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Abstract. In this paper, we study the structure of underlying automatabased
constructions for solving the LTL realizability and synthesis problem. We show
how to reduce the LTL realizability problem to a game with an observer that
checks that the game visits a bounded number of times accepting states of a uni-
versal co-Büchi word automaton. We show that such an observer can be made
deterministic and that this deterministic observer has a nice structure which can
be exploited by an incremental algorithm that manipulates antichains of game
positions. We have implemented this new algorithm and our first results are very
encouraging.

1 Introduction

Automata theory has revealed very elegant for solving verification and synthesis prob-
lems. A large body of results in computer aided verification can be phrased and solved
in this framework. Tools that use those results have been successfully used in industrial
context, see [16] for an example. Nevertheless, there is still plenty of research to do
and new theory to develop in order to obtain more efficient algorithms able to handle
larger or broader classes of practical examples. Recently,we and other authors have
shown in [4–6,14, 21] that several automata-based constructions enjoy structural prop-
erties that can be exploited to improve algorithms on automata. For example, in [6] we
show how to solve more efficiently the language inclusion problem for nondeterminis-
tic Büchi automata by exploiting a partial-order that exists on the state spaces of subset
constructions used to solve this problem. Other structuralproperties have been addi-
tionally exploited in [7]. In this paper, we pursue this lineof research and revisit the
automata-based approach toLTL realizability and synthesis. AlthoughLTL realizability
is 2EXPTIME-COMPLETE, we show that there are also automata structures equipped
with adequate partial-orders that can be exploited to obtain a more practical decision
procedure for it.

The realizability problem for anLTL formulaφ is best seen as a game between two
players [13]. Each of the players is controlling a subset of the setP of propositions
on which theLTL formulaφ is constructed. The set of propositionsP is partitioned
into I the set ofinput signalsthat are controlled by ”Player input” (the environment,
also called PlayerI), andO the set ofoutput signalsthat are controlled by ”Player
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output” (the controller, also called PlayerO). The realizability game is played in turns.
PlayerO is the protagonist, she wants to satisfy the formulaφ, while PlayerI is the
antagonist as he wants to falsify the formulaφ. PlayerO starts by giving a subseto0 of
propositions1, PlayerI responds by giving a subset of propositionsi0, then PlayerO
giveso1 and PlayerI responds byi1, and so on. This game lasts forever and the outcome
of the game is the infinite wordw = (i0∪o0)(i1∪o1)(i2∪o2) · · · ∈ (2P )ω. We say that
PlayerO wins if the resulting infinite wordw is a model ofφ. This problem is central
when dealing with specifications for reactive systems. In that context, the signals of
the environment being uncontrollable, unrealizable specifications are useless as they
can not be implemented. TheLTL realizability problem has been studied starting from
the end of the eighties with the seminal works by Pnueli and Rosner [13], and Abadi,
Lamport and Wolper [1]. The 2EXPTIME lower bound was established in [15].2

The classical automata-based solution toLTL synthesis can be summarized as fol-
lows. Given anLTL formulaφ, construct a nondeterministic Büchi automatonAφ that
accepts all models ofφ, transformAφ into a deterministic Rabin automatonB using
Safra’s determinization procedure [18], and useB as an observer in a turn-based two-
player game. Unfortunately, this theoretically elegant procedure has turn out to be very
difficult to implement. Indeed, Safra’s determinization procedure generates very com-
plex state spaces: states are colored trees of subsets of states of the original automaton.
No nice symbolic data-structure is known to handle such state spaces. Moreover, the
game to solve as the last step (on a potentially doubly-exponential state-space) is a
Rabin game, and this problem is known to be NP complete3.

This situation has triggered further research for alternative procedures. Most no-
tably, Kupferman and Vardi in [10] have recently proposed procedures that avoid the
determinization step and so the Safra’s construction4. In particular, they reduce the
LTL realizability problem to the emptiness of a Universal Co-B¨uchi Tree automaton
(UCT). They show how to test emptiness of aUCT by translation to an alternating
weak Büchi tree automaton, again translated into a non-deterministic Büchi tree au-
tomaton for which testing emptiness is easy. All these stepshave been implemented
and optimized in several ways by Jobstmann and Bloem in a toolcalledLily [9].

In this paper, we propose a different and more direct Safraless decision procedure
for the LTL realizability and synthesis problem and we identify structural properties
that allow us to define an antichain algorithm in the line of our previous works. We
highlight differences with [10, 9] in Section 5. Our procedure uses Universal Co-Büchi
Word automaton,UCW. Those automata have the following simple nice property. Ifa
Moore machineM with m states defines a language included into the language defined
by aUCW with n states, then obviously every run on the words generated byM con-
tains at most2mn accepting states. As a consequence a Moore machine that enforces a
language defined by aUCW also enforces a stronger requirement defined by the same
automaton where the acceptance condition is strengthened to a so called2mn-bounded
one: ”a run is accepting if it passes at most2mn times by an accepting state”. Using the

1 Technically, we could have started with PlayerI , for modeling reason it is conservative to start
with PlayerO.

2 Older works also consider the realizability problem but formore expressive and computation-
ally intractable formalisms, see [20].

3 Instead of Rabin automata, Parity automata can also be used [12]. Nevertheless, there are no
known polynomial time algorithm to solve parity games.

4 As a consequence, they call their new proceduresSafralessprocedures. Nevertheless they use
the result by Safra in their proof of correctness.



result by Safra, we know that the size of a Moore machine that realizes a language de-
fined by aUCW can be bounded. This gives a reduction from the general problem to the
problem of the realizability of ak-boundedUCW specification. Contrarily to general
UCW specifications,k-boundedUCW specifications can easily be made determinis-
tic and, most importantly the underlying deterministic automaton is always equipped
with a partial-order on states that can be used to efficientlymanipulate its state space
using our antichain method. We have implemented this new antichain algorithm in a
tool calledAcacia and our experiments show promising results. Indeed, even without
further optimizations,Acacia outperformsLily.

The rest of this paper is organized as follows. In Section 2, we recall definitions.
In Section 3, we show how to reduce theLTL realizability problem to the realizability
of a k-boundedUCW specification. In Section 4, we show structural properties of the
deterministic structure that we obtain from thek-boundedUCW specification and study
antichains for manipulating sets of states of this deterministic structure. In Section 5,
we report on preliminary experiments using our antichain algorithm for synthesis and
compare them to the results obtained by using the toolLily [9]. In Section 6, we draw
conclusions and identify future works.

2 LTL and Realizability Problem

Linear Temporal Logic (LTL) The formulas ofLTL are defined over a set of atomic
propositionsP . The syntax is given by the grammar:

φ ::= p | φ ∨ φ | ¬φ | Xφ | φUφ p ∈ P

The notationstrue, false, φ1 ∧ φ2, ♦φ and �φ are defined as usual. In particular,
♦φ = trueUφ and�φ = ¬♦¬φ. LTL formulasφ are interpreted on infinite words
w = σ0σ1σ2 · · · ∈ (2P )ω via a satisfaction relationw |= φ inductively defined as
follows: (i) w |= p if p ∈ σ0, (ii) w |= φ1 ∨ φ2 if w |= φ1 orw |= φ2, (iii) w |= ¬φ if
w 6|= φ, (iv) w |= Xφ if σ1σ2 . . . |= φ, and(v) w |= φ1 Uφ2 if there isn ≥ 0 such that
σnσn+1 . . . |= φ2 and for all0 ≤ i < n, σiσi+1 . . . |= φ1.

