An Antichain Algorithm for LTL Realizability

Emmanuel Filiot joint with Naiyong Jin and Jean-François Raskin

Université Libre de Bruxelles

GAMES 2009, Udine

LTL Realizability

 $(o_0 \cup i_0)(o_1 \cup i_1)(o_2 \cup i_2)...$ $o_i \subseteq O$ $i_i \subseteq I$

LTL Realizability

synchronous execution= infinite words over $\sum = 2^{100}$

 $(o_0 \cup i_0)(o_1 \cup i_1)(o_2 \cup i_2)...$ $o_j \subseteq O$ $i_j \subseteq I$

Realizability Problem: Given $\Phi \in LTL$ on atomic propositions $| \cup O \rangle$ $\exists M \in System, \forall e \in Exec, e satisfies <math>\Phi$?

LTL Realizability

Synthesis Problem: generate such a system

Realizability as an ∞-game

System M Environment

- The system wins the game if the play $(M(\epsilon) \cup i_0)(M(i_0) \cup i_1)(M(i_0i_1) \cup i_2)...$ satisfies φ
- system ~ strategy $(2^{\prime})^* \rightarrow 2^{\circ}$

Examples

•
$$I = \{i\}, O = \{o\}$$

Formula	Satisfiable	Realizable	Strategy
o U i		X	environment never asserts i
$\Diamond i \rightarrow o U i$			system always asserts o

- 2ExpTime-Complete [Rosner, 92]
- "classical" procedure [Pnueli, Rosner, 89]

```
LTL \xrightarrow{2^{O(n)}} Büchi Word Automata \xrightarrow{2^{O(m \log m)}} Det. Rabin Word Automata [Safra, 88]
```

- 2ExpTime-Complete [Rosner, 92]
- "classical" procedure [Pnueli, Rosner, 89]

Solve a Rabin Game

in Word Automata

- 2ExpTime-Complete [Rosner, 92]
- "classical" procedure [Pnueli, Rosner, 89]

Safraless procedure [Kupferman, Vardi, 05]

- 2ExpTime-Complete [Rosner, 92]
- "classical" procedure [Pnueli, Rosner, 89]

• Safraless procedure [Kupferman, Vardi, 05]

Solve a Büchi Game

Büchi Tree Autom

ee Automata

- 2ExpTime-Complete [Rosner, 92]
- "classical" procedure [Pnueli, Rosner, 89]

• Safraless procedure [Kupferman, Vardi, 05]

Solve a Büchi Game

Büchi Tree Autom

ee Automata

Implemented in Lily [Jobstmann, Bloem,06]

```
Universal coBüchi Word automata

O(I)

Universal KcoBüchi Word automata

2<sup>O(m^2)</sup>

Det. KcoBüchi Word automata
```


Doubly Exponential Size ...

... Game solved onthe-fly with antichain technics

Universal coBüchi Word automata

O(I)

Universal KcoBüchi Word automata

Det KcoBüchi Word automata

Theorem [Safra88, Kupferman-Vardi05]

Let A: UCW with n states,

A is realizable

it is realizable by a finite-state strategy S with at most n^{2n+1} states.

Consequence

the runs of A on words compatible with S visits at most $K=n^{2n+2}$ final states

```
Universal coBüchi Word automata

O(1)

Universal KcoBüchi Word automata

2<sup>O(m^2)</sup>

Det. KcoBüchi Word automata
```

Determinization

- For each state q, count the maximal number of final states visited by runs ending up in q
- Set of states: counting functions F
 from Q to [-1,0,...,K+1]
- Final states are functions F such that $\exists q: F(q) > \mathbb{K}$
- set the bound to 0

Realizability as a Safety Game

Realizability as a Safety Game

Realizability as a Safety Game

Controllable Predecessors

- P⊆F: subset of system positions
- safe controllable predecessors of *P* $Pre(P) = \{ F \mid \exists o \subseteq O, \forall F', ((F,o),F') \in T \Rightarrow F' \in P \} \cap Safe \}$

greatest fixpoint Pre* = winning region for System

Controllable Predecessors

I. partial order on counting functions:

$$F \leq_d F'$$
 if $\forall q$: $F(q) \leq F'(q)$

- 2. if System wins from F, she also wins from
- 3. Pre(.) preserves downward-closed sets
- 4. represent each (downward) set of the fixpoint computation by its maximal elements

Incremental Algorithm

- the bound K is very big (doubly exponential)
- if the spec is realizable with a "small" bound, it is realizable with a "big" bound
- iterate over k=0,1,...,K

Incremental Algorithm

- the bound K is very big (doubly exponential ations)
 if the spec is realizable with a foig unit bound, it is realizable with a foig unound
 Notereasonable foig unit bound

Incremental Algorithm

for the Environment.

Experiments

- implementation in Perl (as Lily)
- if the spec is realizable, output a Moore machine that realizes it
- formula to automata construction borrowed from Lily (based on Wring [Somenzi, Bloem])
- significantly faster on all realizable Lily's examples
- bottleneck: formula to automaton construction

Future Work ...

- compositionnality
- avoid automata construction to handle larger formulas

Future Work ...

- compositionnality
- avoid automata construction to handle larger formulas

... Thank You