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Abstract

Node selection in trees is a fundamental operation to
XML databases, programming languages, and informa-
tion extraction. We propose a new class of querying lan-
guages to definen-ary node selection queries as compo-
sitions of monadic queries. The choice of the underlying
monadic querying language is parametric. We show that
compositions of monadic MSO-definable queries cap-
ture n-ary MSO-definable queries, and distinguish an
MSO-completen-ary query language that enjoys an ef-
ficient query answering algorithm.

1 Introduction

Node selection in trees[12] is a fundamental operation
to XML databases, programming languages, and infor-
mation extraction. Node selecting captures the match-
ing aspect of tree transformations. Iterated node selec-
tion can be used to navigate through input trees while
producing output data structures.

From thedatabase perspective, node selecting is usu-
ally viewed as a querying problem [13, 15, 10]. The
W3C standard querying language XPath provides de-
scriptions ofmonadic queries, i.e. queries that define
sets of nodes in trees. XPath queries are used by the
W3C standard languages XQuery and XSLT for defin-
ing XML document transformations.

Modernprogramming languagessupport node selection
in trees viapattern matching, for instance all functional
programming languages of the ML family (Caml, SML,
Haskell). Tree pattern withn capture variables define
n-ary queries, i.e. queries that select sets ofn-tuples of
nodes. The XML programming languages XDuce [11]
and CDuce [4, 2] support more expressiverecursive tree
pattern.

Information extractiontasks for the Web can frequently
be reduced to definingn-ary queries in HTML or XML
trees. Gottlob et. al. [9] proposed monadic Datalog
as querying language for this purpose, and show that
it captures monadic MSO-definable queries [8]. Their
Lixto system [6, 1] provides a visual interface by which
to specify monadic queries in monadic Datalog, and to
compose them inton-ary queries. Composed monadic
queries are defined in Elog, a binary Datalog language.

We propose a new class of querying languages to de-
fine n-ary node selection queries as compositions of
monadic queries. The choice of the underlying monadic
querying language is parametric. We show that com-
positions of monadic MSO-definable queries capturen-
ary MSO-definable queries, and distinguish an MSO-
complete n-ary query language that enjoys efficient
query answering algorithms. Moreover, our language
allow to compose different monadic query languages,
for instance a monadic query defined by a Datalog pro-
gram with another monadic query defined by an XPath
node formula.

Compositions of monadic MSO-definable queries are
relevant to information extraction. They might be use-
ful to approach an open question in the context of the
Lixto system [6], of how to enhance such system by
machine learning techniques. Given a composition for-
mula, and examples for n-tuples that are to be selected,
one can use existing learning algorithms for monadic
MSO-definable queries [3], in order to infer n-ary MSO
definable queries.

The paper is organized as follows. We recall the defini-
tions ofn-ary MSO definable queries in tree inSection 2,
introduce languages of compositions of monadic queries
in Section 3, and discuss some instances inSection 4.
We study their expressiveness inSection 5and their al-
gorithmic complexity inSection 6, including algorithms
for the model-checking and the query answering prob-
lems, and prove the satisfiability problem to be NP-hard.
Finally in Section 7we propose a fragment of it, study
its expressiveness and give an efficient algorithm for the
query answering problem.

2 Node Selection Queries in Trees

We recall the definition ofn-ary MSO-definable queries
in trees. We develop our theory for binary trees. This
will be sufficient to deal with unranked trees, since
unranked trees can be viewed as binary trees via a
firstchild−nextsibling encoding [12].

We consider binary trees as acyclic digraphs with la-
beled nodes and ordered children. We start with a fi-
nite setΣ of node labels. A binaryΣ-tree t ∈ TΣ is a
finite rooted acyclic directed graph, whose nodes are la-
beled inΣ. Every node is connected to the root by a



unique path. All nodes of binary trees either have 0 or 2
children. Nodes without children are calledleaves. All
other nodes have a distinguished first and second child.

We write root(t) for the root of treet and nodes(t)
for the set of nodes of treet andedges(t) ⊆ nodes(t)2

for the set of edges oft. For all labelsa ∈ Σ, we write
laba(t) ⊆ nodes(t) for the subset of nodes oft labeled
by a. Given two nodesv1,v2 ∈ nodes(t) we call v2 a
child of v1 and writev1⊳v2 iff there exists an edge from
v1 to v2, i.e., if (v1,v2) ∈ edges(t).

The descendantrelation ⊳
∗ on nodes is the reflexive

transitive closure of the child relation⊳.

Thesubtree of tree t rooted by node v∈ nodes(t) is the
tree denoted byt|v that satisfies:

nodes(t|v) = {v′ ∈ nodes(t) | v⊳
∗ v′}

edges(t|v) = edges(t)∩nodes(t|v)2

root(t|v) = v
laba(t|v) = laba(t)∩nodes(t|v) ∀a∈ Σ

Definition 1. Let n∈ N. An n-ary query in binary
trees overΣ is a function q that maps trees t∈ TΣ to
set of n-tuples of nodes, such that∀t ∈ TΣ : q(t) ⊆
nodes(t)n. Moreover, we require q to be closed under
tree-isomorphism, i.e. h(q(t)) = q(h(t)) for a tree iso-
morphism h.