LTL Realizability and SynthesisAs recalled in the introduction, the realizability prob-
lem for LTL is best seen as a game between two players. Each of the playersis con-
trolling a subset of the setP of propositions on which theLTL formula is constructed.
Accordingly, unless otherwise stated, we partition the setof propositionsP into I the
set of input signalsthat are controlled by ”Player input” (the environment, also called
PlayerI), andO the set ofoutput signalsthat are controlled by ”Player output” (the
controller, also called PlayerO). It is also useful to associate this partition ofP with
the three following alphabets:Σ = 2P , ΣI = 2I , andΣO = 2O. We denote by∅ the
empty set. The realizability game is played in turns. PlayerO starts by giving a subseto0
of propositions, PlayerI responds by giving a subset of propositionsi0, then PlayerO
giveso1 and PlayerI responds byi1, and so on. This game lasts forever and the output
of the game is the infinite word(i0∪o0)(i1∪o1)(i2∪o2) · · · ∈ Σω. The players play ac-
cording to strategies. A strategy for PlayerO is a (total) mappingλO : (ΣOΣI)

∗ → ΣO

while a strategy for PlayerI is a (total) mappingλI : ΣO(ΣIΣO)∗ → ΣI . The out-
come of the strategiesλO andλI is the wordoutcome(λO, λI) = (o0∪i0)(o1∪i1) . . .
such that for allj ≥ 0, oj = λO(o0i0 . . . oj−1ij−1) andij = λI(o0i0 . . . oj−1ij−1oj).
In particular,o0 = λO(ǫ) andi0 = λI(o0).



We can now define the realizability problem. Given anLTL formulaφ (the specifica-
tion), therealizability problemis to decide whether there exists a strategyλO of Player
O such that for all strategiesλI of PlayerI, outcome(λO, λI) |= φ. If such a strategy
exists, we say that the specificationφ is realizable. If an LTL specification is realizable,
there exists a finite-state strategy that realizes it [13]. Thesynthesis problemis to find a
finite-state strategy that realizes theLTL specification.
E.g., letI = {q}, O = {p} andψ = pUq. The formulaψ is not realizable. Asq is
controlled by the environment, he can decide to leave it always false and the outcome
does not satisfyφ. However♦q → (pUq) is realizable. The assumption♦q states that
q will hold at some point, and ensures the controller wins if italways assertsp.

Infinite Word AutomataAn infinite word automatonover the finite alphabetΣ is a tuple
A = (Σ,Q, q0, α, δ) whereQ is a finite set of states,q0 ∈ Q is the initial state,α ⊆ Q
is a set of final states andδ ⊆ Q × Σ × Q is a transition relation. For allq ∈ Q and
all σ ∈ Σ, we letδ(q, σ) = {q′ | (q, σ, q′) ∈ δ}. We let|A| = |Q| + |δ| be the size of
A. We say thatA is deterministicif ∀q ∈ Q · ∀σ ∈ Σ · |δ(q, σ)| ≤ 1. It is completeif
∀q ∈ Q · ∀σ ∈ Σ · δ(q, σ) 6= ∅. In this paper, unless otherwise stated, the automata
are complete. Arun of A on a wordw = σ0σ1 · · · ∈ Σω is an infinite sequence of
statesρ = ρ0ρ1 · · · ∈ Qω such thatρ0 = q0 and∀i ≥ 0 · qi+1 ∈ δ(qi, ρi). We denote
by RunsA(w) the set of runs ofA onw. We denote byVisit(ρ, q) the number of times
the stateq occurs along the runρ. We consider three acceptance conditions (a.c.) for
infinite word automata. A wordw is accepted byA if (depending on the a.c.):

Non-deterministic Büchi :∃ρ ∈ RunsA(w) · ∃q ∈ α · Visit(ρ, q) = ∞
Universal Co-Büchi :∀ρ ∈ RunsA(w) · ∀q ∈ α · Visit(ρ, q) <∞
UniversalK-Co-Büchi :∀ρ ∈ RunsA(w) · ∀q ∈ α · Visit(ρ, q) ≤ K

The set of words accepted byA with the non-deterministic Büchi a.c. is denoted by
Lb(A), and with this a.c. in mind, we say thatA is a non-deterministic Büchi word au-
tomaton,NBW for short. Similarly, we denote respectively byLuc(A) andLuc,K(A) the
set of words accepted byA with the universal co-Büchi and universalK-co-Büchi a.c.
respectively. With those interpretations, we say thatA is a universal co-Büchi automa-
ton (UCW) and that(A,K) is a universalK-co-Büchi automaton (UKCW) respectively.
By duality, we have clearlyLb(A) = Luc(A), for any infinite word automatonA. Fi-
nally, note that for any0 ≤ K1 ≤ K2, we have thatLuc,K1

(A) ⊆ Luc,K2
(A) ⊆ Luc(A).

Infinite automata andLTL It is well-known (see for instance [19]) thatNBWs subsume
LTL in the sense that for allLTL formulaφ, there is anNBWAφ (possibly exponentially
larger) such thatLb(Aφ) = {w | w |= φ}. Similarly, by duality it is straightforward to
associate an equivalentUCW with any LTL formulaφ: takeA¬φ with the universal
co-Büchi a.c., soLuc(A¬φ) = Lb(A¬φ) = Lb(Aφ) = {w | w |= φ}.

To reflect the game point of view of the realizability problem, we introduce the no-
tion of turn-based automata to define the specification. Aturn-based automatonA over
the input alphabetΣI and the output alphabetΣO is a tupleA = (ΣI , ΣO, QI , QO, q0, α,
δI , δO) whereQI , QO are finite sets of input and output states respectively,q0 ∈ QO

is the initial state,α ⊆ QI ∪ QO is the set of final states, andδI ⊆ QI × ΣI × QO,
δO ⊆ QO × ΣO × QI are the input and output transition relations respectively. It is
completeif for all qI ∈ QI , and allσI ∈ ΣI , δI(qI , σI) 6= ∅, and for allqO ∈ ΣO and
all σO ∈ ΣO, δO(qO, σO) 6= ∅. As for usual automata, in this paper we assume that
turn-based automata are always complete. Turn-based automataA still run on words



1 3 4 5 6¬p ¬q

⊤

⊤

q

2 7

⊤ ¬q ⊤ ⊤

8
q

q

9

⊤

⊤

Fig. 1. tbUCW for ♦q → (pUq) whereI = {q} andO = {p}

from Σω as follows: a run on a wordw = (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω is a word
ρ = ρ0ρ1 · · · ∈ (QOQI)

ω such thatρ0 = q0 and for allj ≥ 0, (ρ2j , oj , ρ2j+1) ∈ δO
and (ρ2j+1, ij , ρ2j+2) ∈ δI . All the acceptance conditions considered in this paper
carry over to turn-based automata. Turn-based automata with acceptance conditionsC
are denoted bytbC, e.g.tbNBW. EveryUCW (resp.NBW) with state setQ and transi-
tion set∆ is equivalent to atbUCW (resp.tbNBW) with |Q|+ |∆| states: the new set of

states isQ ∪∆, final states remain the same, and each transitionr = q
σo∪σi−−−−→ q′ ∈ ∆

whereσo ∈ ΣO andσi ∈ ΣI is split into a transitionq
σo−→ r and a transitionr

σi−→ q′.

Moore MachinesLTL realizability is equivalent toLTL realizability by a finite-state
strategy [13]. We use Moore machines to represent finite-state strategies. AMoore ma-
chineM with input alphabetΣI and output alphabetΣO is a tuple(ΣI , ΣO, QM , q0, δM ,
gM ) whereQM is a finite set of states with initial stateq0, δM : QM ×ΣI → QM is a
(total) transition function, andgM : Q→ ΣO is a (total) output function. We extendδM
to δ∗M : Σ∗

I → QM inductively as follows:δ∗M (ǫ) = q0 andδ∗M (uσ) = δM (δ∗M (u), σ).
The language ofM , denoted byL(M), is the set of wordsw = (o0 ∪ i0)(o1 ∪ i1) · · · ∈
Σω

P such that for allj ≥ 0, δ∗M (i0 . . . ij−1) is defined andoj = gM (δ∗M (i0 . . . ij−1)).
In particular,o0 = gM (δ∗M (ǫ)) = gM (q0). The size of a Moore machine is defined
similarly as the size of an automaton.

Thanks to previous remarks, theLTL realizability problem reduces to decide, given
a tbUCW A over inputsΣI and outputsΣO, whether there is a non-empty Moore
machineM such thatL(M) ⊆ Luc(A). In this case we say thatA is realizable. In
our implementation, thetbUCW is equivalent to an LTL formula given as input and is
constructed by usingWring [19].

