Composing Monadic Queries in Trees

Joachim Niehren
INRIA Futurs, Lille

Emmanuel Filiot
INRIA Futurs, Lille

Abstract

Jean-Marc Talbot
LIFL, Lille

Sophie Tison
LIFL, Lille

We propose a new class of querying languages to de-
fine n-ary node selection queries as compositions of

Node selection in trees is a fundamental operation to monadic queries. The choice of the underlying monadic
XML databases, programming languages, and informa- querying language is parametric. We show that com-
tion extraction. We propose a new class of querying lan- positions of monadic MSO-definable queries capture
guages to define-ary node selection queries as compo- ary MSO-definable queries, and distinguish an MSO-
sitions of monadic queries. The choice of the underlying completen-ary query language that enjoys efficient
monadic querying language is parametric. We show that query answering algorithms. Moreover, our language
compositions of monadic MSO-definable queries cap- allow to compose different monadic query languages,
ture n-ary MSO-definable queries, and distinguish an for instance a monadic query defined by a Datalog pro-
MSO-completen-ary query language that enjoys an ef- gram with another monadic query defined by an XPath
ficient query answering algorithm. node formula.

Compositions of monadic MSO-definable queries are
relevant to information extraction. They might be use-
ful to approach an open question in the context of the
Node selection in tregd 2] is a fundamental operation ~ LIXt0 system [6], of how to enhance such system by
to XML databases, programming languages, and infor- Machine learning techniques. Given a composition for-
mation extraction. Node selecting captures the match- mula, and examples for n-tuples that are to be selected,
ing aspect of tree transformations. Iterated node selec- ON€ can use existing learning algorithms for monadic
tion can be used to navigate through input trees while MSO-definable queries [3], in order to infer n-ary MSO

1 Introduction

producing output data structures.

From thedatabase perspectiv@ode selecting is usu-
ally viewed as a querying problem [13, 15, 10]. The

W3C standard querying language XPath provides de-

scriptions ofmonadic queriesi.e. queries that define

definable queries.

The paper is organized as follows. We recall the defini-
tions ofn-ary MSO definable queries in treeSection 2
introduce languages of compositions of monadic queries
in Section 3 and discuss some instancesSaction 4

sets of nodes in trees. XPath queries are used by the We study their expressiveness3ection 5and their al-

W3C standard languages XQuery and XSLT for defin-
ing XML document transformations.

Modernprogramming languagesupport node selection
in trees vigpattern matchingfor instance all functional
programming languages of the ML family (Caml, SML,
Haskell). Tree pattern with capture variables define
n-ary queriesi.e. queries that select setsmefuples of
nodes. The XML programming languages XDuce [11]
and CDuce [4, 2] support more expresgweursive tree
pattern

Information extractiortasks for the Web can frequently
be reduced to defining-ary queries in HTML or XML
trees. Gottlob et. al. [9] proposed monadic Datalog

as querying language for this purpose, and show that

it captures monadic MSO-definable queries [8]. Their
Lixto system [6, 1] provides a visual interface by which
to specify monadic queries in monadic Datalog, and to
compose them into-ary queries. Composed monadic
queries are defined in Elog, a binary Datalog language.

gorithmic complexity inSection §including algorithms
for the model-checking and the query answering prob-
lems, and prove the satisfiability problem to be NP-hard.
Finally in Section Ave propose a fragment of it, study
its expressiveness and give an efficient algorithm for the
guery answering problem.

2 Node Selection Queries in Trees

We recall the definition ofi-ary MSO-definable queries

in trees. We develop our theory for binary trees. This
will be sufficient to deal with unranked trees, since
unranked trees can be viewed as binary trees via a
firstchild—nextsiblingencoding [12].

We consider binary trees as acyclic digraphs with la-
beled nodes and ordered children. We start with a fi-
nite setX of node labels. A binang-treet € Ts is a
finite rooted acyclic directed graph, whose nodes are la-
beled inZ. Every node is connected to the root by a

unique path. All nodes of binary trees either have 0 or 2
children. Nodes without children are callezhves All
other nodes have a distinguished first and second child.

We write root (t) for the root of treet and nodes(t)
for the set of nodes of treteandedges(t) C nodes(t)?
for the set of edges daf For all labelsa € %, we write

| aba(t) C nodes(t) for the subset of nodes ofabeled
by a. Given two nodew1,Vv, € nodes(t) we callv; a
child of v; and writevy <1 v» iff there exists an edge from
vy to vy, i.e., if (v1,v2) € edges(t).

The descendantelation <* on nodes is the reflexive
transitive closure of the child relation.

Thesubtree of tree t rooted by nodea\nodes (t) is the
tree denoted btfy that satisfies:

nodes(tly) = {V enodes(t)|v<a*V}
edges(tly) = edges(t)Nnodes(t|y)?
root (tly) = v
laba(tly) = laba(t)Nnodes(tly) Vae X
Definition 1. Let ne N. An nary query in binary

trees overZ is a function q that maps treesa Ty to
set of n-tuples of nodes, such thatt € T : q(t) C
nodes(t)". Moreover, we require g to be closed under
tree-isomorphism, i.e. (lq(t)) = q(h(t)) for a tree iso-
morphism h.

