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We define tree automata with global equality and disequality constraints (TAGED).
TAGEDs can test (dis)equalities between subtrees which may be arbitrarily faraway.
In particular, they are equipped with an equality relation and a disequality relation
on states, so that whenever two subtrees t and t′ evaluate (in an accepting run) to
two states which are in the (dis)equality relation, they must be (dis)equal. We study
several properties of TAGEDs, and prove emptiness decidability of for several expressive
subclasses of TAGEDs.
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1. Introduction

The emergence of XML has strengthened the interest in tree automata, as it is

a clean and powerful model for XML tree acceptors [20, 21]. In this context, tree

automata have been used, for example, to define schemas, and queries, but also to

decide tree logics, to type XML transformations, and even to learn queries. However,

it is known that sometimes, expressiveness of tree automata is not sufficient. This is

the case for instance in the context of non-linear rewriting systems, for which more

powerful tree acceptors are needed to decide interesting properties of those rewrite

systems. For example, the set of ground instances of f(x, x) is not regular.
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Tree automata with constraints have been introduced to overcome this lack of

expressiveness [4, 10, 17, 18]. In particular, the transitions of these tree automata are

fired as soon as the subtrees of the current tree are (dis)equal. But typically, these

constraints are kept local to preserve decidability of emptiness and good closure

properties – in particular, tests are performed between siblings or cousins –. In the

context of XML, and especially to define tree patterns, one needs global constraints.

For instance, one may want to represent the set of ground instances of the pattern

X(author(x), author(x)), where X is a binary context variable, and x is an author

which occur at least twice (we assume this pattern to be matched against XML trees

representing a bibliography). In this example, the two subtrees corresponding to

the author might be arbitrarily faraway, making the tree equality tests more global.

Patterns might be more complex, by the use of negation (which enable to test tree

disequalities), Boolean operations, and regular constraints on variables. The TQL

logic, in particular, makes possible to define such patterns [5, 12]. In this paper,

we introduce Tree Automata with Global Equalities and Disequalities (TAGEDs

for short), which capture the expressiveness of the guarded TQL fragment with

tree variables (assumed to be existentially quantified). These are tree automata A

equipped with an equality relation =A and a disequality relation 6=A on (a subset

of) states. A tree t is accepted by A if there is a computation of A on t which leads

to an accepting state, and such that, whenever two subtrees of t evaluate to two

states q1, q2 (not necessarily equal) such that q1 =A q2 (resp. q1 6=A q2), then these

two subtrees must be structurally equal (resp. structurally different). TAGEDs may

be interesting in their own, since they are somehow orthogonal to usual automata

with constraints [4]. Indeed, if we view equality tests during computations as an

equivalence relation on a subset of nodes (two nodes being equivalent if their rooted

subtrees have been successfully tested to be equal by A), in the former, there are a

bounded number of equivalence classes of unbounded cardinality, while in the latter,

there might be an unbounded number of equivalence classes of bounded cardinality.

Recently, a subclass of TAGEDs has been introduced, namely rigid tree automata

(RTA) [16]. They are applied to the analysis of security protocols based on the

computation of the closure of RTA-languages by different class of term rewriting

systems.

In this paper, we study closure properties of TAGEDs and some classical decison

problems. In particular, we prove or recall decidability of the emptiness problem for

several subclasses, namely positive TAGEDs where only equality tests are allowed,

negative TAGEDs where only disequality tests are allowed, and vertically bounded

TAGEDs, that perform both kind of tests but a bounded number of disequality

tests along every branch. We mainly focus on the proof of emptiness for vertically

bounded TAGEDs.

Related Work TAGEDs were first introduced in [12] to decide a fragment of

the TQL tree logic. Emptiness for a restriced class of TAGEDs was proved to

be decidable, where only a bounded number of equality and disequality tests was
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allowed.

It was recently shown in [3] that the emptiness problem for a strictly more ex-

pressive class of tree automata with global constraints is decidable. This class, called

tree automata with global constraints (TAGC), extends TAGEDs with the ability to

test disequalities between subtrees which evaluate to the same state. TAGEDs do

not allow for such tests as we require that any pair of subtrees which are tested for

disequality evaluate to different states. However for TAGCs, the complexity of the

emptiness problem is unknown.

Extensions of tree automata which allow for syntactic equality and disequality

tests between subterms have already been defined by adding constraints to the rules

of automata. E.g., adding the constraint 1.2 = 2 to a rule means that one can apply

the rule at position π only if the subterm at position π.1.2 is equal to the subterm at

position π.2. Testing emptiness of the recognized language is undecidable in general

[19] but two classes with a decidable emptiness problem have been emphasized. In

the first class, automata are deterministic and the number of equality tests along

a path is bounded [10] whereas the second restricts tests to sibling subterms [4].

This latter class has recently been extended to unranked trees [18], the former one

has been extended to equality modulo equational theories [17]. But, contrarily to

TAGEDs, in all these classes, tests are performed locally, typically between sibling

or cousin subterms.

Automata with local and global equality tests, using one memory, have been

considered in [8]. These are tree automata with a memory which can store a single

tree. They run in a bottom-up fashion, and the two trees contained in the respective

memories coming from two computations on the two subtrees of the current node

can be combined thanks to tree operations and compared with tree equality tests.

The emptiness problem is decidable for tree automata with memory which can

simulate positive TAGEDs (TAGEDs performing only equality tests) which use at

most one state per runs to test equalities. However, their ability to perform local

tests make them incomparable to TAGEDs.

