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Abstract. Two-player games on graphs provide the theoretical frame-
work for many important problems such as reactive synthesis. While the
traditional study of two-player zero-sum games has been extended to
multi-player games with several notions of equilibria, they are decidable
only for perfect-information games, whereas several applications require
imperfect-information games.
In this paper we propose a new notion of equilibria, called doomsday
equilibria, which is a strategy profile such that all players satisfy their
own objective, and if any coalition of players deviates and violates even
one of the players objective, then the objective of every player is violated.
We present algorithms and complexity results for deciding the existence
of doomsday equilibria for various classes of ω-regular objectives, both for
imperfect-information games, as well as for perfect-information games.
We provide optimal complexity bounds for imperfect-information games,
and in most cases for perfect-information games.

1 Introduction

Two-player games on finite-state graphs with ω-regular objectives provide the
framework to study many important problems in computer science [Sha53,Rab69,EJ91].
One key application area is synthesis of reactive systems [BL69,RW87,PR89a].
Traditionally, the reactive synthesis problem is reduced to two-player zero-sum
games, where vertices of the graph represent states of the system, edges repre-
sent transitions, one player represents a component of the system to synthesize,
and the other player represents the purely adversarial coalition of all the other
components. Since the coalition is adversarial, the game is zero-sum, i.e., the
objectives of the two players are complementary. Two-player zero-sum games on
graphs have been studied in great depth in the literature [Mar75,EJ91,GTW02].

Instead of considering all the other components as purely adversarial, a more
realistic model is to consider them as individual players each with their own
objective, as in protocol synthesis where the rational behavior of the agents is
to first satisfy their own objective in the protocol before trying to be adver-
sarial to the other agents. Hence, inspired by recent applications in protocol
synthesis, the model of multi-player games on graphs has become an active area
of research in graph games and reactive synthesis [AHK02,FKL10,UW11]. In
a multi-player setting, the games are not necessarily zero-sum (i.e., objectives
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are not necessarily conflicting) and the classical notion of rational behavior is
formalized as Nash equilibria [Nas50]. Nash equilibria perfectly capture the no-
tion of rational behavior in the absence of external criteria, i.e., the players are
concerned only about their own payoff, and they are indifferent to the payoff of
the other players. In the setting of synthesis, the more appropriate notion is the
adversarial external criteria, where the players are as harmful as possible to the
other players without sabotaging with their own objectives. This has inspired
the study of refinements of Nash equilibria, such as secure equilibria [CHJ06]
(that captures the adversarial external criteria), rational synthesis [FKL10],
and led to several new logics where the non-zero-sum equilibria can be ex-
pressed [CHP10,DLM10,MMV10,WHY11,MMPV12]. The complexity of Nash
equilibria [UW11], secure equilibria [CHJ06], rational synthesis [FKL10], and of
the new logics has been studied recently [CHP10,DLM10,MMV10,WHY11].

Along with the theoretical study of refinements of equilibria, applications
have also been developed in the synthesis of protocols. In particular, the notion
of secure equilibria has been useful in the synthesis of mutual-exclusion proto-
col [CHJ06], and of fair-exchange protocols [CR12] (a key protocol in the area
of security for exchange of digital signatures [MGK02]). One major drawback
that all the notions of equilibria suffer is that the basic decision questions re-
lated to them are decidable only in the setting of perfect-information games (in
a perfect-information games the players perfectly know the state and history
of the game, whereas in imperfect-information games each player has only a
partial view of the state space of the game), and in the setting of multi-player
imperfect-information games they are undecidable [PR89a]. However, the model
of partial-information games is very natural because every component of a sys-
tem has private variables not accessible to other components, and recent works
have demonstrated that imperfect-information games are required in synthesis
of fair-exchange protocols [JMM12]. In this paper, we provide the first decidable
framework that can model them.

We propose a new notion of equilibria which we call doomsday-threatening
equilibria (for short, doomsday equilibria). A doomsday equilibrium is a strategy
profile such that all players satisfy their own objective, and if any coalition of
players deviates and violates even one of the players objective, then doomsday
follows (every player objective is violated). Note that in contrast to other no-
tions of equilibria, doomsday equilibria consider deviation by an arbitrary set
of players, rather than individual players. Moreover, in case of two-player non-
zero-sum games they coincide with the secure equilibria where objectives of both
players are satisfied. We present algorithms and complexity bounds for deciding
the existence of doomsday equilibria for various classes of ω-regular objectives
both in perfect-information games, as well as in imperfect-information games,
and in most cases with optimal complexity. Our contribution is summarized in
Table 1. More specifically:

1. (Perfect-information games). We show that deciding the existence of dooms-
day equilibria in multi-player perfect-information games is (i) PTIME-complete
for reachability, Büchi, and coBüchi objectives; (ii) PSPACE-complete for
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XXXXXXXXXgames
objectives

safety reachability Büchi co-Büchi parity

PSpace
perfect information PSpace-C PTime-C PTime-C PTime-C NP-Hard

CoNP-Hard

imperfect information ExpTime-C ExpTime-C ExpTime-C ExpTime-C ExpTime-C

Table 1. Summary of the results

safety objectives; and (iii) in PSPACE and both NP-hard and coNP-hard
for parity objectives.

2. (Imperfect-information games). We show that deciding the existence of dooms-
day equilibria in multi-player imperfect-information games is EXPTIME-
complete for reachability, safety, Büchi, coBüchi, and parity objectives.

We also show (for both perfect and imperfect information settings) that when
the objectives are given by LTL formula, the DE existence problem is 2ExpTime-
complete, and we present a Safraless procedure [KV05] which can be optimized
using antichain data structures [FJR11a].

The area of multi-player games and various notion of equilibria is an active
area of research, but notions that lead to decidability for imperfect-information
games and has applications in synthesis, has largely been unexplored. Our work
is a contribution in this direction.

2 Doomsday Equilibria for Perfect Information Games

In this section, we define game arena with perfect information, ω-regular objec-
tives, and doomsday equilibria.

Game Arena An n-player game arena G with perfect information is defined
as a tuple (S,P, sinit, Σ,∆) such that S is a nonempty finite set of states, P =
{S1, S2, . . . , Sn} is a partition of S into n classes of states, one for each player
respectively, sinit ∈ S is the initial state, Σ is a finite set of actions, and ∆ :
S ×Σ → S is the transition function.

Plays in n-player game arena G are constructed as follows. They start in
the initial state sinit, and then an ω number of rounds are played as follows: the
player that owns the current state s chooses a letter σ ∈ Σ and the game evolves
to the position s′ = ∆(s, σ), then a new round starts from s′. So formally, a
play in G is an infinite sequence s0s1 . . . sn . . . such that (i) s0 = sinit and (i) for
all i ≥ 0, there exists σ ∈ Σ such that si+1 = ∆(si, σ). The set of plays in G
is denoted by Plays(G), and the set of finite prefixes of plays by PrefPlays(G).
We denote by ρ, ρ1, ρi, . . . plays in G, by ρ(0..j) the prefix of the play ρ up to
position j and by ρ(j) the position j in the play ρ. We also use π, π1, π2, ... to
denote prefixes of plays. Let i ∈ {1, 2, . . . , n}, a prefix π belongs to Player i if
last(π), the last state of π, belongs to Player i, i.e. last(π) ∈ Si. We denote by
PrefPlaysi(G) the set of prefixes of plays in G that belongs to Player i.
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Strategies and strategy profiles A strategy for Player i, for i ∈ {1, 2, . . . , n},
is a mapping λi : PrefPlaysi(G)→ Σ from prefixes of plays to actions. A strategy
profile Λ = (λ1, λ2, . . . , λn) is a tuple of strategies such that λi is a strategy of
Player i. The strategy of Player i in Λ is denoted by Λi, and the the tuple of
the remaining strategies (λ1, . . . , λi−1, λi+1, . . . , λn) by Λ−i. For a strategy λi
of Player i, we define its outcome as the set of plays that are consistent with
λi: formally, outcomei(λi) is the set of ρ ∈ Plays(G) such that for all j ≥ 0,
if ρ(0..j) ∈ PrefPlaysi(G), then ρ(j + 1) = ∆(ρ(j), λi(ρ(0..j))). Similarly, we
define the outcome of a strategy profile Λ = (λ1, λ2, . . . , λn), as the unique play
ρ ∈ Plays(G) such that for all positions j, for all i ∈ {1, 2, . . . , n}, if ρ(j) ∈
PrefPlaysi(G) then ρ(j + 1) = ∆(ρ(j), λi(ρ(0..j))). Finally, given a state s ∈ S
of the game, we denote by Gs the game G whose initial state is replaced by s.

Winning objectives A winning objective (or an objective for short) ϕi for
Player i∈{1, 2, . . . , n} is a set of infinite sequences of states, i.e. ϕi⊆Sω. A strat-
egy λi is winning for Player i (against all other players) w.r.t. an objective ϕi if
outcomei(λi) ⊆ ϕi.

Given an infinite sequence of states ρ ∈ Sω, we denote by visit(ρ) the set of
states that appear at least once along ρ, i.e. visit(ρ) = {s ∈ S|∃i ≥ 0 · ρ(i) = s},
and inf(ρ) the set of states that appear infinitely often along ρ, i.e. inf(ρ) =
{s ∈ S|∀i ≥ 0 · ∃j ≥ i · ρ(i) = s}. We consider the following types of winning
objectives:

– a safety objective is defined by a subset of states T ⊆ S that has to be never
left: safe(T ) = {ρ ∈ Sω | visit(ρ) ⊆ T};

– a reachability objective is defined by a subset of states T ⊆ S that has to be
reached: reach(T ) = {ρ ∈ Sω | visit(ρ) ∩ T 6= ∅};

– a Büchi objective is defined by a subset of states T ⊆ S that has to be visited
infinitely often: Büchi(T ) = {ρ ∈ Sω | inf(ρ) ∩ T 6= ∅};

– a co-Büchi objective is defined by a subset of states T ⊆ S that has to be
reached eventually and never be left: coBüchi(T ) = {ρ ∈ Sω | inf(ρ) ⊆ T};

– let d ∈ N, a parity objective with d priorities is defined by a parity function
p : S → {0, 1, . . . , d} as the set of plays such that the smallest priority visited
infinitely often is even: parity(p) = {ρ ∈ Sω|min{p(s) | s ∈ inf(ρ)} is even}.

Büchi, co-Büchi and parity objectives ϕ are called tail objectives because they
enjoy the following closure property: for all ρ ∈ ϕ and all π ∈ S∗, ρ ∈ ϕ iff
π · ρ ∈ ϕ.

Finally, given an objective ϕ ⊆ Sω and a subset P ⊆ {1, . . . , n}, we write
〈〈P 〉〉ϕ to denote the set of states s from which the players from P can cooperate
to enforce ϕ when they start playing in s. Formally, 〈〈P 〉〉ϕ is the set of states s
such that there exists a set of strategies {λi | i ∈ P} in Gs, one for each player
in P , such that

⋂
i∈P outcomei(λi) ⊆ ϕ.