Simple examples for monadic queries in binary trees
overZ are the functionab, that map treesto the sets

of nodes ot that are labeled bg for a € 2. The binary
querydescendant relates nodes to their descendants,
i.e. descendant (t) = {(v,V/) € nodes (t)? | v<i*V'}.

Definition 2. A query languagé over alphabet is a
pair L = (N,[.]) whereN is a set of names anfl] an
interpretation function mapping namesad\ to queries
[c] in Z-trees.

The monadic second-order logic (MSO) in trees is a

Tarskian manner, and writea = @ in this case. The
first-order logicFO is obtained from MSO by omitting
the set quantification. Actually the notations FO and
MSO stands for FO[] and MSOI[T] respectively, i.e.
formulae over the vocabulaff.

We view MSO as a query language. The names-of
ary queries are MSO formulagx, . ..,xn) with n free
first-order variablesy, ..., xn. These define the follow-
ing queries:

[[(p(xl»~~-7xn)]](t) = {(G(X1)7 "'aa(xn)) ‘ t,(} }: (p}
Definition 3. An n-ary query isMSO definabléf it is
equal to some querp(x1, ..., Xn)]-

Unfortunately [5] shows that the satisfiability problem
is not fixed-parameter tractable, i.e. there exists no
polynomial p and elementary functio such that we
can decide in tim®(f(|¢@|) p(|t|)) whether an monadic
MSO-formulag is satisfiable in the tree However,
there exists query languages that can express all MSO-
definable queries, which have polynomial-time com-
bined complexity: e.g. monadic queries defined by suc-
cessful runs of tree automata have exactly the power of
MSO in defining monadic queries but deciding the non-
emptyness of a monadic query is in polynomial-time
w.r.t. combined complexity [14].

Let us define some algorithmic tasks for query lan-
guagesN, [.]) that are common to database theory:

e model-checking given a query name, a tree
t and ann-tuple (vi,...,v) € nodes(t)%, does
(v1,...,v) € [c](t) hold ?

e uery answeringgiven a query nameand a tree
t, return[c](t). An expected complexity might be
polynomial in the number of solutions.

e satisfiability (over a fixed tree) given a query
namec and a tree, does]c](t) # 0 hold ?

query language that is widely accepted as the yardstick Unranked trees are like binary trees, except that all

for comparing the expressiveness of XML-query lan-

guages [9, 15]. This is because of the close correspon-

nodes may have arbitrarily many ordered children. The
next-sibling of a node is the successor of the same parent

dence between MSO, tree automata, and regular tree in the sibling ordering.

languages [17]. Every MSO formula withfree node
variables defines amary query.

In MSO, binary trees € Ty are seen akgical struc-
tures with domain nodes(t). The signatureT of
this structure contains symbols for the binary relations
chi 1 d; andchi | d» and the unary relatiorisab, for all
aez.

Let x,y,z range over a countable set of first-order vari-
ables andX over a countable set of monadic second-
order variables. Formulagof MSO have the following
abstract syntax, whewec X:

p(x) | childi(x,y) | childa(x,y)
|1 aba(x) | =@ | @1 A @2 | VXQ| VX@

A variable assignment into a treet maps first-order
variablesnodes(t) and second-order variables to sub-
sets ofnodes(t). We define the validity of formulas
@ in treest under variable assignmentsin the usual

Unranked trees can be encoded as binary trees by only
using edges for the first-child and next-sibling relations.
Fig. 1 gives a DTD, an unranked tree matching this
DTD and its first-child next-sibling encodirtg A sim-

ple binary query on that tree is to select all pairs of name
and title of the same book. It can be expressed with re-
spect to the binary encoding by the following MSO for-
mula with two free variableg z:

3x (I abayt hor (X) Achi 1 d1(x,y) Achil da(x,2))

3 Composing Monadic Queries

Query languages for monadic queries in trees have been
widely studied by the database community in the last
few years. See [12] for a comprehensive overview.
Languages fon-ary queries are less frequent but have
started to arise with the XML programming languages

DTD

unranked tree

f c-ns encoding

<! ELEMENT bi b (book)*>

<! ELEMENT book (author,title)>
<! ELEMENT aut hor (nane)>

<I ELEMENT title (#PCDATA)>

<! ELEMENT nane (#PCDATA) >

book

/\
l

name

author title author title

bi b ;yi
¢ \\\:599<\ authdf//// \\\\\Book
l na&é/ :Etle autﬁﬁ: \\L
o an

anme
Figure 1. A DTD, an unranked tree matching the DTD and itsf i r st chi | d —next si bl i ng encodingt.

XDuce and CDuce [11, 2, 4] as well as with information
extraction tools such as Lixto [8, 6].

In this paper, we propose a new class of languages
for defining n-ary queries by composition of monadic
queries. We leave the choice of the underlying monadic
querying language parametric, so the reader may choose
his prefered monadic querying language, and extend it
to ann-ary query language by query composition. The
composition operator is motivated by Lixto's way of
definingn-ary queries [6].

The principle of composition is quite simple: a com-
position of two monadic queries first selects a node an-
swering the first sub-query and then launches the second
sub-query at that node. All nodes seen meanwhile can
be memoized and returned in an output tuple.

