From Two-Way to One-Way Finite
State Transducers

Emmanuel Filiot!, Olivier Gauwin3, P.-A. Reynierz, Frédéric
Servais!

LUniversité Libre de Bruxelles 2Marseille Universty 3Bordeaux University

Finite State Automata

@ finite string acceptors over a finite alphabet
@ read-only input tape, left-to-right
@ finite set of states

Definition (Finite State Automaton)

A finite state automaton (FA) on X is a tuple A= (Q, /, F,J)
where

@ Q is the set of states,
e | C Q, reps. F C Q is the set of initial, resp. final, states,

@ 0: @ xX — @ is the transition relation.

L(A) = {w € X" | there exists an accepting run on w}

Finite State Automata — Example

b b

a
start —> G
a

Finite State Automata — Example

b b
a
SOEBO
a
Run on aabaa:

Finite State Automata — Example

b b
a
start —> @
a
Run on aabaa:

L(A) = {w € £* | w contains an even number of a}

From Languages to Transductions

Let & and A be two finite alphabets.

Language on X Transduction from ¥ to A

function from * to {0,1} relation R C X* x A*

defined by automata defined by transducers

accept strings transform strings

transducer = automaton + output mechanism.

One-Way Finite State Transducers

Finite State Transducers

@ read-only left-to-right input head
@ write-only left-to-right output head
o finite set of states

Finite State Transducers

@ read-only left-to-right input head
@ write-only left-to-right output head
o finite set of states

Definition (Finite State Transducers)

A finite state transducer from X to A is a pair T = (A, O) where
A=(Q,I,F,d) is the underlying automaton

@ O is an output morphism from § to A*.

If t =q 2 ¢’ €6, then O(t) defines its output.

q a'—W> q’ denotes a transition whose output is w € A*.

Finite State Transducers

@ read-only left-to-right input head
@ write-only left-to-right output head
o finite set of states

Definition (Finite State Transducers)

A finite state transducer from X to A is a pair T = (A, O) where
A=(Q,I,F,d) is the underlying automaton

@ O is an output morphism from § to A*.

If t =q 2 ¢’ €6, then O(t) defines its output.

q a'—W> q’ denotes a transition whose output is w € A*.

Two classes of transducers:
o DFT if A is deterministic
@ NFT if A is non-deterministic.

Some applications

@ language and speech processing (e.g. see work by Mehryar
Mobhri)

@ model-checking infinite state-space systems!

@ string pattern matching

e verification of web sanitizers?

LA survey of regular model checking, P. Abdulla, B. Jonsson, M. Nilsson, M.

Saksena. 2004
2see BEK, developped at Microsoft Research

Finite State Transducers — Example 1

Finite State Transducers — Example 1

ble ble

start —

Run on aabaa:

ala ala ble ala ala
=@ @ @

T(aabaa)=a.a.c.a.a=aaaa.

Finite State Transducers — Example 1

Finite State Transducers — Example 1

Run on aaba:

EROROROMON0

T (aaba)= undefined

Finite State Transducers — Example 1

dom(T) = {we€X*|#,wiseven}
R(T) = {(w,a”") | w & dom(T)}

10 /37

Finite State Transducers — Example 2

.. = white space

11/37

Finite State Transducers — Example 2

.. = white space

Semantics

Replace blocks of consecutive white spaces by a single white space.

T(--aa...a..) = _aa.a.

11/37

Finite State Transducers — Example 3

- = white space

_le ala e

12 /37

Finite State Transducers — Example 3

- = white space

_le

Semantics

Replace blocks of consecutive white spaces by a single white space
and

remove the last white spaces (if any).

12 /37

Finite State Transducers — Example 3

- = white space

_le

Semantics

Replace blocks of consecutive white spaces by a single white space
and
remove the last white spaces (if any).

T(-caa.—ca..) = _aa.a

Non-deterministic but still defines a function: functional NFT

12 /37

Is non-determinism needed ?

_le

13 /37

Is non-determinism needed ?

