First-Order Transformations of Finite Words

Emmanuel FiliotULB-FNRSKrishna Shankara NarayananIIT BombayA. TrivediIIT Bombay

Highlights of Logic, Games and Automata, 2014

Overview

• Σ : finite alphabet

Theorem (Engelfriet, Hoogeboom, 01)

A function $f : \Sigma^* \to \Sigma^*$ is (Courcelle) <u>MSO-definable</u> iff it is definable by a deterministic two-way transducer.

Overview

• Σ : finite alphabet

Theorem (Engelfriet, Hoogeboom, 01)

A function $f : \Sigma^* \to \Sigma^*$ is (Courcelle) <u>MSO-definable</u> iff it is definable by a deterministic two-way transducer.

Theorem (Alur, Cerny, 10)

A function $f : \Sigma^* \to \Sigma^*$ is (Courcelle) <u>MSO-definable</u> iff it is definable by a <u>streaming string transducer (SST)</u>.

Overview

• Σ : finite alphabet

Theorem (Engelfriet, Hoogeboom, 01)

A function $f : \Sigma^* \to \Sigma^*$ is (Courcelle) <u>MSO-definable</u> iff it is definable by a deterministic two-way transducer.

Theorem (Alur, Cerny, 10)

A function $f : \Sigma^* \to \Sigma^*$ is (Courcelle) <u>MSO-definable</u> iff it is definable by a <u>streaming string transducer (SST)</u>.

Theorem (Main result of this talk)

A function $f : \Sigma^* \to \Sigma^*$ is (Courcelle) <u>FO</u>-definable iff it is definable by an **aperiodic** streaming string transducer.

Examples of Transformations

• f_{del}: delete all 'a' positions

abbabaa \mapsto bbb

• f_{rev}: reverse the input word

stressed \mapsto desserts

• f_{halve} : maps all inputs a^n to $a^{\lfloor \frac{n}{2} \rfloor}$.

 $a^5 \mapsto a^2$

• *f_{copy}*: copy the input word twice

 $ab\# \mapsto ab\#ab\#$

- words as a structures over $\{succ, (lab_a)_{a \in \Sigma}\}$
- output predicates defined by MSO formulas interpreted over the input structure

- words as a structures over $\{succ, (lab_a)_{a \in \Sigma}\}$
- output predicates defined by MSO formulas interpreted over the input structure

- words as a structures over $\{succ, (lab_a)_{a \in \Sigma}\}$
- output predicates defined by MSO formulas interpreted over the input structure

$$\begin{array}{rcl} & {\color{black}{\text{succ}}} & {\color{black}{\text$$

- words as a structures over $\{succ, (lab_a)_{a \in \Sigma}\}$
- output predicates defined by MSO formulas interpreted over the input structure

- words as a structures over $\{succ, (lab_a)_{a \in \Sigma}\}$
- output predicates defined by MSO formulas interpreted over the input structure

- words as a structures over $\{succ, (lab_a)_{a \in \Sigma}\}$
- output predicates defined by MSO formulas interpreted over the input structure

- more generally, input structure can be copied a fixed number of times $(w \mapsto ww)$
- **FO-transformations**: MSO replaced by FO over $\{\leq, (lab_a)_{a \in \Sigma}\}$.

- one-way, deterministic model
- extend finite automata with a finite set of word variables X, Y ...
 - appending a word u: X := Xu
 - prepending a word: X := uX
 - concatenating two variables: X := YZ

- one-way, deterministic model
- extend finite automata with a finite set of word variables X, Y ...
 - appending a word u: X := Xu
 - prepending a word: X := uX
 - concatenating two variables: X := YZ

reverse :

- one-way, deterministic model
- extend finite automata with a finite set of word variables X, Y ...
 - appending a word u: X := Xu
 - prepending a word: X := uX
 - concatenating two variables: X := YZ

Theorem (Alur, Cerny, 10)

A function $f : \Sigma^* \to \Sigma^*$ is MSO-definable iff it is definable by an SST with copyless variable update.