We start from a languagke of monadic queries and

an infinite setx,y,z € Var of variables. We then define
compositions of monadic queries on basis of the com-
position operator that we write as the dot'.” . Informally
a composition querg; (x1).c2(x2) on a treet will first
bindx; nondeterministically to some nodeg € [c1](t),

and then launch quer in the subtree|y, rooted atvy

in order to bindx, to some nodes € [c](t|y,)-

For expressivity reasons — that is to capture MSO as
soon as the monadic query language capture MSO —we
add conjunction, disjunction and projection to our com-
position languagé.

Given a monadic query language= (N,[.]), compo-
sition formulaeg € ¢ (L) are defined by the following
abstract syntax:

(0} composition formula

T
| c(xX).0 composition, & N, x € Var
| ong conjunction

| ovo disjunction

| Ixo projection

Given a composition formulg, we denotes by Fp)

1We proved that conjunctions, disjunctions and pro-
jections are required to express all MSO-queries by
composition of monadic MSO-definable queries

the set of free variables af. We will often write c(x)
instead ofc(x).T. The set of subformulas af is de-
noted bySub(¢). Thecomposition sizép| of a formula
@is inductively as follows:

Tl = 0, long| = o +|¢|+1
)@ = 1+[¢, Jovd| = |g+[d[+1
|3x = 1+|q

Note that this definition implies that query names are of
size one.

For all treed, all valuationsv : Var — nodes(t) rang-
ing over the nodes of, and all composition formula
@< ¢ (L) we define the satisfaction relatioyv |= @ as
follows:

(i)

range(v) C nodes(t)

(it)
t,LvET

; uefc]t) (1)
tv[x/u] = c(x).@ iff tvEe (2)
tLVE@MA® iff t,viE@ andt,vE@
tLVE@MVE iff ttvE@ortvE@
t,vEIXo iff there existsu € nodes(t),

st.t,v[X/u] =@

Let us consider the satisfiability @fx).¢. Condition
(1) implies that[c] selects the nodein t, condition (2)
implies that the interpretation af is relativized to the
subtree ot rooted atu.

Valuations define possible values for free variables in
composition formulae. A formula can define arary
query by sorting its free variables. Formally, a formula
@ € c(L) with free variables(xy,...,xn} = FV(9) de-
fines then-ary query[@(x1,...,%n)] such that for all
treest:

[o(xa,- ., %)] (1) = {(V(x2),....v(%n)) | t,V = @}

4 Examples of Composition Lan-
guages

We now discuss some instances of query languages
¢ (L) by instantiating the parameterto some concrete

monadic query language. algorithm for answering compositions of monadic
queries, defined either in MSO, XPath, or by tree au-

As first instance, we lek be the monadic query lan- tomata. Further monadic query languages are be eas-

guage containing all monadic MSO formulas. For illus- ily added by new modules callepiery machinesEach

tration, we consider XML documents defining collec- monadic query can be expressed by different formalism

tions of books, which satisfy the DTD in Fig. 1. Our within the same composition formula.

target is to select all pairs of author names and titles of

the same book by composition. Our concrete syntax for expressing composition queries

is given in Fig. 3. A typical input consists of an XML
We define the binary query onfirstchild- document and a composition query. The output is an
nextsibling encodings. Names and titles of a XML document representing the set of all answers. The
book are contained in siblings afit hor -labeled nodes. implementation is done in OCaml.

To select the pairs, we first select allt hor nodes by

the monadic queryc;] defined by the monadic MSO 5§ NMSO Completeness
formulacy = | abaythor (X). We then compose it with

two independant monadic querige,] and [cs], for We call ann-ary query language MSO-complete if it
selecting name by, = 3y r oot (y) Achi | d1(y,x) and can express all MSO-definabieary queries. For in-
title by c3 = 3y r oot (y) Achi | d2(y,x). The modeling stance, monadic Datalog is known to be a MSO com-
composition formula is: plete monadic query language. In this paragraph, we
@=3zc1(2).(c2(x) Aca(y)) study the expressiveness of composition languages over

MSO-complete monadic query languages.

Note that according to the DTD and the semantic of \\e show that the composition operator can be ex-
composition, the first query can select nodes labeled pressed in first-order logic, so thatary-compositions

by aut hor, and then, in each subtrees induced by the o monadic MSO definable queries are MSO-definable
previous selected nodes, one can select the node la-i5q.

beled bynane, and the node labeled hyitle, by

two independant monadic querigs=1| abpare(x) and | gf| — (N,[.]) be a monadic query language. For every
C3 =l abtitie(X) respectively. The modeling composi- namec ¢ Nwe introduce a binary predicate symii|
tion formulais then: that we interpret as a binary relation Bp C nodes (t)?
9=26(D (LM A () B = {(wV) |V € [e] th)}
We now consider the first-order logic over the signature

A second instance is obtained by composing monadic (Bo)eenUT
Datalog queries [8] which are well known to capture all *~¢/¢N*= =

monadic MSO. Indeed, our idea of compositions is very proposition 1. Every composition formule(X) € ¢ (L)

much inspired by the way in whiafrary queries are de- i equivalent to some first-order formujéx) over the
fined from monadic Datalog queries by the Lixto system sjgnature(B;)cenU T U {<1*}.

for visual Web information extraction [1, 6].

We illustrate the correspondence at the example of se- Proof. We define a functior(.)x encoding composi-
lecting pairs of author names and titles of the same tion formulas into first-order formulas over the signature
books. Such a query is expressed in Lixto by a Monadic (B¢)cenU T U {<1*} inductively:

Datalog prograni and an additional information about

the predicate hierarchy, which we model by a tree. We (T)x = T
express this query in thei rst chi | d—next si bl i ng cy)-ox = Bexy)A{(@Qy
encodings. The monadic Datalog progrémand the (GLA)x = (@)xA (@)
predicate hierarchy are given on Figure 4. é%l/\(;;@x = é‘glz(z\i §(82\><x(p>
X - X

We can express the same query by composing the | gt Y(X1, ..., %0) = FFV(Q)\{Xq,...,%n) (Fy root (y) A
following three monadic Datalog queries by (@)y), wherey ¢ FV(g). Finally note thatr oot (x) is

FO[T]-definable. O

@y,2) = X PL(X).(Pa(y) A Ps(2))

If the monadic query language captures MSO then the
binary predicate8.; are MSO-definable. The first im-

Pr: Pauthor (X) - labaythor (X) portant technical contribution of this paper is that the
with the goalPay hor converse holds too.

Po: Prame(X) - root (y),chil di(y,x) _ _
with the goalPane Theorem 1. The class of n-ary queries defined by com-

Pt Rite(X) = root(y),childa(y,x) position of MSO-definable monadic queries is exactly
with the goalR ¢ e. the class of n-ary MSO definable queries.

To prove the first direction it suffices to show that each
Implementation We have implemented a rather naive predicateB. is MSO-definable whenevec] is. The

Pauthor (X) = 1 @bauthor (X) Paut hor

Prame (X = Pauthor (¥), Ch? [d1(y,x)
Ritle(®) = Pauthor () chi | da(yx) / \
(a) progranP Prare Piitie

(b) hierarchy

Figure 2. A set of Monadic Datalog rules and its predicates hierarchy

query = SELECT varsFROM formula

formula := atom|formulaAND formula| formulaOR formula

atom = machindvar)

vars = var|varyvars

var = identifier

machine := XPATH[xpathspecif | AUTOMATON[automatonspecif | MSO[msaspecif

Figure 3. Concrete sytnax for composition queries

binary MSO formulayg, (x,y) definingBg is exactly the jection of r w.r.t. J, defined by;3(F) = (ri)icy. In par-
formulayc(y) defining[c] where each quantification is ticular, Mg(T) = (). Given a tred, ann-tuple of nodes
relativized tox. V= (Vq,...,Vn) € nodes(t)", a NSA (A,g) with a se-

lection tupleg = (qy,...,0n) € Q", and a statg € Q, a
The rest of this section prove the other direction, i.e. g-run of(A,q) overt selecting is a run ofA overt such
the composition of monadic MSO-definable queries is that the root is labeled by, andv; is labeled byg; for
complete forn-ary MSO-definable queries. The proof eachi € {1,...,n}. In particular, whem = 0, ag-run of
is based on the equivalence between MSO-definable (A, ()) overt selecting the empty sequence is a ruof
queries and node selection automata as defined in [16], overt labeling the root by.

which is a consequence of the seminal theorem of)
Thatcher and Wright [17]. Lemmal. Letn>2be anatural. Let& Ts be a binary

tree. Letv= (v1,...,Vn) be a tuple of length n of nodes
from t, such that there exists at least two different nodes.

We recall that anode selection automataiNSA) is a Let v be the least common ancestorwfLet i be the
pair (A,S) whereA = (2,Q,F,A) is a tree automata and first child of y, and \é its second child. Define J,K as
Sis a set of selection tupleg We write (A7) instead follows:

of (A,{d}). A run of a tree automaté over a tred is | = {i|va=v}

a treer isomorphic tot via an isomorphismbd, where —ouirgT

each node is labeled i@, and such that the following Jo= Ajlvg2v}

holds: K = {k|vi<"w}

e if venodes(t) is a leaf labeled by € %, then
a— labr(P(v))isinA,

e if v € nodes(t) is an inner node labeled by

Let (A,g) be a NSA, and q a state, then there exists a
g-run r of A overt selecting iff

f € £, and vy, v, € nodes(t) are its first child 39,9" € Qsit. B

and its second child respectively, then the rule - there exists a g-run dfA, I, ()) overt

f(l aby (®(vy)),1 aby (P(v2))) — | aby (P(V)) is in selecting; (v) and labeling ¢, v3

A. by d,q” respectively

- there exists a‘grun of (A, ,(7)) over

Arunr of A overt is successful iff its root is labeled selecting3(V)
by an accepting state frofa. A NSA _(A7 S selec_ts a - there exists a’¢run of (A, M (7)) over t\vg
tuple of nodes(vy,...,vn) of a treet iff there exists selectingk (V)

a successful rum overt (isomorphic tot via @), and

a selection tuplgqs,...,an) € S such that for each

i € {1,...,n}, the noded(v;) is labeled byg; in r. Proof. The proof is not difficult and left to the reader.
When it is clear from the context we will omit the O
isomorphism®. Finally, the class of MSO-definable)

n-ary queries is exactly the class ofary queries Lemma 2. Let n be a natural. Given a node selec-

defined by node selection automata over binary trees tion automaton(A,d) whereq is an n-tuple of states,
[17, 16]. given a state ¢ Q, there exists a composition formula

Pagq(Xt,.--.Xn) over MSO-definable monadic queries
such that for allz-tree t, for allv € nodes (t)", the fol-
In order to prove Theorem 1 we introduce some nota- l0Wing are equivalent:

tions. Given a seR, ann-tuplet = (ry,...,r) € R, (i) there exists a g-run of A over t selecting
and a setl C {1,...,n}, we denote by1;(F) the pro- (i) Ve [oagq(Xe ..) ()

Proof. We construct the formula inductively on The
construction mimics the decomposition given by lemma
1.

If n= 0 we takepa g, = 3 ¢ (x) where[co] (t) is equal
tonodes(t) if and only if there exists g-run of A overt.

By Thatcher and Wright's theorem, this monadic query
is MSO-definable.

If n=1, theng = (p) for somep € Q, and we take
®a,(p).q(X) = c1(x) where[c1] is defined by the NSA
(A, (p)). Again by Thatcher and Wright's theorem, this
query is MSO-definable.

If n> 1, we consider two cases depending on whether
the variables(, ..., xn will be instantiated by the same
node or not. Sapagq(Xt,--.,%) will be written as a

disjunction@y’, , V Gr gy’

e case 1 (variables will be instantiated by the same
node). Letyag) (X) be an MSO formula such
that for a treet and ann-tuple v of nodes
of t, it holds thatv € [yagql(t) iff there ex-
ists a g-run of (A,Q) overt selectingv. It
is easy to show that this formula exists, by
Thatcher and Wright's theorem. Then we take
Gt q(X1.- %) = 3x CL(X)-(Aicr(x)), where
[c1] is the query defined by the monadic MSO for-
mula3yy,....Yn-1Ai(Yn = ¥i) AYag) (Yi:- - Yn)
and[c](t) selects the root df, for any treet.

e case 2 (variables will be instantiated by at least
two different nodes). Lek denotes(x,...,Xn)
and let?, be the sets of partitions (with possibly
empty parts) of{1,...,n} such that for each
partition, there exists at most one empty part. We
defineq g q(X) by:

V{I.J,K}efn\/ ,9"eQ
IAY3z Gy o (%)
(Aier & (%)
ACa(Y)-@an,(g).q (Ma(X)
N€2(2).9 11 (). (MK (X))

where[c1](t) selects the first child of the root of
t, and[cy] (t) its second child. For any treethe
query [cy o] (t) selects a node € nodes(t) iff

there exists a@-run of (A,,(q)) overt selecting
(VV,...,v) (of length|l|), such that its first child

is labeled by, and its second child by”. This
query is MSO-definable, again by Thatcher and
Wright's theorem. Remark that subformulae
Pa (o). (Mi(X) and @an,(g.q(Mk(X) are
recursively well defined, sind&|,|J| < n.

The rest of the proof is a direct application of
Lemma 1.

O

To conclude the proof of Theorem 1, we state the fol-
lowing corollary:

Corollary 1. For each MSO formulay(X), there ex-
ists an equivalent composition formupéx) over MSO-
definable monadic queries.

Proof. By [17, 16], there exists a NSPA, S) equivalent

toy, and we definep by: @ = \/gesVger Pagq, Where
0ag,q has been defined in the previous lemma. O

6 Algorithmic Complexity

In this paragraphL = (N,[.]) is a monadic query
language, and we suppose that there exists an algorithm
for the model-checking problem in time-complexity
nc(c,t), wherec € Nandt € Ty, and an algorithm

for the query answering problem in time-complexity

ga(c,t).

Fig. 4 represents a simple algorithm for the model-
checking problem of a formulap, a treet and a
valuationv. It is written in a pseudo ML-like code. It

runs in timeO(|@|M |t| ™ ¢<s@ IFV(@D) 4 |92) where
M = maX;(x)esub(q) M (C:t).

This gives a naive algorithm for the query answering
problem: generate all the valuations of free variables of
a formulag in a treet, and apply the model-checking
algorithm on them. This leads to an exponential
grow up, but it is not clear how to avoid it since the
satisfiability problem of monadic query composition is
NP-hard.

Proposition 2. Let £ = {0,1,0} be an alphabet and
L = ({co,c1},[.]) @ monadic query language over
where [cp] selects all the nodes labeled byeb{0,1}
in Z-trees. Let t the binary whose roots is labeleddhy
its first child by0, and its second child bg. Given a
composition formulap over L, the satisfiability problem
of gover t is NP-hard.

Proof. To prove that it is NP-hard we give a polyno-
mial reduction of CNF satisfiability into our problem.
The idea is to associate with a given CNF formula
W = A1<i<pCi a composition formulap = A1<j<,®
overL. Eachq is a composition formula associated
to thei-th clauseC;. It is defined by associating to
each litterak; the atomic formula; (xj) and to—-x; the
formula cp(xj), and to a disjunction of litterals a dis-
junction of atomic formulae. For example, if we con-
siderW = (x3 V—x2) A (X2 V —x3), then@ = (c1(x1) vV
Co(X2)) A (C1(X2) V Co(Xa))- O

Composition and conjunctive queries Conjunctive

queries over finite relational structures have been
widely studied by the database community since it
is the most common database query in practice. The
particular case of conjunctive queries over unranked
trees have been studied in [7] over particular binary
XPath axisa = { Child, Child*, Child*, NextSibling,

let check(@,t,v) match @ with

| T — true

[W(X).¢ — v(x) € [W](t) A check(d,t]yx),Vv) Ay € FV(@) v(x) <" v(y)
| @ vg' — check(q@,t,v) Vcheck(@’,t,v)
| @ A@’' — check(@,t,v) Acheck(q@’,t,v)
| ¢ _’Vuenodes(t)ChECk(dvtN[X/UD

Figure 4. Model-checking algorithm for a formula @ € ¢ (L), a treet and a valuationv

NextSibling", NextSibling’, Following }. Surprisingly
the complexity of these queries quickly fall into

monadic queries. The class of n-ary queries defined
by £ (L)-formulae is exactly the class of n-ary MSO-

NP-hardness. Since each conjunctive queries over thesedefinable queries.

axis in an unranked tree is expressible by a composition
query over a particular monadic query language in
binary trees, all the complexity lower bounds from [7]
apply to our formalism. For example, the satisfiability
problem of a composition query over the monadic query
languge ({c1+,¢2},[.]) is NP-hard w.rt. combined
complexity, where]cy-](t) = {v | Childj(r oot (t),v)}
and[cp](t) = {v| Childy(r oot (t),v)}.

In the next section we propose a composition fragment
for which the satisfiability problem is in PTIME when-
ever this holds for the underlying monadic query lan-
guage, and give an efficient algorithm for query answer-
ing. In addition we prove that this fragment can express
all MSO-definablen-ary queries whenever the underly-
ing monadic query language captures MSO.

7 An MSO-Complete and Tractable
Fragment

In this section, we introduce a “tractable” syntactic frag-
ment of composition formulae (L), that leads to an
n-ary MSO-complete query language (as soon as the
monadic query languadeis), while enjoying efficient
query answering algorithms.

LetL be a language of MSO-definable monadic queries.
In this fragment, variable sharing between conjunctions
and composition are not permitted, more precisely, if
oA @ and c(x).¢ are £(L)-formula, then FVg) N
FV(¢) =0, andx ¢ FV(¢’). CDuce patterns for in-
stance are built under this restriction for conjunctions

[4].

If the satisfiability problem for the underlying query lan-
guage is PTIME, then it holds for the composition frag-
ment too. The algorithm is based on dynamic program-
ming — a satisfiability table defined inductively is com-
puted with memoization —. Then the query answering
algorithm processes the formula inductively under the
assumption that it is satisfied in the current tree.

7.1 MSO-completeness

We start by a theorem on expressiveness of the fragment
£ (L), over MSO-definable monadic queries.

Theorem 2. Let L be a language of MSO-definable

Proof. The proof is the same than those of Theorem 1.
It suffices to remark that the constrution of an equivalent
composition formula given in Theorem 1 respects the
required restrictions on variable sharing. O

7.2 Answering algorithm

In this section we give an algorithm for answering a
composition query] on a tred, so that the complexity
may depend on the size of the output. Since the answer-
ing complexity depends on the maximal number of free
variables of the subformulae of the formula defining the
query, we first show that each composition formgla

is equivalent to a composition formula where there is a
most 1 free variable different from the free variables of
@in its subformulae (wlog we assume that the quantified
variables ofp are different from the free variables of.
Moreover, in order to avoid the problem of non-valued
variables — for example in the formutéx) v c(y) —, we
complete each formula so that each part of disjunctions
has the same free variable sets. For instance the for-
mulac(x) V c(y) is rewriting into the equivalent formula
(c(x) Atrue(y)) V (true(x) Ac(y)). The size of the output
formula can be at most quadratic in the size of the input
formula.

Let L = (N,[.]) be a monadic query language. Let
t € Tz be atree and legpe £ (L) a composition formula.
We suppose to have an algorithm to answer monadic
queries. The query answering algorithm processes in
four steps:

1. rewrite @ into an equivalent formulg' in which
there is at most one free variable different from the
free variables ofp, in its subformulae, and such
that for eacty vy € Sub(¢), FV(y) = FV(Y);

. compute two data structur€ : Nx nodes(t) —
nodes(t) and Q¢ : N x nodes(t) x nodes(t) —
{0,1} such that given a query nansec N appear-
ing in ¢, and two nodes,V € nodes(t), Qa(c,V)
returns the sefv : V € [c](t|v)} in linear time
in the size of the output, ar@¢(c,v,V') checks in
constant time whether € [c](t|v);

. compute a data structuréSat : Sub(¢@) x
nodes(t) — {0,1} such thatSat (¢’,v) checks in

constant time whether a formutg € Sub(¢) is
satisfied irt|y;

4. answer the query by processing the formypilee-
cursively with satisfiability tests, doubles elimina-
tion, and memoization.

Step 1Let @ be a composition formula. Wlog assume
that quantified variables af are different from its free
variables. We define the width(¢) of ¢ as the maxi-
mal number, over the subformulaegfof free variables
different from the free variables af. More formally
W(@) = MXgesub(q)|FV(P)\FV(9)|. As we said we
transformginto an equivalent formulg withw(g') <1.
The transformation is simple by pushing down the quan-
tifiers. We sum up it in the following lemma:

Lemma 3. Each query q defined by a composition for-
mulage £ (L) is equal to some query defined by a com-
position formulay € (L) such thatm(¢@) < 1.

Proof. We define the translation gfinto ¢ by the fol-
lowing rewriting rules:

W(yvy) — (3Oxy)v(Exy)
I(yAY) — (3xy) A (3XY)
Xcy).o — c(_y).(ﬂx) with y # x
Ixy — yif x¢FV(y)

We can show this rewriting system to terminate, and to
be confluent. The normal form is a formula where each
occurence of a quantified variable in an atomic formula
c(x) is preceded by an existential quantificatinc(x).
Hence, normal forms are of width at most 1. Now we
show that the normal forng' of a formulag is equiva-
lent to@. The only difficulties come fromx (YAY) —
(3xy) A (3xy) and(3x c(y).9) — (c(y).(Gy @). The
first case holds since RY) N"FV(y) = 0, and the fol-
lowing proves the second case:

t,Vly/v] = (3xcly).0)

iff there existsv € nodes (t) s.t.t,v[y/v][x/v] = c(y).@

iff there exists v € nodes(tly), V € [c](t) and

tly VXA £ @

iff £, vly/v] = c(y).(3x @).

We conclude by induction on the reduction lengthlJ

Remark that the size of the resulting formula is linear
— multiply by two — in the size of the input formula,

since each occurence of free variable is preceded by its

guantification. Then we transforgf so that each part

Step 4The last phase is given on Fig. 5. Moreover, we
use memoization to avoid exponential grow-up. Valu-
ations are represented by sequences of pairs (variable,
node). We assume union and projection operations to
eliminate doubles, so that their time complexities are
linear in the input sets. This can be done by storing
tuples in hash tables.

7.3 Answering Complexity

In this section we study the complexity of the previous
algorithm. LetL = (N,[.]) be a monadic query lan-
guage. Inputs of the algorithm are a tteend a com-
position formulag € £(L). Moreover, we suppose to
have of an algorithm to answéc] on a treet, for each

c € N, in time complexityga(n,t). We write M (@,t) for
max'/enodesg),c%x)eSub_((p)qa(cvt‘v)_- ‘We sum-up the com-
plexity by the following proposition:

Proposition 3. Answering a query q defined by a com-
position formulag € £ (L) is in time QM(@,t)]t||q +
l@2[t|%|@(t)]), where|@(t)| is the output size.

Proof. The first step produces a formul@ such
that || = O(|@?). The second step is in time
O(M(w,1)|t]|9|), and the computation of the satisfiabil-
ity table is in timeO(|@|t|?) = O(|@?[t|?).

It remains to show the time complexity of algorithm de-
picted in figure 5 to beD(|¢/|[t|2nK), whereK is the
number of solutions and the arity of the query — we
consider thatg(t)| = Kn—. We are going to show that
each recursive call returns at m¢ggK valuations, and
performs at mosO(|t| + nK|t|) operations. Each call
to ans begins by a satisfiability test, so that the follow-
ing property holds: ifans(y,t,v) is a recursive call oc-
curing during the processing @f, then the projection
of each valuation returned bans(y,t,v) on the vari-
ables from F\(¢f) can be extended to a valuatiesuch
thatt,v,root (v) = @. Hence, the number of valua-

tions returned byns (y,t,v) is at mostt|[FY(\FV(@)IK
Moreover, sincev(¢') = 1, we get|FV(y)\FV(¢)| < 1.

It is clear that for conjunctions, disjunctions, and pro-
jections, each recursive call performs at mosjt|nK)
operations. Ify is of the formc(x).y, then FMY) =
FV(Y)NFV(¢), sincew(y) = 1. Hence, any recursive
calltoans(Y,t,V) for V' € [c](t) returns at mosK val-
uations. Moreover, there are at mgi$nodes satisfying
[c](t), so that the recursive calhs(y,t,v) performs at
most|t| + nK|t| operations.

Finally, since we use memoization, there are at most

of a disjunction shares the same free variable sets, and it||¢/| recursive call tans, so that the whole complexity

such that each quantified variable is different from each

free variable ofy.
Step 2lt is quite obvious, by using hash tables.

Step 3 We compute — using memoization — a table
Sat [.,.] defined inductively by:

Sat[T,u = 1 (2)
Sat [c(x).qu] = VyequcuSat(ou] (2)
sat[pag,u] = Sat[eu/ASat(g.u] (3)
satfpve,u = Sat[puvSat(g.u (4)
Sat [Ix@,u] = Sat[@U] (5)

of ans on input,@, t andr oot (t) is O(|¢@|[t|?nK)). O

8 Conclusion

8.1 Summary.

We proposed and investigated aary query language

¢ (L) in which queries are specified as composition of
monadic queries. The choice of the underlying monadic
query language is parametric, so that we can express a
wide variety ofn-ary query specification languages, for

1 letans(qt,u) = if Sat[@,u] then

2 match ¢ with

3 | T — {e}

4 | €(X).¢0 = Uyequeu{x) -v|veans(g,t,u)}

5 |9 AQ — ans(@.t,u) xans(¢/,t,u)

6 | ¢V — ans(¢,t,u)Uans(¢ t,u)