Rigid tree automata (RTAs) have been introduced in [16]. These are positive

TAGEDs with so called rigid states. All subtrees that evaluate to the same rigid

state have to be equal. These are positive TAGEDs whose equality relation is a

subset of the identity relation on states. As shown in Section 4, RTAs are equally

expressive as positive TAGEDs.

Finally, automata for DAGs which were studied in [2, 6] cannot be compared

to positive TAGEDs, as they run on DAG representations of trees (with maximal

sharing). In the other hand, as shown in Example 3, we cannot impose in TAGEDs

that every equal subtrees evaluate to the same state in a successful run, since it

may be needed to evaluate the leaves to possibly different states.

2. Preliminaries

For the sake of clarity, we consider binary trees, with constant and binary function

symbols from a ranked alphabet, but all the definitions can naturally be extended
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to ranked trees of arbitrary arity.

Binary trees We start from a ranked alphabet Σ ranged over binary symbols f

and constant symbols a. A binary tree t ∈ TΣ is a finite rooted acyclic directed

graph, whose nodes are labeled in Σ. Every node is connected to the root by a

unique path. All nodes of binary trees either have 0 or 2 linearly ordered children.

Nodes without children are called leaves. All other nodes have a distinguished first

and second child. For a tree t, ǫt denotes its root and Nt its set of nodes. For all

nodes u ∈ Nt, we write t(u) its label in Σ. Given two nodes v1, v2 ∈ Nt we call

v2 a child of v1 and write v1 ⊳ v2 if there exists an edge from v1 to v2. For all

i ∈ {1, 2}, v1.i stands for the i-th child of v1. The descendant relation ⊳∗ on nodes

is the reflexive transitive closure of the child relation ⊳. We denote by ⊳
+ the strict

descendant relation. The subtree of a tree t rooted by some node v ∈ Nt is the tree

(denoted by t|v) induced by t whose set of nodes is {v′ ∈ Nt | v ⊳∗ v′}. It is often

convenient to view a tree t as a ground term over Σ. In particular, f(t1, t2) denotes

a tree whose root is labeled by f and whose first and second subtrees are t1 and t2
respectively. Two trees t, t′ are equal, denoted by t = t′, if there is an isomorphism

from Nt to Nt′ which preserves the first and second child relations, and the node

labels. Finally, the size of a tree, denoted by ‖t‖, is its number of nodes.

Path Isomorphism Let t ∈ TΣ, and u, v ∈ Nt such that u ⊳∗ v. We denote by

patht(u, v) the finite sequence of nodes u1, . . . , un such that u1 = u, un = v, and

for all i ∈ {1, . . . , n − 1}, ui+1 is a child of ui. In particular, patht(u, u) = u.

Given two other nodes u′, v′ such that u′ ⊳∗ v′, we say that patht(u, v) is edge-

isomorphic to patht(u
′, v′), denoted by patht(u, v) ≡ patht(u

′, v′), if v and v′ are

reachable from u and u′ respectively by the same sequence of first-child or second-

child edges. More formally, if patht(u, v) = u1 . . . un and patht(u
′, v′) = u′

1 . . . u′
n for

some u1, . . . , un,u′
1, . . . , u

′
n, then they are edge-isomorphic if for all i ∈ {1, . . . , n−1},

for all α ∈ {1, 2}, ui.α = ui+1 iff u′
i.α = u′

i+1.

Tree Automata We define tree automata on binary trees, but the reader may

refer to [9] for more details. A tree automaton is a 4-tuple A = (Σ, Q, F, ∆) where

Q is a finite set of states, F ⊆ Q is a set of final states, and ∆ is a set of rules of the

form a → q and f(q1, q2) → q, where f is a binary function symbol, a a constant,

and q1, q2, q are states from Q. A run of A on a tree t is a tree r over Q such that:

(i) Nr = Nt, (ii) for all leaves u ∈ Nr, we have t(u) → r(u) ∈ ∆, and (iii) for all

inner-nodes u ∈ Nr, we have t(u)(r(u.1), r(u.2))→ r(u) ∈ ∆. A run r is successful

if r(ǫ) ∈ F . The language defined by A, denoted L(A), is the set of trees t for which

there exists a successful run of A.

3. TAGEDs : Definition, Examples and Closure Properties

In this section, we define TAGEDs and several subclasses, give examples and study

their closure properties as well as some decision problems.

Definition 1. A TAGED is a 6-tuple A = (Σ, Q, F, ∆, =A, 6=A) such that
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(Σ, Q, F, ∆) is a tree automaton, and =A, 6=A are binary relations on Q.

A TAGED A is said to be positive (resp. negative) if 6=A (resp. =A) is empty. It is

rigid if =A⊆ idQ (idQ is the identity relation on Q). We denote by dom(=A) the

domain of =A, i.e. {q | ∃q′ ∈ Q · q =A q′ ∨ q′ =A q}. The set dom(6=A) is defined

similarly. A is reflexive if =A is reflexive over dom(=A). Note that positive rigid

TAGEDs are exactly the class of rigid tree automata (RTA) in the terminology of

[16]. We denote by TAGED+ (resp. TAGED−) the class of positive (resp. negative)

TAGED. The definition of TAGEDs differs from the definition given in [13, 11], as

we do not impose any constraint on the two relations =A and 6=A. However, this

new definition does not lead to extra expressive power, as shown by Corollary 11.