- one-way, deterministic model
- extend finite automata with a finite set of word variables X, Y ...
 - appending a word u: X := Xu
 - prepending a word: X := uX
 - concatenating two variables: X := YZ

Theorem (Alur, Cerny, 10)

A function $f : \Sigma^* \to \Sigma^*$ is MSO-definable iff it is definable by an SST with copyless variable update.

Question: What restriction to put on SST to capture FO ?

(Filiot, S.N. Krishna, Trivedi)

Aperiodic Finite Automata

Among several characterizations of FO languages¹, we use the following:

Theorem

A language $L \subseteq \Sigma^*$ is FO-definable iff it is definable by an <u>aperiodic</u> finite automaton (AFA).

¹*First-order definable languages*, V. Diekert and P. Gastin. 2007.

Aperiodic Finite Automata

Among several characterizations of FO languages¹, we use the following:

Theorem

A language $L \subseteq \Sigma^*$ is FO-definable iff it is definable by an <u>aperiodic</u> finite automaton (AFA).

- AFA = finite automaton with aperiodic transition monoid $\mathcal{T}(A)$
- $\mathcal{T}(A) = \{M_w \mid w \in \Sigma^*\}$
- for any two states $p, q, M_w[p][q] = 1$ iff $p \rightsquigarrow^w q$.
- T_A is aperiodic if $\exists m \geq 0$, for all $M \in T_A$, $M^m = M^{m+1}$

• Examples:

¹*First-order definable languages*, V. Diekert and P. Gastin. 2007.

Towards a restriction: f_{halve} : $a^n \mapsto a^{\lfloor \frac{n}{2} \rfloor}$ again

- not FO-definable
- definable by:

Towards a restriction: f_{halve} : $a^n \mapsto a^{\lfloor \frac{n}{2} \rfloor}$ again

- not FO-definable
- definable by:

• aperiodicity of the underlying input automaton is not sufficient:

$$T_0: \longrightarrow \bigcirc a \mid \begin{array}{c} X := aY \\ Y := X \\ X \end{array}$$

Variable flow

$$T_0: \quad \rightarrow \bigcirc \Rightarrow a \mid \begin{array}{c} X := aY \\ Y := X \end{array}$$

Variable flow

$$T_0: \quad \rightarrow \bigcirc a \mid \begin{array}{c} X := aY \\ Y := X \end{array}$$

 \Rightarrow impose aperiodicity of the variable flow !

SST Transition Monoid

- set of Boolean matrices M_w indexed by pairs (q, X)
- coefficients in $\mathbb{N} \cup \{\bot\}$
- $M_w[p, X][q, Y] = \bot$ if there no run from p to q on w
- $M_w[p,X][q,Y] = n \in \mathbb{N}$ if
 - there is a run r from p to q on w
 - on this run, X "flows" n times to Y

SST Transition Monoid

- set of Boolean matrices M_w indexed by pairs (q, X)
- coefficients in $\mathbb{N} \cup \{\bot\}$
- $M_w[p, X][q, Y] = \bot$ if there no run from p to q on w
- $M_w[p,X][q,Y] = n \in \mathbb{N}$ if
 - there is a run r from p to q on w
 - on this run, X "flows" n times to Y
- Example:

$$q_0 \xrightarrow{a \mid X := aXb} q_1 \xrightarrow{a \mid X := YY} q_2$$

Then $M_{aa}[q_0, Y][q_2, X] = 2.$

Results and Perspectives

Theorem

- A function $f : \Sigma^* \to \Sigma^*$ is MSO-definable iff it is definable by a SST with finite transition monoid.
- A function f : Σ^{*} → Σ^{*} is FO-definable iff it is definable by a SST with finite and aperiodic transition monoid.

Results and Perspectives

Theorem

- A function f : Σ^{*} → Σ^{*} is MSO-definable iff it is definable by a SST with finite transition monoid.
- A function f : Σ^{*} → Σ^{*} is FO-definable iff it is definable by a SST with finite and aperiodic transition monoid.

Open question

Give an effective, machine-independent, characterisation of FOT.

Related to M. Bojanczyk's work on a weaker semantics (with origin).