify several classes of predicates for which the predicate detection problem
can be solved efficiently.
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Chapter 6 - LTL Trace Checking In the next chapter, we study how the trace
checking problem for the LTL formulae can be solved. For that purpose, we first adapt
traditional automata-based algorithms used for model checking. Then, we build on
this solution, in order to come up with a symbolic solution that is much more efficient
in practice. The content of this chapter in based on a joint work with Alexandre Genon
and Thierry Massart, published in the following article.

[Genon et al., 2006] Genon, A., Massart, T., and Meuter, C. (2006). Monitoring Dis-
tributed Controllers: When an Efficient LTL Algorithm on Sequences Is Needed to
Model-Check Traces. In Proceedings of the 14thInternational Symposium on Formal
Methods (FM’06), Hamilton (Canada), volume 4085 of Lecture Notes in Computer
Science, pages 557–572. Springer-Verlag.

Chapter 7 - CTL Trace Checking In the following chapter, we study how the trace
checking problem for the CTL formulae can be solved. We first examine a particular
class of formulae that have already been studied in the literature, and review the
existing algorithms. Then, we explain how to extend this work in order to account for
all CTL formulae. The content of this chapter is based on a joint work with Gabriel
Kalyon, Thierry Massart and Laurent Van Begin, published in the following article.

[Kalyon et al., 2007] Kalyon, G., Massart, T., Meuter, C., and Van Begin, L. (2007).
Testing Distributed Systems Through Symbolic Model Checking. In Proceeding of
the 27thIFIP WG 6.1 International Conference on Formal Techniques for Networked
and Distributed Systems (FORTE’07), Tallinn (Estonia), volume 4574 of Lecture
Notes in Computer Science, pages 263–279. Springer-Verlag.

Chapter 8 - Case Study: A Canal Lock Controller In the last chapter of this dis-
sertation, we illustrate how the methods described in the previous chapters are used
in practice on a concrete case study. More precisely, we study the design of a canal
locks controller and its validation using model checking and testing.

Finally, we conclude this dissertation by summarizing our work, emphasizing our
personal contributions, and presenting directions for future works.
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Chapter

1
Preliminaries

« The worst programs are the ones where the programmers
doing the original work don’t lay a solid foundation. »

Bill Gates

I
n this chapter, we lay the groundwork for our work, by recalling the necessary
mathematical concepts that will be used in the remainder of this dissertation.
First, after recalling some basic notions on sets, relations and functions, in Sec-

tion 1.1, we present a short introduction to lattice theory, in Section 1.2. Next, in
Section 1.3, we focus on Boolean logics. We follow, in Section 1.4, with a few words on
automata and formal languages. Finally, in Section 1.5, we present a brief introduction
to model checking. A significant part of this chapter is taken from [Schneider, 2004].

1.1 Sets, Relations and Functions

The set of natural numbers {0, 1, 2, . . .} is noted N. The set of integer numbers
{0, 1, 2, . . .} ∪ {−1,−2, . . .} is noted Z. We also note N∞ def= N ∪ {+∞} and Z∞ def=
Z ∪ {−∞,+∞}. The natural order on numbers is extended on N∞ and Z∞ as ex-
pected. Given two integer numbers a, b ∈ Z∞, the interval between a and b, is defined
as [a, b] def= {x ∈ Z | a ≤ x ≤ b}. We note I the set of such intervals. Moreover, given
an interval [a, b] ∈ I, we note (a, b] def= [a, b] \ {a}, and [a, b) def= [a, b] \ {b}. Finally, the
set of Boolean values {tt,ff}, where tt, respectively ff, denotes true, respectively false,
is noted B. For a Boolean value b ∈ B, we note b its complement, i.e. b def= ff iff b = tt.
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We note ∅ the empty set. Given a set X, we note 2X the powerset of X, i.e. set
of all subsets of X and Xk the set of k-uples of elements of X. For a k-uple t ∈ Xk,
we note t[i] its ith component. Given two k-uples of integers t, t′ ∈ Zk, we note t ≤ t′

if and only if ∀i ∈ [1, k] : t[i] ≤ t′[i]. The notion of interval is extended to k-uples as
follows. Given two k-uples a, b ∈ (Z∞)k such that a ≤ b, the interval between a and b

is defined as [a, b] def= {t ∈ Zk | a ≤ t ≤ b}. The set of such intervals in k dimensions,
also called multi-rectangles, is noted M(k).

Let us also recall the notion of partition. Given a set X, a partition P of X is a
set of non-empty subsets of X such that ∀Y, Z ∈ P : Y ∩ Z = ∅ and

⋃
Y ∈P Y = X.

We note Π(X) the set of partitions of X. Given, two partitions P, P ′ ∈ Π(X), we say
that P is coarser than P ′, or equivalently that P ′ is finer than P , noted P � P ′ if and
only if ∀X ′ ∈ P ′, ∃X ∈ P : X ′ ⊆ X.

Next, let us recall a few concepts on relations. A binary relation R ⊆ X × X is
reflexive if and only if ∀x ∈ X : 〈x, x〉 ∈ R. Moreover, R is antisymmetric if and only
if ∀x, y ∈ X : (〈x, y〉 ∈ R ∧ 〈y, x〉 ∈ R)⇒ (x = y). Furthermore, R is transitive if and
only if ∀x, y, z ∈ X : (〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ R) ⇒ (〈x, z〉 ∈ R). Finally, R is total if
and only if ∀x, y ∈ X : (〈x, y〉 ∈ R) ∨ (〈y, x〉 ∈ R). We also sometimes use the infix
notation for binary relations where 〈x, y〉 ∈ R is noted xR y.

Given a set X and a binary relation R ⊆ X×X, we note R−1 def= {〈x, y〉 ∈ X×X |
〈y, x〉 ∈ R}, its inverse. We also note R0 def= {〈x, x〉 ∈ X × X | x ∈ X} and for any
i ∈ N, Ri+1 def= {〈x, y〉 ∈ X × X | ∃z ∈ X : 〈x, z〉 ∈ Ri ∧ 〈z, y〉 ∈ R}. The transitive
closure of R is defined as R+ def=

⋃
i∈[1,+∞) R

i and the reflexive and transitive closure
is defined as R∗ = R+ ∪R0.

We now turn our attention to functions. Given two sets X and Y , we note X 7→ Y ,
the set of all functions whose domain is X and whose co-domain is Y . Given a function
f ∈ X 7→ Y , a subset Z ⊆ X and an element y ∈ Y , we define f [Z 7→ y] ∈ X 7→ Y as
follows:

f [Z 7→ y](z) def=

{
y if z ∈ Z
f(z) otherwise

If Z is a singleton {z}, we shortcut f [{z} 7→ y] by f [z 7→ y]. Furthermore, given two
functions f ∈ X 7→ Y and g ∈ Z 7→ Y such that X ∩ Z = ∅, we define (f ∪ g) ∈
(X ∪ Z) 7→ Y as follows:

(f ∪ g)(w) def=

{
f(w) if w ∈ X
g(w) if w ∈ Z

We also sometimes use Church’s notation [Church, 1936] where a function f ∈ X 7→ Y
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is noted λx · f(x). Given a function f ∈ X 7→ X, we note f0 def= λx · x and for any
i ∈ N, f i+1 def= λx · f(f i(x)).

A function f ∈ X 7→ Y is injective if and only if ∀x, x′ ∈ X : (f(x) = f(x′)) ⇒
(x = x′). Moreover, f is surjective if and only if ∀y ∈ Y, ∃x ∈ X : f(x) = y. Finally, f
is bijective if and only if it is both injective and surjective. Given two sets X,Y , and
two binary relation R ⊆ X ×X and S ⊆ Y × Y , a bijective function f ∈ X 7→ Y is an
isomorphism of 〈X,R〉 onto 〈Y, S〉 if and only if ∀x, x′ ∈ X : (xRx′)⇔ (f(x)S f(x′)).

1.2 Lattice Theory

In this section, we give a brief introduction to lattice theory. First, in Section 1.2.1, we
introduce partially ordered sets. Next, we turn our attention to lattices in Section 1.2.2.
Finally, we conclude in Section 1.2.3, with a few words on fixed points computation.

1.2.1 Partially Ordered Set

A partially ordered set, or poset for short, is a tuple 〈X,v〉 where X is a set of elements
and v⊆ X×X is a partial order, i.e. a binary, reflexive, antisymmetric and transitive
relation on X. Given a poset 〈X,v〉, and a subset Y ⊆ X, we will often abusively
note 〈Y,v〉 as a shortcut for 〈Y,v ∩ (Y × Y )〉. A poset 〈X,v〉, is a totally ordered set
if v is total.

Given poset 〈X,v〉, an element x ∈ X is minimal in X if and only if ∀x′ ∈ X :
(x′ v x) ⇒ (x = x′). Dually, an element x ∈ X is maximal in X if and only if
∀x′ ∈ X : (x v x′) ⇒ (x = x′). We note Minv(X), respectively Maxv(X), the set
of minimal, respectively maximal, elements of X. An element x ∈ X is the least,
respectively greatest, element of X, if Minv(X) = {x}, respectively if Maxv(X) = {x}.
We note minv(X), respectively maxv(X), the least, respectively greatest element of
X, if it exists.

Given a set Y ⊆ X, an element z ∈ X is an upper bound of Y if and only if
∀y ∈ Y : y v z. We note UBv(Y ) the set of upper bounds of Y . Similarly, an element
z ∈ X is a lower bound of Y if and only if ∀y ∈ Y : z v y. We note LBv(Y ) the set of
lower bounds of Y . The least upper bound, respectively greatest lower bound, if it exists,
is defined as lubv(Y ) def= minv(UBv(Y )), respectively glbv(Y ) def= maxv(LBv(Y )).

A subset Y ⊆ X is a chain if and only if Y contains only comparable elements,
i.e. ∀y, y′ ∈ Y : (y v y′) ∨ (y′ v y). Conversely, Y is an antichain of X, if and only if
Y contains only incomparable elements, i.e. ∀x, y ∈ Y : (x 6= y) ⇒ (x 6v y ∧ y 6v x).
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The width of a poset, noted widthv(X), is the size of a largest antichain of X, i.e. an
antichain of maximal size.

Furthermore, given an element x ∈ X, we define the downward closure of x as
↓ x def= {x′ ∈ X | x′ v x}. Symmetrically, we define the upward closure of x as
↑x def= {x′ ∈ X | x v x′}. The downward and upward closures are extended to sets
as expected. Given a subset Y ⊆ X, ↓Y def=

⋃
y∈Y ↓ y and ↑Y def=

⋃
y∈Y ↑ y. A

subset Y ⊆ X is downward closed, respectively upward closed, if and only if ↓Y = Y ,
respectively ↑Y = Y . Let DCv(X) ⊆ 2X , respectively UCv(X) ⊆ 2X , denote the set
of downward, respectively upward, closed subsets of X. Downward closed subset of X
are also known as order ideals of X.

Given two posets 〈X,vX〉 and 〈Y,vY 〉, a function f ∈ X 7→ Y is monotonic if and
only if ∀x, x′ ∈ X : (x vX x′) ⇒ (f(x′) vY f(y′)). The function f is continuous if
and only if it is monotonic and if for every non-empty chain Z ⊆ X, f(lubvX (Z)) =
lubvY ({f(x) | x ∈ Z}) and f(glbvX

(Z)) = glbvY
({f(x) | x ∈ Z}). Note that for finite

posets, any monotonic function is also continuous.

Example 1.1

The function f ∈ N 7→ N defined as f(x) def= x+1 for any x ∈ N, is both monotonic
and continuous in the poset 〈N,≤〉. On the other hand, assuming a set X def= { n

n+1 |
n ∈ N} ∪ {1}, the function g ∈ X 7→ X defined as

g(x) def=

{
1
2 if x 6= 1
1 otherwise

is monotonic in 〈X,≤〉, but not continuous. Indeed, consider the non-empty chain
Z = X \ {1}. We have that g(lub≤(Z)) = g(1) = 1, while lub≤({g(x) | x ∈ Z}) =
lub ≤ ({1

2}) = 1
2 .

1.2.2 Lattice

A poset 〈X,v〉 is a lattice if and only if ∀x, y ∈ X, lubv({x, y}) and glbv({x, y}) exist.
Moreover, 〈X,v〉 is a complete lattice if and only if for every non-empty subset Y ⊆ X,
lubv(Y ) and glbv(Y ) exists. In particular, a complete lattice 〈X,v〉 admits a greatest
element maxv(X) = lubv(X) and a least element minv(X) = glbv(X). Note that any
finite lattice is trivially complete. Given a lattice 〈X,v〉, the join, respectively meet,
of two elements x, y ∈ X, noted x t y, respectively x u y, is defined as lubv({x, y}),
respectively glbv({x, y}). A lattice 〈X,v〉 is distributive if and only if its meet operator
distributes over its join operator, i.e. ∀x, y, z ∈ X : x u (y t z) = (x u y) t (y t z).
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Figure 1.1 - Examples of posets

Finite posets, and therefore finite lattices, are often represented graphically using
Hasse diagrams. The Hasse diagram of a poset 〈X,v〉 is a directed acyclic graph 〈X,R〉
such that 〈x, y〉 ∈ R if and only if x and y are strictly ordered, i.e. x v y ∧ x 6= y and
if they are direct successors in the order, i.e. @z ∈ X \ {x, y} : x v z v y. Note that if
〈X,R〉 is the Hasse diagram of a poset 〈X,v〉, we have that v= R∗.

Example 1.2

Figure 1.1 shows the Hasse diagram of three posets. The first poset, in Fig-
ure 1.1(a), is not a lattice. Indeed, consider e.g. elements y and u. Their least
upper bound, namely y t u, does not exist. On the other hand, the two other
posets, presented in Figure 1.1(b) and Figure 1.1(c), are lattices. The first of those
two, in Figure 1.1(b), is distributive, whereas, the other one, in Figure 1.1(c) is
not, since x u (y t z) = x u s = x 6= (x u y) t (x u z) = t t t = t.

Given a poset 〈X,v〉, it is well known in lattice theory that the set of order ideals
of X along with set inclusion forms a complete distributive lattice.

Theorem 1.1 (Lattice of Order Ideals [Priestley and Davey, 2002])

Given a poset 〈X,v〉, we have that 〈DC⊆(X),⊆〉 forms a complete distributive
lattice.

Another well known result in lattice theory is that there exists a duality between
finite posets and distributive lattices. This result is known as Birkhoff’s representation
theorem. This theorem is based on the notion of join-irreducible elements. Formally,
given a lattice 〈X,v〉, an element x ∈ X is join-irreducible, if and only if (i) it is not
the least element, i.e. ∃y ∈ X : (y 6= x) ∧ (y v x), and (ii) it cannot be expressed
as the join of two elements both different from itself, i.e. ∀y, y′ ∈ X : (x = y t y′) ⇒
(x = y ∨ x = y′). We note JIv(X) the set of join-irreducible elements of X. Birkhoff’s
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Figure 1.2 - Illustration of Birkhoff’s representation theorem

representation theorem can then be formulated as follows.

Theorem 1.2 (Representation of Finite Distributive Lattice [Brikhoff, 1940])

Let 〈X,v〉 be a finite distributive lattice. The function f ∈ X 7→ DCv(JIv(X)) de-
fined as f def= λx · ↓x ∩ JIv(X) is an isomorphism of 〈X,v〉 onto 〈DCv(JIv(X)),⊆〉.
Dually, let 〈Y,v〉 be a finite poset. The function g ∈ Y 7→ JIv(DCv(Y )) defined
as g def= λy · ↓y is an isomorphism of 〈Y,v〉 onto 〈JI(DC(Y )),⊆〉.

Intuitively, Theorem 1.2 states that we can go from a finite distributive lattice to a
finite poset by keeping only join irreducible elements, and conversely, we can go from
a finite poset to a finite distributive lattice by constructing the set of order ideals.

Example 1.3

Figure 1.2 illustrates the duality between posets and distributive lattices. First,
Figure 1.2(a) shows a distributive lattice 〈X,v〉. For clarity, the join-irreducible
elements have been underlined. Then, Figure 1.2(b) shows the poset constructed
by keeping only the join irreducible elements. Finally, Figure 1.2(c) shows the
lattice of order ideals built on this poset. This lattice is clearly isomorphic to the
one from Figure 1.2(a).

1.2.3 Fixed Points

Given a function f ∈ X 7→ X, an element x ∈ X is a fixed point of f if and only if
x = f(x). We note FP(f) def= {x ∈ X | f(x) = x} the set of fixed points of f . We now
state some well-known results on fixed points computation.
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function computeLFP(X,v, f)1

input : a complete lattice 〈X,v〉, a continuous function f ∈ X 7→ X

returns: lfpv(X)
begin2

x := glbv(X)3

repeat4

x′ := x, x := f(x)5

until x = x′6

return x7

end8

function computeGFP(X,v, f)9

input : a complete lattice 〈X,v〉, a continuous function f ∈ X 7→ X

returns: gfpv(X)
begin10

x := lubv(X)11

repeat12

x′ := x, x := f(x)13

until x = x′14

return x15

end16

Algorithm 1.1 - Fixed point computation in a complete lattice

Theorem 1.3 (Fixed Point Characterisation [Tarski, 1955; Knaster, 1928])

Given a complete lattice 〈X,v〉 and a continuous function f ∈ X 7→ X, we have
that 〈FP(f),v〉 is a complete lattice. In particular, the least fixed point, noted
lfpv(f), and the greatest fixed point, noted gfpv(f), can be characterized as follows:

lfpv(f) def= lubv(FP(f)) = lubv({x ∈ X | f(x) v x})
gfpv(f) def= glbv(FP(f)) = glbv({x ∈ X | x v f(x)})

Furthermore, given an element x ∈ X s.t. x v f(x) and x v lfp(f), the sequence
f i(x), for i ∈ N, converges to lfpv(f). Symmetrically, given an element y ∈ X s.t.
f(y) v y and gfpv(f) v y, the sequence f i(y), for i ∈ N, converges to gfpv(f).

In particular, the sequence f i(glbv(X)), respectively f i(lubv(X)), for i ∈ N con-
verges to the least, respectively greatest, fixed point of f . This yields natural semi-
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algorithms for computing the least and greatest fixed points, as shown in Algorithm 1.1.
Note that these are only semi-algorithms, i.e. they may not terminate. However, for
finite complete lattices, they will.

1.3 Boolean Logics

In this section, we briefly recall the syntax and semantics of the propositional Boolean
logic and the quantified Boolean logic. We also recall the complexity of the associated
satisfiability problem.

1.3.1 Propositional Boolean Logic

Let us first recall the syntax of the propositional Boolean logic.

Definition 1.1 (Syntax of Propositional Boolean Logic)

Given a set of propositions P, a formula in Propositional Boolean Logic (PBL) is
defined using the following grammar:

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ
where p ∈ P

In the previous definition, > is the true formula, ¬ is the negation operator, ∨ is
the disjunction operator. Moreover, on top of this core syntax, other derived operators
are defined as usual, such as conjunction (ϕ ∧ ψ) def= ¬(¬ϕ ∨ ¬ψ), implication (ϕ ⇒
ψ) def= (¬ϕ ∨ ψ) and equivalence (ϕ ⇔ ψ) def= (ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ). Moreover, one
can define the false formula ⊥ def= ¬>. A literal is a formula of the form p or ¬p for
some proposition p ∈ P. A PBL formula ϕ is in disjunctive normal form (DNF) if and
only if ϕ is a disjunction of conjunctions of literals. Conversely, a PBL formula ϕ is
in conjunctive normal form (CNF) if and only if ϕ is a conjunction of disjunctions
of literals. Moreover, a formula ϕ is in negation normal form (NNF) if and only if
negations only precede propositions in ϕ. Note that CNF, DNF and NNF are normal
forms, i.e. to every PBL formula, corresponds exactly one formula in CNF, respectively
DNF and NNF. In the following, given a PBL formula ϕ, we note DNF(ϕ), CNF(ϕ) and
NNF(ϕ), the disjunctive, conjunctive and negation normal form of ϕ. The size of a
PBL formula ϕ, noted |ϕ|, is defined as the number of propositions and operators used
to build ϕ. We note prop(ϕ) the set of propositions appearing in ϕ. PBL formulae are
interpreted over valuations of P. For technical reasons, we prefer using subsets of P
equivalently. The semantics is defined by the satisfaction relation defined hereafter.
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Definition 1.2 (Semantics of PBL)

Given a set of propositions P, let ϕ,ψ be two PBL formulae over P, p ∈ P be a
proposition and V ⊆ P be a subset of P. The satisfaction relation for PBL, noted
|=P, is defined inductively as follows:

V |=P >
V |=P p iff p ∈ V
V |=P ¬ϕ iff V 6|=P ϕ

V |=P ϕ ∨ ψ iff V |=P ϕ or V |=P ψ

A PBL formula ϕ is satisfiable if and only if there exists a subset V ⊆ P such that
V |=P ϕ. Finally, given a PBL formula ϕ, the satisfiability problem for PBL (PBL-SAT)
consists in determining if ϕ is satisfiable. The problem is known to be NP-complete.

Theorem 1.4 (Complexity of PBL-SAT [Cook, 1971])

The satisfiability problem for PBL is NP-complete.

For a good introduction to computational complexity, we refer the reader to [Pa-
padimitriou, 1994] and (in french) [Wolper, 2001]. For a very complete list of com-
plexity classes and their definitions, we refer the reader to [Aaronson and Kuperberg,
2005].

1.3.2 Quantified Boolean Logic

Let us next examine quantified Boolean logic. First, we recall the syntax.

Definition 1.3 (Syntax of Quantified Boolean Logic)

Given a set of propositions P, a formula in Quantified Boolean Logic (QBL) is
defined using the following grammar:

ϕ ::= ∃pϕ | ∀pϕ | ψ
where p ∈ P and ψ is a PBL formula over P.

In the previous definition, ∃ is the existential quantifier and ∀ is the universal
quantifiers. In the following, we will assume that each proposition is quantified at
most once. A QBL formula is fully quantified if all propositions are quantified. Given a
QBL formula ϕ = Q1p1Q2p2 . . . Qrpr ψ, where Qi ∈ {∀,∃} and pi ∈ P for any i ∈ [1, r]
and where ψ is a PBL formula, the size of ϕ is defined as |ϕ| def= |ψ|. Similarly to PBL

formulae, QBL formulae are also interpreted over subsets of P. The semantics is defined
by the satisfaction relation, extended from the propositional case.
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Definition 1.4 (Semantics of QBL)

Given a set of propositions P, let ψ be a QBL formula over P, p ∈ P be a proposition
and V ⊆ P be a subset of P. The satisfaction relation for QBL, noted |=Q, is defined
inductively as follows:

V |=Q ψ iff ψ is a PBL formula and V |=P ψ

V |=Q ∃pϕ iff V |=Q ϕ[p/>] or V |=Q ϕ[p/⊥]
V |=Q ∀pϕ iff V |=Q ϕ[p/>] and V |=Q ϕ[p/⊥]

where ϕ[p/χ] is the formula built from ϕ by replacing each instance of p by χ.

In this definition, for simplicity, we assume without loss of generality that all quan-
tifiers appear at the beginning of the formula. Note that the truth value of a QBL

formula only depends on the valuation of its free, i.e. not quantified, propositions. In
particular, for fully quantified formulae, the satisfaction does not depend on V at all.
Similarly to PBL, a QBL formula ϕ is satisfiable if and only if there exists a valuation
V ⊆ P such that V |=Q ϕ. Given a QBL formula ϕ, the satisfiability problem for
QBL (QBL-SAT) consists in deciding if ϕ is satisfiable. This problem is known to be
PSPACE-complete, even for fully quantified QBL formulae.
Theorem 1.5 (Complexity of QBL-SAT [Stockmeyer and Meyer, 1973])

The satisfiability problem for QBL is PSPACE-complete.

1.4 Languages and Automata

An alphabet Σ is a set of symbol called letters. A word w over Σ is a finite or infinite
sequence of letters of Σ. The empty word is noted ε. The set of finite words over Σ
is noted Σ∗, and that of infinite words Σω. We also note Σ+ def= Σ∗ \ {ε} the set of
non empty finite words. For a finite word w = a1a2 . . . an ∈ Σ∗ the length of w, noted
|w|, is defined as n. The length of an infinite word w ∈ Σω is defined as +∞. Given
an infinite word w ∈ Σω, we note inf(w) the set of letters that appear infinitely often
in w. It is sometimes convenient to view a word as a function w ∈ [0, |w|) 7→ Σ, so
that w(0) is the first letter of w, w(1) the second, and so on. For x < |w|, we define
w[x] def= λi · w(i + x) the suffix of w starting at w(x). A language over an alphabet Σ
is a subset L ⊆ Σ∗ ∪ Σω. Given a finite word w1 ∈ Σ∗ and a finite or infinite word
w2 ∈ Σ∗ ∪Σω, we note their concatenation w1 ·w2. Given a subset Σ′ ⊆ Σ, the projec-
tion of a word w ∈ Σ∗ on Σ′, noted w/Σ′ , is obtained from w by keeping only symbols
of Σ′. Formally, w/Σ′ can be defined recursively as follows.
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Figure 1.3 - Example of finite automata

w/Σ′
def=


ε if w = ε

w′/Σ′ if (w = a · w′) ∧ (a 6∈ Σ′)
a · w′/Σ′ if (w = a · w′) ∧ (a ∈ Σ′)

The shuffle product of two finite words w1 ∈ Σ∗1 and w2 ∈ Σ∗2, noted w1 ‖ w2, is defined
as {w ∈ (Σ1 ∪ Σ2)∗ | (w/Σ1

= w1) ∧ (w/Σ2
= w2)}.

Example 1.4

Given an alphabet Σ = {a, b, c, d}, we have that abcbad/{a,b} = abba. More-
over, if Σ1 = {a, b, c} and Σ2 = {c, d, e}, we have that acb ‖ ecd =
{aecbd, eacbd, aecdb, eacdb}. Finally note that if Σ1 = {a, b, c} and Σ2 = {b, c, d},
we have that abc ‖ cbd = ∅, because b and c do not appear in the same order in
those two words.

Languages are often represented using finite automata, either on finite or infinite
words. The formal definition follows.

Definition 1.5 (Finite Automaton)

A finite automaton, FA for short, is a tuple A = 〈S, s0, F,Σ,∆〉 where:

• S is a finite set of states,

• s0 ∈ S is the initial state,

• F ⊆ S is the set of final states,

• Σ is a finite alphabet,

• ∆ ⊆ S × Σ× S is the transition relation.

Given a FA A = 〈S, s0, F,Σ,−→〉 and a state s ∈ S, we note in(s) def= {a ∈ Σ | ∃s′ ∈
S : 〈s′, a, s〉 ∈ ∆} and out(s) def= {a ∈ Σ | ∃s′ ∈ S : 〈s, a, s′〉 ∈ ∆}. Furthermore, given
a symbol a ∈ Σ, we note next(s, a) def= {s′ ∈ S | 〈s, a, s′〉 ∈ ∆}. A FA A is deterministic
if and only if ∀s ∈ S, ∀a ∈ Σ : |next(s, a)| ≤ 1.
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Example 1.5

Figure 1.3 shows a graphical representation of a finite automaton over the alphabet
Σ = {a, b, c, d}. In this diagram, nodes represent states, and edges transitions
between states. The initial state is the node marked with a small incoming arrow,
and final states are the doubly circled nodes. Edges are labelled with one or more
letter(s), each of which correspond to one transition. For instance, the outgoing
edge from the initial state is labelled with a, c, indicating two transitions between
this initial state s0 and the next state s1, i.e. {〈s0, a, s1〉, 〈s0, c, s1〉} ⊆ ∆.

A FA can be interpreted either over finite words, or over infinite words. In the
former case, a finite word w ∈ Σ∗ is accepted by A if and only if there exists a
finite sequence of states σ ∈ S∗ such that |σ| = |w| + 1, σ(|w|+ 1) ∈ F and ∀i ∈
[0, |w| ] : 〈σ(i), w(i), σ(i + 1)〉 ∈ ∆. The set of finite words accepted by A is noted
lang(A). In the latter case, an infinite word w ∈ Σω is accepted by A if and only if
there exists a infinite sequence of states σ ∈ Σω such that inf(σ) ∩ F 6= ∅ and that
∀i ∈ N : 〈σ(i), w(i), σ(i + 1)〉 ∈ ∆. The set of infinite words accepted by A is noted
ω lang(A). This interpretation over infinite words is due to Büchi [Büchi, 1960].

1.5 Model Checking

As we already mentioned in the introduction, the model checking process can be de-
composed in three steps. First, a mathematical model is extracted from the system
by abstracting its behaviours. The resulting model is generally formalized in terms
of a Kripke structure. This model is presented in Section 1.5.1. Then, the require-
ments on the system are specified, generally in some sort of temporal logics. Finally,
in the verification step, the system is checked against the specification to determine
whether or not the requirements are met. We examine how this can be done for two
of the most commonly used temporal logics, namely LTL and CTL, in Section 1.5.2 and
Section 1.5.3.

1.5.1 Kripke Structures

A Kripke structure [Kripke, 1963] is a mathematical model expressing how the truth
value of Boolean propositions can evolve over time. This model is based on the notion
of transition systems.
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Definition 1.6 (Transition System)

A transition system, or TS for short, is a tuple S = 〈Q, I,−→〉 where:

• Q is a set of states,

• I ⊆ Q is the set of initial states,

• →⊆ Q×Q is the transition relation.

If Q is finite, we say that S is finite-state. The size of a TS S is defined as
max≤({|Q| , |−→|}) if S is finite-state, +∞ otherwise. A run of S starting in a state
q ∈ Q is a finite or infinite word ρ ∈ Q+ ∪ Qω such that (i) ρ(0) = q and (ii)
∀i ∈ [0, |ρ| − 1) : ρ(i) −→ ρ(i + 1). A finite run ρ is maximal if and only if the last
state of ρ has no outgoing transitions, i.e. @q ∈ Q : ρ(|ρ| − 1) −→ q. We note ω runs(q),
respectively runs(q), the set of infinite, respectively finite maximal, runs starting in q.
We also define ω runs(S) def=

⋃
q∈I ω runs(q), respectively runs(S) =

⋃
q∈I runs(q), the

set of infinite, respectively finite maximal, runs of S. We also note ; the reflexive and
transitive closure of the transition relation, i.e. ;

def= (−→)∗. Moreover, given a subset
X ⊆ Q, we define post(X) def= {q′ ∈ Q | ∃q ∈ X : q −→ q′} the set of direct successors
of X, pre(X) def= {q′ ∈ Q | ∃q ∈ X : q′ −→ q}, the set of direct predecessors of X and
p̃re(X) def= {q′ ∈ Q | ∀q ∈ Q : (q′ −→ q) ⇒ q ∈ X} the set of states where X cannot be
avoided in one transition. Note that by definition, we have that ∀X ⊆ Q : p̃re(X) =
Q \ pre(Q \ X). For singletons, we shortcut post({q}) by post(q), pre({q}) by pre(q)
and p̃re({q}) by p̃re(q). We also note reach(S) = {q ∈ Q | ∃q′ ∈ I : q′ ; q}. We can
now introduce Kripke structures, formalized as follows.

Definition 1.7 (Kripke Structure)

A Kripke structure, or KS for short, over a set of propositions P is a tuple
K = 〈Q, I,L,−→〉 where 〈Q, I,−→〉 is a transition system and L ∈ Q 7→ 2P is
an interpretation function.

In other words, a Kripke struture is a transition systems where each state is labelled
with the set of Boolean propositions true in this state.

Example 1.6

Figure 1.4 shows graphical representations of two Kripke structures. Similarly
to finite automata, nodes represent states, edges transitions, and small incoming
arrows mark initial states. Moreover, nodes are labelled with the result of the
interpretation function.
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Figure 1.4 - Examples of Kripke Structures

The trace of a run ρ, noted L(ρ), is a word σ over 2P, also called a propositional
sequence, such that ∀i ∈ [0, |ρ|) : σ(i) = L(ρ(i)). We note respectively traces(K) def=⋃
ρ∈runs(K) L(ρ) and ω traces(K) def=

⋃
ρ∈ω runs(K) L(ρ) the sets of finite and infinite

traces of K. Given a propositional sequence σ, and a subset of propositions P ⊆
P, the restriction of σ to P is a propositional sequence, noted σ%P , such that ∀i ∈
[0, |σ|) : σ%P (i) = σ(i) ∩ P . Restriction is extended to sets of propositional sequences
as expected. Given a set S ⊆ (2P)∗ ∪ (2P)ω, S%P

def=
⋃
σ∈S σ%P .

It is often useful to compare two KSs. In the literature, numerous relations have
been defined. One of the most common is simulation [Milner, 1980].

Definition 1.8 (Simulation Relation)

Given two KSs K1 = 〈Q1, I1,L1,→1〉, K2 = 〈Q2, I2,L2,→2〉 over the same set of
propositions P, a binary relation S ⊆ Q1×Q2 is a simulation relation between K1

and K2, noted K1 ES K2, if the following holds:

(i) ∀q1 ∈ Q1, ∀q2 ∈ Q2 : 〈q1, q2〉 ∈ S ⇒ L1(q1) = L2(q2)

(ii) ∀q1 ∈ I1, ∃q2 ∈ I2 : 〈q1, q2〉 ∈ S

(iii) ∀q1, q
′
1 ∈ Q1,∀q2 ∈ Q2 :

 〈q1, q2〉 ∈ S ∧ q1 −→1 q
′
1

⇒
∃q′2 ∈ Q2 : (q2 −→2 q

′
2) ∧ 〈q′1, q′2〉 ∈ S



K1 = 〈Q1, I1,L1,→1〉 is simulated by K2 = 〈Q2, I2,L2,→2〉 (or equivalently K2

simulates K1), noted K1 E K2, if there exists a relation S ⊆ Q1 × Q2 such that
K1 ES K2. Finally, K1 and K2 are bisimilar, noted K1 ./−K2, if there exists a relation
S ⊆ Q1 × Q2 such that K1 ES K2 and K2 ES−1 K1. Simulation has several nice
properties. For instance, it implies trace inclusion, as formalized hereafter.
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Theorem 1.6 (Simulation and Traces)

Given two KSs K1,K2 over the same set of propositions P, we have that:

(K1 E K2)⇒ (ω traces(K1) ⊆ ω traces(K2))

Simulation can sometimes be too restrictive. Indeed it requires that every move of
K1 is mimicked by one move in K2. When dealing with systems of different granularity,
however, it is often necessary to simulate one move of K1 with several consecutive
moves of K2. This is captured by the notion of stuttering simulation [Browne et al.,
1988]. This is based on the underlying notion of stuttering transition. Intuitively, a
stuttering transition is a transition that cannot be, in some sense, observed from the
outside world, from a propositional perspective, i.e. the transition does not change the
value of any proposition. Given the transition relation −→ of a KS K, we define the
corresponding stuttering transition relation as ∼−→ def= {〈q, q′〉 ∈ Q×Q | q −→ q′ ∧L(q) =
L(q′)}. We also define the reflexive and transitive closure of the stuttering transition
relation as ∼; def= (∼−→)∗. This directly leads us to the definition of stuttering simulation.
Intuitively, as far as stuttering simulation is considered, one transition of K1 can be
mimicked by a certain number of stuttering transitions (possibly 0) followed by one
traditional transition of K2. The definition follows.

Definition 1.9 (Stuttering Simulation Relation)

Given two KS K1 = 〈Q1, I1,L1,→1〉, K2 = 〈Q2, I2,L2,→2〉 over the same set of
propositions P, a binary relation S ⊆ Q1 × Q2 is a stuttering simulation relation
between K1 and K2, noted K1 C∼SK2 if the following holds:

(i) ∀q1 ∈ Q1, ∀q2 ∈ Q2 : 〈q1, q2〉 ∈ S ⇒ L1(q1) = L2(q2)

(ii) ∀q1 ∈ I1, ∃q2 ∈ I2 : 〈q1, q2〉 ∈ S

(iii) ∀q1, q
′
1 ∈ Q1,∀q2 ∈ Q2 :

 〈q1, q2〉 ∈ S ∧ q1 −→1 q
′
1

⇒
∃q′2, q′′2 ∈ Q2 : (q2

∼;2 q
′′
2 −→2 q

′
2) ∧ 〈q′1, q′2〉 ∈ S


K1 = 〈Q1, I1,L1,→1〉 is stuttering simulated by K2 = 〈Q2, I2,L2,→2〉 (or equiv-

alently K2 stuttering simulates K1), noted K1 C∼K2, if there exists a relation S ⊆
Q1 × Q2 such that K1 C∼SK2. Bisimilarity is lifted to stuttering bisimilarity as ex-
pected: K1 and K2 are stuttering bisimilar, noted K1 ./∼ K2, if there exists a relation
S ⊆ Q1 ×Q2 such that K1 C∼SK2 and K2 C∼S−1 K1.
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Figure 1.5 - Example of (stuttering) simulation

Example 1.7

Figure 1.5 shows three KSs K3 and K4, and K5. The first two, K3 and K4 are
related by simulation, i.e. K3 E K4. On the other hand, K3 and K5 are not.
Indeed, from the initial state of K3, a transition can be taken to a state where
r holds. This is clearly not the case in K5. However, K3 and K5 are related by
stuttering simulation, i.e. K3 C∼K5.

Although not as restrictive as simulation, stuttering simulation still enjoys some
interesting properties. The most remarkable is that if K1 C∼K2, then to every trace of
K1 corresponds a trace of K2 that is equivalent modulo stuttering. This equivalence
is called stuttering equivalence. Intuitively two propositional sequences are stuttering
equivalent if they differ only in the number of times each set of propositions consec-
utively repeats. Formally, given a set of propositions P, two propositional sequences
σ1, σ2 ∈ (2P)ω are stuttering equivalent, noted σ ' σ′ if and only if there exists two
infinite strictly increasing sequences of naturals i0 i1 . . . and j0 j1 . . . with i0 = j0 = 0
such that ∀k ∈ N:

σ(ik) = σ(ik + 1) = . . . = σ(ik+1 − 1) = σ′(jk) = σ′(jk + 1) = . . . = σ′(jk+1 − 1)

We then have the following result.

Theorem 1.7 (Stuttering Simulation and Traces)

Given two KSs K1,K2 over the same set of propositions P, we have that:

(K1 C∼K2)⇒ (∀σ1 ∈ ω traces(K1),∃σ2 ∈ ω traces(K2) : σ1 ' σ2)
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1.5.2 Linear Temporal Logic

The first logic we study is the Linear Temporal Logic (LTL), first introduced by Pnueli
[Pnueli, 1977]. In LTL, time is assumed to have a linear structure. Formulae in LTL

are defined using the syntax presented hereafter.

Definition 1.10 (Syntax of Linear Temporal Logic)

Given a set of propositions P, a formula in Linear Temporal Logic (LTL) is defined
using the following grammar:

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

where p ∈ P.

In the previous definition, X and U are temporal modalities, where X stands for
next and U for until. Other traditional Boolean constructs (∧, ⇒, ⇔, ⊥) are derived
as in the propositional case. Moreover, on top of the core syntax presented above,
one can also define some other derived modalities. First, the F modality, standing
for finally, is defined as Fϕ

def= >Uϕ. Then, the G modality, standing for globally
is defined as Gϕ

def= ¬F¬ϕ. The size of a LTL formula ϕ, noted |ϕ| is defined as
the number of propositions, operators and modalities appearing in ϕ. LTL formulae
are interpreted over infinite propositional sequences. The semantics is defined by the
satisfaction relation.

Definition 1.11 (Semantics of LTL)

Given a set of propositions P, let ϕ,ψ be two LTL formulae over P, p ∈ P be a
proposition, σ ∈ (2P)ω be a propositional sequence over P and i ∈ N be a natural.
The satisfaction relation for LTL, noted |=L, is defined inductively as follows:

〈σ, i〉 |=L >
〈σ, i〉 |=L p iff p ∈ σ(i)
〈σ, i〉 |=L ¬ϕ iff 〈σ, i〉 6|=L ϕ

〈σ, i〉 |=L ϕ ∨ ψ iff 〈σ, i〉 |=L ϕ or 〈σ, i〉 |=L ψ

〈σ, i〉 |=L Xϕ iff 〈σ, i+ 1〉 |=L ϕ

〈σ, i〉 |=L ϕUψ iff there exists k ∈ [i,+∞) such that 〈σ, k〉 |=L ϕ

and for all j ∈ [i, k), 〈σ, j〉 |=L ψ

Given a LTL formula ϕ, we note [[ϕ]]L

def= {σ ∈ (2P)+ | 〈σ, 0〉 |=L ϕ}. A KS K =
〈Q, I,L,−→〉 satisfies a LTL formula ϕ, noted K |=L ϕ, if and only if ω traces(KT ) ⊆ [[ϕ]]L.
In other words, K satisfy ϕ if every infinite trace of K satisfies ϕ. The LTL model
checking problem (LTL-MC) consists in determining if a given Kripke structure satisfies
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a LTL formula ϕ. For finite-state KSs, this problem is known to be PSPACE-complete.

Theorem 1.8 (Complexity of LTL-MC [Sistla and Clarke, 1985])

The LTL model checking problem is PSPACE-complete for finite Kripke structures.

The LTL model checking is classically solved using the automata-based approach
[Vardi and Wolper, 1986], whereby the LTL formula ϕ is used to build a Büchi au-
tomaton Aϕ accepting exactly [[ϕ]]L. Then, for a given KS K, the model check-
ing problem can be reduced to check if ω traces(K) ⊆ ω lang(Aϕ), or equivalently
if ω traces(K) ∩ ω lang(Aϕ) = ∅. In practice, since complementing Büchi automata is
hard (see e.g. [Vardi, 2007]), instead of computing Aϕ and then complementing it, it
is preferable to compute A¬ϕ directly, which is equivalent. With this technique, the
LTL model checking problem boils down to checking if ω traces(K)∩ ω lang(A¬ϕ) = ∅.
This technique has been continuously refined over the years. See for instance [Vardi,
1995; Raskin and Doyen, 2007].

Example 1.8

Let us give a few examples of LTL formulae and illustrate their semantics with some
infinite propositional sequences. In these few examples, we note “. . .” the infinite
repetition of the last set of propositions.

• The formula X(p∧ q) states that in the second position of the sequence, p and
q should hold. The sequence {r}, {p, q, r}, {p},∅, {q}, . . . is a model for this
formula. On the other hand, the formula {p}, {q}, {p}, {q}, . . . is not.

• The formula G p states that in every positions of the sequence, p should hold.
The sequence {p, q}, {p, r}, {p}, {p, r}, . . . is a model for this formula. On the
other hand, the sequence {p, q}, {q}, {p}, . . . is not.

• The formula F(r ∧ s) states that there should exist a position in the sequence
where r and s hold. The sequence {s}, {p, q}, {r, s}, {p, s}, . . . is a model for
this formula. On the other hand the sequence {s}, {p, q, r}, {p, q, s}, . . . is not.

A particular interest has been found for a subset of LTL where the X modality
is forbidden. Indeed, this subset, noted LTL-X in the following, has the remarkable
property that it is closed under stuttering equivalence.

Theorem 1.9 (LTL-X is Stuttering-Closed [Lamport, 1983])

Given a set of proposition P, let ϕ be a LTL-X formula over P and σ, σ′ ∈ (2P)ω be
two infinite propositional sequences such that σ ' σ′. We have that:

( 〈σ, 0〉 |=L ϕ )⇔ ( 〈σ′, 0〉 |=L ϕ )
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This implies the following result.

Theorem 1.10 (Stuttering Simulation Preserves LTL-X)

Given a set of propositions P, let K1,K2 be two KSs over P such that K1 C∼K2

and ϕ be a LTL-X formula over P. We have that:

(K2 |=L ϕ)⇒ (K1 |=L ϕ)
Proof

By Theorem 1.7, we have that ∀σ1 ∈ ω traces(K1),∃σ2 ∈ ω traces(K2) : σ1 ' σ2.
By Theorem 1.9, we know that 〈σ1, 0〉 |=L ϕ holds iff 〈σ2, 0〉 |=L ϕ. However, by
hypothesis, we know that K2 |=L ϕ, which implies that 〈σ2, 0〉 |=L ϕ. We can
conclude that ∀σ1 ∈ ω traces(K1) : 〈σ1, 0〉 |=L ϕ which implies that K1 |=L ϕ.

1.5.3 Computational Tree Logic

The second temporal logic that we study is the Computational Tree Logic (CTL), first
introduced by Clarke and Emerson [Clarke and Emerson, 1981]. A similar logic was
also studied independently by Sifakis and Queille [Queille and Sifakis, 1982]. In CTL,
time is assumed to have a branching structure. Formulae in CTL are defined using the
syntax presented hereafter.

Definition 1.12 (Syntax of Computational Tree Logic)

Given a set of proposition P, a formula in Computational Tree Logic (CTL) is
defined using the following grammar:

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | EXϕ | AXϕ | E(ϕUϕ) | A(ϕUϕ)

where ∈ P.

In the previous definition, EX, AX, EU, and AU are temporal modalities, where X

and U stands respectively for next and until (as in LTL), and where E stands for exists
a path, and A for for all paths. Other traditional Boolean constructs (∧, ⇒, ⇔, ⊥)
are derived as in the propositional case. Similarly to LTL, one can also define some
derived modalities. First, the finally modalities EF and AF are defined respectively as
EFϕ

def= E(>Uϕ) and AFϕ
def= A(>Uϕ). Then, the globally modalities EG and AG are

defined respectively as EGϕ
def= ¬AF¬ϕ and AGϕ

def= ¬EF¬ϕ. Similarily to LTL, the
size of a CTL formula ϕ, noted |ϕ|, is defined as the number of propositions, operators
and modalities appearing in ϕ. CTL formulae are interpreted over states of a Kripke
structure. The semantics is defined by the satisfaction relation.



30 Chapter 1

Definition 1.13 (Semantics of CTL)

Given a set of propositions P, let ϕ,ψ be two CTL formulae over P, p ∈ P be
a proposition, K = 〈Q, I,L,−→〉 be a KS, and q ∈ Q be a state of K. The
satisfaction relation for CTL, noted |=C, is defined inductively as follows:

〈K, q〉 |=C >
〈K, q〉 |=C p iff p ∈ L(q)
〈K, q〉 |=C ¬ϕ iff 〈K, q〉 6|=C ϕ

〈K, q〉 |=C ϕ ∨ ψ iff 〈K, q〉 |=C ϕ or 〈K, q〉 |=C ψ

〈K, q〉 |=C EXϕ iff there exists q′ ∈ post(q) such that 〈K, q′〉 |=C ψ

〈K, q〉 |=C AXϕ iff for all q′ ∈ post(q), 〈K, q′〉 |=C ψ

〈K, q〉 |=C E(ϕUψ) iff there exists ρ ∈ ω runs(q) and k ∈ N such that
〈K, ρ(k)〉 |=C ψ and for all j ∈ [0, k), 〈K, ρ(j)〉 |=C ϕ

〈K, q〉 |=C A(ϕUψ) iff for all ρ ∈ ω runs(q), there exists k ∈ N such that
〈K, ρ(k)〉 |=C ψ and for all j ∈ [0, k), 〈K, ρ(j)〉 |=C ϕ

Given a KS K = 〈Q, I,L,−→〉 and a CTL formula ϕ, we note [[ϕ]]KC
def= {q ∈ Q |

〈K, q〉 |=C ϕ}. A KS satisfies a CTL formula ϕ, noted K |=C ϕ, if and only if I ⊆ [[ϕ]]KC .
In other words, K satisfies ϕ if ϕ holds in every initial state of K. The CTL model
checking problem (CTL-MC) consists in determining if a given Kripke Structure satisfies
a CTL formula. For finite-state KSs, this problem is known to be PTIME-complete.

Theorem 1.11 (Complexity of CTL-MC [Clarke et al., 1983])

The CTL model checking problem is PTIME-complete for finite Kripke structures.

The model checking for CTL is classically solved using the symbolic approach
[McMillan, 1993]. In this approach, given a KS K and CTL formula ϕ, the set of
states where ϕ holds, i.e. [[ϕ]]KC , is computed symbolically using efficient data struc-
tures like e.g. BDD [Bryant, 1992]. This computation is done inductively on the
structure of ϕ. For propositions and Boolean operator, this is done by examining K.
For temporal modalities, this is done by exploiting the fixed point characterization of
CTL, formalized hereafter.

Theorem 1.12 (Fixed Point Characterization of CTL [Emerson and Clarke, 1980])

Given a KS K = 〈Q, I,L,−→〉, and two CTL formulae ϕ and ψ, we have that:

[[EXϕ]]KC = pre([[ϕ]]KC )
[[AXϕ]]KC = p̃re([[ϕ]]KC )

[[A(ϕUψ)]]KC = lfp λX · [[ψ]]KC ∪ ([[ϕ]]KC ∩ p̃re(X))
[[E(ϕUψ)]]KC = lfp λX · [[ψ]]KC ∪ ([[ϕ]]KC ∩ pre(X))
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Figure 1.6 - Example of KSs satisfying, or not, some CTL formulae

Once [[ϕ]]KC is computed, one can easily check that I ⊆ [[ϕ]]KC .

Example 1.9

Let us give a few examples of formulae and illustrate their semantics with some
KSs. We chose tree-like KSs, in order to make the (non-)satisfaction explicitly
apparent.

• The formula EX p states that every initial state should have a successor state
where p holds. The KS K6 presented in Figure 1.6 (a) is a model for this
formula. On the other hand, the KS K9 of Figure 1.6 (d) is not.

• The formula AG¬q states that in all states reachable from an initial state, q
should not hold. The KS K7 presented in Figure 1.6 (b) is a model for this
formula. On the other hand, the KS K10 of Figure 1.6 (e) is not.

• The formula AF q states that in every run of the KS, a state where q holds
should be eventually reached. The KS K8 presented in Figure 1.6 (c) is a
model for this formula. On the other hand, the KS K11 of Figure 1.6 (f) is
not.
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Chapter

2
Distributed Supervision Language

« There is no programming language, no matter how structured,
that will prevent programmers from writing bad programs. »

Larry Flon

T
he Distributed Supervision Language (dSL) is a full-featured programming lan-
guage and design environment dedicated to the development of distributed
industrial control applications. dSL was created at Macq Electronique1, in col-

laboration with the Université Libre de Bruxelles [De Wachter et al., 2003a; De Wachter
et al., 2003b; De Wachter et al., 2005; De Wachter, 2005]. It is the successor of the
Supervision Language (SL) which was also created at Macq Electronique. As illustrated
in Figure 2.1, a system in SL is composed of several entities communicating with one
another through a network:

• the Programmable Logic Controllers (PLCs) are the entities interfaced, through
sensors and actuators, with the environment. Note that each PLC has only a
partial/local view of the environment. PLCs are programmed using a low-level
assembler-like language. For a complete technical description, see [Macq Elec-
tronique, 2006];

• the Supervisor is the interface between the system and its administrator(s), typ-
ically through a graphical user interface. Its main job is to collect data from the
PLCs in order to construct a global view of the entire environment. From that
global view, the supervisor can determine the appropriate actions to be taken,

1a Belgian company specialized in industrial process control http://www.macqel.be

http://www.macqel.be
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to the environment, but with a local view, and on the other hand there is

a centralized supervisor that gathers information about all the controllers.

The supervisor has a global view of the entire system and commands the

controllers. This situation is depicted in figure 3.1.
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Each controller (also called Programmable Logic Controller, or PLC in

short) is a piece of hardware, as seen in figure 3.2, consisting of a com-

munication interface, processor, memory and Input-Output devices. Each
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...) while the output devices are able to act upon the environment by forc-

ing some voltage on a set of actuators (controlling e.g. heating elements,
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Figure 2.1 - Overview of a SL system

which are then forwarded to the PLCs. The supervisor is programmed using the
SL language.

This approach suffers from several drawbacks. First of all, two separate languages
have to be used (and learned by the programmers) in order to develop such a system:
the assembler-like language for PLCs and SL for the supervisor. Moreover, the com-
munications between the PLCs and the supervisor must be specified explicitly in each
program of the system. This renders the development of a system with this approach
quite tedious and, more importantly, error-prone.

The dSL language was introduced precisely to remedy those problems. First, dSL

was designed to be compiled into a low-level language interpreted by a virtual ma-
chine. An implementation of this virtual machine is available on both the PLCs and
the supervisor, thus allowing dSL to be used as a common programming language for
the whole system. But, most importantly, the main advantage of dSL is its transparent
and automatic distribution. In the dSL approach, an application is programmed as if
the whole system were centralized, allowing the programmer to access transparently
all sensors and actuators of the system as if they were localised on a single execution
site. Then, as illustrated in Figure 2.2, a dSL program is compiled and automatically
distributed. The distribution process is parametrized by the locations of all inputs and
outputs of the system, i.e. to which PLC is connected what sensor/actuator. This
information, provided in the Localization Database, allows the compiler/distributor to
generate several pieces of code, each intended for one entity of the systems (PLC or
Supervisor). Furthermore, communication stubs are added automatically into each
piece of code so that the overall behaviour of the system corresponds to the original
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Figure 2.2 - Overview of a dSL system

program. This allows the programmer to focus on the functional aspects of the pro-
gram, while leaving most of the technical details to the compiler. This approach also
leads to more maintainable code. Indeed, since the distribution is done automatically,
a change in the configuration of sensors and/or actuators only implies the program to
be recompiled2, after the update.

In the remainder, we detail the dSL language. First, in Section 2.1, we present
and illustrate the syntax of the language. Next, in Section 2.2 we explain how a
dSL program is distributed. Finally, we come to a conclusion in Section 2.3, by dis-
cussing related works. The content of this chapter is based on a joint work with
Bram De Wachter and Thierry Massart, published in [De Wachter et al., 2003a] and
in [De Wachter et al., 2003b].

2.1 Syntax

dSL is an imperative language with static variables, i.e. no dynamic memory allocation.
Global variables can be linked to sensors and actuators allowing the program to interact
with its environment. Moreover, in keeping with the paradigm of its ancestor SL, dSL is
event-driven. This paradigm allows the programmer to express that some piece of code
should be executed every time a particular condition is met. dSL also offers limited
object-oriented [Abadi and Cardelli, 1996; Rumbaugh et al., 1991] features, with all
the benefits they may provide.

2however, we will see later on that some minor modifications of the code may be required
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Note that the syntax presented in this section slightly differs from the one used at
Macq Electronique. Indeed, in their development environment, sites, classes and global
variables are declared in the localization database, not in the program itself. In the
parser developed at the Université Libre de Bruxelles, for simplicity reasons, we chose
to include them in the program itself. We therefore introduced some new constructs,
in the same spirit as the existing syntax, in order to deal with those declarations. The
full grammar of this dialect of dSL can be found in Appendix A.1.

2.1.1 A Running Example

In order to get the reader acquainted with the syntax of dSL, let us introduce a small ex-
ample program that is used throughout this section to illustrate the various constructs
of the language.

Example 2.1

The program presented in Figure 2.3 is used to control a boiler. This boiler is
composed of a tank that needs to be filled up with water. This water is then
brought to the boil using a gas burner. The tank is equipped with two sensors: a
temperature sensor and a water level sensor. The temperature sensor is used to
detect when the water is boiling or when it is too cold, in which case the appropriate
action needs to be taken. The water level sensor is used to detect when the level
of water is too low, in which case the valve for the water intake must be opened
to fill up the tank again. In addition, the system includes a control panel with
two indicators. The first one indicates when the boiler is ready. The second one
is used to indicated that a maintenance team should be alerted to check the gas
burner. Furthermore, the fact that the temperature in the tank is below zero when
the controller is started is logged when the program is started for later use by the
maintenance team.

As demonstrated in Example 2.1, a program in dSL is composed of six parts: types,
global variables, sites, methods, events and sequences declarations. Let us review and
explain each of these parts, and detail their syntax.

2.1.2 Types

dSL supports several basic data types such as booleans (BOOL), integers (INT or LONG)
and reals (REAL). In addition to basic data types, dSL allows to define classes (some-
times called structured types) grouping several fields together. Classes can be defined
with the keyword CLASS, using the syntax presented in Figure 2.4.
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1 (* Types *)

2 CLASS TANK

3 level, temperature : INT;

4 valve : BOOL;

5 END_CLASS

6

7 CLASS BURNER

8 state : BOOL;

9 usage : INT;

10 END_CLASS

11

12 (* Global variables *)

13 VAR

14 tank : TANK;

15 burner : BURNER;

16 maintenance, ready : BOOL;

17 frozen : BOOL;

18 END_VAR

19

20 (* Sites *)

21 SITE boilerRoom

22 INPUT tank.temperature : 1.0.1;

23 INPUT tank.level : 1.0.2;

24 OUTPUT tank.valve : 1.2.1;

25 OUTPUT burner.state : 1.2.2;

26 END_SITE

27

28 SITE controlRoom

29 OUTPUT maintenance : 3.0.1;

30 OUTPUT ready : 3.0.2;

31 END_SITE

32

33 (* Methods *)

34 METHOD BURNER::turnOn()

35 self.state := TRUE;

36 self.usage := self.usage + 1;

37 END_METHOD

38

39 METHOD BURNER::turnOff()

40 self.state := FALSE;

41 END_METHOD

43 METHOD TANK::openValve()

44 self.valve := TRUE;

45 END_METHOD

46

47 METHOD TANK::closeValve()

48 self.valve := FALSE;

49 END_METHOD

50

51 (* Events *)

52 WHEN tank.temperature < 80 THEN

53 burner<-turnOn();

54 END_WHEN

55

56 WHEN tank.temperature > 100 THEN

57 burner<-turnOff();

58 END_WHEN

59

60 WHEN ~burner.usage > 100000 THEN

61 maintenance := TRUE;

62 END_WHEN

63

64 WHEN IN TANK self.level < 8 THEN

65 self<-openValve();

66 END_WHEN

67

68 WHEN IN TANK self.level > 10 THEN

69 self<-closeValve();

70 END_WHEN

71

72 (* Sequences *)

73 SEQUENCE main()

74 IF tank.temperature < 0 THEN

75 frozen := TRUE;

76 END_IF;

77 WAIT(tank.level > 10 AND

78 tank.temperature > 100);

79 ready := TRUE;

80 END_SEQUENCE

Figure 2.3 - A boiler control program
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〈class decl〉 ::= CLASS 〈id〉
〈id list〉 : 〈type〉 ;
...
〈id list〉 : 〈type〉 ;

END_CLASS

〈type〉 ::= BOOL | INT | LONG | REAL | 〈id〉

Figure 2.4 - Class declaration

Example 2.2

In the program of Figure 2.3, two classes are declared at lines 2–10. The first is
the class TANK, at lines 2–5, used to model the tank with three fields. The first
two fields are level and temperature which are used for the two sensors in the
tank, and the third field is valve, that is used as the command of the valve for the
water intake of the tank. The second class is the class BURNER, at lines 7–10, used
to model the gas burner, composed of two fields. The field state models the state
of the heater (on/off) and the field usage is used to count the number of times the
burner is turned on.

2.1.3 Global Variables

As in any other programming language, global variables are variables visible through-
out the entire program. dSL is no exception. The localization of all global variables
is statically decided at compile-time. Once assigned to a given execution site (PLC or
supervisor), a global variable cannot move. As we shall see in the following sections,
this implies some restrictions on event-driven code. Global variables can be declared
with the keyword VAR using the syntax presented in Figure 2.5.

Example 2.3

In the program of Figure 2.3, five global variables are declared at lines 13–18. The
first two variables, tank and burner at lines 14–15, are used to model the boiler.
The next two boolean variables, maintenance and ready at line 16, are used to
control the led on the control panel. Finally the variable frozen at line 17, is used
to log the fact that the water in the tank was frozen when the boiler started.
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〈var decl〉 ::= VAR

〈id list〉 : 〈type〉 ;
...
〈id list〉 : 〈type〉 ;

END_VAR

Figure 2.5 - Global variable declaration

2.1.4 Sites

In dSL, global variables can be either internal or external. As their name indicates,
internal variables are only used internally in the program like traditional global vari-
ables in other programming languages. External variables, on the other hand, are
attached to physical devices (sensors or actuators). Variables attached to sensors are
called input variables. During the execution of the program, the values of those input
variables are periodically updated with the state of the sensors they are attached to.
Variables attached to actuators are called output variables. Similarly to input vari-
ables, the values of those output variables are periodically used to update the states
of the actuators they are attached to.

External variables need to be declared like any other global variables, as explained
in the previous section. Then each variable needs to be attached to a physical device.
In dSL, each device is identified by the PLC to which it is connected (its execution site)
and a three digit address, e.g. 1.2.3. In such an address, the first number identifies the
rack in the PLC, the second number identifies the I/O card in this rack and the third
identifies the slot in this card. Each input, respectively output, variable is specified
using the keyword INPUT, respectively OUTPUT, along with the address of the device on
the PLC. Finally, those declarations are grouped into execution sites, with the keyword
SITE, using the syntax presented in Figure 2.6.

Example 2.4

In the program of Figure 2.3, two sites are declared at lines 21–31. The first is the
boilerRoom site at lines 21–26, where the tank and the gas burner are located. The
other is the controlRoom site, at lines 28–31, where the control panel is located.