Doomsday Equilibria A strategy profile Λ = (λ1, λ2, . . . , λn) is a doomsday-
threatening equilibrium (doomsday equilibrium or DE for short) if:
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Fig. 1. Examples

1. it is winning for all the players, i.e. outcome(Λ) ∈
⋂
i ϕi;

2. each player is able to retaliate in case of deviation: for all 1 ≤ i ≤ n, for all
ρ ∈ outcomei(λi), if ρ 6∈ ϕi, then ρ ∈

⋂j=n
j=1 ϕj (doomsday), where ϕj denotes

the complement of ϕj in Sω.

In other words, when all players stick to their strategies then they all win,
and if any arbitrary coalition of players deviates and makes even just one other
player lose then this player can retaliate and ensures a doomsday, i.e. all players
lose.

Relation with Secure Equilibria In two-player games, the doomsday equilibria
coincide with the notion of secure equilibrium [CHJ06] where both players satisfy
their objectives. In secure equilibria, for all i ∈ {1, 2}, any deviation of Player
i that does not decrease her payoff does not decrease the payoff of Player 3−i
either. In other words, if a deviation of Player i decreases (strictly) the payoff of
Player 3−i, i.e. ϕ3−i is not satisfied, then it also decreases her own payoff, i.e. ϕi
is not satisfied. A two-player secure equilibrium where both players satisfy their
objectives is therefore a doomsday equilibrium.

Examples Fig. 1 gives two examples of games with safety and Büchi objectives
respectively. Actions are in bijection with edges so they are not represented.

(Safety) Consider the 3-player game arena with perfect information of Fig.
1(a) and safety objectives. Unsafe states for each player are given by the respec-
tive nodes of the upper part. Assume that the initial state is one of the safe
states. This example models a situation where three countries are in peace until
one of the countries, say country i, decides to attack country j. This attack will
then necessarily be followed by a doomsday situation: country j has a strategy
to punish all other countries. The doomsday equilibrium in this example is to
play safe for all players.
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(Büchi) Consider the 3-player game arena with perfect information of Fig.
1(b) with Büchi objectives for each player: Player i wants to visit infinitely often
one of its “happy” states. The position of the initial state does not matter. To
make things more concrete, let us use this game to model a protocol where 3
players want to share in each round a piece of information made of three parts:
for all i ∈ {1, 2, 3}, Player i knows information i mod 3+1 and i mod 3+2. Player
i can send or not these informations to the other players. This is modeled by the
fact that Player i can decide to visit the happy states of the other players, or
move directly to s(i mod 3)+1. The objective of each player is to have an infinite
number of successful rounds where they get all information.

There are several doomsday equilibria. As a first one, let us consider the
situation where for all i ∈ {1, 2, 3}, if Player i is in state si, first it visits the
happy states, and when the play comes back in si, it moves to s(i mod 3)+1. This
defines an infinite play that visits all the states infinitely often. Whenever some
player deviates from this play, the other players retaliate by always choosing to
go to the next s state. Clearly, if all players follow their respective strategies
all happy states are visited infinitely often. Now consider the strategy of Player
i against two strategies of the other players that makes him lose. Clearly, the
only way Player i loses is when the two other players eventually never take their
states, but then all the players lose.

As a second one, consider the strategies where Player 2 and Player 3 always
take their loops but Player 1 never takes his loop, and such that whenever the
play deviates, Player 2 and 3 retialate by never taking their loops. For the same
reasons as before this strategy profile is a doomsday equilibrium.

Note that the first equilibrium requires one bit of memory for each player, to
remember if they visit their s state for the first or second times. In the second
equilibrium, only Player 2 and 3 needs a bit of memory. An exhaustive analysis
shows that there is no memoryless doosmday equilibrium in this example.

3 Complexity of DE for Perfect Information Games

In this section, we prove the following result:

Theorem 1. The problem of deciding the existence of a doomsday equilibrium
in an n-player perfect information game arena and n objectives (ϕi)1≤i≤n is:

– PTime-C if the objectives (ϕi)1≤i≤n are either all Büchi, all co-Büchi or all
reachability objectives,

– NP-hard, coNP-hard and in PSPace if (ϕi)1≤i≤n are parity objectives,
– PSPace-C if (ϕi)1≤i≤n are safety objectives.

In the sequel, game arena with perfect information are just called game arena.

Tail objectives We first present a generic algorithm that works for any tail ob-
jective and then analyze its complexity for the different cases. Then we establish
the lower bounds. Let us consider the following algorithm:
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– compute the retaliation region of each player: Ri = 〈〈i〉〉(ϕi ∪
⋂j=n
j=1 ϕj);

– check for the existence of a play within
⋂i=n
i=1 Ri that satisfies all the objec-

tives ϕi.

The correctness of this generic procedure is formalized in the following lemma:

Lemma 1. Let G = (S,P, sinit, Σ,∆) be an n-player game arena with n tail

objectives (ϕi)1≤i≤n. Let Ri = 〈〈i〉〉(ϕi ∪
⋂j=n
j=1 ϕj) be the retaliation region for

Player i. There is a doomsday equilibrium in G iff there exists an infinite play
that (1) which belongs to

⋂i=n
i=1 ϕi and (2) stays within the set of states

⋂i=n
i=1 Ri

and

Proof. First, assume that there exists an infinite play ρ such that ρ ∈
⋂
i(ϕi ∩

Rωi ). From ρ, and the retaliating strategies that exist in all states of Ri for each
player, we show the existence of DE Λ = (λ1, λ2, . . . , λn). Player i plays strategy
λi as follows: he plays according to the choices made in ρ as long as all the
other players do so, and as soon as the play deviates from ρ, Player i plays his
retaliating strategy (when it is his turn to play).

First, let us show that if Player j, for some j 6= i, deviates and the turn
comes back to Player i in a state s then s ∈ Ri. Assume that Player j deviates
when he is in some s′ ∈ Sj . As before there was no deviation, by definition of
ρ, s′ belongs to Ri. But no matter what the adversary are doing in a state that
belongs to Ri, the next state must be a state that belongs to Ri (there is only
the possibility to leave Ri when Player i plays). So, by induction on the length
of the segment of play that separates s′ and s, we can conclude that s belongs
to Ri. From s, Player i plays a retaliating strategy and so all the outcomes from
s are in ϕi ∪

⋂j=n
j=1 ϕj , and since the objective are tails, the prefix up to s is not

important and we get (from sinit) outcomei(λi) ⊆ ϕi ∪
⋂j=n
j=1 ϕj . Therefore the

second property of the definition of doomsday equilibria is satisfied. Hence Λ is
a DE.

Let us now consider the other direction. Assume that Λ is a DE. Then let
us show that ρ = outcome(Λ) satisfies properties (1) and (2). By definition of
DE, we know that ρ is winning for all the players, so (1) is satisfied. Again by

definition of DE, outcome(Λi) ⊆ ϕi ∪
⋂j=n
j=1 ϕj . Let s be a state of ρ and π the

prefix of ρ up to s. For all outcomes ρ′ of Λi in Gs, we have πρ′ ∈ ϕi ∪
⋂j=n
j=1 ϕj ,

and since the objectives are tail, we get ρ′ ∈ ϕi ∪
⋂j=n
j=1 ϕj . Hence s ∈ Ri. Since

this property holds for all i, we get s ∈
⋂
iRi, and (2) is satisfied. ut

Accordingly, we obtain the following upper-bounds:

Lemma 2. The problem of deciding the existence of a doomsday equilibrium
in an n-player game arena can be decided in PTime for Büchi and co-Büchi
objectives, and in PSpace for parity objectives.

Proof. By Lemma 1 one first needs to compute the retaliation regions Ri for all
i ∈ {1, . . . , n}. Once the sets Ri have been computed, it is clear that the existence
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of a play winning for all players is decidable in PTime for all the three types of
objectives. For the Büchi and the co-Büchi cases, let us show how to compute
the retaliation regions Ri. We start with Büchi and we assume that each player
wants to visit a set of states Ti infinitely often. Computing the sets Ri boils down
to computing the set of states s from which Player i has a strategy to enforce
the objective (in LTL syntax) �♦Ti ∨

∧j=n
j=1 ♦�Tj , which is equivalent to the

formula �♦Ti ∨ ♦�
⋂j=n
j=1 Tj . This is equivalent to a disjunction of a Büchi and

a co-Büchi objective, which is thus equivalent to a Streett objective with one
Streett pair and can be solved in PTime with a classical algorithm, e.g. [PP06].
Similarly, for co-Büchi objectives, one can reduce the computation of the regions
Ri in polynomial time to the disjunction of a Büchi objective and a co-Büchi
objective.

For the parity case, the winning objectives for the retaliation sets can be
encoded compactly as Muller objectives defined by a propositional formula us-
ing one proposition per state. Then they can be solved in PSpace using the
algorithm of Emerson and Lei defined in [EL85]. ut

Let us now establish the lower bounds.

Lemma 3. The problem of deciding the existence of a DE in an n-player game
arena is PTime-Hard for Büchi and co-Büchi objectives, NP-Hard and coNP-
Hard for parity objectives. All the hardness results hold even for a fixed number
of players.

The proof of Lemma 3 is decomposed into several lemmas.

Lemma 4. The problem of deciding the existence of a doomsday equilibrium
in a 2-player game arena is PTime-hard both for Büchi and co-Büchi winning
objectives.

Proof. We explain the result for Büchi objectives (the proof for co-Büchi objec-
tives is similar). To establish this result, we show how to reduce the problem
of deciding the winner in a two-player zero-sum game with a Büchi objective
(for Player 1), a PTime-C problem [Imm81], can be reduced to the existence
of a doomsday equilibrium in a two-player game arena with Büchi objectives.
Let G be the two-player game, S its set of states, and T the set of states that
Player 1 wants to visit infinitely often. We reduce the problem of deciding the
existence of such a strategy to the existence of a doomsday equilibrium in the
same game arena, where the objective of Player 1 is the original Büchi objec-
tive, i.e. Büchi(T ), and the objective of Player 2 is trivial: Büchi(S). Clearly, as
Player 2 will always satisfy his objective, Player 1 must have a winning strategy
for Büchi(T ) if a doomsday equilibrium exists (and vice versa) otherwise condi-
tion 2 would be violated. ut

We now turn to the proof of lower bounds for parity objectives. We build our
proof for these lower bounds on the hardness of generalized parity games [CHP07]:
in a two-player (called Player A and Player B) zero-sum game, and an objective
given by:
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– the disjunction of two parity objectives, it is NP-Hard to decide if Player A
has a winning strategy,

– the conjunction of two parity objectives, it is coNP-Hard to decide if
Player A has a winning strategy.

We next show that these decision problems can be reduced to the problem of the
existence of a doomsday equilibrium in an n player game with parity objectives.

s′init sinit s1 (s2, 3) s2

Bad1 Bad1,2

Modified Copy of G

σ ∈ Σ

deviate σ ∈ Σ σ ∈ Σ σ ∈ Σ

deviate

Σ′

deviate deviate

Σ′

(0, 0, 0)

(1, p1 + 1, p2 + 1)

(1, 0, 0) (1, 1, 1)

Fig. 2. Structure of the reduction from generalized parity game with a conjunction of
two parity objectives to the existence of a doomsday equilibrium with parity objectives.

Lemma 5 (coNP-Hardness). The problem of deciding the existence of a dooms-
day equilibrium in a 3-player game arena with parity objectives is coNP-hard.