The notion of successful run differs from tree automata as we add equality and

disequality constraints. Let r be a run of the tree automaton (Σ, Q, F, ∆) on a tree

t. An equality (resp. disequality) constraint is a pair of nodes (u, v) ∈ Nt
2 such that

r(u) =A r(v) (resp. r(u) 6=A r(v)). The set of equality (resp. disequality) constraints

for t and r is denoted by cstA
=(t, r) (resp. cstA

6=(t, r)). The run r satisfies the equality

constraints if ∀(u, v) ∈ cstA
=(t, r), t|u = t|v. Similarly, it satisfies the disequality

constraints if ∀(u, v) ∈ cstA
6=(t, r), t|u 6= t|v.

A run is successful (or accepting) if it is successful for the tree automaton

(Σ, Q, F, ∆) and satisfies all the constraintsa. The language defined by A, denoted

L(A), is the set of trees t having a successful run for A. Two TAGEDs are equiv-

alent if they accept the same language. Finally, the size of A, denoted ‖A‖, is

|Q|+ |∆|+ |dom(=A) ∪ dom(6=A)|2.

As shown by Example 2, TAGEDs are strictly more expressive than tree automata.

Example 2. Let Q = {q, q=, qf}, F = {qf}, and ∆ the following set of rules:

a→ q a→ q= f(q, q)→ q f(q, q)→ q= f(q=, q=)→ qf .

The language accepted by the TAGED+ A1 = (Σ, Q, F, ∆, {q= =A1
q=}) is the set

{f(t, t) | f ∈ Σ, t ∈ TΣ}, which is known to be non regular [9]. For instance, a

successful run of A1 on f(f(a, a), f(a, a)) is qf (q=(q, q), q=(q, q)).

Example 3. Let X be a finite set of variables. We now define a TAGED Asat =

(Σsat, Qsat, Fsat, ∆sat) which accepts tree representations of satisfiable Boolean for-

mulas with free variables X . The alphabet Σsat consists of the binary symbols ∧,∨

and x, for all x ∈ X , the unary symbol ¬, and the two constant symbols 0, 1.

Every Boolean formula is naturally viewed as a tree, except for variables x ∈ X

which are encoded as trees x(0, 1) over ΣX . For instance, the formula (x ∧ y) ∨ ¬x

is encoded as the tree ∨(∧(x(0, 1), y(0, 1)),¬(x(0, 1))).

aNote that if there is a state q such that q 6=A q, then any run in which q occurs is unsuccessful,
as it would require that the subtree evaluated to q is different from itself. The tree automata

with global constraints of [3] extend TAGEDs in the following way: a constraint is a pair of nodes
(u, v) ∈ Nt

2 such that, as for TAGEDs, r(u) =A r(v) or r(u) 6=A r(v), but with the additional
requirement that u 6= v. This leads to extra expressive power, as for instance an unbounded set of
subtrees can be tested to be pairwise different, which is not possible with TAGEDs.
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Let Q = {qx | x ∈ X} ∪ {q0, q1, p0, p1}, and F = q1. The idea is to choose non-

deterministically to evaluate the leaf 0 or 1 below x to qx, but not both, for all

x ∈ X . It means that we assign 0 or 1 to a particular occurrence of x. Then, by

imposing that every leaf evaluated to qx are equal (by the constraints qx =Asat
qx),

for all x ∈ X , we can ensure that we have chosen to same Boolean value for all

occurrences of x. This can be done with the following rules:
b → pb ¬(qb)→ q¬b ⊕(qb1 , qb2)→ qb1⊕b2 ∀b, b1, b2 ∈ {0, 1}, ∀⊕ ∈ {∧,∨}

b → qx x(p0, qx)→ q1 x(qx, p1)→ q0 ∀b ∈ {0, 1}, ∀x ∈ X

Proposition 4 (Uniform Membership [11, 16]) The following problem is NP-

Complete (even for RTAs): given a TAGED A and a tree t, decide if t ∈ L(A).

One can see a TAGED as a computational machine which runs on trees in a

bottom-up fashion. A TAGED is therefore said to be deterministic if there is at most

one possible computation (not necessarily successful) per trees. This notion can be

defined as usual with a simple syntactic restriction which says that all rules have

different left-hand sides. Note that for all deterministic TAGED A, it is possible

to compute a non-deterministic TAGED accepting the complement of L(A): we

have to check if the tree evaluates in a non-accepting state or in an accepting state

but in this case we non-deterministically guess a position where a constraint is not

satisfied. However:

Proposition 5 ([13, 11]) TAGEDs are not determinizable.

Deterministic TAGEDs are still strictly more expressive than tree automata,

since {f(g(t), g(t)) | t ∈ T{f,a}} is definable by a deterministic TAGED+ but not

by a tree automaton. It suffices to evaluate every tree of T{f,a} in a state q, and to

add the rules g(q) → q= and f(q=, q=) → qf , for some state q and final state qf ,

where q= =A q=. Proposition 5 is not surprising, since:

Proposition 6 ([13, 11]) TAGED-definable languages are closed under union and

intersection, but not by complement.

Proof. Closure under union and intersection have been proven in [13, 11]. Although

the definition of TAGEDs is slightly more general than in [13, 11], the proofs of

closure remain true. In particular, closure by union is obtained by taking the disjoint

union of the two TAGEDs, and closure by intersection is obtained by taking the

product automaton of the two TAGEDs. The equality relation is therefore defined

on pair of statesb where we set (p1, q1) =A1×A2
(p2, q2) if p1 =A1

p2 or q1 =A2
q2,

and (p1, q1) 6=A1×A2
(p2, q2) if p1 6=A1

p2 or q1 6=A2
q2.