Running exampleA tbUCW A equivalent to♦q → (pUq) is depicted in Fig. 1. Output
statesQO = {1, 4, 6, 8} are depicted by squares and input statesQI = {2, 3, 5, 7, 9} by
circles. In the transitions,⊤ stands for the setsΣI orΣO, depending on the context,¬q
(resp.¬p) stands for the sets that do not containq (resp.p), i.e. the empty set. One can
see that starting from state1, if the controller does not assertp and next the environment
does not assertq, then the run is in state4. From this state, whatever the controller does,
if the environment assertsq, then the controller loses, as state6 will be visited infinitely
often. A strategy for the controller is to assertp all the time, therefore the runs will loop



in states1 and2 until the environment assertsq. Afterwards the runs will loop in states
8 and9, which are non-final.

3 Reduction to a UKCW Objective

In this section, we reduce the realizability problem with a specification given by a turn-
based universal co-Büchi automaton (tbUCW) to a specification given by a turn-based
universalK-co-Büchi automaton (tbUKCW). Then we reduce this new problem to an
infinite turn-based two-player game with a safety winning condition. This is done via
an easy determinization oftbUKCWs (which produces a deterministictbUKCW). To
solve this game efficiently, we propose an antichain-based algorithm in Section 4.

Lemma 1. LetA be atbUCW over inputsΣI and outputsΣO withn states, andM be
a Moore machine over inputsΣI and outputsΣO withm states. ThenL(M) ⊆ Luc(A)
iff L(M) ⊆ Luc,2mn(A).

Proof. The back direction is obvious sinceLuc,k(A) ⊆ Luc(A) for all k ∈ N. We
sketch the forth direction. Informally, the infinite paths of M starting from the initial
state define words that are accepted byA. Therefore in the product ofM andA, there
is no cycle visiting an accepting state ofA, which allows one to bound the number of
visited final states by the number of states in the product. �

The following result is proved in Th. 4.3 of [10], as a small model property of universal
co-Büchi tree automata. We also prove it here for the sake ofself-containdness.

Lemma 2. Given a realizabletbUCWA over inputsΣI and outputsΣO withn states,
there exists a non-empty Moore machine with at mostn2n+2 + 1 states that realizes it.

Proof. We sketch the proof. In the first step, we show by using Safra’sdeterminization
of NBWs thatA is equivalent to a turn-based deterministic and complete parity automa-
tonAd. By using a result of [12], we can assume thatAd has at mostm := 2n2n+2 + 2
states. We then viewAd has a turn-based two-player parity gameG(Ad) (with at most
m states) such thatAd (or equivalentlyA) is realizable iff PlayerO has a winning strat-
egy inG(Ad). It is known that parity games admit memoryless strategies [8]. Therefore
if Ad is realizable, there exists a strategy for PlayerO in G(Ad) that can be obtained
by removing all but one outgoing edge per PlayerO’s state. We can finally transform
this strategy into a Moore machine with at mostn2n+2 + 1 states that realizesAd (and
A). �

The following theorem states that we can reduce the realizability of a tbUCW spec-
ification to the realizability of atbUKCW specification.

Theorem 1. LetA be atbUCW overΣI , ΣO with n states andK = 2n(n2n+2 + 1).
ThenA is realizable iff(A,K) is realizable.

Proof. If A is realizable, by Lem. 2, there is a non-empty Moore machineM with
m states (m ≤ n2n+2 + 1) realizingA. ThusL(M) ⊆ Luc(A) and by Lem. 1, it is
equivalent toL(M) ⊆ Luc,2mn(A). We can conclude sinceLuc,2mn(A) ⊆ Luc,K(A)
(2mn ≤ K). The converse is obvious asLuc,K(A) ⊆ Luc(A). �

In the first part of this section, we reduced thetbUCW realizability problem to
the tbUKCW realizability problem. In the next part, we reduce this new problem to a
safety game. It is based on the determinization oftbUKCWs into complete turn-based
deterministic0-Co-Büchi automata, which can also be viewed as safety games.



Safety GameTurn-based two-player games are played on game arenas by twoplayers,
PlayerI and PlayerO. A game arenais a tupleG = (SO, SI , s0, T ) whereSI , SO

are disjoint sets of player states (SI for PlayerI andSO for PlayerO), s0 ∈ SO is the
initial state, andT ⊆ SO × SI ∪ SI × SO is the transition relation. Afinite playon
G of lengthn is a finite wordπ = π0π1 . . . πn ∈ (SO ∪ SI)

∗ such thatπ0 = s0 and
for all i = 0, . . . , n − 1, (πi, πi+1) ∈ T . Infinite plays are defined similarly. Note that
all infinite plays belong to(S0SI)

ω . A winning conditionW is a subset of(SOSI)
ω.

A play π is won by PlayerO if π ∈ W , otherwise it is won by PlayerI. A strategyλi

for Playeri (i ∈ {I,O}) is a mapping that maps any finite play whose last states is in
Si to a states′ such that(s, s′) ∈ T . Theoutcomeof a strategyλi of Playeri is the set
OutcomeG(λi) of infinite playsπ = π0π1π2 · · · ∈ (SOSI)

ω such that for allj ≥ 0,
if πj ∈ Si, thenπj+1 = λi(π0, . . . , πj). We consider the safety winning condition. It
is given by a subset of states denoted bysafe. A strategyλi for Playeri is winning
if OutcomeG(λi) ⊆ safeω. We sometimes write(SO, SI , s0, T, safe) to denote the
gameG with safety conditionsafe. Finally, a strategyλi for Playeri is winning in the
gameG from a states ∈ SO ∪ SI if it is winning in (SO, SI , s, T ).

Determinization ofUKCW Let A be a tbUKCW (ΣO, ΣI , QO, QI , q0, α,∆O, ∆I)
with K ∈ N. We letQ = QO ∪ QI and∆ = ∆O ∪ ∆I . It is easy to construct an
equivalent complete turn-based deterministic0-co-Büchi automatondet(A,K). Intu-
itively, it suffices to extend the usual subset constructionwith counters, for allq ∈ Q,
that count (up toK + 1) the maximal number of accepting states which have been
visited by runs ending up inq. We set the counter of a stateq to −1 when no run on
the prefix read so far ends up inq. The final states are the sets in which a state has its
counter greater thanK. For anyn ∈ N, [n] denotes the set{−1, 0, 1, . . . , n}. Formally,
we letdet(A,K) = (ΣO, ΣI ,FO,FI , F0, α

′, δO, δI) where:

FO = {F | F is a mapping fromQO to [K + 1]}
FI = {F | F is a mapping fromQI to [K + 1]}

F0 = q ∈ QO 7→

{

−1 if q 6= q0
(q0 ∈ α) otherwise

α′ = {F ∈ FI ∪ FO| ∃q, F (q) > K}
succ(F, σ) = q 7→ max{min(K + 1, F (p) + (q ∈ α)) | q ∈ ∆(p, σ), F (p) 6= −1}
δO = succ|FO×ΣO

δI = succ|FI×ΣI

wheremax ∅ = −1, and(q ∈ α) = 1 if q is in α, and0 otherwise. The automaton
det(A,K) has the following properties:

Proposition 1. LetA be atbUCW andK ∈ N. Thendet(A,K) is deterministic, com-
plete, andLuc,0(det(A,K)) = Luc,K(A).

Reduction to a Safety gameFinally, we define the gameG(A,K) as follows: it is
det(A,K) where input states are viewed as PlayerI ’s states and output states as Player
O’s states. Transition labels can be ignored sincedet(A,K) is deterministic. Formally,
G(A,K) = (FO,FI , F0, T, safe) wheresafe = F\α′ andT = {(F, F ′) | ∃σ ∈
ΣO ∪ΣI , F

′ = succ(F, σ)}. As an obvious consequence of Th. 1 and Prop. 1, we get:.

Theorem 2 (Reduction to a safety game). Let A be a tbUCW over inputsΣI and
outputsΣO with n states (n > 0), and letK = 2n(n2n+2 + 1). The specificationA is
realizable iff PlayerO has a winning strategy in the gameG(A,K).