13 /37

How to get a deterministic FT ?

e ala _|e

@ extend automata subset construction with outputs
@ output the longest common prefix

ala

How to get a deterministic FT ?

e ala _|e

@ extend automata subset construction with outputs
@ output the longest common prefix

ala

14 /37

How to get a deterministic FT ?

e ala _|e

@ extend automata subset construction with outputs
@ output the longest common prefix

ala

ala

0

— d0

14 /37

How to get a deterministic FT ?

e ala _|e

@ extend automata subset construction with outputs
@ output the longest common prefix

ala

5o

— 9o q Q2

14 /37

How to get a deterministic FT ?

e ala _|e

@ extend automata subset construction with outputs
@ output the longest common prefix

ala

ala

n -

— 9o q Q2

14 /37

How to get a deterministic FT ?

e ala _|e

@ extend automata subset construction with outputs
@ output the longest common prefix

ala

ala

n -

—>| 9o q1(-); g2(e)

14 /37

How to get a deterministic FT ?

e ala _|e

@ extend automata subset construction with outputs
@ output the longest common prefix

ala

ala e
n - 0

—>| 9o q1(-); g2(e)

14 /37

How to get a deterministic FT ?

e ala _|e

@ extend automata subset construction with outputs
@ output the longest common prefix

ala

ala e _|€
0 0
—>| 9o q1(-), q2(€)

14 /37

Can we always get an equivalent deterministic FT 7

15 /37

Can we always get an equivalent deterministic FT 7

@ not in general: DFT define functions, NFT define relations
@ what about functional NFT ?

15 /37

Can we always get an equivalent deterministic FT 7

@ not in general: DFT define functions, NFT define relations
@ what about functional NFT ?

ale alb
—8” OO 8— -
t

initial

n n+1
R(T): a"br= b functional but not determinizable

EHe [ek

15 /37

alc alb
cle 8 alc . alb
t

initial

Subset construction:

16 /37

alc alb
cle a alc . alb
t

initial

Subset construction:

qz

16 /37

alc alb
cle a alc . alb
t

initial

Subset construction:

ale | qi(b)

q2(c)

16 /37

alc alb
cle a alc . alb
t

initial

Subset construction:

16 /37

alc alb
cle a alc . alb
t

initial

Subset construction:

ale | qu(b) | ale | qi(bb) |ale| qi(bbb)

92(c) go(cc) g2(ccc)

16 /37

alc alb
cle a alc . alb
t

initial

Subset construction:

qu(bb) |ale| qi(bbb)

g2(cc) g2(ccc)

16 /37

How to guarantee termination of subset construction?

LAG(u,v) = (', V) such that u = ¢u', v =¢v' and ¢ = lcp(u, v).

E.g. LAG(abbc, abc) = (bc, c).

17 /37

How to guarantee termination of subset construction?

LAG(u,v) = (', V) such that u = ¢u', v =¢v' and ¢ = lcp(u, v).

E.g. LAG(abbc, abc) = (bc, c).

Lemma (Twinning Property)

Subset construction terminates iff for all such situations

U2’V2
ul\vl
~(=)
u1w @\MM/»@
U2‘W2

it is the case that LAG(v1,w1) = LAG(vivo, wiwp).

v
17 /37

Determinizability is decidable

Theorem (Choffrut 77, Beal Carton Prieur Sakarovitch 03)

Given a functional NFT T, the following are equivalent:
Q it is determinizable
@ the twinning property holds.

Moreover, the twinning property is decidable in PTime.

18 /37

Application: analysis of streaming transformations

Bounded Memory Problem

Hypothesis:

@ input string is received as a (very long) stream
@ output string is produced as a stream

Input: a transformation defined by some functional NFT
Output: can | realize this transformation with bounded memory ?

dB € N-Vu € dom(T)

T(u) can be computed with B-bounded memory ?

19/37

Streaming Model

Deterministic Turing Transducer

Input Tape 1 1o
(read only)

[=l)d

20/37

Streaming Model

Deterministic Turing Transducer

Input Tape 1Tolol i | | [#

(readonly)y L= 1 ¥ 1Y ¢ J°* | 1T | .