Here we focus on complementation. We exhibit a tree language whose comple-

ment is easily definable by a TAGED, but which is not TAGED-definable. The idea

bNote however that if the two automata are RTAs, the product of them may not be an RTA, but
it can be transformed into an RTA possibly exponentially larger (Proposition 9)
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Fig. 1: Tree t in the proof of Proposition 6

is to take a language where at each level, the two subtrees are equal. To check mem-

bership to its complement, it suffices to guess a position where the two subtrees are

different, which can be done by a TAGED.

Let Σ = {f, g, a} where f, g are binary and a is a constant, and h 6∈ Σ be a binary

symbol. Let T0 = {a}, and for n > 0, Tn = {f(g(t, t), t′) | t ∈ T{h,a}, t′ ∈ Tn−1}.

Let L =
⋃

n∈N
Tn. The complement of L is easily definable by a TAGED. Indeed,

let L′ be the regular language which satisfies t ∈ L′ iff there exist t′ ∈ L′ and

t1, t2 ∈ T{h,a} such that t = f(g(t1, t2), t
′). It is easy to construct a tree automaton

A′ which defines L′. The TAGED that defines the complement of L has to check

that the input tree does not belong to L′, or if it belongs to L′, then there is a node

labeled by g such that its two children t1 and t2 are such that t1 6= t2. This can

be done by non-deterministically choosing two children of a node g and checking

their difference. Therefore one needs only one disequality constraint to define the

complement of L.

Suppose now that L is definable by a TAGED A = (Σ ∪ {h}, Q, F, ∆, =A, 6=A).

Let n ≥ |Q| + 1, and let α1, . . . , αn ∈ T{h,a} such that ∀i < j, ‖αi‖ < ‖αj‖. Now,

let t0 = a, and for i > 0, ti = f(g(αi, αi), ti−1) (see Fig 1). Let t = tn. It is

clear that tn ∈ Tn. Hence there is a successful run r of A on tn. For all words

π ∈ {1, 2}∗ we denote by nodet(π) the node of t that can be reached from the root

by following the directions given by π. E.g. nodet(12) is the second child of the first

child of the root. Since n ≥ |Q|+ 1, there are b, b′ ∈ {1, 2}, i0, j0 ∈ {0, . . . , n− 1},

i0 < j0, two nodes u, u′ ∈ Nt, and a state q ∈ Q such that: (i) u = nodet(2
i01b) and

u′ = nodet(2
j01b′), (ii) r(u) = r(u′) = q. Let t′ = t[t|u]u′ , i.e. the tree t where the

subtree at node u′ has been substituted by the subtree at node u (see Fig 1). We do

the same corresponding substitution in r, which results in a run denoted r′. Note

that t′ 6∈ L since ‖αi‖ 6= ‖αj‖ by definition of t, for all i 6= j. We now prove that r′
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satisfies the constraints, which will contradict t|u 6= t|u′ . Let M = {nodet′(2
k) | k =

0, . . . , j0} ∪ {nodet′(2
j01)} (see Fig 1). Intuitively, M is the set of nodes u1 such

that a constraint with u1 is potentially unsatisfied, i.e. there is a node u2 such that

(u1, u2) is an unsatisfied constraint. Let (v, w) ∈ cst=(t′, r′) ∪ cst6=(t′, r′) such that

v 6= w (the case v = w is trivial). We consider three cases:

Case 1: if v, w 6∈M , then it may be the case that v or w is a new node that comes

from the duplication of the subtree t|u. In all cases, there are v′, w′ ∈ Nt such that

t|v′ = t′|v and t|w′ = t′|w, r′(v) = r(v′), r′(w) = r(w′), and the constraint (v′, w′)

is satisfied in t and r. Therefore the constraint (v, w) is also satisfied in t′ and r′;

Case 2: v ∈M and v = nodet′(2
k), for some k ≤ j0.

Case 2.1: Suppose r′(v) 6=A r′(w). We prove t′|v 6= t′|w. Indeed, the root of t′|v
is necessarily labeled by f . If the root of t′|w is labeled by f , then either t′|v is a

strict subtree of t′|w or t′|w is a strict subtree of t′|v. Otherwise the root of t′|w is

labeled by g, h or a, so we obviously have t′|v 6= t′|w.

Case 2.2: Suppose r′(v) =A r′(w). We prove a contradiction. If w ∈ M , by

definition of the pumping M ⊆ Nt, so that t|v and t|w are well-defined. Then we

have ‖t′|v‖ = ‖t|v‖−‖αn−j0‖+‖αn−i0‖ and ‖t′|w‖ = ‖t|w‖−‖αn−j0‖+‖αn−i0‖, so

that ‖t′|v‖ − ‖t|v‖ = ‖t′|w‖ − ‖t|w‖. Since the constraints were satisfied in t and r,

we get ‖t|v‖ = ‖t|w‖, so that ‖t′|v‖ = ‖t′|w‖, which is impossible since v 6= w and v

and w are comparable. If w 6∈M , then t′|w does not contain any node labeled by f .

Moreover, by definition of the pumping, there exists some node w′ ∈ Nt such that

t′|w = t|w′ and r(w′) = r′(w). Since v ∈ M , t|v exists and contains a node labeled

by f . Since r satisfies the constraints, t|w = t|v, which contradicts the fact that t|w
does not contain any node labeled by f .

Case 3: v ∈M and v = nodet′(2
j01). Necessarily, t′(v) = g. There are two cases:

Case 3.1: r′(v) =A r′(w). We can prove a contradiction. Indeed:

If w = nodet′(2
j01π), for some π ∈ {1, 2}+, then by definition of the pump-

ing and the fact that the constraints were satisfied in t and r, t|nodet(2i01π) =

t′|nodet′ (2
j01π) = t|nodet(2j01). This contradicts the fact that t|nodet(2i01π) does not

contain any node labeled by g.