4 Antichain-based Symbolic Algorithm

A fixpoint algorithm In the previous section, we have shown how to reduce the real-
izability problem to a safety game. Symbolic algorithms forsolving safety games are
constructed using the so-called controllable predecessoroperator, see [8] for details. Let
A = (ΣO, ΣI , Q0, QI , q0, α,∆O, ∆I) be atbUCW with n states,K = 2n(n2n+2 +1)
andG(A,K) = (FO,FI , F0, T, safe) be the two-player turn-based safety game de-
fined in the previous section. Remind that∆ = ∆O ∪ ∆I and letF = FO ∪ FI . In
our case, the controllable predecessor operator is based onthe two following monotonic
functions over2F :

PreI : 2FO → 2FI

S 7→ {F ∈ FI | ∀F ′ ∈ FO, (F, F
′) ∈ T =⇒ F ′ ∈ S} ∩ safe

PreO : 2FI → 2FO

S 7→ {F ∈ FO | ∃F ′ ∈ FI , (F, F
′) ∈ T } ∩ safe

Let CPre = PreO ◦ PreI (CPre stands for “controllable predecessors”). The function
CPre is monotonic over the complete lattice(2FO ,⊆), and so it has a greatest fixed
point that we denote byCPre∗.

Theorem 3. The set of states from which PlayerO has a winning strategy inG(A,K)
is equal toCPre∗.

In particular, by Th. 2,F0 ∈ CPre∗ iff the specificationA is realizable. To compute
CPre∗, we consider the following⊆-descending chain:S0 = F , and fori ≥ 0 Si+1 =
CPre(Si) ∩ Si, until Sk+1 = Sk.

Ordering of game configurations.We define the relation�⊆ FI × FI ∪ FO × FO by
F � F ′ iff ∀q, F (q) ≤ F ′(q). It is clear that� is a partial order. Intuitively, if Player
O can win fromF ′ then she can also win from allF � F ′. Formally,� is a game
simulation relation in the terminology of [3].

Closed sets and antichains.A setS ⊆ F is closed for�, if ∀F ∈ S ·∀F ′ � F ·F ′ ∈ S.
We usually omit references to� if clear from the context. LetS1 andS2 be two closed
sets, thenS1 ∩ S2 andS1 ∪ S2 are closed. Furthermore, the image of a closed setS by
the functionsPreI , PreO, andCPre are closed sets:

Lemma 3. For all closed setsS1, S2 ⊆ FI , S3 ⊆ FO, the setsPreO(S1), CPre(S2),
andPreI(S3) are closed.

As a consequence, all the sets manipulated by the symbolic algorithm above are closed
sets. We next show how to represent and manipulates those sets efficiently.

The closureof a setS ⊆ F , denoted by↓S, is the setS′ = {F ′ ∈ F | ∃F ∈
S ·F ′ � F}. Note that for all closed setsS ⊆ F , ↓S = S. A setL ⊆ F is anantichain
if all elements ofL are incomparable for�. Let S ⊆ F , we denote by⌈S⌉ the set of
maximal elements ofS, that is⌈S⌉ = {F ∈ S |6 ∃F ′ ∈ S · F ′ 6= F ∧ F � F ′}, it is an
antichain. IfS is closed then↓⌈S⌉ = S, i.e. antichains arecanonical representations
for closed sets. Next, we show that antichains are a compact and efficient representation
to manipulate closed sets inF . We start with the algorithms for union, intersection,
inclusion and membership. Since the size of a stateF ∈ F is in practice much smaller
than the number of elements in the antichains, we consider that comparing two states is
in constant time.



Proposition 2. Let L1, L2 ⊆ F be two antichains andF ∈ F , then(i) ↓L1 ∪ ↓
L2 = ↓⌈L1 ∪ L2⌉, this antichain can be computed in timeO((|L1| + |L2|)2) and its
size is bounded by|L1| + |L2|, (ii) ↓L1∩ ↓L2 = ↓⌈L1 ⊓ L2⌉, whereF1 ⊓ F2 : q 7→
min(F1(q), F2(q)), this antichain can be computed in timeO(|L1|2 × |L2|2) and its
size is bounded by|L1| × |L2|, (iii) ↓L1 ⊆↓L2 iff ∀F1 ∈ L1 · ∃F2 ∈ L2 · F1 � F2,
which can be established in timeO(|L1| × |L2|), (iv) F ∈↓L1 can be established in
timeO(|L1|).

Let us now turn to the computation of controllable predecessors. LetF ∈ F , andσ ∈
ΣI ∪ΣO. We denote byΩ(F, σ) ∈ F the function defined by:

Ω(F, σ) : q ∈ Q 7→ min{max(−1, F (q′) − (q′ ∈ α)) | (q, σ, q′) ∈ δ}

Note that sinceA is complete, the argument of min is a non-empty set. The function
Ω is not the inverse of the functionsucc, assucc has no inverse in general. Indeed,
it might be the case that a stateF ∈ F has no predecessors or has more than one
predecessorH such thatsucc(H,σ) = F . However, we prove the following:

Proposition 3. For all F, F ′ ∈ F ∩ safe, and allσ ∈ ΣI ∪ΣO,

(i) F � F ′ =⇒ Ω(F, σ) � Ω(F ′, σ) (iii) F � Ω(succ(F, σ), σ)
(ii) F � F ′ =⇒ succ(F, σ) � succ(F ′, σ) (iv) succ(Ω(F, σ), σ) � F

For allS ⊆ F andσ ∈ ΣI ∪ ΣO, we denote byPre(S, σ) = {F | succ(F, σ) ∈ S}
the set of predecessors ofS. The set of predecessors of a closed set↓F is closed and
has a unique maximal elementΩ(F, σ):

Lemma 4. For all F ∈ F ∩ safe andσ ∈ ΣI ∪ΣO, Pre(↓F, σ) =↓Ω(F, σ).

Proof. LetH ∈ Pre(↓F, σ). Hencesucc(H,σ) � F . By Prop. 3(i), we have
Ω(succ(H,σ), σ) � Ω(F, σ), from which we getH � Ω(F, σ), by Prop. 3(iii).
Conversely, letH � Ω(F, σ). By Prop. 3(ii), succ(H,σ) � succ(Ω(F, σ), σ). Since
by Prop. 3(iv), succ(Ω(F, σ), σ) � F , we getsucc(H,σ) � F . �

We can now use the previous result to compute the controllable predecessors:

Proposition 4. Let A be a tbUK CW. Given two antichainsL1, L2 such thatL1 ⊆
FI ∩ safe andL2 ⊆ FO ∩ safe:

PreO(↓L1) =
⋃

σ∈ΣO
Pre(↓L1, σ) =

⋃

σ∈ΣO
↓{Ω(F, σ) | F ∈ L1}

PreI(↓L2) =
⋂

σ∈ΣI
Pre(↓L2, σ) =

⋂

σ∈ΣI
↓{Ω(F, σ) | F ∈ L2}

PreO(↓L1) can be computed in timeO(|ΣO| × |A| × |L1|), andPreI(↓L2) can be
computed in timeO((|A| × |L2|)|ΣI |).

As stated in the previous proposition, the complexity of ouralgorithm for computing
thePreI is worst-case exponential. We establish as a corollary of the next proposition
that this is unavoidable unlessP=NP . Given a graphG = (V,E), a set of verticesW
is independent iff no pairs of elements inW are linked by an edge inE. We denote by
IND(G) = {W ⊆ V | ∀{v, v′} ∈ E · v 6∈ W ∨ v′ 6∈ W} the set of independent sets
in G. The problem ”independent set” asks given a graphG = (V,E) and an integer
0 ≤ k ≤ |V |, if there exists an independent set inG of size larger thank. It is known to
beNP -complete.



Proposition 5. Given a graphG = (V,E), we can construct in deterministic poly-
nomial time aUK CW A, with K = 0, and an antichainL such thatIND(G) =↓
PreI(PreO(PreO((L))).

Corollary 1. There is no polynomial time algorithm to compute thePreI operation on
antichains unlessP = NP .

Note that this negative result is not a weakness of antichains. Indeed, it is easy to see
from the proofs of those results that any algorithm based on adata structure that is able
to represent compactly the set of subsets of a given set has this property.

Incremental Algorithm.In practice, for checking the existence of a winning strategy for
PlayerO in the safety game, we rely on an incremental approach. We usethe following
property ofUK CWs: for allK1,K2 · 0 ≤ K1 ≤ K2 · Luc,L1

(A) ⊆ Luc,K2
(A) ⊆

Luc(A). So, the following theorem which is a direct consequence of the previous prop-
erty allows us to test the existence of strategies for increasing values ofK:

Theorem 4. For all tbUCWsA, for all K ≥ 0, if PlayerO has a winning strategy in
the gameG(A,K) then the specification defined byA is realizable.