2.1.5 Methods

Methods are declared over previously defined classes. Methods can be parametrized.
Parameters are evaluated in a call-by-value fashion (like in C). Local variables can be
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〈site decl〉 ::= SITE 〈id〉
〈io type〉 〈lhside〉 : 〈nb〉 . 〈nb〉 . 〈nb〉 ;
...
〈io type〉 〈lhside〉 : 〈nb〉 . 〈nb〉 . 〈nb〉 ;

END_SITE

〈io type〉 ::= INPUT | OUTPUT
〈lhside〉 ::= 〈id〉 | 〈lhside〉 . 〈id〉

Figure 2.6 - Site declaration

declared using the same syntax as for global variables (see Section 2.1.3), only in this
case, those variables are only visible inside the body of the method. A special variable
self is implicitly declared. It can be used to refer to the object on which the method is
being called (similar to this in C++). Methods are declared with the keyword METHOD

using the syntax presented in Figure 2.7(a).
Similarly to any programming language, method can be called synchronously. In

this case, the control is interrupted when the call is made, and resumes when the
method has finished its execution. Alternatively, in dSL, methods can be called asyn-
chronously using the keyword LAUNCH. In this case, the control returns directly after
the call and the method is executed in parallel. In both instances, the call is made
with the operator <- using the syntax presented in Figure 2.7(b).

Example 2.5

In the program of Figure 2.3, several methods are declared at lines 34–49. The
first two are defined on the class BURNER at lines 34–41. Those two methods are
called respectively at lines 53 and 57 to turn the burner on and off. The last two
methods are defined on the class TANK at lines 43–49. Those two methods are
called respectively at lines 65 and 69 to open and close the valve for the water
intake of the tank.

2.1.6 Events

As already mentioned in the introduction, dSL is an event-driven language. This allows
to express that some piece of code should be executed every time a particular condition
is met. It is most important to note that it takes a rising-edge of the condition, i.e.
the condition must be successively evaluated to ff and then to tt, for an event to be
triggered. This event-driven scheme implies that assignments in dSL have side effects.
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〈method decl〉 ::= METHOD 〈id〉 :: 〈id〉 ( 〈param decl〉 )

〈var decl〉
〈block〉

END_METHOD

〈param decl〉 ::= 〈id list〉 : 〈type〉 , ... , 〈id list〉 : 〈type〉 | ε

(a) Method declaration

〈method call〉 ::= LAUNCH 〈id〉 <- 〈id〉 ( 〈rhside list〉 )
| 〈id〉 <- 〈id〉 ( 〈rhside list〉 )

〈rhside list〉 ::= 〈rhside〉 , ... , 〈rhside〉 | ε
〈rhside〉 ::= 〈lhside〉 | ∼ 〈lhside〉 | 〈constant〉 | ( 〈rhside〉 )

| 〈un op〉 〈rhside〉 | 〈rhside〉 〈bin op〉 〈rhside〉

(b) Method call

Figure 2.7 - Method declaration and call

In fact, every time an assignment is executed, the condition of each event is tested and
the corresponding piece of code is executed if necessary. In practice, of course, only
events which condition contains the assigned variables are tested. If several events
are triggered by the same assignment, those events are treated in the order in which
they appear in the program. Note that if an assignment inside an event triggers
another event when executed, the first event is interrupted and the second event is
executed. This instantaneous triggering scheme may introduce infinite triggering loops
that should, of course, be avoided.

As expected, an event is composed of two parts: the condition to be monitored and
the piece of code to execute when the condition is met, called the body. Events are
declared with the keyword WHEN using the syntax presented in Figure 2.8(a).

Furthermore, it is possible to define class events, i.e. events declared for every
instance of a particular class. In this case, similarly to methods, a special variable self
is implicitly declared and used to denote the object on which the event is declared.
Note that class events are simply in-lined in the early stage of compilation. Class events
are declared using the keywords WHEN IN, using the syntax presented in Figure 2.8(b),
where 〈id〉 identifies the class on which the event is defined.
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〈event decl〉 ::= WHEN 〈rhside〉 THEN
〈block〉

END_WHEN

(a) Simple event

〈event decl〉 ::= WHEN IN 〈id〉 〈rhside〉 THEN
〈block〉

END_WHEN

(b) Class event

Figure 2.8 - Event declaration

1 VAR

2 buttonPressed,

3 lampCommand : BOOL;

4 END_VAR

5

6 SITE site1

7 INPUT buttonPressed : 1.0.0;

8 END_SITE

10 SITE site2

11 INPUT lampCommand : 2.0.0;

12 END_SITE

13

14 WHEN buttonPressed THEN

15 lampCommand := TRUE;

16 END_WHEN

Figure 2.9 - Example of undistributable program

Example 2.6

In the program of Figure 2.3 several events are defined at lines 52–70. The first
two events, at lines 52–58, are used to command the burner. In the first of those
two, if the temperature in the tank drops below a certain value, the burner is
turned on. The second of those allows to turn it off when the water is boiling. The
third event, at lines 60–62, is used to control the maintenance alarm on the control
panel. When the burner has been used 100000 times, the alarm is turned on. The
last two events, at lines 64–70 are used to control the valve of the tank. When the
water level drops below a certain value, the valve is opened. Symmetrically, when
the tank is filled up, the valve is closed. Note that the last two events are defined
for all instances of the class TANK, using the WHEN IN construct.

In dSL, the code inside an event (the instructions inside its body as well as the
triggering condition) or reachable from an event (through method call) must be atomic,
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i.e. executed without being interrupted by any communications. The code inside an
event, including all global variables used or assigned in this code, must therefore be
localised on the same execution site. As illustrated in Example 2.7, this atomicity
constraint may lead to undistributable programs.

Example 2.7

Consider the program of Figure 2.9, where a lamp should be turned on when a
button is pressed. Intuitively, this program requires that the lamp is turned on
directly after the button has been pressed. However, in the program, the com-
mand for the lamp (lampCommand) and the button (buttonPressed) are explicitly
localised on different execution sites (site1 and site2). A message should be sent
from site1 to site2, every time the button is pressed, and this communication
could possibly break the atomicity. Therefore, this program cannot be distributed
because the atomicity constraint cannot be fulfilled.

In such a case, the programmer still has a way out. If a communication delay
is acceptable in a particular case, the programmer may allow it explicitly using the
∼ operator. Instead of directly manipulating a variable x, the ∼ operator allows to
handle a local copy of this variable. Then, every time the variable x is modified on
a remote execution site, that site sends a message indicating that the value of x was
modified, thus allowing to maintain a delayed copy of x locally. Note that if several
sites manipulate a distant copy of x, the message is sent to all of those sites. One should
of course be extremely careful when using a tilded copy instead of the real variable.
Indeed, the value of this copy can be different from the value of the actual variable
(this happens when the message is travelling over the network).

Example 2.8

In the program of Figure 2.3, the reader might have noticed the use of the ∼ in
the event at lines 60–62. Indeed, the atomicity constraint imposed on the event
at lines 52–54 implies that the variables burner.usage and burner.state should
be localised on the same execution site (both variables are used in the method
turnOn() called in the body of this event). On the other hand, the variable
maintainance corresponding to a led in the control panel, is localised on the site
controlRoom. This would violate the atomicity constraint on the event at lines
60–62. In this case, however, a delayed copy is still acceptable. Therefore, using
the ∼ operator at line 60 allows to relax the atomicity constraint, thus allowing
the program to be distributed properly.
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〈sequence decl〉 ::= SEQUENCE 〈id〉 ( 〈param decl〉 )
〈var decl〉
〈block〉

END_SEQUENCE

(a) Sequence declaration

〈sequence call〉 ::= LAUNCH 〈id〉 ( 〈rhside list〉 )
(b) Sequence call

Figure 2.10 - Sequence declaration and call

2.1.7 Sequences

As their name indicates, sequences are successions of instructions to be executed se-
quentially. A sequence is essentially an independent process running in parallel with
the remainder of the program. In contrast with event-driven code, however, sequential
code can be distributed. In fact, a sequence migrates from sites to sites following the
localization of the global variables that are used in each instruction. Each instruction,
however, has to be executed on a single execution site, and is consequently atomic.
This concept is known as process or thread migration [Eskicioglu, 1990] whereby, when
needed, the execution of a thread is stopped on the current execution site, its context
is moved to the next execution site, where it is restored and the execution resumed.

Sequences are declared with the keyword SEQUENCE using the syntax presented in
Figure 2.10(a). Local variables can be declared inside a sequence. Local variables
inside sequences are part of the execution context and therefore move to follow the
execution of the sequence. Inside sequences, a special instruction WAIT can be used
to stop the execution until a particular condition is met. However, in this case, a
rising-edge is not required as for event triggering.

Example 2.9

In the program of Figure 2.3, only one sequence is declared at lines 73–80: the
sequence main. The first part of this sequence, at lines 74–76, checks if the tem-
perature is below zero, in which case, the variable frozen is set to TRUE to record
that fact. Then, at lines 77–78, a WAIT instruction is used to wait for the boiler to
be ready. As soon as the tank is filled and the water is boiling, the variable ready

is set to TRUE. This turns on the led on the control panel indicating that the boiler
is ready to use.
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Sequences can only be called asynchronously with the keyword LAUNCH. However,
contrarily to methods, only one instance of each sequence is allowed to run at any given
time. Calls to already running sequences are discarded. Sequences are called using the
syntax presented in Figure 2.10(b). Moreover, if a program contains a sequence named
main, this sequence is implicitly launched when the program is started.

2.2 Distribution

The problem of distributing a dSL program amounts to localising each global variable
and each instruction of the program to a given execution site, taking into account
the fact that each external variable is already assigned to a particular execution site.
This problem can be decomposed in two successive steps. The first step consists in
localising the event-driven code by enforcing the atomicity constraints imposed by the
program. The second step consists in localising the remaining sequential code. We
briefly explain those two successive steps in Section 2.2.1 and Section 2.2.2. For a
more complete and formal description of this distribution process, we refer the reader
to [De Wachter, 2005, Chapter 4].

2.2.1 Event-Driven Code

The first step in the distribution process is to localise the event-driven code by enforcing
the atomicity constraints imposed by the program. The first constraint is that the
code inside each event should be atomic, i.e. local to a given execution site. The
second constraint is that each sequential instruction should also be atomic. For that
purpose, an undirected graph is constructed taking into account those constraints.
In this graph, nodes are used to model the events, (untilded) global variables, and
instructions of the program. Edges in this graph are added to model the fact that two
vertexes should be localised on the same execution site. First, edges are added between
variables and the instructions they appear in. Then, edges are added between events
and the instructions appearing in them. Finally, edges are added between events and
the variables appearing in their conditions. This graph is called the atomic coloring
graph. Once this graph is built, in order to determine if the program can be distributed,
one simply needs to check that there exists no pair of external variables, localised on
different execution sites, belonging to the same connected component. Indeed if such
a pair of variable exists, it means that, in order to satisfy some atomicity constraints,
those two variables should be localised on the same site. However, their localization
being explicitly forced in the program to different execution sites makes that impossible.
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33 (* Events *)

34 WHEN tank.temperature < 80 THEN

35 burner.state := TRUE;

36 burner.usage := burner.usage + 1;

37 END_WHEN

38

39 WHEN tank.temperature > 100 THEN

40 burner.state := FALSE;

41 END_WHEN

42

43 WHEN ~burner.usage > 100000 THEN

44 maintenance := TRUE;

45 END_WHEN

46

47 WHEN tank.level < 8 THEN

48 tank.valve := TRUE;

49 END_WHEN

50

51 WHEN tank.level > 10 THEN

52 tank.valve := FALSE;

53 END_WHEN

=⇒

33 (* Events *)

34 WHEN tank.temperature < 80 THEN

35 burner.state := TRUE;

36 burner.usage := burner.usage + 1;

37 END_WHEN

38

39 WHEN tank.temperature > 100 THEN

40 burner.state := FALSE;

41 END_WHEN

42

43 WHEN ~burner.usage > 100000 THEN

44 maintenance := TRUE;

45 END_WHEN

46

47 WHEN tank.level < 8 THEN

48 tank.valve := TRUE;

49 END_WHEN

50

51 WHEN tank.level > 10 THEN

52 tank.valve := FALSE;

53 END_WHEN

XX unlocalized / XX boilerRoom / XX controlRoom

Figure 1.14 - localizing atomic code

55 (* Sequences *)

56 SEQUENCE main()

57 IF tank.temperature < 0 THEN

58 frozen := TRUE;

59 END_IF;

60 WAIT(tank.level > 10 AND

61 tank.temperature > 100);

62 ready := TRUE;

63 END_SEQUENCE

=⇒

55 (* Sequences *)

56 SEQUENCE main()

57 IF tank.temperature < 0 THEN

58 frozen := TRUE;

59 END_IF;

60 WAIT(tank.level > 10 AND

61 tank.temperature > 100);

62 ready := TRUE;

63 END_SEQUENCE

XX unlocalized / XX boilerRoom / XX controlRoom

Figure 1.15 - localizing sequential code

⇒
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Figure 1.14 - localizing atomic code
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55 (* Sequences *)

56 SEQUENCE main()
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60 WAIT(tank.level > 10 AND
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Figure 1.15 - localizing sequential code

XX unlocalised / XX boilerRoom / XX controlRoom

Figure 2.11 - Localising atomic code
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We can therefore conclude in this case that the atomicity constraints cannot be satisfied
and that the program cannot be distributed. The program is therefore rejected by
the compiler/distributor. Otherwise, the localization of external variables given in
the program can be propagated throughout each connected component. This can
however leave some events unlocalised (events not connected to an external variable).
Those events are simply distributed evenly amongst the available execution sites (load
balancing).

Example 2.10

Figure 2.11 illustrates the first step on the program of Figure 2.3. To simplify
the presentation, methods in the program have been in-lined. In this case, there
is at least one external variable in each event. Note that if the ∼ was not used
in the third event, the program could not be distributed because, both variables
burner.usage and maintenance appear in this event. They would therefore belong
to the same connected component.

2.2.2 Sequential Code

The result of the first step is a localization for each event in the program, as well as a
localization for some of the sequential instructions. Indeed, all instructions, including
sequential instructions, are taken into account in the atomic colouring graph. If an
instruction belongs to the connected component of one of the events of the program
(because they share a common variable), it will be localised in the first step. The pur-
pose of this second phase is to localise the remaining instructions. A priori any choice
of localization for these instructions will be adequate, since all atomicity constraints
have already been satisfied. The problem of localising the remaining sequential instruc-
tions is therefore performance related. The main idea is to try to minimize the number
of expected communications during the execution of the program, i.e. minimizing the
number of thread migrations. For that, a weighted control flow graph [Aho et al., 1998]
is constructed for each sequence. Weights in this graph model the expected number of
times the control flows through each vertex. The problem then boils down to coloring
this graph (each color representing an execution site) while minimizing the weighted
number of color changes. This problem has been proven equivalent to the Multiter-
minal Cut Problem [De Wachter et al., 2005; De Wachter, 2005], which is known to be
NP-hard [Dahlhaus et al., 1994].
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33 (* Events *)

34 WHEN tank.temperature < 80 THEN

35 burner.state := TRUE;

36 burner.usage := burner.usage + 1;

37 END_WHEN

38

39 WHEN tank.temperature > 100 THEN

40 burner.state := FALSE;

41 END_WHEN

42

43 WHEN ~burner.usage > 100000 THEN

44 maintenance := TRUE;

45 END_WHEN

46

47 WHEN tank.level < 8 THEN

48 tank.valve := TRUE;

49 END_WHEN

50

51 WHEN tank.level > 10 THEN

52 tank.valve := FALSE;

53 END_WHEN
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Figure 1.14 - localizing atomic code
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Figure 1.15 - localizing sequential code
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Figure 1.14 - localizing atomic code
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Figure 1.15 - localizing sequential code
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Figure 1.14 - localizing atomic code

55 (* Sequences *)

56 SEQUENCE main()

57 IF tank.temperature < 0 THEN

58 frozen := TRUE;

59 END_IF;

60 WAIT(tank.level > 10 AND

61 tank.temperature > 100);

62 ready := TRUE;

63 END_SEQUENCE

=⇒

55 (* Sequences *)

56 SEQUENCE main()

57 IF tank.temperature < 0 THEN

58 frozen := TRUE;

59 END_IF;

60 WAIT(tank.level > 10 AND

61 tank.temperature > 100);

62 ready := TRUE;

63 END_SEQUENCE

XX unlocalized / XX boilerRoom / XX controlRoom

Figure 1.15 - localizing sequential code
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33 (* Events *)

34 WHEN tank.temperature < 80 THEN

35 burner.state := TRUE;
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Figure 2.12 - Localising sequential code

Example 2.11

Figure 2.12 illustrates the second step of the distribution process on the program
of Figure 2.3. In this particular case, the only instruction that is not already
localised after the first step is the instruction at line 58 (frozen := TRUE). The
instruction appearing right before (IF (...) THEN) and right after (WAIT(...)) are
both localised on the site boilerRoom. Clearly, in order to minimize the number
of thread migration, one must assign this instruction to the boilerRoom site.

2.3 Related Works

The problem of distributing applications that control reactive systems has been studied
for many years now and several interesting observations made on these studies shaped
the design of dSL. We comment in more detail works on process algebras, Synchronous
Languages, and higher level frameworks such as Unity.

In the world of process algebras, the problem of automated distribution is defined
as a correctness preserving transformation of a centralized specification into a seman-
tically equivalent distributed one. (e.g. for bisimulation equivalence [Milner, 1989], see
[Massart, 1992; Brinksma and Langerak, 1995]). It has also been studied on various
types of transition systems [Castellani et al., 1999; Morin, 1999; Stefanescu et al., 1999;
Meuter, 2003]. These works solved part of the problem. Indeed, contrary to program-
ming languages, these formalisms do not allow variables, making them impractical.

In a higher level framework, Chandy and Misra have proposed the Unity approach
[Chandy and Misra, 1988] to model and design asynchronous or synchronous parallel
programs. Let us recall that the principle in Unity, similar to the one proposed by the
B method [Abrial, 1996], is to use a design modeling language together with a proof
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system to provide, through several design decisions, correct parallel programs. Cen-
tral in this framework is the separation between the concern of program development
and the physical architecture on which it is implemented. The program development
phase provides the specification of the Unity program in itself using guarded, multiple
assignment statements. During the second phase, starting from a Unity program, a
mapping to an architecture is used to describe a possible implementation. Various
possibilities are proposed to implement a Unity program on a distributed architec-
ture. The program variables can be seen as shared variables or communication can
be done through FIFO channels. In both cases, a protocol must be explicitly given to
preserve the data integrity or synchronize the execution flow. This implies that, each
time the target architecture is modified (e.g. adding or removing processor(s), moving
variable(s), refining the distribution, . . . ), the Unity program has to be modified at
the communication level, to fit this new distribution. Therefore, the Unity program
must be designed with a desired mapping in mind, which has a negative impact on the
reconfiguration flexibility of applications and the transparency of the distribution.

On the programming language side, the most relevant works on automated distri-
bution of reactive systems have been done in the domain of synchronous languages
such as Esterel [Berry and Gonthier, 1992], Lustre [Caspi et al., 1987] and Signal
[LeGuernic et al., 1991], which answered questions on how to specify controllers in a
natural and semantically well defined way. Unfortunately, because the semantics must
be preserved, the distribution of synchronous languages suffers from a performance
problem which, in practice, may not be acceptable. Indeed, the synchronous program-
ming scheme found in these languages supposes that time is defined as a sequence
of instants which are common to all parallel processes contained in the specification.
Although this allows the use of synchronous broadcast [Berry, 1989; Benveniste and
Berry, 1991] resulting in sequential code, a strong synchronization scheme must be
used to preserve these instants when such programs are distributed [Girault, 1994;
Aubry, 1997]. This strong synchronization has several drawbacks in an industrial en-
vironment. First of all, to keep all processes in pace, numerous messages need to be
exchanged at each global instant. Secondly, all participating processes have to advance
at the speed of the slowest process. Finally, the failure of one of the processes makes
the whole system deadlock. To the best of our knowledge, the synchronous approach
has no answer to these shortcomings. We believe therefore that, although perfectly
suitable for tightly coupled homogeneous systems and having the benefit of simplicity
when it comes to specifying a controller, the simplicity of the synchronous approach
is too costly in terms of performance when applied to loosely coupled heterogeneous
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systems. Moreover, in practice, the strong synchronization of all processes is rarely
needed and must therefore not be used as a default.

These observations motivated the design of dSL. At the design level, Unity seems
more sound than what is proposed with the direct use of programming languages
(among which dSL), since a Unity design goes through the correctness proof for the
design before doing the implementation. Unfortunately, the industrial control world
has not yet integrated this more formal approach to design real systems, and still
uses more specialized programming languages defined as industrial standards. The
philosophy of dSL goes therefore in the other direction: it proposes a language close to
the used standards. With the drawbacks of synchronous languages in mind, dSL rejects
the synchronous product [Milner, 1981] used in synchronous languages and adopts a
semantics based on asynchronous composition of local instantaneous code and global
distributed code.
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3
Model Checking dSL Programs

« All models are wrong, but some are useful »
George E. P. Box

I
n the previous chapter, we have introduced the dSL language as a tool to ease the
development of distributed systems. The main advantage of dSL is its transparent
distribution allowing the programmer to focus on the functional aspects of the

systems, while leaving most of the technical details to the compiler. This is only
but a first step towards making the development of safety critical applications less
error-prone. Indeed, as argued in the introduction, when dealing with critical control
applications, thorough validation is needed. One of the most ambitious techniques for
that is model checking, introduced in the early 1980s by Clarke and Emerson [Clarke
and Emerson, 1981]. This technique can be decomposed in three successive steps:
modeling, specification and verification.

In this chapter, we study the application of model checking for the verification of
dSL programs. First, in Section 3.1, we tackle the modeling by introducing a formal
operational semantics for dSL programs. Next, in Section 3.2, we address the second
step, namely specification. In particular, we present a remarkable property of the
semantics, and show how this property can be exploited to simplify the model checking
of LTL specifications. Finally, in Section 3.3, we turn our attention to the last remaining
step of model checking process, i.e. the actual verification itself. The content of this
chapter is based on a joint work with Bram De Wachter, Alexandre Genon and Thierry
Massart, published in [De Wachter et al., 2005], also included in Bram De Wachter’s
thesis [De Wachter, 2005].
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3.1 Modeling

In this section, we explain how a dSL program and its semantics can be formally
modeled. In a nutshell, the semantics of a program will be modelled as the parallel
composition of k processes (one for each execution site) communicating with one an-
other by message passing. Communications between processes will be point-to-point
and modeled using FIFO communication channels, one between each pair of processes.
These FIFO communication channels will allow each process to communicate the up-
date of one of its variables to all other processes. This way, each process can maintain
its own copy of distant (tilded) variables. Each process will have a cyclic behaviour.
Cycles will be divided in three phases. The first one is the input phase during which the
value of variables linked to sensors are changed according to the physical state of the
device they are attached to. During this phase, events depending on those variables
may be triggered as well. The second one is the processing phase during which (i)
incoming messages (for tilded variables) are processed and (ii) sequences are executed.
The third and final phase is the output phase during which the values of the variables
linked to the actuators force the physical state of the devices they are connected to.

Before addressing the heart of the problem, i.e. the semantics itself, we give in
Section 3.1.1 and 3.1.2, formal models for programs and distributions. We then proceed
to the semantics itself, in Section 3.1.3. Finally, we conclude this section by discussing
the history of this semantics.

3.1.1 Modeling a Program

The first step, in order to define a formal semantics of a dSL program, is to give a
formal abstract definition of what a program is. For the sake of simplicity, we will
focus our attention on the original features of dSL. We will therefore not consider
the object-oriented features of the language. This implies that classes and associated
methods and class events (WHEN IN) will not be considered in this chapter. We will
also restrict ourselves to sequences without parameters and to boolean variables. The
complete grammar for this subset of dSL can be found in Appendix A.2. Keeping this
in mind, we can give an abstract formal definition of a dSL program.
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Definition 3.1 (dSL Program)

A dSL program P is a tuple 〈V,E, S, s0,�,Λ〉, where:

• V is a finite set of boolean variables composed of three disjoint subsets Vin,
Vout and Vτ , denoting respectively input, output and internal variables.

• E is a finite set of events (WHEN).

• S is a finite set of sequences.

• s0 ∈ S is the initial sequence (the sequence main).

• � ⊆ (V ∪E ∪S)× (V ∪E ∪S) is a total order on the elements of the program
representing the order in which those elements are declared.

• Λ ∈ (Vin ∪ Vout) 7→ N is the localization function mapping each external
variable to an execution site (here modeled as a natural number).

In the following, for an event e ∈ E, we note cond(e) the condition of e and body(e),
the body of e. For a sequence s ∈ S, we note body(s) the body of s and local(s) the
set of local variables declared in s. We will also use var(·), ṽar(·) and instr(·), to denote
respectively the set of variables, tilded variables and instructions, appearing in a dSL

construct. For blocks, instructions and expressions, var(·), ṽar(·) and instr(·) is defined
inductively on the grammar, as shown in Figure 3.1. Note that for a conditional
statement or a loop, the variables appearing in the nested block are not included
in var(i)1. Moreover, given a sequence s ∈ S, we define instr(s) def= instr(body(s)),
var(s) def= ∪i∈instr(s)var(i) and ṽar(s) def= ∪i∈instr(s)ṽar(i). Similarly, given an event e ∈
E, we define instr(e) def= instr(body(e)), var(e) def= ∪i∈instr(e)var(i) ∪ var(cond(e)) and
ṽar(e) def= ∪i∈instr(e)ṽar(i) ∪ ṽar(cond(e)). Finally, given a variable x ∈ V , we define the
set of events depending on x as evt(x) def= {e ∈ E | x ∈ var(cond(e))} and the set of
events depending on the tilded copy of x as ẽvt(x) def= {e ∈ E | x ∈ ṽar(cond(e))}.

In order for the semantics to be defined properly, a dSL program P must satisfy
some assumptions. First of all, every variable of the program must be declared and
we will assume that at least one variable appears non-tilded in each event. Then,
we will also assume that the variables appearing in a sequence are never preceded by
the ∼ operator. Indeed, as previously mentioned, sequences migrate from sites to sites
following the variables that are used. Therefore, using tilded copies of variables instead
of the variables themselves does not make much sense. This is therefore prohibited.
Finally, we will assume that no local variable declared in a sequence hides any global
variable, i.e. they do not have the same name. This leads us to the definition of a
well-formed dSL program.

1This choice was made for technical reasons that will become clear later on
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Grammar rule Attributes

〈instruction i〉 ::= 〈id x〉 := 〈rhside e〉 instr(i)
def
= {i}

var(i)
def
= {x} ∪ var(e)fvar(i)
def
= fvar(e)

| WAIT 〈rhside e〉 instr(i)
def
= {i}

var(i)
def
= var(e)fvar(i)
def
= fvar(e)

| LAUNCH 〈id s〉 instr(i)
def
= {i}

var(i)
def
= ∅fvar(i)
def
= ∅

| IF 〈rhside e〉 THEN
〈block b1〉

ELSE

〈block b2〉
END_IF

instr(i)
def
= {i} ∪ instr(b1) ∪ instr(b2)

var(i)
def
= var(e)fvar(i)
def
= var(e)

| WHILE 〈rhside e〉 DO
〈block b〉

END_WHILE

instr(i)
def
= {i} ∪ instr(b)

var(i)
def
= var(e)fvar(i)
def
= var(e)

〈rhside e〉 ::= 〈id x〉 instr(e)
def
= ∅

var(e)
def
= {x}fvar(e)
def
= ∅

| ∼ 〈id x〉 instr(e)
def
= ∅

var(e)
def
= ∅fvar(e)
def
= {x}

| 〈constant〉 instr(e)
def
= ∅

var(e)
def
= ∅fvar(e)
def
= ∅

| ( 〈rhside e′〉 ) instr(e)
def
= ∅

var(e)
def
= var(e′)fvar(e)
def
= fvar(e′)

| 〈rhside e1〉 〈bin op〉 〈rhside e2〉 instr(e)
def
= ∅

var(e)
def
= var(e1) ∪ var(e2)fvar(e)
def
= fvar(e1) ∪ fvar(e2)

| 〈un op〉 〈rhside e′〉 instr(e)
def
= ∅

var(e)
def
= var(e′)fvar(e)
def
= fvar(e′)

〈block b〉 ::= 〈instruction i〉 ; 〈block b′〉 instr(b)
def
= {i} ∪ instr(b′)

var(b)
def
= var(i) ∪ var(b′)fvar(b)
def
= fvar(i) ∪ fvar(b′)

| ε instr(b)
def
= ∅

var(b)
def
= ∅fvar(b)
def
= ∅

Figure 3.1 - Variables and instructions appearing in a dSL construct
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Definition 3.2 (Well-formed dSL Program)

A dSL program P = 〈V,E, S, s0,�,Λ〉 is well-formed if and only if:

(i) ∀e ∈ E : (var(e) ∪ ṽar(e) ⊆ V ) ∧ (var(e) 6= ∅)

(ii) ∀s ∈ S : (ṽar(s) = ∅) ∧ (var(s) ⊆ V ∪ local(s)) ∧ (local(s) ∩ V = ∅)

In the following, we assume that every dSL program is well-formed.

3.1.2 Modeling a Distribution

The behaviours of a dSL program P will not only depend on P , but also on how
it is distributed. Indeed, recall that each global variable has to be assigned to an
execution site at compile-time. This assignment will have an influence on the semantics
of a program. For external variables, this information is already present in P , in its
localization function Λ. For internal variables, however, it is not that simple. In fact
there are many different possible assignments, as long as the atomicity constraints
imposed by the program are met. That is why we introduce the notion of distribution.
Intuitively, a distribution of a program P , is a partition of the set of its variables
compatible with the localization of the external variables of this program and respecting
its atomicity constraints. Each element in this partition will model one execution site.
The first constraint is the atomicity constraint imposed on the event-driven code. If
two variables appear (un-tilded) in the same event, they must be localised on the
same execution site. The second constraint is the atomicity constraint imposed on
each instruction of a sequence. If two global variables appear in the same sequential
instruction, they should be localised on the same site2. The formal definition follows.

Definition 3.3 (Distribution of a dSL Program)

Given a dSL program P = 〈V,E, S, s0,�,Λ〉, a distribution of P is a partition
D ∈ Π(V ) such that:

(i) ∀X ∈ D,∀x, x′ ∈ X ∩ (Vin ∪ Vout) : Λ(x) = Λ(x′)

(ii) ∀e ∈ E,∃X ∈ D : var(e) ⊆ X

(iii) ∀s ∈ S, ∀i ∈ instr(s),∃X ∈ D : var(i) ⊆ X ∪ local(s)

We note DP the set of distributions of P .

2Remember that var(x) does not include the variables of the nested blocks.
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If a dSL program P cannot be distributed properly, as illustrated on the lamp
control program of Figure 2.9 in Chapter 2, the set of possible distributions will simply
be empty (DP = ∅). Otherwise, any distribution D ∈ DP naturally induces a partition
of E. Indeed, condition (i) of Definition 3.2 ensures that at least one variable appear
(non-tilded) in each event, thus implying that each event is univocally localised. This
is stated in the following theorem.

Theorem 3.1 (Partition of Events)

Given a dSL program P = 〈V,E, S, s0,�,Λ〉, and a distribution D ∈ DP , let
EX

def= {e ∈ E | var(e) ⊆ X}. We have that:

{ EX | (X ∈ D) ∧ (EX 6= ∅) } ∈ Π(E)

Proof

We proceed by induction on |E|.
Initial step If E = ∅, we have that {EX | (X ∈ D) ∧ (EX 6= ∅)} = ∅ ∈ Π(E).

Induction step If E = {e} ∪ E′, by induction, we have a partition of E′ given
by Q′ = {E′X | (X ∈ D) ∧ (E′X 6= ∅)}. All that needs to be done to construct a
partition Q for E is to localise e univocally. For that, we know by Definition 3.2
that var(e) 6= ∅, then since D ∈ DP , there exists a unique X ∈ D such that
var(e) ⊆ X. If E′X = ∅, we take Q = Q′ ∪ {{e}}. On the other hand if E′X 6= ∅,
we take Q = (Q′ \ {E′X}) ∪ {E′X ∪ {e}}. In any case, we have that Q ∈ Π(E).

Before moving on to the semantics, let us examine in more detail the structure
of DP . Indeed, for a given program P , we know by Definition 3.3 that DP ⊆ Π(V ).
Therefore, the natural order (�) on Π(V ) can be instantiated to DP .

Definition 3.4 (Coarser/Finer Distribution)

Given a dSL program P = 〈V,E, S, s0,�,Λ〉, and two distributions D,D′ ∈ DP .
We say that D is a coarser distribution than D′ (or equivalently that D′ is a finer
distribution than D), noted D � D′ if and only if ∀X ′ ∈ D′,∃X ∈ D : X ′ ⊆ X.

It is well-known [Priestley and Davey, 2002] that, for a given set X, 〈Π(X),�〉
forms a lattice. In fact, as we will see, this remains true when considering 〈DP ,�〉.
However, in order to prove this result, we need one intermediate result.

Lemma 3.1

Given a dSL program P = 〈V,E, S, s0,�,Λ〉, and two distributions D,D′ ∈ DP ,
we have that:

{X ∩X ′ | (X ∈ D) ∧ (X ′ ∈ D′) ∧ (X ∩X ′ 6= ∅)} ∈ DP
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Proof

Let D′′ = {X ∩ X ′ | (X ∈ D) ∧ (X ′ ∈ D′) ∧ (X ∩ X ′ 6= ∅)}. We have to prove
that ∀X ′′ ∈ D′′, the three conditions of Definition 3.3 of distribution are met.

(i) By Definition 3.3, we have that ∀X ∈ D,∀x, x′ ∈ X ∩ (Vin ∪ Vout) : Λ(x) =
Λ(x′) and that ∀X ′ ∈ D′,∀x, x′ ∈ X ′ ∩ (Vin ∪ Vout) : Λ(x) = Λ(x′) which
directly implies ∀X ′′ ∈ D′′,∀x, x′ ∈ X ′′ ∩ (Vin ∪ Vout) : Λ(x) = Λ(x′).

(ii) By Definition 3.3, we have that ∀e ∈ E : (∃X ∈ D : var(e) ⊆ X)∧ (∃X ′ ∈ D :
var(e) ⊆ X ′) which implies that ∀e ∈ E,∃X ∈ D,∃X ′ ∈ D′ : var(e) ⊆ X∩X ′.
But, we know by Definition 3.2 of program that var(e) 6= ∅, hence that
X ∩X ′ 6= ∅ ∈ D′′. We can therefore conclude that X ∩X ′ 6= ∅ ∈ D′′ which
implies that ∀e ∈ E,∃X ′′ ∈ D′′ : var(e) ⊆ X ′′.

(iii) By Definition 3.3, we have that ∀s ∈ S,∀i ∈ instr(s) : (∃X ∈ D : var(i) ⊆
X ∪ local(s)) ∧ (∃X ′ ∈ D′ : var(i) ⊆ X ′ ∪ local(s)) which implies that ∀s ∈
S,∀i ∈ instr(s),∃X ∈ D,∃X ′ ∈ D′ : var(i) ⊆ (X ∩ X ′) ∪ local(s). Then,
either var(i) 6⊆ local(s) 6= ∅, in which case X ∩ X ′ 6= ∅ and ∀s ∈ S, ∀i ∈
instr(s),∃X ′′ ∈ D′′ : var(i) ⊆ X ′′ ∪ local(s), or, var(i) ⊆ local(s), in which
case ∀X ′′ ∈ D′′ : var(i) ⊆ X ′′ ∪ local(s) (which is stronger).

We can now prove that 〈DP ,�〉 forms a lattice.

Theorem 3.2 (Lattice of Distributions)

Given a dSL program P , the tuple 〈DP ,�〉 forms a lattice.
Proof

First, we assume without loss of generality that DP 6= ∅. Indeed, if DP = ∅, the
result is immediate. The remainder of the proof is in two parts. We first prove the
existence of the least upper bound. Then, we prove the existence of the greatest
lower bound.

(i) Let U = {X ∩X ′ | (X ∈ D)∧ (X ′ ∈ D′)∧ (X ∩X ′ 6= ∅)}. We prove that, in
fact, U = lub�({D,D′}). First, by Lemma 3.1, we know that U ∈ DP . Then,
by construction, we have that D � U and D′ � U . Finally, ∀U ′ ∈ DP such
that D � U ′ and D′ � U ′, by Definition 3.4 of finer/coarser distribution,
we have that ∀Y ′ ∈ U ′ : (∃X ∈ D : Y ′ ⊆ X) ∧ (∃X ′ ∈ D′ : Y ′ ⊆ X ′),
which implies that ∀Y ′ ∈ U ′, ∃X ∈ D,∃X ′ ∈ D′ : Y ′ ⊆ X ∩X ′. Then, since
Y ′ 6= ∅, we have that ∀Y ′ ∈ U ′, ∃Y ∈ U : Y ′ ⊆ Y which, in turn implies that
U � U ′. We can therefore conclude that U = lub�({D,D′}).
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1 VAR

2 x,y,z,t,u,b: INT;

3 END_VAR

4

5 WHEN x > 0 THEN

6 y = y+1;

7 END_WHEN

9 SEQUENCE main()

10 z := 1;

11 t := 10;

12 u := 2 * t;

13 v := 0;

14 END_SEQUENCE

Figure 3.2 - A bogus dSL program

Proof (cont’d)

(ii) We prove equivalently that the set LB�({D,D′}) of lower bounds of D and
D′ has a unique maximal element. First, we know that LB�({D,D′}) 6= ∅,
because since DP 6= ∅, we have that {V } ∈ LB�({D,D′}). Therefore, the
only other possibility is that the set contains two maximal elements. We
show that this is impossible. Indeed, assume the existence of two different
incomparable maximal elements L,L′ ∈ LB�({D,D′}). Let us construct
L′′ = {X ∩ X ′ | (X ∈ L) ∧ (X ′ ∈ L′) ∧ (L ∩ L′ 6= ∅)}. By Lemma 3.1, we
know that L′′ ∈ DP , and by construction, we have that L � L′′ and L′ � L′′.
Moreover, we know that L � D and L � D′ which implies, by Definition 3.3
of distribution, that ∀Y ∈ D : (∃X ∈ L : Y ⊆ X) ∧ (∃X ′ ∈ L′ : Y ⊆ X ′).
It follows that ∀Y ∈ D,∃X ∈ L,∃X ′ ∈ L′ : Y ⊆ X ∩X ′, and since Y 6= ∅,
that ∀Y ∈ D,∃X ′′ ∈ L′′ : Y ⊆ X ′′. We can therefore conclude that L′′ � D.
A similar argument can be used to prove that L′′ � D′. Therefore, we can
conclude that L′′ ∈ LB�({D,D′}) which contradicts the fact that L and L′

are maximal in LB�({D,D′}).

It follows, in particular, that since DP is finite, there exists a unique minimal
distribution, defined as Dmin

def= glb�(DP ) = {V } and a unique maximal distribution,
defined as Dmax

def= lub�(DP ). Furthermore, since DP is finite, the lattice 〈DP ,�〉 is
complete. However, as illustrated in the following example, is not distributive.

Example 3.1 (Example of Program and Associated Lattice of Distributions)

Figures 3.2 and 3.3 show respectively an example of dSL program and its as-
sociated lattice of distribution. This lattice is not distributive. Indeed, con-
sider the four distributions D1

def= {{x, y, v}, {z, t, u}}, D2
def= {{x, y, z, t, u}, {v}},

D3
def= {{x, y}, {z, t, u, v}} and D4 = {{x, y}, {z, t, u}, {v}}. We have that

D1 u (D2 tD3) = D1 uD4 = D1 6= (D1 uD2) t (D1 uD3) = D4 tD4 = D4.
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3.1.3 Semantics of a Program

Now that we have all the necessary tools, we can start to give a formalization of the
semantics of a dSL program. This semantics will be given in terms of Kripke structures.
The first step is therefore is to describe the states of that Kripke structure. First of
all, each state in the semantics includes the local state of each process. In fact, the
local state of a process i contains three components:

(i) a block of instructions remaining to be executed, called the workload. On top of
regular dSL instructions, this workload contains some new instructions that are
used for internal treatments. First, INPUT(x), resp. OUTPUT(x), is used for the
input, resp. output, of a variable x. Similarly, BCAST(x,b) denotes the broadcast
of a variable x and its boolean value b. Finally, MSG, resp. SEQ, is used to indicate
that the process should treat his messages, resp. sequences.

(ii) a valuation for all variables needed by process i. These variables include the vari-
ables controlled by process i, the asynchronous (tilded) copy of distant variables,
including its own variables. For a variables x ∈ V , we note x̃ its tilded copy. A
shadow copy of each output variables governed by process i is also needed. These
variables are used instead of the actual output variables during the processing
phase, since the real output variables are only updated during the output phase.
For an output variables x ∈ Vout, we note x̂ its shadow copy. Finally, some
variables ce are needed to store the result of the last known evaluation of the
condition of each event e. These variables are used to detect rising-edges in the
condition of events. For an event e ∈ E, we note ce its corresponding variable.

(iii) the content of all receiving communication channels. Each message in these chan-
nel is a pair 〈x, v〉 where x is a variable and v its value. Moreover, � markers are
used to delimit the messages left to be treated in the current cycle of process i.

The definition of a local state of a process follows.

Definition 3.5 (Local State of a Process)

Given a dSL program P = 〈V,E, S, s0,�,Λ〉 and a distribution D = {X1, ..., Xk}
of P , a local state of process i ∈ [1, k] is a tuple 〈ωi, νi, φi〉 where:

• ωi is the workload of process i,

• νi ∈ (Xi ∪ {x̃ | x ∈ V } ∪ {x̂ | x ∈ Xi ∩ Vout} ∪ {ce | e ∈ EXi}) 7→ B is the local
valuation of process i,

• φi ∈ [1, k] 7→ ((V × B) ∪ {�})∗ is the valuation for the FIFO channels.
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Grammar rule Attributes

〈rhside e〉 ::= 〈id x〉 eval[v](e)
def
=


v(x̂) if x ∈ Vout

v(x) otherwise

| ∼ 〈id x〉 eval[v](e)
def
= v(x̃)

| TRUE eval[v](e)
def
= tt

| FALSE eval[v](e)
def
= ff

| ( 〈rhside e′〉 ) eval[v](e)
def
= eval[v](e′)

| 〈rhside e1〉 AND 〈rhside e2〉 eval[v](e)
def
= eval[v](e1) ∧ eval[v](e2)

| 〈rhside e1〉 OR 〈rhside e2〉 eval[v](e)
def
= eval[v](e1) ∨ eval[v](e2)

| 〈rhside e1〉 <> 〈rhside e2〉 eval[v](e)
def
= ¬(eval[v](e1)⇔ eval[v](e2))

| 〈rhside e1〉 == 〈rhside e2〉 eval[v](e)
def
= eval[v](e1)⇔ eval[v](e2)

| NOT 〈rhside e′〉 eval[v](e)
def
= ¬eval[v](e′)

Figure 3.4 - Valuations extended to dSL expressions

In the previous definition, φi(j) denotes the messages sent by process j to process
i. For the sake of readability, it is noted φi←j in the following.

Moreover, sequences are executed by the local processes during their processing
phase. The state of these sequences also needs to be included in the global states of
the semantics. Let us define the local state of a sequence.

Definition 3.6 (Local State of a Sequence)

Given a dSL program P = 〈V,E, S, s0,�,Λ〉, a local state of a sequence sj ∈ S is
a tuple 〈σj , µj〉 where:

• σj is the block of code left to be executed in sj .

• µj ∈ local(sj) 7→ B is the valuation for the local variables of sj

Using the local valuation of the processes and the valuations for the local variables
of the sequences, dSL expressions can be evaluated. Given a valuation v, and a dSL

expression e, we note eval[v](e) the evaluation of e using the valuation v. Given a
valuation v, eval[v] is defined inductively on the grammar, as shown in Figure 3.4.

Now that we have all the building blocks, we can define a global state of a dSL

program. Such a global state is composed of the local state of each process and the
local state of each sequence. This can be formalized as follows.



62 Chapter 3

Definition 3.7 (Global State of a dSL Program)

Given a dSL program P = 〈V,E, S, s0,�,Λ〉 with a set of sequences S =
{s1, s2, ..., sn} and a distribution D = {X1, X2, ..., Xk} of P , a global state of
P w.r.t. D is a tuple q = 〈`1, `2, ...`k,m0,m1, ...,mn〉 where:

• ∀i ∈ [1, k] : `i = 〈ωi, νi, φi〉 is a local state of process i,

• ∀j ∈ [1, n] : mj = 〈σj , µj〉 is a local state of sequence sj

We now focus our attention to the transition relation of the KS. This transi-
tion relation will be defined operationally, i.e. using operational semantics rules.
In order to simplify the presentation of those rules, we need some additional nota-
tions. First, we need a shortcut for the treatment of events. Given a dSL program
P = 〈V,E, S, s0,�,Λ〉, and a subset X ⊆ E, we define the treatment of the events in
X, noted treat(X), inductively as follows:

treat(X) def=



IF cond(e) AND NOT ce THEN

ce:=TRUE; body(e)
ELSE

ce:=cond(e);
END IF; treat(X \ {e}))

 if X 6= ∅ ∧ e = min�(X)

ε if X = ∅

We also need a shortcut to describe the input and output phases. Given a dSL

program P = 〈V,E, S,�,Λ〉, and a subset X ⊆ V , we define the sampling of X,
respectively update of X, noted in(X), respectively out(X), inductively as follows:

in(X) def=

{
INPUT(x); in(X \ {x})
ε

if X 6= ∅ ∧ x = min�(X)
if X = ∅

out(X) def=

{
OUTPUT(x); out(X \ {x})
ε

if X 6= ∅ ∧ x = min�(X)
if X = ∅

Finally, for all Xi ∈ D, we note EXi

def= {e ∈ E | var(e) ⊆ Xi} the set of events
governed by process i. We can now proceed with the presentation of the semantic
rules. In these rules, we assume the existence of a dSL program P = 〈V,E, S, s0,�,Λ〉
and a distribution D = {X1, ..., Xk} of P . Each rule is of the form

cond

〈P,D〉 ` q ↪−→ q′

where cond is the condition for the rule to be applied, and where q, respectively q′, is
the global state of P before, respectively after, the rule is applied.
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Cycle Start Rule Rule (3.1) corresponds to the beginning of a new cycle. If, at a
point in the execution, the workload of process i becomes empty (ε), then a new cycle is
scheduled in its workload. As already mentioned, each cycle is divided in three phases.
The first phase is the input phase, where all input variables governed by process i are
sampled and the corresponding events are treated. The second phase is the processing
phase, where messages from other processes are treated and sequences are executed.
The third and last phase is the output phase, where all output variables governed
by process i are written. Moreover, � markers are inserted, non-deterministically, in
the receiving communication channels of process i. In each communication channel,
messages appearing before the first � marker are the messages that must be treated
during this cycle. This will prevent process i to read messages that are received during
this cycle.

(ωi = ε)

〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ...,mn〉 ↪−→
〈`1, ..., 〈in(Xi ∩ Vin); treat(EXi); MSG; SEQ; out(Xi ∩ Vout), νi, φ′i〉, ..., `k,m0, ...,mn〉

(3.1)
where ∀j ∈ [1, k] : φ′i←j ∈ (φi←j ‖ �).

Input Rules Rule (3.2) describes the sampling of one input variable. In this case, the
valuation of the input variable is updated accordingly, and the new value is scheduled
to be broadcast to all other processes.

(ωi = INPUT(x);ω′i) ∧ (a ∈ B)

〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ...,mn〉 ↪−→
〈`1, ..., 〈BCAST(x, a);ω′i, νi[x 7→ a], φi〉, ..., `k,m0, ...,mn〉

(3.2)

Broadcast Rule Rule (3.3) describes the broadcast of the value of one variable to all
processes. If a process has to broadcast the value of certain variable, then a transition
is taken, leading to a global state where all the receiving communication channels are
updated with a message containing the variable and its value. Note that a message
is also appended to the channel of the process performing the broadcast. Indeed, this
local process might use the tilded copy of its own variable, and this copy needs to be
(asynchronously) updated as well.

(ωi = BCAST(x, v);ω′i)

〈P,D〉 ` 〈〈ω1, ν1, φ1〉, ..., 〈ωi, νi, φi〉, ..., 〈ωk, νk, φk〉,m0, ...,mn〉 ↪−→
〈〈ω1, ν1, φ

′
1〉, ..., 〈ω′i, νi, φ′i〉, ..., 〈ωk, νk, φ′k〉,m0, ...,mn〉

(3.3)

where ∀j ∈ [1, k] : φ′j = φj [i 7→ φj←i · 〈x, v〉].
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Message Treatment Rules Rule (3.4) describes the treatment of a message during
the processing phase. If there is some message left to be treated at the beginning of one
of the receiving communications channels in process i, this message must be treated.
The valuation in process i is updated, the events that need to be treated are scheduled
in the workload and finally, the message is removed from the channel.

(ωi = MSG;ω′i) ∧ (∃j ∈ [1, k] : φi←j = 〈x, v〉 · ψ)

〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ...,mn〉 ↪−→
〈`1, ..., 〈treat(ẽvt(x) ∩ EXi);ωi, νi[x̃ 7→ v], φi[j 7→ ψ]〉, ..., `k,m0, ...,mn〉

(3.4)

End of Message Treatment Rule Rule (3.5) describes the end of message treatment
during the processing phase. If all messages to be treated in this cycle have been
treated, i.e. the first element in each receiving channel is a � marker, the markers
are simply removed from each channels, and the MSG instruction is removed from the
workload.

(ωi = MSG;ω′i) ∧ (∀j ∈ [1, k] : φi←j = � · φ′i←j)
〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ...,mn〉 ↪−→ 〈`1, ..., 〈ω′i, νi, φ′i〉, ..., `k,m0, ...,mn〉

(3.5)

Output Rule Rule (3.6) describes the update of an output variable. In this case, the
value of the corresponding shadow copy is used to update the actual output variable.

(ωi = OUTPUT(x);ω′i)

〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ...,mn〉 ↪−→
〈`1, ..., 〈ω′i, νi[x 7→ νi(x̂)], φi〉, ..., `k,m0, ...,mn〉

(3.6)

Assignment Rules Rules (3.7) to (3.9) describe the treatment of an assignment in the
workload. Three cases need to be considered. First, if the assigned variable corresponds
to a variable ce for some event e, i.e. the last evaluation of the condition of an event
e, the valuation is simply updated.

(ωi = x := v;ω′i) ∧ (x ∈ {ce | e ∈ E})
〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ...,mn〉 ↪−→
〈`1, ..., 〈ω′i, νi[x 7→ eval[νi](v)], φi〉, ..., `k,m0, ...,mn〉

(3.7)
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The second case is when the assigned variables is an output variable, in which case,
the valuation of its corresponding shadow copy is updated, the new value is scheduled
to be broadcast and all events depending on this variable are scheduled for treatment.

(ωi = x := v;ω′i) ∧ (x ∈ Xi ∩ Vout)
〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ...,mn〉 ↪−→

〈`1, ..., 〈BCAST(x, eval[νi](v)); treat(evt(x));ω′i, νi[x̂ 7→ eval[νi](v)], φi〉, ..., `k,m0, ...,mn〉
(3.8)

The remaining case is when the assigned variable is not an output variable, in
which case, the valuation is simply updated, the new value is broadcast and all events
depending on that variable are scheduled for treatment.

(ωi = x := v;ω′i) ∧ (x ∈ Xi \ Vout)
〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ...,mn〉 ↪−→

〈`1, ..., 〈BCAST(x, eval[νi](v)); treat(evt(x));ω′i, νi[x 7→ eval[νi](v)], φi〉, ..., `k,m0, ...,mn〉
(3.9)

If Rules Rules (3.10) and (3.11) correspond to the treatment of a conditional state-
ment. As expected, if the condition evaluates to tt, the code in the first branch is
inserted in the workload.

(ωi = IF e THEN ωTHEN ELSE ωELSE END IF;ω′i) ∧ (eval[νi](e) = tt)

〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ...,mn〉 ↪−→
〈`1, ..., 〈ωTHEN;ω′i, νi, φi〉, ..., `k,m0, ...,mn〉

(3.10)

On the other hand, if the condition evaluates to ff, the code of the second branch
is inserted.

(ωi = IF e THEN ωTHEN ELSE ωELSE END IF;ω′i) ∧ (eval[νi](e) = ff)

〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ...,mn〉 ↪−→
〈`1, ..., 〈ωELSE;ω′i, νi, φi〉, ..., `k,m0, ...,mn〉

(3.11)

Launch Rules Rules (3.12) and (3.13) describe the treatment of a LAUNCH instruction.
If some process has a LAUNCH instruction at the beginning of its workload, and if the
sequence is not already running (i.e the workload in the local state of the corresponding
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sequence is empty), then the body of that sequence is scheduled for execution and all
the local variables of that sequences are reset to ff

(ωi = LAUNCH sj ;ω′i) ∧ (σj = ε)

〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ..., 〈σj , µj〉, ...,mn〉 ↪−→
〈`1, ..., 〈ω′i, νi, φi〉, ..., `k,m0, ..., 〈body(sj), µj [local(sj) 7→ ff]〉, ...,mn〉

(3.12)

On the other hand, if the sequence in question is already running, the LAUNCH is
simply discarded.

(ωi = LAUNCH sj ;ω′i) ∧ (σj 6= ε)

〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ..., 〈σj , µj〉, ...,mn〉 ↪−→
〈`1, ..., 〈ω′i, νi, φi〉, ..., `k,m0, ..., 〈σj , µj〉, ...,mn〉

(3.13)

Sequence Assignment Rules Rules (3.14) and (3.15) describe how an assignment
is handled in a sequence. A sequence instruction will only be executed by a process
having a SEQ internal instruction at the beginning of its workload. This is also true in
all other rules corresponding to the treatment of an instruction inside a sequence. For
the assignment, there are two cases to consider. The first case is when the assigned
variables is local to the sequence, in which case, its local valuation needs to be updated.
For that, we need to determine by which process the right-hand side of the assignment
can be evaluated. Then, as expected, the valuation of the variable is updated with its
new value.

(σj = x := e;σ′j) ∧ (ωi = SEQ;ω′i) ∧ (x ∈ local(sj)) ∧ (var(e) ⊆ Xi ∪ local(sj))

〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ..., 〈σj , µj〉, ...,mn〉 ↪−→
〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ..., 〈σ′j , µj [x 7→ eval[µj ∪ νi](e)]〉, ...,mn〉

(3.14)

The second case is when the assigned variable belongs to process i. In this case,
the assignment must be executed by this process. Therefore, after evaluating the right
hand side expression, the assignment is transferred to its workload.

(σj = x := e;σ′j) ∧ (ωi = SEQ;ω′i) ∧ (x ∈ Xi)

〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ..., 〈σj , µj〉, ...,mn〉 ↪−→
〈`1, ..., 〈x := eval[µj ∪ νi](e);ωi, νi, φi〉, ..., `k,m0, ..., 〈σ′j , µj〉, ...,mn〉

(3.15)
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Sequence If Rules Rules (3.16) and (3.17) describe how a conditional statement is
handled in a sequence. The first thing to do is to determine by which process the
condition can be evaluated and then to determine its value. For that, one must use
both the valuation of that process and the valuation of the sequence. Then, as expected,
if the condition is evaluated to tt, the first branch is inserted in the woarkload of the
sequence.

(σj = IF e THEN σTHEN ELSE σELSE END IF;σ′j) ∧ (ωi = SEQ;ω′i)∧
(var(e) ⊆ Xi ∪ local(sj)) ∧ (eval[µj ∪ νi](e) = tt)

〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ..., 〈σj , µj〉, ...,mn〉 ↪−→
〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ..., 〈σTHEN;σ′j , νj〉, ...,mn〉

(3.16)

On the other hand, if the condition evaluates to ff, the code of the second branch
is inserted.

(σj = IF e THEN σTHEN ELSE σELSE END IF;σ′j) ∧ (ωi = SEQ;ω′i)∧
(var(e) ⊆ Xi ∪ local(sj)) ∧ (eval[µj ∪ νi](e) = ff)

〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ..., 〈σj , µj〉, ...,mn〉 ↪−→
〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ..., 〈σELSE;σ′j , νj〉, ...,mn〉

(3.17)

Sequence Launch Rule Rule (3.18) describes the treatment of a LAUNCH instruction
inside a sequence. This instruction is simply moved to the workload of any process in
its processing phase. Indeed, this instruction does not handle any variable. Therefore,
no restriction is imposed on where it should be executed.

(σj = LAUNCH sh;σ′j) ∧ (ωi = SEQ;ω′i)

〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ..., 〈σj , µj〉, ...,mn〉 ↪−→
〈`1, ..., 〈LAUNCH sh;ωi, νi, φi〉, ..., `k,m0, ..., 〈σ′j , µj〉, ...,mn〉

(3.18)

Sequence While Rules Rules (3.19) and (3.20) describe how loops are handled inside
a sequence. Similarly to what is done in Rules (3.16) and (3.17), the first thing to do
is to determine where the condition of the loop can be evaluated. Then we need to
consider two cases, depending on this value. If the condition is evaluated to tt, the
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loop is scheduled for another turn.

(σj = WHILE e DO σb END WHILE;σ′j) ∧ (ωi = SEQ;ω′i)∧
(var(e) ⊆ Xi ∪ local(sj)) ∧ (eval[µj ∪ νi](e) = tt)

〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ..., 〈σj , µj〉, ...,mn〉 ↪−→
〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ..., 〈σb;σj , µj〉...,mn〉

(3.19)

On the other hand, if the condition is evaluated to ff, the loop is terminated.

(σj = WHILE e DO σb END WHILE;σ′j) ∧ (ωi = SEQ;ω′i)∧
(var(e) ⊆ Xi ∪ local(sj)) ∧ (eval[µj ∪ νi](e) = ff)

〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ..., 〈σj , µj〉, ...,mn〉 ↪−→
〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ..., 〈σ′j , µj〉...,mn〉

(3.20)

Sequence Wait Rule Rule (3.21) describes the treatment of a WAIT instruction. The
WAIT instruction blocks the execution of the sequence until a certain condition is ful-
filled. Again, similarly to what is done in Rules (3.16) to (3.20), the first thing to do
is to determine where the condition can be evaluated. The WAIT is executed only if its
condition is evaluated to tt.

(σj = WAIT(e);σ′j) ∧ (ωi = SEQ;ω′i) ∧ (var(e) ⊆ Xi ∪ local(sj)) ∧ (eval[µj ∪ νi](e)) = tt)

〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ..., 〈σj , µj〉...,mn〉 ↪−→
〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ..., 〈σ′j , µj〉, ...,mn〉

(3.21)

End of Sequence Treatment Rule Finally, Rule 3.22 describes the end of sequence
treatment. Non deterministically, the treatment of sequences can be stopped at any
time, thus ending the processing phase. This models the fact that the execution of a
sequence is not synchronized, with the cycles of the processes of the system.

ωi = SEQ;ω′i
〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m0, ...,mn〉 ↪−→

〈`1, ..., 〈ω′i, νi, φi〉, ..., `k,m0, ...,mn〉

(3.22)

Now that we have defined all the pieces of the puzzle, we can at last give the formal
definition of the semantics of a dSL program P w.r.t. a certain distribution D of P .
The only thing left to formalize is the set of initial states and the labelling function.
This is taken care of in the following definition.
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Definition 3.8 (Semantics of a dSL Program)

Given a dSL program P = 〈V,E, S, s0,�,Λ〉 with S = {s0, s1, s2, ..., sn}, and a
distribution D = {X1, X2, . . . , Xk} of P , the semantics of P w.r.t. D is a Kripke
structure KP,D = 〈Q, I,L,−→〉 over the set of proposition V , where:

• Q is the set of global states of P w.r.t D.

• I def= {〈〈ω1, ν1, φ1〉, . . . 〈ωk, νk, φk〉, 〈σ0, µ0, 〉, . . . , 〈σn, µn〉〉} where

(i) ∀i ∈ [1, k] : (ωi
def= ε) ∧ (νi

def= λx · ff) ∧ (φi
def= λj · ε)

(ii) ∀j ∈ [1, n] : (σj
def= ε) ∧ (µj

def= λx · ff)

(iii) (σ0 = BODY(s0)) ∧ (µ0
def= λx · ff)

• L def= λq ·
(⋃

i∈[1,k]{x ∈ Xi | νi(x) = tt}
)

• −→ def= {〈q, q′〉 ∈ Q×Q | 〈P,D〉 ` q ↪−→ q′}

In other words, the semantics of a dSL program P w.r.t. a distribution D of P is
a Kripke structure, where states are global states of P and transitions between states
are defined using the semantics rules presented previously. The only initial state is a
state where (i) each processes has an empty workload, all of its local variables set to
false, and all incoming communications channels empty; and (ii) each sequence has an
empty workload and all its local variables set to false, except (iii) the initial, i.e. main,
sequence which body is prepared for execution. Finally, each state in this semantics is
labeled by the set of variables that are true in this state.

3.1.4 History

The semantics of dSL has greatly evolved since it was first introduced in a joint work
with Bram De Wachter, Alexandre Genon and Thierry Massart [De Wachter et al.,
2005]. At the time, it did not include sequences yet. It was revisited and extended
in [De Wachter, 2005, sec. 3.4] to include them explicitly. Furthermore, the way com-
munications were handled was slightly modified. In [De Wachter et al., 2005], each
process was equipped with one FIFO communication channel, in which each message
destined to that process was added. This assumption was quite restrictive because
it imposed two messages from different sources to be received in the order they were
sent. To lift this restriction, one communication channel should be used between each
pair of processes. The author of [De Wachter, 2005] chose to simulate this by encoding
the content of the k “virtual” receiving FIFO channels of one process into one cleverly
manipulated channel structure. The semantics presented in this document has again
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undergone some modifications since then. First, in both [De Wachter et al., 2005]
and [De Wachter, 2005], the semantics was presented in terms of a labelled transition
system. Unfortunately, most model checking tools, are state-based, i.e. properties are
defined on states rather than transitions. That is why, we chose here to define the
semantics in terms of a Kripke structure instead. This motivates the introduction of
the shadow copy for the output variables. Furthermore, in the semantics presented in
[De Wachter et al., 2005] and [De Wachter, 2005], the execution of a sequence and the
reception and treatment of a message were allowed to interleave. Those interleavings
greatly increased the number of states in the semantics, and are not necessary since, in
the actual implementation, the incoming messages are treated at the beginning of the
processing phase. We therefore modified the semantics by introducing the SEQ internal
instruction in order to prevent that. Finally, for sake of clarity, we also introduced
some changes in the presentation. For instance, we chose to make the communica-
tion channels between each pair of processes explicit. We also integrated the WAIT

instructions into the semantics instead of removing them syntactically beforehand.

3.2 Specification

Now that the modeling step if taken care of, the next step is to address specification.
Defining the semantics in terms of Kripke structures, as we have done in the previous
section, allows us to use traditional temporal logics like LTL or CTL. In this particular
context, formulae are defined over the set of variables of the program. For instance, the
fact that an alarm in a control system is never triggered can simply be specified in LTL as
¬(F alarm), or in CTL as ¬(EF alarm). In practice, of course, dSL programs will contain
integer variables, in which case, propositions will be constraints on those variables. For
instance, the fact that the temperature never exceeds a certain limit could be expressed
in LTL as G(temperature < LIMIT), or in CTL as AG(temperature < LIMIT).

Unfortunately, as we have seen in Section 3.1, the semantics of a dSL program
P is parametrized by one of its distributions. If we want to prove that P is correct
independently of any distribution, we must therefore show that the specification is
satisfied for all distribution D ∈ DP . Formally, we say that a well-formed dSL program
P = 〈V,E, S, s0,�,Λ〉 satisfies a LTL formula ϕ, noted P |=L ϕ, if and only if ∀D ∈
DP : KD,P |=L ϕ. Similarly, a program P satisfies a CTL formula ϕ if and only if
∀D ∈ DP : KP,D |=C ϕ. Given a well-formed dSL program P and LTL formula ϕ, the
LTL model checking problem for dSL (dSL-LTL-MC) consists in determining if P satisfies
ϕ. The CTL model checking problem for dSL (dSL-CTL-MC) is defined similarly.
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Model checking a dSL program therefore requires to examine a possibly exponential
number of distributions, which can be expensive in general. Fortunately, in the case
of LTL, or more precisely LTL-X, this can be avoided. Indeed, we will show that only
examining the maximal distribution Dmax is sufficient. For that, we will examine the
semantics induced by two distributions D1, D2 in the distribution lattice 〈DP ,�〉 such
that D1 � D2 and show that the semantics induced by D2 includes the one induced
by D1. Formally, we will prove that KP,D1

C∼KP,D2 . We will proceed in two steps.
First, we will examine what happens if, starting from a distribution D1 ∈ DP , one
execution site of D1 is split, leading to a distribution D2. We will show that, in
this case KP,D1

C∼KP,D2 holds. Then, we will show that any D1, D2 ∈ DP such that
D1 � D2 can be linked by a sequence of splits thus implying that KP,D1

C∼KP,D2

holds in general. As a direct result, we will therefore get that model checking KP,Dmax

is sufficient for any LTL-X property. In order to establish this result, we need three
preliminary notions. The first one is that of code distribution.

Definition 3.9 (Code Distribution)

Let ω, ω1, ω2 be blocks of code including internal instructions. We say that 〈ω1, ω2〉
is a distribution of ω, noted ω ≺ 〈ω1, ω2〉 if and only if one of the following holds:

(i) (ω = ε) ∧ (ω1 = ε) ∧ (ω2 = ε)

(ii) (ω = x;ω′)∧ (x ∈ {MSG, SEQ})∧ (ω1 = x;ω′1)∧ (ω2 = x;ω′2)∧ (ω′ ≺ 〈ω′1, ω′2〉)
(iii) (ω = x;ω′) ∧ (x 6∈ {MSG, SEQ}) ∧ (ω1 = x;ω′1) ∧ (ω′ ≺ 〈ω′1, ω2〉)
(iv) (ω = x;ω′) ∧ (x 6∈ {MSG, SEQ}) ∧ (ω2 = x;ω′2) ∧ (ω′ ≺ 〈ω1, ω

′
2〉)

Intuitively, ω ≺ 〈ω1, ω2〉 holds when all three blocks of code are empty, or when
each instruction of ω is either in ω1 or ω2 unless it is a MSG or SEQ instruction, in which
case, it must be present in both ω1 and ω2. The second notion is that of valuation
distribution.

Definition 3.10 (Valuation Distribution)

Let X be a set of boolean variables, X1, X2 ⊆ X be two subsets of X such that
X1 ∪X2 = X, and three valuation ν ∈ X 7→ B, ν1 ∈ X1 7→ B and ν2 ∈ X2 7→ B.
We say that 〈ν1, ν2〉 is a distribution of ν, noted ν ≺ 〈ν1, ν2〉, if and only if:

∀x ∈ X : (x ∈ X1 ⇒ ν(x) = ν1(x)) ∧ (x ∈ X2 ⇒ ν(x) = ν2(x))

Intuitively, ν ≺ 〈ν1, ν2〉 holds if the three valuation agree on the value of common
variables. Finally, the last notion is that of channel distribution, which is very similar
to code distribution.
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Definition 3.11 (Channel Distribution)

Let σ, σ1, σ2 ∈ ((V × B) ∪ {�})∗ be the content of three communication channels.
We say that 〈σ1, σ2〉 is a distribution of σ if and only if one of the following holds:

(i) (σ = ε) ∧ (σ1 = ε) ∧ (σ2 = ε)

(ii) (σ = � · σ′) ∧ (σ1 = � · σ′1) ∧ (σ2 = � · σ′2) ∧ (σ′ ≺ 〈σ′1, σ′2〉)
(iii) (σ = 〈x, v〉 · σ′) ∧ (σ1 = 〈x, v〉 · σ′1) ∧ (σ′ ≺ 〈σ′1, σ2〉)
(iv) (σ = 〈x, v〉 · σ′) ∧ (σ2 = 〈x, v〉 · σ′2) ∧ (σ′ ≺ 〈σ1, σ

′
2〉)

Intuitively, σ ≺ 〈σ1, σ2〉 holds when all three channels are empty, or when each
message of σ is either in σ1 or σ2 unless it is a � marker, in which case, it must be
present in both σ1 and σ2. We can now prove the first step.

Lemma 3.2 (One-Split Simulation Lemma)

Given a well formed dSL program P = 〈V,E, S, s0,�,Λ〉, and two distributions
D1, D2 ∈ DP such that D1 � D2 and |D2| = |D1|+ 1, we have that:

KP,D1
C∼KP,D2

Proof Sketch

First, we assume that S = {s0, s1, ..., sn}, KP,D1 = 〈Q1, I1,L1,−→1〉, KP,D2 =
〈Q2, I2,L2,−→2〉 and, without loss of generality, that D1 = {X1,1, X1,2, ..., X1,k}
and D2 = {X2,1, X2,2, ....X2,k−1, X1,k, X2,k+1} with ∀i ∈ [1, k) : X1,i = X2,i and
X1,k = X2,k∪X2,k+1. Then, we define a relation S ⊆ Q1×Q2 such that two states:

q1 = 〈 〈ω1,1, ν1,1, φ1,1〉, ..., 〈ω1,k, ν1,k, φ1,k〉, 〈σ1,0, µ1,0〉, ..., 〈σ1,n, µ1,n〉 〉
q2 = 〈 〈ω2,1, ν2,1, φ2,1〉, ..., 〈ω2,k+1, ν2,k+1, φ2,k+1〉, 〈σ2,0, µ2,0〉, ..., 〈σ2,n, µ2,n〉 〉

are related if and only if:
(i) (∀i ∈ [1, k) : ω1,i = ω2,i) ∧ (ω1,k ≺ 〈ω2,k, ω2,k+1〉)

(ii) (∀i ∈ [1, k) : ν1,i = ν2,i) ∧ (ν1,k ≺ 〈ν2,k, ν2,k+1〉)

(iii) (a) ∀j ∈ [1, k),∀i ∈ [1, k) : φ1,i←j = φ2,i←j
(b) ∀j ∈ [1, k] : φ1,k←j = φ2,k←j = φ2,k+1←j
(c) ∀i ∈ [1, k] : φ1,i←k ≺ 〈φ2,i←k, φ2,i←k+1〉

(iv) ∀j ∈ [0, n] : (σ1,j = σ2,j) ∧ (µ1,j = µ2,j)

Then, it can be proven that S is a stuttering simulation relation between KP,D1

and KP,D2 . The complete proof is quite technical and requires some additional
results. It is therefore presented separately in Appendix B.



Model Checking dSL Programs 73

The stuttering is required for instance to process the MSG marker in the workloads.
Indeed, assume a process P1,k being split in two processes P2,k and P2,k+1. Before this
split, Pk can process a MSG marker in its workload in one transition, using Rule (3.5).
After the split, however, there are two MSG markers to process, i.e. one in P2,k and one
in P2,k+1. In this case, two transitions are required. We now turn our attention to the
second step, embodied in the following lemma.

Lemma 3.3

Given a well-formed dSL program P = 〈V,E, S, s0,�,Λ〉, and two distributions
D,D′ ∈ DP such that D � D′, we have that there exists a finite sequence
D1, D2, ..., Dn such that D = D1 � D2 � ... � Dn = D′ and such that
∀i ∈ [1, n) : |Di+1| = |Di|+ 1.

Proof

We proceed by induction on |D′| − |D|.
Initial Step If |D′| − |D| = 0 (D = D′) the sequence is empty.

Induction Step We know that D � D′. Therefore, by Definition 3.4 of
coarser/finer distribution, we have that ∀X ′ ∈ D′ : ∃X ∈ D : X ′ ⊆ X, but since
|D′| > |D|, by the pigeonhole principle ∃X,Y ∈ D,∃X ′ ∈ D′ : (X 6= Y ) ∧ (X ⊆
X ′)∧ (Y ⊆ X ′). Let us construct D′′ = (D′ \{X,Y })∪{X∪Y } by merging X and
Y together. By construction, we have that D′′ � D′ with |D′| = |D′′|+ 1. There-
fore, by induction, there exists a sequence D = D1, D2, ..., Dn = D′′ from D to D′′.
The sequence from D to D′ is then given by D = D1, D2, ...., Dn, Dn+1 = D′.

Finally, we can conclude with the following theorem.

Theorem 3.3 (Stuttering Simulation of the Semantics)

Given a well formed dSL program P = 〈V,E, S, s0,�,Λ〉, and two distributions
D1, D2 ∈ DP , we have that:

(D1 � D2)⇒ (KP,D1
C∼KP,D2)

Therefore, since stuttering simulation preserves LTL-X properties, this implies that
if a LTL-X property holds on the semantics of a program induced by a given distribution,
then it also holds on the semantics induced by any coarser distribution.

Corollary 3.1

Given a well-formed dSL program P , two distributions D1, D2 ∈ DP such that
D1 � D2 and a LTL-X formula ϕ, we have that:

(KP,D2 |=L ϕ)⇒ (KP,D1 |=L ϕ)
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It follows directly that in order to prove that a dSL program P satisfies a LTL-X

formula ϕ, one only has to examine the maximal distribution Dmax.

Theorem 3.4 (dSL-LTL-MC: A Sufficient Condition for LTL-X Properties)

Given a well-formed dSL program P , and a LTL-X formula ϕ, we have that:

(KP,Dmax |=L ϕ)⇒ (P |=L ϕ)
Proof

By definition of Dmax, we have that ∀D ∈ DP : D � Dmax. It follows by Corol-
lary 3.1 that if KP,Dmax |=L ϕ, then ∀D ∈ DP : KP,D |=L ϕ. Hence, we conclude.

Note that Corollary 3.1 also implies that if a LTL-X property is violated for the
minimal distribution Dmin, then it is also violated for any distribution D of P .

3.3 Verification

As the reader may have noticed, even when restricted to a finite data domain, the
semantics presented in Section 3.1.3 can yield infinite-state models. If we take a look
at this semantics, we can quickly discover that two of the components in Definition 3.7
of global states are potentially unbounded in size, namely the workloads and the com-
munication channels. Traditional model checking techniques however assume the un-
derlying model to be finite-state. Nevertheless, a lot of research effort has been put
in studying the model checking of infinite-state systems on various models. In par-
ticular, two models closely related to ours are of particular interest here. The first
is that of pushdown systems [Bouajjani et al., 1997], i.e. system with potentially un-
bounded stacks. The other is that of communicating finite state machines (CFSM) [von
Bochmann, 1978], i.e. systems communicating using potentially unbounded FIFO com-
munication channels. For pushdown systems, even though they induce infinite-state
models, the model checking problem is still decidable, both for LTL and CTL. More
precisely, it is shown in [Bouajjani et al., 1997] that the model checking problem is
DEXPTIME-complete for LTL and DEXPTIME-easy for CTL. This complexity was further
refined in [Walukiewicz, 2000] where the model checking problem for CTL was shown
PSPACE-complete. For the second class of systems, however, it was shown in [Brand and
Zafiropulo, 1983], that CFSM are as expressive as Turing Machines [Turing, 1936], for
which reachability, and therefore model checking, is known to be undecidable. Hence,
a natural question then arises: Is the model checking of dSL programs decidable? Un-
fortunately, the answer to this question is no. Indeed, it turns out that CFSM can be
simulated using dSL programs. However, as we will see, all hope is not lost.



Model Checking dSL Programs 75

The remainder of this section is structured as follows. First, in Section 3.3.1, we
examine the model of CFSM in more details. Then, in Section 3.3.2, we show that
CFSM can be simulated using dSL programs, therefore implying undecidability. We
follow, in Section 3.3.3, by showing how the semantics can be constrained in order to
avoid the undecidability. Finally, in Section 3.3.4, we show how this new constrained
semantics can be used in practice to verify dSL programs.

3.3.1 Communicating Finite State Machine

Communicating finite state machines [von Bochmann, 1978], are systems with poten-
tially unbounded FIFO communication channels. For our purpose here, we will restrict
ourselves, without loss of generality, to CFSM’s with only one communication channel,
also called message queue. The formal definition follows.

Definition 3.12 (Communicating Finite State Machine)

A (single queue) communicating finite state machine (CFSM) is a tuple M =
〈L, `0,Σ,∆〉 where:

• L is a finite set of control locations

• `0 ∈ S is the initial control location,

• Σ is a finite queue alphabet,

• ∆ ⊆ L× {!, ?} × Σ× L is the transition relation.

In this definition the message queue is implicit, since it is uniquely defined. In-
tuitively, a transition 〈`, !, a, `′〉 ∈ ∆ indicates that, when moving from location ` to
location `′, a message a ∈ Σ should be added at the end of the message queue. We call
these transitions write transitions. On the other hand, a transition 〈`, ?, a, `′〉 indicates
that, when moving from location ` to location `′, a message a ∈ Σ should be present
at the beginning of the message queue, and that it should be removed. We call these
transitions read transitions. Formally, the semantics can be defined as follows.
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Definition 3.13 (Semantics of Communicating Finite State Machine)

The semantics of a CFSM M = 〈L, `0,Σ,∆〉 is a transition system SM = 〈Q, I,−→〉
where:

• Q def= L× Σ∗ is the set of states,

• I def= 〈`0, ε〉 is the initial state,

• −→ is such that 〈〈`, w〉, 〈`′, w′〉〉 ∈−→ if and only if one of the following holds:

(i) ∃〈`, !, a, `′〉 ∈ ∆ : w′ = w · a
(ii) ∃〈`, ?, a, `′〉 ∈ ∆ : a · w′ = w

We say that a CFSM M = 〈L, `0,Σ,∆〉 is deterministic if and only if ∀` ∈ L,∀c ∈
{?, !},∀a ∈ Σ : |{`′ ∈ L | 〈`, c, a, `′〉 ∈ ∆}| ≤ 1. Note that this is only a syntactical
definition. Indeed, it does not exclude the possibility of having two write transitions
coming out of the same control location. Given a CFSM, M = 〈L, `0,Σ,∆〉 and a
control location ` ∈ L, the reachability problem for CFSM (CFSM-REACH) consists in
determining if ∃w ∈ Σ∗ : 〈`, w〉 ∈ reach(SM ). This problem is known to be undecidable.

Theorem 3.5 (Undecidability of CFSM-REACH [Brand and Zafiropulo, 1983])

The reachability problem for CFSM is undecidable.

This undecidability result also holds for deterministic CFSM’s. Indeed, with the
definition of determinism given above, one can determinize any CFSM using classical
automata theory algorithms [Hopcroft et al., 2000].

3.3.2 Undecidability Result

In this section, we show that any deterministic CFSM can be simulated by a dSL

program. More precisely, given a CFSM M = 〈L, `0,Σ,∆〉, we build a well-formed
dSL program PM that simulates the behaviour of M . The construction works as
follows. The current control location of M is encoded in PM using dlog2 |L|e internal
boolean variables loc_b0, loc_b1, ..., loc_bm, using a standard binary encoding.
More precisely, assuming L = {`0, `1, ..., `n}, a control location `i (i ∈ [0, n]) is encoded
as a binary encoding of i. For the simplicity of the presentation, in the following, we
will equivalently use an integer variable loc instead.

In a given control location `, the decision of taking a particular transition, deter-
mined by an action (read or write) and a letter of Σ, is left to the environment of the
program. The non-determinism of the environment will therefore ensure that every
transition is explored. For this, dlog2 |Σ|e input variables letter_b0, letter_b1, ...,



Model Checking dSL Programs 77

letter_br are needed to encode the letter chosen by the environment. More precisely,
assuming Σ = {a0, a1, ..., as}, a letter ai (i ∈ [0, s]) is encoded as a binary encoding of
i. Again, for simplicity, in the following, we will equivalently use an integer variable
letter instead. Another input boolean variable readWrite is then used to encode the
action, i.e. whether that letter should be read or written. On top of that, one addi-
tional input boolean variable tick is also needed to trigger the transitions. Whenever
the environment makes the variable tick switch from FALSE to TRUE, the program
will consider the action proposed by the environment, i.e. the letter and the action
that was chosen by the environment. If this action corresponds to a valid transition of
M , the corresponding event is triggered and the variable loc is updated accordingly.
Otherwise, the program simply ignores the choice proposed by the environment.

The only remaining thing for this construction to work, is to encode the message
queue. This can be done using the FIFO communication channel defined by the se-
mantics of PM . Since M only uses one message queue, only one FIFO communication
channel is needed, and therefore, only one execution site is required. The message
queue is then modeled using the FIFO channel existing between this unique execution
site and itself (φ0←0). Writing a letter a will be simulated using two consecutive as-
signments to a dedicated variable a. A first one to FALSE and a second one to TRUE.
These assignments will cause their new value to be broadcast on the FIFO channel,
thus effectively simulating the write. Reading a message can then simply be done us-
ing an event on ∼a3. When this event is triggered another dedicated internal boolean
variable aRead is used to remember that fact.

Unfortunately, according to the semantics, any number of dSL messages can be
treated during the processing phase, and this number, chosen non-deterministically,
cannot be controlled in the program. It can therefore happen that the program deviates
from the simulation. This can happen for several reasons:

(i) the environment wants the program to simulate a read transition on a letter a,
whereas the non-determinism in the semantics is resolved in such a way that
the two messages corresponding to the reception of that a have not been treated
during the previous processing phase.

(ii) the environment wants the program to simulate a write transition, whereas the
non-determinism in the semantics is resolved in such a way that the two messages
corresponding to the reception of at least one letter have been treated during the
previous processing phase.

3Remember indeed that, in dSL, a rising edge of the condition is needed to trigger an event.
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(iii) the non-determinism in the semantics is resolved in such a way that messages
corresponding to the reception of more than one letter have been treated since
the last successful tick, i.e. the last time a transition was simulated.

However, these illegal behaviours correspond to particular assignments of the vari-
ables of the program and can therefore be detected. We therefore introduce an addi-
tional boolean variable illegal, that will be used to remember if and when such an
illegal behaviour occurs. The event used to detect the reading of a letter a is presented
in Figure 3.5(a). In this event, on top of the variable aRead being updated, another
internal boolean variable msgRead is used to detect if more than one letter have been
read since the last successful tick, i.e. the last time a transition was simulated by the
program. In this case, as explained above, variable illegal is set to TRUE in order to
remember that from now on, the dSL program deviates from the simulation.

The event used to simulate the transitions of M are presented in Figures 3.5(b) and
(c). First, Figure 3.5(b) shows the event corresponding to a read transition 〈`1, ?, a, `2〉.
In this event, if an a was read since the last successful tick, the transition is taken, i.e.
the current control location is updated (line 7) and the variables aRead and msgRead

are reset for future use (lines 5–6). Otherwise, the variable illegal is set to TRUE

(c.f. illegal behaviour (i) above). Figure 3.5(c) shows the event corresponding to a
write transition 〈`1, !, a, `2〉. In this event, if no message has been read since the last
successful tick, i.e. the current control location is updated (line 7) and the send is
simulated using two assignments to a (lines 5–6), as explained before. Otherwise, i.e.
if at least one letter was read, the variable illegal is set to TRUE (c.f. illegal behaviour
(ii) above). If at any point during the execution of the program, the variable illegal

becomes TRUE, the simulation is blocked, since it is used in the test located at the
beginning of each transition event. This effectively prevents any further transition
from being taken. We can therefore conclude that only reachable locations of M will
be reached in PM . Formally, it can be easily established that a location ` ∈ L is
reachable in M if and only if there exists a global state q, reachable in KPM ,Dmin

, where
loc= i holds. As a direct consequence, the LTL and CTL model checking problems are
both undecidable for dSL programs.

Theorem 3.6 (Undecidability of Model Checking for dSL programs)

The LTL and CTL model checking problems for dSL programs are both undecidable.
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1 WHEN ~a THEN

2 aRead := TRUE;

3 IF (NOT msgRead) THEN

4 msgRead := TRUE;

5 ELSE

6 illegal := TRUE;

7 END_IF;

8 END_WHEN

(a) Detecting when a letter a is read

1 WHEN tick THEN

2 IF (loc == l1) AND (readWrite == 0) AND

3 (letter == a) AND (NOT illegal) THEN

4 IF (aRead) THEN

5 aRead := FALSE;

6 msgRead := FALSE;

7 loc := l2;

8 ELSE

9 illegal := TRUE;

10 END_IF;

11 END_IF;

12 END_WHEN

(b) Simulating a read transition 〈`1, ?, a, `2〉

1 WHEN tick THEN

2 IF (loc == l1) AND (readWrite == 1) AND

3 (letter == a) AND (NOT illegal) THEN

4 IF (NOT msgRead) THEN

5 a := 0;

6 a := 1;

7 loc := l2;

8 ELSE

9 illegal := TRUE;

10 END

11 END_IF;

12 END_WHEN

(c) Simulating a write transition 〈`1, !, a, `2〉

Figure 3.5 - Events used to simulate a CFSM
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1 VAR

2 x,y : BOOL;

3 END_VAR

4

5 SITE s

6 OUTPUT y : 1.0.0;

7 END_SITE

9 WHEN x THEN

10 x := FALSE;

11 x := TRUE;

12 y := TRUE;

13 END_WHEN

14

15 SEQUENCE main()

16 x := TRUE;

17 END_SEQUENCE

Figure 3.6 - A dSL program with an infinite triggering loop

Proof

Given a deterministic CFSM M = 〈L, `0,Σ,∆〉, and a control location ` ∈ L, one
can build a dSL program PM using the construction explained above. Determin-
ing if ∃w ∈ Σ∗ : ` ∈ reach(TM ) can then be done by checking whether or not
KPM ,Dmin

|=L F(loc== `). However, according to Theorem 3.5, CFSM-REACH is
undecidable. It follows directly that dSL-LTL-MC is also undecidable. A similar
argument, using the formula EF(loc== `) can be used for dSL-CTL-MC.

3.3.3 Constraining the Semantics

As we have seen previously, the model checking problem for dSL is undecidable both
for LTL and CTL. Fortunately, in practice, all hope is not lost. Indeed, in practice, pro-
grams with unbounded workloads and/or communication channel should be avoided.
Therefore, we can artificially bound the sizes of workloads and communication chan-
nels, thus leading back to a finite-state model. This will therefore allow us to apply
standard finite-state model checking algorithms, and therefore use existing tools for
verifying dSL programs.

For the workloads, only those included in the local states of processes are problem-
atic. Those included in the local states of sequences are inherently bounded by the
size of the corresponding sequence. For the workloads of the local states, the problem
arises from the fact that the execution of the body of an event may trigger another
event, and in particular, as illustrated by the program of Figure 3.6, it may trigger,
directly or indirectly, itself. This causes an infinite control loop, where the workload
of the process grows indefinitely. This kind of behaviour must of course be rejected.
Indeed, in such a case, the process is stuck in its processing phase, and will therefore
never reach its output phase again. For instance, in the program of Figure 3.6, the
output variable y will never be assigned to TRUE, since the instruction y := TRUE will
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never be reached in the workload. In practice, to prevent this from happening, the dSL

virtual machine artificially bounds the number of imbricated triggered events.
Formally, the operational semantics presented in Section 3.1.3 can be modified to

take this bound into account. For this, we need to determine the triggering depth,
i.e. the number of events that have been triggered but for which the treatment is
not finished yet. For that purpose, when handling an event e, we introduce a dummy
assignment to the variable ce (ce := ce which has no side effects), inserted after the
body of e. Using this trick, the triggering depth can be obtained at any point in a
process, by counting the number of dummy assignments remaining in its workload.
Formally, the treatment of events is modified as follows.

treat(X) def=



IF cond(e) AND NOT ce THEN

ce:=TRUE; body(e); ce:=ce;
ELSE

ce:=cond(e);
END IF; treat(X \ {e}))

 if X 6= ∅ ∧ e = min�(X)

ε if X = ∅

The triggering depth can then be defined as follows.

Definition 3.14 (Triggering Depth)

Given a block of code ω the triggering depth in ω, noted depth(ω), is defined
inductively as follows.

depth(ω) def=


depth(ω′) + 1 if ∃e ∈ E : ω = ce:=ce;ω′

depth(ω′) if ω = i;ω′ such that ∀e ∈ E : i 6= (ce:=ce)
0 if ω = ε

Then, assuming the bound Θ on the triggering depth is at least 1, the only rules
that need to be modified in the semantics are the two assignments rules corresponding
to the handling of global variables. Indeed, these rules are the only ones that can lead
to a triggering depth greater that 2. Those two rules need to be replaced by a bounded
version. The first one is Rule (3.23) devised to replace Rule (3.8).

(ωi = x := v;ω′i) ∧ (x ∈ Xi ∩ Vout) ∧ (depth(ω′i) < Θ)

〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m1, ...,mn〉 ↪−→
〈`1, ..., 〈BCAST(x, eval[νi](v)); treat(evt(x));ω′i, νi[x̂ 7→ eval[νi](v)], φi〉, ..., `k,m1, ...,mn〉

(3.23)
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1 VAR

2 x, y : BOOL;

3 END_VAR

4

5 SITE s1

6 INPUT x : 1.0.0;

7 END_SITE

9 SITE s2

10 OUTPUT y : 1.0.0;

11 END_SITE

12

13 WHEN ~x THEN

14 y := TRUE;

15 END_WHEN

16

17 WHEN NOT ~x THEN

18 y := FALSE;

19 END_WHEN

Figure 3.7 - A dSL program with possibly unbounded channels channels

The other rule is Rule (3.24) devised to replace Rule (3.9).

(ωi = x := v;ω′i) ∧ (x ∈ Xi \ Vout) ∧ (depth(ω′i) < Θ)

〈P,D〉 ` 〈`1, ..., 〈ωi, νi, φi〉, ..., `k,m1, ...,mn〉 ↪−→
〈`1, ..., 〈BCAST(x, eval[νi](v)); treat(evt(x));ω′i, νi[x 7→ eval[νi](v)], φi〉, ..., `k,m1, ...,mn〉

(3.24)
Note that, with this modification, if the bound Θ is reached, process i will be

blocked. Fortunately, static analysis techniques can be used to detect this does not
happen, i.e. that the bound is never reached. Similarly to what is done in bounded
model checking [Biere et al., 2003], the control flow graph [Aho et al., 1998] can be
unfolded up to a depth of Θ+1, and then each path of this unfolding can be examined
to check whether it is executable or not, i.e. check if the conditional statements can
be traversed. For that purpose, a path can be encoded as a boolean formula in such
a way that the formula is satisfiable if and only if the path is executable. This can be
done using a classical strongest post-condition [Dijkstra and Scholten, 1990]. However,
this method introduces a lot of quantifiers that makes the satisfiability checking more
difficult. To avoid those unnecessary quantifications, path simulation [Ball and Raja-
mani, 2002] can be used instead. We implemented this procedure in the dSL compiler,
using the theorem prover Simplify [Detlefs et al., 2003] for satisfiability checking. With
this prototypical implementation, we were able to prove that the triggering depth was
bounded in all examples we encountered. In fact, in most examples, the bound was
quite small. Other techniques, based for instance on interrupt calculus [Chatterjee
et al., 2003] could also be used.

For the communication channels, as illustrated in the program of Figure 3.7, the
problem arises from the fact that one of the local processes can be significantly slower
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that the other ones, in which case, its incoming communication channel can grow
indefinitely. In the example, each time site s1 is in its input phase, it sends a message to
site s2 with the value of the input variable x. The semantics, as defined in Section 3.1.3,
allows a behaviour where s2 is never scheduled, in which case, the messages in its
incoming communication channels will never be treated. Similarly to what is done for
the workloads, one can overcome this issue by artificially bounding the size of each
communication channels. Again, the operational semantics can be modified in order
to take care of this bound Γ. In this case, the only rule that needs to be modified
is the broadcast rule, i.e. Rule (3.3). This rule is replaced by Rule (3.25) presented
hereafter.

(ωi = BCAST(x, v);ω′i) ∧ (∀j ∈ [i, k] : |φi←j | < Γ)

〈P,D〉 ` 〈〈ω1, ν1, φ1〉, ..., 〈ωi, νi, φi〉, ..., 〈ωk, νk, φk〉,m1, ...,mn〉 ↪−→
〈〈ω1, ν1, φ

′
1〉, ..., 〈ω′i, νi, φ′i〉, ..., 〈ωk, νk, φ′k〉,m1, ...,mn〉

(3.25)

where ∀j ∈ [1, k] : φ′j = φj [i 7→ φj←i · 〈x, v〉].

In the following sections, we will therefore consider the semantics defined with those
three modified rules. Given a dSL program P , a distribution D of P , and a pair of
bounds Θ and Γ respectively on the size of workloads and communication channels, we
note KΘ,Γ

P,D the semantics of P w.r.t D bounded by Θ and Γ. Note that, even with this
new bounded semantics, Theorem 3.3 still holds. Indeed, the stuttering simulation S

used in Lemma 3.2 can also be used in this case. In fact, it is easy to see by definition of
S that ∀〈q1, q2〉 ∈ S, if the sizes of the workloads, respectively communication channels,
in q1 are bounded by Θ, respectively Γ, then it is also the case in q2. In fact, this can
be extended to any Γ′ ≥ Γ and Θ′ ≥ Θ. We can therefore extend Theorem 3.3 for the
bounded semantics.

Theorem 3.7 (Stuttering Simulation of the Bounded Semantics)

Given a well formed dSL program P = 〈V,E, S, s0,�,Λ〉, two distributions
D1, D2 ∈ DP , and a pair Θ,Γ of bounds, we have that for any pair of bounds
Γ′ ≥ Γ and Θ′ ≥ Θ:

(D1 � D2)⇒ (KΘ,Γ
P,D1

C∼KΘ′,Γ′
P,D2

)

3.3.4 Verification in Practice

Using the bounded semantics defined in the previous section, we are now able to verify
dSL programs. In this section we will concentrate on LTL properties, and show how
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they can be verified using the model checker Spin [Holzmann, 2004].

Spin is one of the most successful and widely used model checkers for LTL. It is
a model checker targeted towards software verification, as opposed to e.g. NuSMV

[Cimatti et al., 1999; Cimatti et al., 2002] targeted towards hardware verification. It
handles models expressed in a high-level description language called Promela (Process
Meta Language). Promela is much like any common imperative language including
local/global variables, conditional statements, loops, etc. It has also been enriched
with non-determinism, inspired by Dijkstra’s guarded command language [Dijkstra,
1975]. In Promela, models are described as a set of possibly dynamically instantiated
processes (proctype) running in parallel, communicating with one another, either syn-
chronously through rendez-vous, or asynchronously using buffered message passing or
shared variable manipulation. Spin can handle efficiently very large models and has
been successfully used to find logical errors in a large number of distributed systems,
like e.g. operating systems, communication protocols, concurrent algorithms, etc. It
enjoys a large user base, and exploits state-of-the-art technologies developed over the
years. Spin’s model checking algorithm is based on the automata-based approach pro-
posed in [Vardi and Wolper, 1986], as explained in Chapter 1. The state space is
built on-the-fly, thus allowing to only compute the portion of the state space that is
needed to prove, or disprove, a property. In addition, Spin applies a technique called
partial order reduction [Godefroid, 1996; Valmari, 1993]. This technique is based on
the observation that, in concurrent systems, a given LTL formula is often insensitive
to the order in which some concurrent actions occur. Therefore, only examining one
of the possible interleavings of these actions is enough to decide whether or not this
property holds on the model. This technique is very effective at reducing the size of the
explored state space, and therefore the time and memory needed for model checking.
Spin also allows the use of compact data structures, similar to BDDs [Bryant, 1992],
to represent sets of states. It is worth mentioning however that this representation is
used for storage purpose only. Indeed, the exploration is done through an explicit-state
algorithm, meaning that each state in the set is explored individually, as opposed to a
symbolic-state algorithm [McMillan, 1993], where the entire set is explored as a whole
symbolically. For an in-depth description of Promela in particular, and Spin in gen-
eral, we refer the reader to [Holzmann, 2004]. A short overview can also be found in
[Holzmann, 1997].

The first thing to do, in order to verify LTL properties with Spin, is to translate the
dSL program P into an equivalent Promela model. This can easily be done using the
bounded semantics presented in the previous section. In fact, this semantics allows an
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almost immediate translation. As expected, each global variable x of the dSL program
is declared as a Promela variable. Moreover, an additional vector tilde_x[N_SITES]

is declared for the tilded copies of x. Finally, for each event e, an internal e_old_cond
(corresponding to ce in the semantics) is declared to detect rising edges of the condi-
tion. The communication channels φi are directly translated in Promela as a vector of
channels phi_i[N_SITES] of size Γ. Each local process in the semantics is translated
into a Promela proctype executing its input-process-output behaviour. The input and
output phases are left empty at first, and have to be written manually, depending on
the environment. The processing phase starts with the treatment of all the events
localized on site i. Then, a non deterministic number of messages from incoming com-
munication channels are treated. Finally, sequences are treated. For this purpose, for
each sequence s, two variables s_site and s_pc are declared to model respectively the
site on which s is being currently executed and its program counter. The details of
this translation are quite technical and will be therefore omitted here. However, for
the interested reader, a simple example of dSL program and its corresponding Promela

model is given in Appendix C.
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Chapter

4
Testing dSL Programs

« Beware of bugs in the above code;
I have only proved it correct, not tried it. »

Donald Knuth

M
odel checking, as we have seen in Chapter 3, can be used to check tem-
poral properties on dSL programs. However, due to the complexity of its
semantics in general, and its distributed nature in particular, when deal-

ing with large industrial applications, the designer is often faced with the unavoidable
state explosion problem. This problem comes from the fact that the size of the model
grows exponentially in the number of processes of the system. The size of the model
therefore explodes and generally prevents the designer from exhaustively verifying the
whole system, even with efficient exploration techniques such as partial order reduction
[Godefroid, 1996; Valmari, 1993] or symbolic model checking [McMillan, 1993]. Fur-
thermore, even if a complete model checking is possible, it is not a universal solution.
Indeed, as its name indicates, model checking only works on a model of the system,
which can differ from the actual system itself. This is particularly so when consid-
ering the environment, which is, more often than not, difficult to model accurately.
The real environment often exhibits unpredicted behaviors that have not been taken
into account in the model. Consequently, the absence of errors in the model does not
necessarily imply the absence of errors in the actual system. If the model checking
does not terminate, or if the designer simply wants additional validation on the actual
system, he can turn to testing, which can unfortunately not guarantee that a system is
completely bug-free, but if achieved on a large number of test-cases (e.g. covering most
of the system’s functionalities), can give a reasonable confidence in its correctness.
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(a) Centralized system (b) Distributed system

Figure 4.1 - Centralised vs. Distributed system observation

The first step to test a property is instrumentation, i.e. the system under test
is instrumented to emit events relevant for the given property1. This instrumented
system is then executed, and the emitted events are observed by a separate process,
called the observer or monitor. This observation is traditionally called a trace, which
is analysed to determine whether or not the tested property is satisfied. This analysis
can be done either offline, i.e. after the complete trace has been recorded, or online,
i.e. while the system under test is running. When dealing with centralized systems,
determining whether the property holds or not is generally quite simple. Indeed, in this
case, all the events are emitted by a single process and are, as a consequence, totally
ordered. In distributed systems, however, it is not that simple. Indeed, as illustrated
in Figure 4.1, in the distributed case, the events are emitted by several processes.
Two events emitted by concurrent processes are in general not always ordered. In
a simple approach, one can assume that the events occurred in the order in which
they are observed. However, this order does not necessarily cöıncide with the actual
order in which those events occurred. In the predictive approach [Sen et al., 2004a],
communications between concurrent processes are exploited in the instrumentation
step, in order to obtain a partial order, instead of a total order. In this approach, the
analysis consists in determining if the property holds for every total order compatible
with the observation.

In this chapter, we examine how to apply this approach to test distributed con-
current systems in general, and dSL programs in particular. We start, in Section 4.1,
by explaining how a partial order on the events of the system can be obtained using
vector clocks [Mattern, 1989]. Then, in Section 4.2, we introduce a formal model to
capture this partial order, namely the model of partial order traces. We then explain
in Section 4.3, how to specify properties on this model using classical formal logics.

1The notion of event here is to be understood in a larger sense than in Chapters 2 and 3



Testing dSL Programs 89

We examine both non-temporal and temporal properties and, in each case, formalize
the corresponding analysis problem, i.e. determining if a given partial order trace sat-
isfy a given property. Finally, we conclude this chapter, in Section 4.4, with a short
discussion. The content of this chapter is based on a joint work with Thierry Massart
and Laurent Van Begin, accepted for publication [Massart et al., 2007].

4.1 Instrumentation

In a centralized system, it is straightforward to tell if an event precedes another one,
since all events are emitted by the same process. A simple logical clock, counting the
number of events, can therefore be used to time-stamp each event. Determining the
order of two events can then simply be done by comparing the values of their respective
clocks. In a distributed system, however, only events emitted by the same process, are
ordered, while concurrent events are, in general, not. There is one exception where
additional ordering information can be obtained, that is when the concurrent processes
communicate. In this case, as mentioned in the introduction, the communication
scheme can be used to obtain a partial order on the events of the system. In practice,
vectors of logical clocks, called vector clocks, can be used to time-stamp the events of
the system. Determining the order of two events then amounts to a component-wise
comparison of their respective vector clocks. If the clocks are incomparable, like e.g.
〈0, 1〉 and 〈1, 0〉, then this means that the events are concurrent, i.e. the exact order
in which they occurred cannot be determined. Formally, vector clocks are defined as
follows.

Definition 4.1 (Vector Clocks)

Given a poset 〈X,v〉, a vector clock mapping of width n is a function vc ∈ X 7→ Nn,
such that:

∀x, x′ ∈ X : (x v x′)⇔ (vc(x) ≤ vc(x′))

In practice, for a distributed system composed of k processes, the partial order
on events is represented using a vector clock mapping of width k. The method for
computing this vector clock mapping depends on the communication scheme used in
the system. As we have seen in Chapter 3, systems programmed in dSL communicate
via message passing. Therefore, we review, in Section 4.1.1 an algorithm for message
passing programs. However, we want the techniques and models used in this work to
be as general as possible. That is why, we also review, in Section 4.1.2, an algorithm
for programs manipulating shared variables.
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input : an event e of process Pi, the current vector clock vi ∈ Nk of Pi
output : the vector clock vi after the occurrence of e
begin1

if e is a relevant event then2

vi[i] := vi[i] + 13

if e is the sending of a message m to process Pj then4

send 〈m, vi〉 to Pj instead of m5

else if e is the reception of a message 〈m, v〉 then6

forall j ∈ [1, k] do7

vi[j] := max≤(vi[j], vm[j])8

if e is a relevant event then9

send 〈e, vi〉 to the observer10

end11

Algorithm 4.1 - Mattern’s vector clock algorithm for message passing program

4.1.1 Message Passing Programs

In a system where the processes communicate asynchronously via message passing,
we can ascertain that the sending of a message always precedes its reception. Using
this additional information, a partial order, known as the happened-before relation
[Lamport, 1978], can be obtained. This relation is defined as follows.

Definition 4.2 (Happened-Before Relation [Lamport, 1978])

The happened-before relation is the smallest transitive binary relation on the
events of the systems satisfying the following two conditions:

(i) if e and e′ are events emitted from the same process, and if e comes before
e′, then and e happened-before e′

(ii) if e is the sending of one message by one process, and e′ is the reception of
that same message by another process, then e happened-before e′.

The vector clock mapping for this happened-before relation can be obtained using
the well-known algorithm by Mattern [Mattern, 1989]. In this algorithm, each process
Pi maintains its own vector clock vi ∈ Nk, where k is the number of processes in the
system. At any given time during the execution of the program, vi[j] is used to store the
number of events from process Pj that process Pi is aware of, i.e. the number of events
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P1 e1,1

[
1
1
0
0

]
e1,2

[
2
1
0
0

]

P2 e2,1

[
0
1
0
0

]
e2,2

[
0
2
0
0

]
e2,3

[
2
3
3
1

]

P3 e3,1

[
0
0
1
1

]
e3,2

[
2
1
2
1

]
e3,3

[
2
1
3
1

]

P4 e4,1

[
0
0
0
1

]
e4,2

[
0
0
0
2

]

m1

m2

m3

m4

Figure 4.2 - Execution of a message passing program with vector clock mapping

that happened-before the most recent event of process Pi. In particular, vi[i] gives
the number of events of process Pi that already occurred. Initially, each component
of vi is set to 0. Then, when an event e occurs on process Pi, its vector clock vi is
updated as described in Algorithm 4.1. First, if e is a relevant event, then vi[i] is
incremented, indicating that a new event as occurred in process Pi (lines 2–3). Then,
if e corresponds to the sending of a message m, the vector clock vi is piggybacked along
with it (lines 4–5). On the other hand, if e corresponds to the reception of a message
m, tagged with a vector clock vm, then vi is set to the component-wise maximum of vi
and vm, to take into account the fact that any event preceding the sending of m should
also precede e (lines 6–8). Finally, after this update, again if e is relevant, a message
〈e, vi〉 is sent to the observer (lines 9–10). The vector clock mapping vc is then built
by the observer using these messages. More precisely, we have that for any message
〈e, v〉 received by the observer, vc(e) def= v.

Example 4.1

Figure 4.2 shows a sample execution, taken from [Mattern, 1989], of a message
passing program with 4 processes, and the vector clock mapping obtained using
Mattern’s algorithm. In this diagram, e m−→ e′ indicates that e is the sending of
a message m, and e′ is its reception. Consider, for instance, events e4,1 and e2,3.
Those events are ordered since e4,1

m2−−→ e3,1, e3,1 comes before e3,3 on process P3,
and e3,3

m4−−→ e2,3. Note that their respective vector clocks are also ordered.

This algorithm was later extended by Fidge to account for dynamic process cre-
ation. We refer the reader to [Fidge, 1991] for more details on that.
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input : an event e of process Pi, the current vector clock vi ∈ Nk of Pi, the
access/write vector clocks va(x)/vw(x) for each shared variable x

output : the vector clock vi after the occurrence of e
begin1

if e is a relevant event then2

vi[i] := vi[i] + 13

forall shared variable x that is read by e do4

forall j ∈ [1, k] do5

vi[j] := max≤(vi[j], vw(x)[j])6

va(x)[j] := max≤(vi[j], va(x)[j])7

if e is a write to a shared variable x then8

forall j ∈ [1, k] do9

vi[j] := max≤(vi[j], va(x)[j])10

vw(x) := va(x) := vi11

if e is a relevant event then12

send 〈e, vi〉 to the observer13

end14

Algorithm 4.2 - Sen’s vector clock algorithm for multithreaded program

4.1.2 Shared Variable Programs

In a system where processes communicate by manipulating shared variables, a similar
idea can be applied. In this case, we can ascertain that each write to a shared variable
x should precede every subsequent access to x (read or write). Using this idea, a vector
clock algorithm was proposed by Sen et al. [Sen et al., 2003]. For that purpose, two
additional vector clocks va(x), vw(x) ∈ Nk are introduced for each shared variable x of
the program. Intuitively va(x), respectively vw(x), is the vector clock corresponding
to the most recent access, respectively write, to a shared variables x. At any given
time during the algorithm, va(x)[j], respectively vw(x)[j], is used to store the number
of events of process Pj that precedes the most recent event of process Pi that accessed,
respectively wrote to, variable x. On top of that, similarly to Mattern’s algorithm,
each process Pi maintains its own vector clock vi ∈ Nk. Initially, each component of
vi, as well as va(x) and vw(x) for each shared variable x, is set to 0. When an event e
occurs on process Pi, the vector clock vi and the vector clocks of the shared variables
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var x = -1;
var y = 0;
var z = 0;

process P1() {
x := x + 1;
y := x + 1;

}

process P2() {
z := x + 1;
x := x + 1;

}

P1 e1,1

[
1
0

]
x := 0

e1,2

[
2
0

]
y := 1

P2 e2,1

z := 1

[
1
1

]
e2,2

[
1
2

]
x := 1

(a) The program (b) The execution

Figure 4.3 - Execution of a shared variable program with vector clock mapping

are updated as described in Algorithm 4.2. First, if e is a relevant event, then vi[i] is
incremented, as in the message passing case (lines 2–3). Then for each shared variable
x that is read by e, the vector clock vi is set to the component-wise maximum of vi
and vw(x) (line 6), to take into account the fact that last event that wrote to x should
precede e. Moreover, since e is an access to x, the vector clock va(x) is updated with
the component-wise maximum of vi and va(x) (line 7). Next, if e is a write to a shared
variable x, then the vector clock vi is set to the component-wise maximum of vi and
va(x) (lines 9–10), so as to force e to precede any future access to x. Moreover, since
e is both a write and an access to x, the two corresponding vector clocks are updated
with vi (line 11). Finally, after this update, similarly to the message passing case, the
message 〈e, vi〉 is sent to the observer, which can then build the vector clock mapping
for the execution.

Example 4.2

Figure 4.3(b) shows a sample execution, taken from [Sen et al., 2003], of the shared
variables program of Figure 4.3(a) with 2 processes, and the vector clock mapping
obtained using the algorithm presented above. In this diagram, each event e is
decorated with the observed assignment. Consider, for instance, events e1,1 and
e2,2. Those events are ordered since e1,1 assigns the shared variable x, which is
used in the assignment of e2,1 (z := 1), and since e2,1 comes before e2,2 on process
P2. Notice that their respective vector clocks are also ordered.
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4.2 Partially Ordered Trace

Using the instrumentation technique presented in the previous section, the observer
can build the partial order corresponding to a distributed execution. The next step
consists in analyzing this partial order execution in order to determine whether it
satisfies a given property. For that purpose, we introduce the formal model of partial
order trace, po-trace for short, where events are abstracted as predicate transformers,
i.e. atomic actions modifying the truth value of one or more boolean propositions.

4.2.1 Definition

Essentially, a po-trace is a poset of events partitioned into several subsets called pro-
cesses, along with an update function indicating for each event e, which propositions
are modified by e, as well as how they are modified. Furthermore a po-trace also
includes the set of propositions that are initially true. The formal definition follows.

Definition 4.3 (Partial Order Trace)

A partial order trace T over a set of propositions P is a tuple 〈E, V0, δ,�〉 where:

• E is a finite set of events partitioned into k disjoint subsets Pi;

• V0 ⊆ P is the set of propositions initially true;

• δ ∈ E × B 7→ 2P is the update function s.t. ∀e ∈ E : δ(e, tt) ∩ δ(e,ff) = ∅,

• �⊆ E × E is a partial order on E such that ∀e, e′ ∈ E the following holds:

(i) (∃i ∈ [1, k] : {e, e′} ⊆ Pi)⇒ (e � e′ ∨ e′ � e)
(ii) ((δ(e, tt) ∪ δ(e,ff)) ∩ (δ(e′, tt) ∪ δ(e′,ff)) 6= ∅)⇒ (e � e′ ∨ e′ � e)

In the previous definition, a proposition p ∈ δ(e, b) indicates that e sets the truth
value of p to b. Condition (i) on � ensures that two events belonging to the same
process should be ordered and condition (ii) enforces that if the truth value of at least
one proposition is modified by two events, then those events should be ordered as well.
Note that, because of condition (i) in Definition 4.3, for any process Pi ⊆ E, 〈Pi,�〉 is
also a totally ordered set. Given a po-trace T = 〈E, V0, δ,�〉 over a set of propositions
P, a set of events F ⊆ E, and a proposition p ∈ P, we define the set of events of F
that affect the truth value of p as F/p

def= {e ∈ F | p ∈ δ(e, tt) ∪ δ(e,ff)}. Note that
F/p = F ∩ E/p. Because of condition (ii) in Definition 4.3, for any subset F ⊆ E and
p ∈ P, 〈F/p,�〉 is a totally ordered set. If there is only one process, we say that T is
a total order trace since 〈E,�〉 is a totally ordered set by condition (i). The size of a
po-trace T = 〈E, V0, δ,�〉 is defined as |T | def= max≤({|E| , |�|}).
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P1
e1,1

p := ff

e1,2

q, r := tt, tt

e1,3

r, t := ff, tt

C

P2
e2,1

s := tt

e2,2

s, q := ff, ff

with V0 = {p}

Figure 4.4 - Example of po-trace

Example 4.3

Figure 4.4 shows a po-trace T = 〈E, V0, δ,�〉 over the set of propositions {p, q, r, s}.
Events are depicted in the Hasse diagram of the poset 〈E,�〉, and are decorated
with multiple variable assignments to represent δ. For instance, if we consider the
event e1,2, “q, r:= tt, tt” indicates that δ(e1,2, tt) = {q, r} and that δ(e1,2,ff) = ∅.
In this picture, a cut C = {e1,1, e1,2, e2,1} has been highlighted in gray.

4.2.2 Semantics

The semantics of a po-trace T = 〈E, V0, δ,�〉 is given as a Kripke structure KT . Each
state of KT is a downward closed subset of events called a cut, or global state. In this
Kripke structure, each cut is labelled with the set of propositions that are true after
executing the events it contains. The formal definition follows.

Definition 4.4 (Semantics of Partial Order Traces)

The semantics of a po-trace T = 〈E, V0, δ,�〉, is a Kripke structure KT =
〈Q, I,L,−→〉 where:

• Q def= DC�(E)

• I def= {∅}
• L def= λC · {p ∈ P | (C/p = ∅ ∧ p ∈ V0) ∨ (C/p 6= ∅ ∧ p ∈ δ(max�(C/p), tt)}
• −→def= {〈C,C ∪ {e}〉 ∈ Q×Q | (C ∈ Q) ∧ (e ∈ E \ C)}

In the previous definition, a propositions p ∈ P is contained in L(C) either (i)
if C does not contain any event updating the truth value of p (C/p = ∅) but p is
initially true (p ∈ V0), or (ii) if C contains some event(s) updating the truth value of
p (C/p 6= ∅) and the most recent one (max�(C/p)) sets p to true. A local state of a
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{p}

∅ {p, s}

{q, r} {s}

{q, t} {q, r, s}

{q, s, t} {r}

{t}

C

r, t := ff, tt

q, r := tt, tt

p := ff

s := tt

s, q := ff, ff

Figure 4.5 - Semantics of the po-trace of Figure 4.4

process Pi is a subset Si ⊆ Pi such that ↓Si ∩ Pi = Si. Given a cut C ∈ Q, the local
state of process Pi in C is defined as Pi ∩C. Moreover, the set of events enabled in C
is defined as enabled(C) def= {e ∈ E \ C | ↓e \ {e} ⊆ C}. Intuitively, enabled(C) gives
the set of events that can be triggered from the cut C. This is formalized hereafter.

Proposition 4.1

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, we have that:

∀C,D ∈ Q : (C −→ D)⇔ (∃e ∈ enabled(C) : D = C ∪ {e})
Proof

We prove both direction:

⇒ Assume that C −→ D. By Definition 4.4, we know that ∃e ∈ E \C such that
D = C ∪ {e}. Moreover, since D ∈ Q = DC�(E) and since e ∈ D, we have
that ↓e ⊆ D. It follows directly that ↓e \ {e} ⊆ D \ {e} = C. Therefore, by
definition of enabled(C), we have that e ∈ enabled(C).

⇐ Assume the existence e ∈ enabled(C) such that D = C ∪{e}. By hypothesis,
we know that C ∈ Q = DC�(E). We also know, by definition of enabled(C)
that ↓e\{e} ⊆ C. It follows directly that ↓e ⊆ C ∪{e}. Hence, we have that
C ∪ {e} = D ∈ DC�(E) = Q, and by Definition 4.4, that C −→ D.
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Example 4.4

Figure 4.5 shows the semantics of the po-trace of Figure 4.4, where, the triggerings
of events are indicated with dashed lines. Furthermore, the cut C, highlighed in
gray in Figure 4.4 is highlighted in bold. In this cut, we have that enabled(C) =
{e1,3, e2,2}. Finally, the local state of process P1, respectively P2, in C is {e1,1, e1,2},
respectively {e2,2}.

In the semantics of a po-trace, the reflexive and transitive closure of the transition
relation coincides with set inclusion.

Proposition 4.2

Given a po-trace T = 〈E, V0, δ,�〉 such that KT = 〈Q, I,L,−→〉, we have that:

∀C,D ∈ Q : (C ⊆ D)⇔ (C ; D)
Proof

We prove both directions.

⇒ Assume that C ⊆ D. We prove by induction on |D \ C| that C ; D.

Initial Step If |D \ C| = 0, we have that C = D and the result is immediate.

Induction Step If |D \ C| = n > 0, we have that D \ C 6= ∅. Let e ∈
Min�(D \ C) be a minimal elements of D \ C. We know that e ∈ D ∈
Q = DC�(E). Therefore, we have that ↓e ⊆ D. We also know that e ∈
Min�(D\C), which implies that ∀e′ ∈ D\C : (e′ � e)⇒ (e = e′). Therefore,
it must be that ∀e′ ∈ E :

(
(e′ � e)∧ (e′ 6= e)

)⇒ (e′ ∈ C). It follows directly
that e ∈ enabled(C), and by Propositions 4.1, that C −→ C ∪ {e}. Finally,
since C ∪ {e} ⊆ D, by induction, we have that C ∪ {e}; D, which in turn,
implies that C ; D.

⇐ Assume on the other hand, that C ; D. By definition of ;, there exists a
sequence of cut C0C1 . . . Cn such that C = C0, Cn = D and that Ci −→ Ci+1

for any i ∈ [0, n). By Definition 4.4, it follows that for any i ∈ [0, n),
we have Ci ⊆ Ci+1. Finally, by transitivity of ⊆, we can conclude that
C = C0 ⊆ Cn = D.

Note, in particular, that given a cut C ∈ Q, since ∅ ⊆ C ⊆ E, we have that
∅ ; C ; E, or in other words that C belongs to at least one run of KT . In fact,
〈Q,;〉 is a complete distributive lattice.
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Theorem 4.1 (Lattice of Cuts)

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, we have that 〈Q,;〉 is
a complete distributive lattice.

Proof

We know, by Definition 4.3, that E is finite, hence by Theorem 1.1, we have that
〈DC⊆(E),⊆〉 = 〈Q,⊆〉 is a complete distributive lattice. Finally, using Proposi-
tions 4.2, we know that ; and ⊆ are equivalent on Q. Hence, we conclude.

4.3 Specification

In Section 4.1, we have seen how to instrument a distributed system in order to obtain
a partial order on the events of this system. We also introduced, in Section 4.2, a
model to capture this partial order, namely partial order traces. We now explain
how to exploit this model in order to specify properties using classical formal logics
and define the associated trace analysis problem. First, in Section 4.3.1, we focus
our attention on non-temporal properties and explain how they can be specified using
PBL formulae. Next, in Sections 4.3.2 and 4.3.3, we turn our attention to temporal
properties expressed respectively in LTL and CTL.

4.3.1 Non Temporal Properties

Non temporal properties are essentially reachability questions, i.e. during a distributed
execution, does the system go through a global state satisfying some given constraint
called a predicate. This problem is known as the predicate detection problem. In
our framework, since partial order traces are defined over boolean propositions, those
predicates can be expressed using PBL formulae. Formally, given a po-trace T =
〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, and a PBL formula ϕ, we say that T satisfies ϕ,
noted T |=P ϕ, if and only if [[ϕ]]TP 6= ∅, where [[ϕ]]TP = {C ∈ Q | L(C) |=P ϕ}. We can
then formalize the predicate detection problem as follows.

Definition 4.5 (Predicate Detection Problem)

Given a po-trace T over a set of propositions P and a PBL formula ϕ over P, the
predicate detection problem (PRED) consists in determining if T |=P ϕ.

This predicate detection problem is not an easy problem. Indeed, the number of
cuts in a given po-trace can be exponentially bigger than the number of events in
this trace. In fact, it was proven in [Chase and Garg, 1995] that this exponential
blowup cannot be avoided. More precisely, the authors proved that the predicate
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detection problem is NP-complete. We adapt the proof of [Chase and Garg, 1995] to
our framework. First we show that PRED is in NP.

Lemma 4.1 ([Chase and Garg, 1995])

The predicate detection problem is in NP.
Proof

We provide a non-deterministic polynomial algorithm. This algorithm works as
follows. First it guesses a subset C ⊆ E. Then, it checks that C ∈ Q. This can
be done in a time linear in |�| ≤ |T |, by checking for every pair 〈e, e′〉 ∈� that if
e′ ∈ C, then e ∈ C. Finally, the algorithm checks that L(C) |=P ϕ. This can be
done in a time linear in |ϕ| and in |C| ≤ |T | (for building L(C)).

Then, we prove NP-hardness.

Lemma 4.2 ([Chase and Garg, 1995])

The predicate detection problem is NP-hard.
Proof

We give a reduction from PBL-SAT. Given a PBL formula ϕ, we build a po-trace
Tϕ = 〈E, V0, δ,�〉 over prop(ϕ) as follows: (i) Tϕ has one process Pp

def= {ep} for
each proposition p appearing in ϕ, i.e. E def=

⋃
p∈prop(ϕ) Pp, (ii) the initial valuation

is empty, i.e. V0 = ∅, (iii) each event ep sets the corresponding proposition p to tt,
i.e. δ(ep, tt) def= {p} and δ(ep,ff) = ∅, and finally (iv) all events are concurrent, i.e.
� def= ∅. Then, assuming that KTϕ = 〈Q, I,L,−→〉, we prove that ϕ is satisfiable if
and only if T |=P ϕ. We prove both directions.
⇒ Assume the existence of V ⊆ P such that V |=P ϕ. Let us build a cut

C
def= {ep ∈ Eϕ | p ∈ V }. By Definition 4.4 of the semantics of po-traces, we

have that L(C) = V . It follows directly that L(C) |=P ϕ. We can therefore
conclude that [[ϕ]]TP 6= ∅ and therefore that T |=P ϕ.

⇐ Assume the existence of C ∈ Q such that L(C) |=P ϕ. We known that
L(C) ⊆ P, we can therefore directly conclude that ϕ is satisfiable.

It follows directly that the predicate detection problem is NP-complete.

Theorem 4.2 (Complexity of PRED [Chase and Garg, 1995])

The predicate detection problem is NP-complete.

Note that this NP-completeness arises from the distributed nature of our traces.
Indeed, on total order traces, the predicate detection problem can be solved in poly-
nomial time.
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Theorem 4.3 (Complexity of PRED for Total Order Traces)

The predicate detection problem is in PTIME for total order traces.
Proof

A total order trace T admits exactly one run ρ, since its events are totally ordered.
Moreover, by Definition 4.4, we have that |ρ| = |E|+1. This run therefore contains
only a polynomial number of cuts. Therefore, the predicate detection problem can
be solved by examining the cuts of the run and for each such cut C, determining if
L(C) |=P ϕ. For that, one has to compute the valuation L(C), which can be done
in polynomial time in |C| ≤ |T | by examining the events of C, and determine if
this valuation satisfies ϕ, which can be done in polynomial time in |ϕ|.

4.3.2 LTL Properties

We have seen in the previous section that non temporal properties are reachability
questions, i.e. does there exists a cut of the trace in which a given PBL formula holds.
Such reachability questions can easily be expressed in LTL using the G modality. More
precisely, given a po-trace T and a PBL formula ϕ, we could equivalently ask if G¬ϕ
is satisfied by T , i.e. if for all runs of T , ϕ is never satisfied. Indeed, if the answer
to this question is positive, that means that T does not contain any cut satisfying ϕ,
i.e. T 6|=P ϕ. However, if we want to do that, we need to formalize what it means
for a partial order trace to satisfy a LTL formula. This is not as trivial as it may
seem at a first glance. Indeed, even though the semantics of partial order traces
is defined in terms of Kripke structures, the traditional semantics of LTL, that was
presented in Chapter 1, cannot be used. This semantics was defined in the context of
model checking, in which execution traces are infinite propositional sequences that are
obtained from a Kripke structure modeling the entire system. In our case, however,
the Kripke structure comes from the semantics of a po-trace which represents only a set
of finite propositional sequences. We therefore need to adapt the classical semantics
to account for the finite nature of partial order traces.

Intuitively, in the infinite trace semantics, a LTL formula contains a safety part
and/or a liveness part. The safety part of the formula states that something bad
never happens. On the other hand, the liveness part states that something good
will eventually happen. In our context of finite propositional sequences, we need to
modify this interpretation so that it states that something good/bad eventually/never
happens within the finite portion of the execution that has been observed. This means,
for instance, that in every formula of the form ϕUψ, the right branch must be satisfied
before the end of the propositional sequence. The formal definition follows.
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Definition 4.6 (Semantics of LTL over Finite Sequences)

Given a set of propositions P, let ϕ,ψ be two LTL formulae over P, p ∈ P be a
proposition, σ ∈ (2P)+ be a finite non-empty propositional sequence over P and
i ∈ [0, |σ|) be a natural number. The satisfaction relation for LTL over finite
propositional sequences, noted |=F

L, is defined inductively as follows:

〈σ, i〉 |=F
L >

〈σ, i〉 |=F
L p iff p ∈ σ(i)

〈σ, i〉 |=F
L ¬ϕ iff 〈σ, i〉 6|=F

L ϕ

〈σ, i〉 |=F
L ϕ ∨ ψ iff 〈σ, i〉 |=F

L ϕ or 〈σ, i〉 |=F
L ψ

〈σ, i〉 |=F
L Xϕ iff i+ 1 < |σ| and 〈σ, i+ 1〉 |=F

L ϕ

〈σ, i〉 |=F
L ϕUψ iff there exists k ∈ [i, |σ|) such that 〈σ, k〉 |=F

L ψ

and for all j ∈ [i, k), 〈σ, j〉 |=F
L ϕ

Note in this semantics that in the last position of σ, i.e. when i = |σ| − 1, the
formula Xϕ does not hold, even for ϕ = >. In fact, it is easy to see that 〈σ, i〉 |= ¬X>
if and only if i = |σ| − 1.

Based on this semantics, we can formalize what it means for a partial order trace to
satisfy a LTL formula. Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, and a
LTL formula ϕ, we say that T satisfies ϕ, noted T |=L ϕ if and only if traces(KT ) ⊆ [[ϕ]]F

L,
where [[ϕ]]F

L

def= {σ ∈ (2P)+ | 〈σ, 0〉 |=F
L ϕ}. In other words, T satisfies ϕ if every finite

trace of KT satisfies ϕ. This leads us to the problem of determining whether a po-trace
T satisfies a LTL formula ϕ. Following the authors of [Jard et al., 1994], we refer to
this problem as the trace checking problem2.

Definition 4.7 (LTL Trace Checking Problem)

Given a po-trace T over a set of propositions P and a LTL formula ϕ over P, the
LTL trace checking problem (LTL-TC) consists in determining if T |=L ϕ.

Since the dual of the predicate detection problem can be solved using LTL, we
know that the LTL trace checking problem is at least as hard. In fact, as it turns
out, LTL-TC is coNP-complete. We first show, that LTL-TC is in coNP. For that, we
examine the problem of determining if a given finite propositional sequence σ satisfies
a LTL formula ϕ. This problem has been studied in [Markey and Schnoebelen, 2003],
and more extensively in [Markey, 2003] where the author present a polynomial time
algorithm.

2the term trace checking is also used in a slightly different context in [Augusto et al., 2003]
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Lemma 4.3 ([Markey and Schnoebelen, 2003])

Given a set of propositions P, determining if a finite non-empty propositional
sequence σ ∈ (2P)+ satisfies a given LTL formula ϕ, i.e. if 〈σ, 0〉 |= ϕ, is in PTIME.

Proof Sketch

The problem can be solved using dynamic programming, as presented in Algo-
rithm 4.3. This algorithm works as follows. It fills a boolean table t[i] with
i ∈ [0, |σ|), in such a way that t[i] is true if and only if 〈σ, i〉 |=F

L ϕ. This algorithm
computes one table of size |σ| for each sub-formulae of ϕ, and therefore has a time
complexity in O(|σ| × |ϕ|).

This complexity result can be used in turn to establish an upper bound on the
complexity of LTL-TC.

Lemma 4.4

The trace checking problem for LTL is in coNP.
Proof

We show equivalently that the dual problem of determining if T 6|=L ϕ is in NP. A
non-deterministic algorithm only has to guess finite traces of KT . This can be done
in polynomial time by executing an arbitrary sequence of events compatible with
� and compute the valuation at each step. Then, for each of those traces σ, the
algorithm checks if 〈σ, 0〉 |=F

L ¬ϕ, which can be done in polynomial time according
to Lemma 4.3. The algorithm return true if and only if a trace σ satisfying ¬ϕ
is found. Indeed, by Definition 4.6, 〈σ, 0〉 |=F

L ¬ϕ holds if and only if 〈σ, 0〉 6|=F
L ϕ.

Therefore such a run exists if and only if traces(KT ) 6⊆ [[ϕ]]F
L. Hence, we conclude.

Moreover, a direct consequence of Lemma 4.3 is that LTL-TC can be solved in
polynomial time for total order traces, since there is only one run to check.

Theorem 4.4 (Complexity of LTL-TC for Total Order Traces)

The trace checking problem for LTL is in PTIME for total order trace.
Proof

A total order trace T admits exactly one finite trace σ, since its set of events
is totally ordered. Determining if T |=L ϕ can then be done by checking that
〈σ, 0〉 |=F

L ϕ, which can be done in polynomial time according to Lemma 4.3.

We now turn our attention to the lower bound on the complexity of LTL-TC. For
that, once again, we consider the dual problem, and prove its NP-hardness.
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function satLTL(σ, ϕ)1

input : a finite sequence σ ∈ (2P)+ and a LTL formula ϕ
returns: a boolean table t such that ∀i ∈ [0, |σ|), t[i] is true iff 〈σ, i〉 |=F

L ϕ

begin2

if ϕ = > then3

for i := 0 to |σ| − 1 do t[i] := tt4

else if ϕ = p then5

for i := 0 to |σ| − 1 do t[i] := (p ∈ σ(i))6

else if ϕ = ¬ϕ1 then7

t1 := satLTL(σ, ϕ1)8

for i := 0 to |σ| − 1 do t[i] := ¬t1[i]9

else if ϕ = Xϕ1 then10

t1 := satLTL(σ, ϕ1), t[|σ| − 1] := ff11

for i := 0 to |σ| − 2 do t[i] := t1[i+ 1]12

else if ϕ = ϕ1 ∨ ϕ2 then13

t1 := satLTL(σ, ϕ1), t2 := satLTL(σ, ϕ2)14

for i := 0 to |σ| − 1 do t[i] := (t1[i] ∨ t2[i])15

else if ϕ = ϕ1 Uϕ2 then16

t1 := satLTL(σ, ϕ1), t2 := satLTL(σ, ϕ2)17

t[|σ| − 1] := t2[|σ| − 1]18

for i := |σ| − 2 downto 0 do19

t[i] := (t2[i] ∨ (t[i+ 1] ∧ t2[i]))20

returntt;21

end22

Algorithm 4.3 - Satisfaction of LTL formulae over finite sequences [Markey, 2003]
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Lemma 4.5

The trace checking problem for LTL is coNP-hard.
Proof

We show equivalently that the dual problem of determining if T 6|=L ϕ is NP-
hard. For that purpose, we reduce PRED. Given a po-trace T = 〈E, V0, δ,�〉 with
KT = 〈Q, I,L,−→〉 and a PBL formula ψ, we show that T 6|=L G¬ψ if and only if
T |=P ψ.

⇒ If T 6|=L G¬ψ, it means that there exists a trace σ ∈ traces(KT ) such that
〈σ, 0〉 6|=F

L G¬ψ, or equivalently that 〈σ, 0〉 |=F
L ¬G¬ψ = Fψ. It follows by

Definition 4.6, that there exists k ∈ [0, |σ|) such that 〈σ, k〉 |=F
L ψ. However,

since ψ is a PBL formula, we have that 〈σ, k〉 |=F
L ψ if and only if σ(k) |=P ψ.

Then, let ρ ∈ runs(KT ) be the run corresponding to σ, i.e. L(ρ) = σ. Since
ρ(k) ∈ Q and L(ρ(k)) = σ(k), we can conclude that ∃C ∈ Q : L(C) |=P ψ

and therefore that T |=P ψ.

⇐ If T |=P ψ, we have that ∃C ∈ Q : L(C) |=P ψ. Then, since ∅ ⊆ C ⊆ E,
by Lemma 4.2, we have that ∅ ; C ; E. We can therefore conclude
that there exists a finite trace σ ∈ traces(KT ) such that L(C) occurs in σ,
i.e. ∃k ∈ [0, |σ|) : σ(k) = L(C). By Definition 4.6, it follows directly that
〈σ, 0〉 |=F

L Fψ = ¬G¬ψ, or equivalently that 〈σ, 0〉 6|=F
L G¬ψ. Hence, we

conclude.

As a direct consequence of Lemma 4.4 and Lemma 4.5, the LTL trace checking
problem is coNP-complete.

Theorem 4.5 (Complexity of LTL-TC)

The trace checking problem for LTL is coNP-complete.

4.3.3 CTL Properties

An alternative approach to specifying temporal properties is to use the branching time
temporal logic CTL instead. This approach also generalizes the predicate detection
problem. Indeed, reachability questions can easily be encoded in CTL using the EF

modality. More precisely, given a po-trace T and a PBL formula ϕ, we could equivalently
ask if EFϕ is satisfied by T , i.e. if there exists a run of T in which ϕ eventually holds,
which is exactly the same thing as asking if T contains a cut in which ϕ holds. However,
similarly to what we faced for LTL, we need to adapt the traditional semantics of CTL
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in order to take into account the finite nature of partial order traces. In this case, we
directly define the semantics over partial order traces. The formal definition follows.

Definition 4.8 (Semantics of CTL over Partially Ordered Traces)

Given a set of propositions P, let ϕ,ψ be two CTL formulae over P, p ∈ P be a
proposition, T = 〈E, V0, δ,�〉 be a partial order trace such that KT = 〈Q, I,L,−→〉,
and C ∈ Q be a cut of T . The satisfaction relation for CTL over partial order traces,
noted |=T

C, is defined inductively as follows:

〈T,C〉 |=T
C >

〈T,C〉 |=T
C ¬ϕ iff 〈T,C〉 6|=T

C ϕ

〈T,C〉 |=T
C p iff p ∈ L(C)

〈T,C〉 |=T
C ϕ ∨ ψ iff 〈T,C〉 |=T

C ϕ or 〈T,C〉 |=T
C ψ

〈T,C〉 |=T
C EXϕ iff there exists D ∈ post(C) such that 〈T,D〉 |=T

C ψ

〈T,C〉 |=T
C AXϕ iff for all D ∈ post(C), 〈T,D〉 |=T

C ψ

〈T,C〉 |=T
C E(ϕUψ) iff there exists ρ ∈ runs(C) and k ∈ [0, |ρ|) such that

〈T, ρ(k)〉 |=T
C ψ and for all j ∈ [0, k), 〈T, ρ(j)〉 |=T

C ϕ

〈T,C〉 |=T
C A(ϕUψ) iff for all ρ ∈ runs(C), there exists k ∈ [0, |ρ|) such that

〈T, ρ(k)〉 |=T
C ψ and for all j ∈ [0, k), 〈T, ρ(j)〉 |=T

C ϕ

Based on this semantics, we can easily formalize the CTL trace checking problem.
Given a trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, and a CTL formula ϕ, we say
that a po-trace T satisfies a CTL formula ϕ, noted T |=C ϕ, if and only if ∅ ∈ [[ϕ]]TC ,
where [[ϕ]]TC

def= {C ∈ Q | 〈T,C〉 |=T
C ϕ}. In other words, T satisfies ϕ if the formula is

satisfied in the initial cut of T , i.e. the empty cut. The trace checking problem for CTL

(CTL-TC) can then be formalized as follows.

Definition 4.9 (CTL Trace Checking Problem)

Given a partial order trace T over a set of propositions P, and a CTL formula ϕ over
P, the CTL trace checking problem (CTL-TC) consists in determining if T |=C ϕ.

As we have seen previously, the predicate detection problem can be encoded in
CTL. Therefore, the CTL trace checking problem is at least as hard. In fact, it is
even harder. Indeed, as it turns our, CTL-TC is PSPACE-complete. We first show the
complexity upper bound.
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Lemma 4.6

The computational tree logic trace checking problem is in PSPACE.
Proof

We exhibit an algorithm that recursively determines, given a cut C of T and a
CTL formula ϕ, if 〈T,C〉 |=T

C ϕ. The algorithm works as follows. If ϕ = >, the
algorithm directly answers positively. If ϕ = p, the algorithm returns true if and
only if p ∈ L(C). This can be done in polynomial time, hence in polynomial space,
by examining the events of C. If ϕ = ¬ϕ1 or ϕ = ϕ1 ∨ ϕ2, the algorithm first
recursively determines whether the subformulae of ϕ hold in C, and then use the
semantics, presented in Definition 4.8, to answer. If ϕ = EXϕ1 or ϕ = AXϕ1, the
algorithm recursively determines in each successor of C if the formula ϕ1 holds,
and then answers according to the semantics. If ϕ = E(ϕ1 Uϕ2), the algorithm
answers by exploiting the fact that ϕ is equivalent to ϕ2 ∨ (ϕ1 ∧ EXϕ). If ϕ =
A(ϕ1 Uϕ2), the algorithm answers by exploiting the fact that ϕ is equivalent to
ϕ2 ∨ (ϕ1 ∧ AXϕ) if C 6= E, and to ϕ2 otherwise. In this algorithm, each context
contains only one cut and one formula. The size of each context is therefore
bounded by |E|+ |ϕ|. Moreover, at each recursive call, either the size of C strictly
increases or the size of ϕ strictly decreases. Since |C| ≤ |E| and |ϕ| ≥ 1, the
algorithm will need at most (|E \ C| + 1) × |ϕ| nested recursive calls. We can
therefore conclude that the algorithm can determine if 〈T,∅〉 |=T

C ϕ in a space
bounded by

(
(|E|+ 1)× |ϕ| )× ( |E|+ |ϕ| ), thus establishing the result.

Then, we turn our attention to PSPACE-hardness. In order to prove that, we reduce
QBL-SAT. Given a fully quantified QBL formula ϕ, we build a partial order trace
Tϕ = 〈E, V0, δ,�〉 over a set of new propositions {qp,tt, qp,ff | p ∈ prop(ϕ)} and a CTL

formula ψϕ over this set such that ∃V ⊆ P : V |=Q ϕ if and only if Tϕ |=C ψϕ. The
partial order trace is build as follows: (i) the set of events is composed of two events
for each propositions p appearing in ϕ, i.e. E

def= {ep,b | p ∈ prop(ϕ) ∧ b ∈ B}, (ii)
none of the propositions are initially satisfied, i.e. V0 = ∅, (iii) each event ep,b sets the
corresponding propositions qp,b to tt, i.e. ∀ep,b ∈ E : (δ(ep,b, tt) = {qp,b})∧ (δ(ep,b,ff) =
∅), and finally (iv) none of the events are ordered, i.e. � def= ∅. The CTL formula ψϕ
is defined inductively as follows:

ψϕ
def=


ϕ[p/value(p, tt)] if ϕ is a PBL formula
EX
(

(value(p, tt) ∨ value(p,ff)) ∧ ψϕ1

)
if ϕ = ∃pϕ1

AX
(

(value(p, tt) ∨ value(p,ff))⇒ ψϕ1

)
if ϕ = ∀pϕ1

where value(p, b) def= (qp,b ∧ ¬qp,b).
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The intuition behind this reduction is the following. Decisions about the truth
value of the propositions appearing in ϕ are encoded in the cuts of the po-trace. If a
cut C contains no event about p, i.e. {ep,tt, ep,ff} 6⊆ C, it means that the truth value of p
has not been decided yet. On the other hand, if C contains an event ep,b, it means that
the boolean value b has been assigned to p. If C contains both ep,tt and ep,ff , it means
that contradictory decisions have been taken about p. With this encoding, starting
from the initial cut ∅, where no decisions have been taken (since V0 = ∅), we can
model the decision of assigning a boolean value b to a proposition p, by triggering the
corresponding event ep,b. The CTL formula is then used to encode the order in which
the decisions have to be taken, i.e. the order dictated by the quantifiers appearing in
ϕ. For that purpose, existential, respectively universal, quantifiers are modelled using
EX, respectively AX.

Lemma 4.7

A fully quantified QBL formula ϕ is satisfiable if and only if 〈Tϕ,∅〉 |=T
C ψϕ.

Proof

We proceed by induction on |prop(ϕ)|.

Initial Step If |prop(ϕ)| = 0, we have that ϕ is a boolean combination of >’s,
i.e. ϕ is either equivalent to > or ⊥. In both cases, by construction, we have that
ψϕ = ϕ. It follows immediately that ϕ is satisfiable if and only if 〈Tϕ,∅〉 6|=T

C ψϕ.

Induction Step We have to consider two cases:

(i) The first case to consider is when ϕ = ∃pϕ1. In this case, since ϕ is fully
quantified, by Definition 1.4, we have that ϕ is satisfiable if and only if
ϕ1[p/>] or ϕ1[p/⊥] is satisfiable. By induction, this holds if and only if
〈Tϕ1[p/>],∅〉 |=T

C ψϕ1[p/>] or 〈Tϕ1[p/⊥],∅〉 |=T
C ψϕ1[p/⊥]. By construction of ψϕ,

this is equivalent to 〈Tϕ1[p/>],∅〉 |=T
C ψϕ1 [qp,tt/>, qp,ff/⊥] or 〈Tϕ1[p/⊥],∅〉 |=T

C

ψϕ1 [qp,tt/⊥, qp,ff/>] and by construction of Tϕ to 〈Tϕ, {ep,tt}〉 |=T
C ψϕ1 or

〈Tϕ, {ep,ff}〉 |=T
C ψϕ1 . Then, for any b ∈ B, since ep,b is the only event capable

of satisfying value(p, b), we can deduce that 〈Tϕ, {ep,b}〉 |=T
C ψϕ1 holds if and

only if 〈Tϕ,∅〉 |=T
C EX(value(p, b) ∧ ψϕ1). Therefore, ϕ is satisfiable if and

only if 〈Tϕ,∅〉 |=T
C EX(value(p, tt) ∧ ψϕ1) or 〈Tϕ,∅〉 |=T

C EX(value(p,ff) ∧
ψϕ1). By Definition 4.8, this is equivalent to 〈Tϕ,∅〉 |=T

C EX(value(p, tt) ∧
ψϕ1) ∨ EX(value(p,ff) ∧ ψϕ1), and again by Definition 4.8, to 〈Tϕ,∅〉 |=T

C

EX
(
(value(p, tt) ∨ value(p,ff)) ∧ ψϕ1

) def= ψϕ.
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Proof (cont’d)

(ii) The second case to consider is when ϕ = ∀pϕ1. In this case, since ϕ

is fully quantified, by Definition 1.4, we have that ϕ is satisfiable if and
only if ϕ1[p/>] and ϕ1[p/⊥] is satisfiable. By induction, this holds if and
only if 〈Tϕ1[p/>],∅〉 |=T

C ψϕ1[p/>] and 〈Tϕ1[p/⊥],∅〉 |=T
C ψϕ1[p/⊥]. By con-

struction of ψϕ, this is equivalent to 〈Tϕ1[p/>],∅〉 |=T
C ψϕ1 [qp,tt/>, qp,ff/⊥]

and 〈Tϕ1[p/⊥],∅〉 |=T
C ψϕ1 [qp,tt/⊥, qp,ff/>] and by construction of Tϕ to

〈Tϕ, {ep,tt}〉 |=T
C ψϕ1 and 〈Tϕ, {ep,ff}〉 |=T

C ψϕ1 . Then, for any cut C ∈
post(∅), we have that either C = {ep,b} for a certain b ∈ B, in which
case 〈Tϕ, C〉 |=T

C value(p, b), otherwise 〈Tϕ, C〉 6|=T
C value(p, b) for all b ∈ B.

It follows that for any b ∈ B, 〈Tϕ, {ep,b}〉 |=T
C ψϕ1 holds if and only if

〈Tϕ,∅〉 |=T
C AX(value(p, b) ⇒ ψϕ1). Therefore, ϕ is satisfiable if and only if

〈Tϕ,∅〉 |=T
C AX(value(p, tt) ⇒ ψϕ1) or 〈Tϕ,∅〉 |=T

C AX(value(p,ff) ⇒ ψϕ1).
By Definition 4.8, this is equivalent to 〈Tϕ,∅〉 |=T

C AX(value(p, tt) ⇒
ψϕ1) ∧ AX(value(p,ff) ⇒ ψϕ1), and again by Definition 4.8, to 〈Tϕ,∅〉 |=T

C

AX
(
(value(p, tt) ∨ value(p,ff))⇒ ψϕ1

) def= ψϕ.

It follows directly that the CTL trace checking problem is PSPACE-complete.

Theorem 4.6 (Complexity of CTL-TC)

The computational tree logic trace checking problem is PSPACE-complete.

Finally, let us also examine the theoretical complexity in the case of total order
traces. In this case, it turns out that the trace checking problem can be solved in
polynomial time.

Theorem 4.7 (Complexity of CTL-TC for Total Order Traces)

The trace checking problem for CTL is in PTIME for total order traces.
Proof

On total order traces, for every C ∈ Q, we have that post(C) is a singleton.
Therefore, the semantics of EX and AX coincide with that of the X operator in
LTL. Moreover, for every C ∈ Q, runs(C) contains exactly one run. Therefore
the semantics of EU and AU coincide with that of the U operator in LTL. One
can therefore build, in polynomial time, a LTL formula ψ from ϕ, by replacing EX

and AX by X, and EU and AU by U, and check equivalently that T |=L ψ. By
Theorem 4.4, this can be done in polynomial time.
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Problem Total Order Traces Partial Order Traces

PRED in PTIME(Theorem 4.3) NP-complete (Theorem 4.2)

LTL-TC in PTIME(Theorem 4.4) coNP-complete (Theorem 4.5)

CTL-TC in PTIME(Theorem 4.7) PSPACE-complete (Theorem 4.6)

Table 4.1 - Summary of complexity results on partial and total order traces

4.4 Discussions

In this chapter, we have examined in detail the first two steps toward testing distributed
systems, namely instrumentation and specification. For the instrumentation step, we
have presented techniques that allow, both for message-passing and multithreaded
programs, to obtain a partial order on the events emitted by the system. We also
introduced a model to capture this partial order, namely partial order traces, in which
events are abstracted as predicate transformers. The main advantage of this model is
that it is very general. For instance, it completely abstracts away the communication
scheme used by the system.

In this framework, we studied the predicate detection problem, i.e. determining
if a partial order trace contains a cut satisfying a given predicate expressed as a PBL

formula. We also studied the trace checking problem, i.e. determining if a po-trace sat-
isfies a temporal property expressed either in LTL or CTL. The theoretical complexities
of those problems are summarized in Table 4.1. As we can see in this table, in every
instance, the problem becomes much simpler when a total order on the events of the
system is assumed. This motivates the study of partial order traces. Another inter-
esting observation is that, contrarily to model checking, in the case of trace checking,
LTL is less expensive that CTL.

In the remaining three chapters of this dissertation, we tackle the last step of the
testing process, i.e. trace analysis. More precisely, we will examine in detail how the
predicate detection problem, and the trace checking problem (respectively for LTL and
CTL) can be solved in practice. We will present existing solutions, and when possible
build on those to come up with more efficient and practical algorithms.
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Chapter

5
Predicate Detection

« Once you have eliminated the impossible, whatever
remains, however improbable, must be the truth »

Sherlock Holmes, in The Sign of the Four

P
redicate detection consists in determining if a distributed execution admits a
global state where a certain property holds. In the previous chapter, we have
seen how such a distributed execution can be modeled as a po-trace, where

global states are modeled as cuts. We also saw how properties on those po-traces can be
specified using formal logics. In this chapter, we concentrate on properties expressed
as PBL formulae. Determining if a po-trace satisfies such a property can then be
formalized as follows. Given a po-trace T and a PBL formula ϕ, does there exist a cut
C of T such that ϕ holds in C. A straightforward solution to this problem is therefore
to explore the lattice of cuts of T , and for each cut in this lattice check whether the
formula is satisfied or not. However, as we have seen in Chapter 4, the number of
cuts in this lattice can be exponentially bigger than the number of events. Because of
this, exploring the entire lattice of cuts is not practical. Unfortunately, we also saw
that the predicate detection problem is NP-complete, which makes this exponential
blowup unavoidable. Nevertheless, throughout the literature, several restricted classes
of predicates have been studied for which efficient, i.e. polynomial, detection algorithms
have been developed. However, these classes of predicates have a semantical definition.
It is therefore not, in general, easy to check whether a given PBL formula belongs to
one of those classes. For that reason, we study the problem from a syntactical point
of view, and come up with a notable result: the predicate detection problem is easy
for formulae in disjunctive normal form.
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The remainder of this chapter is structured as follows. First, in Section 5.1, we
review some of the known classes of predicates, and present the corresponding detec-
tion algorithms adapted to our framework. Then, in Section 5.2, we give syntactical
sufficient conditions for two of the most important classes of predicates, leading us to
show that DNF predicates are easy to detect. Finally, we conclude, in Section 5.3, by
giving a brief summary of all the results of this chapter.

5.1 Classes of Predicates

As already mentioned in the introduction, a simple way to determine if a po-trace
contains a cut where a given PBL formula ϕ holds can be done by exploring the lattice of
cuts of the trace and, for each cut C, check whether ϕ holds in C or not. This technique
is formalized in Algorithm 5.1. This algorithm works as follows. It maintains two sets
of cuts. The first set W is used to keep track of the cuts that remain to be explored,
while the second set Z is used to remember the cuts that have already been explored
(line 11). This allows to avoid exploring a cut more than once. The algorithm starts
with the initial empty cut in W (line 11). Then, while W is non-empty (line 12), the
algorithm picks a cut C from W , add it to Z (line 13), and checks whether L(C) |=P ϕ

(line 15) using the function models(T,C, ϕ). If it is the case, the algorithm returns
true (line 16). Otherwise, the algorithm adds to W all successors of C that are not
already in Z (lines 17–18). If the main loop terminates without finding a satisfying
cut, the algorithm returns false. In this algorithm, each cut of the lattice is examined
at most once. However, the number of cuts in this lattice can be exponentially bigger
than the number of events. For each of those cuts, the algorithm checks the truth
value of ϕ. For that purpose, the function models first computes in a variable V , the
valuation corresponding to L(C) (lines 3–6). Assuming an appropriate representation
for cuts, i.e. one that allows to obtain max�(C/p) in O(1), this can be one in O(|ϕ|),
since |prop(ϕ)| ≤ |ϕ|. Then, the function returns tt if and only if V |=P ϕ. This can
also be done in O(|ϕ|), by recursively applying Definition 1.2. The main algorithm also
computes the set of enabled events for each cut. In order to do this, the algorithm only
has to examine the next event of each of the k processes. This can therefore be done
in O(k). Hence, the overall time complexity of Algorithm 5.1 is in O(2|E| × |ϕ| × k).

In an effort to address this exponential blowup, many classes of restricted predicates
have been defined throughout the literature which are easier to detect, e.g. local,
disjunctive, conjunctive, stable, observer-independent, linear, and regular predicates.
Those classes of predicates are reviewed in Section 5.1.1 to Section 5.1.7.
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function models(T,C, ϕ)1

input : a po-trace T = 〈E, V0, δ,�〉, a cut C, a predicate ϕ
returns: tt if and only if L(C) |=P ϕ

begin2

V := V03

forall p ∈ prop(ϕ) s.t. C/p 6= ∅ do4

e := max�(C/p)5

V := (V \ δ(e,ff)) ∪ δ(e, tt)6

return V |=P ϕ7

end8

function detectArbitrary(T, ϕ)9

input : a po-trace T = 〈E, V0, δ,�〉, an arbitrary predicate ϕ
returns: tt if and only if T |=P ϕ

begin10

W := {∅}, Z = ∅11

while W 6= ∅ do12

Choose C ∈W13

W := W \ {C}, Z := Z ∪ {C}14

if models(T,C, ϕ) then15

returntt16

forall e ∈ enabled(C) do17

W := (W ∪ {C ∪ {e}}) \ Z18

returnff19

end20

Algorithm 5.1 - Detection of arbitrary predicates
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P1 e1

p := tt

P2 e2

q := tt

with V0 = ∅

Figure 5.1 - A po-trace where p ∧ q is local to P2

5.1.1 Local Predicates

The first class of predicates we examine is that of local predicates, i.e. predicates for
which the truth value only depends on the local states of one process. The formal
definition, taken from [Charron-Bost et al., 1995], follows.

Definition 5.1 (Local Predicate [Charron-Bost et al., 1995])

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, a predicate ϕ is local
to a process Pi of T if and only if

∀C,D ∈ Q :
(
C ∩ Pi = D ∩ Pi

)⇒ (
(L(C) |=P ϕ)⇔ (L(D) |=P ϕ)

)
As illustrated by Example 5.1, if the propositions appearing in a predicate are only

modified by one process Pi, then this predicate is local to Pi.

Example 5.1

Consider the po-trace of Figure 4.4(a) (page 95). The predicate ϕ1
def= ¬r is local

to process P1 and the predicate ϕ2
def= s is local to process P2.

However, as illustrated in Example 5.2, this not a necessary condition.

Example 5.2

Consider the po-trace of Figure 5.1 with V0 = ∅. We have that the predicate
ϕ = p ∧ q is local process P2. Indeed, before event e2 is triggered, i.e. in the cuts
∅ and {e1}, the predicate is false. On the other hand, after e2 is triggered, i.e. in
the cut {e1, e2}, the predicate is true.

In that sense, the denomination local, as formalized in [Charron-Bost et al., 1995],
can be a little misleading. Indeed, the truth value of a predicate ϕ local to some
process Pi does not depend only on the events of Pi, but might also depend on events
from other processes.
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function detectLocal(T, ϕ)1

input : a po-trace T = 〈E, V0, δ,�〉, a predicate ϕ local to process Pi
returns: tt if and only if T |=P ϕ

begin2

Si := ∅3

while (Pi \ Si 6= ∅) ∧ (¬models(T, ↓Si, ϕ)) do4

Si := Si ∪min�(Pi \ Si)5

return models(T, ↓Si, ϕ)6

end7

Algorithm 5.2 - Detection of local predicates

By definition, detecting local predicates can be done by examining one cut for each
local state Si ⊆ Pi, like e.g. ↓Si. Therefore, as formalized in Algorithm 5.2, starting
from the initial empty local state (line 3), we can successively enumerate the local states
of Pi until a satisfying cut is found (lines 4–5). In this algorithm, at most |Pi|+ 1 cuts
are examined, and for each of those cuts, the truth value of ϕ is checked, which can
be done in O(|ϕ|), as shown previously, assuming of course that ↓Si can be computed
in O(1). Hence the overall time complexity of Algorithm 5.2 is in O(|Pi| × |ϕ|).

5.1.2 Disjunctive Predicates

The second class of predicates we examine is that of disjunctive predicates which are
disjunctions of local predicates. The formal definition follows.

Definition 5.2 (Disjunctive Predicate)

Given a po-trace T = 〈E, V0, δ,�〉 of k processes, a disjunctive predicate is a
predicate of the form ϕ1 ∨ . . . ∨ ϕk where, for any i ∈ [1, k], ϕi is a predicate local
to process Pi.

In the previous definition, for simplicity, we assume that disjunctive predicates have
exactly one branch ϕi for each process Pi. This assumption can be made without loss
of generality. Indeed, if a local predicate is missing for a certain process Pi, one can
always chose ϕi = ⊥, which is trivially local to any process. Conversely, if for some
process Pi, there are more than one local predicates ϕi,1, ϕi,2, . . . , ϕi,`, one can always
group them together and choose ϕi = ϕi,1 ∨ ϕi,2 ∨ . . . ∨ ϕi,`, which by Definition 5.1 is
also local to process Pi.
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function detectDisjunctive(T, ϕ)1

input : a po-trace T = 〈E, V0, δ,�〉, a disjunctive predicate ϕ1 ∨ . . . ∨ ϕk
returns: tt if and only if T |=P ϕ1 ∨ . . . ∨ ϕk
begin2

forall i ∈ [1, k] do3

if detectLocal(T, ϕi) then4

return tt5

returnff6

end7

Algorithm 5.3 - Detection of disjunctive predicates

Example 5.3

Consider the po-trace of Figure 4.4(a) (page 95). The predicate ϕ1
def= ¬r ∨ s is

disjunctive, since ¬r is local to process P1 and s is local to process P2. Furthermore,
the predicate ϕ2

def= ¬r ∨ p ∨ ⊥ is also disjunctive, since ¬r ∨ p is local to process
P1 and ⊥ is local to process P2.

The detection of disjunctive predicates can be reduced to the local case. Indeed,
each branch of the predicate can be examined independently.

Proposition 5.1

Given a po-trace T , and a disjunctive predicate ϕ1 ∨ ϕ2 ∨ . . . ϕk, we have that:
(T |=P ϕ1 ∨ ϕ2 ∨ . . . ϕk)⇔ (T |=P ϕ1 ∨ T |=P ϕ1 ∨ . . . ∨ T |=P ϕk)

Proof

The proof is immediate from Definitions 1.2 and 4.4.

Therefore, one can use Algorithm 5.2 repeatedly for each branch ϕi, and stop as
soon as a satisfying branch is found. Using this method, formalized in Algorithm 5.3,
at most

∑
i∈[1,k](|Pi|+ 1) = |E|+ k cuts are examined. Algorithm 5.3 therefore has a

time complexity in O(|E| × |ϕ|).

5.1.3 Stable Predicates

The third class of predicates is that of stable predicates, first introduced in [Chandy
and Lamport, 1985]. Intuitively, stable predicates are predicates that stay true until
the end of the execution trace once they become true. Formally, stable predicates are
defined as follows.
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function detectStable(T, ϕ)1

input : a po-trace T = 〈E, V0, δ,�〉, a stable predicate ϕ
returns: tt if and only if T |=P ϕ

begin2

return models(T,E, ϕ)3

end4

Algorithm 5.4 - Detection of stable predicate

Definition 5.3 (Stable Predicate [Chandy and Lamport, 1985])

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, a predicate ϕ is stable
w.r.t. T if and only if

∀C,D ∈ Q :
(
(C ; D) ∧ (L(C) |=P ϕ)

)⇒ (L(D) |=P ϕ
)

Inherently, stable predicates are very easy to detect. Indeed, in order to determine
if there exists a cut in the trace where ϕ holds, we only have to examine the last cut
of the trace, i.e. the cut containing all the events of T .

Proposition 5.2

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, and a predicate ϕ

stable w.r.t. T , we have that:

(T |=P ϕ)⇔ (L(E) |=P ϕ)
Proof

Assume T |=P ϕ, or equivalently that ∃C ∈ Q : L(C) |=P ϕ. Since C ∈ Q =
DC�(E), we have that C ⊆ E ∈ Q, which implies by Lemma 4.2, that C ; E. It
follows by Definition 5.3 that L(E) |=P ϕ. Now, assume conversely that L(E) |=P ϕ,
we can immediately conclude that ∃C ∈ Q : L(C) |=P ϕ, or equivalently that
T |=P ϕ.

This necessary and sufficient condition yields a trivial polynomial time detection
method, as presented in Algorithm 5.4. This algorithm simply checks whether ϕ holds
in the last cut of the trace, namely E, which can be done in O(|ϕ|).
Example 5.4

Consider the po-trace of Figure 4.4(a). The predicate ϕ def= ¬p is stable. Indeed,
proposition p is true in the initial valuation, and only event e1,1 “modifies” its truth
value, by setting it to false. Hence, once e1 is triggered, ϕ remains false.
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Before moving on to the next class of predicates, let us mention that the class of
stable predicates is closed under disjunction and conjunction.

Proposition 5.3 ([Chase and Garg, 1998])

Given a po-trace T , and two predicates ϕ and ψ stable w.r.t. T , we have that
ϕ ∧ ψ and ϕ ∨ ψ are both stable w.r.t T .

5.1.4 Observer-Independent Predicates

The next class of predicates is that of observer-independent predicates, first introduced
in [Charron-Bost et al., 1995]. Observer-independent predicates are predicates such
that if they hold for one observation of the po-trace, then they also hold for any other
observation. In our framework, observer-independent predicates are defined as follows.

Definition 5.4 (Observer-Independent Predicate [Charron-Bost et al., 1995])

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, a predicate ϕ is
observer-independent w.r.t. T if and only if(∃ρ ∈ runs(KT ), ∃i ∈ [0, |ρ|) : L(ρ(i)) |=P ϕ

)
⇒(∀ρ ∈ runs(KT ), ∃i ∈ [0, |ρ|) : L(ρ(i)) |=P ϕ

)
The detection of observer-independent predicates is also quite simple. Indeed, for

any predicate ϕ, we know that ϕ holds in a cut C if and only if it holds along one
run of the po-trace. In the case of observer-independent predicates, this implies that
the predicate holds along all runs of the po-trace. Therefore, in this particular case,
only examining one run is enough to determine if ϕ holds. This induces a polynomial
time detection method, as presented in Algorithm 5.5. This algorithm simply explores
one arbitrary run, and stops as soon as a satisfying cut along this run is found (lines
4–6). In this Algorithm, at most |E|+1 cuts are examined. For each of those cuts, the
algorithm has to check the truth value of ϕ and to compute the set of enabled events.
Hence, the overall time complexity of Algorithm 5.5 is in O(|E| × |ϕ| × k).

Example 5.5

Consider the po-trace of Figure 4.4(a). All the predicates that have been presented
so far in Example 5.1, Example 5.3, Example 5.4 are observer-independent.

Before moving on to other predicate classes, let us investigate the relationship
between this class of predicates and the two previous ones. First, it is easy to determine
that observer-independent predicates include stable predicates.
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function detectObersverIndependent(T, ϕ)1

input : a po-trace T = 〈E, V0, δ,�〉, an observer-independent predicate ϕ
returns: tt if and only if T |=P ϕ

begin2

C := ∅3

while (C 6= E) ∧ (¬models(T,C, ϕ)) do4

Choose e ∈ enabled(C)5

C := C ∪ {e}6

return models(T,C, ϕ)7

end8

Algorithm 5.5 - Detection of observer-independent predicate

Proposition 5.4

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, any predicate ϕ stable
w.r.t T is also observer-independent w.r.t. T .

Proof

Let us assume that ∃ρ ∈ runs(KT ),∃i ∈ [0, |ρ|) : L(ρ(i)) |=P ϕ. Since L(ρ(i)) |=P ϕ,
we know that T |=P ϕ which implies, by Proposition 5.2, that L(E) |=P ϕ. However,
for every run ρ ∈ runs(KT ), the last cut of ρ is E. Therefore, we can conclude that
∀ρ ∈ runs(KT ), ∃i ∈ [0, |ρ|) : L(ρ(i)) |=P ϕ, since L(ρ(|ρ| − 1)) |=P ϕ.

Furthermore, as proven in [Charron-Bost et al., 1995], observer-independent pred-
icates also include disjunctive predicates. To establish this results, the authors first
observe that local predicates are also observer-independent.

Proposition 5.5 ([Charron-Bost et al., 1995])

Given a po-trace T of k processes, any predicate ϕ local to process Pi for some
i ∈ [1, k], is also is observer-independent w.r.t. T .

Then, they remark that observer-independent predicates are closed to disjunction.

Proposition 5.6 ([Charron-Bost et al., 1995])

Given a po-trace T and two predicates ϕ and ψ observer-independent w.r.t. T , we
have that ϕ ∨ ψ is observer-independent w.r.t T .

It follows directly that disjunctive predicates are also observer-independent.
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P1 e1,1 e1,2

p := tt r := ff

P2 e2,1

q := tt

with V0 = {r}
Figure 5.2 - The po-trace T of Example 5.6

Corollary 5.1

Given a po-trace T = 〈E, V0, δ,�〉, any disjunctive predicate ϕ is also observer-
independent w.r.t. T .

Finally, as illustrated in the following example, the classes of stable and disjunctive
predicates are incomparable, i.e. none is included in the other.

Example 5.6

Consider the po-trace T of Figure 5.2. The predicate ϕ1
def= p ∧ q is stable w.r.t.

T , but not disjunctive. Indeed, ϕ1 is neither local to P1, nor to P2. The predicate
ϕ2

def= r is disjunctive, since ϕ2 is local to process P1. However, it is not stable,
since ϕ2 does not hold in the final cut E.

Nevertheless, as illustrated in the following example, those two classes have a non-
empty intersection.

Example 5.7

The predicate presented in Example 5.4 is both local to process P1, and therefore
disjunctive, and stable w.r.t. T .

5.1.5 Conjunctive Predicates

The next class of predicates we examine is that of conjunctive predicates which are
conjunctions of local predicates. Similarly to disjunctive predicates, we assume without
loss of generality that conjunctive predicates have exactly one branch for each process.
The formal definition follows.

Definition 5.5 (Conjunctive Predicate)

Given a po-trace T = 〈E, V0, δ,�〉 of k processes, a conjunctive predicate is a
predicate of the form ϕ1 ∧ . . .∧ϕk where , for any i ∈ [1, k], ϕi is a predicate local
to process Pi.
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P1 S0,1

〈1, 0〉
e1,1

p := ff

S1,1

〈2, 0〉
e1,2

q, r := tt, tt

S1,2

〈3, 0〉
e1,3

r, t := ff, tt

S1,3

〈4, 0〉

P2 S2,0

〈0, 1〉
e2,1

s := tt

S2,1

〈0, 2〉
e2,2

s, q := ff, ff

S2,2

〈2, 3〉

Figure 5.3 - Partial order of the po-trace of Figure 4.4(a) extended to local states

The detection of conjunctive predicates has been studied in [Garg and Waldecker,
1994] where the authors provide a necessary and sufficient condition. In their paper,
instead of working on a partial order on events, as can be obtained using the instru-
mentation technique presented in Section 4.1, the authors use a partial order on the
local states of the po-trace. In order to obtain this partial order, the authors define
a slightly modified version of the vector clock algorithm, where the vector clock vi

for each process Pi is initialised to 0 for all its components except for vi[i], which is
initialised to 1. The resulting vector clock mapping on local states, noted vcl in the
following, can be easily captured in our framework. Indeed, given a local state Si ⊆ Pi,
we have that:

vcl(Si)[j] =

{
|↓Si ∩ Pj |+ 1 if i = j

|↓Si ∩ Pj | otherwise

In the following, for any two local states Si, Sj , we note Si �l Sj if and only if
vcl(Si) ≤ vcl(Sj).
Example 5.8

Figure 5.3 shows the partial order of the po-trace of Figure 4.4(a) extended to
local states, along with the vector clock mapping vcl described above. Note, for
instance, that local states S1,1 and S2,2 are ordered, and that we indeed have that
〈2, 0〉 ≤ 〈2, 3〉.

The necessary and sufficient condition can then be formulated as follows.

Proposition 5.7 ([Garg and Waldecker, 1994])

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, and a conjunctive
predicate ϕ = ϕ1 ∧ . . . ∧ ϕk, we have that T |=P ϕ if and only if

∃S1 ⊆ Pi, . . . , Sk ⊆ Pk :

 ∀i ∈ [1, k] : L(↓Si) |=P ϕi

∧
∀i 6= j ∈ [1, k] : (Si 6�l Sj) ∧ (Sj 6�l Si)


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function detectConjunctive(T, ϕ)1

input : a po-trace T = 〈E, V0, δ,�〉, a conjunctive predicate ϕ1 ∧ . . . ∧ ϕk
returns: tt if and only if T |=P ϕ1 ∧ . . . ∧ ϕk
begin2

forall i ∈ [1, k] do3

Q[i] := ε, Si := ∅4

while Si ⊆ Pi do5

if models(T, ↓Si, ϕi) then6

Q[i] := Q[i] · Si7

Si := Si ∪min�(Pi \ Si)8

if models(T, ↓Si, ϕi) then9

Q[i] := Q[i] · Si10

return detectAntichainGarg92(Q,�l)11

end12

Algorithm 5.6 - Detection of conjunctive predicate

In other words, there exists a cut satisfying a conjunctive predicate ϕ1 ∧ . . . ∧ ϕk
if and only if there exists an antichain of local states, w.r.t �l, containing exactly one
local state Si for each process Pi such that ϕi holds in Si. Using this necessary and
sufficient condition, the authors of [Garg and Waldecker, 1994] devised a polynomial
time algorithm for the detection of conjunctive predicates. This algorithm, formalized
in Algorithm 5.6, uses a vector Q of size k, where each entry is a queue of local states.
For each process Pi, the algorithm collects in Q[i] all the local states of process Pi where
ϕi holds (lines 3–10). This vector of queues is then used to determine if the necessary
and sufficient condition is met. For that, the authors of [Garg and Waldecker, 1994], use
an antichain detection algorithm from a previous paper [Garg, 1992]. Given a po-set
〈X,v〉 partitioned into k chains this detection algorithm return tt if and only if 〈X,v〉
admits an antichain of size k. For more details on this algorithm, we refer the reader
to [Garg, 1992]. Here, we assume the existence of a function antichainDetectGarg92()
(line 11), that takes care of that. In the first part of the algorithm, i.e. the construction
of Q, for each process Pi, at most |Pi| + 1 local states are considered, and for each
of those local states the truth value of ϕi has to be determined. This can be done in
O(|Pi| × |ϕi|). Therefore, since

∑
i∈[1,k] |Pi| = |E| and |ϕ1| ≤ |ϕ|, the time complexity

of this part is in O(|E|× |ϕ|). Then, according to [Garg, 1992], the antichain detection
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can be done in O(k2×m), where m is the size of the longest chain in the partial order
on local states. Therefore, since m ≤ |E| and since k ≤ |ϕ|, we can conclude that the
overall time complexity of Algorithm 5.6 is in O(|ϕ|2 × |E|).
Example 5.9

Consider the po-trace of Figure 4.4(a). The predicate ϕ def= ¬r ∧ s is conjunctive,
since ¬r is local to process P1 and s is local to process P2. Now consider the partial
order on local states of Figure 5.3. We have that ¬r holds in local state S0,1, since
V0 = ∅, and that s hold in local state S2,1, since e2,1 sets s to true. Therefore, the
necessary and sufficient condition of Proposition 5.7 is satisfied, since 〈1, 0〉 and
〈0, 2〉 are incomparable. It follows directly that ϕ holds on this po-trace.

5.1.6 Linear Predicates

We now examine the class of linear predicates, first introduced in [Chase and Garg,
1995] and further developed in [Chase and Garg, 1998]. This class was also studied
in [Garg et al., 2003], where the authors introduced an alternative and equivalent
characterization, that we use here. This characterization is based on the notion of
crucial events. Intuitively, in a cut C, an event e is crucial for a predicate ϕ if and
only if for each cut D reachable from C, D cannot satisfy ϕ unless it contains e.
Formally, the set of events that are crucial in a cut C for a predicate ϕ is defined as
crucial(C,ϕ) def= {e ∈ E | ∀D ∈ Q : (C ; D) ⇒ (e ∈ D ∨ L(D) 6|=P ϕ)}. Based
on this notion, a predicate ϕ is defined as linear if, in every cut C 6= E where ϕ is
not satisfied, there exists at least one enabled event that is crucial for ϕ. The formal
definition follows.

Definition 5.6 (Linear Predicate [Chase and Garg, 1995; Garg et al., 2003])

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, a predicate ϕ is linear
w.r.t. T if and only if:

∀C ∈ Q \ {E} : (L(C) 6|=P ϕ)⇒ (enabled(C) ∩ crucial(C,ϕ) 6= ∅)

Based on this characterization of linear predicates, the authors of [Garg et al.,
2003] propose an algorithm for the detection of linear predicates, which is presented
in Algorithm 5.7. This is a simple greedy algorithm that starts with the initial empty
cut (line 3). Then, while the predicate is not satisfied (line 4), the algorithm advances
through the po-trace by executing an arbitrary enabled crucial event (lines 5–6). The
algorithm stops as soon as a satisfying cut is found. Assuming that crucial(C,ϕ)
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function detectLinear(T, ϕ)1

input : a po-trace T = 〈E, V0, δ,�〉, a linear predicate ϕ
returns: tt if and only if T |=P ϕ

begin2

C := ∅3

while (C 6= E) ∧ (¬models(T,C, ϕ)) do4

Choose e ∈ enabled(C) ∩ crucial(C,ϕ)5

C := C ∪ {e}6

return models(T,C, ϕ)7

end8

Algorithm 5.7 - Detection of linear predicate

can be computed efficiently1, i.e. as efficiently as enabled(C), the time complexity of
Algorithm 5.7 is in O(|E|× |ϕ|×k). Indeed, in this algorithm, at most |E|+1 cuts are
considered, and at each step, the truth value of ϕ and the set of enabled events have
to be computed.

Example 5.10

Consider the po-trace of Figure 4.4(a) (page 95). The predicate ϕ def= ¬s is linear.
For instance, in the cut C def= {e1,1, e1,2, e2,1} we have that event e2,2 is crucial for
ϕ1. Indeed, for every cut C such that C ; D, we have that either e2,2 ∈ D or
that ϕ is not satisfied in D. In contrast, the event e1,3 is not crucial for ϕ, since
the cut D def= {e1,1, e1,2, e2,1, e2,2} does not contain e1,3 and does satisfy ϕ.

5.1.7 Regular Predicates

Finally, we examine the class of regular predicates, first introduced in [Garg and Mittal,
2001b]. Regular predicates are predicates for which the set of satisfying cuts forms a
sublattice of the lattice of cuts. In other words, a predicate is regular if and only if
it is closed under intersection (the meet operator) and union (the join operator). The
formal definition follows.

1this assumption is referred to as the efficient advancement property in [Garg et al., 2003]
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Definition 5.7 (Regular Predicate [Garg and Mittal, 2001b])

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, a predicate ϕ is regular
w.r.t. T if and only if:

∀C,D ∈ Q :
(L(C) |=P ϕ ∧ L(D) |=P ϕ

)⇒ (L(C ∩D) |=P ϕ ∧ L(C ∪D) |=P ϕ
)

Regular predicates were extensively studied by Garg, Mittal and Sen in the context
of computation slicing, see e.g. [Garg and Mittal, 2001a; Sen and Garg, 2003; Garg
and Mittal, 2005]. The main idea behind computation slicing is to try and reduce
the size of a distributed execution, and therefore the number of cuts to be examined,
in order to detect a predicate. For that, the authors use the duality between partial
orders and distributive lattices characterized by Birkhoff’s representation theorem, i.e.
Theorem 1.2. Indeed, they first observe that the lattice of cuts is distributive.

Theorem 5.1 (The Lattice of Cuts is Distributive [Garg and Mittal, 2005])

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, the lattice of cuts
〈Q,⊆〉 is distributive.

Therefore, given a predicate ϕ, they try to compute a poset that characterises, using
Birkhoff’s duality theorem, the smallest sublattice of the lattice of cuts that contains
[[ϕ]]TP . In practice, instead of posets, the authors use directed graphs to represent
sublattices of the lattice of cuts. We introduce the notion of computation graph to
capture this in our framework.

Definition 5.8 (Computation Graph)

Given a po-trace T = 〈E, V0, δ,�〉 of k processes, a computation graph of T is a
directed graph 〈N,R〉 such that:

(i) N = E ∪ {e>, e⊥}

(ii) ∀i ∈ [1, k] : {〈e⊥,min�(Pi)〉, 〈max�(Pi), e>〉} ⊆ R

(iii) �⊆ (R)∗

In other words, a computation graph is a directed graph such that (i) there is one
node for every event of T and two additional nodes e> and e⊥ representing respectively
the beginning and the end of the trace2, (ii) for all processes Pi, there is an edge from
e⊥ to the first event of Pi, and an edge from the last event of Pi to e> and finally
(iii) the set of edges contains at least the edges of the Hasse Diagram of the trace.

2Those two nodes are introduced to simplify the slicing algorithm
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e1,1

p := ff

e1,2

q, r := tt, tt

e1,3

r, t := ff, tt

e2,1

s := tt

e2,2

s, q := ff, ff

e⊥ e⊤

{p}

∅ {p, s}

{q, r} {s}

{q, t} {q, r, s}

{q, s, t} {r}

{t}

r, t := ff, tt

q, r := tt, tt

p := ff

s := tt

s, q := ff, ff

(a) a computation graph of the
po-trace of Figure 4.4

(b) the corresponding lattice (in
bold) of consistent cuts

Figure 5.4 - Example of computation graph

Given a po-trace T , we note Graphs(T ) the set of computation graphs of T . Note that
contrarily to Hasse diagrams, a computation graph may contain cycles. Intuitively,
similarily to posets, a computation graph 〈N,R〉 represents a subset of cuts of the
po-trace, i.e. the cuts closed w.r.t. R. Those cuts are called consistent cuts. Formally,
given a computation graph 〈N,R〉, a set of nodes M ⊆ N is closed w.r.t. R, if and
only if ∀e, e′ ∈ N : ((eR e′) ∧ (e′ ∈ M)) ⇒ (e ∈ M). A cut C of T is consistent with
a 〈N,R〉 if and only if C ∪ {e⊥} is closed w.r.t. R. In the following, the set of cuts
consistent with a computation graph 〈N,R〉 ∈ Graphs(T ) is noted CC(N,R). Another
way to look at this, is to view each strongly connected component as a meta-event, i.e.
a set of events that have been “glued” together, and should therefore be triggered in
one step atomically. Indeed, by definition, a consistent cut C either contains all the
events in such strongly connected component, or none of them.

Example 5.11

Figure 5.4(a) shows a computation graph 〈N,R〉 of the po-trace of Figure 4.4
(page 95). The corresponding lattice (in bold) of consistent cuts is presented in
Figure 5.4(b). Note e.g. that the initial empty cut, i.e. the one labelled with {p},
is not consistent with. 〈N,R〉. Indeed ∅ ∪ {e⊥} = {e⊥} is not closed w.r.t. R,
since e1,2Re⊥ and e1,2 6∈ {e⊥}.
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As shown in [Garg and Mittal, 2005], the set of cuts consistent with a computation
graph along with set inclusion, also forms a distributive lattice.

Theorem 5.2 (Lattice of Consistent Cuts [Garg and Mittal, 2005])

Given a po-trace T = 〈E, V0, δ,�〉 and a computation graph 〈N,R〉 ∈ Graphs(T ),
we have that 〈CC(N,R),⊆〉 forms a complete distributive lattice.

The main idea behind computation slicing is therefore to build a computation graph
representing exactly the sublattice of cuts that satisfy a regular predicate ϕ. Such a
computation graph is called a slice, and is formalized as follows.

Definition 5.9 (Slice [Garg and Mittal, 2005])

Given a po-trace T = 〈E, V0, δ,�〉 and a predicate ϕ, a slice of T w.r.t. ϕ is a
computation graph 〈N,Rϕ〉 ∈ Graphs(T ) such that:

(i) [[ϕ]]TP ⊆ CC(N,Rϕ)

(ii) ∀〈N,R〉 ∈ Graphs(T ) : ([[ϕ]]TP ⊆ CC(N,R))⇒ (|CC(N,Rϕ)| ≤ |CC(N,R)|)

Intuitively, a slice of a trace T w.r.t a predicate ϕ is a computation graph 〈N,Rϕ〉
such that (i) every cut of T that satisfies ϕ is consistent with 〈N,Rϕ〉 and (ii) among
all those graphs, 〈N,Rϕ〉 is one with the smallest number of consistent cuts. Note that
this graph is not unique. However, two slices of a po-trace T w.r.t the same predicate
ϕ have the same set of consistent cuts.

Theorem 5.3 (Uniqueness of Consistent Cuts in Slices [Garg and Mittal, 2005])

Given a po-trace T = 〈E, V0, δ,�〉, a predicate ϕ and two slices 〈N,Rϕ〉, 〈N,R′ϕ〉
of T w.r.t. ϕ, we have that CC(N,Rϕ) = CC(N,R′ϕ).

A slice of T w.r.t ϕ can be computed inductively on the structure of ϕ, by composing
slices of the subformulae of ϕ, as explained in [Garg and Mittal, 2005]. This is presented
in Algorithm 5.8. For simplicity of the presentation, we assume that ϕ is in negation
normal form. For > (lines 3–4), the slice is built by taking the Hasse Diagram (see
Section 1.2) of �, including the two special nodes e> and e⊥. For ⊥ (lines 5–6), the
slice is computed by taking the slice of > and adding an edge from e> to e⊥. Indeed,
this forces any cut to be inconsistent with the slice. For literals (lines 7–13), the slice
is built as follows. We starts with the slice of T w.r.t. >. Then edges are added from
every node that sets ϕ to false to the previous one that sets it to true. Special attention
needs to be taken at the beginning and the end of the trace. This is taken care of by
considering that e> sets ϕ to true, and that e⊥ set ϕ to false, if ϕ is false in V0. Next,
for conjunction (lines 14–15), the slice is obtained by taking the union of the set of
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function computeSlice(T, ϕ)1

input : a po-trace T = 〈E, V0, δ,�〉, a predicate ϕ in NNF
returns: Rϕ ⊆ N ×N such that 〈N,Rϕ〉 is a slice of T w.r.t ϕ
begin2

if ϕ = > then3

Rϕ := {〈e, e′〉 ∈ N ×N | (e ≺ e′) ∧ (@e′′ ∈ E : (e ≺ e′′) ∧ (e′′ ≺ e′))}4

else if ϕ = ⊥ then5

Rϕ := computeSlice(T,>) ∪{〈e>, e⊥〉}6

else if (ϕ = p) ∨ (ϕ = ¬p) then7

Rϕ := computeSlice(T,>), b := (ϕ = p)8

Nϕ := {e ∈ E | p ∈ δ(e, b)} ∪ {e>}9

N¬ϕ := {e ∈ E | p ∈ δ(e, b)}10

if V0 6|= ϕ then N¬ϕ := N¬ϕ ∪ {e⊥}11

forall e ∈ N¬ϕ do12

Rϕ = Rϕ ∪ {〈min�(Nϕ\ ↓e), e〉}13

else if ϕ = ϕ1 ∧ ϕ2 then14

Rϕ := computeSlice(T, ϕ1) ∪ computeSlice(T, ϕ2)15

else if ϕ = ϕ1 ∨ ϕ2 then16

Rϕ1 := computeSlice(T, ϕ1), Rϕ2 := computeSlice(T, ϕ2)17

Rϕ := R+
ϕ1
∩R+

ϕ2
18

return Rϕ19

end20

Algorithm 5.8 - Computation of a slice of a po-trace w.r.t a predicate

edges in the slices of both branches. Finally, for disjunction (lines 16–18), the slice is
obtained by first computing the set of edges for the slices of the two branches, and then
take the intersection of their transitive closure. Assuming that the Hasse Diagram of
� is directly available, the slices in the first two cases can be obtained in O(1). For
literals, each event is considered at most once. The slice can therefore be built in
O(|E|). For the two remaining cases, the authors of [Garg and Mittal, 2005] provide
an efficient way to compute Rϕ by using a clever representation for slices, and show
that using this method, the slice is computed in O(|E| × k2). Since one slice is built
for each subformula of ϕ, we can therefore deduce that the overall time complexity of
Algorithm 5.8 is in O(|E| × |ϕ| × k2)
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P1 e1

p := tt

P2 e2

q := tt

∅

{p} {q}

{p, q}

p := tt q := tt

e1

p := tt

e2

q := tt

e⊥ e⊤

∅

{p} {q}

{p, q}

p := tt q := tt

(a) T with V0 = ∅ (b) KT (c) 〈N,R>〉 (d) CC(N,R>)

e1

p := tt

e2

q := tt

e⊥ e⊤

∅

{p} {q}

{p, q}

p := tt q := tt

e1

p := tt

e2

q := tt

e⊥ e⊤

∅

{p} {q}

{p, q}

p := tt q := tt

(e) 〈N,R¬p〉 (f) CC(N,R¬p) (g) 〈N,Rq〉 (h) CC(N,Rq)

e1

p := tt

e2

q := tt

e⊥ e⊤

∅

{p} {q}

{p, q}

p := tt q := tt

e1

p := tt

e2

q := tt

e⊥ e⊤

∅

{p} {q}

{p, q}

p := tt q := tt

(i) 〈N,R¬p∧q〉 (j) CC(N,R¬p∧q) (k) 〈N,R¬p∨q〉 (l) CC(N,R¬p∨q)

Figure 5.5 - Algorithm 5.8 at work
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Example 5.12

Figure 5.5 illustrates the computation slicing algorithm presented above on a simple
po-trace T composed of two events. First, the trace and its semantics are presented
respectively in Figure 5.5 (a) and Figure 5.5 (b). Next, Figure 5.5 (c) and Figure 5.5
(d) respectively show the slice of T w.r.t. > obtained using Algorithm 5.8, and the
corresponding consistent cuts. Figure 5.5 (e) to Figure 5.5 (h) show the slices of T
w.r.t. ¬p and q obtained using Algorithm 5.8, along with their respective sets of
consistent cuts. Figure 5.5 (i) and Figure 5.5 (j) show the slices of T w.r.t. ¬p∧ q
obtained using Algorithm 5.8 and the corresponding consistent cuts. Note that
this slice was obtained by taking the union of the edges of the slices of Figure 5.5
(e) and Figure 5.5 (g). Finally, Figure 5.5 (i) and Figure 5.5 (j) show the slices
of T w.r.t. ¬p ∨ q obtained using Algorithm 5.8 and the corresponding consistent
cuts. In this slice, note that the edge 〈e2, e1〉 is contained in both R+¬p and R+

q .

Now that we have a way to compute the slice of T w.r.t. to a predicate, we can
address the main issue, i.e. the detection of regular predicates. Indeed, it was proven
in [Garg and Mittal, 2005] that the slice of a po-trace w.r.t. a predicate ϕ is regular if
and only if any slice of T contains exactly those cuts that satisfy ϕ.

Theorem 5.4 (Slicing w.r.t Regular Predicates [Garg and Mittal, 2005])

Given a po-trace T = 〈E, V0, δ,�〉 and a predicate ϕ and a slice 〈N,Rϕ〉 of T w.r.t.
ϕ, we have that ϕ is regular w.r.t. T if and only if:

CC(N,Rϕ) = [[ϕ]]TP

Based on this observation, the authors of [Garg and Mittal, 2005] introduce a very
elegant algorithm for the detection of regular predicates, formalized in Algorithm 5.9.
All that needs to be done, is to compute the slice of the po-trace w.r.t. the regular
predicate ϕ (line 3). Then, using Theorem 5.4, we know that there exists a cut satisfy-
ing ϕ if and only if this slice contains at least one consistent cut. In practice, this can
be checked efficiently by considering the nodes e> and e⊥ (line 4). Indeed, it can be
proven that the set of consistent cuts is empty if and only if there exists a path from
e> to e⊥ in the slice. This can be done in O(|E|). Hence the overall time complexity
of Algorithm 5.9 is in O(|E| × |ϕ| × k2).
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function detectRegular(T, ϕ)1

input : a po-trace T = 〈E, V0, δ,�〉, a regular predicate ϕ
returns: tt if and only if T |=P ϕ

begin2

Rϕ := computeSlice(T,NNF(ϕ))3

return (〈e>, e⊥〉 ∈ R+
ϕ )4

end5

Algorithm 5.9 - Detection of regular predicates

The authors of [Garg and Mittal, 2005] also show how a slice of a po-trace T w.r.t.
an arbitrary predicate ϕ can be used for the detection of an arbitrary predicates ϕ.
Indeed, we know that every cut satisfying ϕ is consistent with any slice 〈N,Rϕ〉 of T
w.r.t ϕ. Therefore, in order to determine if there exists a cut satisfying ϕ, it is only
necessary to consider the set of cuts consistent with 〈N,Rϕ〉. Algorithm 5.1 can be
adapted for that purpose, using the strongly connected components of 〈N,Rϕ〉. In-
deed, if an event e belongs to a cut C, every other event in the connected component
of e must belong to C in order for C to be consistent with 〈N,Rϕ〉. Therefore, during
the exploration, when triggering an event e from a cut C, instead of simply adding
e to C, we add all events in the strongly connected component of e. The resulting
algorithm is presented in Algorithm 5.10. In this algorithm, we assume the existence
of a function connectedComponent(〈N,R〉, n) that returns the strongly connected com-
ponent of a directed graph 〈N,R〉 that contains the node n ∈ N . This algorithm starts
by computing the slice of T w.r.t. ϕ (line 3). Then, it computes the strongly connected
component of e⊥ (line 4). If e> belongs to this strongly connected component, then
the set of consistent cut is empty and the algorithm returns false (lines 5–6). Indeed,
in such a case, there is a path from e> to e⊥. Therefore, for any cut C ∈ Q, C ∪ {e⊥}
is not closed to R because e> 6∈ R. Otherwise, i.e. if e> does not belong to the
strongly connected component of e⊥, the algorithm starts the exploration with a cut
built from this strongly connected component. At each step, a consistent cut is consid-
ered. First, the algorithm checks whether the predicate holds in this cut (line 11–12).
If this is the case, the algorithm returns true. Otherwise, the events enabled in the
current cut are examined. However, in this case, when triggering an event e, instead of
simply adding e as in the original algorithm, all the events in the strongly connected
component of e are added (lines 14–16). If the loop terminates without finding a satis-
fying cut, the algorithm returns false (line 17). Decomposing 〈N,Rϕ〉 into its strongly
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function detectArbitrarySlicing(T, ϕ)1

input : a po-trace T = 〈E, V0, δ,�〉, an arbitrary predicate ϕ
returns: tt if and only if T |=P ϕ

begin2

N = E ∪ {e>, e⊥}, Rϕ := computeSlice(T,NFF(ϕ))3

M := connectedComponent(〈N,Rϕ〉, e⊥)4

if e> ∈M then5

return ff;6

W := {M \ {e⊥}}, Z := ∅7

while W 6= ∅ do8

Choose C ∈W9

W := W \ {C}, Z := Z ∪ {C}10

if models(T,C, ϕ) then11

return tt12

forall e ∈ enabled(C) do13

M := connectedComponent(〈N,Rϕ〉, e)14

if e> 6∈M then15

W := (W ∪ {(C ∪M) \ {e⊥}}) \ Z16

return ff;17

end18

Algorithm 5.10 - Detection of arbitrary predicates using slicing

connected components can be done in O(|N |+ |R|) using Tarjan’s algorithm [Tarjan,
1972]. Computing the slice is done in O(|E|× |ϕ|×k2). The exploration (lines 3–17) is
done in O(2|E| × |ϕ| × k). Indeed, in a worst case scenario, each cut of T is consistent
with the slice. Hence, the time complexity of Algorithm 5.10 is in O(2|E| × |ϕ| × k2).
However, in practice, as shown in [Garg and Mittal, 2005], it is substantially better
than Algorithm 5.1.

Before concluding this section on regular predicates, let us investigate the relation
of this class of predicates with the previous two. First, as proven in [Chase and
Garg, 1998], the class of regular predicates is included in the class of linear predicates.
To establish this result, the authors introduce the class of meet-closed predicate, i.e.
predicates that are closed for the meet operator (intersection).
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Definition 5.10 (Meet-Closed Predicate)

Given a po-trace T = 〈E, V0, δ,�〉 over P with KT = 〈Q, I,L,−→〉, a predicate ϕ is
meet-closed w.r.t. T if and only if

∀C,D ∈ Q :
(L(C) |=P ϕ ∧ L(D) |=P ϕ

)⇒ L(C ∩D) |=P ϕ

From their respective definition, the authors observe that meet-closed predicates
include regular predicates. Finally, they use the fact that a predicate is linear if and
only if it is meet-closed.

Theorem 5.5 (Linear and Meet-Closed Cöıncide [Chase and Garg, 1998])

Given a po-trace T = 〈E, V0, δ,�〉 over P with KT = 〈Q, I,L,−→〉, a predicate ϕ is
linear w.r.t. T if and only if it is meet-closed w.r.t. T

It follows directly that every regular predicate is also linear.

Corollary 5.2 ([Chase and Garg, 1998])

Given a po-trace T = 〈E, V0, δ,�〉 over P with KT = 〈Q, I,L,−→〉, any predicate ϕ
regular w.r.t. T is also linear w.r.t T .

Furthermore, it is shown in [Garg and Mittal, 2001b] that regular predicates also
include conjunctive predicates. To establish this result, the authors state, without
proof, that local predicates are regular. We give a proof hereafter.

Proposition 5.8

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, any predicate ϕ local
to a process Pi is also regular w.r.t. T .

Proof

Assume the existence of two cuts C,D ∈ Q such that L(C) |=P ϕ, and L(D) |=P ϕ.
Since 〈Pi,�〉 is a totally ordered set, we have that either C ∩ Pi ⊆ D ∩ Pi or
D ∩ Pi ⊆ C ∩ Pi. We only examine the former case, the latter being symmetrical.
In the former case, we can deduce that (C ∩ D) ∩ Pi = C ∩ Pi. Therefore, since
L(C) |=P ϕ, it follows, by Definition 5.1, that L(C ∩ D) |= ϕ. Similarly, in this
case, we have that (C ∪D) ∩ Pi = D ∩ Pi. Again, since L(D) |=P ϕ, we have, by
Definition 5.1, that L(C ∪D) |= ϕ.

Then, they prove that regular predicates are closed for conjunction.

Proposition 5.9 ([Garg and Mittal, 2001b])

Given a po-trace T = 〈E, V0, δ,�〉 over P with KT = 〈Q, I,L,−→〉, two predicates
ϕ and ψ regular w.r.t. T , we have that ϕ ∧ ψ is regular w.r.t T .
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It follows directly that regular predicates include conjunctive predicates.

Corollary 5.3 ([Garg and Mittal, 2001b])

Given a po-trace T = 〈E, V0, δ,�〉, a conjunctive predicate ϕ is regular w.r.t. T .

5.2 A Syntactical Perspective

All the classes of predicates reviewed in the previous section are defined semantically.
It is therefore not easy to detect whether a given PBL formula ϕ belongs to one of
those classes without examining the lattice of cuts. In this section, we therefore try
to come up with syntactical criteria for the two most important classes, i.e. observer-
independent and regular. For that purpose, we focus our attention on literals, since
they are the basic building blocks from which every predicate is built. It turns out
that literals are observer-independent.

Theorem 5.6 (Litterals are Observer-Independent)

Given a set of propositions P, a po-trace T = 〈E, V0, δ,�〉 over P with KT =
〈Q, I,L,−→〉, and a proposition p ∈ P, we have that both p and ¬p are observer-
independent w.r.t. T

Proof

Let ϕ be a literal, i.e. either ϕ = p or ϕ = ¬p for some p ∈ P and assume that
∃ρ ∈ runs(KT ),∃i ∈ [0, |ρ|) : L(ρ(i)) |=P ϕ. We consider two cases:

(i) If ρ(i)/p = ∅, by Definition 4.4, it must be that V0 |=P ϕ. In this case, since
∅ is the first cut of every run and since L(∅) = V0, we conclude.

(ii) On the other hand, if ρ(i)/p 6= ∅, then the truth value of ϕ depends on one
event e def= max�(ρ(i)/p), and only on e. More precisely, assuming b ∈ B is
a boolean value such that b = tt iff ϕ = p, we have that L(ρ(i)) |=P ϕ iff
p ∈ δ(e, b). Then, for any run ρ′ ∈ runs(KT ), there must exist a position
j ∈ [1, |ρ′|) such that e 6∈ ρ′(j − 1) and e ∈ ρ′(j). Indeed, by definition,
each event must must be triggered at some point during ρ since ρ ends
in E. Since ρ(j) ∈ Q = DC�(E), it must be that e = max�(ρ′(j)). It
follows by Definition 4.4 that L(ρ′(j)) |=P ϕ. Hence, we can conclude that
∀ρ′ ∈ runs(KT ),∃j ∈ [0, |ρ′|] : L(ρ′(j)) |=P ϕ.

It follows by Proposition 5.6, that disjunctions of literals are also observer-independent.
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Corollary 5.4

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, a PBL formula ϕ of the
form ϕ1 ∨ . . . ∨ ϕn where, ∀i ∈ [1, n], ϕi is a literal, is observer-independent.

It also turns out that literals are regular. However, in order to prove that, we need
a few intermediate results. First, given two cuts C and D of T such that C/p ⊆ D/p,
we prove that the truth value of p in C ∩D depends only on C.

Lemma 5.1

Given a set of propositions P, a po-trace T = 〈E, V0, δ,�〉 over P with KT =
〈Q, I,L,−→〉, a proposition p ∈ P, and two cuts C,D ∈ Q such that C/p ⊆ D/p, we
have that (L(C) |=P p)⇔ (L(C ∩D) |=P p)

Proof

We consider two cases:

(i) If C/p = ∅, by Definition 4.4, we have that L(C) |=P p iff p ∈ V0. By
construction, we also have that (C ∩D)/p = C/p ∩D/p = ∅. Therefore, by
Definition 4.4, we also have that L(C∩D) |=P p iff p ∈ V0. Hence we conclude.

(ii) If C/p 6= ∅, by Definition 4.4, we have that L(C) |=P p iff p ∈
δ(max�(C/p), tt). By construction, we have that (C ∩ D)/p = C/p ∩ D/p =
C/p 6= ∅. It follows by Definitions 4.4 and 4.4, that L(C ∩D) |=P p holds iff
p ∈ δ(max�((C ∩D)/p), tt). Finally, since (C ∩D)/p = C/p, we conclude.

Next, we prove that, in a similar situation, the truth value of any p in C ∪ D
depends only on D.

Lemma 5.2

Given a set of propositions P, a po-trace T = 〈E, V0, δ,�〉 over P with KT =
〈Q, I,L,−→〉, a proposition p ∈ P, and two cuts C,D ∈ Q such that C/p ⊆ D/p, we
have that (L(D) |=P p)⇔ (L(C ∪D) |=P p)

Proof

We consider two cases:

(i) If D/p = ∅, by Definition 4.4, we have that L(C) |=P p iff p ∈ V0. By
construction, we also have that (C ∪D)/p = C/p ∪D/p = C/p ∪∅, and since
C/p ⊆ D/p = ∅, that (C ∪D)/p = ∅. Therefore, by Definition 4.4, we also
have that L(C ∪D) |=P p iff p ∈ V0. Hence we conclude.

(ii) If D/p 6= ∅, by Definition 4.4, we have that L(C) |=P p iff p ∈
δ(max�(D/p), tt). By construction, we have that (C ∪ D)/p = C/p ∪ D/p =
D/p 6= ∅. It follows by Definitions 1.2 and 4.4, that L(C ∪D) |=P p holds iff
p ∈ δ(max�((C ∪D)/p), tt). Finally, since (C ∪D)/p = D/p, we conclude.
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Finally, we prove that for any two cuts C and D of T , we are always in a situation
where Lemma 5.1 or Lemma 5.2 applies.

Lemma 5.3

Given a set of propositions P, a po-trace T = 〈E, V0, δ,�〉 over P with
KT = 〈Q, I,L,−→〉, we have that:

∀C,D ∈ Q,∀p ∈ P : (C/p ⊆ D/p) ∨ (D/p ⊆ C/p)
Proof

First, we assume without loss of generality that C/p 6= ∅ and that D/p 6= ∅.
Indeed, if one of the two, or both are empty, the result is immediate. In this
case, since by Definition 4.4 both C/p and D/p are totally ordered w.r.t. �, let
e

def= max�(C/p) and e′ def= max�(D/p). Since both e and e′ belong to E/p, by
Definition 4.4, we have that either e � e′ or e′ � e. In the former case, for any
e′′ ∈ C/p, we have that e′′ � max�(C/p) = e � e′. Therefore, since C ∈ Q =
DC�(E) and since e′ ∈ C, we have that e′′ ∈ C. Furthermore, since e′′ ∈ C/p, it
must be that e′′ ∈ E/p and therefore we have that e′′ ∈ D/p. We can therefore
conclude that C/p ⊆ D/p. In the latter case, using a symmetrical argument, we
can conclude that D/p ⊆ C/p which proves the lemma.

We are now able to prove that literals are regular.

Theorem 5.7 (Litterals are Regular)

Given a set of propositions P, a po-trace T = 〈E, V0, δ,�〉 over P with
KT = 〈Q, I,L,−→〉, and a proposition p ∈ P, we have that both p and ¬p are
regular w.r.t. T .

Proof

Let C,D ∈ Q be two cuts of T . From Lemma 5.3, we known that either C/p ⊆ D/p

or D/p ⊆ C/p. Let us assume without loss of generality that C/p ⊆ D/p (the other
case is symmetrical). We consider p and ¬p separately

p Assume that L(C) |=P p and L(D) |=P p. In this case, since C/p ⊆ D/p, we
have by Lemma 5.1, that L(C∩D) |=P p, and by Lemma 5.2 that L(C∪D) |=P

p. Hence, we conclude.

¬p Assume that L(C) |=P ¬p and L(D) |=P ¬p. By Definition 1.2, this holds iff
L(C) 6|=P p and L(D) 6|=P p. Since C/p ⊆ D/p, we have by Lemma 5.1, that
L(C ∩D) 6|=P p, and by Lemma 5.2 that L(C ∪D) 6|=P p. By Definition 1.2,
this holds iff L(C ∩D) |=P ¬p and L(C ∪D) |=P ¬p. Hence we conclude.
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function detectDNF(T, ϕ)1

input : a po-trace T = 〈E, V0, δ,�〉, a DNF predicate ϕ = ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕn
returns: tt if and only if T |=P ϕ

begin2

forall i ∈ [1, n] do3

if detectRegular(T, ϕi) then4

return tt5

return ff6

end7

Algorithm 5.11 - Detection of DNF predicates

Then, since regular predicates are closed to conjunction by Proposition 5.9, we can
also conclude that conjunctions of literals are regular.

Corollary 5.5

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, a PBL formula ϕ of the
form ϕ1 ∧ . . . ∧ ϕn where, ∀i ∈ [1, n], ϕi is a literal, is regular.

An important consequence of this result is that for a PBL formula ϕ in disjunctive
normal form (DNF), i.e. ϕ is a disjunction of conjunctions of literals, detecting if there
exists a cut satisfying ϕ can be done in polynomial time. Indeed, this can be reduced to
checking if one of the branches of ϕ, i.e. a conjunction of literals, is satisfied by at least
one cut. Since conjunctions of literals are regular, this can be done in polynomial time
using Algorithm 5.9. This is formalized in Algorithm 5.11. It immediately follows that
the predicate detection problem is PTIME-easy if the formula is in disjunctive normal
form. This complexity gap can be explained by the fact transforming a formula into a
DNF equivalent may increase its size by an exponential factor.

Theorem 5.8 (Complexity of PRED for PBL Formulae in DNF)

The predicate detection problem is PTIME-easy for any PBL formula in DNF.

This is a small, but rather interesting result. Indeed, in the context of testing, the
predicate will be used to test a large number of po-traces. Therefore, the potentially
exponential time needed to transform the formula in DNF will, in general, be greatly
compensated by the time gained during the successive trace analyses.
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Figure 5.6 - A hierarchy of predicates

5.3 Summary

As a concluding remark, we present in Figure 5.6, an overview of all the classes of pred-
icates that we examined in this chapter, along with their relationship with one another.
At the center of this picture, stands the class of arbitrary predicates, defined by all PBL

formulae, for which the detection problem is hard. Around those predicates, gravitate
the well known classes of stable, observer independent, local, disjunctive, conjunctive,
regular and linear predicates presented in Sections 5.1.1 through Section 5.1.7. Finally,
on the right hand side of this picture, we can find the syntactical classes of predicates
that we established in Section 5.2.
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6
LTL Trace Checking

« Choice. The boy has no real choice, has he? »
The prison chaplain, in A Clockwork Orange

I
n the linear case, the trace checking problem consists in determining if every lin-
earisation of a distributed execution satisfies a given linear temporal requirement.
In our framework, this translates into checking whether every trace σ of a given

po-trace T satisfies, using the ad-hoc semantics, a given LTL formula ϕ. This problem is
closely related to the LTL model checking problem. As previously mentioned, a classical
approach to solve this problem is to use finite (Büchi) automata [Vardi and Wolper,
1986]. Indeed, as explained in Chapter 1, given a LTL formula ϕ, a Büchi automata
A¬ϕ accepting exactly [[¬ϕ]]L is constructed. The model checking is then reduced to
checking whether ω traces(K) ⊆ ω lang(A¬ϕ). In this chapter, we investigate how to
adapt this for our purpose, i.e. solving the LTL trace checking problem, and examine
if, in this particular context, it can be improved. First, in Section 6.1, we show how
the classical automata-based approach, can be easily adapted. For that purpose, we
show how the automaton construction can be modified to take into account the finite
nature of partial order traces. We then explain how the resulting finite automaton,
called a monitor in this context, can be used in practice to solve our problem of in-
terest. Then, in Section 6.2, we introduce a new approach where the structure of the
monitor is exploited to improve on the previous algorithm. Next, in Section 6.3, we
compare the two approaches experimentally. Finally, we conclude, in Section 6.4, by
discussing some related works. The content of this chapter is based on a joint work
with Alexandre Genon and Thierry Massart, published in [Genon et al., 2006].
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6.1 Automata-Based Approach

Let us examine how the automata-based approach can be adapted for the LTL trace
checking problem. First, in Section 6.1.1, we explain how to build a finite automaton
from a LTL formula ϕ, that accepts exactly those finite propositional sequences that
satisfy ϕ. Then, in Section 6.1.2, we explain how this can be used, to solve the trace
checking problem, by composing it with the po-trace. Finally, in Section 6.1.3, we
explain how this composition can be refined into a trace checking algorithm.

6.1.1 Monitor

Our goal is to build an automaton accepting exactly the finite propositional sequences
satisfying a given LTL formula ϕ, namely [[ϕ]]F

L. In this context, we call those finite
automata monitors. The formal definition follows.

Definition 6.1 (Monitor)

Given a set of propositions P, a monitor is a finite automaton M = 〈S, s0, F,Σ,∆〉
with Σ = 2P.

In the following, we say that a monitor M is a monitor for ϕ if and only if lang(M) =
[[ϕ]]F

L. The problem of building such a monitor for ϕ has already been studied in
[Giannakopoulou and Havelund, 2001], where the authors adapt the classical algorithm
of [Gerth et al., 1995] to finite propositional sequences. This algorithm works as follows.
First, the LTL formula is transformed into negation normal form (NNF) by pushing
the negations inward. For conjunctions and disjunctions, this can be done using De
Morgan’s laws1. For the X modalities, we can use the equivalence (¬Xϕ)⇔ ((X¬ϕ)∨
(¬X>)). Indeed, contrarily to the infinite case, where (¬Xϕ) ⇔ (X¬ϕ) holds, in the
finite case, we have to take into account the fact that ¬Xϕ can be evaluated at the end
of a propositional sequence. In this case, ¬Xϕ holds, while X¬ϕ does not. An easy
way to compensate for that is to add ¬X>, which holds if and only if evaluated at the
end of a trace. For the U modalities, we can use the dual modality V, introduced in
[Gerth et al., 1995], such that ¬(ϕ1 Uϕ2) ⇔ (¬ϕ1 V¬ϕ2). Similarly to PBL formulae,
we note NNF(ϕ) the formula obtained from ϕ by applying those equivalences. Then,
the algorithm constructs a graph where each node n is a 4-uple 〈I,N,O,X〉. The first
component, I standing for incoming, is the set of nodes which have an incoming edge
to n. The second component, N standing for new, is a set of LTL formulae that must
hold in n, but have not been processed yet. The third component, O standing for

1¬(ϕ1 ∧ ϕ2)⇔ (¬ϕ1 ∨ ¬ϕ2), ¬(ϕ1 ∨ ϕ2)⇔ (¬ϕ1 ∧ ¬ϕ2) and ¬¬ϕ ≡ ϕ
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old, is the set of LTL formulae that have already been processed, and finally, the last
component, X standing for next, is a set of LTL formulae that must hold in all the
immediate successors of n. At each step in the algorithm, a formula in the new field of
the current node is processed, and moved to its old field. Once a node has been fully
expanded, i.e. once all the formulae in its new field of a node have been processed, the
node is stored in a set S for later use. This is presented in function expand(n, S) of
Algorithm 6.1 which works as follows. First, it checks whether there are unprocessed
formulae in the new field of the current node n (line 3). If it is not the case, the node
n is fully processed, and ready to be added to the set of nodes S. If a similar node is
already in S, i.e. a node with the same old and next fields (line 4), then the current
node is merged with this node (line 5). If such a similar node does not exist, n is
simply added to S (line 7). The new current node is then constructed from the next
field of n. If the current node does contain some unprocessed formula ϕ, it is moved
from its new field to its old field (line 9). Then, the node is processed. The processing
depends on the structure of ϕ.

• If ϕ is a literal, > or ⊥ (lines 10–12), the algorithm checks if the old field contains
a contradiction2, in which case the current node is discarded. If this is not the
case, the expansion continues with the current node (line 12).

• If ϕ = Xϕ1 (lines 13–14), ϕ1 is added to the next field.

• If ϕ = ϕ1 ∧ ϕ2 (lines 15–16), both ϕ1 and ϕ2 are added to the new field.

• If ϕ = ϕ1 ∨ ϕ2 (lines 17–20), the current node is split in two. The formula ϕ1 is
added to the new field of one of its copy, and ϕ2 to the other.

• If ϕ = ϕ1 Uϕ2 (lines 21–24), the node is split in two: for the first copy, ϕ1 is
added to the new field and ϕ1 Uϕ2 to the next field. For the other copy, only
ϕ2 is added to the new field. This splitting can be explained by observing that
ϕ1 Uϕ2 is equivalent to ϕ2 ∨ (ϕ1 ∧ X(ϕ1Uϕ2)).

• If ϕ = ϕ1 Vϕ2 (lines 25–28), the node is also split in two: for the first copy,
ϕ2 is added to the new field and ϕ1 Vϕ2 to the next field. For the other copy,
only ϕ1 is added to the new field. This splitting can be explained by observing
that ϕ1 Vϕ2 is equivalent to ϕ2 ∧ (ϕ1 ∨ X(ϕ1Vϕ2)), which is also equivalent to
(ϕ2 ∧ ϕ1) ∨ (ϕ2 ∧ X(ϕ1 Vϕ2)).

As shown in function buildMonitor(ϕ), the expansion starts with one node (line 34),
containing the initial formula NNF(ϕ) in its new field, nothing in its old and next fields

2In the algorithm, we identify ϕ and ¬¬ϕ
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function expand(n, S)1

input : a node n = 〈I,N,O,X〉 and the current set of nodes S
output : S updated after the expansion of n
begin2

if N = ∅ then3

if ∃n′ = 〈I ′, N ′, O′, X ′〉 ∈ S : (O = O′) ∧ (X = X ′) then4

return S \ {n′} ∪ {〈I ′ ∪ I,N ′, O′, X ′〉}5

else6

return expand(〈{n}, X,∅,∅〉, S ∪ {n})7

else8

Let ϕ ∈ N , N := N \ {ϕ}, O := O ∪ {ϕ}9

if (ϕ = >) ∨ (ϕ = ⊥) ∨ (ϕ = p) ∨ (ϕ = ¬p) then10

if (ϕ = ⊥) ∨ (¬ϕ ∈ O) then return S11

else return expand(〈I,N,O,X〉, S)12

else if ϕ = Xϕ1 then13

return expand(I,N,O,X ∪ {ϕ1})14

else if ϕ = ϕ1 ∧ ϕ2 then15

return expand(〈I,N ∪ {ϕ1, ϕ2} \O,O,X〉, S)16

else if ϕ = ϕ1 ∨ ϕ2 then17

n1 := 〈I,N ∪ {ϕ1} \O,O,X〉18

n2 := 〈I,N ∪ {ϕ2} \O,O,X〉19

return expand(n2, expand(n1, S))20

else if ϕ = ϕ1 Uϕ2 then21

n1 := 〈I,N ∪ {ϕ1} \O,O,X ∪ {ϕ}〉22

n2 := 〈I,N ∪ {ϕ2} \O,O,X〉23

return expand(n2, expand(n1, S))24

else if ϕ = ϕ1 Vϕ2 then25

n1 := 〈I,N ∪ {ϕ2} \O,O,X ∪ {ϕ}〉26

n2 := 〈I,N ∪ {ϕ1, ϕ2} \O,O,X〉27

return expand(n2, expand(n1, S))28

end29

Algorithm 6.1 - Construction of monitors for LTL formulae
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function buildMonitor(ϕ)30

input : a LTL formula ϕ
output : a monitor M such that lang(M) = [[ϕ]]F

L

begin31

ψ = NNF(ϕ)32

n0 := 〈∅,∅,∅, {ψ}〉33

S := expand(〈{n0}, {ψ},∅,∅〉, {n0})34

∆ := ∅35

forall n′ = 〈I ′, N ′, O′, X ′〉 ∈ S do36

forall V ⊆ P do37

if ∀χ ∈ O′ ∩ {p,¬p | p ∈ P} : V |=P χ then38

∆ := ∆ ∪ {〈n, V, n′〉 ∈ S × 2P × S | n ∈ I ′}39

F := {〈I,N,O,X〉 ∈ S | X = ∅}40

return reduce(〈S, n0, F, 2P,∆〉)41

end42

Algorithm 6.1 - Construction of monitors for LTL formulae (cont’d)

and the initial node n0 in its incoming field. Once the expansion is finished, the monitor
is built from the resulting set of nodes. The set of states is given by set of expanded
nodes, to which is added the initial state (line 34). The transition relation is built as
follows: there is an edge from a node n′ to a node n labelled with a valuation V ⊆ P if
and only if n′ is in the incoming field of n, and if V is compatible with the literals in
the old field of n (lines 35–39). The set of final states is then given by the set of nodes
for which the next field is empty (line 40). In other words, a state is final if all future
requirements are already satisfied. The resulting automaton is then determinized and
minimized using the classical automata theory algorithm. For that purpose, we assume
the existence of a function reduce (line 41) that takes care of that. For more details
on how to minimize and determinize finite automata, we refer the reader to [Hopcroft
et al., 2000].
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fully expanded
nodes (∈ S)

merged nodes

call to expand(n, S)

I = ∅
N = ∅
O = ∅
X = {⊤U (p ∨ q)}

n0

I = {n0}
N = {⊤U (p ∨ q)}
O = ∅
X = ∅

I = {n0}
N = {⊤}
O = {⊤U (p ∨ q)}
X = {⊤U (p ∨ q)}

I = {n0}
N = {p ∨ q}
O = {⊤U (p ∨ q)}
X = ∅

I = {n0}
N = {p}
O = {⊤U (p ∨ q),

p ∨ q}
X = ∅

I = {n0}
N = {q}
O = {⊤U (p ∨ q),

p ∨ q}
X = ∅

I = {n0}
N = ∅
O = {⊤U (p ∨ q),⊤}
X = {⊤U (p ∨ q)}

n1

I = {n1}
N = {⊤U (p ∨ q)}
O = ∅
X = ∅

I = {n1}
N = {p ∨ q}
O = {⊤U (p ∨ q)}
X = ∅

I = {n1}
N = {⊤}
O = {⊤U (p ∨ q)}
X = {⊤U (p ∨ q)}

I = {n1}
N = ∅
O = {⊤U (p ∨ q),⊤}
X = {⊤U (p ∨ q)}

merged with n1

I = {n0}
N = ∅
O = {⊤U (p ∨ q),

p ∨ q, p}
X = ∅

n2

I = {n0}
N = ∅
O = {⊤U (p ∨ q),

p ∨ q, q}
X = ∅

n3

I = {n3}
N = ∅
O = ∅
X = ∅

n4

I = {n2}
N = ∅
O = ∅
X = ∅

merged with n4

I = {n4}
N = ∅
O = ∅
X = ∅

merged with n4

I = {n1}
N = {p}
O = {⊤U (p ∨ q),

p ∨ q}
X = ∅

I = {n1}
N = {q}
O = {⊤U (p ∨ q),

p ∨ q}
X = ∅

I = {n1}
N = ∅
O = {⊤U (p ∨ q),

p ∨ q, p}
X = ∅
merged with n2

I = {n1}
N = ∅
O = {⊤U (p ∨ q),

p ∨ q, q}
X = ∅
merged with n3

Figure 6.1 - Construction of a monitor for F(p ∨ q) - graph expansion
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n0

n1

n2

n3

n4⊤

⊤

⊤

p

qp

q⊤

⊤

s0 s1
p ∨ q

¬p ∧ ¬q ⊤

(a) Monitor before reduction (b) Monitor after reduction

Figure 6.2 - Construction of a monitor for F (p ∨ q) - reduction

Example 6.1

Figures 6.1 and 6.2 illustrate Algorithm 6.1 on the formula F(p∨q). The expansion
of the graph is presented in Figure 6.1. The resulting monitor, before and after
reduction, is presented respectively in Figure 6.2(a) and Figure 6.2(b). For the
sake of clarity, transitions between pair of states have been grouped together using
PBL formulae, i.e. n

ϕ−−→ n′ denote {〈n, V, n′〉 ∈ Q× 2P ×Q | V |=P ϕ}.

6.1.2 Composition

Similarly to what is done in automata-based model checking, using monitors, we can
reduce the trace checking problem for LTL to inclusion checking. Formally, given a
po-trace T and a monitor Mϕ for a given LTL formula ϕ, we have to check that
traces(KT ) ⊆ lang(Mϕ). Indeed, by doing so, we check that every trace of KT satisfies
ϕ. Again, similarly to automata-based model checking, we can alternatively check that
traces(KT ) ∩ lang(Mϕ) = ∅, or that equivalently that traces(KT ) ∩ lang(M¬ϕ) = ∅,
where M¬ϕ is a monitor for ¬ϕ. Testing emptiness bewteen the set of traces of a
po-trace T and a monitor M can be done by composing T with M , i.e. examine how
the monitor M reacts to the events of T . Formally, this composition is done as follows.

Definition 6.2 (Composition)

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉 and a monitor M =
〈S, s0, F, 2P,∆〉, the composition of T with M , noted T ×M , is a transition system
〈Q×, I×,−→×〉 where:

• Q× def= Q× S,

• I× def= {〈∅, s〉 | s ∈ next(s0, V0)},
• −→×def= {〈〈C, s〉, 〈C ′, s′〉〉 | (C −→ C ′) ∧ s′ ∈ next(s,L(C ′))}
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In this composition, a configuration is a tuple 〈C, s〉, where C is a cut of T and s is
a monitor state. The set of initial configurations is defined as the set of configurations
〈∅, s〉, where s is a state that can be reached from the initial state s0 of M by reading
the initial valuation of T , namely V0. This is because V0 is the first valuation of
all the traces of KT , and should therefore be taken into account before any event is
actually considered. Furthermore, the transition relation is defined as follows. In a
configuration 〈C, s〉, when an event e is triggered, first its effect is taken into account in
C, leading to a cut C ′, then the resulting valuation, i.e. L(C ′), is read by the monitor
leading to a state s′. In essence, when in a configuration 〈C, s〉, we have that L(C) is
the valuation that was used to reach s. With this definition, if T ×M contains a run
ending in a configuration 〈C, s〉 such that C = E and s ∈ F , i.e. all events have been
examined and the corresponding trace is accepted by M , then we know the traces(KT )
and lang(M) have a non-empty intersection. In fact, this is a necessary and sufficient
condition.

Theorem 6.1 (Correctness of the composition)

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉 and a monitor
M = 〈S, s0, F, 2P,∆〉, we have that:

(traces(KT ) ∩ lang(M) = ∅)⇔ (∀〈C, s〉 ∈ reach(T ×M) : (C = E)⇒ (s 6∈ F ))
Proof

We prove both directions:

⇒ Assume that traces(KT ) ∩ lang(M) = ∅. Let 〈C, s〉 ∈ reach(T × M). If
C 6= E, there is nothing to prove. Let us therefore consider the case where
C = E. In this case, since 〈C, s〉 ∈ reach(T × M) and since C = E,
there exists a run 〈C1, s1〉〈C2, s2〉 . . . 〈Cn, sn〉 ∈ runs(T × M) such that
〈Cn, sn〉 = 〈C, s〉. By Definition 6.2, we have that C1C2 . . . Cn ∈ runs(KT )
and therefore that L(C1C2 . . . Cn) ∈ traces(KT ). Moreover, we also have that
∀i ∈ [0, n) : 〈si,L(Ci+1), si+1〉 ∈ ∆, which implies that L(C1C2 . . . Cn) ∈
lang(M) if sn ∈ F . However, since traces(KT ) ∩ lang(M) = ∅, it must be
that L(C1C2 . . . Cn) 6∈ lang(M). It follows directly that s = sn 6∈ F .

⇐ We proceed by contraposition. Assume indeed that traces(KT )∩ lang(M) 6=
∅. In this case, there exists a run ρ ∈ runs(KT ) such that L(ρ) ∈ lang(M).
Therefore, there exists a sequence s0s1 . . . s|ρ| ∈ S+ such that ∀i ∈ [0, |ρ|) :
〈si,L(ρ(i)), si+1〉 with s|ρ| ∈ F . By Definition 6.2, it follows directly that
〈ρ(0), s1〉〈ρ(1), s2〉 . . . 〈ρ(|ρ| − 1), s|ρ|〉 ∈ runs(T ×M). We can therefore con-
clude that ∃〈C, s〉 ∈ reach(T ×M) : (C = E) ∧ (s ∈ F ).
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function explicitLTL-TC(T, ϕ)1

input : A po-trace T = 〈E, V0, δ,�〉 and a LTL formula ϕ
output : tt if and only if T |=L ϕ

begin2

〈S, s0, F, 2P,∆〉 := buildMonitor(¬ϕ)3

Z := ∅, W := ∅4

forall s ∈ next(s0, V0) do5

W := W ∪ {〈∅, V0, s〉}6

while W 6= ∅ do7

Let 〈C, V, s〉 ∈W8

W := W \ {〈C, V, s〉}, Z := Z ∪ {〈C, V, s〉}9

if (C = E) ∧ (s ∈ F ) then10

return ff11

forall e ∈ enabled(C) do12

V ′ := (V \ δ(e,ff)) ∪ δ(e, tt)13

forall s′ ∈ next(s, V ′)) do14

W := (W ∪ {〈C ∪ {e}, V ′, s′〉}) \ Z15

return tt16

end17

Algorithm 6.2 - Explicit LTL trace checking algorithm

6.1.3 Explicit Trace Checking Algorithm

The necessary and sufficient condition of Theorem 6.1 can be refined into an explicit
LTL trace checking algorithm, as presented in Algorithm 6.2. The algorithm starts by
building the monitor for ¬ϕ (line 3). The algorithm maintains two sets of configu-
rations Z and W (line 4). The first set Z, initially empty, is used to remember the
configurations that have already been explored in order to avoid exploring a configu-
ration more that once. The other set W is the set of working configurations, i.e. the
configurations that still need exploring. On top of a cut C and a monitor state s, each
configuration also contains a valuation V corresponding to L(C). In the beginning, W
is filled with the set of initial configurations as specified in Definition 6.2 (lines 5–6).
Then, while the set of working configuration W is not empty, i.e. while there remains
at least one configuration that has not been explored yet (line 7), the algorithm picks
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one configuration arbitrarily in W (lines 8–9), and checks if it is a faulty configuration
(line 10). If it is, the algorithm returns false (line 11) indicating that the formula is
violated. On the other hand, if it is not, the algorithm adds to W every successor
of the current configuration according to Definition 6.2 (lines 12–15). Finally, if the
exploration stops without finding any faulty configurations, it returns true (line 16).

6.2 Monitor Driven Approach

In the classical automata-based approach presented in the previous section, every single
interleaving of events compatible with the partial order of the po-trace is examined.
Unfortunately, the number of such interleavings can be exponential in the number of
events, which renders Algorithm 6.2 quite inefficient in practice. However, we can
once again draw inspiration from the LTL model checking, and in particular from
partial order reduction techniques [Godefroid, 1996; Valmari, 1993]. These techniques
are based on the idea that a property is often insensitive to the order in which two
independent actions occur. Therefore, only exploring one interleavings of those actions
is enough. Regrettably, as is, those techniques are not very efficient for our problem
of interest. Indeed, in the trace checking problem, the main model, namely partial
order traces, is obtained from the system by collecting only events that are relevant
to the property. In this setting, the property is therefore dependent to most, if not
all, events of the po-trace, which is why partial order reduction brings almost no
improvement. Nevertheless, we can still improve on the existing solution using the
same underlying motivation, i.e. reducing the number of interleavings that need to be
examined to establish the property. This is precisely what we address in this section.
For that purpose, in Section 6.2.1, we first introduce a subclass of monitors, called
determined monitors, which exhibit a remarkable property that will be useful for our
purpose. We also show that every LTL formula admits a monitor in this subclass. Next,
in Section 6.2.2, we explain how the structure of such a determined monitor can be
exploited during the exploration. Finally, in Section 6.2.3, we show how this can be
refined into a symbolic trace checking algorithm.

6.2.1 Determined Monitors

In the traditional composition, the effect of an event e on the monitor in a state s is
determined not only by e, but also by the cut from which e is triggered. In this section,
we introduce a subclass of monitors, called determined monitors, for which it is not
the case, i.e. the effect of an event e on the monitor depends only on e. Intuitively, a
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V, V ′

(V \D) ∪ U

(V ′ \D) ∪ U

Figure 6.3 - V 6≡s V ′

monitor M is determined if and only if in any state s of M , all incoming valuations
are equivalent for the evolution of the monitor. In the following, we say that two
valuation V, V ′ ⊆ P are equivalent in a monitor state s, noted V ≡s V ′, if and only if
∀U,D ⊆ P : next(s, (V \D)∪U) = next(s, (V ′ \D)∪U). In other words, as illustrated
in Figure 6.3, V and V ′ are not equivalent in s, if there could exist an event, which
effect is here modeled as a pair of sets of propositions U,D (U for up and D for down),
that would result in different moves from s . Using this equivalence, we define the class
of determined monitor as follows.

Definition 6.3 (Determined Monitor)

A monitor M = 〈S, s0, F, 2P,∆〉 is determined if and only if

∀s ∈ S,∀V, V ′ ∈ in(s) : V ≡s V ′

Before moving on, let us illustrate this definition with a small example.

Example 6.2

Consider the monitor presented in Figure 6.2(b). In the initial state s0, the next
move is determined only by the truth value of propositions p and q. However, for
any incoming valuation V ∈ in(s0), we have that p 6∈ V and q 6∈ V . It follows that
∀V ∈ in(s0) : V ≡s0 ∅. In the final state s1, the next move is always the same, i.e.
coming back to s1. Hence, all incoming valuations are equivalent in s1. We can
therefore conclude that this monitor is determined.

For this class of monitor, the set of monitor states reachable by triggering an
event e from a monitor state s can be defined independently from the valuation that
was used to reach s. Formally, we define next(s, e) def= {s′ ∈ S | ∃V ∈ in(s) : s′ ∈
next(s, (V \ δ(e,ff))∪ δ(e, tt))}, since all valuations are equivalent. Using this notation,
we can give a simpler characterization of the transition relation when a po-trace is
composed with a determined monitor.
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Proposition 6.1

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉 and a determined
monitor M = 〈S, s0, F, 2P,∆〉, let T × M = 〈Q×, I×,−→×〉. We have that
∀〈C, s〉, 〈C ′, s′〉 ∈ Q×:

(〈C, s〉 −→× 〈C ′, s′〉)⇔ (∃e ∈ enabled(C) : (C ′ = C ∪ {e}) ∧ (s′ ∈ next(s, e)))

Of course, a natural question then arises: Does every LTL formula admits such a
determined monitor? It turns out to be the case. In order to prove this, we exhibit
an algorithm that, given an LTL formula ϕ, builds a determined monitor for ϕ from
the one obtained using Algorithm 6.1. This algorithm is based on a necessary and
sufficient condition for two valuations V, V ′ to be equivalent in a given monitor state
s. For this, we need to introduce one additional notation. Given a monitor state s,
we note prop(s) def= {p ∈ P | ∃V ⊆ P \ {p} : next(s, V ) 6= next(s, V ∪ {p})} the set
of propositions that directly affect the next move from s. At any given time during
the composition, the only propositions that need to be taken into account when in a
configuration 〈C, s〉 are the one in prop(s). This is formalized hereafter.

Proposition 6.2

Given a determined monitor M = 〈S, s0, F, 2P,∆〉, we have that:

∀s ∈ S,∀V ⊆ P : next(s, V ) = next(s, V ∩ prop(s))
Proof

We proceed by induction on |V \ prop(s)|.
Initial Step If |V \ prop(s)| = 0, then V = V prop(s) and the result is immediate.

Induction Step If |V \ prop(s)| = n > 0, we have that V \ prop(s) 6= ∅. Let
p ∈ V \ prop(s), and V ′ = V \ {p}. By construction, since p 6∈ prop(s), we
have that V ∩ prop(s) = V ′ ∩ prop(s), and therefore that next(s, V ∩ prop(s)) =
next(s, V ′ ∩ prop(s)). Then, since |V ′ \ prop(s)| = n − 1, by induction, we have
that next(s, V ′ ∩ prop(s)) = next(s, V ′). Finally, since p 6∈ prop(s), and since
V ′ ⊆ (P \ {p}), by definition of prop(s), we have that next(s, V ′) = next(s, V ′ ∪
{p}) = next(s, V ). Hence, we conclude.

Example 6.3

Consider the monitor presented in Figure 6.2(b). In the initial state s0, we have
that prop(s) = {p, q}, since those two propositions are the only one that are used
to determine the next move. On the other hand, in the final state s1, for any
V ⊆ P, we have that next(s1, V ) = {s1}. Hence, in this case, prop(s1) = ∅.
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The necessary and sufficient condition is then stated as follows.

Theorem 6.2 (Necessary and Sufficient Conditions for Valuation Equivalence)

Given a monitor M = 〈S, s0, F, 2P,∆〉,we have that:

∀s ∈ S : ∀V, V ′ ⊆ P :
(
V ≡s V ′

)⇔ (
V ∩ prop(s) = V ′ ∩ prop(s)

)
Proof

We prove both directions.

⇒ We proceed by contradiction. Assume indeed that V ≡s V ′ and that V ∩
prop(s) 6= V ′ ∩ prop(s). In this case, we have that ∃p ∈ prop(s) such that
either p ∈ V \ V ′ or p ∈ V ′ \ V ′. We only consider the former case, the
latter being symmetrical. Since p ∈ prop(s), we have that ∃W ⊆ P \ {p} :
next(s,W ) 6= next(s,W ∪{p}). If we choose U = W and D = (V ∪V ′) \ {p},
we have that (V \D) ∪ U = {p} ∪W and that (V ′ \D) ∪ U = ∅ ∪W = W .
Hence, since next(s,W ) 6= next(s,W ∪{p}). We therefore have that V 6≡s V ′
which contradicts our initial assumption.

⇐ Assume that V ∩ prop(s) = V ′ ∩ prop(s). For any U,D ⊆ P, we have that:

next(s, (V \D) ∪ U) = next(s, ((V \D) ∪ U) ∩ prop(s))
(by Propositions 6.2)

= next(s, ((V ∩ prop(M)) \D) ∪ (U ∩ prop(s)))
= next(s, ((V ′ ∩ prop(M)) \D) ∪ (U ∩ prop(s)))
= next(s, ((V ′ \D) ∪ U) ∩ prop(M))
= next(s, (V ′ \D) ∪ U) (by Propositions 6.2)

Hence, we can conclude that V ≡s V ′.

The algorithm is then formalized in Algorithm 6.3, which works as follows. It
starts by building a monitor for ϕ using Algorithm 6.1 (line 3). Then, the algorithm
loops as long as the monitor contains at least one state that does not comply with
Definition 6.3, i.e. a state with two incoming valuations V, V ′ that are not equivalent
(lines 4–13) according to the necessary and sufficient condition of Theorem 6.2. At
each step of the loop, one of these faulty states is split. The copy s′ takes on all the
valuations in one of the equivalence classes induced by ≡s, while s will keep all the
other ones. In practice, this splitting is done as follows. First, the state s′ is created
(line 5). If s is a final state, then s′ is added to F (line 6). Then, all incoming valuations
that are equivalent to V are diverted from s to s′ (lines 8–11). Finally, in order to
ensure that the language of the monitor is preserved, all outgoing transitions from s

are also duplicated in s′ (lines 12–13). The resulting monitor is then returned (line 14).
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function buildDeterminedMonitor(ϕ)1

input : a LTL formula ϕ
returns: a determined monitor for ϕ
begin2

〈S, s0, F, 2P,∆〉 := buildMonitor(ϕ)3

while ∃s ∈ S,∃V, V ′ ∈ in(S) : (V ∩ prop(s) 6= (V ′ ∩ prop(s)) do4

Let s′ be a new state, S := S ∪ {s′}5

if s ∈ F then F := F ∪ {s′}6

X := {V ′′ ∈ in(s) | V ′′ ∩ prop(s) = V ∩ prop(s)}7

forall V ′′ ∈ X s.t. 〈s, V ′′, s〉 ∈ ∆ do8

∆ := ∆ ∪ {〈s′, V ′′, s′〉}9

forall r ∈ S, V ′′ ∈ X s.t. 〈r, V ′′, s〉 ∈ ∆ do10

∆ := (∆ \ {〈r, V, s〉}) ∪ {〈r, V ′′, s′〉}11

forall t ∈ S, V ′′ ⊆ P s.t. 〈s, V ′′, t〉 ∈ ∆ do12

∆ := ∆ ∪ {〈s′, V ′′, t〉}13

return 〈S, s0, F, 2P,∆〉14

end15

Algorithm 6.3 - Construction of determined monitors for LTL formulae

Example 6.4

Figure 6.4 illustrates the construction of a determined monitor for the formula
F(p∧q) using Algorithm 6.3. Faulty states are highlighted in bold. In this example,
two splits are required to transform the original monitor into a determined one.
First, Figure 6.4(a) shows the monitor obtained using Algorithm 6.1. In this
automaton, the initial state s0 is at fault because e.g. {p} 6≡s0 ∅. Indeed, {p} ∩
prop(s) = {p} ∩ {p, q}, {p} 6= ∅ ∩ prop(s) = ∅. This state is therefore split. The
copy s2 takes the valuations equivalent to {p}, while the others remain in s0. This
leads to the automaton of Figure 6.4(b). In this automaton, s0 is still at fault, since
e.g. {q} 6≡s0 ∅. Indeed, {q}∩prop(s) = {q}∩{p, q} = {q} 6= ∅∩prop(s) = ∅. It is
therefore split again. This time, the copy s3 takes the valuations equivalent to {q}
and s0 keeps the remaining valuations, i.e. the one equivalent to ∅. The resulting
automaton, presented in Figure 6.4(c), meets the condition of Definition 6.3, and
is therefore determined.



LTL Trace Checking 153

s0 s1
p ∧ q

¬p ∨ ¬q ⊤

(a) Step 1

s0

s1

s2

p ∧ q

p ∧ q

p ∧ ¬q ¬p

¬p

⊤

p ∧ ¬q

(b) Step 2

s0 s1

s2

s3

p ∧ q

p ∧ q

p ∧ q

p ∧ ¬q ¬p ∧ ¬q

¬p ∧ q¬p ∧ ¬q

¬p ∧ ¬q

⊤

p ∧ ¬q

¬p ∧ q

¬p ∧ q
p ∧ ¬q

(c) Step 3

Figure 6.4 - Construction of a determined monitor for F(p ∧ q)

We now prove the correctness of this algorithm.

Theorem 6.3 (Correctness of Algorithm 6.3)

Given an LTL formula ϕ, Algorithm 6.3 returns a determined monitor for ϕ
Proof

We successively prove partial correctness, i.e. that if the algorithm terminates, it
returns the expected result, and then termination.

Partial Correctness An invariant for the main loop of the algorithm is that the
automata is a monitor for ϕ. Indeed, at the beginning, the automata is obtained
using Algorithm 6.1. Then, at each step of the loop, every propositional sequence
σ accepted from s at the beginning of the body of the loop can be accepted by
both s and its copy s′ after the body. Then, since each transition to s is either
redirected to s′ or kept to s, the overall language of the automaton is preserved.
This invariant, along with the looping condition implies that, if the loop terminates,
the automaton is a determined monitor for ϕ.
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Proof (cont’d)

Termination In a given state s ∈ S, let Ps ∈ Π(in(s)) be the partition induced
by ≡s. Let us then define the function f ∈ S 7→ N as follows. If |Ps| ≤ 1,
then f(s) def= 0, otherwise, f(s) def= |Ps|. And let that f(S) def=

∑
s∈S f(s). By

construction, we have that f(S) ≥ 0. We prove that f(S) strictly decreases after
each execution of the body of the loop. Indeed, for any state s′′ 6= s, before the body
of the loop, the set of incoming valuations is not modified by the transformation.
It follows that the contribution of s′′ in f(S) remains unchanged. For s, since
one of the equivalence classes is redirected to s′, f(s) decreases by at least 1.
Furthermore, since in s′ all incoming valuations are equivalent f(s′) = 0. We
can therefore conclude that f(S) strictly decreases at each step of the loop, thus
ensuring termination.

It follows directly that every LTL formula admits a determined monitor

Theorem 6.4 (Existence of a Determined Monitor)

Given a LTL formula ϕ, there exists a determined monitor M such that

lang(M) = [[ϕ]]F
L

Moreover, from Theorem 6.3, we get a bound on the number of states that the
resulting determined monitor may have. Indeed, in a worst case scenario, the number
of splits required to transform M into a determined monitor is equal to

∑
s∈S |in(s)|.

Assuming d denotes the maximum input degree of M , i.e. max≤({|in(s)| | s ∈ S}),
we have that this number is bounded by |S| × d. Finally, since d is bounded by |∆|,
we have that the number of states of the resulting determined monitor is bounded by
|S| + |S| × |∆| = |S| × (|∆| + 1). Note however, that the transformation does not
introduce additional non-determinism. Therefore, the size of the state space in the
composition is not affected. More precisely if M denotes the original monitor and
M ′ the resulting determined one, we have that for any po-trace T , there are as many
reachable configurations in T ×M as in T ×M ′.

6.2.2 Monitor Driven Composition

We now explain how the structure of these determined monitors can be used during the
exploration. This idea is based on the following observation. During the exploration, as
illustrated in Figure 6.5, the monitor is not always sensitive to all events in its current
state, i.e. some events have no effect on the monitor. Indeed, consider the event e
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Figure 6.5 - Monitor sensitivity

and the monitor state s of Figure 6.5. In this state, we have that next(s, e) = {s}, i.e.
triggering e from any incoming valuation leads back to s. In other words, the monitor
in not sensitive to e in s. Formally, given a po-trace T = 〈E, V0, δ,�〉, and a determined
monitor M = 〈S, s0, F, 2P,∆〉, the set of events of T to which M is sensitive in a state
s ∈ S, noted sensitive(s), is defined as {e ∈ E | next(s, e) 6= {s}}. In the classical
exploration, when coming to a configuration 〈C, s〉, where a non-sensitive event could
be, amongst others, triggered, two possibilities are considered: one where e is fired, and
one where e is not. However, from the point of view of the monitor, both executions are
identical. Hence, instead of considering those executions separately, we group them
together into a symbolic execution, where e has optionally been triggered. During
exploration, we therefore differentiate necessary events, i.e. events that triggered a
monitor move, and the optional events, i.e. events that did not. Of course, after
a monitor move, optional events might become sensitive and must therefore be re-
examined, since the sensitivity of the monitor has changed. Concretely, this is captured
in the monitor driven composition, defined hereafter.

Definition 6.4 (Monitor Driven Composition)

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉 and a determined
monitor M = 〈S, s0, F, 2P,∆〉, the monitor driven composition of T with M , noted
T ⊗M , is a transition system 〈Q⊗, I⊗,−→⊗〉 where:

• Q⊗ def= 2E × 2E × S,

• I⊗ def= {〈∅,∅, s〉 | s ∈ next(s0, V0)},
• −→⊗ is s.t. 〈N,O, s〉 −→⊗ 〈N ′, O′, s′〉 if and only if one of the following holds:

(i) ∃e ∈ enabled(N ∪O) \ sensitive(s) :

(N ′ = N) ∧ (O′ = O ∪ {e}) ∧ (s′ = s)

(ii) ∃e ∈ (enabled(N ∪O) ∪O) ∩ sensitive(s) :

(N ′ = N ∪ ↓e) ∧ (O′ = O \ (↓e∪ ↑e)) ∧ (s′ ∈ next(s, e))
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Figure 6.6 - Monitor driven composition

In Definition 6.4, each configuration is a tuple 〈N,O, s〉, where N is the set of nec-
essary events, O is the set of optional events and s is the monitor state. As illustrated
in Figure 6.6, the transitions relation is decomposed in two parts depending on the
events e being triggered. The first case is when e a new event to which the monitor is
not sensitive in its current state. In this case, as illustrated in Figure 6.6(a), e is simply
added to the set of optional events. The second case is when e is a new or optional
event to which the monitor is sensitive in its current state. In this case, as illustrated
in Figure 6.6(c) and Figure 6.6(b), e, along with all its past is added to the set of nec-
essary events. Moreover, e, along with all its past and future is removed from the set
of optional events. The events in the past of e are removed because they are added to
the set of mandatory events, whereas the events in its future are removed because they
depended on the fact that e was triggered while the monitor was in the previous state.
Each configuration in the monitor driven composition represents symbolically an entire
set of configurations in the traditional composition. More precisely, each configuration
〈N,O, s〉 ∈ reach(T ⊗M) represents {〈C, s〉 ∈ reach(T ×M) | N ⊆ C ⊆ N ∪O}. This
is proven in the following lemma.

Lemma 6.1

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, and determined
monitor M = 〈S, s0, F, 2P,∆〉, we have that:

∀〈N ′, O′, s′〉 ∈ reach(T ⊗M),∀C ∈ Q :

(
(N ′ ⊆ C ′ ⊆ N ′ ∪O′)⇒

(〈C ′, s′〉 ∈ reach(T ×M))

)
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Proof

We proceed by induction on the number n of transitions needed to reach 〈N ′, O′, s′〉.
Initial case If n = 0, we have that 〈N ′, O′, s′〉 ∈ I⊗. By Definition 6.4, we
therefore have that N ′ = O′ = ∅ and that s′ ∈ next(s0, V0). In this case,
the only possibility is C ′ = ∅ and indeed, we have by Definition 6.2, that
〈∅, s′〉 ∈ I× ⊆ reach(T ×M).

Inductive case If n > 0, we have that 〈N,O, s〉 −→⊗ 〈N ′, O′, s′〉 for some
〈N,O, s〉 ∈ reach(T ⊗ M) reachable in n − 1 tansitions. By induction, for any
C ∈ Q such that N ⊆ C ⊆ N ∪O, we have that 〈C, s〉 ∈ reach(T ×M). Then, we
examine the two possibilities of Definition 6.4:

(i) In the first case, ∃e ∈ enabled(N∪O)\sensitive(s) such that N ′ = N , O′ = O∪
{e} and s′ = s. Let C ′ ∈ Q be a cut such that N ′ ⊆ C ′ ⊆ N ′ ∪O′. If e 6∈ C ′,
we have that N ⊆ C ′ ⊆ N ∪ O which implies by induction that 〈C ′, s′〉 ∈
reach(T ×M). On the other hand, if e ∈ C ′, by construction, we have that
e ∈ Max�(C ′), which implies that C ′\{e} ∈ Q and that e ∈ enabled(C ′\{e}).
Moreover, by construction, we have that N ⊆ C ′ \ {e} ⊆ N ∪ O, which
implies by induction that 〈C ′ \ {e}, s〉 ∈ reach(T ×M). Furthermore, since
e 6∈ sensitive(s), we have that next(s, e) = {s}. It follows by Proposition 6.1
that 〈C ′ \ {e}, s〉 −→× 〈C ′, s〉 = 〈C ′, s′〉. Hence, we conclude.

(ii) In the second case, ∃e ∈ (enabled(N ∪O) ∪O) ∩ sensitive(s) such that N ′ =
N ∪ ↓e, O′ = O \ (↓e∪ ↑e) and such that s′ ∈ next(s, e). Let C ′ ∈ Q be a cut
such that N ′ ⊆ C ′ ⊆ N ′ ∪ O′. By construction, since C ′ ⊇ N ′ = N∪ ↓e, we
have that e ∈ C ′. Moreover, since C ⊆ N ′ ∪ O′ = (N ∪ O) \ (↑e \ {e}), we
have that C ′ ∩ ↑e = {e}. It follows directly that e ∈ Max�(C ′), which implies
that that C ′ \{e} ∈ Q. We can therefore conclude that e ∈ enabled(C ′ \{e}).
Moreover, by construction, C ′ ⊇ N ′ ⊇ N and e 6∈ N , we have that N =
N \ {e} ⊆ C ′ \ {e}. Also by construction, since C ′ ⊆ O′ ⊆ O, we have that
C ′\{e} ⊆ O. It follows, by induction, that 〈C ′\{e}, s〉 ∈ reach(T×M). Then,
since s′ ∈ next(s, e), by Proposition 6.1 we have that 〈C ′\{e}, s〉 −→× 〈C ′, s′〉.
Hence we conclude.

The previous lemma proves that the monitor driven composition is sound w.r.t. the
classical composition. We also need to prove that it is complete, i.e. that every con-
figuration 〈C, s〉 ∈ reach(T ×M) is represented by at least one symbolic configuration
in reach(T ⊗M). This is proven in the following lemma.
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Lemma 6.2

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, and a determined
monitor M = 〈S, s0, F,Σ,∆〉, we have that:

∀〈C ′, s′〉 ∈ reach(T ×M), ∃〈N ′, O′, s′〉 ∈ reach(T ⊗M) : N ′ ⊆ C ′ ⊆ N ′ ∪O′
Proof

We proceed by induction on the number n of transitions needed to reach 〈C ′, s′〉.
Initial case If n = 0, we have that 〈C ′, s′〉 ∈ I×. By Definition 6.2, we therefore
have that C ′ = ∅ and that s′ ∈ next(s0, V0). In this case, we can choose
N ′ = O′ = ∅, since, by Definition 6.4, 〈∅,∅, s′〉 ∈ reach(T ⊗M).

Inductive case If n > 0, we have that 〈C, s〉 −→× 〈C ′, s′〉 for some 〈C, s〉 ∈
reach(T ×M) reachable in n − 1 transitions, with C ′ \ C = {e}. By induction,
we have that ∃〈N,O, s〉 ∈ reach(T ⊗M) such that N ⊆ C ⊆ N ∪ O. We have to
examine the two possibilities:

(i) If e 6∈ sensitive(s), we have that next(s, e) = {s}, which implies by Propo-
sition 6.1 that s′ = s. Then, either e ∈ O, in which case we have that
N ⊆ C ′ ⊆ N ∪O thus implying the result, or e 6∈ O. In this latter case, since
e ∈ enabled(C), we have that ↓e \ {e} ⊆ C ⊆ N ∪O. It follows directly, since
e 6∈ C ⊇ N , that e ∈ enabled(N ∪ O). By Definition 6.4, we can therefore
conclude that 〈N,O, s〉 −→ 〈N,O∪{e}, s〉 with N ⊆ C ′ ⊆ N ∪O∪{e}. Hence
we conclude.

(ii) If e ∈ sensitive(s), we have that s′ ∈ next(s, e) by Proposition 6.1. Then, using
the same argument as in (i), we have that either e ∈ O or e ∈ enabled(N∪O).
In both cases, we have that e ∈ (enabled(N ∪ O) ∪ O) ∩ sensitive(s), which
implies by Definition 6.4 that 〈N,O, s〉 −→⊗ 〈N ′, O′, s′〉 with N ′ = N ∪ ↓e
and O′ = O \ (↓ e∪ ↑ e). It is therefore left to prove that N ′ ⊆ C ′ and
that C ′ ⊆ N ′ ∪ O′. For the former, we start with N ⊆ C, which implies
that N ′ = N ∪ ↓ e ⊆ C ∪ ↓ e. Then, since ↓ e ⊆ C ∪ {e}, we have that
N ′ ⊆ C ∪ {e} = C ′. For the latter, we start with C ⊆ N ∪O, which implies
that C ′ = C ∪ ↓e ⊆ N ∪ O∪ ↓e = (N ∪ ↓e) ∪ (O\ ↓e) = N ′ ∪ (O\ ↓e). It
follows that C ′ \ (↑e \ {e}) ⊆ (N ′ ∪ (O\ ↓e)) \ (↑e \ {e}). Then we observe
that (↑e \ {e}) ∩ C ′ = ∅, and since N ′ ⊆ C ′ that (↑e \ {e}) ∩ N ′ = ∅. It
follows directly that C ′ ⊆ N ′ ∪ (O \ (↓e ∪ (↑e \ {e}))). Finally, since e ∈↓e,
we can conclude that C ′ ⊆ N ′ ∪ (O \ (↓e∪ ↑e)) = N ′ ∪O′.
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Using the previous two lemmata, we are now able to establish the correctness of
the monitor driven composition.

Theorem 6.5 (Correctness of the Monitor Driven Composition)

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉 and a determined
monitor M = 〈S, s0, F,Σ,∆〉, we have that:

(traces(KT ) ∩ lang(M) = ∅)⇔ (∀〈N,O, s〉 ∈ reach(T ⊗M) : (N ∪O = E)⇒ (s 6∈ F ))
Proof

We prove both directions:

⇒ We proceed by contradiction. Assume that traces(KT ) ∩ lang(M) = ∅ and
that ∃〈N,O, s〉 ∈ reach(T ⊗M) with N ∪O = E and s ∈ F . By Lemma 6.1,
since N ⊆ E = N ∪O, this implies that 〈E, s〉 ∈ reach(T ×M). It follows, by
Theorem 6.1, that traces(KT ) ∩ lang(M) 6= ∅ which contradicts our initial
assumption.

⇐ We proceed by contraposition. Assume indeed that traces(KT )∩ lang(M) 6=
∅. By Theorem 6.1, we have that there exists a configuration 〈C, s〉 ∈
reach(T×M) such that C = E and s ∈ F . It follows by Lemma 6.2 that there
exists a configuration 〈N,O, s〉 ∈ reach(T ⊗M) such that N ⊆ C ⊆ N ∪O.
Since C = E and N ∪ O ⊆ E, it must be the case that N ∪ O = E. Hence
we conclude.

6.2.3 Symbolic Trace Checking Algorithm

If explored entirely, the state space of the monitor driven composition would not yield
any significant improvement. Indeed, during the exploration, when in a symbolic
configuration 〈N,O, s〉, we can either trigger a new non-sensitive event e or trigger a
sensitive event e′, either new or optional, and change the monitor state. If the first
option is chosen, we can also trigger e′ from the resulting configuration 〈N,O∪{e}, s〉,
leading to the same monitor change. In essence, every possible interleaving of sensitive
and non-sensitive events would be explored. This would, of course, be just as inefficient
as the traditional explicit algorithm. Fortunately for us, we can do better. As a matter
of fact, when in a symbolic configuration 〈N,O, s〉, we can postpone the sensitive
events, and trigger as many non-sensitive events as possible first. This yields a symbolic
trace checking algorithm, as presented in Algorithm 6.4. The algorithm works as
follows. First, it starts by building a determined monitor for ¬ϕ using Algorithm 6.3
(line 3). Similarly to Algorithm 6.2, the algorithm maintains two sets of symbolic
configuration W and Z. Initially, Z is empty and W is filled with the set of initial
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function symbolicLTL-TC(T, ϕ)1

input : A po-trace T = 〈E, V0, δ,�〉 and a LTL formula ϕ
output : tt if and only if T |=L ϕ

begin2

〈S, s0, F, 2P,∆〉 := buildDeterminedMonitor(¬ϕ)3

Z := ∅, W := ∅4

forall s ∈ next(s0, V0 ∩ prop(ϕ)) do5

W := W ∪ {〈∅,∅, s〉}6

while W 6= ∅ do7

Let 〈N,O, s〉 ∈W8

W := W \ {〈N,O, s〉}, Z := Z ∪ {〈N,O, s〉}9

repeat10

X := O11

O := O ∪ (enabled(N ∪O) \ sensitive(s))12

until X = O13

if (N ∪O = E) ∧ (s ∈ F ) then14

returnff15

forall e ∈ (enabled(N ∪O) ∪ (O)) ∩ sensitive(s) do16

forall s′ ∈ next(s, e) do17

W := (W ∪ {〈N ∪ ↓e,O \ (↓e∪ ↑e), s′〉}) \ Z18

returntt19

end20

Algorithm 6.4 - Symbolic LTL trace checking algorithm

symbolic configurations as specified in Definition 6.2 (lines 4–6). Then, the algorithm
loops as long as W contains a symbolic configuration that needs to be examined. At
each step of the loop, a symbolic configuration is picked (lines 8–9). This configuration
is extended with as many non-sensitive events as possible (lines 10–13). If the resulting
symbolic configuration is faulty, i.e. if all events have been treated and the monitor
state is final, the algorithm returns false (lines 14–15). If not, the algorithm explores
sensitive events according to Definition 6.2 (lines 16–18). Finally, if the exploration
stops without finding any faulty configuration, the algorithm returns true (line 19). In
order to prove this algorithm is correct, we introduce the covering operator.
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Definition 6.5 (Covering Operator)

A symbolic configuration 〈N1, O1, s1〉 is covered by a symbolic configuration
〈N2, O2, s2〉, noted 〈N1, O1, s1〉 v⊗ 〈N2, O2, s2〉, if and only if:

(N2 ⊆ N1) ∧ (N1 ∪O1 ⊆ N2 ∪O2) ∧ (s1 = s2)

Intuitively, a symbolic configuration 〈N1, O1, s1〉 is covered by another symbolic
configuration 〈N2, O2, s2〉 if 〈N2, O2, s2〉 represents more explicit configurations. We
prove that this operator is monotonic w.r.t. the monitor driven composition.

Lemma 6.3 (Monotonicity of the Covering Operator)

Given a po-trace T = 〈E, V0, δ,�〉 and a determined monitor M =
〈S, s0, F, 2P,∆〉, assuming that T ⊗ M = 〈Q⊗, I⊗,−→⊗〉, we have that
∀〈N1, O1, s1〉, 〈N ′1, O′1, s′1〉, 〈N2, O2, s2〉 ∈ Q⊗:

(〈N1, O1, s1〉 −→⊗ 〈N ′1, O′1, s′1〉 ∧ 〈N1, O1, s1〉 v⊗ 〈N2, O2, s2〉)
⇒

(∃〈N ′2, O′2, s′2〉 ∈ Q⊗ : 〈N2, O2, s2〉;⊗ 〈N ′2, O′2, s′2〉 ∧ 〈N ′1, O′1, s′1〉 v⊗ 〈N ′2, O′2, s′2〉)
Proof

We consider the two cases of Definition 6.4:

(i) In the first case, ∃e ∈ enabled(N1 ∪ O1) \ sensitive(s1) such that N ′1 = N1,
O′1 = O1 ∪ {e} and s′1 = s1. In this case, by Definition 6.5, using
a similar argument to the one used in the proof of Lemma 6.2, we
can prove that either e ∈ O2 or e ∈ enabled(N2 ∪ O2). In the for-
mer case, we can take N ′2 = N2, O′2 = O2 and s′2 = s2. Indeed, we
then have that 〈N2, O2, s2〉 ;⊗ 〈N2, O2, s2〉, N ′2 = N2 ⊆ N1 = N ′1
and N ′1 ∪ O′1 = N1 ∪ O1 ∪ {e} ⊆ N2 ∪ O2 = N ′2 ∪ O′2. On the other
hand, if e ∈ enabled(N2 ∪ O2), by Definition 6.5, we have that s1 = s2,
which implies that e 6∈ sensitive(s1) = sensitive(s2). In this case, we can
chose N ′2 = N2, O′2 = O2 ∪ {e} and s′2 = s2. Indeed, we then have
that 〈N2, O2, s2〉 ;⊗ 〈N2, O2 ∪ {e}, s2〉 = 〈N ′2, O′2, s′2〉 by Definition 6.4,
N ′2 = N2 ⊆ N1 = N ′1, N ′1 ∪O′1 = N1 ∪O1 ∪ {e} ⊆ N2 ∪O2 ∪ {e} = N ′2 ∪O′2.

(ii) In the second case, ∃e ∈ (enabled(N1 ∪ O1) ∪ O1) ∩ sensitive(s1) such that
N ′1 = N1∩ ↓ e, O′1 = O1 \ (↓ e∪ ↑ e) and s′1 ∈ next(s1, e). In this case,
again, either e ∈ O2 or e ∈ enabled(N2 ∪ O2). In both instances, we can
choose N ′2 = N2∪ ↓e, O′2 = O2 \ (↓e∪ ↑e) and s′2 = s′1. Indeed, we then
have that 〈N2, O2, s2〉;⊗ 〈N2, O2∪{e}, s2〉 = 〈N ′2, O′2, s′2〉 by Definition 6.4,
N ′2 = N2∪ ↓e ⊆ N1∪ ↓e = N ′1, and N ′2 ∪ O′2 = (N2∪ ↓e) ∪ (O2 \ (↓e∪ ↑e)) ⊆
(N1∪ ↓e) ∪ (O1 \ (↓e∪ ↑e)) = N ′1 ∪O′1.
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Therefore, during the exploration, if a non sensitive event e is triggered from a
symbolic configuration 〈N,O, s〉, since the resulting configuration 〈N,O∪{e}, s〉 covers
the original one, we can discard 〈N,O, s〉 and only explore 〈N,O ∪ {e}, s〉. Using this
argument, we can establish the correctness of Algorithm 6.4.

Theorem 6.6 (Correctness of Algorithm 6.4)

Given a po-trace T = 〈E, V0, δ,�〉 and a LTL formula ϕ, Algorithm 6.4 returns tt

if and only if T |=L ϕ.
Proof

Termination is guaranteed since the number of possible symbolic configurations is
finite, and since each configuration is explored only once. We therefore only prove
completeness and soundess. In the following, we denote by M the determined
monitor built at line 3.
Completeness Assume the algorithm returns true at line 19. It means that no
configuration 〈N,O, s〉 such that N∪O = E and that s ∈ F have been encountered
in the algorithm. Beware that this does not necessarily mean that such a faulty
configuration does not exists in reach(T ⊗M). Indeed, during the loop at lines
10–13, several configurations are discarded, and therefore not explored. However,
at the end of the body of this loop, at line 13, we have that 〈N,X, s〉 v⊗ 〈N,O, s〉.
It follows by Lemma 6.3 that if a configuration 〈N ′, O′, s′〉 is reachable from the
discarded configuration 〈N,X, s〉 then it is covered by a configuration 〈N ′′, O′′, s′′〉
reachable from 〈N,O, s〉. Moreover, in this case, by Definition 6.5, if N ′ ∪O′ = E

and s′ ∈ F , we have that N ′ ∪ O′ ⊆ N ′′ ∪ O′′ = E and that s′′ = s′ ∈ F . We
can therefore conclude that there exists no faulty configuration in reach(T ⊗M).
It follows, by Theorem 6.5, that traces(KT ) ∩ lang(M) = ∅. Finally, since by
construction lang(M) = [[ϕ]]F

L, we have that T |= ϕ.

Soundness Assume the algorithm returns false at line 14. Since the algorithm
only explores symbolic configurations included in reach(T⊗M), it means that there
exists a symbolic configuration 〈N,O, s〉 ∈ reach(T ⊗M) such that N ∪ O = E

and that s ∈ F . It follows by Theorem 6.5 that traces(KT ) ∩ lang(M) 6= ∅. By
construction, we know that lang(M) = [[ϕ]]F

L, which directly implies that T 6|=L ϕ.

6.3 Experimental Results

In this section, we compare our new symbolic algorithm from Section 6.2, with the
straightforward explicit algorithm from Section 6.1, on randomly generated traces,
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Experiment Explicit Symbolic

Model Proc. Events Property Error Time Conf. Error Time Conf.

Peterson 2 10000 ϕ1 NO 1.39s 21551 NO 0.35s 4001

2 100000 ϕ1 NO 16.88s 215544 NO 3.45s 40001

2 1000000 ϕ1 ↑↑ ↑↑ ↑↑ NO 34.75s 400002

Peterson 2 10000 ϕ1 YES 1.11s 21384 YES 0.01s 4

Faulty 2 100000 ϕ1 YES 15.95s 214727 YES 0.05s 4

2 1000000 ϕ1 ↑↑ ↑↑ ↑↑ YES 0.53s 4

ABProtocol 2 10000 ϕ2 NO 2.17s 31185 NO 0.42s 4654

2 100000 ϕ2 NO 31.08s 316414 NO 4.25s 46684

2 1000000 ϕ2 ↑↑ ↑↑ ↑↑ NO 43.09s 466887

ABProtocol 2 10000 ϕ2 YES 2.06s 31495 YES 0.01s 5

Faulty 2 100000 ϕ2 YES 29.70s 315808 YES 0.06s 5

2 1000000 ϕ2 ↑↑ ↑↑ ↑↑ YES 0.53s 5

Philosopher 3 100 ϕ3 NO 1.03s 6190 NO 0.05s 299

5 100 ϕ3 NO 87.02s 60727 NO 0.21s 2875

10 100 ϕ3 ↑↑ ↑↑ ↑↑ NO 1.52s 26791

Philosopher 3 100 ϕ3 YES 0.09s 1187 YES 0.01s 63

Faulty 5 100 ϕ3 YES 78.72s 55982 YES 0.01s 78

10 100 ϕ3 ↑↑ ↑↑ ↑↑ YES 0.01s 55

Figure 6.7 - Experimental results (↑↑ indicates > 1GB)

both in time and in the number of explored configurations. We conducted experiments
on several examples of classical distributed systems. For each example, we examined
a correct model and a faulty model, where a bug was intentionally introduced. Traces
were generated by instrumenting the code using vector clocks, as explained in Chap-
ter 4. We tested both message passing and shared variable programs. Figure 6.7
presents the obtained results. For each experiment, the first four columns respectively
present the model, the number of processes, the number of events in the trace and the
property. Next, for both the explicit and symbolic method, columns 5 to 10 show if
an error was found or not, the time needed for exploration and the number of config-
urations used. A “↑↑” indicates that no result could be obtained because the process
ran out of memory (limited to 1GB for the experiments).

The first example we considered was the Peterson mutual exclusion protocol with
two processes, where communication is done through shared variables. We tested
that mutual exclusion was satisfied. This was done using the LTL formula ϕ1

def=
¬F(crit1 ∧ crit2) where cirti models the fact the process i is in his critical section. The
second model we considered was the Alternating-bit protocol between two process, i.e.
a sender and a receiver. This time the communication is achieved using asynchronous
message passing. We tested that every message sent was correctly received. This was
done using the LTL formula ϕ2

def= G(send0 ⇒ F (recv0 ∨ eot)), where send0, resp. recv0,
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model the sending, respectively reception, of a message tagged with a 0, and where eot

models the end of the trace.

On those first two examples, we can already see that the symbolic exploration
outperforms the explicit algorithm, both with safety and liveness properties. Also note
that, in the faulty version of both models, the error was detected rapidly. This can
easily be explained. Indeed, once an error has occurred, the monitor ends up in an
accepting state in which no events are sensitive. Therefore, the remaining events of
the trace are treated in one single step.

The last example we considered was the Dining philosophers problem, where every
philosopher takes his left fork first, and then his right fork, except for the first, which
takes his right fork first and then his left. We tested that when the first philosopher
eats, then his left and right neighbours cannot eat until he finishes. This was done
using the LTL formula ϕ3

def= G(eat1 ⇒ ((¬eat0 ∧ ¬eat2) U (¬eat1 ∨ eot))), where eati

models the fact that philosopher i is eating. We considered 3, 5 and 10 philosophers.
On this example, we can clearly see that using the symbolic algorithm allows to handle
a larger number of processes. Indeed, when dealing with 10 philosophers, the explicit
exploration fails to terminate, whereas the symbolic algorithm still works.

6.4 Related Works

The problem of analysing partial order traces using temporal logics similar to LTL has
already been the subject of numerous works. Directly related to ours is the work of
[Sen et al., 2004a], where the authors study the analysis of properties specified using
deterministic finite automata, which, as we have seen, is equivalent to LTL. Similarly
to what is done using the classical automata based approach, their analysis of the po-
trace is done by exploring the lattice of cuts and labelling each cut with states of this
automaton. In order to make this technique usable in practice, the authors circumvent
the state explosion problem by exploring the lattice of cuts in a level-by-level fashion,
and by artificially bounding the maximum number of cuts that are explored at each
level. In [Sen et al., 2004b], the authors define a distributed variant of LTL with past
modalities called PT-DTL (Past Time Distributed Temporal Logic), and present an
efficient algorithm for checking that properties expressed in this logic are satisfied.
In [Sen et al., 2006], the authors define a logic dedicated to multithreated systems,
called MT-TL (Multithreated Temporal Logic), also very similar to LTL, and present an
efficient algorithm for the detection of properties expressed in this logic. In all those
works, the authors chose to restrict the problem either by underapproximating the
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state space, or by constraining the logic with ad-hoc modalities, in order to come up
with practical algorithms. Alternatively, in this work, we choose to keep the problem
intact, and attack the space explosion problem using a symbolic approach.

A lot of research efforts have also been put in the analysis of Mazurkiewicz traces
[Mazurkiewicz, 1987] using LTL-like temporal logics. A Mazurkiewicz trace over an
alphabet Σ along with an independence relation I ⊆ Σ × Σ is a Σ-labelled partial
order set of events with special properties not explained here. For such Mazurkiewicz
traces, several trace logics, in the same spirit as LTL, have been proposed. Those logics
can be categorized as either local or global. Local trace logics include, amongst others,
TR-PTL (Trace Past-time Temporal Logic) introduced in [Thiagarajan, 1994], or TLC

(Temporal Logic for Causality) introduced in [Alur et al., 1995]. On the other hand,
global trace logics include, amongst others, LTRL (Linear Trace Logic) of [Thiagarajan
and Walukiewicz, 2002], or LTL on traces introduced in [Diekert and Gastin, 2002].
Unfortunately, those trace temporal logics are not designed to express constraints on the
particular order of independent actions. For instance, in a trace, if two actions a, b ∈ Σ
are independent, i.e. if a I b, it means that any pair of events labelled respectively with
a and b are assumed concurrent. Therefore, a LTL formula like G(a⇒ F b), expressing
that every a is eventually followed by a b is not easily expressible in those trace logics.
For this reason, we believe that those logics are not well adapted to the testing of
distributed systems.

Let us also reference a few works on the definition of monitors for LTL. We already
mentioned the work of [Giannakopoulou and Havelund, 2001], adapting the well-known
algorithms of [Gerth et al., 1995] for the finite case. We can also mention the work of
[Rosu and Havelund, 2005], where the authors use BTT-FSM (Binary Transition Tree -
Finite State Machines) instead of finite automata. In [Bauer et al., 2006], the authors
define a three-valued semantics of LTL over finite propositional sequences. In this
semantics, a LTL formula ϕ is satisfied (respectively not satisfied) by a finite sequence
σ if for every infinite extension σ′ of σ, ϕ is satisfied (respectively not satisfied) by σ′

using the classical infinite semantics. If some extensions satisfy ϕ, and some extensions
do not, the truth value of ϕ is defined as unknown. In this work, the authors also
explain how to build a monitor for this semantics, i.e. a finite automaton with both
accepting and rejecting states. Note that the methods defined in this chapter can easily
be adapted for this kind of monitors.

Finally, although not directly related to our initial problem, we also have to mention
the work of Peled et al. [Peled et al., 2001], where the authors try to improve on
classical partial order reduction techniques for the LTL model checking by exploiting
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the structure of the monitor obtained using the algorithm of [Gerth et al., 1995]. The
main idea is to use the information contained in each node, in particular the next
field, in order to dynamically change the visibility of the propositions. This allows to
significantly enhance the existing algorithms. The underlying ideas in this work are
quite similar to ours, although they differ greatly on a technical level.



Chapter

7
CTL Trace Checking

« The trees that are slow to grow bear the best fruits. »
Moliere

I
n Chapter 4, we saw that temporal properties on po-traces could be expressed
as temporal logic formulae built on the propositions of the po-trace. This lead
us to the definition of the trace checking problem. In Chapter 6, we solved this

problem for LTL, by adapting and improving the traditional automata-based model
checking algorithm. In this chapter, we tackle the CTL trace checking problem in
which it is asked whether the initial global state of a distributed execution satisfies some
branching-time temporal requirement expressed as a CTL formula. This problem has
been partially solved in [Sen and Garg, 2003], where the authors propose an efficient,
i.e. polynomial, algorithm for a subset of CTL, called RCTL. In this subset, only regular
temporal predicates can be defined, i.e. CTL formulae whhere satisfying cuts form a
lattice. This is a severe restriction however since regular predicates are not closed
under disjunction or negation. Moreover, all temporal modalities but EF, EG and AG,
are forbidden. This excludes responsiveness questions like, e.g. AG(p ⇒ AF(q ∨ r)).
Their algorithm is based on computation slicing. Given a RCTL predicate, a slice of
the po-trace w.r.t. that predicate is built. The trace checking problem is then solved
by checking whether or not the initial empty cut belongs to that slice. In essence,
this approach is quite similar to the symbolic approach [McMillan, 1993] traditionally
used to solve the CTL model checking problem. Indeed, computational slices can be
viewed as a symbolic representation for sets of cuts. Unfortunately, they only allow to
represent regular subsets of cuts. In this chapter, in order to tackle full-fledged CTL,
we therefore propose an alternative representation for sets of cuts and show how this
representation can be exploited to solve efficiently, the trace checking problem.
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The remainder of this chapter is structured as follows. First, in Section 7.1, we
review the work of [Sen and Garg, 2003] on RCTL and explain how the computation
slicing algorithms presented in Chapter 5 can be extended in order to solve the trace
checking problem for this subset. Then, in Section 7.2, we explain how the underlying
idea behind their approach can be generalised for CTL. For that, we show how sets of
cuts can be efficiently represented and manipulated using tuples of natural numbers.
Next, in Section 7.3, we examine how those sets of cut can be symbolically represented
in practice. Finally, in Section 7.4, we study the efficiency of this symbolic algorithm in
practice. This chapter is based on a joint work with Gabriel Kalyon, Thierry Massart
and Laurent Van Begin, published in [Kalyon et al., 2007].

7.1 A Regular Fragment of CTL

In Chapter 5, we examined the class of regular predicates, for which the set of satis-
fying cuts, forming a sub-lattice of the lattice of cuts, could be computed easily using
computation slicing and showed how this could be used for the predicate detection
problem. This notion of regularity can be easily extended to CTL formulae.

Definition 7.1 (Regular Temporal Predicates)

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, a CTL formula ϕ is
regular w.r.t. T if and only if:

∀C,D ∈ Q :
(〈T,C〉 |=T

C ϕ∧ 〈T,D〉 |=T
C ϕ
)⇒ (〈T,C ∩D〉 |=T

C ϕ∧ 〈T,C ∪D〉 |=T
C ϕ
)

Regular temporal predicates have been studied in [Sen and Garg, 2003]. In par-
ticular, the authors studied how the application of CTL temporal modalities affects
the regularity of predicates. They showed that regular temporal predicates are closed
under the temporal modalities EF, AG and EG.

Theorem 7.1 (Regular-Preserving CTL Modalities [Sen and Garg, 2003])

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, and CTL formula ϕ, we
have that if ϕ is regular w.r.t. T , then so are EFϕ, AGϕ and EGϕ.

Furthermore, they showed that for any other CTL modality, this is not the case, i.e.
temporal regular predicates are not closed under EX, AX, EU, AU and AF. Counter-
examples for each of those modalities, inspired from [Sen and Garg, 2003], are presented
hereafter.
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∅
C ∩ C′

{p}
C

{q}
C′

{p, q}

p := tt

q := tt

{r}

C ∩ C′

∅ {r, s}

C′

{s}{r}
C

{p, r, s}

{r, s} {p, s}

{p, r, s}

r := ff

r := tt

s := tt

p := tt

(a) counter-example for
EX, AX, EU and AU

(b) counter-example for AF

Figure 7.1 - Counter-examples for the regularity of regular temporal modalities

Example 7.1

Figure 7.1 gives counter-examples showing that regular temporal predicates are
not closed to EX, AX, EU, AU and AF. First, Figure 7.1 (a) shows a counter-
example for EX, AX, EU and AU. In this example, the predicates p, q and p∧ q are
regular. However, EX(p ∧ q), AX(p ∧ q), E(pU q) and A(pU q) are not, since they
all hold in the cuts C and C ′, but not in the cut C ∩C ′. Figure 7.1 (b) shows the
counter-example for AF. In this lattice, the predicate r ∧ s ∧ ¬p is regular. The
satisfying cuts are highlighted in bold. We can clearly see that both cuts C and
C ′ satisfy AF (r ∧ s∧¬p). However, the cut C ∩C ′ above does not, because of the
trace highlighted in gray.

Based on this observation, the authors define a fragment of CTL, called RCTL, in
which all predicates are regular. This fragment is obtained by keeping only regular-
preserving operations, i.e. conjunction, EF, AG and EG. The formal definition follows.

Definition 7.2 (Syntax of RCTL [Sen and Garg, 2003])

Given a set of propositions P, a formula in regular computational tree logic (RCTL)
is defined using the following grammar:

ϕ ::= > | ⊥ | p | ¬p | ϕ ∧ ϕ | EFϕ | EGϕ | AGϕ

where p ∈ P.
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The authors then extend the slicing algorithm presented in Chapter 5 to take into
account the regular modalities, thus allowing them to obtain an efficient RCTL trace
checking algorithm. In the remainder of this section, we explain this approach in more
details. In Sections 7.1.1 to 7.1.3, we present and illustrate the slicing algorithms for
the three RCTL temporal modalities EF, AG and EG. We then explain, in Section 7.1.4,
how this can be used to obtain a trace checking algorithm for RCTL predicates.

7.1.1 Slicing Algorithm for EF

For formulae of the form EFϕ, the slice is built from the slice of > (representing the
entire set of cuts) using the slice of ϕ as follows. By definition, a cut C satisfies EFϕ

if and only if there exists a cut D reachable from C where ϕ holds. However, since ϕ
is regular we know that the set of cuts satisfying ϕ is a lattice w.r.t. to set inclusion,
and therefore has a unique maximal element. It follows that a cut C satisfies EFϕ if
and only if this maximal cut is reachable from C. The slice of a po-trace w.r.t. EFϕ is
consequently the slice representing exactly those cuts. To compute this slice, we must
first obtain the maximal cut that satisfies ϕ. This is simply the last consistent cut in
the slice of the trace w.r.t. ϕ. The slice of EFϕ is then built from the slice of >, by
removing any cut from which this last consistent cut is not reachable. In practice, as
illustrated in Example 7.2, we start from the slice of >, to which are added all the
edges in the strongly connected component of e> in the slice of ϕ.

Example 7.2

Figure 7.2 illustrates the computation of the slice for a formula of the form EFϕ.
First, Figure 7.2(a) presents the slice of the example po-trace of Chapter 4, w.r.t.
the formula s. Figure 7.2(b) shows the corresponding consistent cuts. The last
consistent cut in this slice is C def= {e1,1, e1,2, e1,3, e2,1}. This is the cut labelled with
{q, s, t} in Figure 7.2(b). Next, Figure 7.2(c) shows the slice of that same trace
w.r.t. EF s computed as explained above. Indeed, consider the strongly connected
component of e> in the slice of s. This component contains two edges 〈e2,2, e>〉
and 〈e>, e2,2〉, which are therefore added to the slice of > to obtain the slice of
EF s. The corresponding consistent cuts are presented in Figure 7.2(d). Note that
this is exactly those cuts that are included in C, thus satisfying EF s.

7.1.2 Slicing Algorithm for AG

For formulae of the form AGϕ, the slice is built from the slice of ϕ by adding edges
to remove from this slice those cuts that do not satisfy AGϕ. By definition, a cut C
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(c) slice of T w.r.t. EF s (d) cuts of T consistent with (c)

Figure 7.2 - Computation slicing for the EF modality
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does not satisfy AGϕ if and only if there exists a cut D reachable from C that does
not satisfy ϕ. Since D does not satisfy ϕ, it is not consistent with the slice of ϕ, which
means that there is an edge 〈e, e′〉 in this slice such that e′ belongs to D but not e.
Note that this edge was added specially for ϕ, since D is a valid cut. Based on this
observation, the authors of [Sen and Garg, 2003] proved that a cut C satisfies AG p if
and only if it includes the node e of each additional vertex 〈e, e′〉 in the slice of ϕ, i.e.
edges that do not belong to the slice of >. In practice, as illustrated in Example 7.3,
in order to build this slice, an edge from the node e to the node e⊥ is added for each
additional vertex 〈e, e′〉 in the slice of T w.r.t. ϕ.

Example 7.3

Figure 7.3 illustrates the computation of the slice of a formula of the form AGϕ.
First, Figure 7.3(a) presents the slice of the same po-trace as in Example 7.2,
w.r.t. the regular predicate p ∨ q ∨ t (1). Figure 7.3(b) shows the corresponding
set of consistent cuts. In this slice, two edges were added from the slice of >:
〈e1,2, e1,1〉 and 〈e1,3, e2,2〉. Therefore, in order to build the slice for AG(p ∨ q ∨ t),
we must add to this slice two edges 〈e1,2, e⊥〉 and 〈e1,3, e⊥〉. The resulting slice is
presented in Figure 7.3(c). The corresponding set of consistent cuts is presented
in Figure 7.3(d). Note that those are exactly the cuts satisfying AG(p ∨ q ∨ t).

7.1.3 Slicing Algorithm for EG

For formulae of the form EGϕ, the slice is also built from the slice of ϕ by adding edges
to remove those cuts that do not satisfy EGϕ. By definition, a cut C does not satisfy
EGϕ if and only if for every run of T that starts in C, there exists a cut D in this run
where ϕ does not hold, or in other words if violating ϕ is unavoidable. Based on this
observation, the authors of [Sen and Garg, 2003] proved that this is the case if and only
if there exists a non trivial (i.e. of size greater than 1) strongly connected component
in the slice of ϕ that is not included in C. Indeed, whichever run is chosen from C,
this run will have to reach a cut D that splits this strongly connected component, and
in doing so will violate ϕ. Therefore, the slice of T w.r.t. EGϕ is built from the slice
of ϕ by removing the cuts that do not contain every non trivial strongly connected
component contained in the slice of ϕ. In practice, as illustrated in Example 7.4, this
is done by adding an edge from the node e to the node e⊥ for each additional vertex
〈e, e′〉 in the slice of ϕ that creates a non-trivial strongly connected component.

1note that in general, regular predicates are not closed to disjunction; in this case, the predicate

p ∨ q ∨ t is regular because of the particular structure of the lattice of cuts.
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Figure 7.3 - Computation slicing for the AG modality
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Figure 7.4 - Computation slicing for the EG modality

Example 7.4

Figure 7.4 illustrate the computation of the slice of a formula of the form EGϕ.
Figure 7.4(a), shows the slice of the same trace as in the previous two examples
w.r.t. EG(p ∨ q ∨ t). This slice is built from the slice of p ∨ q ∨ t, presented in
Figure 7.3(a), by considering the non trivial strongly connected component. In
this case, there is only one component created by the additional edge 〈e1,2, e1,1〉.
Therefore, in order to build the slice for EG(p ∨ q ∨ t), an edge 〈e1,2, e⊥〉 is added.
The corresponding consistent cuts are depicted in Figure 7.4(b). Note that those
are exactly the cuts satisfy EG(p ∨ q ∨ t).

7.1.4 Trace Checking Algorithm

Using the slicing techniques presented above, the authors of [Sen and Garg, 2003]
define an efficient trace checking algorithm, which is formalized in Algorithm 7.1.
This algorithm works as follows. First, it computes the slice of the po-trace w.r.t. the
given formula ϕ. For basic non-temporal constructs like >, ⊥, literals and conjunction,
the algorithm proceeds in the same way as Algorithm 5.8 (lines 3–6) from Chapter 5.
For temporal modalities, the algorithm builds the slice as explained in Sections 7.1.1
to 7.1.3 (lines 7–21). Finally, once the slice is computed, the algorithm checks that the
initial cut belongs to it. It can be easily proven that this is the case if and only if the
node e⊥ has no incoming edges (line 27).
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function computeSliceRCTL(T, ϕ)1

input : a po-trace T = 〈E, V0, δ,�〉, a RCTL predicate ϕ
returns: Rϕ ⊆ N ×N such that 〈N,Rϕ〉 is a slice of T w.r.t ϕ
begin2

if (ϕ = >) ∨ (ϕ = ⊥) ∨ (ϕ = p) ∨ (ϕ = ¬p) then3

return computeSlice(T, ϕ)4

else if ϕ = ϕ1 ∧ ϕ2 then5

Rϕ := computeSliceRCTL(T, ϕ1) ∪ computeSliceRCTL(T, ϕ2)6

else if ϕ = EFϕ1 then7

Rϕ1 := computeSliceRCTL(T, ϕ1), R> := computeSlice(T,>)8

Rϕ = R>, X := connectedComponent(〈N,Rϕ1〉, e>)9

forall 〈e, e′〉 ∈ Rϕ1 \R> s.t. {e, e′} ⊆ X do10

Rϕ := Rϕ ∪ 〈e>, e〉11

else if ϕ = AGϕ1 then12

Rϕ1 := computeSliceRCTL(T, ϕ1)13

R> := computeSlice(T,>), Rϕ = Rϕ114

forall 〈e, e′〉 ∈ Rϕ1 \R> do15

Rϕ := Rϕ ∪ {〈e, e⊥〉}16

else if ϕ = EGϕ1 then17

Rϕ1 := computeSliceRCTL(T, ϕ1)18

R> := computeSlice(T,>), Rϕ = Rϕ119

forall 〈e, e′〉 ∈ Rϕ1 \R> s.t. |connectedComponent(〈N,Rϕ1〉, e)| > 1 do20

Rϕ := Rϕ ∪ {〈e, e⊥〉}21

return Rϕ22

end23

function slicingBasedRCTL-TC(T, ϕ)24

input : a po-trace T = 〈E, V0, δ,�〉, a RCTL predicate ϕ
returns: tt if and only T |=C ϕ

begin25

N = E ∪ {e>, e⊥}, Rϕ := computeSliceRCTL(T, ϕ)26

return (∃e ∈ N : 〈e, e⊥〉 ∈ Rϕ)27

end28

Algorithm 7.1 - RCTL trace checking algorithm



176 Chapter 7

7.2 Tuple Based Approach

Slices can be viewed, in some sense, as a symbolic data structure for representing and
manipulating sets of cuts. From this point of view, the approach proposed in [Sen and
Garg, 2003] is very similar to the classical symbolic approach to CTL model checking
[McMillan, 1993], where the set of states satisfying a given CTL formula is inductively
computed using efficient symbolic data structures. This idea could be easily generalised
to handle any CTL formula. However, slices are too restrictive for that, since they
only allow to represent regular sets of cuts. If we want to solve the trace checking
problem for full-fledged CTL, we need a way to represent and manipulate arbitrary, in
particular non-regular, sets of cuts. Our proposal is based on the following observation.
By definition, in a partial order trace, the events of each process are totally ordered.
Therefore, in order to represent a cut, we can simply remember, for each process, the
number of events of that process that have already been triggered in this cut. With
this idea, cuts and therefore sets of cuts can be effectively represented using k-uples
of natural numbers. Then, similarly to what is done for RCTL, given a po-trace T and
a CTL formula ϕ, we can solve the trace checking problem by first computing the set
of tuple corresponding to [[ϕ]]TC , and then checking whether the tuple corresponding to
the initial empty cut belongs to this set. Hence, given a po-trace T and CTL formula
ϕ, all we need is a way to compute the set of tuples corresponding to [[ϕ]]TC . The main
advantage of this method is that, as will be shown in Section 7.3, there exists a number
of efficient symbolic data structures that can be used for representing and manipulating
sets of tuple of naturals.

In the remainder of this section, we explain how the set of tuples corresponding to
[[ϕ]]TC can be computed inductively on the structure of ϕ. We start in Section 7.2.2 and
Section 7.2.3 with the initial cases, i.e. when ϕ = > or ϕ = p. Then, in Section 7.2.4,
we examine how to handle boolean operators. Finally, temporal modalities are taken
care of in Section 7.2.5. But before that, in Section 7.2.1, we first examine in more
detail how cuts can be represented as tuples of natural numbers.

7.2.1 Tuple Representation

Condition (i) in Definition 4.3 of partial order traces implies that the events of each
process of the trace are totally ordered. Therefore, for a cut C, one can simply remem-
ber the number of events of process Pi that have already been executed in C. More
precisely, a cut C can be represented by a k-uple of naturals where the ith compo-
nent gives the number of events of process Pi that already occurred in C. The formal
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definition follows.

Definition 7.3 (Tuple Representation of Cuts)

Given a po-trace T = 〈E, V0, δ,�〉 of k processes such that KT = 〈Q, I,L,−→〉,
and a cut C ∈ Q, the tuple representation of C, noted tuple(C), is a tuple t ∈ Nk

such that:

∀i ∈ [1, k] : t[i] = |C ∩ Pi|

Using this representation, testing if a cut is included in another can then simply
be done by a component-wise comparison of their respective tuple representation.

Proposition 7.1

Given a po-trace T = 〈E, V0, δ,�〉 such that KT = 〈Q, I,L,−→〉, and two cuts
C,D ∈ Q, we have that:

(C ⊆ D)⇔ (tuple(C) ≤ tuple(D))

The union, respectively intersection, can also be computed by taking the compo-
nentwise maximum, respectively minimum.

Proposition 7.2

Given a po-trace T = 〈E, V0, δ,�〉 such that KT = 〈Q, I,L,−→〉, and two cuts
C,D ∈ Q, we have that:

(i) ∀i ∈ [1, k] : tuple(C ∪D)[i] = max≤(tuple(C)[i], tuple(D)[i])

(ii) ∀i ∈ [1, k] : tuple(C ∩D)[i] = min≤(tuple(C)[i], tuple(D)[i])

Furthermore, checking whether an event e belongs to a cut can be done easily on
the tuple representation. Indeed, it is necessary and sufficient to check that the process
Pi to which e belongs contains at least all the predecessors of e in Pi.

Proposition 7.3

Given a po-trace T = 〈E, V0, δ,�〉 of k processes such that KT = 〈Q, I,L,−→〉,
and a cut C ∈ Q, we have that:

∀i ∈ [1, k], ∀e ∈ Pi : (e ∈ C)⇔ (tuple(C)[i] ≥ |Pi ∩ ↓e|)

The tuple representation can be naturally extended to sets of cuts. Given a set
X ⊆ Q, tuple(X) def= {tuple(C) | C ∈ X}. Using this notation, given a po-trace T and
a CTL formula ϕ, the set of tuples corresponding to [[ϕ]]TC , noted [[ϕ]]TNk , is defined as
tuple([[ϕ]]TC ).
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function computeTuplesTautology(T )1

input : a po-trace T = 〈E, V0, δ,�〉 of k processes
returns: [[>]]TNk

begin2

R := env(T )3

H := {〈e, e′〉 ∈�| (e 6= e′) ∧ (@e′′ ∈ E \ {e, e′} : e � e′′ � e′)}4

forall 〈e, e′〉 ∈ H s.t. ∃i, j ∈ [1, k] : (e ∈ Pi) ∧ (e′ ∈ Pj) ∧ (i 6= j) do5

R := R \ (after(e′) ∩ before(e))6

return R7

end8

Algorithm 7.2 - Computation of the set of tuples satisfying >

7.2.2 Tautology

If φ ≡ >, we need to compute the set of tuples representing all possible cuts of the
trace T = 〈E, V0, δ,�〉. Our construction is based on the Hasse diagram 〈E,H〉 of
T . We start as if this diagram had no communication edge, i.e. no edge 〈e, e′〉 ∈ H
where e and e′ belong to different processes. The corresponding set of tuples is then
simply the set of all tuples in the bounds imposed by the trace. We call this set of
tuples the envelope of T . Formally, given a po-trace T = 〈E, V0, δ,�〉 of k processes,
the envelope of T , is defined as env(T ) def= {t ∈ Nk | ∀i ∈ [1, k] : t[i] ≤ |Pi|}. Then,
we take the communication edges into account one at a time. For that purpose, given
such a communication edge 〈e, e′〉, we need to remove the tuples corresponding to the
sets of events that are not downward closed because of that edge, i.e. the sets of events
containing e′, but not e. For that, we can use Proposition 7.3, which states that an
event e ∈ Pi belongs to a cut C if and only if tuple(C)[i] ≥ |Pi ∩ ↓e|. Given an event
e ∈ Pi for some i ∈ [1, k], let us note after(e) def= {t ∈ env(T ) | t[i] ≥ |Pi ∩ ↓e|} and
before(e) def= {t ∈ env(T ) | t[i] < |Pi ∩ ↓e|}. The set of tuples corresponding to the cuts
forbidden by a communication edge 〈e, e′〉 is then simply given by after(e′)∩ before(e).
This construction is formalized in Algorithm 7.2, which works as follows. First, the
set R, which will be returned at the end, is initialised with the envelope of T (line 3).
Then, the edges of the Hasse diagram are collected in a set H (line 4). Next, for each
edge 〈e, e′〉 ∈ H such that e and e′ belong to different processes, the tuples forbidden
by this edge are removed from R (line 6). Finally, once all communication edges have
been taken into account, the algorithm returns R (line 7).
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P1
e1,1

p := ff

e1,2

q, r := tt, tt

e1,3

r, t := ff, tt

P2
e2,1

s := tt

e2,2

s, q := ff, ff

Figure 7.5 - Computation of the set of tuples satisfying >

Example 7.5

Figure 7.5 illustrates the construction of the set of tuples corresponding to the set
of all cuts of the po-trace T from Figure 4.4 (page 95), namely [[>]]TNk . In this
example, there is only one communication edge, i.e. 〈e1,2, e2,2〉. The set of tuples
is therefore given by [[>]]TNk = env(T ) \ after(e2,2) ∩ before(e1,2).

The correctness of this algorithm is proven as follows. First, we prove that the
algorithm is sound, i.e. set of tuples returned by Algorithm 7.2 is included in tuple(Q).

Lemma 7.1 (Soundness of Algorithm 7.2)

Given a po-trace T = 〈E, V0, δ,�〉 of k processes such that KT = 〈Q, I,L,−→〉, we
have that if Algorithm 7.2 terminates, then at the end R ⊆ tuple(Q).

Proof

Consider a tuple t ∈ R at the end of the algorithm. Let us build a set of events
F =

⋃
i∈[1,k] {e ∈ Pi | |Pi ∩ ↓e| ≤ t[i])}. We prove by contradiction that F ∈ Q.

Indeed assume F 6∈ Q. In this case, we know that there exists two events e � e′

with e′ ∈ F and e 6∈ F . Since e � e′, we know that there exists a sequence
of event e = e1e2 . . . e` = e′ connecting e to e′ in the Hasse diagram of T , i.e.
∀k ∈ [1, l) : 〈ek, ek+1〉 ∈ H. Moreover, by construction of F , it must be that e
and e′ belong to separate processes. It follows that the sequence contains at least
one pair 〈ek, ek+1〉 such that ek and ek+1 belong to separate process. However, in
this case, t would have been removed from R at line 6 because of that edge. It
follows that F ∈ Q. Finally, from the construction of F , we have that tuple(F ) = t.
Hence, we conclude.

Then, we prove its completeness, i.e. that any tuple in tuple(Q) is included in the
set of tuples returned by Algorithm 7.2.
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Lemma 7.2 (Completeness of Algorithm 7.2)

Given a po-trace T = 〈E, V0, δ,�〉 of k processes such that KT = 〈Q, I,L,−→〉, we
have that if Algorithm 7.2 terminates then at the end tuple(Q) ⊆ R.

Proof

First, by Definition 7.3, for any cut C ∈ Q, we have that ∀i ∈ [1, k] : 0 ≤
tuple(C)[i] ≤ |Pi|. It follows that at the beginning of the algorithm (line 3),
∀C ∈ Q : tuple(C) ∈ R, or in other words that tuple(Q) ⊆ R. Then, we show that
this is an invariant of the loop at lines 5–6. We proceed by contradiction. Indeed
consider a tuple t ∈ after(e′) ∩ before(e) for some communication edge 〈e, e′〉, and
assume the existence of a cut C ∈ Q such that tuple(C) = t. By construction of C,
we have that e′ ∈ C and that e 6∈ C. However, by construction of H, we know that
e � e′. It follows that C 6∈ DC�(E) = Q, which contradicts our initial assumption.
It follows that (after(e′) ∩ before(e)) ∩ tuple(Q) = ∅. Hence we conclude.

Finally, this allows us to establish its correctness.

Theorem 7.2 (Correctness of Algorithm 7.2)

Given a po-trace T = 〈E, V0, δ,�〉 of k processes such that KT = 〈Q, I,L,−→〉,
Algorithm 7.2 returns [[>]]TNk .

Proof

We successively prove partial correctness and termination.

Partial Correctness Thanks to Lemma 7.1 and Lemma 7.2, we can conclude that
if the algorithm terminates, then R = tuple(Q). Then, since [[>]]TNk = {t ∈ Nk |
∃C ∈ Q : (tuple(C) = t) ∧ 〈T,C〉 |=T

C >)} = tuple(Q), we conclude.

Termination By definition, T contains only a finite number of events, which
implies that |H| computed at line 4 is finite. Then, since the loop at lines 5–6 will
execute at most |H| times, we conclude.

7.2.3 Propositions

If φ ≡ p for some p ∈ P, we proceed as follows. By condition (ii) of Definition 4.3, we
know that the set of events that modify the truth value of p, namely E/p, is totally
ordered. Amongst those events, some set p to true and some set p to false. In order
to compute [[p]]TNk , we simply compute the union of all chunks of cuts in the trace
where p has been set to true, but not yet back to false. In practice, as illustrated in
Example 7.6, for each event e that sets p to true, if e′ is the first event after e that
sets p back to false, we add the set of tuples after e and before e′ that correspond to
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function computeTuplesPropositions(T, p)1

input : a po-trace T = 〈E, V0, δ,�〉 of k processes and a propositions p ∈ P
returns: [[p]]TNk

begin2

U := {e ∈ E/p | p ∈ δ(e, tt)}, D = E/p \ U , R = ∅3

if p ∈ V0 then4

S := env(T )5

if D 6= ∅ then6

S := S ∩ before(min�(D))7

R := R ∪ S8

forall e ∈ U do9

S := after(e)10

if D∩ ↑e 6= ∅ then11

S := S ∩ before(min�(D∩ ↑e))12

R := R ∪ S13

R := R ∩ computeTuplesTautology(T )14

return R15

end16

Algorithm 7.3 - Computation of the set of tuples satisfying a proposition

actual cuts to the result, i.e. (after(e) ∩ before(e′)) ∩ [[>]]TNk . Of course, on top of that,
special precautions must be taken at the beginning and at the end of the trace, i.e.
if p already holds at the beginning of the trace and/or if the last event of E/p is one
that sets p to true. This construction is formalized in Algorithm 7.3. We start with
three sets of events. The first set U contains the events that set p to true, the second
set D contains those that set p to false and the last set R, initially empty, is the set of
tuples that will be returned at the end (line 3). If p holds at the beginning of the trace
(line 4), the algorithm adds to R the set of tuples from the beginning of the trace in
which p has not been set back to ff. For that purpose, the algorithm starts with a set
S initially containing all tuples in the envelope of T (line 5). Then, S is restricted to
all tuples before the first event that sets p to false, if such an event exists (lines 6–7).
Next, the content of S is added to R (line 8). Then, for each event e that sets p to true
(line 9), the algorithm adds to R the set of tuples after e in which p is not set back
to false yet. For that purpose, the algorithm starts with a set S initially containing
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P1
e1,1

p := ff

e1,2

q, r := tt, tt

e1,3

r, t := ff, tt

P2
e2,1

s := tt

e2,2

s, q := ff, ff

Figure 7.6 - Computation of the set tuples satisfying a proposition

the set of all tuples after e (line 10). Then, S is restricted to all tuples before the first
event after e that sets p to false, if such an event exists (lines 11–12). Next, the content
of S is added to R (line 13). Finally, once all the events in U have been considered,
R is restricted to tuples representing actual cuts (line 14) and returned (line 15). In
particular, if p is true all along the po-trace, i.e. if p ∈ V0 and D = ∅, R is initialized
to env(T ). Therefore, since the main loop only adds tuple to R, the algorithm returns
env(T ) ∩ [[>]]TNk = [[>]]TNk , i.e. the set of all cuts. Symmetrically, if p is false all along
the po-trace, i.e. if p 6∈ V0 and U = ∅, R is initialized to ∅, the main loop the loop at
is not executed (since U = ∅) and the algorithm returns ∅.

Example 7.6

Figure 7.6 illustrates the construction of [[q]]TNk on the example partial order trace
from Chapter 4. In this example, there are only two events dealing with q, i.e.
E/q = {e1,2, e2,2}. The first of those two events sets q to true, while the second one
sets q to false. Therefore, the set of tuples corresponding to cuts where q holds is
given by [[q]]TNk = (after(e1,2) ∩ before(e2,2)) ∩ [[>]]TNk .

The correctness of Algorithm 7.3 is proven as follows. First, we prove soundness,
i.e that p holds in all the cuts returned by the algorithm.

Lemma 7.3 (Soundness of Algorithm 7.3)

Given a po-trace T = 〈E, V0, δ,�〉 over a set of propositions P such that KT =
〈Q, I,L,−→〉 and a proposition p ∈ P, we have that if Algorithm 7.3 terminates,
then at the end R ⊆ [[>]]TNk .

Proof

Consider a tuple t ∈ R at the end of the algorithm. By construction (line 14) and
by Theorem 7.2, we have that R ⊆ [[>]]TNk , and thus that there exists a cut C ∈ Q
such that tuple(C) = t. From there, we consider two cases:
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Proof (cont’d)

(i) If t was added before the main loop at line 8 then, by construction, we have
that C ∩D = ∅. In other words C does not contain any event setting p to
false. It follows that p ∈ L(C) if and only if p ∈ V0. However, because of the
test at line 4, we know that p ∈ V0, and therefore that p ∈ L(C).

(ii) If t was added during the loop at line 13 for some event e ∈ U , then by
construction, we have that t ∈ after(e), which implies by Proposition 7.3,
that e ∈ C. Moreover, for any event e′ ∈ D such that e � e′, we have that
e′ 6∈ C. In other words, after e, C contains no event that sets p to false.
Since e ∈ U , we can therefore conclude that p ∈ δ(max�(C/p), tt).

In both cases, by Definition 4.4, we have that 〈T,C〉 |=T
C p and thus that t ∈ [[p]]TNk .

Then, we prove its completeness, i.e. that any tuple representing a cut that satisfies
p is included in R.

Lemma 7.4 (Completeness of Algorithm 7.3)

Given a po-trace T = 〈E, V0, δ,�〉 over a set of propositions P such that KT =
〈Q, I,L,−→〉 and a proposition p ∈ P, we have that if Algorithm 7.3 terminates,
then at the end [[p]]TNk ⊆ R.

Proof

Consider a cut C ∈ [[p]]TC . By Definition 4.4, either C/p = ∅, in which case
p ∈ V0, or C/p 6= ∅, in which case p ∈ δ(max�(C/p), tt). We examine these two
possibilities separately:

(i) If C/p = ∅, since p ∈ V0, the test at line 4 will succeed. Therefore, since
tuple(C) ∈ env(T ), we have that tuple(C) ∈ S at line 5. Then, if D 6= ∅, since
C ∩D = ∅, we have in particular that min�(D) 6∈ C. It follows, by Propo-
sition 7.3, that tuple(C) ∈ before(min�(D)), which implies that C is kept
in S at line 7. We can therefore conclude that tuple(C) is added to R at line 8.

(ii) If C/p 6= ∅, we have that p ∈ δ(max�(C/p, tt)). In this case, since
e

def= max�(C/p) ∈ U , and since tuple(C) ∈ after(e), we have that
tuple(C) ∈ S at line 10. Then, if D∩ ↑e 6= ∅, since C ∩ (D∩ ↑e) = ∅, we
have in particular that min�(D∩ ↑e) 6∈ C. It follows, by Proposition 7.3,
that tuple(C) ∈ before(min�(D∩ ↑e)), which implies that C is kept in S at
line 12. We can therefore conclude that tuple(C) is added to R at line 13.

In both cases, C ∈ R. It follows directly that [[p]]TNk ⊆ R.
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Finally, this allows us to establish its correctness.

Theorem 7.3 (Correctness of Algorithm 7.3)

Given a po-trace T = 〈E, V0, δ,�〉 over a set of propositions P such that KT =
〈Q, I,L,−→〉 and a proposition p ∈ P, Algorithm 7.3 returns [[p]]TNk .

Proof

We successively prove partial correctness and termination

Partial Correctness Thanks to Lemma 7.3 and Lemma 7.4, we have that if the
algorithm terminates, then R = [[p]]TNk . Hence, we conclude.

Termination By construction, we have that |U | ≤ |E|, and therefore that U is
finite. It follows directly that the main loop at lines 9–13 executes at most |E|
times. Then, since all the sets manipulated in the algorithm are finite, we can
conclude.

7.2.4 Boolean Operators

In order to take care of boolean operations, i.e. disjunction, conjunction and negation,
we can simply use standard set operations. First, for negation, we can use set difference.
Indeed, a cut satisfies a formula of the form ¬ϕ if and only if it does not satisfy ϕ.
Therefore, the set of cuts satisfying ϕ is simply given by the set of all cuts from which
are removed those cuts that satisfy ϕ. This can be extended to the tuple representation.

Lemma 7.5

Given a po-trace T = 〈E, V0, δ,�〉 and a CTL formula ϕ, we have that:

[[¬ϕ]]TNk = [[>]]TNk \ [[ϕ]]TNk

Proof

[[¬ϕ]]TNk = tuple([[¬ϕ]]TC )
= tuple([[>]]TC \ [[ϕ]]TC )
= tuple([[>]]TC ) \ tuple([[ϕ]]TC )
= [[>]]TNk \ [[ϕ]]TNk

Next, for conjunction, we can use intersection. Indeed, a cut satisfies a formula of
the form ϕ∧ψ if and only if it satisfies both ϕ and ψ. The set of cuts satisfying ϕ∧ψ
is therefore given by the intersection between those cuts that satisfy ϕ and those that
satisfy ψ. Again, this is extended to the tuple representation.
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Lemma 7.6

Given a po-trace T = 〈E, V0, δ,�〉 and two CTL formulae ϕ and ψ, we have that:

[[ϕ ∧ ψ]]TNk = [[ϕ]]TNk ∩ [[ψ]]TNk

Proof

[[ϕ ∧ ψ]]TNk = tuple([[ϕ ∧ ψ]]TC )
= tuple([[ϕ]]TC ∩ [[ψ]]TC )
= tuple([[ϕ]]TC ) ∩ tuple([[ψ]]TC )
= [[ϕ]]TNk ∩ [[ψ]]TNk

Finally, disjunction can be taken care of with union. Indeed, a cut satisfies ϕ∨ψ if
and only if it satisfies either ϕ or ψ. The set of cuts satisfying ϕ∨ψ is therefore given
by the union of those cuts that satisfy ϕ and those cuts that satisfy ψ. Similarly to
conjunction and negation, this is also extended to the tuple representation.

Lemma 7.7

Given a po-trace T = 〈E, V0, δ,�〉 and two CTL formulae ϕ and ψ, we have that:

[[ϕ ∨ ψ]]TNk = [[ϕ]]TNk ∪ [[ψ]]TNk

Proof

[[ϕ ∨ ψ]]TNk = tuple([[ϕ ∨ ψ]]TC )
= tuple([[ϕ]]TC ∪ [[ψ]]TC )
= tuple([[ϕ]]TC ) ∪ tuple([[ψ]]TC )
= [[ϕ]]TNk ∪ [[ψ]]TNk

7.2.5 Temporal Modalities

In order to take care of formulae containing temporal modalities, we can use the fixed
point characterization of CTL that was presented in Chapter 1. With this character-
ization, all that is left to do is to devise a way to compute the tuple representation
of pre(X) and p̃re(X). In fact, since p̃re(X) = Q \ pre(Q \ X), a symbolic algorithm
for pre(X) is sufficient. For that purpose, we decompose pre(X) into a function of
prei(X), where prei(X) def= {C ∈ Q | ∃e ∈ enabled(C) ∩ Pi : C ∪ {e} ∈ X}, i.e. the
predecessors of X if only events of process Pi are considered. This decomposition is
provided hereafter.
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Lemma 7.8

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, and a subset X ⊆ Q,
we have that:

pre(X) =
⋃

i∈[1,k]

prei(X)

Proof
pre(X) = {D ∈ Q | ∃C ∈ X : D −→ C}

= {D ∈ Q | ∃C ∈ X,∃e ∈ enabled(D) : C = D ∪ {e}}
(by Proposition 4.1)

= {D ∈ Q | ∃e ∈ enabled(D) : D ∪ {e} ∈ X}
= {D ∈ Q | ∃e ∈ enabled(D) ∩ E : D ∪ {e} ∈ X}
= {D ∈ Q | ∃e ∈ enabled(D) ∩ ∪i∈[1,k] Pi : D ∪ {e} ∈ X}
= {D ∈ Q | ∃e ∈ ⋃i∈[1,k] (enabled(D) ∩ Pi) : D ∪ {e} ∈ X}
=

⋃
i∈[i,k] {D ∈ Q | ∃e ∈ enabled(D) ∩ Pi : D ∪ {e} ∈ X}

=
⋃
i∈[i,k] prei(X)

The only remaining step is therefore to characterize prei(X). In other words, given
tuple(X), we must compute tuple(prei(X)). This can be done by systematically decre-
menting the ith component of each tuple t ∈ tuple(X), and keeping from the resulting
set of tuples, only those that represent actual cuts. Given a tuple of integers t ∈ Zk, and
a natural number d ∈ N, we note t[i�d] the tuple of integers obtained from t by shifting
its ith component of d, i.e. (t[i�d][i] = t[i]+d)∧(∀j ∈ [1, k]\{i} : t[i�d][j] = t[j]). Sym-
metrically, we note t[t�d] def= t[t�−d]. These operations are extended to sets of tuples
as expected. Given a set of tuples of integers S ⊆ Zk, we note S[i�d] def=

⋃
t∈S {t[i�d]}

and S[i�d] def= S[i�−d]. Using this notation, we can formalize our intuition as follows.

Lemma 7.9

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, and a subset X ⊆ Q,
we have that:

tuple(prei(X)) = tuple(X)[i�1] ∩ tuple(Q)
Proof

tuple(prei(X))
= tuple({C ∈ Q | ∃e ∈ enabled(C) ∩ Pi : C ∪ {e} ∈ X})
= tuple({C ∈ Q | ∃e ∈ enabled(C) ∩ Pi : tuple(C ∪ {e}) ∈ tuple(X)})
= tuple({C ∈ Q | ∃e ∈ enabled(C) ∩ Pi : tuple(C)[i�1] ∈ tuple(X)})
= tuple({C ∈ Q | tuple(C)[i�1] ∈ tuple(X)})
= {t ∈ tuple(Q) | t[i�1] ∈ tuple(X)}
= {t ∈ tuple(Q) | t ∈ tuple(X)[i�1]}
= tuple(X)[i�1] ∩ tuple(Q)
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function computeTuplesPre(T, S)1

input : a po-trace T = 〈E, V0, δ,�〉 of k processes with KT = 〈Q, I,L,−→〉 and
a subset S ⊆ Nk such that S = tuple(X) for some X ⊆ Q

returns: tuple(pre(X))
begin2

R := ∅3

forall i ∈ [1, k] do4

R := R ∪ S[i�1]5

return R ∩ computeTuplesTautology(T )6

end7

function computeTuplesPreTilde(T, S)8

input : a po-trace T = 〈E, V0, δ,�〉 of k processes with KT = 〈Q, I,L,−→〉 and
a subset S ⊆ Nk such that S = tuple(X) for some X ⊆ Q

returns: tuple(p̃re(X))
begin9

R := computeTuplesTautology(T )10

return R \ computeTuplesPre(T,R \ S)11

end12

Algorithm 7.4 - Computation of tuple(pre(X)) and tuple(p̃re(X))

Putting it all back together, we obtain a tuple characterization of pre(X).

Theorem 7.4 (Tuple Characterization of pre(X))

Given a po-trace T = 〈E, V0, δ,�〉 with KT = 〈Q, I,L,−→〉, and a subset X ⊆ Q,
we have that:

tuple(pre(X)) =

 ⋃
i∈[1,k]

tuple(X)[i�1]

 ∩ [[>]]TNk

Proof

tuple(pre(X)) = tuple(
⋃
i∈[1,k] prei(X)) (by Lemma 7.8)

=
⋃
i∈[1,k] tuple(prei(X))

=
⋃
i∈[1,k](tuple(X)[i�1] ∩ tuple(Q)) (by Lemma 7.9)

= (
⋃
i∈[1,k] tuple(X)[i�1]) ∩ [[>]]TNk

This yields algorithms for pre(X) and p̃re(X), as presented in Algorithm 7.4. Note
that we tried other ways to p̃re(X). Unfortunately, each attempt lead to a less efficient
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algorithm. The algorithms for EX,AX,EU and AU follow, using their fixed point based
characterization on pre(X) and p̃re(X) of Theorem 1.12. Indeed, the lattice of cuts
is finite, and both pre(X) and p̃re(X) are monotonic. However, there is a particular
case, where we can do better. Indeed, if the formula is of the form EFϕ, instead of
computing [[E(>Uϕ)]]TNk = lfp λX · [[ϕ]]TNk ∪ ([[>]]TNk ∩ pre(X)), we can alternatively
compute the downward closure of [[EFϕ]]TNk , which is much more efficient.

Theorem 7.5 (Tuple Characterization of EF)

Given a po-trace T = 〈E, V0, δ,�〉, and a CTL formula ϕ. We have that:

[[EFϕ]]TNk =↓[[ϕ]]TNk ∩ [[>]]TNk

Proof

[[EFϕ]]TNk = tuple([[EFϕ]]TC )
= tuple({C ∈ Q | ∃D ∈ Q : (C ; D) ∧ (〈T,D〉 |=T

C ϕ)})
= tuple({C ∈ Q | ∃D ∈ Q : (C ; D) ∧ (D ∈ [[ϕ]]TC })
= tuple({C ∈ Q | ∃D ∈ [[ϕ]]TC : C ; D})
= tuple({C ∈ Q | ∃D ∈ [[ϕ]]TC : C ⊆ D}) (by Lemma 4.2)
= tuple({C ∈ Q | ∃D ∈ [[ϕ]]TC : tuple(C) ≤ tuple(D)})

(by Proposition 7.1)
= {t ∈ tuple(Q) | ∃t′ ∈ tuple([[ϕ]]TC ) : t ≤ t′}
= {t ∈ Nk | ∃t′ ∈ [[ϕ]]TNk : t ≤ t′} ∩ tuple(Q)
= ↓[[ϕ]]TNk ∩ [[>]]TNk

This can also be used for formulae of the form AGϕ, because of the well known
equivalence [[AGϕ]]TC = [[¬EF¬ϕ]]TC , which can be adapted to the tuple representation.

7.2.6 Trace Checking Algorithm

We now give our trace checking algorithm, formalized in Algorithm 7.5. First, the
algorithm computes the tuple semantics of ϕ (line 33). This is done recursively on the
structure of ϕ using the results presented in the previous sections. For >, Algorithm 7.2
is used (line 4). For ⊥ the algorithm simply returns the empty set (line 6). For
propositions, Algorithm 7.3 is used (line 8). For the boolean operators, the results of
Section 7.2.4 (lines 9–14) are used. For EX and AX, Algorithm 7.4 is used (lines 15–
18). For EF and AG, the algorithm uses Theorem 7.5 (lines 19–22). Finally, for the
remaining cases, the algorithm uses the fixed point characterization of CTL provided
by Theorem 1.12 (lines 23–28). Once this set is computed, the algorithm then simply
checks whether the tuple representation of the initial empty cut belongs to it (line 33).
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function computeTupleRep(T , ϕ)1

input : a po-trace T = 〈E, V0, δ,�〉 of k processes and a CTL formula ϕ
returns: [[ϕ]]TNk

begin2

if ϕ = > then3

R := computeTuplesTautology(T )4

if ϕ = ⊥ then5

R := ∅6

else if ϕ = p then7

R := computeTuplesProposition(T, ϕ)8

else if ϕ = ¬ϕ1 then9

R := computeTuplesTautology(T ) \ computeTupleRep(T, ϕ1)10

else if ϕ = ϕ1 ∨ ϕ2 then11

R := computeTupleRep(T, ϕ1) ∪ computeTupleRep(T, ϕ2)12

else if ϕ = ϕ1 ∧ ϕ2 then13

R := computeTupleRep(T, ϕ1) ∩ computeTupleRep(T, ϕ2)14

else if ϕ = EXϕ1 then15

R := computeTuplesPre(T, computeTupleRep(T, ϕ1))16

else if ϕ = AXϕ1 then17

R := computeTuplesPreTilde(T, computeTupleRep(T, ϕ1))18

else if ϕ = EFϕ1 then19

R :=↓computeTupleRep(T, ϕ1) ∩ computeTuplesTautology(T )20

else if ϕ = AGϕ1 then21

R := computeTupleRep(T,¬EF¬ϕ1)22

else if ϕ = E(ϕ1 Uϕ2) then23

S1 := computeTupleRep(T, ϕ2), S2 := computeTupleRep(T, ϕ1)24

R := computeLFP(2Nk
,⊆, λX · S2 ∪ (S1 ∩ computeTuplesPre(T,X)))25

else if ϕ = A(ϕ1 Uϕ2) then26

S1 := computeTupleRep(T, ϕ2), S2 := computeTupleRep(T, ϕ1)27

R := computeLFP(2Nk
,⊆, λX ·S2∪ (S1∩ computeTuplesPreTilde(T,X)))28

return R29

end30

Algorithm 7.5 - CTL trace checking algorithm
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function tupleBasedCTL-TC(T, ϕ)31

input : a po-trace T = 〈E, V0, δ,�〉 of k processes and a CTL formula ϕ
returns: tt if and only if T |=C ϕ

begin32

return tuple(∅) ∈ computeTupleRep(T, ϕ)33

end34

Algorithm 7.5 - CTL trace checking algorithm (cont’d)

7.3 Symbolic Representation

Many symbolic data structures for representing sets of integers, or natural numbers
have been proposed throughout the literature, as e.g. Natural Decision Diagram
[Boudet and Comon, 1996], Difference Decision Diagram [Møller et al., 1999], or Shar-
ing Trees [Zampunieris and Le Charlier, 1995]. For our particular application, we
propose the use of Interval Sharing Trees [Ganty, 2002], an extension of traditional
sharing trees. Indeed, an interval sharing tree, or IST for short, symbolically repre-
sents unions of multi-rectangles, which arise naturally when representing sets of cuts.
For instance, the envelope of a po-trace T of k processes can be viewed as a multi-
rectangle in M(k). Indeed, we have that env(T ) = [l, u] where l ∈ Nk is such that
∀i ∈ [1, k] : l[i] = 0 and u ∈ Nk is such that ∀i ∈ [1, k] : u[i] = |Pi|. Moreover, the set
of tuples appearing after and before an event e, respectively after(e) and before(e), can
also be viewed as multi-rectangles. For an event e ∈ Pi, we have that after(e) = [l′, u],
where l′ ∈ Nk is such that l′[i] = |Pi ∩ ↓e| and ∀j ∈ [1, k] \ {i} : l′[j] = 0, and where u
is defined as above. In addition, for an event e ∈ Pi, we have that before(e) = [l, u′],
where l is defined as above and where u′ ∈ Nk is such that u′[i] = |Pi ∩ ↓e| − 1 and
∀j ∈ [1, k] \ {i} : u′[j] = |Pj |. Another strong point in favor of ISTs, it that all the
operations that are required for our trace checking algorithm, i.e. union, intersection,
set difference, shifting and downward closure, have been defined on ISTs. For details
on those operations, we refer the reader to [Ganty et al., 2006]. For all these reasons,
we believe that ISTs are well suited in our context. Note however that other data
structures have been studied in a subsequent work by Gabriel Kalyon [Kalyon, 2007].

An IST is basically a directed acyclic graph, where nodes are labelled with an
interval of integers. They were introduced in [Ganty, 2002]. Each path in such an IST
effectively represents a multi-rectangle. The sharing of common prefixes and suffixes of
multi-rectangles allows to obtain a compact representation. Note that the counter-part
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of this compactness is that most of the operations cannot be computed in polynomial
time in general. Hence, (most of) the symbolic algorithms to manipulate ISTs are
exponential in their worst case. We refer the reader to [Ganty et al., 2006] for a
detailed complexity analysis. However, those algorithms are in general far from their
worst case and in practice, ISTs have been shown to be more efficient than other known
data-structures (to represent subsets of Nk) both in execution time and memory, in
the context of model checking [Ammirati et al., 2002]. The formal definition of IST
follows.

Definition 7.4 (Interval Sharing Tree)

An interval sharing tree (IST) of k layers is a tuple S = 〈N, ι, α〉 where:

• N = N0 ∪N1 ∪N2 ∪ ...∪Nk ∪Nk+1 is the finite set of nodes, partitioned into
k + 2 disjoint subsets Ni called layers with N0

def= {n>} and Nk+1
def= {n⊥}

• ι ∈ N 7→ I ∪ {>,⊥} is the labelling function such that ι(n) = >, respectively
⊥, if and only if n = n>, respectively n⊥.

• α ∈ N 7→ 2N is the successor function such that:
(i) α(n⊥) = ∅

(ii) ∀i ∈ [0, k],∀n ∈ Ni : α(n) ⊆ Ni+1 ∧ α(n) 6= ∅

(iii) ∀n ∈ N, ∀n′, n′′ ∈ α(n) : (n′ 6= n′′)⇒ (ι(n′) 6= ι(n′′))

(iv) ∀i ∈ [0, k),∀n, n′ ∈ Ni : (n 6= n′ ∧ ι(n) = ι(n′))⇒ (α(n) 6= α(n′))

In other words, an IST is a directed acyclic graph where the nodes are labelled
with intervals of integers except for two special node n> and n⊥, such that (i) the only
node n⊥ of the last layer has no successors, (ii) all nodes from layer i ≤ k have their
successors in layer i+ 1, (iii) a node cannot have two successors with the same label,
(iv) two nodes with the same label in the same layer do not have the same successors.
A path of an IST is a sequence n0n1 . . . nk+1 of nodes such that n0 = n>, nk+1 = n⊥
and such that ∀i ∈ [0, k] : ni+1 ∈ α(ni). We note path(S) the set of such paths. A tuple
t ∈ Zk is accepted by an IST S if and only if there exists a path n0n1 . . . nk+1 ∈ path(S)
such that ∀i ∈ [1, k] : t[i] ∈ ι(ni).

Example 7.7

Figure 7.7 illustrates the use of ISTs for computing the set of tuples representing
all the cuts of the po-trace from Figure 4.4.
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Experiment IST NuSMV

Model Proc. Events Property Time Time

Peterson 2 2000 ϕ1 0.46s 349.57s

2 5000 ϕ1 7.53s ↑↑
2 15000 ϕ1 189.65s ↑↑

PetersonN 2 2000 ϕ2 0.20s 294.46s

2 5000 ϕ2 6.44s ↑↑
2 20000 ϕ2 390.90s ↑↑
5 1000 ϕ2 2.04s 13.74s

5 1500 ϕ2 6.82s ↑↑
5 5000 ϕ2 176.62s ↑↑

10 1500 ϕ2 7.53s 150.23s

10 2000 ϕ2 27.01s ↑↑
10 5000 ϕ2 147.89s ↑↑

ABProtocol 2 1000 ϕ3 13.60s 297.28s

2 2000 ϕ3 27.56s ↑↑
2 5000 ϕ3 257.29s ↑↑

Philosopher 3 100 ϕ4 0.15s 6.36

3 200 ϕ4 1.11s ↑↑
3 2000 ϕ4 366.22s ↑↑
5 100 ϕ4 0.25s ↑↑
5 500 ϕ4 125.56s ↑↑

10 100 ϕ4 1.67s ↑↑
10 200 ϕ4 26.94s ↑↑

Figure 7.8 - Experimental results (↑↑ indicates > 10 min.)

7.4 Experimental results

In this section, we experimentally validate our method. We compare our symbolic
approach, using ISTs with a state-of-the-art symbolic model checking of traces using
the tool NuSMV [Cimatti et al., 1999; Cimatti et al., 2002]. It is important to note that,
through these experiments, we did not try to compare the use of ISTs in particular, with
other data structures, like BDDs, but rather to validate our technique for computing
the set of tuples corresponding to a given CTL formula ϕ. In fact, as shown in [Kalyon,
2007], BDDs can also be used for that, using a binary encoding of the tuples.

We considered several classical academic examples of distributed systems and com-
pared the running time of our early prototype against NuSMV. Running time was
limited to 10 minutes. This seems to be a reasonable assumption considering that the
testing should be achieved on a large number of traces. Those results are presented
in Figure 7.8. On all the examples we considered, memory consumption was not an
issue. The ISTs manipulated in these examples contain no more than 7000 nodes. It
is therefore not mentioned.
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The first example we considered was the Peterson mutual exclusion protocol with
two processes, where communication is done through shared variables. On this exam-
ple, we tested that mutual exclusion was satisfied. This was done using the CTL formula
ϕ1

def= ¬EF(crit1 ∧ crit2). Even on this relatively small example, we can already see a
big difference in running time: NuSMV runs out of time after 2000 events, whereas out
tool can handle 15000 events in the allotted time. We also considered a generalization
of this protocol for n processes (PetersonN), implementing the same mutual exclusion
property. This was done using the CTL formula ϕ2

def= ¬EF(
∧
i∈[1,n] criti). We exper-

imented on 2, 5 and 10 processes. Again, we can see that our approach using ISTs
outperforms the traditional CTL symbolic model checking using BDDs.

The third model we considered was the alternating-bit protocol between two pro-
cesses, i.e. a sender and a receiver. This time the communication is achieved using
asynchronous channels. We verified that every message tagged with a 0 is followed
by one with the same tag. This was done using the CTL formula ϕ3

def= AG(sent0 ⇒
F(recv0 ∨ eot)). This formula is a bit more complicated. Nonetheless, our method is
still scalable up to 5000 events, whereas NuSMV stops after 1000.

The last example we considered was the Dining Philosophers problem. We consid-
ered 3, 5 and 10 philosophers. We verified that whenever philosopher 1 is eating, either
he keeps eating until the end of the trace or his left neighbour cannot eat until he stops.
This is done using the CTL formula ϕ4

def= AG(eat1 ⇒ (AG(eat1) ∨ A(¬eat0 U ¬eat1)).
We deliberately chose a complex formula to test the robustness of our approach. On
this example, NuSMV can only handle 3 philosophers with 100 events, with the (too
complex) property in the allotted time whereas we can still manage to terminate the
analysis on some instances of respectable size. This can be explained by the fact that,
in this model, the processes are more independant, thus leading to more interleavings.

For each example, we have computed the size of the lattice of cuts. In the 10
minutes of allotted times, our prototype is capable of handling instances of up to 1010

cuts, whereas NuSMV stops at 105. This leads us to conclude that our approach is
more scalable for this problem.
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8
Case Study: A Canal Lock Controller

« In theory, there is no difference between theory
and practice. But, in practice, there is. »

Lawrence Peter “Yogi” Berra

I
n Chapter 2, we presented dSL as a means to ease the development of distributed
reactive control systems. Then, in Chapter 3, we explained how model checking
could be applied, by defining a formal semantics for dSL programs. Moreover, in

Chapter 4, we explained how dSL programs could be instrumented in order to collect
distributed execution traces, modeled as partial order traces. Finally, in the subsequent
chapters, we studied how such partial order traces, could be analysed efficiently using
classical formal logic. In this chapter, we illustrate the concepts developed throughout
this dissertation on a concrete case study: the design and validation of a canal locks
controller.

This chapter is structured as follows. First, in Section 8.1, we describe the problem
statement, i.e. system that we are trying to control, as well as the property this system
has to meet in order to be considered correct. We follow, in Section 8.2, with the design
of the controller using dSL. Then, in Section 8.3, we examine its model checking using
the techniques presented in Chapter 3. Finally, in Section 8.4, we turn our attention
to the testing of this controller using the techniques presented in Chapters 4 to 7.
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Lock 1 
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Top
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Lock 2
Bottom
Gate

Top
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Figure 8.1 - A canal lock system

8.1 Problem Statement

The system is composed of two consecutive canal locks. As illustrated in figure 8.1,
each lock is composed of two gates, a top and a bottom one. In between the top and
the bottom gates of each lock, the water level can be controlled (i.e. the inside of a
lock can be filled or emptied). The different commands of this system (opening/closing
a gate, emptying/filling a lock) can be accessed via a control panel.

For this system to function properly, several constraints must be satisfied. First
of all, two consecutive gates cannot be opened at the same time. Then, of course, a
gate can only be opened if the water level on each side is the same. Finally, the water
level inside a lock can only be changed if both of its gates are closed. The purpose
of the controller is to ensure that these constraints are verified at all time. Whenever
a command is introduced via the control panel, before taking the appropriate action,
the controller must first check that it will not jeopardize the safety of the system, in
which case, the action is not taken, and a red light indicator on the control panel is
switched on to indicate an invalid command.

8.2 Designing the Controller

The main idea to implement the controller in dSL is the following. We start by model-
ing the variables of the system using classes. As illustrated in Figure 8.2(a), there are
two main classes: the class GATE and the class LOCK. Each command xxx of the system
(opening/closing a gate, emptying/filling a lock) is included in the appropriate class
as two variables. The first (xxxCommand) activates the motor/valve and the second
(xxxDirection) determines the direction (up/down or fill/empty). On top of that, a
special variables xxxOrderGiven is added. Whenever an order is given, the correspond-
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2 CLASS GATE

3 motorCommand, motorDirection : BOOL;

4 opened, closed, motorOrderGiven : BOOL;

5 buttonOpen, buttonClose : BOOL;

6 END_CLASS

7

8 CLASS LOCK

9 valveCommand, valveDirection : BOOL;

10 levelUp, levelDown, valveOrderGiven : BOOL;

11 bottomGate, topGate : GATE;

12 buttonFill, buttonEmpty : BOOL;

13 END_CLASS

(a) Classes

127 WHEN lock2.bottomGate.buttonOpen THEN

128 IF (~lock1.topGate.closed) AND (NOT lock1.topGate.motorOrderGiven) AND

129 (~lock2.topGate.closed) AND (NOT lock2.topGate.motorOrderGiven) AND

130 (~lock2.levelDown) AND (NOT lock2.valveOrderGiven)

131 THEN

132 notAllowed := FALSE;

133 lock2.bottomGate.motorOrderGiven := TRUE;

134 LAUNCH lock2.bottomGate<-move(TRUE);

135 ELSE

136 notAllowed := TRUE;

137 END_IF;

138 END_WHEN

(b) Event dealing with the opening of the bottom gate of the upper lock

Figure 8.2 - Excerpt from the dSL source code of the canal lock controller

ing boolean variable xxxOrderGiven is set. Then, when a command is received from
the control panel, the controller simply checks that all the requirements are satisfied
and, using those extra variables, that no command on the checked gates and water
valves is under way. The xxxOrderGiven variables are, of course, reset when an order
is completed. In this implementation, commands are executed using events. As an ex-
ample, Figure 8.2(c) presents the event dealing with the opening of the bottom gate of
the upper lock. The distribution is composed of three sites : lowerLock, upperLock
and controlPanel. The first two sites correspond to the two locks. As illustrated in
Figure 8.2(c), this is where all actuators and sensors are localised. As illustrated in
Figure 8.2(d), the remaining execution site corresponds to the control panel, where all
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22 SITE lowerLock

23 INPUT lock1.bottomGate.opened : 1.0.1;

24 INPUT lock1.bottomGate.closed : 1.0.2;

25 INPUT lock1.topGate.opened : 1.0.3;

26 INPUT lock1.topGate.closed : 1.0.4;

27 INPUT lock1.levelDown : 1.0.5;

28 INPUT lock1.levelUp : 1.0.6;

29 OUTPUT lock1.bottomGate.motorCommand : 2.0.1;

30 OUTPUT lock1.bottomGate.motorDirection : 2.0.2;

31 OUTPUT lock1.topGate.motorCommand : 2.0.3;

32 OUTPUT lock1.topGate.motorDirection : 2.0.4;

33 OUTPUT lock1.valveCommand : 2.0.5;

34 OUTPUT lock1.valveDirection : 2.0.6;

35 END_SITE

(c) The lowerLock site

52 SITE controlPanel

53 INPUT lock1.bottomGate.buttonOpen : 1.0.1;

54 INPUT lock1.bottomGate.buttonClose : 1.0.2;

55 INPUT lock1.topGate.buttonOpen : 1.0.3;

56 INPUT lock1.topGate.buttonClose : 1.0.4;

57 INPUT lock1.buttonFill : 1.0.5;

58 INPUT lock1.buttonEmpty : 1.0.6;

59 INPUT lock2.bottomGate.buttonOpen : 1.0.7;

60 INPUT lock2.bottomGate.buttonClose : 1.0.8;

61 INPUT lock2.topGate.buttonOpen : 1.0.9;

62 INPUT lock2.topGate.buttonClose : 1.0.10;

63 INPUT lock2.buttonFill : 1.0.11;

64 INPUT lock2.buttonEmpty : 1.0.12;

65 OUTPUT notAllowed : 2.0.1;

66 END_SITE

(d) The controlPanel site

Figure 8.2 - Excerpt from the dSL source code of the canal locks controller (cont’d)
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1 inline flip_flop(flipped, flopped, command, direction) {

2 if :: command && flipped ->

3 if :: direction == FLIP -> skip;

4 :: direction == FLOP -> flipped = false;

5 fi;

6 :: command && !flipped && !flopped ->

7 if :: direction == FLIP -> flipped = true;

8 :: direction == FLOP -> flopped = true;

9 :: skip;

10 fi;

11 :: command && flopped ->

12 if :: direction == FLIP -> flipped = false;

13 :: direction == FLOP -> skip;

14 fi;

15 fi;

16 }

Figure 8.2 - Flip-Flop behaviour

command buttons and led are localized. The complete dSL source code of this example
can be found in Appendix D.

Note that for all the xxxOrderGiven variables, the ∼ operator cannot be used.
For example, in Figure 8.2(b), if the variable lock2.topGate.motorOrderGiven were
tilded, when an order is given to open the bottom gate of the upper lock, the controller
would check if variable ∼ lock2.topGate.motorOrderGiven is false. However, even in
this case, the actual variable might be true but, because of communication delays, the
upperLock site might not know it yet. The controller would then allow the bottom
gate of upper lock to open while the top gate is either opening or about to open.

8.3 Model Checking the Controller

The first step towards model checking the controller presented in the previous section
is to translate it to Promela. This is done using the formal semantics developed in
Chapter 3. Then, it is necessary to add the behaviour of the environment to this
Promela model. For that, we need to take into account several things: (i) the gates,
(ii) the water level inside the locks and finally (iii), the operator acting on the control
panel. The first two are modelled using a classical non deterministic flip-flop behaviour.
This behaviour has three states: flipped, flopped and changing. In the case of the gates,
flipped, respectively flopped, corresponds to the variable opened, respectively closed,
being true. On the other hand, for the water levels in the locks, flipped, respectively
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Sites Button Channels Property Verified Time States Memory

1 2 Instant ϕ1
√

3.25s 1.41e+04 1.432 MB

2 2 Instant ϕ1 × 14.52s 8.37e+04 3.064 MB

3 2 Instant ϕ1 × 8.00s 9.54e+04 3.569 MB

7 2 Instant ϕ1 × 9.74s 7.82e+04 3.645 MB

11 2 Instant ϕ1 × 5m 38.48s 1.41e+06 68.557 MB

1 1 Normal ϕ2
√

7.80s 3.98e+04 2.457 MB

2 1 Normal ϕ2
√

43.22s 1.29e+05 4.908 MB

3 1 Normal ϕ2 × 37.13s 1.39e+05 5.311 MB

7 1 Normal ϕ2 × 21m 14.36s 1.91e+06 77.581 MB

11 1 Normal ϕ2 × 54.93s 2.07e+05 10.383 MB

Figure 8.3 - Results of the verification of the canal lock controller

flopped, corresponds to the variable levelDown, respectively levelUp, being true. The
Promela model for this behaviour is presented in Figure 8.2. The control panel operator
is then modeled as follows. It repeatedly choses one of the twelve buttons of the control
panel non-deterministically and switches it, i.e. releases it if it was pressed or presses
it if it was released.

The second step is to model the safety requirements imposed on the system in LTL.
This is expressed using the following formula:

ϕ1
def= G¬



(¬lock1.bottomGate.closed ∧ ¬lock1.topGate.closed) ∨
(¬lock1.topGate.closed ∧ ¬lock2.bottomGate.closed) ∨
(¬lock2.bottomGate.closed ∧ ¬lock2.topGate.closed) ∨

(¬lock1.bottomGate.closed ∧ ¬lock1.levelDown) ∨
(¬lock1.topGate.closed ∧ ¬lock1.levelUp) ∨

(¬lock2.bottomGate.closed ∧ ¬lock2.levelDown) ∨
(¬lock2.topGate.closed ∧ ¬lock2.levelUp)


For the purpose of our experiments, we also introduced a restricted version that

only expresses the fact that the two middle gates (i.e the top gate of the first lock and
the bottom gate of the second) are not opened at the same time. This is expressed in
LTL using the following formula:

ϕ2
def= G¬(¬lock1.topGate.closed ∧ ¬lock2.bottomGate.closed)

Finally, the model was verified using the tool Spin. On top of the original local-
ization table (Λ) presented in Appendix D containing 3 execution sites, several other
localization tables were considered, with respectively 1, 2, 7 and 11 execution sites.
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controlPanel

lock1.topGate.buttonOpen = TRUE;
lock1.topGate.motorOrderGiven := TRUE;

lowerLock upperLock

lock1.topGate.buttonClose := TRUE;
lock1.topGate.motorOrderGiven := TRUE;

lock1.topGate.buttonOpen = TRUE;
lock1.topGate.motorOrderGiven := TRUE;

lock1.topGate.resetOrderGiven();
~lock1.topGate.closed = TRUE;

lock1.bottomGate.buttonOpen = TRUE;
lock1.bottomGate.motorOrderGiven := TRUE;

lock1.topGate.open();
lock1.topGate.closed = FALSE;

lock1.topGate.close();

(the top gate is opening)

(the top gate is closing)
lock1.topGate.closed = TRUE;

(the top gate is now closed)
lock1.topGate.open();
lock1.topGate.closed = FALSE;

(the top gate is opening)

lock1.topGate.open();
lock1.topGate.closed = FALSE;

(the bottom gate is opening)

Figure 8.4 - Error in the canal locks controller

Figure 8.3 shows some representative results corresponding to the verification of the
controller, using Spin version 4.2.4 with partial order reduction, on a 3 GHz Intel Xeon
machine with 2GB of memory. The first column indicates the number of execution
sites in the localization table. The second column indicates the maximum number of
times each button can be pressed. The next column indicates whether or not messages
are taken from their queues as soon as possible. Instant indicates channels of size 0,
(equivalent to synchronous rendez-vous communication in Promela), and Normal indi-
cates channels of size 1. The fourth column indicates which property was checked. The
four remaining columns show respectively, whether the property was verified or not,
the time needed for the verification, the number of states explored and the memory
used. Surprisingly, as exhibited in the results of Figure 8.3, the controller presented in
Appendix D is faulty. Indeed, as shown by the error trace depicted in Figure 8.4, two
consecutive gates can be opened at the same time. In this case, three orders are given
to the top gate of the first lock: an order to open, immediately followed by an order to
close (before the gate is completely opened) and finally an order to open again. Because
of communications, the resetOrderGiven() and the value of lock1.topGateClosed
are delayed (respectively because of the LAUNCH and ’~’). Therefore when the order to
open the bottom gate of the second lock is given, the controller believes that the top
gate of the first lock is closed and that no order has been given to it. This allows the
opening of the bottom gate of the second lock, which violates the constraints. An easy
way to correct this, would be to allow a command to a gate (or a water level) only if its
xxxOrderGiven is false (in other words, only allowing one order at a time). However,
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1 WHEN lock2.bottomGate.buttonOpen AND NOT disabled THEN

2 disabled := TRUE;

3 LAUNCH open_bottom_gate_lock2;

4 END_WHEN

5

6 SEQUENCE open_bottom_gate_lock2()

7 VAR

8 check : BOOL;

9 END_VAR

10 check := (lock2.topGate.closed AND lock2.levelDown);

11 check := (check AND lock1.topGate.closed);

12 IF check THEN

13 notAllowed := FALSE;

14 LAUNCH lock2.bottomGate<-open();

15 ELSE

16 notAllowed := TRUE;

17 END_IF;

18 disabled := FALSE;

19 END_SEQUENCE

Figure 8.5 - dSL code dealing with the opening of the bottom gate of the upper lock

this would not be a viable solution. Indeed, imagine a boat breaks down while the gate
is closing, the controller would not allow to open a gate until it is completely closed,
and the boat would be crushed! So, instead of blocking all commands while an order
is processed, it is far better to disable the commands only during the time needed to
verify the (distributed) constraints using an additional boolean variable disabled. To
achieve this, a sequential execution checks that the issued command can be executed,
by migrating the condition to all intervening sites. As illustrated in figure 8.5, this is
done by means of a sequence that first evaluates, in a local variable check, that all the
conditions are satisfied. In the example of Figure 8.5, the first part of the constraint
(check := (lock2.topGate.closed and lock2.levelDown);) will be evaluated on
the site upperLock, then the value of check will be migrated to the site lowerLock to
evaluate the second part (check := (check and lock1.topGate.closed);). Since
the control panel is disabled during this task, we can be sure that the variable check

is true if and only if the constraints are satisfied, in which case, the corresponding
action(s) is (are) taken.
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VM 1

VM 2

C Simulator

Shared 
Memory

PO-Trace

I/OEnvironment 
Simulator

Observer

Figure 8.6 - Overview of the C simulator

8.4 Testing the Controller

The first step towards testing the canal lock controller is to collect po-traces from
that controller. For that purpose, similarly to what is done in model checking, we
need to close the system, i.e. provide an environment in which to run the controller.
The real physical environment could of course be used. However, early in the project,
this physical environment may not exist yet, in which case, it must be replaced by
a realistic simulation of its behaviour. With this in mind, we developed a back-end
to the dSL compiler that, given a dSL program, generates a multi-process C program
simulating its behaviour. This program is automatically instrumented using the vector
clocks algorithm of Chapter 4 so that, when executed, the events of interest are sent
to the observer where they are collected into a po-trace. As illustrated in Figure 8.6,
for each execution site of the program, a dedicated C process is generated using the
formal semantics presented in Chapter 3. The network communications are simulated
using UNIX pipes, and the environment is modeled using a shared memory. In this
fashion, the environment can be simulated using any home-made C program(s). Note
that, as an added bonus, this simulator can also be used as a temporary development
platform in the initial steps of the project.

Similarly to what was done for the model checking, the gates and water level inside
the locks were modeled as a flip-flop behaviour, and the control panel operator was
modeled as a program repeatedly pressing or releasing one of the twelve buttons chosen
at random. Using this technique, we collected 10 po-traces, by executing the system for
approximately 30 seconds (corresponding to approximately 3700 events). We verified
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Experiment LTL CTL

Proc. Events Error Time Time

3 3709 YES 3.62 sec. 40.15 sec.

3 3797 NO 5.14 sec. 39.29 sec.

3 3715 YES 3.44 sec. 37.49 sec.

3 3959 NO 6.88 sec. 47.58 sec.

3 3876 NO 5.58 sec. 42.57 sec.

3 3555 NO 4.74 sec. 31.02 sec.

3 3716 YES 3.54 sec. 33.56 sec.

3 3797 NO 5.92 sec. 40.72 sec.

3 3795 YES 3.47 sec. 41.40 sec.

3 3684 NO 6.01 sec. 41.81 sec.

Figure 8.7 - Results of the testing of the canal lock controller

the global property ϕ1 using the LTL symbolic trace checking algorithm1 of Chapter 6,
and a CTL equivalent using the symbolic CTL trace checking algorithm of Chapter 7.
As explained in Section 8.2, the controller was distributed on three execution sites,
i.e. one for each lock and one for the control panel. The trace analysis was done
on a 2.16GHz Intel Core 2 Duo machine with 2GB of memory. The results of these
experiments are presented in Figure 8.7. The first 3 columns describe the po-traces: the
number of processes, the number of events, and whether or not a violation of global
property was detected. The remaining two columns show the time needed for the
trace checking. Out of the 10 po-traces, 4 exhibited a violation of the property. After
careful review of those po-traces, we determined that, in each case, the error followed
the same pattern as the error presented in Figure 8.4, i.e. using a quick succession of
contradictory commands, the controller can be fooled into executing a command that
jeopardizes the safety of the system. For instance, in two of the faulty po-traces, the
water level of the upper lock was permitted to change even though the bottom gate
was not completely closed.

As can be observed in this figure, on these experiments, the symbolic trace checking
algorithm for LTL is faster than its CTL counterpart by approximately a factor of ten.
We believe that this is due to the particular nature of the po-traces. Indeed, in a dSL

system, each time a tilded variable is assigned in one process, a message is broadcast
to the other processes. In the canal locks controller, this happens at each cycle, since
most of the sensors in the system are used tilded. Therefore, this yields po-traces with
a lot of communication edges. Unfortunately, in the symbolic CTL algorithm, when

1We also tried to apply the explicit LTL algorithm, i.e. Algorithm 6.2, but in each instance, it did

not terminate in under 10 minutes
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Experiment LTL CTL

Proc. Prefix Time Time

3 500 0.126 sec. 0.077 sec.

3 1000 0.414 sec. 0.499 sec.

3 1500 0.877 sec. 1.791 sec.

3 2000 1.453 sec. 5.011 sec.

3 2500 2.198 sec. 11.270 sec.

3 3000 3.120 sec. 20.601 sec.

3 3500 4.118 sec. 35.868 sec.

Figure 8.8 - Detailed analysis of one trace

building [[>]]TC , each of those communication edges must be taken into account and
this slows down the construction of [[>]]TC considerably. As a matter of fact, during
the experiments, almost all the time needed for the trace checking is spent in the
construction of [[>]]TC . On the other hand, those communication edges significantly
constraint the partial order on the events of the trace, therefore reducing the total
number of cuts. That is why the symbolic LTL algorithm performs so well in this case.

We also examined how the LTL and CTL compare with respect to the number
of events. For that purpose, we picked one of trace and examined the time needed to
analyse prefixes of this trace. The result for this experiment are presented in Figure 8.8.
As can be observed in this figure, the two algorithms have similar performances when
dealing with short prefixes (500 to 1500 events). However, when the size of the prefix
grows, the advantage of LTL over CTL becomes more evident.

This seems to indicate that for dSL programs, whenever possible (e.g. for safety
properties), the designer should use LTL instead of CTL as the specification language.
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Conclusion

« If we knew what it was we were doing,
it would not be called research, would it? »

Albert Enstein

A
s argued in the introduction, distributed reactive control systems are intrinsi-
cally difficult to design. When dealing with critical applications, failures in
those control systems can have disastrous consequences. This motivated our

initial goal of providing the designer with the necessary tools to ease their development,
and validation.

We started our work by tackling the development of those systems. For that pur-
pose, we introduced dSL, a full-featured programming language adapted from the in-
dustrial world, providing transparent code distribution. As we have seen, this mech-
anism considerably eases the development of distributed reactive control systems, by
taking care of the communication aspects, thus allowing the designer to concentrate
on the more important functional aspect of the system. This was a first step. We then
turned our attention to the validation of systems developed in this paradigm.

The first and most promising validation techniques we considered was model check-
ing, i.e. an exhaustive and automatic verification that the system fulfills the required
properties. For that purpose, we presented, and studied, a formal semantics for dSL

programs. This allowed us to formalize the model checking problem for dSL programs.
We saw that, when dealing with LTL-X specifications, the property could be checked for
all distributions in one step by only examining the maximal distribution. However, as
we have seen, in general, the model checking problem is undecidable, both for LTL and
CTL. We therefore introduced a bounded semantics. This semantics, in turn, allowed
us to define a translation of dSL to Promela, the input language of the model checker
Spin, which makes the model checking of dSL programs possible in practice. We then
turned our attention to a less ambitious but more practical approach: testing.
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We started this endeavour, by defining a formal model to capture distributed exe-
cution traces, namely the model of partial order traces, central in our work. We studied
in great detail the problem of determining if such a partial order trace satisfies a given
property. In particular, we examined non-temporal properties, in which case, this
problem is called the predicate detection problem, and temporal properties, in which
case this problem is called the trace checking problem.

For the non-temporal case, we saw that the problem is NP-complete in the general
case. However, we also showed that if the formula is in disjunctive normal form, the
problem becomes polynomial, which is fortunate. Indeed, in the context of testing, a
formula is generally used to test a large number of po-traces. Therefore, the time taken
to transform a formula in disjunctive normal form will, in general, be compensated by
the time gained during the predicate detection.

For the trace checking problem, we examined the two classical temporal logic LTL

and CTL. In the case of LTL, we showed that the trace checking problem was coNP-
complete. However, inspired by classical model checking algorithm, we were able to
define a symbolic trace checking algorithm, efficient in practice. For that purpose,
we showed that we had to transform the monitor of the formula into a determined
one, which can be a costly operation. However, similarly to the predicate detection
problem, this only has to be done once. The determined monitor then can be used to
test as many po-traces as necessary.

Finally, we turned to CTL, and showed that, in this case, the trace checking prob-
lem was even more difficult, i.e. PSPACE-complete. But again, inspired by the classical
model checking algorithms, we devised a symbolic approach based on tuples represen-
tation of sets of cuts. This lead us to the definition of a trace checking algorithm,
which works quite well in practice. Unfortunately, as shown by the experimental re-
sults of Chapter 8, this algorithm seems to be outperformed by the LTL trace checking
algorithm, in the case of dSL systems. We therefore concluded that, whenever possible,
LTL should be privileged.

Personal Contribution

Since most of the work included in this dissertation is collaborative, we feel the need
to properly delimit the boundaries of our personal contribution. In Chapter 2, the
definition of the formal semantics, and the results on LTL-X is a joint effort with Bram
De Wachter, Alexandre Genon and Thierry Massart, and are also presented in Bram’s
thesis. The technical details of the one-split simulation lemma were handled by Alexan-
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dre Genon, for his DEA thesis [Genon, 2004]. The undecidability result, as well as the
definition of the bounded semantics are my work. The definition of the translation to
Promela and its implementation in the compiler, however, should be credited to Bram
De Wachter.

In Chapter 4, the definition of the model of po-trace and the complexity results
on CTL and LTL trace checking are the fruit of a joint effort with Laurent Van Begin
and Thierry Massart. In Chapter 5, the syntactic characterization of predicates, as
well as the result on DNF predicates, are my work. In Chapter 6, the construction
of determined monitor is also the result of my work. The definition of the symbolic
composition was based on an original idea by Alexandre Genon, later developed col-
laboratively. Finally, the symbolic CTL trace checking algorithm in Chapter 7 are, for
the most parts, my work. The implementation of the prototype used to obtain the
experimental results of Chapters 6 to 8 is also my work.

Future works

In Chapter 2, guided by the simulation results obtained in Section 3.2, we concentrated
on the verification of LTL properties through a translation to Promela. Of course, one
could also investigate the verification of CTL properties. In fact, we recently started to
investigate this problem using the model checker XTL [Leuschel and Massart, 2000]. In
this approach, the formal operational semantics rule are directly described in Prolog

[Bramer, 2005]. A dSL program is then translated in a Prolog model. The XTL model
checker can then be used to verify CTL properties on this model. One could also
consider other approaches, based for instance on a translation to SMV [McMillan,
1993]

In Chapter 4, we defined the model of po-traces, and explained how to specify
properties using PBL, LTL and CTL formulae. We also saw that the detection of PBL

predicates could easily be expressed in LTL or CTL. A natural extension of this is
to examine the expressive power of LTL and CTL compared to each other. For total
order traces, as we have seen in the proof of Theorem 4.7, LTL and CTL are equally
expressive. On Kripke structures however, it is well known that LTL and CTL are
disjoint [Clarke et al., 1999], i.e. there exists CTL formulae that cannot be expressed in
LTL and vice versa. However, in the case of po-traces, this remains an open question.
We investigated the straightforward translation used in Theorem 4.7, but it does not
work (the difficulty lies in the X operator).

Another interesting line of research would be to try and adapt the ideas behind
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the symbolic composition, presented in Chapter 6 to perform full-blown LTL model
checking (i.e. on arbitrary Kripke structure). The main difficulty, however, is to
handle loops. Indeed, the symbolic composition we defined considerably relies on the
partial ordering that inherently exists between the events of a po-trace. One possible
solution to overcome this problem would be to use unfoldings [McMillan, 1993; Esparza
and Heljanko, 2001].

Finally, we could also investigate how, given a description of the system to be con-
trolled, one could automatically synthesize a distributed control strategy that ensures
that a given specification is de facto satisfied. This control strategy could then be used
as a basis for implementing a dSL controller. However, for this to become a reality,
much work remains to be done...
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A
Grammars of dSL

I
n the following grammars, terminals are noted in upper case, using true type

font. Non-terminal nodes are noted in lower case, between angular brackets 〈·〉.
We also suppose that 〈id〉 and 〈nb〉, respectively denoting identifiers and numbers,

are defined in the lexical analyser.

A.1 Full Grammar

〈dsl program〉 ::= 〈decl list〉
〈decl list〉 ::= 〈decl〉 〈decl list〉

| ε

〈decl〉 ::= 〈class decl〉
| 〈var decl〉
| 〈site decl〉
| 〈method decl〉
| 〈event decl〉
| 〈sequence decl〉

〈class decl〉 ::= CLASS 〈id〉
〈var list〉

END_CLASS

〈var decl〉 ::= VAR

〈var list〉
END_VAR
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〈site decl〉 ::= SITE 〈id〉
〈localization list〉

END_SITE

〈method decl〉 ::= METHOD 〈id〉 :: 〈id〉 ( 〈param decl〉 )
〈var decl〉
〈block〉

END_METHOD

〈sequence decl〉 ::= SEQUENCE 〈id〉 ( 〈param decl〉 )
〈var decl〉
〈block〉

END_SEQUENCE

〈event decl〉 ::= WHEN 〈rhside〉 THEN
〈block〉

END_WHEN

| WHEN IN 〈id〉 〈rhside〉 THEN
〈block〉

END_WHEN

〈var list〉 ::= 〈id list〉 : 〈type〉 ; 〈var list〉
| ε

〈localization list〉 ::= 〈localization〉 ; 〈localization list〉
| ε

〈localization〉 ::= 〈io type〉 〈lhside〉 : 〈address〉
〈io type〉 ::= INPUT

| OUTPUT

〈address〉 ::= 〈nb〉 . 〈nb〉 . 〈nb〉
〈param decl〉 ::= 〈n empty param decl〉

| ε

〈n empty param decl〉 ::= 〈id list〉 : 〈type〉 , 〈n empty param decl〉
| 〈id list〉 : 〈type〉

〈id list〉 ::= 〈id〉
| 〈id〉 , 〈id list〉
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〈type〉 ::= BOOL

| INT

| LONG

| REAL

| 〈id〉
〈block〉 ::= 〈instruction〉 ; 〈block〉

| ε

〈instruction〉 ::= 〈assign〉
| 〈wait〉
| 〈if〉
| 〈while〉
| 〈call〉

〈assign〉 ::= 〈lhside〉 := 〈rhside〉
〈wait〉 ::= WAIT 〈rhside〉
〈if〉 ::= IF 〈rhside〉 THEN

〈block〉
〈else〉

〈else〉 ::= ELSE

〈block〉
END_IF

| END_IF

〈while〉 ::= WHILE 〈rhside〉 DO
〈block〉

END_WHILE

〈call〉 ::= 〈sequence call〉
| 〈method call〉

〈sequence call〉 ::= LAUNCH 〈id〉 ( 〈rhside list〉 )
〈method call〉 ::= LAUNCH 〈id〉 <- 〈id〉 ( 〈rhside list〉 )

| 〈id〉 <- 〈id〉 ( 〈rhside list〉 )
〈lhside〉 ::= 〈id〉

| 〈lhside〉 . 〈id〉
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〈rhside〉 ::= 〈lhside〉
| ∼ 〈lhside〉
| ( 〈rhside〉 )
| 〈un op〉 〈rhside〉
| 〈rhside〉 〈bin op〉 〈rhside〉
| 〈constant〉

〈un op〉 ::= NOT

| −
〈bin op〉 ::= OR

| AND

| <

| >

| <=

| >=

| <>

| ==

| %

| +

| -

| *

| /

〈constant〉 ::= TRUE

| FALSE

| 〈nb〉
〈rhside list〉 ::= 〈n empty rhside list〉

| ε

〈n empty rhside list〉 ::= 〈rhside〉 , 〈n empty rhside list〉
| 〈rhside〉
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A.2 Simplified Grammar

〈dsl program〉 ::= 〈decl list〉
〈decl list〉 ::= 〈decl〉 〈decl list〉

| ε

〈decl〉 ::= 〈var decl〉
| 〈site decl〉
| 〈event decl〉
| 〈sequence decl〉

〈var decl〉 ::= VAR

〈var list〉
END_VAR

〈site decl〉 ::= SITE 〈id〉
〈localization list〉

END_SITE

〈sequence decl〉 ::= SEQUENCE 〈id〉 ( )

〈var decl〉
〈block〉

END_SEQUENCE

〈event decl〉 ::= WHEN 〈rhside〉 THEN
〈block〉

END_WHEN

〈var list〉 ::= 〈id list〉 : BOOL ; 〈var list〉
| ε

〈localization list〉 ::= 〈localization〉 ; 〈localization list〉
| ε

〈localization〉 ::= 〈io type〉 〈lhside〉 : 〈address〉
〈io type〉 ::= INPUT

| OUTPUT

〈address〉 ::= 〈nb〉 . 〈nb〉 . 〈nb〉
〈id list〉 ::= 〈id〉

| 〈id〉 , 〈id list〉
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〈block〉 ::= 〈instruction〉 ; 〈block〉
| ε

〈instruction〉 ::= 〈assign〉
| 〈wait〉
| 〈if〉
| 〈while〉
| 〈call〉

〈assign〉 ::= 〈lhside〉 := 〈rhside〉
〈wait〉 ::= WAIT 〈rhside〉
〈if〉 ::= IF 〈rhside〉 THEN

〈block〉
〈else〉

〈else〉 ::= ELSE

〈block〉
END_IF

〈while〉 ::= WHILE 〈rhside〉 DO
〈block〉

END_WHILE

〈call〉 ::= 〈sequence call〉
〈sequence call〉 ::= LAUNCH 〈id〉 ( )

〈lhside〉 ::= 〈id〉
| 〈lhside〉 . 〈id〉

〈rhside〉 ::= 〈lhside〉
| ∼ 〈lhside〉
| 〈constant〉
| ( 〈rhside〉 )
| 〈un op〉 〈rhside〉
| 〈rhside〉 〈bin op〉 〈rhside〉

〈constant〉 ::= TRUE

| FALSE
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〈un op〉 ::= NOT

〈bin op〉 ::= OR

| AND

| <>

| ==



218 Appendix A



Appendix

B
One-Split Simulation Lemma

B.1 Lemma Statement

First, before turning our attention to the proof, let us recall the lemma statement.

Lemma 3.2 (One-Split Simulation Lemma)

Given a well formed dSL program P = 〈V,E, S, s0,�,Λ〉, and two distributions
D1, D2 ∈ DP such that D1 � D2 and |D2| = |D1|+ 1, we have that:

KP,D1
C∼KP,D2

B.2 Preliminary Results

We shall need some preliminary results. The first one is about channel distribution. It
stipulates that if a � marker is inserted in a communication channel σ, then � markers
can also be inserted in the channels of any distribution 〈σ1, σ2〉 of σ in such a way as
to preserve the distribution.

Lemma B.1

Given the content of three communication channels σ, σ1, σ2 ∈ (V ×B)∗ without �
markers such that σ ≺ 〈σ1, σ2〉, we have that :

∀σ′ ∈ (σ ‖ �),∃σ′1 ∈ (σ1 ‖ �),∃σ′2 ∈ (σ2 ‖ �) : σ′ ≺ 〈σ′1, σ′2〉

Proof

We know, by definition of ‖, that σ = ψ · ψ′ for some ψ,ψ′ ∈ (V × B)∗ such that
σ′ = ψ · � · ψ′. We proceed by induction on |ψ|.
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Proof (cont’d)

Initial Step If ψ = ε, we have that σ = ψ′. In this case, we can chose σ′1 = �·σ1 ∈
(σ1 ‖ �) and σ′2 = � · σ2 ∈ (σ2 ‖ �) and by Definition 3.11 of channel distribution,
we have that σ′ = � · σ ≺ 〈� · σ1, � · σ2〉 = 〈σ′1, σ′2〉.
Induction Step If ψ = x · ψ′′ with x ∈ V × B, since σ ≺ 〈σ1, σ2〉, we have by
Definition 3.11 that either that σ1 = x ·σ′′1 with ψ′′ ·ψ′ ≺ 〈σ′′1 , σ2〉 or that σ2 = x ·σ′′2
with ψ′′ ·ψ′ ≺ 〈σ1, σ

′′
2〉. In the former case, by induction, we have that there exists

σ′′′1 ∈ (σ′′1 ‖ �) and σ′′′2 ∈ (σ2 ‖ �) such that ψ′′ · � · ψ′ ≺ 〈σ′′′1 , σ′′′2 〉. In this case, we
can chose σ′1 = x · σ′′′1 ∈ (x · σ1 ‖ �) and σ′2 = σ′′′2 ∈ (σ2 ‖ �), and by Definition 3.9,
we have that σ′ = x · ψ′′ · � · ψ′ ≺ 〈x · σ′′′1 , σ′′′2 〉 = 〈σ′1, σ′2〉. The latter case is
symmetrical.

The second result is about blocks of code. It states that concatenation preserves
their distribution.

Lemma B.2

Given blocks of code ω, ω1, ω2, ω
′, ω′1, ω′2. We have that:

(ω ≺ 〈ω1, ω2〉) ∧ (ω′ ≺ 〈ω′1, ω′2〉)⇒ (ω;ω′ ≺ 〈ω1;ω′1, ω2;ω′2〉)
Proof

The proof is by induction on the length of ω.

Initial Step If ω = ε, we have that ω ≺ 〈ω1, ω2〉 implies by Definition 3.9 of code
distribution that ω1 = ω2 = ε which, in turns, implies ω;ω′ = ω′ ≺ 〈ω′1, ω′2〉 =
〈ω1;ω′1, ω2;ω′2〉.

Induction Step If ω = x;ω′′, there are two cases to consider:

(i) if x ∈ {MSG, SEQ}, Definition 3.9 implies that (ω1 = x;ω′′2) ∧ (ω1 = x;ω′′1) ∧
(ω′′ ≺ 〈ω′′1 , ω′′2〉). However, by induction, since ω′′ ≺ 〈ω′′1 , ω′′2〉, we have that
ω′′;ω′ ≺ 〈ω′′1 ;ω′1, ω′′2 ;ω′2〉. It follows by Definition 3.9, that ω;ω′ = x;ω′′;ω′ ≺
〈x;ω′′1 ;ω′1, x;ω′′2 ;ω′2〉 = 〈ω2;ω′2, ω1;ω′1〉.

(ii) if x 6∈ {MSG, SEQ}, Definition 3.9 implies that either (ω1 = x;ω′′1) ∧ (ω′′ ≺
〈ω′′1 , ω2〉) or that (ω2 = x;ω′′2) ∧ (ω′′ ≺ 〈ω1, ω

′′
2〉). In the former case, (ω′′ ≺

〈ω′′1 , ω2〉) implies, by induction that ω′′;ω ≺ 〈ω′′1 ;ω1, ω2;ω2〉. It follows, by
Definition 3.9, that ω;ω′ = x;ω′′;ω′ ≺ 〈x;ω′′1 ;ω′1, ω2, ω

′
2〉 = 〈ω2;ω′2, ω1;ω′1〉.

The latter case is symmetrical.
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The third result is about the distribution of blocks of code corresponding to the
sampling of inputs variables, the update of output variables and the treatment of
events.

Lemma B.3

Given a well-formed dSL program P = 〈V,E, S, s0,�〉, two disjoint subsets V1, V2 ⊆
V , and two disjoint subsets E1, E2 ⊆ E, we have that:

(i) in(V1 ∪ V2) ≺ 〈in(V1), in(V2)〉

(ii) out(V1 ∪ V2) ≺ 〈out(V1), out(V2)〉

(iii) treat(E1 ∪ E2) ≺ 〈treat(E1), treat(E2)〉
Proof

We prove (i) by induction on |V1 ∪ V2|.
Initial step If V1 ∪V2 = ∅, By definition, we have that in(V1 ∪V2) = ε. However,
V1∪V2 = ∅ implies that V1 = V2 = ∅. Therefore, we have that in(V1) = in(V2) = ε.
It follows by Definition 3.9 of code distribution that in(V1 ∪ V2) ≺ 〈in(V1), in(V2)〉.
Induction step If V1∪V2 6= ∅, let x = min�(V1∪V2). By definition, we have that
in(V1∪V2) = INPUT(x); in((V1∪V2)\{x}). Then, since V1 and V2 are disjoint, either
x ∈ V1 or x ∈ V2. In the former case, (V1∪V2)\{x} = V1\{x}∪V2, and by induction,
we have that in((V1 ∪ V2) \ {x}) ≺ 〈in(V1 \ {x}), in(V2)〉. Finally, by Lemma B.2,
since INPUT(x) ≺ 〈INPUT(x), ε〉, we have that in(V1∪V2) = INPUT(x); in((V1∪V2) \
{x}) ≺ 〈INPUT(x); in(V1 \ {x}), V2〉 = 〈in(V1), in(V2)〉. The latter case (x ∈ V2) is
symmetrical.

A similar proof can be made for (ii) and (iii).

B.3 Proof of the Lemma

First, we assume that S = {s1, s2, ..., sn}, KP,D1 = 〈Q1, I1,L1,−→1〉, KP,D2 = 〈Q2, I2,

L2, −→2〉 and, without loss of generality, that D1 = {X1,1, X1,2, ..., X1,k} and D2 =
{X2,1, X2,2, ....X2,k−1, X2,k, X2,k+1} with ∀i ∈ [1, k) : X1,i = X2,i and X1,k = X2,k ∪
X2,k+1. Then, we define a relation S ⊆ Q1 ×Q2 such that two states

q1 = 〈 〈ω1,1, ν1,1, φ1,1〉, ..., 〈ω1,k, ν1,k, φ1,k〉, 〈σ1,0, µ1,0〉, ..., 〈σ1,n, µ1,n〉 〉
q2 = 〈 〈ω2,1, ν2,1, φ2,1〉, ..., 〈ω2,k+1, ν2,k+1, φ2,k+1〉, 〈σ2,0, µ2,0〉, ..., 〈σ2,n, µ2,n〉 〉

are related if and only if:
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(i) (∀i ∈ [1, k) : ω1,i = ω2,i) ∧ (ω1,k ≺ 〈ω2,k, ω2,k+1〉)

(ii) (∀i ∈ [1, k) : ν1,i = ν2,i) ∧ (ν1,k ≺ 〈ν2,k, ν2,k+1〉)

(iii) (a) ∀j ∈ [1, k), ∀i ∈ [1, k) : φ1,i←j = φ2,i←j

(b) ∀j ∈ [1, k] : φ1,k←j = φ2,k←j = φ2,k+1←j

(c) ∀i ∈ [1, k] : φ1,i←k ≺ 〈φ2,i←k, φ2,i←k+1〉

(iv) ∀j ∈ [0, n] : (σ1,j = σ2,j) ∧ (µ1,j = µ2,j)

and prove that KP,D1
C∼SKP,D2 . First, from (ii) and Definition 3.10 of valuation

distribution, we have that if 〈q1, q2〉 ∈ S then L1(q1) = L2(q2). Then, by Definition 3.8
of the semantics, we know that the set of initial states I1 and I2 are singletons. If
I1 = {q1,0} and I2 = {q2,0}, by definition of S, it is easy to see that 〈q1,0, q2,0〉 ∈ S.
Indeed, in those two states, all workloads and communication channels are empty, and
all valuations are such that each variable is set to ff. Finally, it remains to prove that
∀q′1 ∈ Q1, ∃q′2, q′′2 ∈ Q2:(

q1 −→1 q
′
1

)⇒ (
( q2
∼;2 q

′′
2 −→2 q

′
2 ) ∧ ( 〈q′1, q′2〉 ∈ S )

)
For that purpose, every rule of the structural operational semantics presented in Sec-
tion 3.1.3 needs to be examined. For each of those rules, we show that if a transition can
be derived in KP,D1 , this transition can be simulated by some stuttering transitions,
followed by one transition, all of which can be derived in KP,D2 .

Cycle Start Rule If q1 −→1 q
′
1 was derived using Rule (3.1) for some process i, we

have that ω1,i = ε. There are two cases to consider:

(i) If i < k, by definition of S, we have that ω2,i = ω1,i = ε. Therefore, Rule (3.1)
can be applied from q2 leading to a state q′2 exactly like q2 except for process i
where

ω′2,i = in(X2,i ∩ Vin); treat(EX1,k
); MSG; SEQ; out(X2,i ∩ Vout)

and ν ′2,i = ν2,i and where for all process j ∈ [1, k+1] we have φ′2,i←j ∈ (φ2,i←j ‖ �).
For the workload, since by hypothesis X2,i = X1,i, we have that ω′2,i = ω′1,i.
For the valuation, by Definition of S, we have that ν ′2,i = ν2,i = ν1,i. Finally,
let us examine the communications channels. First, by definition of S, for all
process j ∈ [1, k), we have that φ1,i←j = φ2,i←j which implies that φ′2,i←j ∈
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(φ2,i←j ‖ �) = (φ1,i←j ‖ �). Therefore, for those communication channels, we can
choose to insert the � markers in φ2,i←j in the exact same way as in φ1,i←j to
obtain φ′2,i←j = φ′1,i←j . Then, for process k, by the definition of S, we know that
φ1,i←k ≺ 〈φ2,i←k, φ2,i←k+1〉 and by Lemma B.1, that there exists σk ∈ (φ2,i←k ‖ �)
and σk+1 ∈ (φ2,i←k+1 ‖ �) such that φ′1,i←k ≺ 〈σk, σk+1〉. We can therefore choose
φ′2,i←k = σk and φ′2,i←k+1 = σk+1, and finally conclude that 〈q′1, q′2〉 ∈ S.