20/37

Streaming Model

Deterministic Turing Transducer

Input Tape
(read only) 1 /0[0]1

(=)

20/37

Streaming Model

Deterministic Turing Transducer

Input Tape 1Tolol | | 1

(readonly)y L~ 1~ 1Y 1 * 1§ " U9 | .

20/37

Streaming Model

Deterministic Turing Transducer

Input Tape 7T T T T 1 2

(readonly)y L= 1 ¥ | ¥ [" | 7P = U™ | ...

Working Tape IT1Tolol T##

(read/write) L 1 * | MM J T | |7 | .

20 /37

Streaming Model

Deterministic Turing Transducer

Input Tape 1Tolol | | 1

(readonly)y L~ 1~ 1Y 1 * 1§ " U9 | .

Working Tape
(read/write) I Ii 0|l |#]|#

20 /37

Streaming Model

Deterministic Turing Transducer

Input Tape 7T T T T 1 2

(readonly)y L= 1 ¥ | ¥ [" | 7P = U™ | ...

Working Tape
(read/write) L L JT{OJ T #|#]

20 /37

Streaming Model

Deterministic Turing Transducer

Input Tape 7T T T T 1 2

(readonly)y L= 1 ¥ | ¥ [" | 7P = U™ | ...

Working Tape tTol 1 ToT1 T#[#

(read/write) L 1 ¥ [')M [T | |7 | .

20 /37

Streaming Model

Deterministic Turing Transducer

Input Tape 7T T T T 1 2

(readonly)y L= 1 ¥ | ¥ [" |7 = Y™ I ...

Working Tape 1Tololo T T##

(read/write) L I M | MM J T 1 |7 | .

20 /37

Streaming Model

Deterministic Turing Transducer

= >
wead onyy 1 LOTOT T el
-
“veadjarng L LOTOTo[1 [##]

20 /37

Streaming Model

Deterministic Turing Transducer

Input Tape
(read only) {001][]l

Working Tape
(read/write) 110/0[0]I

=2 By

20 /37

Streaming Model

Deterministic Turing Transducer

= >
wead onyy 1 LOTOT T el
<>
“eadjurie L1 10TOTOTITol#]

20 /37

Streaming Model

Deterministic Turing Transducer

= >
wead onyy 1 LOTOT T el
<>
“eadjurie L1 10TOTOTITol#]

Output Tape ol#lalyl#ls

(write only) — 11— 1= 1= 1.

H*

20 /37

Streaming Model

Deterministic Turing Transducer

= >

InputTape [, TAalanls il el
(read only) 110101 IL_#

,LE
WorkingTape[y Talalnlil lololl
(read/write) 110/0f0]1]0 il _____
e ———— = 2

Output Tape ol 1ll#lel#!gls
(write only) — S — 11— 1 = 1 = |.....

20 /37

Streaming Model

Deterministic Turing Transducer

= >

InputTape [, TAalanls il el
(read only) 110101 IL_#

,LE
WorkingTape[y Talalnlil lololl
(read/write) 110/0f0]1]0 il _____
-

Output Tape ol1l1l#lelsg!ls
(write only) Rl o S

20 /37

Streaming Model

Deterministic Turing Transducer

_::>
ooy L ToToTn Tl
<>
Moderoe[1ToToTo 1 Tof#]
= .
Quiputrape [o [1 [1 o[J# [#]

20 /37

Streaming Model

Deterministic Turing Transducer

-::>
cond onty LLLOToTn i f#]

<=
“readramg 1[0 ToTo 1 Tol#]

=
?xﬁﬁgt;ﬁf oltlifoli#lgl

20 /37

Streaming Model

Deterministic Turing Transducer

= >
wead onyy 1 LOTOT T el
-
“vead e LLT0T0ToT1To[#]
o=
Trreomy OOl i{#]

20 /37

Streaming Model

Deterministic Turing Transducer

= >
wead ony LITOTOTT T {i]#]
_ @ _____ .- M;amory
e (o ToTa T To[a] = e
— tape only !

Output Tape 2 |
(write only) Oj1]1]0]] Ii]

20 /37

Bounded Memory Problem — Examples

n n+1
Ty : a"b b Not bounded memory

a"c — ¢t

Tr: . ao..b..+— _a_b ‘ Bounded memory

21/37

Bounded Memory Problem — Examples

n n+1
Ty : a"b b Not bounded memory

a"c — ¢t

Tr: . ao..b..+— _a_b ‘ Bounded memory

For all functional NFT T, the following are equivalent:

© T is bounded memory
@ T is determinizable

© T satisfies the twinning property.

Proof based on the following two observations:
@ any DFT is bounded memory
@ bounded memory Turing Transducer = DFT

21/37

Corollary

For all transductions R, the following are equivalent:

©Q R is computable with bounded memory
@ R is definable by some DFT

22 /37

Two-Way Finite State Transducers

extending finite state transducers with a two-way input tape.

23/37

Two-way finite state transducers (2NFT)

nput Tape [[5] [e] [] [e] [5] [5] [e] [o] (1]

head

(,1/,‘6,"—1 O‘|aa_1

Output Tape [;] [:] [:] [:] [:] [:] [:] [:] [:]

head

24 /37

Two-way finite state transducers (2NFT)

nput Tape [[5] [¢] [] [e] [5] [5] [e] [o] (1]

head

(,1/,‘6,"—1 O‘|aa_1

Output Tape [;] [:] [:] [:] [:] [:] [:] [:] [:]

head

24 /37

Two-way finite state transducers (2NFT)

Input Tape EEE

head

(,1/,‘6,"—1 O‘|aa_1

Output Tape [;] [:] [:] [:] [:] [:] [:] [:] [:]

head

24 /37

Two-way finite state transducers (2NFT)

nput Tape [[5] [¢] [] [e] [5] [5] [e] [o] (1]

head

(,1/,‘6,"—1 O‘|aa_1

Output Tape [;] [:] [:] [:] [:] [:] [:] [:] [:]

head

24 /37

Two-way finite state transducers (2NFT)

nput Tape [-] [5] [¢] [] [e] [5] [5] [e] [o] (1]

head

(,1/,‘6,"—1 O‘|aa_1

Output Tape [;] [:] [:] [:] [:] [:] [:] [:] [:]

head

24 /37

Two-way finite state transducers (2NFT)

e [EEHDEEEE GO

head

(,1/,‘6,"—1 O‘|aa_1

Output Tape [;] [:] [:] [:] [:] [:] [:] [:] [:]

head

24 /37

Two-way finite state transducers (2NFT)

nput Tape [[5] [¢] [] [e] [5] [5] [e] [o] (1]

head

(,1/,‘6,"—1 O‘|aa_1

Output Tape [;] [:] [:] [:] [:] [:] [:] [:] [:]

head

24 /37

Two-way finite state transducers (2NFT)

nput Tape [] [s] [e] [] [e] [s] [5] [e] [d] [4]

head

(,1/,‘6,"—1 O‘|aa_1

Output Tape [;] [:] [:] [:] [:] [:] [:] [:] [:]

head

24 /37

Two-way finite state transducers (2NFT)

Input Tape E‘EE

head

ale, +1 ale, -1

Output Tape [;] [:] [:] [:] [:] [:] [:] [:] [:]

head

24 /37

Two-way finite state transducers (2NFT)

nput Tape [] [s] [e] [] [e] [s] [5] [e] [d] [4]

head

(,1/,‘6,"—1 O‘|aa_1

Output Tape [;] [:] [:] [:] [:] [:] [:] [:] [:]

head

24 /37

Two-way finite state transducers (2NFT)

nput Tape [[5] [¢] [] [e] [5] [5] [e] [o] (1]

head

(,1/,‘6,"—1 O‘|aa_1

Output Tape [;] [:] [:] [:] [:] [:] [:] [:] [:]

head

24 /37

Two-way finite state transducers (2NFT)

e [EEHDEEEE GO

head

(,1/,‘6,"—1 O‘|aa_1

Output Tape [:] [;] [:] [:] [:] [:] [:] [:] [:]

head

24 /37

Two-way finite state transducers (2NFT)

nput Tape [-] [5] [¢] [] [e] [5] [5] [e] [o] (1]

head

(,1/,‘6,"—1 O‘|aa_1

OutputTapeEEDDDDDD

head

24 /37

Two-way finite state transducers (2NFT)

nput Tape [[5] [¢] [] [e] [5] [5] [e] [o] (1]

head

(,1/,‘6,"—1 O‘|aa_1

OutputTapelzIEDDDDD

head

24 /37

Two-way finite state transducers (2NFT)

Input Tape EEE

head

(,1/,‘6,"—1 O‘|aa_1

OutputTapelzIEEDDDD

head

24 /37

Two-way finite state transducers (2NFT)

nput Tape [[5] [¢] [] [e] [5] [5] [e] [o] (1]

head

(,1/,‘6,"—1 O‘|aa_1

OutputTapelzIEEDDD

head

24 /37

Two-way finite state transducers (2NFT)

nput Tape [[5] [e] [] [e] [5] [5] [e] [o] (1]

head

(,1/,‘6,"—1 O‘|aa_1

OutputTapelzIEEDD
x

head

24 /37

Two-way finite state transducers (2NFT)

nput Tape [1-] [s] [¢] [] [e] [s] [5] [e] [d] [4]

head

(,1/,‘6,"—1 O‘|aa_1

(1 e, —1 <f§%> Hle <:E:>

OutputTapelEIlE'lE'D
x

head

24 /37

Two-way finite state transducers (2NFT)

nput Tape [1-] [s] [¢] [] [e] [s] [5] [e] [d] [4]

head

(,1/,‘6,"—1 O‘|aa_1

(1 e, —1 <f§%> Hle <:E:>

OutputTapelEIlE'lE'D
x

head

24 /37

Two-way finite state transducers — Properties

Main Properties of 2NFT

@ closed under composition (Chytil Jakl 77)

@ equivalence of functional 2NFT is decidable (Culik,
Karhumaki, 87)

@ functional 2NFT = 2DFT (Hoogeboom Engelfriet 01, De
Souza 13)

Logical Characterization (Hoogeboom Engelfriet 01)

2DFT = MSO transductions

2DFT define regular functions.

25 /37

Two-way finite state transducers — Properties

Main Properties of 2NFT

@ closed under composition (Chytil Jakl 77)

@ equivalence of functional 2NFT is decidable (Culik,
Karhumaki, 87)

@ functional 2NFT = 2DFT (Hoogeboom Engelfriet 01, De
Souza 13)

Logical Characterization (Hoogeboom Engelfriet 01)

2DFT = MSO transductions

2DFT define regular functions.

Also characterized by (deterministic) streaming string transducers
(Alur Cerny 10).

25 /37

Motivation: bounded memory problem
Is the bounded memory problem decidable for 2DFT 7 l

26 /37

Motivation: bounded memory problem

Is the bounded memory problem decidable for 2DFT 7 \

Necessary Condition

The transduction must be definable by a one-way finite state
transducer.

Indeed, bounded memory computable transductions =
1DFT-definable transductions

26 /37

D="(input) deterministic”
f="functional"

DFTs fNFTs NFTs

2DFTs f2NFTs 2NFTs

27 /37

D="(input) deterministic”
f="functional"

Fu-~— mirror(u)

DFTs e fNFTs " NFTs
“a e “a
M M &
2DFTs f2NFTs 2NFTs

27 /37

D="(input) deterministic”
f="functional"

{(2.).(2.b)}

DFTs fNFTs c . NFTs
A A A
)
2DFTs f2NFTs c 2NFTs

27 /37

D="(input) deterministic”
f="functional"

a"a — amtl

<

DFTs @ fNFTs c NFTs
A Y M
2DFTs f2NFTs C 2NFTs

27 /37

D="(input) deterministic”
f="functional"

DFTs @ fNFTs c NFTs
A Y M

2DFTs = f2NFTs C 2NFTs

[De Souza (13)]
=MSOT [Engelfriet,Hoogeboom (01)]

= Streaming String Transducers [Alur, Cerny, 2010]
27 /37

D="(input) deterministic”
f="functional"

PTIME
[Choffrut (77)]
[Weber, Klemm (95)]

[Beal,Carton,Prieur,$akarovitch(03)]

DFTs @ fNFTs c NFTs
A Y M

2DFTs = f2NFTs C 2NFTs

[De Souza (13)]
=MSOT [Engelfriet,Hoogeboom (01)]

= Streaming String Transducers [Alur, Cerny, 2010]
27 /37

D="(input) deterministic”
f="functional"

PTIME PTIME
[Choffrut (77)] [Schiitzenberger (75)]

[Weber, Klemm (95)] [Gurari, Ibarra (83)]
[Beal,Carton,Prieur,$akarovitch(03)] [Beal,Carton,Prieur,Sakarovitch(03)]
DFTs @ fNFTs @ NFTs
M R A

2DFTs = f2NFTs C 2NFTs

[De Souza (13)]
=MSOT [Engelfriet,Hoogeboom (01)]

= Streaming String Transducers [Alur, Cerny, 2010]
27 /37

D="(input) deterministic”
f="functional"

PTIME PTIME
[Choffrut (77)] [Schiitzenberger (75)]

[Weber, Klemm (95)] [Gurari, Ibarra (83)]
[Beal,Carton,Prieur,$akarovitch(03)] [Beal,Carton,Prieur,Sakarovitch(03)]
DFTs @ fNFTs @ NFTs
M R A
2DFTs = f2NFTs C 2NFTs

[De Souza (13)]
=MSOT [Engelfriet,Hoogeboom (01)]

decidable

. [Culik,Karhumaki (87)]
= Streaming String Transducers [Alur, Cerny, 2010]

27 /37

D="(input) deterministic”
f="functional"

PTIME PTIME
[Choffrut (77)] [Schiitzenberger (75)]

[Weber, Klemm (95)] [Gurari, Ibarra (83)]
[Beal,Carton,Prieur,$akarovitch(03)] [Beal,Carton,Prieur,Sakarovitch(03)]
DFTs @ fNFTs @ NFTs
A » : AN A

[Filiot,Gauwin,Reynier,Servais (13)]
2DFTs = f2NFTs C 2NFTs

[De Souza (13)]
=MSOT [Engelfriet,Hoogeboom (01)]

decidable

. [Culik,Karhumaki (87)]
= Streaming String Transducers [Alur, Cerny, 2010]

27 /37

D="(input) deterministic”
f="functional"

PTIME PTIME
[Choffrut (77)] [Schiitzenberger (75)]
[Weber, Klemm (95)] [Gurari, Ibarra (83)]
[Beal,Carton,Prieur,$akarovitch(03)] [Beal,Carton,Prieur,Sakarovitch(03)]
DFTs @ fNFTs @ NFTs
M Y A open
[Filiot,Gauwin,Reynier,Servais (13)]

2DFTs = f2NFTs C 2NFTs

[De Souza (13)]
=MSOT [Engelfriet,Hoogeboom (01)]

decidable

. [Culik,Karhumaki (87)]
= Streaming String Transducers [Alur, Cerny, 2010]

27 /37

From Two-Way to One-Way Finite
State Automata

1DFA vs 2DFA
For every 2NFA there exists an equivalent 1NFA. \

@ The first proof was done by Rabin and Scott (1959).

@ In the same journal Shepherdson (1959) also published a

(simpler) proof. Also rephrased, in an even simpler way, by
Ullman.

e Vardi (1981) presented a different proof.

@ The R&S proof is more easily adapted to transducers.

29 /37

Rabin and Scott's proof for 2-Automata

@ a run is made of many zigzags (moves of the input head)

—"
—

30/37

Rabin and Scott's proof for 2-Automata

@ a run is made of many zigzags (moves of the input head)

>
@ A z-motion is an elementary zigzag.