Proof. Let G = (S, {SA, SB}, sinit, Σ,∆) be a two-player game and a conjunction
of two parity objectives defined by the functions p1 and p2 that Player A wants
to enforce, i.e. the objective of Player A is to ensure an outcome that satisfies the
two parity objectives, while the objective of Player B is to ensure an outcome
that violates at least one of the two parity objectives. W.l.o.g., we assume that
sinit ∈ SA and the turns of A and B alternate.

FromG, we construct a 3-player game arenaG′ = (S′, {S′1, S′2, S′3}, s′init, Σ′, ∆′)
(depicted in Fig. 2), with:

– the set of states S′ = {s′init,Bad1,Bad1,2,3} ∪ SA ∪ SB ∪ (SA × {3}), this set
is partitioned as follows: S1 = SA ∪ {Bad1}, S2 = SB , S3 = (SA × {3}) ∪
{s′init,Bad1,2,3}.

– the initial state is s′init,
– the alphabet of actions is Σ′ = Σ ∪ {deviate},
– and the transitions of the game G′ are defined as follows:
• For the state s′init, for all σ ∈ Σ, ∆′(s′init, σ) = s′init, and ∆′(s′init, σ) = sinit;

i.e., the play stay in s′init, unless Player 3 plays deviate in which case the
play goes to sinit that is the copy of the initial state of the game arena
G.
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• For all states s ∈ SA, for all σ ∈ Σ,∆′(s, σ) = ∆(s, σ), and∆′(s, deviate) =
Bad1, so the transition function on the copy of G behaves from states
owned by Player 1 as in the original game and it sends the game to Bad1
if Player 1 plays the action deviate.

• For all states s ∈ SB , for all σ ∈ Σ,∆′(s, σ) = (∆(s, σ), 3) and∆′(s, deviate) =
Bad1,2,3; i.e., if Player 2 plays an action from the game G, the effect is to
send the game to the Player 3 copy of the same state as in the original
game, if he deviates, the game reaches the sink state Bad1,2,3.

• For all states s ∈ SA × {3}, for all σ ∈ Σ, ∆′((s, 3), σ) = s and
∆′((s, 3), deviate) = Bad1,2,3. I.e. if Player 3 plays an action σ ∈ Σ, he
gives back the turn to Player 1, otherwise he sends the game to Bad1,2,3.

• The states Bad1 and Bad1,2,3 are absorbing.
– The parity functions (p′i)i=1,2,3 for the three players are defined to satisfy

the following condition:
• first, p′i(s

′
init) is even for all i = 1, 2, 3 (so if the game stays there for ever,

all the players satisfy their objectives).
• second, in Bad1 the parity functions return an even number for Player 2

and Player 3 but an odd number for Player 1, this ensures that Player 1
should never play the action deviate when the game is in the copy of G,

• third, in Bad1,2,3 the parity functions are odd for all the Players. So
whenever Player 2 and 3 play deviate all players loose,

• finally, in the copy of G, the parity function is always odd for Player 1,
and for all states q ∈ SA ∪ SB ∪ (SA × {3}), p′2(q) = p1(s) + 1 and
p′3(q) = p2(s) + 1, where s = q if q ∈ SA ∪ SB , and s is such that
q = (s, 3) if q ∈ SA × {3}.

This concludes the reduction.
Clearly, since Player A and B always alternate their moves, in the copy of

G, any play will eventually reach a state of Player 2 and a state of Player 3, so
that they are always able to retaliate by playing the action deviate.

A doomsday equilibrium exists in G′ iff Player 1 is also able to retaliate when
the game enter the copy of G. But clearly, it is possible if and only if he has a
strategy to ensure parity(p′1) and parity(p′2), or equivalently iff he has a strategy
to ensure parity(p1) and parity(p2), iff Player A has a winning strategy in the
game G for the conjunction of parity objectives p1 and p2. ut

Lemma 6 (NP-hardness). The problem of deciding the existence of a dooms-
day equilibrium in a 2-player game arena with parity objectives is NP-Hard.

Proof. For this part, we need to show how to reduce the problem of deciding if
Player A has a winning strategy in a two-player zero-sum game whose objective
is defined by the disjunction of two parity objectives. We only sketch the con-
struction as it is based on the main ideas used in the coNP-hardness result.
Let G = (S, sinit, Σ,∆) be a two-player game with a disjunction of two parity
objectives defined by the functions p1 and p2. The objective of Player A is to
ensure an outcome that satisfies at least one of the two parity objectives (while
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s′init sinit s1

s2

Bad1
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deviate

σ ∈ Σ

deviate

Σ′
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(0, 0)

(p1, p2 + 1)

(1, 1)

(1, 0)

Fig. 3. Structure of the reduction from generalized parity game with a disjunction of
two parity objectives to doomsday equilibrium with parity objectives.

the objective of Player B is to ensure an outcome that violates both parity
objectives.)

From G, we construct a two-player game G′ with parity objectives (p′i)i=1,2

(see Fig. 3). The game arena G′ contains a copy of G plus three states s′init
(the initial state), Bad1 and Bad1,2. The alphabet of actions is Σ ∪ {deviate}.
The partition of the state space is as follows: S1 = SA and S2 = SB ∪ {s′init} ∪
{Bad1,Bad1,2}. The transitions are as follows: if Player 2 plays σ ∈ Σ in s′init
then the game stays there, if he plays deviate then the game enters the copy of
G. There the transition function for σ ∈ Σ is defined as in G, and if Player 1
plays deviate then the game goes to Bad1, and if Player 2 plays deviate then the
games goes to Bad1,2. The parity functions (p′i)i=1,2 are defined as follows: p′1
returns an even number in s′init, is equal to p1 in the copy of G, returns an odd
number in Bad1 and Bad1,2. The function p′2 returns an even number in s′init, is
equal to p2 + 1 in the copy of G (so p′2 is the complement of p2), returns an
even number in Bad1 and an odd number in Bad1,2. This definition of p′1 and p′2
ensures that the two players meet their parity objectives when the game always
stay in s′init and when the game enters the copy of G, Player 2 can always retaliate
while Player 1 can retaliate if and only if Player A has a winning strategy in the
original game. ut

As a corollary of this result, deciding the existence of a secure equilibrium in a
2-player game such that both players satisfy their parity objectives is NP-Hard.

Reachability objectives We now establish the complexity of deciding the exis-
tence of a doomsday equilibria in an n-player game with reachability objectives.
We first establish an important property for reachability objectives:

Proposition 1. Let G = (S,P, sinit, Σ,∆) be a game arena, and (Ti)1≤i≤n be n
subsets of S. Let Λ be a doomsday equilibrium in G for the reachability objectives
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(Reach(Ti))1≤i≤n. Let s the first state in outcome(Λ) such that s ∈
⋃
i Ti. Then

every player has a strategy from s, against all the other players, to reach his
target set.

Proof. W.l.o.g. we can assume that s ∈ T1. If some player, say Player 2, as
no strategy from s to reach his target set T2, then necessarily s 6∈ T2 and by
determinancy the other players have a strategy from s to make Player 2 lose.
This contradicts the fact that Λ is a doomsday equilibrium as it means that Λ2

is not a retaliating strategy. ut

Lemma 7. The problem of deciding the existence of a doomsday equilibrium in
an n-player game with reachability objectives is in PTime.

Proof. The algorithm consists in:

(1) computing the sets Ri from which player i can retaliate, i.e. the set of
states s from which Player i has a strategy to force, against all other players, an
outcome such that ♦Ti∨(

∧j=n
j=1 �Tj). This set can be obtained by first computing

the set of states 〈〈i〉〉♦Ti from which Player i can force to reach Ti. It is done
in PTime by solving a classical two-player reachability game. Then the set of
states where Player i has a strategy λi such that outcomei(λi) |= �((

⋂j=n
j=1 Tj)∨

〈〈i〉〉♦Ti)}, that is to confine the plays in states that do not satisfy the reachability
objectives of the adversaries or from where Player i can force its own reachability
objective. Again this can be done in PTime by solving a classical two-player
safety game.

(2) then, checking the existence of some i ∈ {1, . . . , n} and some finite path π

starting from sinit and that stays within
⋂j=n
j=1 Rj before reaching a state s such

that s ∈ Ti and s ∈
⋂j=n
j=1 〈〈j〉〉♦Tj .

Let us now prove the correctness of our algorithm. From its output, we can
construct the strategy profile Λ where each Λj (j = 1, . . . , n) is as follows:
follow π up to the point where either another player deviates and then play the
retaliating strategy available in Ri, or to the point where s is visited for the first
time and then play according to a strategy (from s) that force a visit to Ti no
matter how the other players are playing. Clearly, Λ witnesses a DE. Indeed, if
s is reached, then all players have a strategy to reach their target set (including
Player i since s ∈ Ti) . By playing so they will all eventually reach it. Before
reaching s, if some of them deviate, the other have a strategy to retaliate as π
stays in

⋂j=n
j=1 Rj . The other direction follows from Proposition 1. ut

Lemma 8. The problem of deciding the existence of a DE in a 2-player game
with reachability objectives is PTime-Hard.

Proof. It is proved by an easy reduction from the And-Or graph reachability
problem [Imm81]: if reachability is trivial for one of the two players, the existence
of a doomsday equilibrium is equivalent to the existence of a winning strategy
for the other player in a two-player zero sum reachability game. ut
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Safety Objectives We establish the complexity of deciding the existence of a
doomsday equilibrium in an n-player game with perfect information and safety
objectives.

Lemma 9 (PSpace-Easyness). The existence of a doomsday equilibrium in
an n-player game with safety objectives can be decided in PSpace.

Proof. Let us consider an n-player game arena G = (S,P, sinit, Σ,∆) and n
safety objectives safe(T1), . . . , safe(Tn) for T1 ⊆ S, . . . , Tn ⊆ S. The algorithm is
composed of the following two steps:

(1) For each Player i, compute the set of states s ∈ S in the game such that
Player i can retaliate whenever necessary, i.e. the set of states s from where
there exists a strategy λi for Player i such that outcomei(λi) satisfies ¬(�Ti)→∧j=n
j=1 ¬�Tj , or equivalently ¬(♦Ti) ∨

∧j=n
j=1 ♦Tj . This can be done in PSpace

using a result by Alur et al. (Theorem 5.4 of [AT04]) on solving two-player
games whose Player 1’s objective is defined by Boolean combinations of LTL
formulas that use only ♦ and ∧. We denote by Ri the set of states in G where
Player i has a strategy to retaliate.

(2) then, verify whether there exists an infinite path in
⋂i=n
i=1 (safe(Ti) ∩Ri).

Now, let us establish the correctness of this algorithm. Assume that an infinite
path exists in

⋂i=n
i=1 (safe(Ti)∩Ri). The strategies λi for each Player i are defined

as follows: play the moves that are prescribed as long as every other players do
so, and as soon as the play deviates from the infinite path, play the retaliating
strategy.

It is easy to see that the profile of strategies Λ = (λ1, λ2, . . . , λn) is a DE.
Indeed, the states are all safe for all players as long as they play their strategies.
Moreover, as before deviation the play is within

⋂i=n
i=1 Ri, if Player j deviates,

we know that the state that is reached after deviation is still in
⋂j=n
j=1 Rj and

therefore the other players can retaliate.
Second, assume that Λ = (λ1, λ2, . . . , λn) is a DE in the n-player game G

for the safety objectives (safe(Ti))1≤i≤n. Let ρ = outcome(λ1, λ2, . . . , λn). By
definition of doomsday equilibrium, we know that all states appearing in ρ satisfy
all the safety objectives, i.e. ρ |=

∧i=n
i=1 �Ti. Let us show that the play also

remains within
⋂i=n
i=1 Ri. Let s be a state of ρ, i ∈ {1, . . . , n}, and π the finite

prefix of ρ up to s. By definition of DE we have outcome(λi) |= �Ti ∨
∧j=n
j=1 ♦Tj .