Simple examples for monadic queries in binary trees
overΣ are the functionslaba that map treest to the sets
of nodes oft that are labeled bya for a∈ Σ. The binary
querydescendant relates nodesv to their descendants,
i.e. descendant(t) = {(v,v′) ∈ nodes(t)2 | v⊳

∗ v′}.

Definition 2. A query languageL over alphabetΣ is a
pair L = (N,J.K) whereN is a set of names andJ.K an
interpretation function mapping names c∈ N to queries
JcK in Σ-trees.

The monadic second-order logic (MSO) in trees is a
query language that is widely accepted as the yardstick
for comparing the expressiveness of XML-query lan-
guages [9, 15]. This is because of the close correspon-
dence between MSO, tree automata, and regular tree
languages [17]. Every MSO formula withn free node
variables defines ann-ary query.

In MSO, binary treest ∈ TΣ are seen aslogical struc-
tures with domain nodes(t). The signatureT of
this structure contains symbols for the binary relations
child1 andchild2 and the unary relationslaba for all
a∈ Σ.

Let x,y,z range over a countable set of first-order vari-
ables andX over a countable set of monadic second-
order variables. Formulasφ of MSO have the following
abstract syntax, wherea∈ Σ:

φ ::= p(x) | child1(x,y) | child2(x,y)
| laba(x) | ¬φ | φ1∧φ2 | ∀xφ | ∀Xφ

A variable assignmentα into a treet maps first-order
variablesnodes(t) and second-order variables to sub-
sets ofnodes(t). We define the validity of formulas
φ in treest under variable assignmentsα in the usual

Tarskian manner, and writet,α |= φ in this case. The
first-order logicFO is obtained from MSO by omitting
the set quantification. Actually the notations FO and
MSO stands for FO[T] and MSO[T] respectively, i.e.
formulae over the vocabularyT.

We view MSO as a query language. The names ofn-
ary queries are MSO formulasφ(x1, . . . ,xn) with n free
first-order variablesx1, ...,xn. These define the follow-
ing queries:

Jφ(x1, ...,xn)K(t) = {(α(x1), ...,α(xn)) | t,α |= φ}
Definition 3. An n-ary query isMSO definableif it is
equal to some queryJφ(x1, . . . ,xn)K.

Unfortunately [5] shows that the satisfiability problem
is not fixed-parameter tractable, i.e. there exists no
polynomial p and elementary functionf such that we
can decide in timeO( f (|φ|) p(|t|)) whether an monadic
MSO-formulaφ is satisfiable in the treet. However,
there exists query languages that can express all MSO-
definable queries, which have polynomial-time com-
bined complexity: e.g. monadic queries defined by suc-
cessful runs of tree automata have exactly the power of
MSO in defining monadic queries but deciding the non-
emptyness of a monadic query is in polynomial-time
w.r.t. combined complexity [14].

Let us define some algorithmic tasks for query lan-
guages(N,J.K) that are common to database theory:

• model-checking: given a query namec, a tree
t and ann-tuple (v1, . . . ,vk) ∈ nodes(t)k, does
(v1, . . . ,vk) ∈ JcK(t) hold ?

• query answering: given a query namec and a tree
t, returnJcK(t). An expected complexity might be
polynomial in the number of solutions.

• satisfiability (over a fixed tree): given a query
namec and a treet, doesJcK(t) 6= /0 hold ?

Unranked trees are like binary trees, except that all
nodes may have arbitrarily many ordered children. The
next-sibling of a node is the successor of the same parent
in the sibling ordering.

Unranked trees can be encoded as binary trees by only
using edges for the first-child and next-sibling relations.
Fig. 1 gives a DTD, an unranked tree matching this
DTD and its first-child next-sibling encodingt. A sim-
ple binary query on that tree is to select all pairs of name
and title of the same book. It can be expressed with re-
spect to the binary encoding by the following MSO for-
mula with two free variablesy,z:

∃x (labauthor(x)∧child1(x,y)∧child2(x,z))

3 Composing Monadic Queries

Query languages for monadic queries in trees have been
widely studied by the database community in the last
few years. See [12] for a comprehensive overview.
Languages forn-ary queries are less frequent but have
started to arise with the XML programming languages



DTD unranked tree fc-ns encoding

<!ELEMENT bib (book)*>
<!ELEMENT book (author,title)>
<!ELEMENT author (name)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT name (#PCDATA)>

bib

book

author

name

title

book

author

name

title

bib

book

author

name title

book

author

name title

⊥

⊥

Figure 1. A DTD, an unranked tree matching the DTD and itsfirstchild−nextsibling encodingt.

XDuce and CDuce [11, 2, 4] as well as with information
extraction tools such as Lixto [8, 6].

In this paper, we propose a new class of languages
for defining n-ary queries by composition of monadic
queries. We leave the choice of the underlying monadic
querying language parametric, so the reader may choose
his prefered monadic querying language, and extend it
to ann-ary query language by query composition. The
composition operator is motivated by Lixto’s way of
definingn-ary queries [6].

The principle of composition is quite simple: a com-
position of two monadic queries first selects a node an-
swering the first sub-query and then launches the second
sub-query at that node. All nodes seen meanwhile can
be memoized and returned in an output tuple.