7 | 3x@ — {v : domv) = dom(V')\X,v = V'|gonw)\x: V' € ans(@,t,u)}
8 elsed

9 in

10 ans(qt,root (t))

Figure 5. Answering algorithm with implicit memoization

instance composition of XPath formula, Monadic Dat-
alog programs or node selection automata. We proved
our language to capture MSO as soon as the underlying
monadic query language capture MSO too. We proved
the satisfiability problem to be NP-hard and proposed
an efficient fragment (L) of the composition language
which remains MSO-complete as soon lagaptures
MSO. We gave an algorithm for the query answering
problem in timeO(M(@,t)[t||@| + |@?[t||@(t)]), where
|@(t)] is the output size anBll (¢,t) is the maximal com-
plexity of the query answering problem over subtrees of
t, of the monadic queries appearinggn

8.2 Future Work.

A more practical aspect is the extension of the exist-
ing implementation of query composition to the algo-
rithms in Section 7and the comparison of their query
answering efficiencies with other querying languages,
such as implementations of XQuery, and programming
languages such #&Duce .

We would like to investigate the correspondence — men-
tioned in Section 4between the underlying query for-
malism of Lixto and our query composition language
over Monadic Datalog programs. In particular, we think
that there exists a systematic translation between the two
formalisms.

Finally, in some cases it seems to be more efficient to
have the possibility to navigate everywhere in the tree,
without restriction on subtrees. The binary query exam-
ple given inSection 3 on the tree of figure 1 seems to
be more natural when one first selects a node labeled by
nane, and then its sibling. In this way it is interesting
to investigate the more general problem of binary query
composition.

We would like to thank Manuel Loth who worked on the
implementation of monadic query composition.

9 References

[1] Robert Baumgartner, Sergio Flesca, and Georg
Gottlob. Visual web information extraction with
lixto. In 28th International Conference on Very
Large Data Basegpages 119-128, 2001.

(10]

(11]

purpose language. ACM SIGPLAN Notices
38(9):51-63, 2003.

[3] Julien Carme, Aurlien Lemay, and Joachim
Niehren. Learning node selecting tree transducer
from completely annotated examples.7iih Inter-
national Colloquium on Grammatical Inference
volume 3264 ofLecture Notes in Artificial Intel-
ligence pages 91-102. Springer Verlag, 2004.

[4] Giuseppe Castagna. Patterns and types for query-
ing XML. In 10th International Symposium
on Database Programming Languagédsecture
Notes in Computer Science. Springer Verlag, Au-

gust 2005.

Markus Frick and Martin Grohe. The complex-
ity of first-order and monadic second-order logic
revisited. InProc. LICS '02: Proceedings of the

17th Annual IEEE Symposium on Logic in Com-
puter Sciencepages 215-224, Washington, DC,
USA, 2002. IEEE Computer Society.

G. Gottlob, C. Koch, R. Baumgartner, M. Her-
zog, and S. Flesca. The Lixto data extraction
project - back and forth between theory and prac-
tice. In23rd ACM SIGPLAN-SIGACT Symposium
on Principles of Database Systengages 1-12.
ACM-Press, 2004.

G. Gottlob, C. Koch, and K. Schulz. Conjunctive
queries over trees, 2004.

Georg Gottlob and Christoph Koch. Monadic
datalog and the expressive power of languages
for web information extraction. Ir2lrd ACM
SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systenmages 17-28. ACM-
Press, 2002.

Georg Gottlob and Christoph Koch. Monadic
queries over tree-structured data. 1Ivith Annual
IEEE Symposium on Logic in Computer Science
pages 189-202, Copenhagen, 2002.

Georg Gottlob, Christoph Koch, and Reinhard
Pichler. Efficient algorithms for processing xpath
queries.ACM Transactions on Database Systems
30(2):444-491, 2005.

Haruo Hosoya and Benjamin Pierce. Regular ex-
pression pattern matching for XMLJournal of
Functional Programming6(13):961-1004, 2003.

(5]

(6]

(7]
(8]

9]

[2] Veronique Benzaken, Giuseppe Castagna, and [12] |eonid Libkin. Logics over unranked trees: an

Alain Frisch. Cduce: an XML-centric general-

[13]

[14]

[15]

[16]

[17]

overview. InAutomata, Languages and Program-
ming: 32nd International Colloquiumnumber
3580 in Lecture Notes in Computer Science, pages
35-50. Springer Verlag, 2005.

Frank Neven and Jan Van Den Bussche. Expres-
siveness of structured document query languages
based on attribute grammat®urnal of the ACM
49(1):56-100, 2002.

Frank Neven and Thomas Schwentick. Query au-
tomata. InProceedings of the Eighteenth ACM
Symposium on Principles of Database Systems
pages 205-214, 1999.

Frank Neven and Thomas Schwentick. Query au-
tomata over finite treeheoretical Computer Sci-
ence 275(1-2):633-674, 2002.

Joachim Niehren, Laurent Planque, Jean-Marc
Talbot, and Sophie Tison. N-ary queries by tree
automata. InlOth International Symposium on
Database Programming Language®lume 3774

of Lecture Notes in Computer Scienpages 217—
231. Springer Verlag, September 2005.

J. W. Thatcher and J. B. Wright. Generalized finite
automata with an application to a decision prob-
lem of second-order logicMathematical System
Theory 2:57-82, 1968.