Therefore for all outcomes ρ′ of λi in Gs, πρ
′ |= �Ti ∨

∧j=n
j=1 ♦Tj . Moreover,

π |=
∧j=n
j=1 �Tj since it is a prefix of ρ. Therefore ρ′ |= �Ti ∨

∧j=n
j=1 ♦Tj and

s ∈ Ri. Since it holds for all i ∈ {1, . . . , n}, we get s ∈
⋂i=n
i=1 Ri. ut

Lemma 10 (PSpace-Hardness). The problem of deciding the existence of a
doomsday equilibrium in an n-player game with safety objectives is PSpace-
Hard.

Proof. We reduce the two-player multi-reachability problem to our problem,
PSpace-Hardness follows. Let G = (SG, {SGA , SGB}, sGinit, ΣG, ∆G) be a two-
player (Player A and Player B) game arena. Let T = {T1, T2, . . . , Tk} be a
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s0start
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deviate
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σ ∈ Σ

Fig. 4. Structure of the reduction from multi-reachability game to doomsday equi-
librium with safety objectives. Round nodes denote Player 0’s states and rectangular
nodes denote Player 1’s states.

family of subsets of SG supposed to be pairwise disjoint (w.l.o.g.). Also wlog we
assume that Ti ⊆ SGB for all i ∈ {1, . . . , k}. In a multi-reachability game, the
objective of Player A is to visit each T in T , while Player B tries to avoid at
least one of the subsets in T . So, multi-reachability games are two-player zero
sum games where the winning plays for Player A are

{ρ = s0s1 . . . sn · · · ∈ Plays(G) | ∀i · 1 ≤ i ≤ k · ∃j ≥ 0 · sj ∈ Ti}.

It has been shown that the multi-reachability problem for two-player games is
PSpace-C [ATM03,FH10].

From G = (SG, {SGA , SGB}, sGinit, ΣG, ∆G) and T = {T1, T2, . . . , Tk} that define
a multi-reachability game, we construct a game arena G′ = (S, {S0, S1, . . . , Sk},
s0, Σ,∆) with k + 1 players and a set of k + 1 safety objectives Safe0, . . . ,Safek
such that Player A wins the multi-reachability objective defined by G and T iff
there exists a doomsday equilibrium inG′ for the safety objectives Safe0, . . . ,Safek.

The structure of the reduction is depicted in Fig. 4. The state space of G′ is
composed of three parts: an initial part on the left, a modified copy of G, and a
part on the right. The set S of states is {s0, s1} ∪ SGA ∪ SGB ∪ {Bad}. This set of

states is partitioned as follows: S0 = {s0} ∪ SGA ∪ {Bad}, S1 = SGB \
⋃i=k
i=2 Ti and

for all i, 2 ≤ i ≤ k, Si = Ti.
The sets of safety objectives are defined as follows: Safe0 = safe({s0, s1}), and
for all i ∈ {1, 2, . . . , k}, Safei = safe(S \ ({Bad} ∪ Ti)). The alphabet of actions
is Σ = ΣG ∪ {deviate}, and the transition function is defined as follows:

– ∆(s0, σ) = s1, for all σ ∈ Σ,
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– ∆(s1, σ) =

{
s0 if σ ∈ ΣG

sGinit if σ = deviate

– for all s ∈ SGA ∪ SGB :

• for all σ ∈ ΣG, ∆(s, σ) = ∆G(s, σ)

• for the letter deviate: for all states s ∈ SGA , ∆(s, deviate) = s, and for all
s ∈ SGB , ∆(s, deviate) = Bad

– Bad is a sink state.

Now, let us justify this construction. First, assume that, in the two-player game
arena G = (SG, {SG1 , SG2 }, sGinit, ΣG, ∆G) with the multi-reachability objective
given by T = {T1, T2, . . . , Tk}, Player A has a winning strategy. In that case,
we show that there exists a doomsday equilibrium in the game G′ for the safety
objectives (Safei)0≤i≤k. To establish the existence of a doomsday equilibrium,
we consider the strategy profile Λ = (λ0, λ1, . . . , λk) whose strategies respect the
following conditions:

– If all the players follows the strategy profile Λ, the outcome of the game is
(s0 · s1)ω, i.e. Player 1 avoids to play deviate in s1.

– Whenever player 1 plays deviate in s1, then the game enters the sub game of
G′ corresponding to G, and the game thus enters an unsafe state for Player 0
(as sinit is not part of Safe0). From there, Player 0 must retaliate by forcing
a visit to each set in T = {T1, T2, . . . , Tk} to make sure that all the other
players lose. By hypothesis, in G, Player A has a winning strategy for the
multi-reachability objective, so we know that if the other players play letters
that are in ΣG then all sets in T will eventually be visited when Player 0
plays according to the winning strategy of Player A in G. On the other hand,
if the letter deviate is played then the game goes to the state Bad where all
the safety objectives are violated. So, we have established that Player 0 can
retaliate if he plays as Player A in the copy of G. Now, let us consider all the
other players. According to the definition of the transition function, Player i
has the option to retaliate whenever he enters its unsafe set Ti by choosing
the action deviate and so force a visit to Bad. So, all other players have also
the ability to retaliate whenever they enter their unsafe region.

So, we have established that (λ0, λ1, . . . , λk) witnesses a doomsday equilibrium
in G′.

Now, let us consider the other direction. Let (λ0, λ1, . . . , λk) be a profile of
strategies which witnesses a doomsday equilibrium for G′ and the safety objec-
tives given by the subsets of plays (Safei)i=0,..,k. In that case, if we consider a
prefix of play that enters for the first time the state sinit, we know by definition
of doomsday equilibrium that Player 0 has a strategy to retaliate against any
strategies of the adversaries. If all the other players chooses their letters in ΣG

then it should be the case that the play visits all the sets in T . So, this clearly
means that Player A has a winning strategy in G for the multi-reachability ob-
jective defined by T , this strategy simply follows the strategy λ0 in the copy of
G. ut
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4 Doomsday Equilibria Synthesis from LTL Specifications
and Perfect Information

The doomsday equilibria synthesis problem (DE-synthesis problem) asks to au-
tomatically generate (whenever possible) a doomsday equilibrium from n objec-
tives given by n LTL formulas ϕ1, . . . , ϕn (one for each player). Its associated
decision problem (whether there exists a doomsday equilibrium) is called the
DE-realizability problem. In the setting of synthesis from LTL specifications,
the game graph is not given explicitely and the players do not play in turns, but
concurrently. Each LTL formula ϕi is defined over a set P of atomic propositions,
partionned into n parts P1, . . . , Pn.

Let Σ = 2P and Σi = 2Pi for all i. The DE-realizability problem can be seen
as an n-player game where at each round r, Player i chooses a set of proposi-
tions σri ∈ Σi, for all i ∈ {1, . . . , n}. The outcome of the game is the infinite
word w = (σ0

1 ∪ · · · ∪ σ0
n)(σ1

1 ∪ · · · ∪ σ1
n) · · · ∈ Σω. Strategies for Player i are

mappings λi : Σ∗ → Σi. The outcome of λi, denoted by outcomei(λi) (or just
outcome(λi)), is the set of ω-words σ0σ1 · · · ∈ Σω such that for all r ≥ 0,
σr ∩Σi = λi(σ0 . . . σr−1). Given a strategy profile Λ, the outcome of Λ is defined
by outcome(Λ) =

⋂
i outcome(Λi). Note that outcome(Λ) is a singleton and we

therefore identify it to an ω-word in Σω. The DE-realizability problem asks to
decide whether there exists a strategy profile Λ such that

1. outcome(Λ) |=
∧n
i=1 ϕi

2. outcome(Λi) |= ¬ϕi →
∧
i 6=j ¬ϕj for all i ∈ {1, . . . , n}.

If such a strategy profile exists, it is called a doomsday equilibrium and we say
that (ϕ1, . . . , ϕn) is DE-realizable. The synthesis problem asks to construct a
doomsday equilibrium if one exists.

In this section, we show that DE-realizability is a 2ExpTime-C problem.
As we will show, it generalizes over the classical (two-player) LTL realizability
problem [PR89b], which is already 2ExpTime-C.

Our decision procedure relies on Safra’s determinization, which is notoriously
difficult to implement efficiently [ATW06]. Therefore, we give a procedure that
does not rely on it and is more likely to lead to efficient implementations. In par-
ticular, based on previous work on (classical) LTL synthesis [FJR11b,BBF+12],
we show how to optimize this latter procedure with antichain data structures.

As the sets Pi are disjoint, we identify Σ1 × · · · × Σn with Σ, so we may
freely write (σ1, . . . , σn) ∈ Σ where σi ∈ Σi. For all σ ∈ Σ, πi(σ) denotes the
projection of σ on Σi.

Example 1 (Mutual Exclusion). Let P = {a1, . . . , an} and for all i ∈ {1, . . . , n},
let Pi = {ai}. Consider the following LTL specifications:

ϕi =def G(F (ai)) ∧G(
∧
i6=j

¬aj ∨ ¬ai)

Intuitively, there is a common resource that each process i wants to access by
asserting ai infinitely often. However, when process i holds the resource, all the
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other processes must not hold the resource. There exists a doomsday equilibrium
which consists in asserting ai every n time units, starting from the i-th tick, and
always asserting ai as soon as some player deviates from her strategy. The out-
come of this strategy profile is w = {a1}{a2} . . . {an}{a1}{a2} . . . . Assume that
Player i plays its retaliating strategy because some other player has deviated,
then for all j 6= i, if Player j asserts aj at some point, then the mutual exclusion
condition of ϕj is violated, and if Player j never asserts aj , the liveness condition
of ϕj is then violated. In both cases, ϕj is not satisfied.

Example 2 (Classical LTL Realizability). This example shows that the DE-realizability
problem is more general than the classical (0-sum 2-players) LTL realizability
problem [PR89b]. Let P be a set of propositions partionned into P1, the output
propositions controlled by Player 1, and P2, the input propositions controlled by
Player 2. Let ϕ be an LTL formula over P . It is said to be realizable if Player 1 has
a strategy λ1 such that for all strategies λ2 of Player 2, outcome(λ1, λ2) |= ϕ. It
is equivalent to say that the pair of formulas (ϕ,>) is DE-realizable. Note how-
ever that the setting of DE-realizability slightly differs from the one of [PR89b],
in which the two players play in a turn-based manner. However, it is easy to see
that a formula ϕ is realizable in the concurrent setting iff it is realizable in the
turn-based setting where Player 1 plays first.

4.1 Decidability and Finite-Memory Strategies

In this section, we prove that the DE-realizability problem is 2ExpTime-C, and
that whenever a tuple of objectives is DE-realizable, it is realizable by finite-
memory strategies. A finite-memory strategy for Player i is defined by a deter-
ministic finite-state machine M = (Q, q0, T ) where Q is a finite set of states with
initial state q0 ∈ Q and T : Q×Σ → Q is a (partial) transition function s.t.

1. it is complete for all actions of the other players: for all q ∈ Q, for all
σ−i ∈ Σ\Σi, there exists σi ∈ Σi such that T (q, σ−i ∪ σi) is defined.

2. Player i’s actions only depend on the current state: for all q ∈ Q, for all
σ, σ′ ∈ Σ, if T (q, σ) and T (q, σ′) are defined, then Σi∩σ = Σi∩σ′. We write
OM (q) (or just O(q)) for Σi ∩ σ).

The language L(M) of M is defined as the set of ω-words σ0σ1σ2 · · · ∈ Σω

such that there exists a sequence of states p0p1 . . . such that p0 = q0 and for all
i ≥ 0, T (pi, σi) = pi+1. As M is deterministic, for all words w ∈ L(M) and all
prefixes u of w, there exists a unique state denoted by reachM (u) reached by
M after reading u. The strategy λM induced by M is defined only on prefixes
u of L(M) as follows: λM (u) = OM (reachM (u)). Clearly the following holds:
outcomei(λM ) = L(M). The size of λM is defined as the number of states of M .

The 2ExpTime upper bound for DE-realizability is obtained via a reduction
to the problem of deciding the existence of doomsday equilibrium in an n player
game with parity objectives, as LTL objectives can be encoded as parity ob-
jectives. However, one cannot reuse directly the results of Section 3 as we now
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are in a concurrent setting. Moreover, we need to inspect closely the size of the
strategies that witness the existence of doomsday equilibria in parity games. It
will be needed to establish the correctness of the Safraless procedure given later.
The game arenas considered in this section are concurrent (each player chooses
his actions concurrently). They are defined as tuples G = (S,P, sinit, Σ,∆) where
∆ : S×Σ → S. The notion of strategies, outcomes and winning conditions carry
over to this setting. Given a tuple of parity objectives, the procedure to decide
the existence of a doomsday equilibrium in such a game is very similar to the one
in the turn-based setting. However in the following lemma, we closely inspect
the complexity and the size of winning strategies.

Lemma 11. The existence of a doomsday equilibrium in an n-player (concur-
rent) game arena G with parity objectives f1, . . . , fn can be decided with an algo-
rithm whose time complexity is exponential in n and in the number of different
priorities.

Moreover, if a doomsday equilibrium exists, then it is witnessed by a tuple of
finite-memory strategies, each of them of size mndnd(d2n)! at most, where m is
the number of vertices in the game and d is the maximal number of priorities
over all parity objectives.

Proof. We first prove that the sets of states from which each player can retal-
iate (the sets Ri) are computable with an algorithm whose time complexity is
exponential only in n (the number of players) and in d the number of different
priorities, i.e. d = maxi di where di = |codom(fi)|. Let s be a state of G. We
have s ∈ Ri iff Player i has a strategy λi from state s such that

outcomei(λi) |= fi∨
∧
i 6=j

¬fj or equivalently, outcomei(λi) |=
∧
i 6=j

(fi∨¬fj)

We show that we can test whether s ∈ Ri for any given state s, by solving
a generalized parity game Gi with a conjunction of n − 1 parity objectives,
encoding every objective ¬fi ∨ fj respectively. For this purpose we can see G
with the parity function fk (1 ≤ k ≤ n) as a deterministic parity automaton
over Σ, with initial state s. Let us denote by Ak this automaton: its language is
the set of infinite sequences of actions in Σ whose runs are in parity(fk).

It is well known that deterministic parity automata are closed under comple-
ment, intersection, and union. Given a deterministic parity automaton A with
nA states and two priority functions g1 and g2 with at most e priorities each,
the union of the languages defined by (A, g1) and (A, g2) can be defined by a
deterministic parity automaton with at most nA.e

e states and e2 different pri-
orities (see for instance [BFK]). It is also well known that deterministic parity
automata can be complemented in linear time by shifting the parity function
from 1. Therefore for all j 6= i, one can construct (from Ai and Aj) a determin-
istic parity automaton Bj for the winning objective fi∨¬fj of size m.dd at most
with d2 different priorities.

Finally, if gj denotes the parity function of Bj , in order to test whether
s ∈ Ri, it suffices to solve the generalized parity game Gi := G⊗B1⊗ . . . Bi−1⊗
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Bi+1 ⊗ · · · ⊗Bn with the conjunction of parity objectives defined by the parity
functions (s, q1, . . . , qi−1, qi+1, . . . , qn) 7→ gj(qj). It is known (see for instance
[CHP07]) that a generalized parity game of size α with a conjunction of k par-
ity conditions and d′ different priorities each can be solved in time complexity
O(αpoly(k,d

′)exp(k, d′)), where poly and exp are polynomial and exponential func-
tions respectively. The number of vertices of Gi is m.(m.dd)n−1 = mndd(n−1)

with a conjunction of n − 1 parity functions with d2 different priorities each.
Therefore, the game Gi can be solved in time complexity

O((mndd(n−1))poly(n−1,d
2)exp(n− 1, d2)) = O(mpoly′(n,d)exp′(n, d))

for some polynomial and exponential functions poly′ and exp′ respectively.
Once the sets Ri are computed for all i = 1, . . . , n, then for each state s ∈ Ri,

we compute the set of actions σi ∈ Σi such that for all actions of the other
players, the successor state is in Ri. Such actions are called good actions and
can be computed in PTime. It remains to check the existence of an infinite
path that satifies all parity objectives and is made of good actions only. For this
purpose we restrict the vertices ofG to

⋂
iRi and the actions to good actions, and

see the induced subgraph as a Streett automaton A with nd pairs (each parity
condition is encoded with d pairs), whose non-emptiness witnesses existence of a
doomsday equilibrium. It is well-known that non-emptiness of Streett automata
can be decided in PTime.

Let us now establish a bound on the size of finite-memory strategies sufficient
to witness the existence of a doomsday equilibrium. Generalized parity games
with conjunction of parity objectives can be seen as Streett games, and therefore
one can reuse classical results on the size of strategies that are sufficient to win
generalized parity games (see [CHP07] for more details). In particular, one gets
that the existence of winning strategies in each game Gi is witnessed by finite-
memory strategies of size mndd(n−1)(d2(n − 1))! at most. This bounds the size
of retaliating strategies. It remains to bound the size of (a representation of) an
infinite path in G that satisfies all parity conditions.

It is known that the non-emptiness of a Streett automaton with α states and
β pairs is witnessed by a lasso path uvω such that |u|+ |v| ≤ αβ2β!. Therefore
the non-emptiness of the Streett automaton A is witnessed by a lasso path of
length m(nd)2(nd)! at most (see [Pit07] for instance). Given such an infinite
path, remind the strategy of Player i is to play good actions as long as the
play follows the path, and its retaliating strategy if the play deviates from it.
Therefore, if there exists a doomsday equilibrium, there exists one such that the
strategy of Player i, for all i, has finite-memory, of size (at most)

m(nd)2(nd)! +mndd(n−1)(d2(n− 1))! ≤ mndnd(d2n)!

This concludes the proof. ut
Theorem 2. The DE-realizability problem from LTL objectives is 2ExpTime-C.

Proof. Upper bound We reduce the DE-realizability problem from n LTL ob-
jectives to the problem of deciding the existence of a doomsday equilibrium in
an n-player concurrent game with parity objectives.
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Based on several automata constructions among which Safra’s determiniza-
tion, we can construct from each LTL objective ϕi some equivalent deterministic
parity automaton Ai whose set of states is denoted by Qi, transition function
by Ti : Qi × Σ → Qi and parity function by fi. Moreover, we can assume
that Ai has doubly exponentially many states in |ϕi| and exponentially many
different priorities (see for instance [KV05]). Then the problem reduces to de-
ciding the existence of a doomsday equilibrium in the synchronized product of
those automata. The product A = A1 ⊗ · · · ⊗ An is the classical product au-
tomaton: its set of states is Q = Q1 × · · · × Qn and there exists a transition
((q1, . . . , qn), σ, (q′1, . . . , q

′
n)) in A iff (qi, σ, q

′
i) ∈ Ti for all i = 1, . . . , n. Since A is

deterministic, we can see it as a concurrent game arena with parity objectives
given by the functions (q1, . . . , qn) 7→ fi(qi) for all players i. There exists a doos-
mday equilibrium in this game iff (ϕ1, . . . , ϕn) is DE-realizable. By Lemma 11,
this game can be solved with an algorithm whose time complexity is exponential
only in n and in the number of different priorities. This yields an algorithm for
DE-realizability whose time complexity is doubly exponential in

∑
|ϕi|.

Lower bound This follows from Example 2 and the 2-Exptime hardness of
(two players) LTL realizability [PR89b]. ut

The following lemma states that finite-memory strategies are sufficient to
witness DE-realizability of n LTL objectives, and gives an explicit bound on
their memory size.

Lemma 12. If a tuple of LTL objectives (ϕ1, . . . , ϕn) is DE-realizable, then it is

DE-realizable by finite-memory strategies of size 2n
2.28F .(28Fn)! at most, where

F = maxi|ϕi|.

Proof. As shown in Theorem 2, the problem reduces to test the existence of a
doomsday equilibrium in a game arena with n parity objectives. The result then
follows from Lemma 11. Let us inspect the construction in the proof of Theorem
2. Each deterministic parity automaton Ai is constructed from the LTL formula
ϕi. It is known that Ai can be constructed by the following steps: (i) construct an
alternating Büchi automaton with at most |ϕi| states, (ii) remove universal tran-
sitions with Mihano-Ayashi construction, this yields a non-deterministic Büchi
automaton with 22|ϕi| states, (iii) transform the latter automaton into a deter-
ministic parity automaton, using for instance the improved Safra’s construction
of [Pit07], which yields an automaton with

(22|ϕi|)2.2
2|ϕi|+2 ≤ 22

3(|ϕi|+1)

states and 22|ϕi|+1 − 1 priorities. Therefore the n-player game A1 ⊗ · · · ⊗ An
has 2

∑
i 2

3(|ϕi|+1)

states and each objective has 22|ϕi|+1− 1 priorities. By Lemma
11, we get, for F =

∑
i |ϕi|, that the existence of a doomsday equilibrium is

witnessed by finite-memory strategies of size at most

(2n2
3(F+1)

)n(22F+1 − 1)n2
2F+1−1((22F+1 − 1)2n)! ≤ 2n

2.28F .(28Fn)!

This concludes the proof. ut
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4.2 Safraless Procedure

The solution given in Theorem 2 relies on Safra’s determinization of non-deterministic
Büchi automata. In this section, we give a procedure that avoids such a deter-
minization by using universal co-Büchi automata.

Remind that a universal coBüchi automaton A is exactly the dual of a Büchi
automaton: it accepts an infinite word w if all the runs of A on w visit a finite
number of accepting states. It can be easily constructed from an LTL formula ϕ
by constructing a Büchi automaton for ¬ϕ.

We denote by JϕK the models of any LTL formula ϕ. Given a tuple of LTL ob-
jectives (ϕ1, . . . , ϕn), a partition P = ]iPi, and parameter K ∈ N, the Safraless
procedure is based on the following steps:

1. for all i ∈ {1, . . . , n}, construct a universal co-Büchi automaton Ai equivalent
to ϕi ∨

∧
j 6=i ¬ϕj .