We start from a languageL of monadic queriesc and
an infinite setx,y,z∈ Var of variables. We then define
compositions of monadic queries on basis of the com-
position operator that we write as the dot ’.’ . Informally
a composition queryc1(x1).c2(x2) on a treet will first
bindx1 nondeterministically to some nodev1 ∈ Jc1K(t),
and then launch queryc2 in the subtreet|v1 rooted atv1
in order to bindx2 to some nodev2 ∈ Jc2K(t|v1).

For expressivity reasons – that is to capture MSO as
soon as the monadic query language capture MSO – we
add conjunction, disjunction and projection to our com-
position language1.

Given a monadic query languageL = (N,J.K), compo-
sition formulaeφ ∈ C (L) are defined by the following
abstract syntax:

φ ::= composition formula
⊤

| c(x).φ composition, c∈ N, x∈ Var
| φ∧φ conjunction
| φ∨φ disjunction
| ∃x φ projection

Given a composition formulaφ, we denotes by FV(φ)

1We proved that conjunctions, disjunctions and pro-
jections are required to express all MSO-queries by
composition of monadic MSO-definable queries

the set of free variables ofφ. We will often writec(x)
instead ofc(x).⊤. The set of subformulas ofφ is de-
noted bySub(φ). Thecomposition size|φ| of a formula
φ is inductively as follows:

|⊤| = 0, |φ∧φ′| = |φ|+ |φ′|+1
|c(x).φ| = 1+ |φ|, |φ∨φ′| = |φ|+ |φ′|+1
|∃x φ| = 1+ |φ|

Note that this definition implies that query names are of
size one.

For all treest, all valuationsν : Var → nodes(t) rang-
ing over the nodes oft, and all composition formula
φ ∈ C (L) we define the satisfaction relationt,ν |= φ as
follows:

(i)
range(ν) ⊆ nodes(t)

(ii)
t,ν |= ⊤

t,ν[x/u] |= c(x).φ iff

{

u∈ JcK(t) (1)
t|u,ν |= φ (2)

t,ν |= φ1∧φ2 iff t,ν |= φ1 andt,ν |= φ2
t,ν |= φ1∨φ2 iff t,ν |= φ1 or t,ν |= φ2
t,ν |= ∃x φ iff there existsu∈ nodes(t),

s.t. t,ν[x/u] |= φ

Let us consider the satisfiability ofc(x).φ. Condition
(1) implies thatJcK selects the nodeu in t, condition (2)
implies that the interpretation ofφ is relativized to the
subtree oft rooted atu.

Valuations define possible values for free variables in
composition formulae. A formula can define ann-ary
query by sorting its free variables. Formally, a formula
φ ∈ C (L) with free variables{x1, . . . ,xn} = FV(φ) de-
fines then-ary queryJφ(x1, . . . ,xn)K such that for all
treest:

Jφ(x1, . . . ,xn)K(t) = {(ν(x1), . . . ,ν(xn)) | t,ν |= φ}

4 Examples of Composition Lan-
guages

We now discuss some instances of query languages
C (L) by instantiating the parameterL to some concrete



monadic query language.

As first instance, we letL be the monadic query lan-
guage containing all monadic MSO formulas. For illus-
tration, we consider XML documents defining collec-
tions of books, which satisfy the DTD in Fig. 1. Our
target is to select all pairs of author names and titles of
the same book by composition.

We define the binary query onfirstchild-
nextsibling encodings. Names and titles of a
book are contained in siblings ofauthor-labeled nodes.
To select the pairs, we first select allauthor nodes by
the monadic queryJc1K defined by the monadic MSO
formula c1 = labauthor(x). We then compose it with
two independant monadic queriesJc2K and Jc3K, for
selecting name byc2 = ∃y root(y)∧ child1(y,x) and
title by c3 = ∃y root(y)∧ child2(y,x). The modeling
composition formula is:

φ = ∃zc1(z).(c2(x)∧c3(y))

Note that according to the DTD and the semantic of
composition, the first query can select nodes labeled
by author, and then, in each subtrees induced by the
previous selected nodes, one can select the node la-
beled byname, and the node labeled bytitle, by
two independant monadic queriesc′2 = labname(x) and
c′3 = labtitle(x) respectively. The modeling composi-
tion formula is then:

φ = ∃zc1(z).(c
′
2(x)∧c′3(y))

A second instance is obtained by composing monadic
Datalog queries [8] which are well known to capture all
monadic MSO. Indeed, our idea of compositions is very
much inspired by the way in whichn-ary queries are de-
fined from monadic Datalog queries by the Lixto system
for visual Web information extraction [1, 6].

We illustrate the correspondence at the example of se-
lecting pairs of author names and titles of the same
books. Such a query is expressed in Lixto by a Monadic
Datalog programP and an additional information about
the predicate hierarchy, which we model by a tree. We
express this query in thefirstchild−nextsibling
encodings. The monadic Datalog programP and the
predicate hierarchy are given on Figure 4.

We can express the same query by composing the
following three monadic Datalog queries by

φ(y,z) = ∃x P1(x).( P2(y) ∧ P3(z) )

.

P1 : Pauthor(x) :- labauthor(x)
with the goalPauthor

P2 : Pname(x) :- root(y),child1(y,x)
with the goalPname

P3 : Ptitle(x) :- root(y),child2(y,x)
with the goalPtitle.