If w = nodet′(2
k), for some k ∈ {0, . . . , n}, then we have t|w = t|v, which is also

impossible for similar reasons.

If w = nodet′(2
k1), for some k ∈ {0, . . . , n − 1}, then w = nodet(2

k1), k 6= j0,

and necessarily we have t|w = t|v. It is impossible since it implies that t|w =

g(αn−k, αn−k) and t|v = g(αn−j0 , αn−j0), which contradicts |αn−k| 6= |αn−j0 |.

If w = nodet′(2
j1π), for some j 6= j0 and π ∈ {1, 2}+, then by definition of the

pumping, we get w = nodet(2
j1π), and lab

r(v) =A lab
r(w), and t|v = t|w, which

contradicts that their respective roots are labeled by different labels.

Case 3.2: r(v) 6=A r(w). Then the constraint is satisfied, i.e. t′|v 6= t′|w. Indeed,

suppose that t′|v = t′|w. Since the root of t′|v is labeled by g, w is necessarily

equal to nodet′(2
k1) = nodet(2

k1), for some k 6= j0. Hence t|w is of the form

g(αn−i0 , αn−j0) = t′|v, which contradicts t ∈ L, since ‖αn−i0‖ 6= ‖αn−j0‖.
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TA RTA TAGED+ TAGED− vbTAGED TAGED
⋃

yes yes yes yes yes yes
⋂

yes yes yes yes yes yes

¬ yes no no no no no

membership P NP-C NP-C NP-C NP-C NP-C

emptiness P P EXP-C NEXP 2NEXP dec[3]

universality EXP-C undec undec undec undec undec

determinizable yes no no no no no

Fig. 2: Summary of closure properties and decision problems

These (non)closure properties also hold for the class of languages defined by

TAGED+s or TAGED−s (rigid or not). The complement of the tree language L

used as a counter-example in the proof of Proposition 6 is definable by a TAGED−.

This means in particular that the class of languages definable by TAGED−s is not

closed by complement. One could also use a symmetric counter-example language

L′ to prove that the class of languages definable by TAGED+s is not closed by

complement. Instead of requiring an equality between the children of nodes labeled

by g, it would suffice to require a disequality.

The universality problem is as follows: given a TAGED A over a ranked alphabet

Σ, does A accept all trees over Σ?

Proposition 7 ([11, 16]) Testing universality of TAGED (resp. RTA, TAGED+,

vbTAGED) is undecidable.

The proof given in [11] relies on the use of a bounded number of negative and

positive tests on unary trees. It implies undecidability for vbTAGED (defined in

Section 6). In [16], it is shown that positive constraints can be used to test inequal-

ities in unary trees (one has to guess the highest positions where the two subtrees

are equal and test if their parent labels are different). In particular, this proves un-

decidability for RTA, and therefore for TAGED+. The reduction of [11] is based on

the Post correspondence problem (PCP). By using a variant of PCP called the 2-

marked Post correspondence problem [15], the equality constraints in the reduction

of [11] become useless, so that we get undecidability for TAGED− as well.

A table of the known results for various classes of TAGEDs is given in Fig. 2.

In this table, TA stands for tree automata and vbTAGED for a class of TAGEDs

that mixes equalities and disequalities, introduced in Section 6. Other acronyms

have been defined in Section 3. The given complexity bounds are time complexities.

Emptiness for TAGED+s, TAGED−s, and TAGEDs is studied in following sections.

4. TAGEDs and Rigid TAGEDs

We prove that TAGEDs and rigid TAGEDs have the same expressiveness.
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Node Equivalence Given a tree t ∈ L(A) and a run r of A on t which satisfies

the equality constraints, we define an equivalence relation ∼t,r on Nt as followsc.

The relation ∼t,r is the transitive and reflexive closure of the relation ↔t,r defined

as follows: for all u, v ∈ Nt, u↔t,rv if there exist u′, v′ ∈ Nt such that u′ ⊳∗ u,

v′ ⊳∗ v, patht(u
′, u) ≡ patht(v

′, v) and r(u′) =A r(v′). For instance, Fig 3 shows a

tree where the two subtrees have been evaluated to some state q such that q =A q,

and the corresponding equivalence relation (reflexivity is not depicted in the figure).

We denote by [u]t,r the equivalence class of any node u by ∼t,r.

f

f q f q

a a a a

∼

∼ ∼

Fig. 3: Equivalence rela-

tion where q =A q

It is easy to prove the following proposition:

Proposition 8. For all u, v ∈ Nt, if u ∼t,r v, then

t|u = t|v. For all u′, v′ ∈ Nt such that u ⊳∗ u′ and

v ⊳∗ v′, if u ∼t,r v and patht(u, u′) ≡ patht(v, v′), then

u′ ∼t,r v′.

Proposition 9. For every TAGED (resp. TAGED+)

A, one can construct an equivalent reflexive TAGED

(resp. TAGED+) A′ in exponential time, whose size is

possibly exponential in the size of A. Moreover, A′ is

obtained as the union of exponentially many reflexive

TAGED Ai of polynomial size (in ‖A‖).

Proof. Let A = (Σ, Q, F, ∆, =A, 6=A). For all P ⊆ Q, we construct a TAGED AP =

(Σ, QP , FP , ∆P , =P , 6=P ). We let QP = P , ∆P is the restriction of ∆ to the rules

in which only states of P occur, FP = F ∩ P , 6=P |P×P (the relation 6=P restricted

to pairs of P × P , and =P is defined by =A |P×P ∪ {(p, p)| p ∈ dom(=A |P×P )} .