2. following the Safraless method for two-player LTL realizability [FJR11a,SF07],
for all i ∈ {1, . . . , n}, construct a two-player safety game G(Ai,K) such
that Player 1 (the protagonist) wins G(Ai,K) iff Player i has a strat-
egy Λi (in the two-player LTL realizability game) such that all runs of
Ai on words of outcome(Λi) visit at most K accepting states (this implies
outcome(Λi) ⊆ L(Ai) and therefore outcome(Λi) |= ϕi ∨

∧
j 6=i ¬ϕj).

3. test the existence of a strategy profile Λ = (Λ1, . . . , Λn) such that all strate-
gies Λi is winning in G(Ai,K), and such that outcome(Λ) |=

∧
i ϕi.

We will show that this algorithm is correct and complete for a sufficiently
large parameter K. Before this, let us explain how those steps are done:

(1) For the automata construction, we can apply well-known LTL-to-Büchi
automata constructions on the negation of ϕi ∨

∧
j 6=i ¬ϕj .

(2) For the second step, we use the reduction of classical two-player LTL
realizability to two-player safety games [FJR11a,SF07]. The safety games we
obtain are turn-based: in the initial state, Player 1 plays first and chooses some
action σi ∈ Σi and then Player 2 chooses some action σ−i ∈ Σ\Σi and the
game moves to another state (in a deterministic way), and so on. The transition
relation is therefore of type P × Σ → P where P are the states of G(Ai,K).
The safety condition is a subset of states that Player 1 does not want to leave.
Any Player 1’s strategy in this two-player turn-based game can be seen as a
strategy of Player i in the DE-realizability setting. However in the latter setting,
the players choose their actions concurrently. This does not harm as any Player
1’s strategy in the turn-based safety game is winning iff it is winning in the
same safety game where both players choose their actions concurrently (because
Player 1 starts first in the turn-based setting).

(3) For all i = 1, . . . , n, G(Ai,K) is a safety game, the set of all winning
strategies of Player 1 can be compactly represented by the subgame obtained
by restricting Player 1’s action to good actions, i.e. those actions from which
whatever Player 2 does, the next state is safe. In order to check the existence of
a doomsday equilibrium, it suffices to check the existence of an infinite path that
satisfies

∧
i ϕi in the synchronized product of those subgames. This is a classical
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model-checking problem. If there exists an infinite path, the tuple of strategies
output by the algorithm is defined for all i as follows: as long as the play is a
prefix of this infinite path, Player i plays according to this infinite path, and if
the play deviates from this infinite path, Player i applies any strategy winning
in G(Ai,K) for Player 1.

Lemma 13. Let F=maxi|ϕi|. The Safraless procedure is correct and complete

for any K ≥ 2n
229F .(28Fn)!.

Proof. Let us first show that if strategy profile Λ is found, then (ϕ1, . . . , ϕn) is
DE-realizable by Λ. The infinite word outcome(Λ) corresponds to an infinite path
in the synchronized product of the games G(Ai,K) which by definition satisfies∧
i ϕi. Moreover, for all i ∈ {1, . . . , n}, Λi is a winning strategy in G(Ai,K),

therefore outcome(Λi) ∈⊆ L(Ai) = Jϕi ∨
∧
j 6=i ¬ϕjK, by definition of G(Ai,K).

Conversely, let us show that if (ϕ1, . . . , ϕn) is DE-realizable, then for a
sufficiently large bound K, the algorithm above returns a tuple of strategies.
We know by Lemma 12 that if (ϕ1, . . . , ϕn) is DE-realizable, then it is DE-
realizable by finite-memory strategies represented by finite-state machines Mi

of size α := 2n
2.28F .(28Fn)! at most. By definition of doomsday equilibria, for

all i ∈ {1, . . . , n}, L(Mi) ⊆ L(Ai). Therefore each run of Ai on any word of
L(Mi) visits at most α.ni accepting states, where ni is the number of states
of Ai (see [FJR11a] for details). Therefore by taking K = α.(maxi ni), the
strategy λMi induced by Mi is winning for Player 1 in G(Ai,K). It remains
to explicit the number of states of Ai. The automaton Ai can be obtained
by constructing a non-deterministic Büchi automaton for the negated objec-
tive ¬(ϕi ∨

∧
j 6=i ¬ϕj) = ¬ϕi ∧

∨
j 6=i ϕj of size

∑
j |ϕj |+ n+ 1. It is known that

from any LTL formula of size n an equivalent automaton of size 22n can be
constructed. Therefore we can assume that Ai has

22.(
∑

j |ϕj |+n+1) ≤ 25nF

states at most. Now

25nF .α = 25nF .2n
2.28F .(28Fn)! = 25nF+n2.28F .(28Fn)! ≤ 2n

229F .(28Fn)!

Therefore we can take K = 2n
229F .(28Fn)!. ut

4.3 Towards an efficient implementation

We discuss in this section some optimizations that could be used to efficiently
implement the Safraless procedure.

Incremental Algorithm The Safraless procedure can be made incremental:
check existence of a doomsday equilibrium for increasing values of the parameter
K (initialized to 0) until the large bound K of Lemma 13 is reached. For classical
(two-player) LTL realizability, it has been noticed that small values of K (up to
5) are sufficient to conclude for realizability in practice [FJR11a].
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Antichain Data Structure Step 2 of the Safraless procedure is a classical two-
player LTL realizability problem. There exist several efficient implementations
of LTL realizability and synthesis, like Lily [JB06], Unbeast [Ehl11] or Acacia+
[BBF+12]. The latter tool is an implementation of the bounded synthesis method
[FJR11a,SF07] optimized with antichain data structures. It is based on the fol-
lowing observation: the positions of the games G(Ai,K) are functions f from Qi
to {−1, 0, . . . ,K + 1} (for each state q of Qi there is a counter that counts the
maximal number of accepting states visited so far by the runs ending in q, up to
K+ 1). Therefore they can be partially ordered with the pairwise comparison of
vector components, denoted by �i. Moreover, it is also known that the winning
region Wi of G(Ai,K), for all i, are downward-closed sets for �i, and can there-
fore be represented by the antichain of their maximal elements, that we denote
by Li, i.e. Wi =↓ Li where ↓ denotes the downward closure. The antichain that
represents Wi is computed by a backward fixpoint algorithm, starting from the
safe positions, i.e. the positions f such that for all q ∈ Qi, f(q) ≤ K.

Once the antichains L1, . . . , Ln representing the winning sets W1, . . . ,Wn

have been computed, it remains to check whether there exists an infinite sequence
of actions σ0σ1 · · · ∈ Σω such that for all i ∈ {1, . . . , n}, the sequence (σ0 ∩
Σi)(σ0 ∩ (Σ \ Σi)(σ1 ∩ Σi)(σ1 ∩ (Σ \ Σi) . . . induces a play in G(Ai,K) that
stays in Wi. This problem can be encoded as a model-checking problem where
the transitions of the games G(Ai,K) are compactly represented. This can be
done for instance by using NuSMV.

5 Complexity of DE for Imperfect Information Games

In this section, we define n-player game arenas with imperfect information.
We adapt to this context the notions of observation, observation of a play,
observation-based strategies, and we study the notion of doomsday equilibria
when players are restricted to play observation-based strategies.

Game arena with imperfect information An n-player game arena with
imperfect information is a tuple G = (S,P, sinit, Σ,∆, (Oi)1≤i≤n) such that
(S,P, sinit, Σ,∆) is a game arena (of perfect information) and for all i, 1 ≤ i ≤ n,
Oi ⊆ 2S is a partition of S. Each block in Oi is called an observation of Player i.
We assume that the players play in a predefined order1: for all i ∈ {1, . . . , n},
all q ∈ Si and all σ ∈ Σ, ∆(q, σ) ∈ S(i mod n)+1.

Observations For all i ∈ {1, . . . , n}, we denote by Oi(s) ⊆ S the block in Oi
that contains s, that is the observation that Player i has when he is in state s.
We say that two states s, s′ are undistinguishable for Player i if Oi(s) = Oi(s

′).
This defines an equivalence relation on states that we denote by ∼i. The notions
of plays and prefixes of plays are slight variations from the perfect information
setting: a play in G is a sequence ρ = s0, σ0, s1, σ1, · · · ∈ (S ·Σ)ω such that s0 =

1 This restriction is not necessary to obtain the results presented in this section (e.g.
Theorem 3) but it makes some of our notations lighter.
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s2

:-)

:-)

s3

Fig. 5. Game arena with imperfect information and Büchi objectives. Only undistin-
guishable states of Player 1 (Player circle) are depicted. Observations are symmetric
for the other players.

sinit, and for all j ≥ 0, we have sj+1 = ∆(sj , σj). A prefix of play is a sequence
π = s0, σ0, s1, σ1, . . . , sk ∈ (S ·Σ)∗ ·S that can be extended into a play. As in the
perfect information setting, we use the notations Plays(G) and PrefPlays(G) to
denote the set of plays in G and its set of prefixes, and PrefPlaysi(G) for the set of
prefixes that end in a state that belongs to Player i. While actions are introduced
explicitly in our notion of play and prefix of play, their visibility is limited by
the notion of observation. The observation of a play ρ = s0, σ0, s1, σ1, . . . by
Player i is the infinite sequence written Obsi(ρ) ∈ (Oi × (Σ ∪ {τ})ω such that
for all j ≥ 0, Obsi(ρ)(j) = (Oi(sj), τ) if sj 6∈ Si, and Obsi(ρ)(j) = (Oi(sj), σj) if
sj ∈ Si. Thus, only actions played by Player i are visible along the play, and the
actions played by the other players are replaced by τ . The observation Obsi(π)
of a prefix π is defined similarly. Given an infinite sequence of observations
η ∈ (Oi× (Σ ∪{τ}))ω for Player i, we denote by γi(η) the set of plays in G that
are compatible with η, i.e. γi(η) = {ρ ∈ Plays(G) | Obsi(ρ) = η}. The functions
γi are extended to prefixes of sequences of observations naturally.

Observation-based strategies and doomsday equilibria A strategy λi of
Player i is observation-based if for all prefixes of plays π1, π2 ∈ PrefPlaysi(G)
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such that Obsi(π1) = Obsi(π2), it holds that λi(π1) = λi(π2), i.e. while play-
ing with an observation-based strategy, Player i plays the same action after
undistinguishable prefixes. A strategy profile Λ is observation-based if each Λi is
observation-based. Winning objectives, strategy outcomes and winning strate-
gies are defined as in the perfect information setting. We also define the notion
of outcome relative to a prefix of a play. Given an observation-based strategy λi
for Player i, and a prefix π = s0, σ0, . . . , sk ∈ PrefPlaysi(G), the strategy λπi is
defined for all prefixes π′ ∈ PrefPlaysi(Gsk) where Gsk is the game arena G with
initial state sk, by λπi (π′) = λi(π · π′). The set of outcomes of the strategy λi
relative to π is defined by outcomei(π, λi) = π · outcomei(λ

π
i ).

The notion of doomsday equilibrium is defined as for games with perfect
information but with the additional requirements that only observation-based
strategies can be used by the players. Given an n-player game arena with imper-
fect information G and n winning objectives (ϕi)1≤i≤n (defined as in the perfect
information setting), we want to solve the problem of deciding the existence of
an observation-based strategy profile Λ which is a doomsday equilibrium in G for
(ϕi)1≤i≤n.

Example Fig. 5 depicts a variant of the example in the perfect information
setting, with imperfect information. In this example let us describe the situation
for Player 1. It is symmetric for the other players. Assume that when Player 2
or Player 3 send their information to Player 1 (modeled by a visit to his happy
states), Player 1 cannot distinguish which of Player 2 or 3 has sent the infor-
mation, e.g. because of the usage of a cryptographic primitive. Nevertheless, let
us show that there exists doomsday equilibrium. Assume that the three players
agree on the following protocol: Player 1 and 2 send their information but not
Player 3.

Let us show that this sequence witnesses a doomsday equilibrium and argue
that this is the case for Player 1. From the point of view of Player 1, if all players
follow this profile of strategies then the outcome is winning for Player 1. Now, let
us consider two types of deviation. First, assume that Player 2 does not send his
information. In that case Player 1 will observe the deviation and can retaliate
by not sending his own information. Therefore all the players are losing. Second,
assume that Player 2 does not send his information but Player 3 does. In this case
it is easy to verify that Player 1 cannot observe the deviation and so according
to his strategy will continue to send his information. This is not problematic
because all the plays that are compatible with Player 1’s observations are such
that: (i) they are winning for Player 1 (note that it would be also acceptable
that all the sequence are either winning for Player 1 or losing for all the other
players), and (ii) Player 1 is always in position to retaliate along this sequence
of observations. In our solution below these two properties are central and will
be called doomsday compatible and good for retaliation.

Generic Algorithm We present a generic algorithm to test the existence of
an observation-based doomsday equilibrium in a game of imperfect informa-
tion. To present this solution, we need two additional notions: sequences of
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observations which are doomsday compatible and prefixes which are good for
retaliation. These two notions are defined as follows. In a game arena G =
(S,P, sinit, Σ,∆, (Oi)1≤i≤n) with imperfect information and winning objectives
(ϕi)1≤i≤n,

– a sequence of observations η ∈ (Oi × (Σ ∪ {τ}))ω is doomsday compatible

(for Player i) if γi(η) ⊆ ϕi ∪
⋂j=n
j=1 ϕj , i.e. all plays that are compatible with

η are either winning for Player i, or not winning for any other player,
– a prefix κ ∈ (Oi × (Σ ∪ {τ}))∗ · Oi of a sequence of observations is good

for retaliation (for Player i) if there exists an observation-based strategy λRi
such that for all prefixes π ∈ γi(κ) compatible with κ, outcome(π, λRi ) ⊆
ϕi ∪

⋂j=n
j=1 ϕj .

The next lemma shows that the notions of sequences of observations that
are doomsday compatible and good for retaliation prefixes are important for
studying the existence of doomsday equilibria for imperfect information games.

Lemma 14. Let G be an n-player game arena with imperfect information and
winning objectives ϕi, 1 ≤ i ≤ n. There exists a doomsday equilibrium in G if
and only if there exists a play ρ in G such that:

(F1) ρ ∈
⋂i=n
i=1 ϕi, i.e. ρ is winning for all the players,

(F2) for all Player i, 1 ≤ i ≤ n, for all prefixes κ of Obsi(ρ), κ is good for
retaliation for Player i,

(F3) for all Player i, 1 ≤ i ≤ n, Obsi(ρ) is doomsday compatible for Player i.

Proof. First, assume that conditions (F1), (F2) and (F3) hold and show that
there exists a DE in G. We construct a DE (λ1, . . . , λn) as follows. For each
player i, the strategy λi plays according to the (observation of the) path ρ in G,
as long as the previous observations follow ρ. If an observation is unexpected for
Player i (i.e., differs from the sequence in ρ), then λi switches to an observation-
based retaliating strategy λRi (we will show that such a strategy exists as a
consequence of (F2)). This is a well-defined profile and a DE because: (1) all
strategies are observation-based, and the outcome of the profile is the path ρ that
satisfies all objectives; (2) if no deviation from the observation of ρ is detected
by Player i, then by condition (F3) we know that if the outcome does not satisfy
ϕi, then it does not satisfies ϕj , for all 1 ≤ j ≤ n, (3) if a deviation from the
observation of ρ is detected by Player i, then the sequence of observations of
Player i so far can be decomposed as κ = κ1(o1, σ1) . . . (om, σnm where (o1, σ1)
is the first deviation of the observation of ρ, and (om, σm) is the first time it is
Player i’s turn to play after this deviation (so possibly m = 1). By condition
(F2), we know that κ1 is good for retaliation. Clearly, κ1(o1, σ1) . . . (o`, σ`) is
retaliation compatible as well for all ` ∈ {1, . . . ,m} since retaliation goodness is
preserved by player j’s actions for all j. Therefore κ is good for retaliation and
by definition of retaliation goodness there exists an observation-based retaliation
strategy λRi for Player i which ensures that that regardless of the strategies
of the opponents in coalition, if the outcome does not satisfy ϕi, then for all
j ∈ {1, . . . , n}, it does not satisfy ϕj either.
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Second, assume that there exists a DE (λ1, . . . , λn) in G, and show that
(F1), (F2) and (F3) hold. Let ρ be the outcome of the profile (λ1, . . . , λn). Then
ρ satisfies (F1) by definition of DE. Let us show that it also satisfies (F3). By
contradiction, if obsi(ρ) is not doomsday compatible for Player i, then by defini-
tion, there is a path ρ′ in Plays(G) that is compatible with the observations and
actions of player i in ρ (i.e., obsi(ρ) = obsi(ρ

′)), but ρ′ does not satisfy ϕi, while
it satisfies ϕj for some j 6= i. Then, given the strategy λi from the profile, the
other players in coalition can choose actions to construct the path ρ′ (since ρ and
ρ′ are observationally equivalent for player i, the observation-based strategy λi
is going to play the same actions as in ρ). This would show that the profile is
not a DE, establishing a contradiction. Hence obsi(ρ) is doomsday compatible
for Player i for all i = 1, . . . , n and (F3) holds. Let us show that ρ also satisfies
(F2). Assume that this not true. Assume that κ is a prefix of obsi(ρ) such that κ
is not good for retaliation for Player i for some i. By definition it means that the
other players can make a coalition and enforce an outcome ρ′, from any prefix
of play compatible with κ, that is winning for one of players of the coalition, say
Player j, j 6= i, and losing for Player i. This contradicts the fact that λi belongs
to a DE. ut

Theorem 3. The problem of deciding the existence of a doomsday equilibrium in
an n-player game arena with imperfect information and n objectives is ExpTime-
C for objectives that are either all reachability, all safety, or all parity objectives.

Proof. By Lemma 14, we know that we can decide the existence of a doomsday
equilibrium by checking the existence of a play ρ inG that respects the conditions
(F1), (F2), and (F3). It can be shown (see Appendix), for all i ∈ {1, . . . , n},
that the set of good for retaliation prefixes for Player i is definable by a finite-
state automaton Ci, and the set of observation sequences that are doomsday
compatible for Player i is definable by a Streett automaton Di.

From the automata (Di)1≤i≤n and (Ci)1≤i≤n, we construct using a synchro-
nized product a finite transition system T and check for the existence of a path in
T that satisfy the winning objectives for each player in G, the Streett acceptance
conditions of the (Di)1≤i≤n, and whose all prefixes are accepted by the automata
(Ci)1≤i≤n. The size of T is exponential in G and the acceptance condition is a
conjunction of Streett and safety objectives. The existence of such a path can
be established in polynomial time in the size of T , so in exponential time in the
size of G. The ExpTime-hardness is a consequence of the ExpTime-hardness of
two-player games of imperfect information with safety [BD08], reachability and
parity objectives [CDHR07]. ut

Doomsday Equilibria Synthesis from LTL Specifications and Imperfect
Information The doomsday equilibria synthesis problem can be extended to an
imperfect setting. Remind that in the perfect information setting, LTL formulas
are defined over a set of atomic propositions P , such that each player controls
a subset Pi of P whose propositions are all visible to the other players. In the
imperfect information setting, each set Pi is splitted into two sets P visi and P invi
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of visible and invisible propositions, as defined for instance in [?]. We let P inv =⋃
i P

inv
i and P vis =

⋃
i P

vis
i . Note that P = P inv ∪P vis. Similarly to the perfect

information setting, a strategy for Player i is a mapping (2P )∗ → 2Pi . However
in the synthesis problem with imperfect information, we restrict strategies to
observation-based strategies. The observation of σ ∈ 2P for Player i is defined by
Obsi(σ) = σ\(P inv\P invi ) ∈ 2P

vis∪Pi , i.e. Player i observes only his propositions
and the visible propositions of the other players. Observations are extended to
finite and ω− words naturally. A strategy λi of Player i is observation-based if
λi(π) = λi(π

′) whenever Obsi(π) = Obsi(π
′). Given a strategy λi : (2P

vis∪Pi)∗ →
2Pi , we define its (observation-based) concretization ηi(λi) : (2P )∗ → 2Pi for all
prefixes π ∈ (2P )∗ by ηi(λi)(π) = λi(Obsi(π)).

The doomsday equilibria realizability problem with imperfect information asks,
given n LTL objectives ϕ1, . . . , ϕn over the atomic propositions P partitionned
into P vis1 , P inv1 , . . . , P visn , P invn , whether there exists a doomsday equilibrium
Λ = (λ1, . . . , λn) for the objectives ϕ1, . . . , ϕn such that each strategy λi is
observation-based. The synthesis problem asks to automatically construct such
a strategy profile if it exists.

The Safraless procedure for the perfect information setting can be extended
to the imperfect information setting, as we describe now. Remind that in the
perfect information setting, each objective ϕi ∪

⋂
j ϕj is encoded as a universal

co-Büchi automaton Ai. In the imperfect information setting, we additionnally
hide in Ai the propositions that are invisible for Player i, i.e. we construct a
universal automaton Obsi(Ai) obtained as a copy of Ai where every transition
(q, σ, q′) is replaced by (q,Obsi(σ), q′). The following proposition is immediate:

Proposition 2. For all i ∈ {1, . . . , n}, for all ρ ∈ (2P
vis∪Pi)∗, ρ ∈ L(Obsi(Ai))

iff for all ρ′ ∈ (2P )∗ such that Obsi(ρ
′) = ρ, we have ρ′ ∈ L(Ai).

Then, we test the existence of a strategy profile Λ such that

1. for all i ∈ {1, . . . , n}, Λi : (2P
vis∪Pi)→ 2Pi

2. for all i ∈ {1, . . . , n}, Λi realizes the objective Obsi(Ai) in the classical LTL
two-player perfect information setting for the output propositions Pi and
input propositions P vis.

3. outcome(Λ1, . . . , Λn) |=
∧
i ϕi.

Proposition 3. Λ satisfies (1), (2) and (3) iff η(Λ) = (η1(Λ1), . . . , ηn(Λn)) is
an observation-based DE for ϕ1, . . . , ϕn.

Proof. Suppose that Λ satisfies 1−3. Clearly, η(Λ) is winning for ϕ1, . . . , ϕn.
Moreover by definition of η(.), η(Λ) is observation-based. Let us show that for
all i, outcomei(ηi(Λi)) ⊆ L(Ai). By hypothesis outcomei(Λi) ⊆ L(Obsi(Ai)). Let
ρ ∈ outcomei(ηi(Λi)). We have Obsi(ρ) ∈ outcomei(Λi) and by Proposition 2,
we get that ρ ∈ L(Ai).