Unrealizable Specifications.The incremental algorithm is not reasonable to test unre-
alizability. Indeed, with this algorithm it is necessary toreach the bound2n(n2n+2 +1)
to conclude for unrealizability. To obtain a more practicalalgorithm, we rely on the
determinacy ofω-regular games (a corollary of the general result by Martin [11]).

Theorem 5. For all LTL formulasφ, either(i) there exists a PlayerO’s strategyλO

s.t. for all PlayerI ’s strategiesλI , outcome(λO, λI) |= φ, or there exists a PlayerI ’s
strategyλI s.t. for all PlayerO’s strategiesλO, outcome(λO, λI) |= ¬φ.

So, when anLTL specificationφ is not realizable for PlayerO, it means that¬φ is
realizable for PlayerI. To avoid in practice the enumeration of values forK up to
2n(n2n+2 + 1), we propose the following algorithm. First, given the LTL formulaφ,
we construct twoUCWs: one that accepts all the models ofφ, denoted byAφ, and
one that accepts all the models of¬φ, denoted byA¬φ. Then we check realizability by
PlayerO of φ, and in parallel realizability by PlayerI of ¬φ, incrementing the value of
K. When one of the two processes stops, we know ifφ is realizable or not. In practice,
we will see that eitherφ is realizable for PlayerO for a small value ofK or ¬φ is
realizable for PlayerI for a small value ofK.

SynthesisIf a UCW A is realizable, it is easy to extract from the greatest fixpoint
computation a Moore machine that realizes it. LetΠI ⊆ FI∩safe andΠO ⊆ FO∩safe
be the two sets obtained by the greatest fixpoint computation. In particular,ΠI andΠO

are downward-closed andPreO(ΠI) = ΠO, PreI(ΠO) = ΠI . By definition ofPreO,
for all F ∈ ⌈ΠO⌉, there existsσF ∈ Σ such thatsucc(F, σF ) ∈ ΠI , and thisσF can
be computed. From this we can extract a Moore machine whose set of states is⌈ΠO⌉,
the output function maps any stateF ∈ ⌈ΠO⌉ to σF , and the transition function, when
reading someσ ∈ ΣI , mapsF to a stateF ′ ∈ ⌈ΠO⌉ such thatsucc(succ(F, σF ), σ) �
F ′ (it exists by definition of the fixpoint and by monotonicity ofsucc). The initial state
is some stateF ∈ ⌈ΠO⌉ such thatF0 � F (it exists if the specification is realizable).
LetM be this Moore machine. For any wordw accepted byM , it is clear thatw is also
accepted bydet(A,K), assucc is monotonic andΠO ⊆ safe. ThereforeL(M) ⊆
Luc,0(det(A,K)) = Luc,K(A) ⊆ Luc(A).
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Fig. 2. Moore machine

Example We apply the antichain algorithm on thetbUCW
depicted in Fig. 1, withK = 1. Remember thatI = {q}
andO = {p}, so thatΣI = {∅, {q}} andΣO = {∅, {p}}.
For space reasons, we cannot give the whole fixpoint com-
putation. We starts with the safe state inG(A,K) for Player
O, i.e. the constant function fromQO to 1 denoted by
F1 = (1 7→ 1, 4 7→ 1, 6 7→ 1, 8 7→ 1). It represents
the set↓F1. Then we compute⌈PreI(↓F1)⌉ ∩ safe = ⌈↓
Ω(F1, {q}) ∩ ↓Ω(F1,∅)⌉ ∩ safe. We haveΩ(F1, {q}) = (2 7→ 1, 3 7→ 1, 5 7→
0, 7 7→ 0, 9 7→ 1) andΩ(F1,∅) = (2 7→ 1, 3 7→ 1, 5 7→ 1, 7 7→ 0, 9 7→ 1). There-
fore ⌈PreI(↓F1)⌉ = {F2 := (2 7→ 1, 3 7→ 1, 5 7→ 0, 7 7→ 0, 9 7→ 1)}. Then we
haveΩ(F2, {p}) = Ω(F2,∅) = (1 7→ 1, 4 7→ 0, 6 7→ 0, 8 7→ 1). Therefore⌈PreO(↓
F2)⌉ ∩ safe = ⌈CPre({F1})⌉ ∩ safe = {(1 7→ 1, 4 7→ 0, 6 7→ 0, 8 7→ 1)}. At the end
of the computation, we get the fixpoint↓{F := (1 7→ 1, 4 7→ −1, 6 7→ −1, 8 7→ 1)}.
Since the initial stateF0 is in ↓F , PlayerO has a winning strategy and the formula is
realizable. Fig. 2 shows a Moore machine obtained from the fixpoint computation.

5 Performance Evaluation

In this section, we briefly present our implementationAcacia and compare it toLily [9].
More information can be found online [2].Acacia is a prototype implementation of our
antichain algorithm forLTL realizability and synthesis. To achieve a fair comparison,
Acacia is written in Perl asLily. Given anLTL formula and a partition of its proposi-
tions into inputs and outputs,Acacia tests realizability of the formula. If it is realizable,
it outputs a Moore machine representing a winning strategy for the output player5, oth-
erwise it outputs a winning strategy for the input player. AsLily, Acacia runs in two
steps. The first step builds atbUCW for the formula, and the second step checks realiz-
ability of the automaton. As Lily, we borrow theLTL-to-tbUCW construction procedure
from Wring [19] and adopt the automaton optimizations fromLily, so that we can ex-
clude the influence of automata construction to the performance comparison between
Acacia andLily 6.

We carried out experiments on a Linux platform with a 2.1GHz CPU and 2GB
of memory. We comparedAcacia andLily on the test suite included inLily, and on
other examples derived fromLily’s examples, as detailed in the sequel. As shown in the
previous section (Th. 5), realizability or unrealizability tests are slightly different, as
we test unrealizability by testing the realizability by theenvironment of the negation of
the specification. In the experiments, depending on whetherthe formula is realizable or
not, we only report the results for the realizability or unrealizability tests. In practice,
those two tests should be run in parallel.

ResultsTables 1 and 2 report on the results of the tests for unrealizable and realizable
examples respectively. In those tables,Column formula size gives the size of the for-
mulas (number of atomic propositions and connectives).Column tbUCW St./Tr. gives

5 Note that the correctness of this Moore machine can be automatically verified by model-
checking tools if desired.

6 In Lily, this first step produces universal co-Büchi tree automataover ΣO-labeledΣI -trees,
which can easily be seen astbUCWs over inputsΣI and outputsΣO. Although the two models
are close, we introducedtbUCWs for the sake of clarity (as all our developments are done on
construction for word automata).



the number of states and transitions of thetbUCWs transformed fromLTL formula.
One may encounter∅ whenLily’s tbUCW optimization procedure concludes the lan-
guage emptiness of thetbUCW. Column tbUCW Time(s) gives the time (in seconds)
spent on building up thetbUCWs. For realizability tests,Lily andAcacia construct the
sametbUCW, while for unrealizability tests, they are different (as shown in Section
4, we use thetbUCW corresponding to the negation of the formula).Column Rank
gives the maximal rank used byLily when trying to transform thetbUCW to an alter-
nating weak tree automaton.Rank is a complexity measure forLily. Column Check
Time(s) gives the time (in seconds) spent in realizability checking. If the language of
a tbUCW is proved to be empty during the optimization stage,Lily will directly con-
clude for unrealizability.Column K reports the minimalK for whichAcacia was able
to conclude realizability of thetbUKCW. Usually,K is small for realizable specifica-
tions.Column No. Iter. gives the number of iterations to compute the fixpoint.Column
max{|PreI |}/max{|PreO|} reports on the maximal sizes of the antichains obtained
during the fixpoint computation when applyingPreI andPreO respectively.