We let A′ such that L(A′) =
⋃

P⊆Q L(AP ) (it exists by effective closure by union).

L(A′) ⊆ L(A). Let P ⊆ Q, t ∈ L(AP ) and r a successful run of AP on t. The

run r is also a run of A on t (since AP is just a restriction of A). Moreover, it

satisfies the constraints. Indeed, let u, v ∈ Nt such that r(u) =A r(v). By definition

of =P , we also have r(u) =P r(v) and since r is successful, t|u = t|v. It is similar

for disequality constraints.

L(A) ⊆ L(A′). Let t ∈ L(A) and r a successful run of A on t. Let P = {r(u) | u ∈

Nt} the set of states occuring in r. We now prove that t ∈ L(AP ), by proving that r is

also a successful run of AP on t. It suffices to prove that t satisfies the constraints.

Let u, v ∈ Nt such that r(u) =P r(v). If r(u) =A r(v), then t|u = t|v since r is

successful in A. Otherwise by definition of =P , we have necessarily r(u) = r(v) = p,

for some p ∈ P , and there exists q ∈ P such that p =A q. Since q ∈ P , q occurs

in r at some node w ∈ Nt. Since r satisfies the equality constraints in A, we have

t|w = t|u = t|v. It is also clear that r satisfies the disequality constraints induced

by 6=P since 6=P is just a restriction of 6=A.

cwhen it is clear from the context, we omit the subscript t, r and write ∼
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Theorem 10. For all reflexive TAGED A (resp. reflexive TAGED+ A), one can

construct an equivalent rigid TAGED A′ (resp. RTA) in exptime, whose size is

possibly exponential in the size of A.

Proof. Intuitively, we can view an accepting run r of A on a tree t as a DAG

structure. Let U ⊆ Nt such that all subtrees t|u, u ∈ U , have been successfully

tested to be equal by A in the run r (i.e. ∀u, v ∈ U , r(u) =A r(v)). Let t0 = t|u,

for some u ∈ U . We replace all nodes of U by a single node u0 which enroots t0.

The parent of any node of U points to u0. We maximally iterate this construction

to get the DAG. Note that this DAG is not maximal sharingd, since only subtrees

which have been successfully tested to be equal are shared. We construct A′ s.t.

it simulates a run on this DAG, obtained by overlapping the runs on every equal

subtrees for which a test has been done. We now formally define the construction

of A′ and then prove its correctness.

Automata construction We define Q′ = 2Q × C where C is a set of choices

depending on A. Intuitively, when a choice has been made, it enforces the subtrees

successfully tested to be equal to run in the same state. This is done by grouping

the states which are used at equivalent positions in the tree. Formally, a choice is a

(partial) function c : dom(=A)→ 2Q such that for all q, q′ ∈ dom(c), q =A q′ implies

c(q) = c(q′). Note that for all q ∈ dom(c), c(q) may contain states from Q\dom(=A).

For every choice c ∈ C, we define a TAGED Ac = (Σ, Qc , Fc , ∆c , =c , 6=c). We let

Qc = {P ⊆ Q | ∀q.(q ∈ P ∩ dom(=A) =⇒ P = c(q))} (it imposes that P must

respect the choice c). We let ∆c be the set of rules defined as follows: (i) for all states

P, P ′, P ′′ ∈ Qc , f(P, P ′)→ P ′′ ∈ ∆c iff for all p′′ ∈ P ′′, there are p ∈ P and p′ ∈ P ′

such that f(p, p′) → p′′ ∈ ∆; (ii) for all P ∈ Qc , a → P ∈ ∆c iff for all p ∈ P , we

have a→ p ∈ ∆. The set of final states Fc is defined by Fc = {P ∈ Qc | P ∩F 6= ∅}.

Finally, we define =c , 6=c by:

P =c P ′ if ∃p ∈ P, ∃p′ ∈ P ′, p =A p′ ( hence P = P ′)

P 6=c P ′ if ∃p ∈ P, ∃p′ ∈ P ′, p 6=A p′

We let A′ be the TAGED accepting
⋃

c∈C L(Ac) (we can construct it thanks to
Proposition 6, and its size is exponential in the size of A, and rigidness is preserved

by union of automata).

Correctness We now prove that L(A′) = L(A). Let q ∈ Q. We let L(q, A) be the

set of trees t such that there exists a q-rune of A on t which satisfies the constraints.

L(q, A′) is defined similarly.

· L(A′) ⊆ L(A). Let c ∈ C, P ∈ Qc , and t ∈ TΣ such that t ∈ L(P, Ac). By

definition of ∆c , we can easily prove by induction on t that if there is a P -run rc of

Ac on t, then for all p ∈ P , there exists a p-run r of A on t. The run r is constructed

dThere might be two isomorphic subgraphs occurring at different positions.
eA q-run is a run whose root is labeled by q
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inductively in a top-down fashion. One first chooses a final state in the root of rc .

Then one chooses two states in the respective two subtrees of the root according to

the existence of a rule of ∆, and so on until reaching the leaves of rc . Moreover, if

rc satisfies the constraints, then r satisfies the constraints too. Indeed, let u, v ∈ Nt

such that r(u) =A r(v). By construction of r, we have r(u) ∈ rc(u) and r(v) ∈ rc(v).

By definition of =c , rc(u) =c rc(v) and so t|u = t|v. It is similar for inequalities.