Implementation We have implemented a rather naive

algorithm for answering compositions of monadic
queries, defined either in MSO, XPath, or by tree au-
tomata. Further monadic query languages are be eas-
ily added by new modules calledquery machines. Each
monadic query can be expressed by different formalism
within the same composition formula.

Our concrete syntax for expressing composition queries
is given in Fig. 3. A typical input consists of an XML
document and a composition query. The output is an
XML document representing the set of all answers. The
implementation is done in OCaml.

5 MSO Completeness

We call ann-ary query language MSO-complete if it
can express all MSO-definablen-ary queries. For in-
stance, monadic Datalog is known to be a MSO com-
plete monadic query language. In this paragraph, we
study the expressiveness of composition languages over
MSO-complete monadic query languages.

We show that the composition operator can be ex-
pressed in first-order logic, so thatn-ary-compositions
of monadic MSO definable queries are MSO-definable
too.

Let L = (N,J.K) be a monadic query language. For every
namec ∈ N we introduce a binary predicate symbolBc
that we interpret as a binary relation onBt

c ⊆ nodes(t)2

Bt
c = {(v,v′) | v′ ∈ JcK(t|v)}

We now consider the first-order logic over the signature
(Bc)c∈N∪T.

Proposition 1. Every composition formulaφ(x)∈ C (L)
is equivalent to some first-order formulaγ(x) over the
signature(Bc)c∈N∪T∪{⊳∗}.

Proof. We define a function〈.〉x encoding composi-
tion formulas into first-order formulas over the signature
(Bc)c∈N∪T∪{⊳∗} inductively:

〈⊤〉x = ⊤
〈c(y).φ〉x = Bc(x,y)∧〈φ〉y
〈φ1∧φ2〉x = 〈φ1〉x∧〈φ2〉x
〈φ1∨φ2〉x = 〈φ1〉x∨〈φ2〉x
〈∃y φ〉x = ∃y x⊳

∗ y∧〈φ〉x

Let γ(x1, . . . ,xn) ≡ ∃FV(φ)\{x1, . . . ,xn) (∃y root(y)∧
〈φ〉y), wherey 6∈ FV(φ). Finally note thatroot(x) is
FO[T]-definable.

If the monadic query language captures MSO then the
binary predicatesBc are MSO-definable. The first im-
portant technical contribution of this paper is that the
converse holds too.

Theorem 1. The class of n-ary queries defined by com-
position of MSO-definable monadic queries is exactly
the class of n-ary MSO definable queries.

To prove the first direction it suffices to show that each
predicateBc is MSO-definable wheneverJcK is. The



Pauthor(x) :- labauthor(x)
Pname(x) :- Pauthor(y), child1(y,x)
Ptitle(x) :- Pauthor(y), child2(y,x)

(a) programP

Pauthor

Pname Ptitle
(b) hierarchy

Figure 2. A set of Monadic Datalog rules and its predicates hierarchy

query ::= SELECT varsFROM formula
formula ::= atom| formulaAND formula| formulaOR formula
atom ::= machine(var)
vars ::= var | var,vars
var ::= identifier
machine ::= XPATH[ xpathspecif] | AUTOMATON[ automatonspecif] | MSO[msospecif]

Figure 3. Concrete sytnax for composition queries

binary MSO formulaγBc(x,y) definingBc is exactly the
formula γc(y) definingJcK where each quantification is
relativized tox.

The rest of this section prove the other direction, i.e.
the composition of monadic MSO-definable queries is
complete forn-ary MSO-definable queries. The proof
is based on the equivalence between MSO-definable
queries and node selection automata as defined in [16],
which is a consequence of the seminal theorem of
Thatcher and Wright [17].

We recall that anode selection automaton(NSA) is a
pair (A,S) whereA = (Σ,Q,F,∆) is a tree automata and
S is a set of selection tuplesq. We write(A,q) instead
of (A,{q}). A run of a tree automataA over a treet is
a treer isomorphic tot via an isomorphismΦ, where
each node is labeled inQ, and such that the following
holds:

• if v ∈ nodes(t) is a leaf labeled bya ∈ Σ, then
a→ labr (Φ(v)) is in ∆,

• if v ∈ nodes(t) is an inner node labeled by
f ∈ Σ, and v1,v2 ∈ nodes(t) are its first child
and its second child respectively, then the rule
f (labr(Φ(v1)),labr (Φ(v2))) → labr (Φ(v)) is in
∆.

A run r of A over t is successful iff its root is labeled
by an accepting state fromF . A NSA (A,S) selects a
tuple of nodes(v1, . . . ,vn) of a treet iff there exists
a successful runr over t (isomorphic tot via Φ), and
a selection tuple(q1, . . . ,qn) ∈ S, such that for each
i ∈ {1, . . . ,n}, the nodeΦ(vi) is labeled byqi in r.
When it is clear from the context we will omit the
isomorphismΦ. Finally, the class of MSO-definable
n-ary queries is exactly the class ofn-ary queries
defined by node selection automata over binary trees
[17, 16].

In order to prove Theorem 1 we introduce some nota-
tions. Given a setR, an n-tuple r = (r1, . . . , rn) ∈ Rn,
and a setJ ⊆ {1, . . . ,n}, we denote byΠJ(r) the pro-

jection of r w.r.t. J, defined byΠJ(r) = (r i)i∈J. In par-
ticular, Π /0(r) = (). Given a treet, ann-tuple of nodes
v = (v1, . . . ,vn) ∈ nodes(t)n, a NSA (A,q) with a se-
lection tupleq = (q1, . . . ,qn) ∈ Qn, and a stateq∈ Q, a
q-run of(A,q) over t selectingv is a run ofA overt such
that the root is labeled byq, andvi is labeled byqi for
eachi ∈ {1, . . . ,n}. In particular, whenn= 0, aq-run of
(A,()) overt selecting the empty sequence is a run ofA
overt labeling the root byq.

Lemma 1. Let n≥ 2 be a natural. Let t∈TΣ be a binary
tree. Letv = (v1, . . . ,vn) be a tuple of length n of nodes
from t, such that there exists at least two different nodes.
Let va be the least common ancestor ofv. Let v1a be the
first child of va, and v2a its second child. Define I,J,K as
follows:

I = {i | va = vi}
J = { j | v1

a ⊳
∗ v j}

K = {k | v2
a ⊳

∗ vk}

Let (A,q) be a NSA, and q a state, then there exists a
q-run r of A over t selectingv iff

∃q′,q′′ ∈ Q s.t.
- there exists a q-run of(A,ΠI (q)) over t
selectingΠI (v) and labeling v1a,v

2
a

by q′,q′′ respectively
- there exists a q′-run of (A,ΠJ(q)) over t|v1

a

selectingΠJ(v)
- there exists a q′′-run of (A,ΠK(q)) over t|v2

a

selectingΠK(v)

Proof. The proof is not difficult and left to the reader.

Lemma 2. Let n be a natural. Given a node selec-
tion automaton(A,q) whereq is an n-tuple of states,
given a state q∈ Q, there exists a composition formula
φA,q,q(x1, . . . ,xn) over MSO-definable monadic queries
such that for allΣ-tree t, for allv∈ nodes(t)n, the fol-
lowing are equivalent:

(i) there exists a q-run of A over t selectingv
(ii) v∈ JφA,q,q(x1, . . . ,xn)K(t)



Proof. We construct the formula inductively onn. The
construction mimics the decomposition given by lemma
1.
If n= 0 we takeφA,q,q = ∃x c0(x) whereJc0K(t) is equal
to nodes(t) if and only if there exists aq-run ofA overt.
By Thatcher and Wright’s theorem, this monadic query
is MSO-definable.
If n = 1, thenq = (p) for somep ∈ Q, and we take
φA,(p),q(x) = c1(x) whereJc1K is defined by the NSA
(A,(p)). Again by Thatcher and Wright’s theorem, this
query is MSO-definable.
If n > 1, we consider two cases depending on whether
the variablesx1, . . . ,xn will be instantiated by the same
node or not. SoφA,q,q(x1, . . . ,xn) will be written as a
disjunctionφeq

A,q,q∨φneq
A,q,q:

• case 1 (variables will be instantiated by the same
node). Letγ(A,q)(x) be an MSO formula such
that for a tree t and an n-tuple v of nodes
of t, it holds that v ∈ Jγ(A,q)K(t) iff there ex-
ists a q-run of (A,q) over t selecting v. It
is easy to show that this formula exists, by
Thatcher and Wright’s theorem. Then we take
φeq

A,q,q(x1, . . . ,xn) = ∃x c1(x).(
V

i cr (xi)), where
Jc1K is the query defined by the monadic MSO for-
mula∃y1, . . . ,yn−1

V

i(yn = yi)∧ γ(A,q)(y1, . . . ,yn)

andJcrK(t) selects the root oft, for any treet.

• case 2 (variables will be instantiated by at least
two different nodes). Letx denotes(x1, . . . ,xn)
and letPn be the sets of partitions (with possibly
empty parts) of{1, . . . ,n} such that for each
partition, there exists at most one empty part. We
defineφneq

A,q,q(x) by:

W

{I ,J,K}∈Pn

W

q′,q′′∈Q
∃x∃y∃z cqq′,q′′(x).

(
V

i∈I cr (xi)
∧c1(y).φA,ΠJ(q),q′(ΠJ(x))
∧c2(z).φA,ΠK(q),q′′(ΠK(x)))

whereJc1K(t) selects the first child of the root of
t, andJc2K(t) its second child. For any treet, the
query Jcq

q′,q′′K(t) selects a nodev ∈ nodes(t) iff
there exists aq-run of (A,ΠI (q)) over t selecting
(v,v, . . . ,v) (of length |I |), such that its first child
is labeled byq′, and its second child byq′′. This
query is MSO-definable, again by Thatcher and
Wright’s theorem. Remark that subformulae
φA,ΠJ(q),q′(ΠJ(x)) and φA,ΠK(q),q′(ΠK(x)) are
recursively well defined, since|K|, |J| < n.

The rest of the proof is a direct application of
Lemma 1.

To conclude the proof of Theorem 1, we state the fol-
lowing corollary:

Corollary 1. For each MSO formulaγ(x), there ex-
ists an equivalent composition formulaφ(x) over MSO-
definable monadic queries.

Proof. By [17, 16], there exists a NSA(A,S) equivalent
to γ, and we defineφ by: φ =

W

q∈S
W

q∈F φA,q,q, where
φA,q,q has been defined in the previous lemma.

6 Algorithmic Complexity

In this paragraphL = (N,J.K) is a monadic query
language, and we suppose that there exists an algorithm
for the model-checking problem in time-complexity
mc(c, t), where c ∈ N and t ∈ TΣ, and an algorithm
for the query answering problem in time-complexity
qa(c, t).

Fig. 4 represents a simple algorithm for the model-
checking problem of a formulaφ, a tree t and a
valuationν. It is written in a pseudo ML-like code. It
runs in timeO(|φ|M|t|maxφ′∈Sub(φ)(|FV(φ′)|) + |φ|2) where
M = maxc(x)∈Sub(φ)mc(c, t).

This gives a naive algorithm for the query answering
problem: generate all the valuations of free variables of
a formulaφ in a treet, and apply the model-checking
algorithm on them. This leads to an exponential
grow up, but it is not clear how to avoid it since the
satisfiability problem of monadic query composition is
NP-hard.

Proposition 2. Let Σ = {0,1,◦} be an alphabet and
L = ({c0,c1},J.K) a monadic query language overΣ
whereJcbK selects all the nodes labeled by b∈ {0,1}
in Σ-trees. Let t the binary whose roots is labeled by◦,
its first child by0, and its second child by1. Given a
composition formulaφ over L, the satisfiability problem
of φ over t is NP-hard.

Proof. To prove that it is NP-hard we give a polyno-
mial reduction of CNF satisfiability into our problem.
The idea is to associate with a given CNF formula
Ψ =

V

1≤i≤pCi a composition formulaφ =
V

1≤i≤p φi
over L. Eachφi is a composition formula associated
to the i-th clauseCi . It is defined by associating to
each litteralx j the atomic formulac1(x j ) and to¬x j the
formula c0(x j ), and to a disjunction of litterals a dis-
junction of atomic formulae. For example, if we con-
siderΨ = (x1 ∨¬x2)∧ (x2 ∨¬x3), thenφ = (c1(x1)∨
c0(x2))∧ (c1(x2)∨c0(x3)).

Composition and conjunctive queries Conjunctive
queries over finite relational structures have been
widely studied by the database community since it
is the most common database query in practice. The
particular case of conjunctive queries over unranked
trees have been studied in [7] over particular binary
XPath axisA = { Child, Child+, Child∗, NextSibling,



let check(φ, t,ν) = match φ with
| ⊤ → true
| ψ(x).φ′ → ν(x) ∈ JψK(t) ∧ check(φ′, t|ν(x),ν) ∧∀y∈ FV(φ′) ν(x)⊳

∗ ν(y)
| φ′∨φ′′ → check(φ′, t,ν) ∨check(φ′′, t,ν)
| φ′∧φ′′ → check(φ′, t,ν) ∧check(φ′′, t,ν)
| ∃x φ′ →

W

u∈nodes(t) check(φ′, t,ν[x/u])

Figure 4. Model-checking algorithm for a formula φ ∈ C (L), a tree t and a valuation ν

NextSibling+, NextSibling∗, Following}. Surprisingly
the complexity of these queries quickly fall into
NP-hardness. Since each conjunctive queries over these
axis in an unranked tree is expressible by a composition
query over a particular monadic query language in
binary trees, all the complexity lower bounds from [7]
apply to our formalism. For example, the satisfiability
problem of a composition query over the monadic query
languge ({c1∗ ,c2},J.K) is NP-hard w.r.t. combined
complexity, whereJc1∗K(t) = {v | Child∗1(root(t),v)}
andJc2K(t) = {v | Child2(root(t),v)}.

In the next section we propose a composition fragment
for which the satisfiability problem is in PTIME when-
ever this holds for the underlying monadic query lan-
guage, and give an efficient algorithm for query answer-
ing. In addition we prove that this fragment can express
all MSO-definablen-ary queries whenever the underly-
ing monadic query language captures MSO.

7 An MSO-Complete and Tractable
Fragment

In this section, we introduce a “tractable” syntactic frag-
ment of composition formulaeE (L), that leads to an
n-ary MSO-complete query language (as soon as the
monadic query languageL is), while enjoying efficient
query answering algorithms.

Let L be a language of MSO-definable monadic queries.
In this fragment, variable sharing between conjunctions
and composition are not permitted, more precisely, if
φ ∧ φ′ and c(x).φ′′ are E (L)-formula, then FV(φ) ∩
FV(φ′) = /0, andx 6∈ FV(φ′′). CDuce patterns for in-
stance are built under this restriction for conjunctions
[4].

If the satisfiability problem for the underlying query lan-
guage is PTIME, then it holds for the composition frag-
ment too. The algorithm is based on dynamic program-
ming – a satisfiability table defined inductively is com-
puted with memoization –. Then the query answering
algorithm processes the formula inductively under the
assumption that it is satisfied in the current tree.

7.1 MSO-completeness

We start by a theorem on expressiveness of the fragment
E (L), over MSO-definable monadic queries.

Theorem 2. Let L be a language of MSO-definable

monadic queries. The class of n-ary queries defined
by E (L)-formulae is exactly the class of n-ary MSO-
definable queries.

Proof. The proof is the same than those of Theorem 1.
It suffices to remark that the constrution of an equivalent
composition formula given in Theorem 1 respects the
required restrictions on variable sharing.

7.2 Answering algorithm

In this section we give an algorithm for answering a
composition queryq on a treet, so that the complexity
may depend on the size of the output. Since the answer-
ing complexity depends on the maximal number of free
variables of the subformulae of the formula defining the
query, we first show that each composition formulaφ
is equivalent to a composition formula where there is a
most 1 free variable different from the free variables of
φ in its subformulae (wlog we assume that the quantified
variables ofφ are different from the free variables ofφ).
Moreover, in order to avoid the problem of non-valued
variables – for example in the formulac(x)∨c(y) –, we
complete each formula so that each part of disjunctions
has the same free variable sets. For instance the for-
mulac(x)∨c(y) is rewriting into the equivalent formula
(c(x)∧ true(y))∨(true(x)∧c(y)). The size of the output
formula can be at most quadratic in the size of the input
formula.

Let L = (N,J.K) be a monadic query language. Let
t ∈ TΣ be a tree and letφ ∈ E (L) a composition formula.
We suppose to have an algorithm to answer monadic
queries. The query answering algorithm processes in
four steps:

1. rewriteφ into an equivalent formulaφ′ in which
there is at most one free variable different from the
free variables ofφ′, in its subformulae, and such
that for eachγ∨ γ′ ∈ Sub(φ′), FV(γ) = FV(γ′);

2. compute two data structuresQa : N×nodes(t) →
nodes(t) and Qc : N × nodes(t) × nodes(t) →
{0,1} such that given a query namec∈ N appear-
ing in φ′, and two nodesv,v′ ∈ nodes(t), Qa(c,v)
returns the set{v′ : v′ ∈ JcK(t|v)} in linear time
in the size of the output, andQc(c,v,v′) checks in
constant time whetherv′ ∈ JcK(t|v);

3. compute a data structureSat : Sub(φ′) ×
nodes(t) → {0,1} such thatSat(φ′′,v) checks in



constant time whether a formulaφ′′ ∈ Sub(φ′) is
satisfied int|v;

4. answer the query by processing the formulaφ′ re-
cursively with satisfiability tests, doubles elimina-
tion, and memoization.

Step 1Let φ be a composition formula. Wlog assume
that quantified variables ofφ are different from its free
variables. We define the widthw(φ) of φ as the maxi-
mal number, over the subformulae ofφ, of free variables
different from the free variables ofφ. More formally
w(φ) = maxφ′∈Sub(φ)|FV(φ′)\FV(φ)|. As we said we
transformφ into an equivalent formulaφ′ with w(φ′)≤ 1.
The transformation is simple by pushing down the quan-
tifiers. We sum up it in the following lemma:

Lemma 3. Each query q defined by a composition for-
mulaφ ∈ E (L) is equal to some query defined by a com-
position formulaφ′ ∈ E (L) such thatw(φ′) ≤ 1.

Proof. We define the translation ofφ into φ′ by the fol-
lowing rewriting rules:

∃x (γ∨ γ′) → (∃x γ)∨ (∃x γ′)
∃x (γ∧ γ′) → (∃x γ) ∧ (∃x γ′)
∃x c(y).φ → c(y).(∃x φ) with y 6= x
∃x γ → γ if x 6∈ FV(γ)

We can show this rewriting system to terminate, and to
be confluent. The normal form is a formula where each
occurence of a quantified variable in an atomic formula
c(x) is preceded by an existential quantification∃x c(x).
Hence, normal forms are of width at most 1. Now we
show that the normal formφ′ of a formulaφ is equiva-
lent toφ. The only difficulties come from∃x (γ∧ γ′) →
(∃x γ) ∧ (∃x γ′) and(∃x c(y).φ) → (c(y).(∃y φ). The
first case holds since FV(γ)∩FV(γ′) = /0, and the fol-
lowing proves the second case:
t,ν[y/v′ ] |= (∃x c(y).φ)
iff there existsv∈ nodes(t) s.t. t,ν[y/v′ ][x/v] |= c(y).φ
iff there exists v ∈ nodes(t|v′), v′ ∈ JcK(t) and
t|v′ ,ν[x/v] |= φ
iff t,ν[y/v′ ] |= c(y).(∃x φ).
We conclude by induction on the reduction length.

Remark that the size of the resulting formula is linear
– multiply by two – in the size of the input formula,
since each occurence of free variable is preceded by its
quantification. Then we transformφ′ so that each part
of a disjunction shares the same free variable sets, and
such that each quantified variable is different from each
free variable ofφ′.

Step 2It is quite obvious, by using hash tables.

Step 3 We compute – using memoization – a table
Sat[., .] defined inductively by:

Sat[⊤,u] = 1 (1)
Sat[c(x).φ,u] =

W

u′∈Qa(c,u) Sat[φ,u′] (2)
Sat[φ∧φ′,u] = Sat[φ,u]∧Sat[φ′,u] (3)
Sat[φ∨φ′,u] = Sat[φ,u]∨Sat[φ′,u] (4)
Sat[∃x φ,u] = Sat[φ,u] (5)

Step 4The last phase is given on Fig. 5. Moreover, we
use memoization to avoid exponential grow-up. Valu-
ations are represented by sequences of pairs (variable,
node). We assume union and projection operations to
eliminate doubles, so that their time complexities are
linear in the input sets. This can be done by storing
tuples in hash tables.