Conversely, suppose that Λ′ is an observation-based DE for ϕ1, . . . , ϕn. For
all i, define Λi : (2P

vis∪Pi)∗ → 2Pi as Λ′i|(2Pvis∪Pi )∗
, and Λ = (Λi)1≤i≤n. Then

clearly Λ satisfies (1) and (3). Let us show that it satisfies (2) too. By definition
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of DE, for all i, outcomei(Λ
′
i) ⊆ L(Ai). Let ρ ∈ outcomei(Λi). Clearly ρ ∈

outcomei(Λ
′
i) and therefore ρ ∈ L(Ai). It remains to show that ρ ∈ L(Obsi(Ai)).

By Proposition 2, it suffices to show that any ρ′ ∈ (2P )∗ such that Obsi(ρ
′) = ρ

satisfies ρ′ ∈ L(Ai). It is indeed the case since all such ρ′ are in outcomei(Λ
′
i).

Therefore Λi satisfies (2). ut

As for perfect information, it is possible to show that if a strategy profile Λ
that satisfies 1−3 exists, then there exists one with finite memory, bounded by
some constant Kϕ that depends (doubly exponentially) on the size of ϕ1, . . . , ϕn.
As for perfect information, there is a Safraless approach: check (2) by solving
safety games that depend on a parameter K (less than Kϕ) as in [FJR11a],
and checking (3) is a model-checking problem w.r.t. to the solution of the safety
games (one has to search for an infinite path in the product of the safety games
where unsafe edges have been removed). This leads to a 2ExpTime procedure,
which is not more than the perfect information setting. Moreover, optimiza-
tion such as testing bounds K incrementally or antichains still applying in the
imperfect information setting.

Theorem 4. The DE-realizability problem from LTL objectives with imperfect
information is 2ExpTime-C.
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A Complexity of Doomsday Equilibria for Imperfect
Information Games

We now present automata construction to recognize sequences of observations
that are doomsday compatible and prefixes that are good for retaliation.

Lemma 15. Given an n-player game G with imperfect information and a set
of reachability, safety or parity objectives (ϕi)1≤i≤n, we can construct for each
Player i, in exponential time, a deterministic Streett automaton Di whose lan-
guage is exactly the set of sequences of observations η ∈ (Oi × (Σ ∪ {τ}))ω that
are doomsday compatible for Player i, i.e.

L(Di) = {η ∈ (Oi × (Σ ∪ {τ}))ω | ∀ρ ∈ γi(η) · ρ ∈ ϕi ∪
⋂
j 6=i

ϕj}.

For each Di, the size of its set of states is bounded by O(2nk log k) and the number
of Streett pairs is bounded by O(nk2) where k is the number of states in G.

Proof. Let G = (S, (Si)1≤i≤n, sinit, Σ,∆, (Oi)1≤i≤n), and let us show the con-
structions for Player i, 1 ≤ i ≤ n. We treat the three types of winning conditions
as follows.

We start with safety objectives. Assume that the safety objectives are defined
implicitly by the following tuple of sets of safe states: (T1, T2, . . . , Tn), i.e. ϕi =
safe(Ti). First, we construct the automaton

A = (QA, qAinit, (Oi × (Σ ∪ {τ}), δA)

over the alphabet Oi × (Σ ∪ {τ}) as follows:

– QA = S, i.e. the states of A are the states of the game structure G,
– qAinit = sinit,
– (q, (o, σ), q′) ∈ δA if q ∈ o and there exists σ′ ∈ Σ such that ∆(q, σ′) = q′

and such that σ = τ if q 6∈ Si, and σ = σ′ if q ∈ Si.

The acceptance condition of A is universal and expressed with LTL syntax:

A word w is accepted by A iff all runs ρ of A on w satisfy ρ |= �Ti ∨
∧
j 6=i ♦Tj .

Clearly, the language defined by A is exactly the set of sequences of observations
η ∈ (Oi× (Σ ∪{τ}))ω that are doomsday compatible for Player i, this is because
the automaton A checks (using universal nondeterminism) that all plays that
are compatible with a sequence of observations are doomsday compatible.

Let us show that we can construct a deterministic Streett automaton Di that
accepts the language of A and whose size is such that: (i) its number of states is
at most O(2(nk log k)) and (ii) its number of Streett pairs is at most O(nk). We
obtain D with the following series of constructions:

– First, note that we can equivalently see A as the intersection of the languages
of n − 1 universal automata Aj with the acceptance condition �Ti ∨ ♦Tj ,
j 6= i, 1 ≤ j ≤ n.
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– Each Aj can be modified so that a violation of Ti is made permanent and
a visit to Tj is recorded. For this, we use a state space which is equal to
QA × {0, 1} × {0, 1}, the first bit records a visit to Ti and the second a visit
to Tj . We denote this automaton by A′j , and its acceptance condition is now

�♦(QA×{0, 1}×{0})→ �♦(QA×{0}×{0, 1}). Clearly, this is a universal
Streett automaton with a single Streett pair.

– A′j , which is a universal Streett automaton, can be complemented (by du-
ality) by interpreting it as a nondeterministic Rabin automaton (with one
Rabin pair). This nondeterministic Rabin automaton can be made deter-
ministic using a Safra like procedure, and according to [CZL09] we obtain a
deterministic Rabin automaton with O(2k log k) states and O(k) Rabin pairs.
Let us call this automaton A′′j .

– Now, A′′j can be complemented by considering its Rabin pairs as Streett
pairs (by dualization of the acceptance condition): we obtain a deterministic
Streett automaton with O(k) Streett pairs for each Aj .

– Now, we need to take the intersection of the n−1 deterministic automata A′′j
(interpreted as Streett automata). Using a classical synchronized product we
obtain a single deterministic Streett automaton Di of size with O(2nk log k)
states and O(nk) Streett pairs. This finishes our proof for safety objectives.

Let us now consider reachability objectives. Therefore we now assume the
states in T1, . . . , Tn to be target states for each player respectively, i.e. ϕi =
reach(Ti). The construction is in the same spirit as the construction for safety.
Let A = (QA, qAinit, Oi × (Σ ∪ {τ}), δA) be the automaton over (Oi × (Σ ∪ {τ})
constructed from G as for safety, with the following (universal) acceptance con-
dition;

A word w is accepted by A iff all runs ρ of A on w satisfy ρ |= (
∨
j 6=i ♦Tj)→♦Ti.

Clearly, the language defined by A is exactly the set of sequences of observa-
tions η ∈ ((Σ ∪ {τ}) × Oi)ω that are doomsday compatible for Player i (w.r.t.
the reachability objectives). Let us show that we can construct a deterministic
Streett automaton Di that accepts the language of A and whose size is such that:
(i) its number of states is at most O(2(nk log k)) and (ii) its number of Streett
pairs is at most O(nk). We obtain Di with the following series of constructions:

– First, the acceptance condition can be rewritten as
∧
j 6=i(♦Tj → ♦Ti). Then

clearly if Aj is a copy of A with acceptance condition ♦Tj → ♦Ti then
L(A) =

⋂
j 6=i L(Aj).

– For each Aj , we construct a universal Streett automaton with one Streett
pair by memorizing the visits to Ti and Tj and considering the acceptance
condition �♦Tj → �♦Ti. So, we get a universal automaton with a single
Streett pair.

– Then we follow exactly the last three steps (3 to 5) of the construction for
safety.

Finally, let us consider parity objectives. The construction is similar to the
other cases. Specifically, we can take as acceptance condition for A the universal
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condition
∧
j 6=i(parityi ∨ parityj), and treat each condition parityi ∨ parityj sepa-

rately. We dualize the acceptance condition of A, into the nondeterministic con-
dition parityi ∧ parityj . This acceptance condition can be equivalently expressed
as a Streett condition with at most O(k) Streett pairs. This automaton accepts
exactly the set of observation sequences that are not doomsday compatible for
Player i against Player j. Now, using optimal procedure for determinization, we
can obtain a deterministic Rabin automaton, with O(k2) pairs that accepts the
same language [Pit07]. Now, by interpreting the pairs of the acceptance condi-
tion as Streett pairs instead of Rabin pairs, we obtain a deterministic Streett
automaton Aj that accepts the set of observations sequences that are doomsday
compatible for Player i against Player j. Now, it suffices to take the product of
the n−1 deterministic Streett automata Aj to obtain the desired automaton A,
its size is at most O(2nk log k) with at most O(nk2) Streett pairs. ut

Lemma 16. Given an n-player game arena G with imperfect information and
a set of reachability, safety or parity objectives (ϕi)1≤i≤n, for each Player i,
we can construct a finite-state automaton Ci that accepts exactly the prefixes of
observation sequences that are good for retaliation for Player i.

Proof. Let us show how to construct this finite-state automaton for any Player i,
1 ≤ i ≤ n. Our construction follows these steps:

– First, we construct from G, according to lemma 15, a deterministic Streett
automaton Di = (QDi , qDi

init, (Oi × (Σ ∪ {τ}), δDi ,StDi) that accepts exactly
the set of sequences of observations η ∈ (Oi × (Σ ∪ {τ}))ω that are dooms-
day compatible for Player i. We know that the number of states in Di is
O(2|S|

2 log |S|) and the number of Streett pairs is bounded by O(|S|2 · n),
where |S| is the number of states in G.

– Second, we consider a turn-based game played on Di by two players, A and
B, that move a token from states to states along edges of Di as follows:
1. initially, the token is in some state q
2. then in each round: B chooses an observation o ∈ Oi in the set {o ∈
Oi | ∃(q, (o, σ), q′) ∈ δDi}. Then A chooses a transition (q, (o, σ), q′) ∈ δDi

(which is completely determined by σ as Di is deterministic), and the
token is moved to q′ where a new round starts.

The objective of A is to enforce from state q an infinite sequence of states, so
a run of Di that starts in q, and which satisfies StDi the Streett condition of
Di. For each q, this can be decided in time polynomial in the number of states
in Di and exponential in the number of Streett pairs in StDi , see [PP06] for
an algorithm with the best known complexity. Thus, the overall complexity
is exponential in the size of the game structure G. We denote by Win ⊆ QDi

the set of states q from which A can win the game above.
– Note that if (o1, σ1) . . . (om, σm) is the trace of a path from qinit in Di to a

state q ∈Win, then clearly (o1, σ1) . . . (on−1, σn−1)on is good for retaliation.
Indeed, the winning strategy of A in q is an observation based retaliating
strategy λRi for Player i in G. On the other hand, if a prefix of observations
reaches q 6∈Win then by determinacy of Streett games, we know that B has a
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winning strategy in q and this winning strategy is a strategy for the coalition
(against Player i) in G to enforce a play in which Player i does not win and at
least one of the other players wins. So, from Di and Win, we can construct a
finite state automaton Ci which is obtained as a copy of Di with the following
acceptance condition: a prefix κ = (o0, σ0), (o1, σ1), . . . , (ok−1, σk−1), ok is
accepted by Ci if there exists a path q0q1 . . . qk in Ci such that q0 is the
initial state of Ci and either there exists a transition labeled (ok, σ) from qk
to a state of Win. ut