CommentsLily’s test suite includes examples 1 to 23. Except examples 1, 2,4, and 11,
they are all realizable. Table 2 shows, except demo 16,Acacia performs much better
than Lily in realizability tests. For unrealizability tests, if we do not take into account
the time fortbUCW construction,Acacia performs better as well. In the test suite,
demo 3 describes a scheduler. We have taken a scalability test by introducing more
clients. In Table 2, from 3.4 to 3.6, when the number of clients reached 4, Lily ran
over-time (> 3600 seconds). However,Acacia managed in finishing the check within
the time bound. One can weaken/strengthen a specification byremoving/appending en-
vironment assumptions and controller assertions. We have carried out a diagnostic test
based on demo 22. In the test cases from 22.3 to 22.9, the environment assumptions
are getting stronger and stronger. The specifications turn out to be realizable after the
case 22.5. A controller with a stronger environment shall beeasier to realize. The data
in Table 2, from 22.5 to 22.9, confirm this. For unrealizability check, in Table 1 from
22.1 to 22.4, both tools spent more time on case 22.4 than on case 22.3. However,Aca-
cia turns out to be better forCheck Time. Finally, we can see that the bottleneck for
examples 22.1 to 22.9, as well as for examples 20 to 22, is the time spent to construct
the automaton. With regards to this concern, the improvement in time complexity com-
pared toLily is less impressive. However, it was not expected that this first step of the
algorithm (constructing theNBW for the LTL formula) would have been the bottleneck
of the approach. Indeed, the problem is 2EXPTIME-COMPLETE, while the automata
construction is in EXPTIME, and in [13], the forseen bottleneck is clearly the second
step that relies on Safra’s determinization.

As a conclusion, the experiments show that the antichain algorithm is a very promis-
ing approach toLTL synthesis. Although the formulas are still rather small, the results
validate the relevance of the method. Indeed, without any further optimization, the re-
sults outperformLily. We think that our algorithm is a step towards the realization of a
tool that can handle specifications of practical interest.

Comparison with Kupferman-Vardi’s Approach (implementedin Lily) In [10], the au-
thors give a Safraless procedure forLTL synthesis. It is a three steps algorithm:(i)
transform anLTL formula into a universal co-Büchi tree automaton (UCT) A that ac-
cepts the winning strategies of the controller,(ii) transformA into an alternating weak
tree automatonB (AWT) such thatL(B) 6= ∅ iff L(A) 6= ∅, (iii) transformB into an
equivalent Büchi tree automatonC (NBT) and test its emptiness. This latter problem



can be seen as solving a game with a Büchi objective. This approach differs from our
approach in the following points. First, in [10], the authorsomehow reduce the real-
izability problem to a game with aBüchi objective, while our approach reduces it to
a game with asafety objective. Second, our approach allows one to define a natural
partial order on states that can be exploited by an antichainalgorithm, which is not ob-
vious in the approach of [10]. Finally, in [10], states ofAWT are equipped with unique
ranks that partition the set of states into layers. States which share the same rank are
either all accepting or all non-accepting. The transition function allows one to stay in
the same layer or to go in a layer with lower rank. A run is accepting if it gets stuck
in a non-accepting layer. While our notion of counters lookssimilar to ranks, it is dif-
ferent. Indeed, the notion of rank does not constraint the runs to visit accepting states
a bounded number of times (bounded by a constant). This is whya Büchi acceptance
condition is needed, while counting the number of visited accepting states allows us to
define a safety acceptance condition. However, we conjecture that when our approach
concludes for realizability with boundk, the algorithm of [10] can conclude for real-
izability with a maximal rank linearly bounded byk. The converse is not true, we can
define a class of examples where the maximal rank needed by [10] is 1 while our ap-
proach necessarily needs to visit at least an exponential number of accepting states. This
is because the ranks does not count the number of accepting states, but counts somehow
the number of finite sequences of accepting states of a certain type. We think that it is
an interesting question for future research to see how the two methods can benefit from
each other, and to formally prove the conjecture above.

6 Summary

This paper described a novel Safraless approach to LTL realizability and synthesis,
based on universalK-Co-Büchi word automata. These automata can be easily deter-
minized, and enjoy a structure that allowed us to define an antichain algorithm for
LTL realizability, implemented in the toolAcacia. The results are very promising, as
Acacia outperforms the existing toolLily without any further optimizations (apart from
antichains) whileLily uses clever optimizations to make the Vardi and Kupferman algo-
rithm practical. Note that our approach also applies to any logic which can be translated
into a UCW, and in particular, any logic closed by negation which can betranslated
into anNBW 7.

We plan to optimizeAcacia in several ways. First, as the construction of the nonde-
terministic automaton from the LTL formula is currently thebottleneck of our approach,
we would like to translateLTL formulas (in linear time) into alternating word automata,
and then toUCW by applying the Miyano-Hayashi (MH) construction [17] implicitely
as in [21, 6]. The difficulty here is to find an adequate symbolic representation of count-
ing functions for the implicit MH state space. Second, we would like to study how a
compositional approach to realizability could apply to specifications which are large
conjunctions of (small) sub-specifications.

AcknowledgmentsWe are grateful to the referees for their valuable comments and we
warmly thank Laurent Doyen for his helpful remarks.

7 Note also that anyω-regular specification can be expressed as aUCW, as a consequence our
method is applicable to all such objective.



Lily Acacia
formula tbUCW tbUCW Check tbUCW tbUCW K No. max{|PreI |}/ Check

size St./Tr. Time(s) Time(s) St./Tr. Time(s) Iter. max{|PreO|} Time(s)
1 28 ∅ 0.17 0.01 6/27 0.24 1 1 1/1 0.00
2 28 ∅ 0.17 0.01 18/101 1.89 3 6 1/1 0.05
4 38 18/56 3.53 1.13 23/121 3.16 2 8 3/4 0.14
11 12 ∅ 1.32 0.04 3/10 0.07 0 1 1/1 0.00

22.1 24 5/9 0.18 0.09 22/126 4.97 1 5 2/2 0.05
22.2 23 4/14 0.32 0.11 23/126 4.85 1 4 1/1 0.04
22.3 29 5/15 0.36 0.11 23/130 6.25 1 5 2/2 0.06
22.4 37 6/34 2.48 0.18 26/137 6.47 1 10 12/10 0.38

Table 1. Performance comparison for unrealizability test

Lily Acacia
formula tbUCW tbUCW Rank Check K No. max{|PreO|}/ Check

size St./Tr. Time(s) Time(s) Iter. max{|PreI |} Time(s)
3 34 10/28 0.97 1 0.30 0 2 2 /2 0.00
5 44 13/47 1.53 1 0.65 0 2 2 /2 0.01
6 49 19/63 3.19 1 0.91 0 3 3 /3 0.03
7 50 11/34 1.42 1 0.31 0 2 2 /2 0.01
8 7 3/6 0.07 1 0.02 0 1 1 /1 0.00
9 22 5/10 0.33 1 0.03 1 6 3 /2 0.01
10 13 7/21 0.63 1 0.10 0 1 1 /1 0.00
12 14 8/26 0.35 1 0.07 0 1 1 /1 0.00
13 11 3/4 0.02 1 0.01 1 3 2 /1 0.00
14 21 5/13 0.26 1 0.07 1 4 3 /3 0.01
15 31 6/16 0.24 1 0.11 2 9 9 /13 0.08
16 56 8/26 0.57 1 1.45 3 16 64/104 7.89
17 37 6/20 0.40 1 0.31 2 12 8 /7 0.10
18 63 8/31 0.92 1 2.35 2 12 19/19 0.89
19 32 7/17 0.75 3 4.05 2 12 5/5 0.03
20 72 25/198 7.03 1 0.99 0 3 1 /1 0.04
21 119 13/72 15.61 1 1.88 0 4 25/13 0.40
22 62 19/115 25.28 1 1.21 1 7 4 /7 0.10
23 19 7/12 0.47 1 0.04 2 2 2 /1 0.00
3.1 34 10/28 1.09 1 0.31 0 2 2 / 2 0.01
3.2 63 18/80 2.60 1 7.70 0 2 4 / 4 0.07
3.3 92 26/200 2.60 1 554.99 0 2 8 / 8 0.65
3.4 121 34/480 7.59 - > 3600 0 2 16/ 16 8.46
3.5 150 42/1128 12.46 - > 3600 0 2 32/ 32 138.18
3.6 179 50/2608 22.76 - > 3600 1 2 64/64 2080.63
22.5 41 7/38 4.17 1 0.50 2 19 4/6 0.12
22.6 62 19/115 21.20 1 1.52 1 7 4/7 0.11
22.7 56 13/75 7.51 1 0.73 1 6 3/4 0.05
22.8 51 10/50 3.82 1 0.43 1 5 2/3 0.03
22.9 47 7/29 1.46 1 0.33 1 5 2/3 0.02

Table 2. Performance comparison for realizability test



References

1. M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable specifications of reactive
systems. InICALP, 1989.

2. Acacia. Available athttp://www.antichains.be, 2009.
3. R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refinement relations.