30/37

Rabin and Scott's Proof: -motions removal

;aﬁ

]

)]
.

!

31/37

Rabin and Scott's Proof: -motions removal

;aﬁ
]
)]
.
!

@ Def: A shape is k crossing if any position is visited at most k times.
@ Thm: Any k-crossing shape can be reduced to a line in k2 steps.

@ Prop: Vw € L(A), w is accepted by a |Q] crossing run.

31/37

squeeze(A)

a3

2
r

>

S = squeeze(A) removes some z-motions of A.

@ simulates A

@ non-deterministically guesses that a z-motion starts (e.g.
from g1 to q2)

© checks that is indeed a z-motion and simulates it one-way

@ goes back to mode 1

32/37

squeeze(A)

S = squeeze(A) removes some z-motions of A.

Iterate squeeze(A)

@ Every accepted word has a one-way run in squeeze‘QP(A)
—> remove backward transitions to obtain a INFA
equivalent to A.

32/37

How to simulate a -motion run in one-way ?

do = l’o<
rn rn r
> P4s = I3

Simulate the three passes in parallel | (with triple of states)

33/37

Extension to transducers

@ same canvas (Rabin and Scott)
@ removal of z-motion:
=» translate a z-motion transducer into a fNFT

@ not always possible — decision procedure

34 /37

Extension to transducers

@ same canvas (Rabin and Scott)

@ removal of z-motion:
=» translate a z-motion transducer into a fNFT

@ not always possible — decision procedure

Remarks:

@ if local z-motion transductions are 1-way definable, then
squeeze(T) can be defined

e iterate squeeze(T) |@|? times (if possible), you get an
equivalent 1-NFT

34 /37

Extension to transducers

@ same canvas (Rabin and Scott)

@ removal of z-motion:
=» translate a z-motion transducer into a fNFT

@ not always possible — decision procedure

Remarks:

@ if local z-motion transductions are 1-way definable, then
squeeze(T) can be defined

e iterate squeeze(T) |@|? times (if possible), you get an
equivalent 1-NFT

Results:

@ decisition procedure to test whether a z-motion-transducer is
1-way definable

o the algorithm is complete

34 /37

Decision procedure

Let T be a f2NFT.

© repeat |Q|? times:
e are all z-motion transductions of T NFT-definable?

o yes: T <+ squeeze(T)
@ no: STOP: the initial 2NFTwas not NFT-definable!

@ remove backward transitions: you get an equivalent NFT

35/37

Towards a characterization of 1-way definable

-motion-transductions

X0 4 Yo

xi-a y1 BT xe " y2 =x000" - yo

Lemma (Fine and Wilf (56))

Let u,v € £*. If u* and v¥ have a sufficiently large common
factor, then u € (wiwz)* and v € (wowy)* for some wy, wor € L.

= «,/3,7,0 have conjugate primitive roots (if # €).
— case analysis, depending on the emptiness of «, 3, ~v .

Conclusion

© It is decidable whether a 2DFT s definable by a INFT.

@ It is decidable whether a 2DFT is definable by a 1DFT.

© Bounded memory is decidable for regular string transductions.

e Complexity: non-elementary upper-bound, PSpace-hard.

37/37

Conclusion

© It is decidable whether a 2DFT s definable by a INFT.

@ It is decidable whether a 2DFT is definable by a 1DFT.

© Bounded memory is decidable for regular string transductions.

@ Complexity: non-elementary upper-bound, PSpace-hard.
Future Work

@ Lower complexity (Shepherdson)

e What about 2NFT(even non functional) ?