(ii) If i = k, we have by definition of S that ε = ω1,k ≺ 〈ω2,k, ω2,k+1〉 and by
Definition 3.9 of code distribution that ω2,k = ω2,k+1 = ε. Therefore, we can
first apply Rule (3.1) from q2 for process k leading to a state q′′2 . Note that
Rule (3.1) does not change the valuations of the variables in V , which implies
that q2

∼−→P,D2 q
′′
2 . Then, from q′′2 , since the workload of process k + 1 is still

empty, we can again apply Rule (3.1) (stuttering is needed for that), but this
time for process k + 1 leading to a state q′2 exactly like q2 except for processes k
and k + 1 where

ω′2,k = in(X2,k ∩ Vin); treat(EX2,k
); MSG; SEQ; out(X2,k ∩ Vout)

ω′2,k+1 = in(X2,k+1 ∩ Vin); treat(EX2,k+1
); MSG; SEQ; out(X2,k+1 ∩ Vout)

and where ν ′2,k = ν2,k and ν ′2,k+1 = ν2,k+1 and where for all process j ∈ [1, k+ 1],
φ′2,k←j ∈ (φ2,k←j ‖ �) and φ2,k+1←j ∈ (φ′2,k+1←j ‖ �). First, let us examine
the workloads. We know by hypothesis that X1,k = X2,k ∪X2,k+1 and because
D2 ∈ DP ⊆ Π(V ) that X2,k ∩X2,k+1 = ∅ . By Lemma B.3, we have that

in(X1,k ∩ Vin) ≺ 〈in(X2,k ∩ Vin), in(X2,k+1 ∩ Vin)〉
out(X1,k ∩ Vin) ≺ 〈out(X2,k ∩ Vin), out(X2,k+1 ∩ Vin)〉

We also have, by definition, that EX1,k
= EX2,k

∪ EX2,k+1
, and by Theorem 3.1

that EX2,k
∩ EX2,k+1

= ∅. This implies that

treat(EX1,k
) ≺ 〈treat(EX2,k

), treat(EX2,k+1
)〉

Furthermore, by Definition 3.9, we have that MSG ≺ 〈MSG, MSG〉 and that SEQ ≺
〈SEQ, SEQ〉. This implies, by Lemma B.2, that ω′1,k ≺ 〈ω′2,k, ω′2,k+1〉. For the valu-
ation, by definition of S, we have that ν ′1,k = ν1,k ≺ 〈ν2,k, ν2,k+1〉 = 〈ν ′2,k, ν ′2,k+1〉.
Finally, let us examine the communication channels. First, for all process j ∈
[1, k), by definition of S, we have that φ1,k←j = φ2,k←j = φ2,k+1←j , which im-
plies that φ′2,k←j ∈ (φ1,k←j ‖ �) and that φ′2,k+1←j ∈ (φ1,k←j ‖ �). Therefore,
for those communication channels, we can choose to insert the � markers in
φ2,k←j and φ2,k+1←j in the exact same way as in φ1,k←j to obtain φ′2,k←j =
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φ′2,k+1←j = φ′1,k←j . For process k, by the definition of S, we know that φ1,k←k ≺
〈φ2,k←k, φ2,k←k+1〉 and by Lemma B.1, that there exists σk ∈ (φ2,k←k ‖ �) and
σk+1 ∈ (φ2,k←k+1 ‖ �) such that φ′1,k←k ≺ 〈σk, σk+1〉. We can therefore choose
φ′2,k←k = σk and φ′2,k←k+1 = σk+1, and finally conclude that 〈q′1, q′2〉 ∈ S.

Input Rule If q1 −→1 q
′
1 was derived using Rule (3.2) for some process i, we have that

ω1,i = INPUT(x);ω′1,i. There are two cases to consider:

(i) If i < k, by definition of S, we have that ω2,i = ω1,i = INPUT(x);ω′1,i. Therefore,
Rule (3.2) can be applied from state q2, leading to a state q′2 exactly like q2 except
for ω′2,i = ω′1,i and ν ′2,i = ν2,i[x 7→ a] = ν1,i[x 7→ a] = ν ′1,i for some a ∈ B. It
follows by Definition 3.9 and Definition 3.10 that 〈q′1, q′2〉 ∈ S.

(ii) If i = k, by definition of S, we have that ω1,k = INPUT(x);ω′1,k ≺ 〈ω2,k, ω2,k+1〉
and by Definition 3.9 of code distribution that either ω2,k = INPUT(x);ω′2,k with
ω′1,k ≺ 〈ω′2,k, ω2,k+1〉, or ω2,k+1 = INPUT(x);ω′2,k+1 with ω′1,k ≺ 〈ω2,k, ω

′
2,k+1〉. In

the former case, we can apply Rule (3.2) for process k from q2, leading to a
state q′2 exactly like q2, except for ω′2,k defined above and for ν ′2,k = ν2,k[x 7→ a].
Finally, we have that ω′1,k ≺ 〈ω′2,k, ω2,k+1〉 = 〈ω′2,k, ω′2,k+1〉, and by Definition 3.10
that ν ′1,k ≺ 〈ν ′2,k, ν ′2,k+1〉. We can therefore conclude that 〈q′1, q′2〉 ∈ S. The latter
case is symmetrical.

Broadcast Rule If q1 −→1 q
′
1 was derived using Rule (3.3) for some process i, we have

that ω1,i = BCAST(x, v);ω′1,i. There are two cases to consider:

(i) If i < k, by definition of S, we have that ω2,i = ω1,i = BCAST(x, v);ω′1,i. Therefore,
Rule (3.3) can be applied from state q2, leading to a state q′2 exactly like q2

except for ω′2,i = ω′1,i and φ′2,j←i = φ2,j←i · 〈x, v〉 for all process j ∈ [1, k + 1].
For all process j ∈ [1, k), since i < k, by definition of S, we have that φ1,j←i =
φ2,j←i. Therefore, for those communication channels, we have that φ′2,j←i =
φ2,j←i · 〈x, v〉 = φ1,j←i · 〈x, v〉 = φ′1,j←i. Then, for process k, by definition of S,
we know that φ1,k←i = φ2,k←i = φ2,k+1←i. Therefore, we have that φ′2,k←i =
φ2,k←i · 〈x, v〉 = φ1,k←i · 〈x, v〉 = φ′1,k←i and that φ′2,k+1←i = φ2,k+1←i · 〈x, v〉 =
φ1,k←i · 〈x, v〉 = φ′1,k←i. By Definition of S, we can conclude that 〈q′1, q′2〉 ∈ S.

(ii) If i = k, by definition of S, we have that ω1,k = BCAST(x, v);ω′1,k ≺ 〈ω2,k, ω2,k+1〉.
By Definition 3.9, it follows that either ω2,k = BCAST(x, v);ω′2,k with ω′1,k ≺
〈ω′2,k, ω2,k+1〉, or ω2,k+1 = BCAST(x, v);ω′2,k+1 with ω′1,k ≺ 〈ω2,k, ω

′
2,k+1〉. In the
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former case, we can apply Rule (3.3) for process k from q2, leading to a state q′2
exactly like q2, except for ω′2,k defined above, and φ′2,j←k = φ2,j←k · 〈x, v〉 for all
process j ∈ [1, k + 1]. For the workloads, we have that ω′1,k ≺ 〈ω′2,k, ω2,k+1〉 =
〈ω′2,k, ω′2,k+1〉. Next, let us examine the communication channels. For all process
j ∈ [1, k), since i < k, by definition of S, and Definition 3.11, we have that
φ′1,j←k = φ1,j←k · 〈x, v〉 ≺ 〈φ2,j←k · 〈x, v〉, φ2,j←k+1〉 = 〈φ′2,j←k, φ′2,,j←k+1〉. For
process k, by definition of S, we know that φ1,k←k = φ2,k←k = φ2,k+1←k and
that φ1,k←k ≺ 〈φ2,k←k, φ2,k←k+1〉. It follows that φ′1,k←k = φ1,k←k · 〈x, v〉 =
φ2,k←k · 〈x, v〉 = φ′2,k←k and that φ′1,k←k = φ1,k←k · 〈x, v〉 = φ2,k+1←k · 〈x, v〉 =
φ′2,k+1←k. It also follows, by Definition 3.11 that φ′1,k←k = φ1,k←k · 〈x, v〉 ≺
〈φ2,k←k · 〈x, v〉, φ2,k←k+1〉 = 〈φ′2,k←k, φ′2,k←k+1〉. By Definition of S, we can con-
clude that 〈q′1, q′2〉 ∈ S. The latter case is symmetrical.

Message Treatment Rules If q1 −→1 q
′
1 was derived using Rule (3.4) for some process

i, we have that ω1,i = MSG;ω and φ1,i←j = 〈x, v〉 · φ′1,i←j for some process j ∈ [1, k].
There are two cases to consider:

(i) If i < k, by definition of S, we have that ω2,i = ω1,i = MSG;ω′1,i. Then, ei-
ther j < k and φ2,i←j = φ1,i←j = 〈x, v〉 · φ′1,i←j , or j = k and φ1,i←k =
〈x, v〉·φ′1,i←k ≺ 〈φ2,i←k, φ2,i←k+1〉, in which case, by Definition 3.11 of channel dis-
tribution, we have that φ2,i←k = 〈x, v〉·φ′2,i←k with φ′1,i←k ≺ 〈φ′2,i←k, φ2,i←k+1〉 or
that φ2,i←k+1 = 〈x, v〉·φ′2,i←k+1 with φ′1,i←k ≺ 〈φ2,i←k, φ′2,i←k+1〉. In any case, we
have that ∃` ∈ [1, k+1] : φ2,i←` = 〈x, v〉·φ′2,i←`. We can therefore apply Rule (3.4)
from q2 leading to a state q′2 exactly like q2 except for ω′2,i = treat(ẽvt(x)∩X2,i);ω,
for ν ′2,i = ν2,i[x̃ 7→ v] and for φ′2,i←` defined above. For the workloads, we
know that X2,i = X1,i. This implies that ω′2,i = treat(ẽvt(x) ∩ X2,i);ω =
treat(ẽvt(x) ∩ X1,i);ω = ω′1,i. For the valuation, by definition of S, we have
that ν2,i = ν1,i, which implies that ν ′2,i = ν2,i[x̃ 7→ v] = ν1,i[x̃ 7→ v] = ν ′1,i.
For the communication channels, either ` < k and φ′2,i←` = φ′2,i←j = φ′1,←j , or
` = k and φ′1,i←k ≺ 〈φ′2,i←k, φ2,i←k+1〉 = 〈φ′2,i←k, φ′2,i←k+1〉, or ` = k + 1 and
φ′1,i←k ≺ 〈φ2,i←k, φ′2,i←k+1〉 = 〈φ′2,i←k, φ′2,i←k+1〉. In any case, by definition of S,
we have that 〈q′1, q′2〉 ∈ S.

(ii) If i = k, by definition of S, we have that ω1,k = MSG;ω′1,k ≺ 〈ω2,k, ω2,k+1〉.
By Definition 3.9 of code distribution, it follows that ω2,k = MSG;ω′ and that
ω2,k+1 = MSG;ω′′ with ω ≺ 〈ω′, ω′′〉. Moreover, again by definition of S, we
have that φ2,k←j = φ2,k+1←j = φ1,k←j = 〈x, v〉 · φ′1,k←j . Therefore, we can
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first apply Rule (3.4) from q2 for process k, leading to a state q′′2 . Note that
Rule (3.4) does not change the valuations of the variables in V , which implies that
q2
∼−→P,D2 q

′′
2 . Then, from q′′2 , since the workload of process k+ 1 still begins with

MSG, we can apply Rule (3.4), but this time for process k+1 (stuttering is needed
for that), leading to a state q′2 exactly like q2 except for ω2,k = treat(ẽvt(x) ∩
X2,k);ω′ and ω2,k+1 = treat(ẽvt(x) ∩ X2,k+1);ω′′, for ν ′2,k = ν2,k[x̃ 7→ v] and
ν ′2,k+1 = ν2,k+1[x̃ 7→ v] and for φ2,k←k and φ2,k+1←j defined above. For the
workloads, we know that X1,k = X2,k∪X2,k+1, which implies that ẽvt(x)∩X1,k =
ẽvt(x)∩ (X2,k ∪X2,k+1) = (ẽvt(x)∩X2,k)∪ (ẽvt(x)∩X2,k+1). Furthermore, since
D2 ∈ DP ⊆ Π(V ), we have that X2,k ∩ X2,k+1 = ∅, which implies that we
have that (ẽvt(x) ∩ X2,k) ∩ (ẽvt(x) ∩ X2,k+1) = ∅. Therefore, by Lemma B.3,
treat(ẽvt(x)∩X1,k) ≺ 〈treat(ẽvt(x)∩X2,k), treat(ẽvt(x)∩X2,k+1)〉. We also know
that, ω ≺ 〈ω′, ω′′〉, which implies, by Lemma B.2, that ω′1,k = treat(ẽvt(x) ∩
X1,k);ω ≺ 〈treat(ẽvt(x) ∩ X2,k);ω′, treat(ẽvt(x) ∩ X2,k+1);ω′′〉 = 〈ω′2,k, ω′2,k+1〉.
For the valuation, by definition of S, we have that ν1,k ≺ 〈ν2,k, ν2,k+1〉. It follows
by Definition 3.10 of valuation distribution, that ν ′1,k = ν1,k[x̃ 7→ v] ≺ 〈ν2,k[x̃ 7→
v], ν2,k+1[x̃ 7→ v]〉 = 〈ν ′2,k, ν ′2,k+1〉. For the communication channels, we have that
φ′2,k←j = φ′2,k+1←j = φ1,k′←j . We can therefore conclude that 〈q′1, q′2〉 ∈ S.

End of Message Treatment Rule If q1 −→1 q
′
1 was derived using Rule (3.5) for some

process i, we have that ω1,i = MSG;ω′1,i and that ∀j ∈ [1, k] : φ1,i←j = � · φ′1,i←j . There
are two cases to consider:

(i) If i < k, by definition of S, we have have ω2,i = ω1,i = MSG;ω1,i. Moreover,
again by definition of S, we have that ∀j ∈ [1, k) : φ1,i←j = φ2,i←j and that
φ1,i←k ≺ 〈φ2,i←k, φ2,i←k〉. By Definition 3.11, it follows that φ2,i←k = � · φ′2,i←k
and φ2,i←k+1 = � ·φ′2,i←k+1 with φ′1,i←k ≺ 〈φ′2,i←k, φ′2,i←k〉. Therefore, since there
are � markers at the beginning of every receiving communication channels of
process i in q2, Rule (3.5) can be applied from q2, leading to a state q′2 exactly
like q2 except for ω′2,i and φ′2,i defined above. Finally, since ω′2,i = ω′1,i and
φ′1,i←k ≺ 〈φ′2,i←k, φ′2,i←k〉, by definition of S, we have that 〈q′1, q′2〉 ∈ S.

(ii) If i = k, by definition of S, we have that ω1,i = MSG;ω′i,1 ≺ 〈ω2,k, ω2,k+1〉.
By Definition 3.9 of code distribution, we have that ω2,k = MSG;ω′2,k and that
ω2,k+1 = MSG;ω′2,k+1 with ω′1,k ≺ ω′2,k, ω

′
2,k+1. Moreover, again by definition of

S, for all process j ∈ [1, k], we have that φ2,k←j = φ1,k←j = � · φ′1,k←j and that
φ2,k+1←j = φ1,k←j = � · φ′1,k←j . Therefore, we can first apply Rule (3.5) from
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q2 for process k leading to a state q′′2 . Note that Rule (3.5) does not change the
valuations of the variables in V , which implies that q2

∼−→P,D2 q
′′
2 . Then, from q′′2 ,

since the workload of process k + 1 still begins with MSG, we can again apply
Rule (3.5), but this time for process k + 1 (stuttering is needed for that) lead-
ing to a state q′2 exactly like q2 except for ω′2,k and ω′2,k+1 defined above, and
for φ′2,k = φ′1,k and φ′2,k+1 = φ′1,i. Moreover, we know by definition of S, that
φ1,k←k = � · φ′1,k←k ≺ 〈φ2,k←k, φ2,k←k+1〉 = 〈� · φ2,k←k, � · φ2,k←k+1〉. It follows,
by Definition 3.11 of channel distribution that φ′1,k←k ≺ 〈φ′2,k←k, φ′2,k←k+1〉. We
can therefore conclude, by definition of S that 〈q′1, q′2〉 ∈ S.

Output Rule If q1 −→1 q
′
1 was derived using Rule (3.6) for some process i, we have

that ω1,i = OUTPUT(x);ω′1,i. There are two cases to consider:

(i) If i < k, by definition of S, we have that ω2,i = ω1,i = OUTPUT(x);ω′1,i. Therefore,
Rule (3.6) can be applied from state q2, leading to a state q′2 exactly like q2

except for ω′2,i = ω′1,i and ν ′2,i = ν2,i[x 7→ ν2,i(x̂)]. By definition of S, we have
that ν1,i = ν2,i, therefore ν ′2,i = ν2,i[x 7→ ν2,i(x̂)] = ν1,i[x 7→ ν1,i(x̂)] = ν ′1,i. It
follows by Definition 3.9 and Definition 3.10 that 〈q′1, q′2〉 ∈ S.

(ii) If i = k, by definition of S, we have that ω1,k = OUTPUT(x);ω′1,k ≺ 〈ω2,k, ω2,k+1〉
and by Definition 3.9 of code distribution that either ω2,k = OUTPUT(x);ω′2,k with
ω′1,k ≺ 〈ω′2,k, ω2,k+1〉, or ω2,k+1 = OUTPUT(x);ω′2,k+1 with ω′1,k ≺ 〈ω2,k, ω

′
2,k+1〉. In

the former case, we can apply Rule (3.6) for process k from q2, leading to a state
q′2 exactly like q2, except for ω′2,k defined above and ν ′2,k = ν2,k[x 7→ ν2,k(x̂)]. By
definition of S, we have that ν1,k ≺ 〈ν2,k, ν2,k+1〉, which implies that ν2,k(x̂) =
ν1,k(x̂). It follows Definition 3.9 that ω′1,k ≺ 〈ω′2,k, ω′2,k+1〉 and by Definition 3.10
that ν ′1,k ≺ 〈ν ′2,k, ν ′2,k+1〉. In this case, we therefore have 〈q′1, q′2〉 ∈ S. The latter
case is symmetrical.

Assignment Rules If q1 −→1 q
′
1 was derived using Rule (3.7), Rule (3.8) or Rule (3.9),

for some process i, we have that ω1,i = x := v;ω. First let us examine Rule (3.7).
There are two cases to consider:

(i) If i < k, then by definition of S, we have that ω2,i = ω1,i = x := v;ω and
ν1,i = ν2,i. Moreover, since Rule (3.7) was applied from q1, it must be that
x ∈ {ce | e ∈ E}. Therefore, Rule (3.7) can be applied from q2, leading to a state
q′2 exactly like q2 except for ω′2,i = ω = ω1,i and for ν ′2,i = ν2,i[x 7→ eval[ν2,i](v)] =
ν1,i[x 7→ eval[ν1,i](v)] = ν ′1,i. We can therefore conclude, that 〈q′1, q′2〉 ∈ S.
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(ii) If i = k, then by definition of S, we have that ω1,k = x := v;ω ≺ 〈ω2,k, ω2,k+1〉.
Moreover, since Rule (3.7) was applied from q1, it must be that x ∈ {ce | e ∈ E}.
By Definition 3.9, we have that either ω2,k = x := v;ω′ with ω ≺ 〈ω′, ω2,k+1〉
or ω2,k = x := v;ω′ with ω ≺ 〈ω2,k, ω

′〉. In the former case, Rule (3.7) can be
applied from q2 for process k, leading to a state q′2 exactly like q2 except for
ω2,k = ω′ and ν ′2,i = ν2,i[x 7→ eval[ν2,i](v)]. For the workloads, we have that
ω′1,k = ω ≺ 〈ω′, ω2,k+1〉 = 〈ω′2,k, ω′2,k+1〉. For the valuations, we have that ν1,k ≺
〈ν2,k, ν2,k+1〉, which implies by Definition 3.10 that eval[ν2,i](v) = eval[ν1,i](v). It
follows that ν ′2,i(x) = ν ′1,k(x). Then, since x was assigned in ω2,k, we know that
x ∈ X2,k. Therefore, since X2,k∩X2,k+1 = ∅, we know that x does not belong to
the domain of ν2,k+1, and we have that ν ′1,i ≺ 〈ν ′2,k, ν2,k+1〉 = 〈ν ′2,k, ν ′2,k+1〉. We
can therefore conclude that 〈q′1, q′2〉 ∈ S. The latter case is symmetrical.

Then let us consider Rule (3.8) and Rule (3.9). Again, there are two cases to consider:

(i) If i < k, then by definition of S, we have that ω2,i = ω1,i = x := v;ω and
ν1,i = ν2,i. Moreover, since Rule (3.8) or Rule (3.9) was applied from q1, it
must be that either x ∈ Xi ∩ Vout or x ∈ Xi \ Vout. In each case, the same rule
can be applied from q2, leading to a state q′2 exactly like q2 except for ω′2,i =
BCAST(x, eval[ν2,i](v)); treat(evt(x));ω = BCAST(x, eval[ν1,i](v)); treat(evt(x));ω =
ω′1,i and for ν ′2,i. For the valuation, either x ∈ Vout, in which case ν ′2,i = ν2,i[x̂ 7→
eval[ν2,i](v)] = ν1,i[x̂ 7→ eval[ν1,i](v)] = ν ′1,i, or x 6∈ Vout, in which case ν ′2,i =
ν2,i[x 7→ eval[ν2,i](v)] = ν1,i[x 7→ eval[ν1,i](v)] = ν ′1,i. In both case, by definition
of S, we have that 〈q′1, q′2〉 ∈ S.

(ii) If i = k, then by definition of S, we have that ω1,k = x := v;ω ≺ 〈ω2,k, ω2,k+1〉.
Moreover, since Rule (3.8) or Rule (3.9) was applied from q1, it must be that
either x ∈ Xi ∩ Vout or x ∈ Xi \ Vout. By Definition 3.9, we also have that either
ω2,k = x := v;ω′ with ω ≺ 〈ω′, ω2,k+1〉 or ω2,k = x := v;ω′ with ω ≺ 〈ω2,k, ω

′〉. In
the former case, the same rule can be applied from q2 for process k, leading to a
state q′2 exactly like q2 except for ω′2,k = BCAST(x, eval[ν2,k](v)); treat(evt(x));ω′

and for ν ′2,k. For the valuations, we have that ν1,k ≺ 〈ν2,k, ν2,k+1〉 by definition
of S, which implies that eval[ν2,k](v) = eval[ν1,k](v). It follows that ν ′1,k(x) =
ν ′2,k(x). Then, since x was assigned in ω2,k, we know that x ∈ X2,k. Therefore,
since X2,k ∩ X2,k+1 = ∅, we know that x does not belong to the domain of
ν2,k+1, and we have that ν ′1,i ≺ 〈ν ′2,k, ν2,k+1〉 = 〈ν ′2,k, ν ′2,k+1〉. For the workloads,
since ω ≺ 〈ω′, ω2,k+1〉, and since eval[ν2,k](v) = eval[ν1,k](v), we have that ω′1,i =
BCAST(x, eval[ν1,k](v)); treat(evt(x));ω ≺ 〈BCAST(x, eval[ν2,k](v)); treat(evt(x));ω,
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ω2,k+1〉 = 〈ω′2,k, ω′2,k+1〉. We can therefore conclude that 〈q′1, q′2〉 ∈ S. The latter
case is symmetrical.

If Rules If q1 −→1 q
′
1 was derived using Rule (3.10) or Rule (3.11), for some process

i, we have that ω1,i = IF e THEN ωTHEN ELSE ωELSE END IF;ω. There are two cases to
consider:

(i) If i < k, then by definition of S, we have that ω2,i = ω1,i = IF e THEN ωTHEN ELSE

ωELSE END IF;ω and that ν1,i = ν2,i. Then, either eval[ν1,i](e) = eval[ν2,i](e) = tt,
or eval[ν1,i](e) = eval[ν2,i](e) = ff. In the case eval[ν2,i](e) = tt, Rule (3.10) can by
applied from q2 leading to a state q′2 exactly like q2 except for ω′2,i = ωTHEN;ω =
ω′1,i. In this case, by Definition of S, we have that 〈q′1, q′2〉 ∈ S. In the case
eval[ν2,i](e) = ff, Rule (3.11) can be applied instead of Rule (3.10) and the same
proof can be made with ωELSE instead of ωTHEN.

(ii) If i = k, then by definition of S, we have that ω1,k = IF e THEN ωTHEN ELSE

ωELSE END IF;ω ≺ 〈ω2,k, ω2,k+1〉 and that ν1,k ≺ 〈ν2,k, ν2,k+1〉. By Definition 3.9,
we have that either ω2,k = IF e THEN ωTHEN ELSE ωELSE END IF;ω′ with ω ≺
〈ω′, ω2,k+1〉, or ω2,k+1 = IF e THEN ωTHEN ELSE ωELSE END IF;ω′ and ω ≺ 〈ω2,k, ω

′〉.
In the former case, we have that either eval[ν1,k](e) = eval[ν2,k](e) = tt, or
eval[ν1,k](e) = eval[ν2,k](e) = ff. In the case, eval[ν2,k](e) = tt, Rule (3.10) can be
applied for process k from state q2, leading to a state q′2 exactly like q2 except
for ω′2,k = ωTHEN;ω′. Then, since ωTHEN ≺ 〈ωTHEN, ε〉 and since ω ≺ 〈ω′, ω2,k+1〉 =
〈ω′, ω′2,k+1〉, by Lemma B.2, we have that ω′1,k = ωTHEN;ω ≺ 〈ωTHEN;ω′, ω′2,k+1〉 =
〈ω′2,k, ω′2,k+1〉. Finally, by definition of S, we can conclude that 〈q′1, q′2〉 ∈ S. Still
in this former case, if eval[ν2,k](e) = ff, Rule (3.11) can be applied instead of
Rule (3.10) and the same proof can be made with ωELSE instead of ωTHEN. The
latter case, is symmetrical.

Launch Rules If q1 −→1 q′1 was derived using Rule (3.12) or Rule (3.13), for some
process i, we have that ω1,i = LAUNCH sj ;ω′1,i. First note, by definition of S, that
σ1,j = σ2,j . Then, we have to examine two cases:

(i) If i < k, then by definition of S, we have that ω2,i = ω1,i = LAUNCH sj ;ω′1,i. In
this case, either σ2,j = σ1,j = ε and Rule (3.12) can be applied, or σ2,j = σ1,j 6= ε

and Rule (3.13) can be applied. In both cases, a transition can be applied from
state q2, leading to a state q′2 exactly like q2 except from ω′2,i, and if Rule (3.12)
was used, for σ′2,j and µ′2,j . For the workloads, by definition of S, we have that
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ω′2,i = ω′1,i. For the local state of sequence sj , either Rule (3.12) was used, and
σ′2,j = body(sj) = σ′1,j with µ′2,j = µ2,j [local(sj) 7→ ff] = µ1,j [local(sj) 7→ ff] =
µ′1,j , or Rule (3.13) was used and ω′2,i = ω2,i = ω1,i = ω′1,i with µ′2,i = µ2,i =
µ1,i = µ′1,i. In both cases, by definition of S, we have that 〈q′1, q′2〉 ∈ S.

(ii) If i = k, then we have that ω1,k = LAUNCH sj ;ω′1,k ≺ 〈ω2,k, ω2,k+1〉 by definition
of S. By Definition 3.9, we have that either ω2,k = LAUNCH sj ;ω′2,k with ω′1,k ≺
〈ω′2,k, ω2,k+1〉, or ω2,k+1 = LAUNCH sj ;ω′2,k+1 with ω′1,k ≺ 〈ω2,k, ω

′
2,k+1〉. In the

former case, either σ2,j = σ1,j = ε and Rule (3.12) can be applied for process
k, or σ2,j = σ1,j 6= ε and Rule (3.13) can be applied for process k. In both
cases, a transition can be applied from state q2, leading to a state q′2 exactly
like q2 except from ω′2,k, and if Rule (3.12) was used, for σ′2,j and µ′2,j . For the
workloads, we have that ω′1,k ≺ 〈ω′2,k, ω2,k+1〉 = 〈ω′2,k, ω′2,k+1〉. For the local state
of sequence sj , either Rule (3.12) was used, and σ′2,j = body(sj) = σ′1,j with
µ′2,j = µ2,j [local(sj) 7→ ff] = µ1,j [local(sj) 7→ ff] = µ′1,j , or Rule (3.12) was used
and ω′2,i = ω2,i = ω1,i = ω′1,i with µ′2,i = µ2,i = µ1,i = µ′1,i. In both cases, by
definition of S, we have that 〈q′1, q′2〉 ∈ S. The latter case is symmetrical.

Sequence Assignment Rules If q1 −→1 q
′
1 was derived using Rule (3.14) or Rule (3.15)

for some process i, we have that ω1,i = SEQ;ω and that σ1,j = x := e;σ′1,j . If x ∈
local(sj), the transition was derived using Rule (3.14). In this case, we have to consider
two cases:

(i) If i < k, by definition of S, we have that ω2,i = ω1,i = SEQ;ω and σ2,j =
σ1,j = x := e;σ′1,j . Since Rule (3.14) was applied from q1, it must be that
var(e) ⊆ X1,i ∪ local(sj) = X2,i ∪ local(sj). Therefore, we can apply Rule (3.14)
from state q2, leading to a state q′2 exactly like q2 except for σ′2,j = σ′1,j and for
µ′2,j = µ2,j [x 7→ eval[µ2,j ∪ ν2,i](e)]. By definition of S, we know that µ2,j = µ1,j

and that ν2,i = ν1,i. It follows that µ′2,j = µ1,j [x 7→ eval[µ1,j ∪ ν1,i](e)] = µ′1,j .
Therefore, by definition of S, we have that 〈q′1, q′2〉 ∈ Q.

(ii) If i = k, by definition of S, we have that ω1,k = SEQ;ω ≺ 〈ω2,k, ω2,k+1〉 and
σ2,j = σ1,j = x := e;σ′1,j . First, by Definition 3.9 of code distribution, we
have that ω2,k = SEQ;ω′ and ω2,k+1 = SEQ;ω′′ with ω ≺ 〈ω′, ω′′〉. Then, since
Rule (3.14) was applied from q1, it must be that var(e) ⊆ X1,k ∪ local(sj) =
X2,k∪X2,k+1∪local(e). However, since D2 ∈ DP , by Definition 3.3 of distribution,
we have that ∃X2,` ∈ D2 : var(x := e) ⊆ X2,` ∩ local(sj). It follows that either
` = k or ` = k+1. In the former case, we can apply Rule (3.14) for process k, from
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state q2, leading to a state q′2 exactly like q2 except for σ′2,j = σ′1,j and for µ′2,j =
µ2,j [x 7→ eval[µ2,j ∪ ν2,k](e)]. By definition of S, we know that µ2,j = µ1,j and
that ν1,k ≺ 〈ν2,k, ν2,k+1〉. By Definition 3.10, we have that eval[µ2,j ∪ ν2,k](e) =
eval[µ1,j ∪ ν1,k](e) which implies that µ′2,j = µ1,j [x 7→ eval[µ1,j ∪ ν1,k](e)] = µ′1,k.
Therefore, by definition of S, we have that 〈q′1, q′2〉 ∈ Q. The latter case is
symmetrical.

On the other hand, if x ∈ X1,i, the transition was derived using Rule (3.15). In this
case, we also have to consider two cases:

(i) If i < k, by definition of S, we have that ω2,i = ω1,i = SEQ;ω and σ2,j =
σ1,j = x := e;σ′1,j . Since Rule (3.15) was applied from q1, it must be that
var(e) ⊆ X1,i ∪ local(sj) = X2,i ∪ local(sj). Therefore, we can apply Rule (3.15)
from state q2, leading to a state q′2 exactly like q2 except for ω′2,i = x := eval[µ2,j∪
ν2,i](e);ω2,i and for σ′2,j = σ′1,j . For the workloads, by definition of S, we have
that ω1,i = ω2,i, that ν1,i = ν2,i and that µ1,j = µ2,j . Therefore, ω′2,i = x :=
eval[µ2,j ∪ ν2,i](e);ω2,i = x := eval[µ1,j ∪ ν1,i](e);ω1,i = ω′1,i. We can therefore
conclude that 〈q′1, q′2〉 ∈ S.

(ii) If i = k, by definition of S, we have that ω1,k = SEQ;ω ≺ 〈ω2,k, ω2,k+1〉 and
σ2,j = σ1,j = x := e;σ′1,j . First, by Definition 3.9 of code distribution, we
have that ω2,k = SEQ;ω′ and ω2,k+1 = SEQ;ω′′ with ω ≺ 〈ω′, ω′′〉. Then, since
Rule (3.15) was applied from q1, it must be that var(e) ⊆ X1,k ∪ local(sj) =
X2,k∪X2,k+1∪local(e). However, since D2 ∈ DP , by Definition 3.3 of distribution,
we have that ∃X2,` ∈ D2 : var(x := e) ⊆ X2,` ∩ local(sj). It follows that either
` = k or ` = k + 1. In the former case, we can apply Rule (3.15) for process k,
from state q2, leading to a state q′2 exactly like q2 except for ω′2,k = x := eval[ν2,i∪
µ2,j ](e);ω2,k and for µ′2,j = µ′1,j . For the workloads, by definition of S, we have
that ν1,k ≺ 〈ν2,k, ν2,k+1〉 and that µ2,j = µ1,j , which implies, by Definition 3.10
of valuation distribution, that eval[ν2,k ∪ µ2,j ](e) = eval[ν1,k ∪ µ1,j ](e). It follows
that x := eval[ν1,k ∪ µ1,j ](e) ≺ 〈x := eval[ν2,k ∪ µ2,j ](e), ε〉. We also know that
ω1,k ≺ 〈ω2,k, ω2,k+1〉. This implies by Lemma B.2, that ω′1,k = x := eval[ν1,k ∪
µ1,j ](e);ω1,k ≺ 〈x := eval[ν2,k ∪ µ2,j ](e);ω2,k, ω2,k+1〉 = 〈ω′2,k, ω′2,k+1〉. Therefore,
we can conclude that 〈q′1, q′2〉 ∈ S.

Sequence If Rules If q1 −→1 q
′
1 was derived using Rule (3.16) or Rule (3.17) for some

process i, we have that ω1,i = SEQ;ω and that σ1,j = IF e THENσTHEN ELSEσELSE END IF;
σ. There are two cases to consider:
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(i) If i < k, by definition of S, we have that ω2,i = ω1,i = SEQ;ω, that ν2,i = ν1,i,
that σ2,j = σ1,j = IF e THENσTHEN ELSEσELSE END IF;σ, and that µ2,j = µ1,j .
Since either Rule (3.16) or Rule (3.17) was applied from q2, it must be that
var(e) ⊆ X1,i ∪ local(sj) =⊆ X2,i ∪ local(sj). Then, either eval[ν1,j ∪ µ1,i](e) =
eval[ν2,j ∪µ2,i](e) = tt, or eval[ν1,j ∪µ1,i](e) = eval[ν2,j ∪µ2,i](e) = ff. In the case
eval[ν2,j ∪ µ2,i](e) = tt, Rule (3.16) can be applied from q2, leading to a state q′2
exactly like q2 except for σ′2,j = σTHEN;σ = σ1,j . In this case, by definition of S,
we have that 〈q′1, q′2〉 ∈ S. In the case eval[ν2,j ∪ µ2,i](e) = tt, Rule (3.17) can
be applied instead of Rule (3.16) and the same proof can be made, with σELSE

instead σTHEN.

(ii) If i = k, by definition of S, we have that σ2,j = σ1,j = IF e THENσTHEN ELSE σELSE

END IF;σ and that ω1,k = SEQ;ω ≺ 〈ω2,k, ω2,k+1〉, which implies, by Definition 3.9
that ω2,k = SEQ;ω′ and ω2,k+1 = SEQ;ω′′ with ω ≺ 〈ω′, ω′′〉. We also have
by definition of S that ν1,k ≺ 〈ν2,k, ν2,k+1〉 and that µ1,j = µ2,j . Then, since
Rule (3.16) of Rule (3.17) was applied from q1, it must be that var(e) ⊆ X1,k ∪
local(sj) = X2,k∪X2,k+1∪local(sk). However, since D2 ∈ DP , by Definition 3.3 of
distribution, we have that ∃X2,` ∈ D2 : var(IF e THENσTHEN ELSEσELSE END IF) ⊆
X2,` ∪ local(sj). It follows that either ` = k or ` = k+ 1. Then, either eval[ν2,` ∪
µ2,j ](e) = eval[ν1,`∪µ1,j ](e) = tt, or eval[ν2,`∪µ2,j ](e) = eval[ν1,`∪µ1,j ](e) = ff. In
the case eval[ν2,`∪µ2,j ](e) = tt, Rule (3.16) can be applied for process l from state
q2, leading to a state q′2 exactly like q2 except for σ2,j = σTHEN;σ = σ1,j . In this
case, we have that 〈q′2, q′2〉 ∈ D. In the case eval[ν2,` ∪ µ2,j ](e) = tt, Rule (3.17)
can be applied instead of Rule (3.16) and the same proof can be made with σELSE
instead of σTHEN.

Sequence Launch Rules If q1 −→1 q
′
1 was derived using Rule (3.18) for some process

i, we have that ω1,i = SEQ;ω and that σ1,j = LAUNCH sh;σ′2,j . There are two cases to
consider:

(i) If i < k, by definition of S, we have that ω2,i = ω1,i = SEQ;ω, and that σ2,j =
σ1,j = LAUNCH sh;σ′1,j . Therefore, Rule (3.18) can be applied from q2, leading to
a state q′2 exactly like q2 except for ω′2,i = LAUNCH sh;ω2,i = LAUNCH sh;ω1,i = ω′1,i
and σ′2,j = σ′1,j . Therefore, we can conclude that 〈q′1, q′2〉 ∈ S.

(ii) If i = k, by definition of S, we have that σ2,j = σ1,j = LAUNCH sh;σ′1,j and
that ω1,k = SEQ;ω ≺ 〈ω2,k, ω2,k+1〉, which implies, by Definition 3.9, that ω2,k =
SEQ;ω′ and ω2,k+1 = SEQ;ω′′ with ω ≺ 〈ω′, ω′′〉. Therefore, Rule (3.18) can



One-Split Simulation Lemma 233

be applied from q2 for process k (it could also be applied for process k + 1),
leading to a state q′2 exactly like q2 except for ω′2,k = LAUNCH sh;ω2,k and σ′2,j =
σ′1,j . For the workloads, we know by Definition 3.9 of code distribution that
LAUNCH sh ≺ 〈LAUNCH sh, ε〉, and by definition of S, that ω1,k ≺ 〈ω2,k, ω2,k+1〉. It
follows, by Lemma B.2, that ω′1,k = LAUNCH sh;ω1,k ≺ 〈LAUNCH sh;ω2,k, ω2,k+1〉 =
〈ω′2,k, ω′2,k+1〉. Therefore, we can conclude that 〈q′1, q′2〉 ∈ S.

Sequence While Rules If q1 −→1 q
′
1 was derived using Rule (3.19) or Rule (3.20) for

some process i, we have that ω1,i = SEQ;ω and that σ1,j = WHILE e DOσb END WHILE;σ.
There are two cases to consider:

(i) If i < k, by definition of S, we have that ω2,i = ω1,i = SEQ;ω, that ν2,i = ν1,i,
that σ2,j = σ1,j = WHILE e DOσb END WHILE;σ and that µ2,j = µ1,j . Since either
Rule (3.19) or Rule (3.20) was applied from q1, it must be that var(e) ⊆ X1,i ∩
local(sj) = X1,i ∩ local(sj). Then, either eval[ν1,j ∪µ1,i](e) = eval[ν2,j ∪µ2,i](e) =
tt, or eval[ν1,j∪µ1,i](e) = eval[ν2,j∪µ2,i](e) = ff. In the case eval[ν2,j∪µ2,i](e) = tt,
Rule (3.19) can be applied from q2, leading to a state q′2 exactly like q2 except for
σ′2,j = σb;σ2,j = σb;σ1,j = σ′1,j . In the case eval[ν2,j∪µ2,i](e) = ff, Rule (3.20) can
be applied from q2, leading to a state q′2 exactly like q2 except for σ′2,j = σ = σ′1,j .
In both case, by definition of S, we have that 〈q′1, q′2〉 ∈ S.

(ii) If i = k, by definition of S, we have that σ2,j = σ1,j = WHILE e DOσb END WHILE;σ
and that ω1,k = SEQ;ω ≺ 〈ω2,k, ω2,k+1〉, which implies, by Definition 3.9 that
ω2,k = SEQ;ω′ and ω2,k+1 = SEQ;ω′′ with ω ≺ 〈ω′, ω′′〉. We also by definition
of S that ν1,k ≺ 〈ν2,k, ν2,k+1〉 and that µ1,j = µ2,j . Then, since Rule (3.19) of
Rule (3.20) was applied from q1, it must be that var(e) ⊆ X1,k∪ local(sj) = X2,k∪
X2,k+1 ∪ local(sk). However, since D2 ∈ DP , by Definition 3.3 of distribution, we
have that ∃X2,` ∈ D2 : var(WHILE e DOσb END WHILE) ⊆ X2,` ∪ local(sj). It follows
that either ` = k or ` = k+1. Then, either eval[ν2,`∪µ2,j ](e) = eval[ν1,`∪µ1,j ](e) =
tt, or eval[ν2,`∪µ2,j ](e) = eval[ν1,`∪µ1,j ](e) = ff. In the case eval[ν2,`∪µ2,j ](e) = tt,
Rule (3.19) can be applied for process ` from state q2, leading to a state q′2 exactly
like q2 except for σ2,j = σb;σ2,j = σb;σ1,j = σ′1,j . In the case eval[ν2,` ∪µ2,j ](e) =
ff, Rule (3.20) can be applied for process ` from q2, leading to a state q′2 exactly
like q2 except for σ′2,j = σ = σ′1,j . In both case, by definition of S, we have that
〈q′1, q′2〉 ∈ S.

Sequence Wait Rule If q1 −→1 q
′
1 was derived using Rule (3.21) for some process i, we

have that ω1,i = SEQ;ω and that σ1,j = WAIT(e);σ′1,j . There are two cases to consider:
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(i) If i < k, by definition of S, we have that ω2,i = ω1,i = SEQ;ω, that ν2,i = ν1,i, that
σ2,j = σ1,j = WAIT(e);σ′1,j and that µ2,j = µ1,j . Since Rule (3.21) was applied
from q1, it must be that var(e) ⊆ X1,i ∪ local(sj) = X2,i ∪ local(sj) and that
eval[µ1,j ∪ν1,i](e) = eval[µ1,j ∪ν1,i](e) = tt. Therefore, Rule (3.21) can be applied
from q2, leading to a state q′2 exactly like q2 except for σ′2,j = σ′1,j . Therefore, we
can conclude that 〈q′1, q′2〉 ∈ S.

(ii) If i = k, by definition of S, we have that σ2,j = σ1,j = WAIT(e)END WHILE;σ1,j

and that ω1,k = SEQ;ω ≺ 〈ω2,k, ω2,k+1〉, which implies, by Definition 3.9 that
ω2,k = SEQ;ω′ and ω2,k+1 = SEQ;ω′′ with ω ≺ 〈ω′, ω′′〉. We also by definition
of S that ν1,k ≺ 〈ν2,k, ν2,k+1〉 and that µ1,j = µ2,j . Then, since Rule (3.21) was
applied from q1, it must be that var(e) ⊆ X1,k ∪ local(sj) = X2,k ∪ X2,k+1 ∪
local(sk). However, since D2 ∈ DP , by Definition 3.3 of distribution, we have
that ∃X2,` ∈ D2 : var(WAIT(e)) ⊆ X2,` ∪ local(sj). It follows that either ` = k

or ` = k + 1. Moreover, we have that eval[ν2,i ∪ µ2,j ] = eval[ν1,i ∪ µ1,j ] = tt.
Therefore, Rule (3.21) can be applied for process `, from q2, leading to a state
q′2 exactly like q2 except for σ′2,j = σ′1,j . Therefore, by definition of S, we can
conclude that 〈q′1, q′2〉 ∈ S.

End of Sequence Treatment Rule If q1 −→1 q
′
1 was derived using Rule (3.22) for some

process i, we have that ω1,i = SEQ;ω′1,i. There are two cases to consider:

(i) If i < k, by definition of S, we have that ω2,i = ω1,i = SEQ;ω′1,i Therefore,
Rule (3.22) we be applied from state q2, leading to a state q′2 exactly like q2

except for ω′2,i = ω′1,i. By definition of S, we therefore have that 〈q′1, q′2〉 ∈ S.

(ii) If i = k, by definition of S, we have that ω1,k = SEQ;ω′1,k ≺ 〈ω2,k, ω2,k+1〉 and by
Definition 3.9 of code distribution that ω2,k = SEQ;ω′2,k and ω2,k+1 = SEQ;ω′2,k+1

with ω′1,k ≺ 〈ω′2,k, ω′2,k+1〉. Therefore, we can first apply Rule (3.22) from q2

for process k leading to a state q′′2 . Note that Rule (3.22) does not change the
valuations of the variables in V , which implies that q2

∼−→P,D2 q
′′
2 . Then, from q′′2 ,

since the workload of process k + 1 still begins with SEQ, we can again apply
Rule (3.22), but this time for process k+1 (stuttering is needed for that) leading
to a state q′2 exactly like q2 except for ω′2,k and ω′2,k+1 defined above. Finally,
since ω′1,k ≺ 〈ω′2,k, ω′2,k+1〉, by definition of S, we can therefore conclude that
〈q′1, q′2〉 ∈ S.
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C
dSL to Promela: an Example

I
n order to illustrate the translation of dSL programs into Promela, we introduce, in
Section C.1, a small toy example and, in Section C.2, its corresponding Promela

model.

C.1 The dSL Program

The dSL program is a simple program with four boolean variables, two events and two
sequences, distributed on two execution sites. The source code follows.

1 VAR

2 x, y, z, t : BOOL;

3 END_VAR

4

5 SITE Site1

6 OUTPUT x : 1.1.1;

7 END_SITE

8

9 SITE Site2

10 OUTPUT y : 1.1.1;

11 END_SITE

12

13 WHEN ~t THEN

14 y := TRUE;

15 END_WHEN

17 WHEN x THEN

18 t := TRUE;

19 END_WHEN

20

21 SEQUENCE foo()

22 x := TRUE;

23 z := TRUE;

24 y := FALSE;

25 z := FALSE;

26 END_SEQUENCE

27

28 SEQUENCE main()

29 LAUNCH foo();

30 END_SEQUENCE
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C.2 The Corresponding Promela Code

1 #define N_SITES 2

2 #define GAMMA 2

3

4 #define SITE_Site1 1

5 #define SITE_Site2 2

6

7 #define SEQUENCE_foo 15

8 #define SEQUENCE_main 16

9

10 /****************** Global Variables ****************/

11

12 chan phi_Site1[N_SITES] = [GAMMA] of { byte, byte };

13 chan phi_Site2[N_SITES] = [GAMMA] of { byte, byte };

14

15 bool x, y, z, t, tilde_t[N_SITES];

16 int foo_site, foo_pc, main_site, main_pc;

17 bool event_13_line_13_old_cond, event_14_line_17_old_cond;

18

19 /******************** IO Inlines ********************/

20

21 /* change this for environment dependent behaviour! */

22

23 inline input() { skip; }

24 inline output() { skip; }

25

26 /**************** Events & Sequences *****************/

27

28 inline event_13_line_13(pc) {

29 pc = 0;

30 cond = tilde_t[local_site-1];

31 if

32 :: (!event_13_line_13_old_cond && cond) -> {

33 do

34 :: (pc == 0) -> {

35 y = 1;

36 break;

37 }

38 od;

39 }

40 :: else -> skip;

41 fi;

42 event_13_line_13_old_cond = cond;

43 }
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44

45 inline event_14_line_17(pc) {

46 pc = 0;

47 cond = x;

48 if

49 :: (!event_14_line_17_old_cond && cond) -> {

50 do

51 :: (pc == 0) -> {

52 t = 1; broadcast(8, t);

53 break;

54 }

55 od;

56 }

57 :: else -> skip;

58 fi;

59 event_14_line_17_old_cond = cond;

60 }

61

62

63 inline sequence_foo(site, pc) {

64 do

65 :: (pc == -1) -> skip;

66 :: (pc == 0) -> {

67 x = 1; event_14_line_17(local_pc);

68 z = 1;

69 pc = 1;

70 site = SITE_Site2;

71 break;

72 }

73 :: (pc == 1) -> {

74 y = 0;

75 pc = 2;

76 site = SITE_Site1;

77 break;

78 }

79 :: (pc == 2) -> {

80 z = 0;

81 pc = -1;

82 break;

83 }

84 od;

85 }

86

87
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88 inline sequence_main(site, pc) {

89 do

90 :: (pc == -1) -> skip;

91 :: (pc == 0) -> {

92 if

93 :: (foo_pc == -1) -> foo_pc = 0; foo_site = SITE_Site1;

94 :: else -> skip;

95 fi;

96 pc = -1;

97 break;

98 }

99 od;

100 }

101

102

103 /****************** Internal Inlines *****************/

104

105 inline treat_messages(channel) {

106 n_messages[0] = len(channel[0]);

107 n_messages[1] = len(channel[1]);

108 do

109 :: if

110 :: n_messages[0] -> n_messages[0]--; channel[0] ? var, val;

111 :: n_messages[1] -> n_messages[1]--; channel[1] ? var, val;

112 :: else -> break;

113 fi;

114 if

115 :: (var == 8) -> {

116 tilde_t[local_site-1] = val;

117 if

118 :: (local_site == SITE_Site2) -> event_13_line_13(local_pc);

119 :: else -> skip;

120 fi

121 }

122 fi;

123 :: break;

124 od;

125 }

126

127 inline broadcast(var, val) {

128 phi_Site1[local_site] ! var, val;

129 phi_Site2[local_site] ! var, val;

130 }

131
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132 inline treat_sequences() {

133 do

134 :: (foo_site == local_site) -> sequence_foo(foo_site, foo_pc);

135 :: (main_site == local_site) -> sequence_main(main_site, main_pc);

136 :: break;

137 od;

138 }

139

140 /********************** Sites ***********************/

141

142 proctype Site1() {

143 int n_messages[N_SITES], var, val;

144 int local_site = SITE_Site1, local_pc;

145 bool cond;

146 do

147 :: input(); event_14_line_17(local_pc);

148 treat_messages(phi_Site1);

149 treat_sequences();

150 output();

151 od;

152 }

153

154 proctype Site2() {

155 int n_messages[N_SITES], var, val;

156 int local_site = SITE_Site2, local_pc;

157 bool cond;

158 do

159 :: input(); event_13_line_13(local_pc);

160 treat_messages(phi_Site2);

161 treat_sequences();

162 output();

163 od;

164 }

165

166 init {

167 foo_pc = -1;

168 main_pc = -1;

169 main_site = SITE_Site1;

170 main_pc = 0;

171 run Site1();

172 run Site2();

173 }
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D
The Canal Locks Controllers

1 (* Types *)

2 CLASS GATE

3 motorCommand, motorDirection : BOOL;

4 opened, closed, motorOrderGiven : BOOL;

5 buttonOpen, buttonClose : BOOL;

6 END_CLASS

7

8 CLASS LOCK

9 valveCommand, valveDirection : BOOL;

10 levelUp, levelDown, valveOrderGiven : BOOL;

11 bottomGate, topGate : GATE;

12 buttonFill, buttonEmpty : BOOL;

13 END_CLASS

14

15 (* Global variables *)

16 VAR

17 lock1, lock2 : LOCK;

18 notAllowed : BOOL;

19 END_VAR

20

21 (* Site *)

22 SITE lowerLock

23 INPUT lock1.bottomGate.opened : 1.0.1;

24 INPUT lock1.bottomGate.closed : 1.0.2;

25 INPUT lock1.topGate.opened : 1.0.3;

26 INPUT lock1.topGate.closed : 1.0.4;

27 INPUT lock1.levelDown : 1.0.5;

28 INPUT lock1.levelUp : 1.0.6;

29 OUTPUT lock1.bottomGate.motorCommand : 2.0.1;

30 OUTPUT lock1.bottomGate.motorDirection : 2.0.2;

31 OUTPUT lock1.topGate.motorCommand : 2.0.3;
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32 OUTPUT lock1.topGate.motorDirection : 2.0.4;

33 OUTPUT lock1.valveCommand : 2.0.5;

34 OUTPUT lock1.valveDirection : 2.0.6;

35 END_SITE

36

37 SITE upperLock

38 INPUT lock2.bottomGate.opened : 1.0.1;

39 INPUT lock2.bottomGate.closed : 1.0.2;

40 INPUT lock2.topGate.opened : 1.0.3;

41 INPUT lock2.topGate.closed : 1.0.4;

42 INPUT lock2.levelDown : 1.0.5;

43 INPUT lock2.levelUp : 1.0.6;

44 OUTPUT lock2.bottomGate.motorCommand : 2.0.1;

45 OUTPUT lock2.bottomGate.motorDirection : 2.0.2;

46 OUTPUT lock2.topGate.motorCommand : 2.0.3;

47 OUTPUT lock2.topGate.motorDirection : 2.0.4;

48 OUTPUT lock2.valveCommand : 2.0.5;

49 OUTPUT lock2.valveDirection : 2.0.6;

50 END_SITE

51

52 SITE controlPanel

53 INPUT lock1.bottomGate.buttonOpen : 1.0.1;

54 INPUT lock1.bottomGate.buttonClose : 1.0.2;

55 INPUT lock1.topGate.buttonOpen : 1.0.3;

56 INPUT lock1.topGate.buttonClose : 1.0.4;

57 INPUT lock1.buttonFill : 1.0.5;

58 INPUT lock1.buttonEmpty : 1.0.6;

59 INPUT lock2.bottomGate.buttonOpen : 1.0.7;

60 INPUT lock2.bottomGate.buttonClose : 1.0.8;

61 INPUT lock2.topGate.buttonOpen : 1.0.9;

62 INPUT lock2.topGate.buttonClose : 1.0.10;

63 INPUT lock2.buttonFill : 1.0.11;

64 INPUT lock2.buttonEmpty : 1.0.12;

65 OUTPUT notAllowed : 2.0.1;

66 END_SITE

67

68 (* Methods *)

69 METHOD GATE::move(direction : BOOL)

70 self.motorDirection := direction;

71 self.motorCommand := TRUE;

72 END_METHOD

73

74 METHOD GATE::resetOrderGiven()

75 self.motorOrderGiven := FALSE;
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76 notAllowed := FALSE;

77 END_METHOD

78

79 METHOD LOCK::waterMove(direction : BOOL)

80 IF NOT self.levelDown THEN

81 self.valveCommand := TRUE;

82 self.valveDirection := direction;

83 END_IF;

84 END_METHOD

85

86 METHOD LOCK::resetValveOrderGiven()

87 self.valveOrderGiven := FALSE;

88 notAllowed := FALSE;

89 END_METHOD

90

91 (* Events *)

92 WHEN IN GATE self.closed OR self.opened THEN

93 self.motorCommand := FALSE;

94 LAUNCH self<-resetOrderGiven();

95 END_WHEN

96

97 WHEN IN LOCK self.levelUp OR self.levelDown THEN

98 self.valveCommand := FALSE;

99 LAUNCH self<-resetValveOrderGiven();

100 END_WHEN

101

102 WHEN lock1.bottomGate.buttonOpen THEN

103 IF (~lock1.topGate.closed) AND (NOT lock1.topGate.motorOrderGiven) AND

104 (~lock1.levelDown) AND (NOT lock1.valveOrderGiven)

105 THEN

106 notAllowed := FALSE;

107 lock1.bottomGate.motorOrderGiven := TRUE;

108 LAUNCH lock1.bottomGate<-move(TRUE);

109 ELSE

110 notAllowed := TRUE;

111 END_IF;

112 END_WHEN

113

114 WHEN lock1.topGate.buttonOpen THEN

115 IF (~lock1.bottomGate.closed) AND (NOT lock1.bottomGate.motorOrderGiven) AND

116 (~lock2.bottomGate.closed) AND (NOT lock2.bottomGate.motorOrderGiven) AND

117 (~lock1.levelUp) AND (NOT lock1.valveOrderGiven)

118 THEN

119 notAllowed := FALSE;
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120 lock1.topGate.motorOrderGiven := TRUE;

121 LAUNCH lock1.topGate<-move(TRUE);

122 ELSE

123 notAllowed := TRUE;

124 END_IF;

125 END_WHEN

126

127 WHEN lock2.bottomGate.buttonOpen THEN

128 IF (~lock1.topGate.closed) AND (NOT lock1.topGate.motorOrderGiven) AND

129 (~lock2.topGate.closed) AND (NOT lock2.topGate.motorOrderGiven) AND

130 (~lock2.levelDown) AND (NOT lock2.valveOrderGiven)

131 THEN

132 notAllowed := FALSE;

133 lock2.bottomGate.motorOrderGiven := TRUE;

134 LAUNCH lock2.bottomGate<-move(TRUE);

135 ELSE

136 notAllowed := TRUE;

137 END_IF;

138 END_WHEN

139

140 WHEN lock2.topGate.buttonOpen THEN

141 IF (~lock2.bottomGate.closed) AND (NOT lock2.bottomGate.motorOrderGiven) AND

142 (~lock2.levelUp) AND (NOT lock2.valveOrderGiven)

143 THEN

144 notAllowed := FALSE;

145 lock2.topGate.motorOrderGiven := TRUE;

146 LAUNCH lock2.topGate<-move(TRUE);

147 ELSE

148 notAllowed := TRUE;

149 END_IF;

150 END_WHEN

151

152 WHEN IN GATE self.buttonClose THEN

153 LAUNCH self<-move(FALSE);

154 END_WHEN

155

156 WHEN IN LOCK self.buttonFill THEN

157 IF (~self.bottomGate.closed) AND (NOT self.bottomGate.motorOrderGiven) AND

158 (~self.topGate.closed) AND (NOT self.topGate.motorOrderGiven)

159 THEN

160 notAllowed := FALSE;

161 self.valveOrderGiven := TRUE;

162 LAUNCH self<-waterMove(TRUE);

163 ELSE
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164 notAllowed := TRUE;

165 END_IF;

166 END_WHEN

167

168 WHEN IN LOCK self.buttonEmpty THEN

169 IF (~self.bottomGate.closed) AND (NOT self.bottomGate.motorOrderGiven) AND

170 (~self.topGate.closed) AND (NOT self.topGate.motorOrderGiven)

171 THEN

172 notAllowed := FALSE;

173 self.valveOrderGiven := TRUE;

174 LAUNCH self<-waterMove(FALSE);

175 ELSE

176 notAllowed := TRUE;

177 END_IF;

178 END_WHEN

179

180 (* Sequences *)

181 SEQUENCE main()

182 notAllowed := FALSE;

183 END_SEQUENCE
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[Garg, 1992] Garg, V. K. (1992). Some Optimal Algorithms for Decomposed Partially
Ordered Sets. Information Processing Letter, 44:39–43.

[Garg and Mittal, 2001a] Garg, V. K. and Mittal, N. (2001a). Computation Slicing:
Techniques and Theory. In Proceedings of the 15thInternaltional Conference on
Distributed Computing (DISC’01), Lisbon (Portugal), volume 2180 of Lecture Notes
in Computer Science, pages 78–92. Springer.

[Garg and Mittal, 2001b] Garg, V. K. and Mittal, N. (2001b). On Slicing a Distributed
Computation. In Proceedings of the 21stInternational Conference on Distributed
Computing Systems (ICDCS’01), Phoenix (USA), pages 322–329.

[Garg and Mittal, 2005] Garg, V. K. and Mittal, N. (2005). Techniques and Applica-
tions of Computation Slicing. Distributed Computing, 17(3):251–277.

[Garg et al., 2003] Garg, V. K., Mittal, N., and Sen, A. (2003). Applications of Lattice
Theory to Distributed Computing. ACM Special Interest Group on Algorithms and
Computation Theory (SIGACT) News, 34(3):40–61.

[Garg and Waldecker, 1994] Garg, V. K. and Waldecker, B. (1994). Detection of Weak
Unstable Predicates in Distributed Programs. IEEE Transactions on Parallel and
Distributed Systems, 5(3):299–307.

[Genon, 2004] Genon, A. (2004). On the Verification of dSL, a Language to Design
Distributed Industrial Control Systems. DEA Thesis, Université Libre de Bruxelles.
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