In CONCUR, pages 163–178. Springer, 1998.
4. A. Bouajjani, P. Habermehl, L. Holı́k, T. Touili, and T. Vojnar. Antichain-based universality

and inclusion testing over nondeterministic finite tree automata. InCIAA, pages 57–67, 2008.
5. M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains: A new algorithm

for checking universality of finite automata. InCAV, volume 4144 ofLNCS, pages 17–30.
Springer, 2006.

6. L. Doyen and J.-F. Raskin. Improved algorithms for the automata-based approach to model-
checking. InTACAS, volume 4424 ofLNCS, pages 451–465. Springer, 2007.

7. S. Fogarty and M. Vardi. Buechi complementation and size-change termination. 2009. to
appear in TACAS.
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A Missing Proofs

A.1 Proof of Lemma 1

Proof. The back direction is obvious sinceLuc,k(A) ⊆ Luc(A) for all k ∈ N.
For the forth direction, we first transformM into a tbNBW AM such thatL(M) =
Lb(AM ). It suffices to copy every state ofM and to define the transitions as follows:

if q
i
−→ q′ is a transition ofM with i ∈ ΣI , and the output ofq is o ∈ ΣO, then we

transform this transition into the twoAM transitionsq
o
−→ qc andqc i

−→ q′ whereqc is
a fresh state denoting a copy ofq. All states ofAM are set to be final, so thatLb(AM )
is exactly the set of traces of infinite paths ofAM (viewed as an edge-labeled graph)
starting from the initial state. By hypothesis,Lb(AM ) ⊆ Luc(A). Note thatAM has2m
states.
LetQ be the set of states ofA, QAM

the set of states ofAM andA × AM the product
of A andAM (i.e. the automaton overΣI ∪ ΣO whose set of states isQ × QAM

,
initial states are pairs of initial states, and transitionshave the form(q, p)

σ
−→ (q′, p′)

for all transitionsq
σ
−→ q′ of A andp

σ
−→ p′ of AM ). SinceLb(AM ) ⊆ Luc(A), there

is no cycle inA × AM reachable from an initial state and that contains a state(q, p)
whereq ∈ Q is final. Indeed, otherwise there would exist an infinite pathin A × AM

visiting (q, p) infinitely often. Every infinite word obtained as a trace of this path would
be accepted byAM but not byA (since there would be a run on it visitingq infinitely
often). Therefore the runs ofA on words accepted byAM visit at most2nm final states,
wheren (resp.2m) is the number of states ofA (resp.AM ). �

A.2 Proof of Lemma 2

Parity ConditionsThe proof uses the parity acceptance condition for automataand for
games. Given an automatonB with state setQB, a parity acceptance condition is given
by a mappingc fromQB to N. A run ρ is accepting ifmin{c(q) | q ∈ Inf(ρ)} is even.
Final states are not needed inB for this acceptance condition. We denote byLpar,c(B)
the language accepted byB under the parity acceptance conditionc.

Given a turn-based two-player gameG = (SO, SI , s0, ∆), the parity winning con-
dition is given by a mappingc : SO ∪ SI → N. In that case, for alli ∈ {O, I}, a strat-
egyλi for Playeri is winning if OutcomeG(λi) ⊆ {π ∈ (SOSI)

ω | min{c(s) | s ∈
Inf(π)} is even}.

Proof LetA = (ΣO, ΣI , QO, QI , q0, α, δO, δI). We letQ = QO∪QI andδ = δO∪δI .
Let AOI be the automaton(Σ,Q, q0, α, δ). We denote bym : (ΣOΣI)

ω → Σω the
function that maps any wordw = o0i0o1i1 . . . to m(w) = (o0 ∪ i0)(o1 ∪ i1) . . . .
Note thatm admits an inverse denoted bym−1. We have thatm(Lb(AOI)) = Lb(A)
(*). By Safra’s determinization, there exists a deterministic parity automatonDOI with
a parity conditionc such thatLpar,c(DOI) = Lb(AOI). Moreover, by [12], we can
assume thatDOI has at mostn2n+2 states. SinceLpar,c(DOI) ⊆ (ΣIΣO)ω, it is easy
to transformDOI into a deterministic turn-based parity automatonD with a parity
conditionc′ such thatLpar,c(DOI) = m−1(Lpar,c′(D)): it suffices to take the product
with the two-states automaton that accepts(ΣOΣI)

ω (let i ando its two states). The
states of the product are therefore pairs(q, p) with q a state ofDOI andp ∈ {i, o}, and
we let c′(q, p) = c(q). Note thatD has at most2n2n+2 states. From equality (*) and



the equalitiesLpar,c(DOI) = m−1(Lpar,c′(D)) andLpar,c(DOI) = Lb(AOI), we get
Lpar,c′(D) = Lb(A). Then we complete the automatonD by adding two dead states
and get a complete deterministic turn-based automatonAd (with at most2n2n+2 + 2
states). Finally, we take the dual parity conditioncd = c′ + 1 which increments the
value of each state by1, so thatLpar,cd

(Ad) = Σω −Lpar,c′(D) = Σω −Lb(A), from
which we getLuc(A) = Lpar,cd

(Ad).
Let Ad = (ΣO, ΣI , Q

d
I , Q

d
O, q0, δ

d
I , δ

d
O) andQd = Qd

I ∪ Qd
O. We now viewAd

has a turn-based two-player parity gameG(Ad) = (Qd
0, Q

d
I , q0, ∆): Qd

O are Player O’s
states (q0 being the initial state) whileQd

I are Player I’s states, and we put a transition
(q, p) ∈ ∆ from a stateq ∈ Qd to a statep ∈ Qd if there existsσ ∈ ΣI ∪ ΣO and
a transitionq

σ
−→ p in Ad. SinceAd has at most2n2n+2 + 2 states,G(Ad) has also at

most2n2n+2 states.
The specificationAd is realizable (or equivalentlyA is realizable) iff PlayerO has

a winning strategy inG(Ad). Therefore ifA is realizable, PlayerO has a winning
strategy inG(Ad) given by a mappingγ fromQd

O toQd
I such thatOutcomeG(Ad)(γ)

are wordsρ over(Qd
OQ

d
I)

ω such thatmin{c(q) | q ∈ Inf(ρ)} is even. Moreover, those
words correspond to accepting runs ofAd on words overΣ. Therefore the strategy
γ can easily be used to define a Moore machineM such thatL(M) ⊆ Lpar,c(A

d) =
Luc(A): first we assume thatΣ is totally ordered. The machineM is defined as follows:
Qd

O are its states,q0 is the initial state, the output functiong is defined byg(q) =

min{σo | (q, σo, γ(q)) ∈ δd
O}, for all q ∈ Qd

O, and finally we put a transitionq
σi−→ q′,

for all q, q′ ∈ Qd
O, and allσi ∈ ΣI if γ(q)

σi−→ q′ ∈ δd
I . Note that the transition relation

of M is a (total) function sinceAd is complete, and has less than(2n2n+2 + 2)/2 =
n2n+2 + 1 states. �

A.3 Proof of Theorem 2

Proof. Suppose thatA is realizable. By Theorem 1,(A,K) is also realizable, as well
asdet(A,K). Thus there is exists non-empty Moore machineM over inputsΣI and
outputsΣO such thatL(M) ⊆ Luc,0(det(A,K)). We now construct a winning strat-
egy γ for PlayerO in G(A,K). Intuitively, OutcomeG(A,K)(γ) will correspond to
runs ofdet(A,K) on words ofL(M). Therefore, sinceL(M) ⊆ Luc,0(det(A,K)),
OutcomeG(A,K)(γ) won’t visit final states. For the sake of clarity, we view thisMoore
machine as a (total) mappingλ : Σ∗

I → ΣO. First assume thatΣO andΣI are totally
ordered by some order≺. TakeH = FO

0 F
I
0 . . . F

I
m−1F

O
m ∈ (FOFI)