· L(A) ⊆ L(A′). Let t ∈ L(A) and r be a successful run of A on t. We let

states(u) = {q | ∃v ∼ u, q = r(v)}. We let c be defined as follows: for all p ∈

dom(=A), u ∈ Nt, we set c(p) = states(u) if p ∈ states(u). We have to prove that c

is well-defined. Let u, v ∈ Nt and p ∈ dom(=A) such that p ∈ states(u) ∩ states(v).

We prove that states(u) = states(v). There exist u′, v′ ∈ Nt such that u′ ∼ u, v′ ∼ v

and r(u′) = r(v′) = p. Since =A is reflexive, we have p =A p, and by definition of

∼, we get u′ ∼ v′, and u ∼ v. Therefore states(u) = states(v). Let p, q ∈ dom(c)

such that p =A q. By definition of c, there exists u, v such that states(u) = c(p) and

states(v) = c(q), r(u) = p and r(v) = q. Therefore u ∼ v, and states(u) = states(v),

i.e. c(q) = c(p). Now, for all u ∈ Nt, we let rc(u) = states(u). The tree rc fulfills all

the conditions to be a successful run of Ac on t, indeed:

(i) for all u ∈ Nt, rc(u) ∈ Qc . This holds by definition of states(u) and Qc ;

(ii) rc is a run of Ac on t. Let u, u1, u2 ∈ Nt such that u1 and u2 are the sons of

u. We show that the transition f(states(u1), states(u2)) → states(u) is in ∆c . Let

p ∈ states(u). There is some node v ∈ Nt such that u ∼ v and r(v) = p. Let v1, v2

be the two sons of v respectively (they exist since t|u = t|v). Let p1 = r(v1) and

p2 = r(v2). Hence there is a rule of the form f(p1, p2) → p in ∆. By definition of

∼, we have u1 ∼ v1 and u2 ∼ v2, hence p1 ∈ states(u1) and p2 ∈ states(u2), which

concludes the proof (this goes similarly for leaf nodes).

(iii) rc satisfies the equality constraints. Let u1, u2 ∈ Nt and let P1, P2 ∈ Qc such

that rc(u1) = P1 and rc(u2) = P2. Suppose that P1 =c P2. It means that there are

two states p1 ∈ P1 and p2 ∈ P2 such that p1 =A p2. Hence, c(p1) = c(p2) = P1 =

P2 = states(u1) = states(u2). Hence, there are u′
1, u

′
2 ∈ Nt (not necessarily different

from u1 and u2) such that u′
1 ∼ u1 and u′

2 ∼ u2, and r(u′
1) = p1, r(u′

2) = p2. By

definition of ∼, we also get u′
1 ∼ u′

2, since p1 =A p2. Finally, as ∼ is transitive, we

get u1 ∼ u2, and t|u1
= t|u2

.

(iv) rc satisfies the disequality constraints. It is similar to the previous case. Let

u1, u2 ∈ Nt. If rc(u1) 6=c rc(u2), it means that there are two nodes u′
1 ∼ u1 and

u′
2 ∼ u2 such that r(u′

1) 6=A r(u′
2). Since t|u1

= t|u′

1
and t|u2

= t|u′

2
, and t|u′

1
6= t|u′

2
,

we get t|u1
6= t|u2

.

As a corollary of Proposition 9 and Theorem 10:

Corollary 11. For all TAGED (resp. TAGED+), one can construct (in exponential

time) an equivalent rigid TAGED (resp. RTA) of possibly exponential size.

When a TAGED is rigid, we can define a normal form for the runs that satisfy the

equality constraints: the subruns below equivalent nodes are equal. Formally:
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Lemma 12. Let A be a rigid TAGED. Let t ∈ TΣ. If there is a run r of A on t

which satisfies the equality constraints, then there is a run r′ of A on t such that:

(1) r′ satisfies the equality constraints;

(2) if r satisfies the disequality constraints, then r′ satisfies the disequality con-

straints;

(3) for all u, v ∈ Nr, if u ∼t,r′ v, then r′|u = r′|v;

(4) r(ǫr) = r′(ǫr′).

Proof. In the first step, we show that we can equivalently weaken the third con-

dition: for all u, v ∈ Nr, if r′(u) =A r′(v), then r′|u = r′|v. Indeed, by definition

of ↔t,r, for all nodes u, v such that u↔t,rv, there are u′ and v′ above u and v

respectively such that patht(u
′, u) ≡ patht(v

′, v), and r(u′) =A r(v′). If this weaker

condition holds, we get r|u′ = r|v′ , from which we deduce r|u = r|v. Since ∼t,r is

the reflexive and transitive closure of↔t,r, by transitivity, we also get r|u = r|v for

all nodes u, v such that u ∼t,r v.

Now, the construction of r′ is done via the following rewriting algorithm:

(1) q1, . . . , qn ← dom(=A) (the order is chosen arbitrarily)

(2) r0 ← r

(3) for i = 1 to n do

(4) Ui ← {u ∈ Nri−1
| ri−1(u) = qi}

(5) ui ← some node of Ui

(6) ri ← for all v ∈ Ui, replace in ri−1 the subrun at node v by ri−1|ui

(7) end for

(8) r′ ← rn

(9) return r′

As we next show, every run ri satisfies the equality constraints, so that the sub-

stitution is well-defined, since all nodes of Ui are disjoint. We prove the following

invariant (called I): for all i ∈ {0, . . . , n}, ri is a run of A on t which satisfies the

equality constraints and such that for all j such that 1 ≤ j ≤ i, and all u, v ∈ Nri
,

if ri(u) = ri(v) = qj , then ri|u = ri|v.

ui w1 w2

u′ v′ u v

= =

ri

∈ Ui

Fig. 4:

It is clearly true at rank 0 since r0 = r.