7.3 Answering Complexity

In this section we study the complexity of the previous
algorithm. LetL = (N,J.K) be a monadic query lan-
guage. Inputs of the algorithm are a treet and a com-
position formulaφ ∈ E (L). Moreover, we suppose to
have of an algorithm to answerJcK on a treet, for each
c∈ N, in time complexityqa(n, t). We writeM(φ, t) for
maxv∈nodes(t),c(x)∈Sub(φ)qa(c, t|v). We sum-up the com-
plexity by the following proposition:

Proposition 3. Answering a query q defined by a com-
position formulaφ ∈ E (L) is in time O(M(φ, t)|t||φ|+
|φ|2|t|2|φ(t)|), where|φ(t)| is the output size.

Proof. The first step produces a formulaφ′ such
that |φ′| = O(|φ|2). The second step is in time
O(M(φ, t)|t||φ|), and the computation of the satisfiabil-
ity table is in timeO(|φ′||t|2) = O(|φ|2|t|2).
It remains to show the time complexity of algorithm de-
picted in figure 5 to beO(|φ′||t|2nK), whereK is the
number of solutions andn the arity of the query – we
consider that|φ(t)| = Kn –. We are going to show that
each recursive call returns at most|t|K valuations, and
performs at mostO(|t|+ nK|t|) operations. Each call
to ans begins by a satisfiability test, so that the follow-
ing property holds: ifans(γ, t,v) is a recursive call oc-
curing during the processing ofφ′, then the projection
of each valuation returned byans(γ, t,v) on the vari-
ables from FV(φ′) can be extended to a valuationν such
that t,ν,root(v) |= φ′. Hence, the number of valua-
tions returned byans(γ, t,v) is at most|t||FV(γ)\FV(φ′)|K.
Moreover, sincew(φ′) = 1, we get|FV(γ)\FV(φ′)| ≤ 1.
It is clear that for conjunctions, disjunctions, and pro-
jections, each recursive call performs at mostO(|t|nK)
operations. Ifγ is of the formc(x).γ′, then FV(γ′) =
FV(γ′)∩FV(φ′), sincew(γ) = 1. Hence, any recursive
call toans(γ′, t,v′) for v′ ∈ JcK(t) returns at mostK val-
uations. Moreover, there are at most|t| nodes satisfying
JcK(t), so that the recursive callans(γ, t,v) performs at
most|t|+nK|t| operations.
Finally, since we use memoization, there are at most
|t||φ′| recursive call toans, so that the whole complexity
of ans on input,φ′, t androot(t) is O(|φ′||t|2nK)).

8 Conclusion

8.1 Summary.

We proposed and investigated ann-ary query language
C (L) in which queries are specified as composition of
monadic queries. The choice of the underlying monadic
query languageL is parametric, so that we can express a
wide variety ofn-ary query specification languages, for



1 let ans(φ, t,u) = if Sat[φ,u] then
2 match φ with
3 | ⊤ → {ε}
4 | c(x).φ′ →

S

u′∈Qa(c,u){(x,u
′) ·ν | ν ∈ ans(φ′, t,u′)}

5 | φ′∧φ′′ → ans(φ′, t,u)×ans(φ′′, t,u)
6 | φ′∨φ′′ → ans(φ′, t,u)∪ans(φ′′, t,u)
7 | ∃xφ → {ν : dom(ν) = dom(ν′)\x,ν = ν′|dom(ν)\x,ν′ ∈ ans(φ, t,u)}
8 else/0
9 in
10 ans(φ, t,root(t))

Figure 5. Answering algorithm with implicit memoization

instance composition of XPath formula, Monadic Dat-
alog programs or node selection automata. We proved
our language to capture MSO as soon as the underlying
monadic query language capture MSO too. We proved
the satisfiability problem to be NP-hard and proposed
an efficient fragmentE (L) of the composition language
which remains MSO-complete as soon asL captures
MSO. We gave an algorithm for the query answering
problem in timeO(M(φ, t)|t||φ|+ |φ|2|t|2|φ(t)|), where
|φ(t)| is the output size andM(φ, t) is the maximal com-
plexity of the query answering problem over subtrees of
t, of the monadic queries appearing inφ.

8.2 Future Work.

A more practical aspect is the extension of the exist-
ing implementation of query composition to the algo-
rithms in Section 7and the comparison of their query
answering efficiencies with other querying languages,
such as implementations of XQuery, and programming
languages such asCDuce .

We would like to investigate the correspondence – men-
tioned inSection 4between the underlying query for-
malism of Lixto and our query composition language
over Monadic Datalog programs. In particular, we think
that there exists a systematic translation between the two
formalisms.

Finally, in some cases it seems to be more efficient to
have the possibility to navigate everywhere in the tree,
without restriction on subtrees. The binary query exam-
ple given inSection 3, on the tree of figure 1 seems to
be more natural when one first selects a node labeled by
name, and then its sibling. In this way it is interesting
to investigate the more general problem of binary query
composition.

We would like to thank Manuel Loth who worked on the
implementation of monadic query composition.
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