∗FO a finite play
of length2m + 1 in G(A,K). The wordH defines a wordw(H) ∈ F∗

I as follows:
w(H) = σI

1 . . . σ
I
m where for all1 ≤ i ≤ m, σI

i = min{σ | succ(F I
i−1, σ) = FO

i }.
We letγ(H) = succ(FO

m , λ(w(H))) (it exists sincedet(A,K) is complete, by Prop.
1).
We now prove thatγ is winning. LetH = FO

0 F
I
0 F

O
1 F

I
1 · · · ∈ (FOFI)

ω∩OutcomeG(A,K)(γ).
For all i ∈ {0, . . . , n}, let Hi = FO

0 F
I
0 . . . F

O
i F

I
i . We associateH with a word

uH = (σO
0 ∪σI

0)(σO
1 ∪σI

1) · · · ∈ Σω
P where for alli ≥ 0,σO

i = λ(σI
0 . . . σ

I
i−1) andσI

i =

min{σ | succ(F I
i , σ) = FO

i+1}. Note that sinceλ is winning,uH ∈ Luc,0(det(A,K)).
Moreover, by definition ofγ, for all i ≥ 0, succ(FO

i , σ
O
i ) = F I

i . ThereforeH is the
run ofdet(A,K) onuH and all states ofH are not final states.

Conversely, suppose that Player O has a winning strategyγ inG(A,K). It is known
that we can assume thatγ is memoryless [8]. So letγ be a mapping fromFO to FI .



We construct a winning strategy for the controller, represented as a Moore machine
Mγ = (ΣO, ΣI ,FO, F0, δγ , gγ). Its state set isFO with initial stateF0; for all F ∈ FO,
the output ofF is defined bygγ(F ) = σ, for someσ ∈ ΣO such thatδO(F, σo) = γ(F )
(it exists since(F, γ(F )) ∈ T ); for all F ∈ FO, and allσi ∈ ΣI , the transition
function is defined byδγ(F, σi) = δI(γ(F ), σi). Sinceγ is winning, it is clear by
construction that all states ofMγ reachable from the initial state are non-final. Therefore
L(Mγ) ⊆ Luc,0(det(A,K)) = Luc(A). Moreover, the transition relation ofMγ is a
(total) function, sincedet(A,K) is complete. Since there is a winning strategyγ in
G(A,K), it means thatG(A,K) is non-empty, and so isMγ , which concludes the
proof. �

A.4 Proof of Proposition 3

Proof. (i) It holds as max(−1, F (q) − q ∈ α) ≤max(−1, F ′(q) − q ∈ α), ∀q ∈ Q.

(ii) it holds as min(K+1, F (q′)+ q ∈ α) ≤min(K+1, F ′(q′)+ q ∈ α), ∀q′ ∈ Q.

(iii) Let q ∈ Q. We show that for allq′ ∈ δ(q, σ), F (q) ≤ succ(F, σ)(q′) − (q′ ∈
α). This will be sufficient to conclude since it implies thatF (q) ≤ max(−1, succ(F, σ)(q′)−
(q′ ∈ α)), for all q′ ∈ δ(q, σ), and therefore thatF (q) ≤ Ω(succ(F, σ), σ)(q).
So let q′ ∈ δ(q, σ), and letI(q′) = {q′′ | (q′′, σ, q′) ∈ δ, F (q′′) 6= −1}. Since
(q, σ, q′) ∈ δ, we haveq ∈ I(q′). We know thatsucc(F, σ)(q′) = max{min(K +
1, F (q′′) + q′ ∈ α) | q′′ ∈ I(q′)}. Sinceq ∈ I(q′), succ(F, σ)(q′) ≥ min(K +
1, F (q)+ q′ ∈ α). If F (q)+ q′ ∈ α ≤ K+1, thensucc(F, σ)(q′)− (q′ ∈ α) ≥ F (q).
The caseF (q) + (q′ ∈ α) is impossible sinceF (q) ≤ K, asF ∈ safe.

(iv) Letq ∈ Q. We first show that for allq′ such that(q′, σ, q) ∈ δ andΩ(F, σ)(q′) 6=
−1,Ω(F, σ)(q′) ≤ F (q)− (q ∈ α). This will be sufficient to conclude since it implies
thatmin(K+1, Ω(F, σ)(q′)+ (q ∈ α)) ≤ F (q), for all q′ such that(q′, σ, q) ∈ δ, and
therefore thatsucc(Ω(F, σ), σ)(q) ≤ F (q).
So letq′ such that(q′, σ, q) ∈ δ andΩ(F, σ)(q′) 6= −1. Let I(q′) = {q′′ | (q′, σ, q′′) ∈
δ}. Since(q′, σ, q) ∈ δ, we haveq ∈ I(q′). We know thatΩ(F, σ)(q′) = min{max(−1
,F (q′′)−(q′′ ∈ α)) | q′′ ∈ I(q′)}. Sinceq ∈ I(q′), we getΩ(F, σ)(q′) ≤ max(−1, F (q)−
(q ∈ α)). The caseF (q)−(q ∈ α) < −1 is impossible, since otherwise we would have
Ω(F, σ)(q′) = −1, which contradicts the hypothesis. Thereforemax(−1, F (q)− (q ∈
α)) = F (q) − (q ∈ α) andΩ(F, σ)(q′) ≤ F (q) − (q ∈ α). �

A.5 Proof of Proposition 5

Proof. We start by a simple remark. LetA betbUKCW with input statesQI and output
statesQO. WhenK = 0, Player I’s locations inG(A,K) are exactly the subsets ofQI

and Player O’s locations are the subsets ofQO, and the partial order� corresponds to
set inclusion.

Now, let us consider for eache = {v, v′} ∈ E the antichain (for⊆) L{v,v′} =
{V \ {v}, V \ {v′}}, L compactly represents all the subsets ofV that are independent
of the edge{v, v′}. ClearlyIND(G) =

⋂

{v,v′}∈E ↓L{v,v′}. As a direct consequence of
the NP completeness of the independent set problem, there can not exist a polynomial
time algorithm to compute the antichain for this intersection unlessP = NP . Indeed,
this antichain contains the maximal independent sets.



Now, we show how to construct aUK CW A and an antichain of subsets of states
L such thatPreI(PreO(PreO(L)) is exactlyIND(G). We can assume thatV is totally
ordered by some order, and for all edgese = {v, v′} ∈ E, we denote byπ1(e) the
minimal element ofe and byπ2(e) its maximal element. Now, the set of state of the au-
tomaton is structured in four layers:S3 = {ok, ko} belongs to Player I,S2 = {(v, e, i) |
v ∈ V, e ∈ E, i ∈ {1, 2}} belongs to Player O,S1 = {(v, e) | v ∈ V, e ∈ E} belongs
to Player O. Finally,S0 = {v | v ∈ V } belongs to Player I. Note that we do not make
players strictly alternate here to simplify the exposition, it is easy to add a layer between
the two actions of Player O to make the automaton turn-based.In those additional states,
Player I would have only one action and the operationPreI would simulate the identity.
The objective of Player O is to ensure that the control ends upin stateok ∈ S3, so we
takeL = {{ok}}. Now, we explain how to put transitions between states and compute
PreI(PreO(PreO(((L))). The transitions fromS2 andS3 are{((v, e, i), (e, i), ok) |
πi(e) 6= v} ∪ {((v, e′, i), (e, i), ko) | πi(e) = v ∨ e 6= e′)}, it is easy to verify that
PreO(L) is equal to↓∪e∈E{{(v, e, 1) | v 6= π1(e)}, {(v, e, 2) | v 6= π2(e)}. The
transitions fromS1 to S2 are{((v, e), i, (v, e, i)) | i ∈ {1, 2} ∧ v ∈ V ∧ e ∈ E}. As
states ofS1 belongs to Player O the controllable configurationsPreO(PreO((L)) are
↓∪e∈E{{(v, e) | v 6= π1(e)}, {(v, e) | v 6= π2(e)}}. The transitions fromS0 to S1

are{(v, e, (v, e)) | v ∈ V ∧ e ∈ E}. As states inS0 belongs to Player I, we have that
↓PreI(PreO(PreO((L))) = IND(G), indeed Player I can decide to verify any edge for
independence, so only independent set of vertices can be inPreI(PreO(PreO((L))).
�


