
Efficient online monitoring of Ltl properties for
asynchronous distributed systems

Thierry Massart and Cédric Meuter?

Université Libre de Bruxelles ??

Abstract. We define an efficient online method to monitor the execu-
tion of asynchronous distributed systems. The code of such systems has
been instrumented to record and output, during execution, some perti-
nent events. This output can be abstracted as a trace , i.e. a partially
ordered set of events. During the execution, the online monitoring sys-
tem collects the trace and checks on the fly that it satifies a requirement,
given by any Ltl property on finite sequences. The monitor checks that
any execution sequence compatible with the partial order induced by the
trace satisfies the property. This problem is NP-complete in the number
of concurrent processes. Therefore, to provide an online monitor which,
in practice, can cope in real-time with the workload, our method explores
the possible configurations symbolically, as it handles sets of configura-
tions. Moreover, it uses techniques similar to the partial order reduction,
to avoid exploring as many execution interleavings as possible. It works
very well in practice, compared to the standard non symbolic monitoring
method.

Keywords: testing of asynchronous distributed systems, online moni-
toring, symbolic method, global properties, model checking of traces

1 Introduction

A distributed control system is composed of distributed hardware equipments
which run concurrent processes, communicating asynchronously through some
network. These communicating processes collaborate to control, through sensors
and actuators, some environment, such as a satellite or an industrial equipment.
Even if the use of an adapted software environment [1, 2] may ease the design
and implementation of such a distributed reactive system, its correct building
remains a non-trivial task.

Verification tools (e.g. [3–5]) may be helpful in this task. They have gen-
erally integrated some efficient exploration techniques such as partial order re-
duction [6, 7] or symbolic model checking [8–10] which allow them to consider
some real-size systems. Unfortunately, quite often in practice, the state-explosion

? {tmassart,cmeuter}@ulb.ac.be
?? Boulevard du Triomphe - CP-212, 1050 Bruxelles, Begium - Tel:+32 2 650.5603 -

Fax:+32 2 650.5609

problem prevents the designer from the exhaustive verification of the complete
distributed system or its model.

Therefore, several other approaches have been followed. Testing methods can
detect system’s errors before deployment. Unfortunately, it cannot guarantee
its correctness. Monitoring techniques can detect problems during the system’s
execution. Offline monitoring is achieved after the execution on a recorded exe-
cution trace. Online monitoring is carried out during the system’s execution; this
allows both to detect immediately a (potential) error and to run recovery code
to overcome it. Most modern programming languages include assertions and
trap features which ease the implementation of these monitoring and recovery
techniques.

Testing and offline monitoring methods have also been proposed for dis-
tributed systems to test or monitor if some global predicates or global temporal
logic formulae are satisfied. For that purpose, the implementation (or the pro-
totype) is instrumented to record relevant events and a special process, called
monitor, receives these events from the various processes and checks that the ob-
served execution satisfies the desired global property. A simple example of such
global property is the requirement φ that in the distributed system S a valve
A in the controlled equipment is closed before another valve B is opened and
where each valve is controlled by a different distributed process. These monitor-
ing methods can take into account that for distributed asynchronous systems, a
run is generally not seen as a totally ordered sequence of events, but as a trace,
i.e. a partially ordered set where unordered events may have occurred in any
order. This causal partial order between the fired events are obtained through
code instrumentation using, e.g., vector clocks [11, 12]. In the collected trace,
two consecutive events of the same site are temporally ordered and communica-
tions (e.g. message transfers or shared variable manipulations) impose an order
between some distributed events. Monitoring that an execution of the system,
e.g. S given above, satisfies the global property φ reduces therefore to verifying
that every sequential execution compatible with the partial order, satisfies φ or
in other terms, model checking φ on the corresponding trace.

In a previous work [13], we have studied offline monitoring of distributed
systems. We have shown that this problem is hard, even if the monitor is already
built; and in practice, the number of compatible sequential executions may be
exponential in the number of concurrent processes. We have shown that the
standard partial order reduction methods are useless in this context.

However, we have kept the spirit of what is done with partial order reduction
techniques, which try to minimize the exploration of execution interleavings as
much as possible, and have proposed a method, efficient in practice to reduce the
monitoring time. This method is symbolic since it handles sets of configurations.

In the present paper, we extend our efficient symbolic method to do online
monitoring. We show that our method can save an exponential factor in the
number of execution steps the monitor must handle after the reception of each
recorded events. Therefore, in practice, it can happen that with the traditional

methods, the monitor cannot absorb the work to be done, and therefore cannot
react in real time to an error, while our method works well.

This paper is organized as follows. In section 2, we detail related proposals.
In section 3, we introduce our model for traces, and Ltl over finite sequences.
In section 4, we introduce the trace monitoring problem, and explain how it can
be solved by translating a formula into a finite automaton. Then, in section 5,
we present our symbolic method and we show in section 6, how this method can
be refined into a symbolic exploration algorithm. Next, in section 7, we present
our experimental results of various examples. Finally, further works are given in
section 8.

2 Related Works

Testing and offline monitoring of distributed systems are studied in papers on
trace model-checking and global predicate detection.

Trace model checking has been studied mainly theoretically through the def-
inition of several linear temporal logic for Mazurkiewicz traces. A Mazurkiewicz
trace [14], over an alphabet Σ with a independence relation I, can be defined as a
Σ-labelled partial order set of events with special properties not explained here.
For Mazurkiewicz traces, local and global trace logics have been defined. Local
trace logics have been proposed in the work of Thiagaranjan on TrPTL [15] and
Alur, Peled and Penczek on TLC [16]. Global trace logics include, among oth-
ers, LTrL [17] proposed by Thiagarajan and Walukiewicz, and Ltl on traces [18]
defined by Diekert and Gastin. However, in our monitoring problem, the trace
is an input which models a run that must be checked to see if the possible or-
dering of events is correct. For instance if it is required that an event a must
occur before b, and if, in the trace, actions a and b are independent and can be
executed in any order, the system is seen as incorrect. But, trace temporal logics
are not “designed” to express constraints on the particular order independent
actions are executed. For instance if actions a and b are independent, the trace
T = ab expresses that a and b are concurrent. Hence, the Ltl formula a → ♦b
which expresses on semantics on sequences, that a is eventually followed by b
is not so easily expressible in trace-LTL. So, since we do not have a priori the
independence relation, these trace logics are not adapted to model-check our
runs and we stick to simple sequence semantics.

Global predicate detection initially aims at answering reachability questions,
i.e. does there exist a possible global configuration of the system, that satisfies a
given global predicate φ. Garg and Chase showed in [19] that this problem is NP-
complete for an arbitrary predicate, even when there is no inter-process commu-
nication. Efficient (polynomial) methods have been proposed for various classes
of predicates, as stable predicates proposed by Chandy and Lamport [20], inde-
pendent predicates by Charron-Bost et al [21], conjunctive predicates by Garg
and Waldecker [22, 23], linear and semi-linear predicates by Chase and Garg [19]
and regular predicates by Garg and Mittal [24]. Garg and Mittal make use of
the efficient technique called computation slicing, to compute all cuts compatible

with a given execution satisfying a given regular predicate [25]. In [26], A. Sen
and Garg present the temporal logic RCTL (for regular-CTL), which is a subset
of the temporal logic CTL (and an extension, RCTL+). Every RCTL formula is
a regular predicate; thus with RCTL formulae, we can use computation slicing to
solve the predicate detection problem. In [27, 28] K. Sen et al. use an automaton
to specify the system’s monitor. The authors provide an explicit exploration of
the state space and to limit this exploration a window is used. The choice of
a linear temporal logic as Ltl rather than a branching temporal logic as CTL
seems natural since the aim is to verify that for all total orderings of the occurred
events, the corresponding runs satisfy the property.

Online monitoring has been proposed by Chen et al in [29] and implemented
in the Java-MOP environment. However, the properties checked are mainly lo-
cal. The work by Lafortune et al [30, 31] on distributed failure diagnostic is very
similar to online global predicate detection. However, contrary to us, the authors
made the synchronous assumption that the communication between distributed
processes is instantaneous. Benveniste et al [32] have proposed an algorithm to
make failure diagnostic for asynchrounous systems. It is based on net unfold-
ing [33, 34]. The diagnostic problem is defined as the work, from the description
of the system and partial observations of its execution, to reconstruct all possible
configurations where the system can be. Tripakis et al [35, 36] gave a theoretical
analysis on the decentralized observation and control (synthesis) problem, where
several monitors, each with only a partial observation capability, run in parallel.
They showed negative (undecidable) results for this problem. In [37] K. Sen et
al. define the logic PT-DTL which is a variant of past time linear temporal logic,
suitable for efficient distributed online monitoring on execution traces. Note also
that slight modifications [38] to the algorithms in [27, 28] allow to make them
work online.

However, if it allows efficient check, neither PT-DTL of K. Sen et al nor RCTL
of A. Sen and Garg can verify properties as Ltl (or equivalent CTL formula)
�(a → ♦(b ∧ c)), i.e. every a is eventually followed by a state (or a transition)
where b and c are true; formula that may be very useful during validation.

Our work uses a similar framework to what is used in [27, 28]. Since the
problem is hard, we investigate here on the possibility to increase efficiency in
the work of the centralized monitor: we define a symbolic online method, to
build monitors, efficient in practice, and able to model-check if an instrumented
distributed trace satisfies an Ltl formula.

3 Framework

In this section, we detail our framework. We first introduce the notion of trace
which models a run of a concurrent system. Then, we introduce Ltl over finite
sequences.

Trace Our runs are obtained by concurrent processes, each executing a finite
sequence of variable assignments. Moreover, due to inter-process communications

(shared variable, message passing, ...), other causal dependencies are added. A
run is modeled as a finite trace, i.e. a finite partially ordered set of events, where
each event is labeled by the assignment which took place during this event.

Definition 1 (Trace). For a set of variables Var, a (finite) trace T is a finite
labeled partially ordered set (E, λ,�) where:

– E is a finite set of events, that can be partitioned into n subsets Pi (1 ≤ i ≤
n), one for each process.

– λ : E 7→ V ar × N is a labeling function, mapping each event e to an assign-
ment of the form x := v. For the event e, var(e) and val(e) denote respectively
the variable x and value v of the corresponding assignment.

– �⊆ E × E is a partial order relation on E

In the following, ↓e denotes the set of predecessors of e (↓e = {e′ | e′ � e})
and ↑e denotes the set of successors of e (↑e = {e′ | e � e′}). We also define
a cut C of a trace T , which models an “execution point” of the corresponding
distributed execution, as a consistent set of events C ⊆ E such that ↓C = C.
We note CT the set of all cuts of T . The set of enabled events of a cut is defined
by enabled(C) = {e ∈ E \ C | ↓e \ {e} ⊆ C}. Note that for a cut C and any
event e ∈ enabled(C) , the set C ∪ {e} is also a cut.

As explained earlier, the system modeled as a partially-ordered trace T =
(E, λ,�). The semantics of such a trace is defined by the set of all finite sequences
of events from E, compatible with the partial order �.

Definition 2 (Semantics of a trace T). noted [[T]] is defined by:

[[T]] =
{
σ = e1, ..., en | ∀1 ≤ i, j ≤ n :

({ei, ej} ∈ E) ∧ (ei � ej ⇒ i ≤ j)
∧(i 6= j ⇒ ei 6= ej)

}

Ltl over finite sequences Since events in a trace are single assignment, we
naturally first define basic propositions as boolean expressions on variables of the
trace. We restrict ourselves to expressions using arithmetic operators (+,-,*,/),
comparison operators (<,>,=) and boolean connectors (∧, ∨, ¬). Moreover,
since each trace’s event is a simple assignment, each basic proposition uses only
one variable of the trace. Example of such basic propositions are (x = 3) or
((0 < 2 ∗ x) ∧ (2 ∗ x < 5)). We denote by P the set of such basic propositions
and by var(p), the variable appearing in a basic proposition p. The set of Ltl
formulas is then defined as follows: φ = > | p | ¬φ | φ ∧ φ | ©φ | φ Uφ, where© is
the next state operator, and U is the until operator. Operators ∨ and⇒ can be
derived from ∨ and ¬ in a usual way. Moreover, one can use some abreviations:
♦φ ≡ > Uφ (eventually), �φ ≡ ¬♦¬φ (always). A formula is interpreted over a
finite sequences of events σ = e0, e1, ..., en. The satisfaction relation |= is defined

on (σ, i), where σ is a sequence of events, and 0 ≤ i ≤ |σ|, as follows:

(σ, i) |= >
(σ, i) |= ¬φ iff (σ, i) 6|= φ

(σ, i) |=©φ iff (i = |σ|) or (σ, i+ 1) |= φ

(σ, i) |= φ ∧ ψ iff (σ, i) |= φ and (σ, i) |= ψ

(σ, i) |= p iff var(p) = var(ei) and p[var(ei)← val(ei)] is true
(σ, i) |= φ Uψ iff ∃j, i ≤ j ≤ |σ| s.t. (σ, j) |= φ and (∀k, i ≤ k < j : (σ, k) |= ψ)

We note σ |= φ iff (σ, 0) |= φ. In particular, e |= p indicates that an event e
satisfies a basic proposition p. The semantics of a formula φ, noted [[φ]], is defined
as the set of sequences satisfying φ. Formally, [[φ]] = {σ | σ |= φ}.

4 Trace monitoring problem

Using the notations presented in the previous section, we can easily formalize
the monitoring problem as follows.

Definition 3 (Trace monitoring problem (TMP)). Given a trace T =
(E, λ,�) and a Ltl formula φ, the trace monitoring problem (TMP) is to check
whether [[T]] ⊆ [[φ]].

Monitors The TMP can be reduced to checking that [[¬φ]]∩[[T]] = ∅. A standard
way to do that is to build a finite automaton accepting [[¬φ]]. Indeed, using such
an automaton, called a monitor in the following, one can easily check if there
exists some sequence σ ∈ [[T]] violating the formula φ. Standard techniques to
build such monitors have been developed over the years [39–41], and are beyond
the scope of this paper. One only needs to know that, in this context, finite
automata with basic propositions on transitions are sufficient to represent a
monitor for finite traces (see e.g. [42] for a discussion on this). Note that these
monitors will recognise all sequences σ violating the property, i.e. in [[¬φ]]. The
definition of monitors follows.

Definition 4 (Monitor). A monitor M is a tuple (M,m0, B,−→m) where:

– M is a finite set of states,
– m0 ∈M is the initial state,
– B ⊆M is a set of final “bad” states,
– −→⊆M × P ×M is a transition relation.

Composition We have seen that the monitoring problem reduces to determine
if a given trace T = (E, λ,�) and monitorM = (M,m0, B,−→m) have a common
accepted sequence of events; or in other words does there exist a sequence of
events of E, compatible with � such that the execution of this sequence can
leadM in a “bad” state.

A priori, we need to examine how the monitor reacts to every interleaving
of [[T]]. A monitor reacts to an event e if, in its current state, there exists an

x:=0 y:=3 x:=5

w:=4 w:=0

P1

P2

(a) Trace

badtmp w = 0init
x > 0

(b) Monitor

(〈0,0〉,init)

(〈0,1〉,init)

(〈1,0〉,init)

(〈1,1〉,init)

(〈2,0〉,init)

(〈2,1〉,init)

(〈3,0〉,tmp)

(〈3,1〉,tmp)

(〈2,2〉,init)

(〈3,2〉,bad)

x := 0

x := 0

y:= 3 x:=5

y:=3 x:=5

x:=5

w:=4 w:=4 w:=4 w:=4

w:=0 w:=0

(〈3,2〉,tmp)

(c) Composition

Fig. 1. Example of composition

outgoing transition labeled with a proposition p such that e |= p. Let succ(m, e)
denote the set of monitor states reached by triggering an event e, from a monitor
state m. Formally, succ is defined as follows:

succ(m, e) =

{
{m} if ∀m p−→m m′ : e 6|= p

{m′ | ∃m p−→m m′ : e |= p} otherwise

According to this definition, when no transition is provided for an event, the
monitor remains in its current state (i.e. does not block). This leads us to the
following definition of composition of a trace with a monitor.

Definition 5 (Composition). The composition of a trace T and a monitor
M, noted T ⊗M is a transition system (Q, q0,−→) where:

– Q = 2E ×M is the set of configurations
– q0 = (∅,m0) is the initial configuration
– −→⊆ Q×E×Q is the transition relation defined as follows: ∀(s,m) ∈ Q,∀e ∈

enabled(s), ∀m′ ∈ succ(m, e)

(s,m) e−→ (s ∪ {e},m′)

We note (s,m) σ
 (s′,m′) iff ∃(s0,m0), (s1,m1), ..., (sn,mn), such that

(s,m) = (s0,m0), (s′,m′) = (sn,mn) and the path σ = e1e2 · · · en with
∀ 0 ≤ i < n : (si,mi)

ei−→ (si+1,mi+1). We also note (s,m) (s′,m′) if
∃σ ∈ [[T]] : (s,m) σ

 (s′,m′), and reachable(s,m) = {m′ ∈ M | ∃s′ (s,m)
(s′,m′)}. A simple example of composition is presented in figure 1 where e.g. the
vector 〈2, 1〉 represents the cut reached after execution of 2 events in P1 (x:=0;
y:=3) and 1 event in P2 (w:=4) (i.e. 〈2, 1〉 = {x := 0, y := 3, w := 4})

Using this composition, the trace monitoring problem can be easily solved by
checking that reachable(s,m)∩B = ∅. However, the number of configurations in

the composition can be exponential in the number of processes. In fact, we have
proved in a previous work [13] that the TMP is NP-complete.

5 Symbolic composition

Our aim is to exploit the fact that the monitor is not always sensitive to all
events, In order to reduce the number of interleavings to explore. Indeed, in the
classical exploration, if an event e does not assign any variable appearing in a
guard of an outgoing transition, we consider two cases: one where e is fired, and
one where e is not. But both executions correspond to the same evolution of the
monitor. Hence, it would be more efficient to remember that e optionally has
been fired. However, such an event might become relevant in the future because
its execution either induces directly, or indirectly, a monitor move. Therefore,
in our approach, each configuration will separate both kinds of events: optional
events, i.e. events that did not take part in a monitor move, and mandatory
events, i.e. events that did take part in a monitor move. In practice, such a
configuration is a tuple (t, w,m), where t and w are cuts. Mandatory events
are contained in t, and optional events are contained in between t and w. One
of these configuration (t, w,m) symbolically represents an entire set of explicit
configuration {(s,m) | s ∈ CT ∧ t ⊆ s ⊆ w}. Hence in the following we will refer
to these as symbolic configuration.

Definition 6 (Symbolic Composition). The symbolic composition of a trace
T and a monitor M, noted T ⊗sM is a transition system (Qs, q

0
s ,−→s) where:

– Qs = 2E × 2E ×M is the set of symbolic configurations
– q0s = (∅, ∅,m0) is the initial symbolic configuration
– −→s⊆ Qs × E × Qs is the transition relation defined ∀(t, w,m) ∈ Qs, as

follows:
(i) if e 6∈ sensitive(m) ∧ e ∈ enabled(w) , then

(t, w,m) e−→s (t, w ∪ {e},m)

(ii) if e ∈ sensitive(m) ∧ e ∈ enabled(w) ∪ [t, w], then ∀m′ ∈ succ(m, e)

(t, w,m) e−→s (t ∪ ↓e, (w\ ↑e) ∪ {e},m′)

The relations σ
 s and s are defined similarly to σ

 and of the previous
section. We note reachables(t, w,m) = {m′ ∈ M | (t, w,m) (t′, w′,m′)}, the
set of reachable monitor states.

As illustrated in figure 2, from a symbolic configuration (t, w,m), we can fire
events that were not previously examined before (Fig. 2(a)), or events that were
examined before as optional and that have become interesting now (Fig. 2(b)).
When firing an event e, we consider two cases. The first case is when e is not
sensitive in m. In this case, since e becomes optional, it is simply added to w.
On the other hand, if e is sensitive in m, it becomes mandatory and must be

∈ z

∈ [t, w] \ z

t

w

e

∈ z

∈ [t, w] \ z

t

w

e

∈ z

∈ [t, w] \ z

t

w

e

t′

w′

t′

w′

(a) e ∈ enabled(w)

∈ z

∈ [t, w] \ z

t

w

e

∈ z

∈ [t, w] \ z

t

w

e

∈ z

∈ [t, w] \ z

t

w

e

t′

w′

t′

w′

(b) e ∈ [t, w]

Fig. 2. Symbolic transition (t, w, m)
e−→s (t′, w′, m′) with e ∈ sensitive(m)

added to t. However if e becomes mandatory, so are all its causal predecessors;
so ↓e is added to t. Moreover, we add e to w in order to keep t included in w,
and all events added to w in the strict future of e must be removed from w since
e changed from optional to mandatory.

Theorem 1 (Correctness of symbolic composition [13]). The symbolic
composition is correct w.r.t the classical explicit composition

reachables(∅, ∅,m0) = reachable(∅,m0)

Proof. A complete proof can be found in [43].

The advantage of this method is that since non-sensitive events do not influ-
ence the monitor when being fired, they can be fired in any order, e.g. before fir-
ing sensitive events. To prove this, we introduce a covering operator on symbolic
configurations, and show that it is monotonic w.r.t the symbolic composition.

Definition 7 (Covering operator v). A symbolic configuration (t, w,m) is
covered by a symbolic configuration (t′, w′,m′), noted (t, w,m) v (t′, w′,m′), iff

(t′ ⊆ t) ∧ (w ⊆ w′) ∧ (m = m′)

Theorem 2 (Monotonicity of v). The covering operator is monotonic w.r.t
the symbolic composition.(

(t1, w1,m1)
e−→s (t′1, w

′
1,m

′
1) ∧ (t1, w1,m1) v (t2, w2,m2)

)
⇒(

∃(t′2, w′2,m′2) : (t2, w2,m2)
e−→s (t′2, w

′
2,m

′
2) ∧ (t′1, w

′
1,m

′
1) v (t′2, w

′
2,m

′
2)

)
Proof. A complete proof can be found in [43].

Theorem 2 says that if a symbolic configuration (t1, w1,m1) is covered
by another symbolic configuration (t2, w2,m2), then (t2, w2,m2) can simulate
(t1, w1,m1), i.e. have at least the same behaviours. Moreover, it is easy to see
that, for any configuration (t, w,m), and any event e ∈ enabled(w)\sensitive(m),
(t, w,m) v (t, w∪{e},m). Any sensitive events that could be fired from (t, w,m),
can also be fired from (t, w ∪ {e},m). Therefore, firing non-sensitive events first
is safe.

x := 0 x:=5

w:=4 w:=0

w:=0

(〈0,0〉,〈0,1〉,init) (〈1,0〉,〈2,2〉,init) (〈3,0〉,〈3,2〉,init)

(〈3,2〉,〈3,2〉,bad)(〈3,1〉,〈3,1〉,init)

Fig. 3. Symbolic exploration

6 Online symbolic monitoring algorithm

The symbolic composition presented in the previous section can be refined into
an efficient online symbolic monitoring algorithm, presented in algorithm 1. This
algorithm receives and treats events one at a time, in any order. It maintains a set
T of all active symbolic configurations at any given time. It also maintains two
sets of events. The first set E contains all events that have already been received
and treated. The second set F contains the events that have been received,
but that could not be treated right away because their past was incomplete at
the time. F is only used to obtain events in a topological order. Obviously, if
the various processes send their events quickly, F should remain small. When
a new event is received, it is added to F (line 5). Every event e from F that
is ready (i.e. whose past is complete) is then treated. For that, we examine T
to determine all symbolic configurations from which e can be fired (line 10).
Given such a symbolic configuration (t, w,m), we first explore all non-sensitive
events, as explained earlier. In practice, we add to w all non-sensitive events
of enabled(w), and this repeatedly until a fixed point is reached (lines 14–17).
From the resulting configuration, every sensitive events is fired yielding several
new configurations (lines 21–22). The last part of the loop consists in cleaning
T from any unnecessary symbolic configuration. First we remove any symbolic
configuration from which a bad state can never be reached anymore (line 24).
Note that a statical analysis of the monitor can be used to compute those “good”
states beforehand. Next, any symbolic configuration that is covered by another in
T is removed (line 25). Finally, outdated configurations, i.e. configurations from
which no new event can be fired, are removed (line 26). In order to determine if
a symbolic configuration (t, w,m) is outdated, we just check that since the cut
w, at least one event has been received from every process.

7 Experimental results

In this section, we try to experimentally validate our method. We tried to com-
pare our symbolic algorithm, as presented in the previous section, with an explicit
level-by-level exploration of the lattice of cuts. This explicit algorithm was taken
from [28] and adapted after discussing it with the authors [38] to make it fully
online.

Traces were generated by instrumenting the code to emit relevant events (i.e.
assignments). The partial order relations were obtained using vector clocks. For
each example, we compared the mean number of active configurations at any
given time, as well as the mean time needed for the monitoring process to react

Algorithm 1: Online symbolic monitoring
input: M = (M, m0, B,−→m), n (the number of processes)
output: ERROR if the property is violated and OK if the property is satisfied
begin1

E ← ∅, F ← ∅2

T ← {(∅, ∅, m0)}3
while T 6= ∅ do4

F ← F ∪ {receiveEvent()}5
while (F ∩ enabled(E) 6= ∅) do6

let e ∈ F ∩ enabled(E)7
F ← F \ {e}8
E ← E ∪ {e}9
W ← {(t, w, m) | e ∈ enabled(w)}10
while W 6= ∅ do11

let (t, w, m) ∈ W12
W ← W \ {(t, w, m)}13
repeat14

x← w15
w ← w ∪ (enabled(w) \ sensitive(m))16

until (w = x)17
T ← T ∪ {(t, w, m)}18
if (m ∈ B) then19

return ERROR20

forall e′ ∈ (enabled(w) ∪ [t, w]) ∩ (sensitive(m)) do21
W ← W ∪ {(t ∪ ↓e′, w\ ↑e′ ∪ {e′}, m′) | m′ ∈ succ(m, e′)} \ T22

T ← T \ {(t, w, m) ∈ T | ∀m′ ∈M : (m m′)⇒ (m′ 6∈ B)}23

T ← T \ {(t, w, m) ∈ T | ∃(t′, w′, m′) ∈ T : (t, w, m) v (t′, w′, m′)}24

T ← T \ {(t, w, m) | ∀1 ≤ i ≤ n ∀e ∈ w ∩ Pi ∃e′ ∈ E ∩ Pi : e ≺ e′ }25

return OK26

end27

to a new event. Note that the scale on the y axis of the graphs are logarithmic.
A sample of the numerical results of these experiments can be found, for the
reviewers, in appendix A

The first example we considered was the Alternating Bit protocol with two
processes, where communication is done through message passing. We used a
monitor to check that no two messages with the same number (0 or 1) are suc-
cessully transmitted consecutively. Figure 4(a) shows that even in such a simple
example, with only two processes, the symbolic approach behaves better than the
explicit one. In terms of number of configurations, this could be expected, since
the method was design for that very purpose. For the reaction time, however,
one could have thought that the rather heavy machinery of the symbolic com-
position would have considerably slowed the monitoring process. Fortunately, it
appears not to be the case since the symbolic algorithm run in the average more
than 10 times faster.

The other example we considered was the Dining Philosophers problem. In
this example, communication between processes is done through shared vari-
ables. The monitor was used to check that no deadlock occurs, i.e. each philoso-
pher has one fork and waits for the other. We considered 3 and 5 philosophers.
To the contrary of the previous example, in the dining philosophers problem,
processes are much more independent, allowing more interleavings of events. In

 1

 10

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

n
nu

m
be

r
of

 c
on

fig
ur

at
io

ns

Number of events

Symbolic
Explicit

 0.0001

 0.001

 0.01

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

n
re

ac
tio

n
tim

e

Number of events

Symbolic
Explicit

(a) Alternating Bit Protocol

 1

 10

 100

 1000

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

n
nu

m
be

r
of

 c
on

fig
ur

at
io

ns

Number of events

Symbolic
Explicit

 0.0001

 0.001

 0.01

 0.1

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

n
re

ac
tio

n
tim

e

Number of events

Symbolic
Explicit

(b) Dining Philosophers Problem (3 philosophers)

 1

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

n
nu

m
be

r
of

 c
on

fig
ur

at
io

ns

Number of events

Symbolic
Explicit

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

n
re

ac
tio

n
tim

e

Number of events

Symbolic
Explicit

(c) Dining Philosophers Problem (5 philosophers)

Fig. 4. Experimental results

this case, depicted in figures 4(b) and 4(c), we can clearly see that the symbolic
approach outperforms the explicit one. With only 5 philosophers, the explicit
algorithm runs out of memory (2Gb) after 250 events. Moreover, the reaction
time goes over 6 seconds, which is unacceptable when monitoring industrial con-
trolers.

Event though the results presented in this section are only preliminary, the
few examples we studied indicate that the symbolic approach presented in this
paper is quite promising.

8 Further works

Our symbolic method will be integrated into our distributed controllers design
environment dSL [1, 2] to allow efficient testing of real industrial distributed
controllers. It will allow us to run more experiments to make its full validatation.

We will also investigate on the use of our method in different frameworks. A
first candidate is the validation of Message Sequence Charts (MSC). We must
study how our method can improve the efficiency of existing MSC validation
methods.

As a next step, we will see how it is possible to distribute our monitors,
and to extend its goal to control the system with possible recovery from failure.
Indeed, the needed systematic communication between the processes and the
centralized monitor to transfer the recorded events is a clear drawback of our
method. From the theoretical works previously made in the domain, it is also
clear that it will be impossible to completely remove the communication; but a
drastic reduction could be hoped to run the distributed monitor. Notice that,
our know-how in efficient automatic code distribution [1, 2] could be useful in
this task.

Finally, we are also interested in the extension of our method to the model-
checking of complete systems. The combined use of our method with unfolding
technique developed by McMillan [33] and further refined by Esparza [34] seems
a priori a promising approach.

References

1. De Wachter, B., Massart, T., Meuter, C.: dsl : An environment with automatic
code distribution for industrial control systems. In: Lecture Notes in Computer
Sciences. Volume 3144. Springer (2004) 132–145 (14 pages).

2. De Wachter, B., Genon, A., Massart, T., Meuter, C.: The formal design of dis-
tributed controllers with dsl and spin. Formal Aspects of Computing 17(2) (2005)
177–200 (24 pages).

3. Holzmann, G.J.: The model checker spin. IEEE Trans. Software Eng. 23(5) (1997)
279–295

4. McMillan, K.: The smv system. Technical Report CMU-CS-92-131, Carnegie
Mellon University (1992)

5. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model
checking. In: CAV. (2002) 359–364

6. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems
- An Approach to the State-Explosion Problem. Volume 1032 of Lecture Notes in
Computer Science. Springer (1996)

7. Valmari, A.: On-the-fly verification with stubborn sets. In: CAV. (1993) 397–408
8. Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press (1999)
9. McMillan, K.L.: Symbolic model checking: an approach to the state explosion

problem. Carnegie Mellon University (1992)
10. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision dia-

grams. ACM Comput. Surv. 24(3) (1992) 293–318

11. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7) (1978) 558–565

12. Mattern, F.: Virtual time and global states of distributed systems. In et al.,
C.M., ed.: Proc. Workshop on Parallel and Distributed Algorithms, North-Holland
/ Elsevier (1989) 215–226

13. Genon, A., Massart, T., Meuter, C.: Monitoring distributed controllers: When an
efficient ltl algorithm on sequences is needed to model-check traces. In J. Misra,
T.N., ed.: FM. Lecture Notes in Computer Science, Springer (2006) to appear.

14. Mazurkiewicz, A.W.: Trace theory. In: Advances in Petri Nets. (1986) 279–324
15. Thiagarajan, P.S.: A trace based extension of linear time temporal logic. In

Abramsky, S., ed.: Proceedings of the Ninth Annual IEEE Symp. on Logic in
Computer Science, LICS 1994, IEEE Computer Society Press (1994) 438–447

16. Alur, R., Peled, D., Penczek, W.: Model checking of causality properties. In:
Proceedings of the 10th Annual IEEE Symposium on Logic in Computer Science
(LICS’95), San Diego, California (1995) 90–100

17. Thiagarajan, P.S., Walukiewicz, I.: An expressively complete linear time temporal
logic for mazurkiewicz traces. Inf. Comput. 179(2) (2002) 230–249

18. Diekert, V., Gastin, P.: LTL is expressively complete for Mazurkiewicz traces.
Journal of Computer and System Sciences 64(2) (2002) 396–418

19. Chase, C.M., Garg, V.K.: Detection of global predicates: Techniques and their
limitations. Distributed Computing 11(4) (1998) 191–201

20. Chandy, K.M., Lamport, L.: Distributed snapshots: Determining global states of
distributed systems. ACM Trans. Comput. Syst. 3(1) (1985) 63–75

21. Charron-Bost, B., Delporte-Gallet, C., Fauconnier, H.: Local and temporal predi-
cates in distributed systems. ACM Trans. Program. Lang. Syst. 17(1) (1995)

22. Garg, V.K., Waldecker, B.: Detection of weak unstable predicates in distributed
programs. IEEE Trans. Parallel Distrib. Syst. 5(3) (1994) 299–307

23. Garg, V.K., Waldecker, B.: Detection of strong unstable predicates in distributed
programs. IEEE Trans. Parallel Distrib. Syst. 7(12) (1996) 1323–1333

24. Garg, V.K., Mittal, N.: On slicing a distributed computation. In: ICDCS. (2001)
322–329

25. Mittal, N., Garg, V.K.: Computation slicing: Techniques and theory. In: DISC.
(2001) 78–92

26. Sen, A., Garg, V.K.: Detecting temporal logic predicates in distributed programs
using computation slicing. In: OPODIS. (2003) 171–183

27. Sen, K., Rosu, G., Agha, G.: Online efficient predictive safety analysis of multi-
threaded programs. In: TACAS. (2004) 123–138

28. Sen, K., Rosu, G., Agha, G.: Detecting errors in multithreaded programs by gen-
eralized predictive analysis of executions. In: FMOODS. (2005) 211–226

29. Chen, F., D’Amorim, M., Roşu, G.: Checking and correcting behaviors of java pro-
grams at runtime with java-mop. In: Workshop on Runtime Verification (RV’05).
ENTCS (2005)

30. Debouk, R., Lafortune, S., Teneketzis, D.: Coordinated decentralized protocols
for failure diagnosis of discrete event systems. Discrete Event Dynamic Systems:
Theory and Applications 10(1) (2000) 33–86

31. Genc, S., Lafortune, S.: Distributed diagnosis of discrete-event systems using petri
nets. In van der Aalst, W.M.P., Best, E., eds.: ICATPN. Volume 2679 of Lecture
Notes in Computer Science., Springer (2003) 316–336

32. Benveniste, A., Fabre, E., S.Haar, Jard, C.: Diagnosis of asynchronous discrete
event systems, a net unfolding approach. IEEE Transactions on Automatic Control
48(5) (2003) 714–727

33. McMillan, K.L.: A technique of state space search based on unfolding. Formal
Methods in System Design 6(1) (1995) 45–65

34. Esparza, J., Römer, S., Vogler, W.: An improvement of mcmillan’s unfolding
algorithm. (1996) 87–106

35. Tripakis, S.: Undecidable problems of decentralized observation and control on
regular languages. Inf. Process. Lett. 90(1) (2004) 21–28

36. Puri, A., Tripakis, S., Varaiya, P.: Problems and examples of decentralized obser-
vation and control for discrete event systems. In B. Caillaud, P. Darondeau, L.L.,
Xie, X., eds.: Synthesis and Control of Discrete Event Systems. Kluwer Academic
Publishers (2002) 37–56

37. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of
safety in distributed systems. In: Proceedings of 26th International Conference on
Software Engineering (ICSE’04), Edinburgh, UK, IEEE (2004) 418–427

38. Chen, F.: Private communication. (2006)
39. Jard, C., Jéron, T.: On-line model-checking for finite linear temporal logic speci-

fications. 407 (1989) 275–285
40. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods

in System Design 19(3) (2001) 291–314
41. Geilen, M.: On the construction of monitors for temporal logic properties. Electr.

Notes Theor. Comput. Sci. 55(2) (2001)
42. Leuschel, M., Massart, T., Currie, A.: How to make fdr spin : Ltl model checking of

csp by refinement. In: Lecture Notes in Computer Sciences. Volume 2021. Springer
(2001) 99–118 (20 pages).

43. Genon, A., Massart, T., Meuter, C.: Monitoring distributed controllers : When
an efficient ltl algorithm on sequences is needed to model-check traces. Technical
Report 2006-59, CFV - Université Libre de Bruxelles (2006)

A Experimental data (for reviewers)

#Conf. Reaction-time (sec.)

Experiment #Events Symbolic Explicit Symbolic Explicit

ABP 100 2 6 0.0002 0.0026
250 2 6 0.0002 0.003254
500 2 7 0.00018 0.00356
1000 2 7 0.00018 0.00359

Philosophers 3 100 10 65 0.000818 0.0121
250 12 111 0.000920 0.02328
500 13 102 0.000960 0.02112
1000 13 102 0.000940 0.02117

Philosophers 5 100 100 11639 0.0238 5.8324
250 138 12383 0.0352 6.43256
500 152 - 0.0378 -
1000 170 - 0.0433 -

Results for the explicit and symbolic monitoring: mean number of
configurations and execution time per received event after a sequence of n

events.