@ Consider other structures: infinite strings, trees

@ Variable minimization in streaming string transducers

37/37

Classes of Transductions

D="(input) deterministic”
f="functional”

PTIME PTIME
[Choffrut (77)] [Schiitzenberger (75)]
[Weber, Klemm (95)] [Gurari, Ibarra (83)]

[Beal,Carton, Prieur,Sakarovitch(03)] [Beal,Carton, Prieur,Sakarovitch(03)]

DFTs - fNFTs c NFTs
o} o} £y Jopen
THIS TALK
2DFTs = f2NFTs C 2NFTs

[De Souza (13)]
= MSOT [Engelfriet,Hoogeboom (01)]
= Streaming String Transducers [Alur, Cerny, 2010] [Culik,Karhumaki (87)]

decidable

38 /37

MSO Transductions (Courcelle)

@ input string seen as the logical structure over
{suce, (lab,)acs }

@ output predicates defined with MSO formulas interpreted over
the input structure

39/37

MSO Transductions (Courcelle)

@ input string seen as the logical structure over

{succ, (lab,)sex }
@ output predicates defined with MSO formulas interpreted over
the input structure

succ succ succ succ succ succ succ

O020202020202020

39/37

MSO Transductions (Courcelle)

@ input string seen as the logical structure over

{succ, (lab,)sex }
@ output predicates defined with MSO formulas interpreted over
the input structure

succ succ succ succ succ succ succ

O020202020202020

¢succ(x,}/) = SUCC(y,X)
Glab,(x) = labs(x)

39/37

MSO Transductions (Courcelle)

@ input string seen as the logical structure over
{suce, (lab,)acs }

@ output predicates defined with MSO formulas interpreted over
the input structure

succ succ succ succ succ succ succ

: succ : succ : succ : mm
¢succ(x,}/) = SUCC(y,X)

¢/aba (X) = /aba(x)

39/37

MSO Transductions (Courcelle)

@ input string seen as the logical structure over

{succ, (lab,)sex }
@ output predicates defined with MSO formulas interpreted over
the input structure

LA LD

sSucc succ Succ Succ Succ sSucc Succ
¢succ(x, }/) = SUCC(y, X)
Glab,(x) = labs(x)

39/37

Streaming String Transducers (Alur, Cerny, 2010)

On every transitions, a finite set of variables can be updated by
@ appending a string: x := x.u
@ prepending a string: x := u.x
@ concatenating two variables: x := yz

40/37

Streaming String Transducers (Alur, Cerny, 2010)

On every transitions, a finite set of variables can be updated by
@ appending a string: x := x.u
@ prepending a string: x := u.x
@ concatenating two variables: x := yz

R(T) = mirror

40/37

Streaming String Transducers (Alur, Cerny, 2010)

On every transitions, a finite set of variables can be updated by
@ appending a string: x := x.u
@ prepending a string: x := u.x
@ concatenating two variables: x := yz

R(T) = mirror

40 /37

Streaming String Transducers

Theorem (Alur Cerny 2010)

The following models are expressively equivalent:
Q two-way DFT
@ MSO transductions

@ deterministic (one-way) streaming string transducers with
copyless update

Moreover, SSTs have good algorithmic properties and have been
used to analyse list processing programs (Alur Cerny 2011).

41 /37

A word about infinite strings

@ most transducer models can be extended to (right-) infinite
strings

@ Biichi / Muller accepting conditions

@ most of the results seen so far still hold with some
complications ...

@ determinization of one-way transducers: TP is too strong

alaa ala

start > start >

@ deterministic 2way < functional 2way:

a“ if infinite number of 'a’
T : u—

u otherwise

@ functional 2way = determinitic 2way + w-regular look-ahead
= w-MSO transductions = w-SST (Alur,Filiot, Trivedi,12) .

-motions simulation

q1 q2 q3 q4
o= rn r r3
P4 = I
Po p1 P2 P3

It is possible to simulate a z-motion run with a one-way
automaton

@ each state is a triple (p, r, q)
@ the initial state is (po, ro, o) with go = ro

@ (pi, 11, Gi) = (it fit1, Gis1) iff
a,+1
Pi —>1Pi+1

fiy1 — i

a,+1
gi — Qi1
final states: (p, p, q)

43 /37

	1NFT
	2NFT
	2DFA to 1NFA
	2DFT to 1NFT
	Conclusion