Let i > 0 and suppose that it holds at rank

i − 1. Since ri−1 satisfies the equality con-

straints, for all v ∈ Ui, t|ui
= t|v, hence

ri−1|ui
is also a run of A on t|v, so that ri

is still a run of A on t. Since ri−1 satisfies

the equality constraints, it basically maps

every state q of dom(=A) to at most one

tree tq (which is a subtree of t). The substi-

tution preserves this property (no new map-

pings are created). Hence, since =A⊆ idQ,
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the equality constraints are still satisfied in ri. Finally, let u, v ∈ Nri
such that

ri(u) = ri(v) = qj , for some j ∈ {1, . . . , i}. If i = j, then by definition of ri, we have

ri|u = ri|v. If j < i, then we consider several cases (it is not exhaustive as other

cases are symmetric):

• u is above (at least) one node of Ui. Hence v cannot be below Ui (otherwise

‖t|u‖ > ‖t|v‖, since the equality constraints are satisfied). By induction hypothesis,

ri−1|u = ri−1|v. Hence their respective positions labeled by qi are isomorphic, so

that the substitution is made at isomorphic positions, and we get ri|u = ri|v;

• u is below some w1 ∈ Ui and v is below some element w2 ∈ Ui.

Since ri|w1
= ri|w2

= ri|ui
, we can define u′ the nodes below ui such that

patht(w1, u) ≡ patht(ui, u
′). Similarly, we can define v′ such that patht(w2, v) ≡

patht(ui, v
′). This situation is depicted in Fig. 4. Hence ri|u′ = ri|u and ri|v′ = ri|v.

Therefore u′ and v′ are labeled by qj in ri and ri−1. Hence by induction hypothesis,

ri−1|u′ = ri−1|v′ , and by definition of the substitution, ri−1|u′ = ri|u′ and ri−1|v′ =

ri|v′ . Consequently ri|u′ = ri|v′ , and we get ri|u = ri|v;

• u is below some w ∈ Ui but v is incomparable to any node of Ui. In this case

the argument is similar to the latter case. We can define u′ the node below ui such

that patht(ui, u
′) ≡ patht(w, u), and get ri|u = ri|v since by induction hypothesis,

ri−1|u′ = ri−1|v;

• u and v are both incomparable to any node of Ui. In this case the subruns

rooted at u and v remain unchanged by the substitution, i.e. ri−1|u = ri|u and

ri−1|v = ri|v. Hence by induction hypothesis, we get ri|u = ri|v.

5. Positive and Negative TAGEDs

In this section we recall results on TAGED+s and prove emptiness of TAGED−s,

by reducing the problem to testing satisfiability of set constraints. We prove in [13]

that emptiness of TAGED+ is EXPTIME-complete. The upper-bound is obtained

by first going to an RTA and then by applying the classical emptiness algorithm

for tree automata. The lower-bound is obtained by reduction from the intersection

of n tree automata.

Theorem 13. Deciding emptiness of a TAGED+ A is EXPTIME-complete, and in

linear time if A is rigid. Moreover, if L(A) 6= ∅, then a tree t ∈ L(A) is computable

in EXPTIME, and in linear time if A is rigid.

Again by reduction to RTAs and by the result of [16], also proved in [11]:

Theorem 14. Let A be a TAGED+. It is decidable whether L(A) is infinite or not,

in O(‖A‖.|Q|2) if A is rigid, and in EXPTIME otherwise.

We now prove decidability of emptiness for TAGED−s, by reduction to positive

and negative set constraints (PNSC for short). Set expressions are built over set vari-

ables, function symbols, and Boolean operators. Set constraints are either positive,

e1 ⊆ e2, or negative, e1 6⊆ e2, where e1, e2 are set expressions. Set expressions are
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interpreted in the Herbrand structure (where set variables are therefore interpreted

by sets of terms) while set constraints are interpreted by Booleans 0,1. Testing the

existence of a solution of a system of set constraints has been proved to be decidable

in several papers [7, 1, 22, 14]. In particular, it is known to be NEXPTIME-complete.

We do not formally define set constraints and refer the reader to [7, 1, 22, 14].

Consider for instance the constraint f(X, X) ⊆ X . It has a unique solution which

is the empty set. Consider now X ⊆ f(X, X) ∪ a, where a is a constant symbol.

Every set of terms over {f, a} closed by the subterm relation is a solution of this

equation. More generally, we can encode the emptiness problem of tree automata

as a system of set constraints. Let A = (Σ, Q, F, ∆) be a tree automaton. Wlog, we

assume that every state q ∈ Q occurs in the rhs of some rule. We associate with A

the system SA defined by:

(SA)

{

Xq ⊆
⋃

f(q1,q2)→q∈∆ f(Xq1
, Xq2

) ∪
⋃

a→q∈∆ a for all q ∈ Q
⋃

q∈F Xq 6⊆ ∅

The following result is well-known:

Proposition 15 ([23]) L(A) is non-empty iff SA has a solution.

Proof. We sketch correctness of the system SA. Suppose that SA has a solution

given by a set of trees Tq, for all q ∈ Q. Let q ∈ Q such that there is t ∈ Tq, we

construct a run of A on t inductively. If t = a ∈ Σ, then we take the run reduced

to the leaf q. If t = f(t1, t2), for some f ∈ Σ and t1, t2 ∈ TΣ, then by definition

of SA, there is a rule f(q1, q2) → q such that t1 ∈ Tq1
and t2 ∈ Tq2

. By induction

hypothesis, there are runs r1 and r2 on t1 and t2 respectively, such that r1(ǫr1
) = q1

and r2(ǫr2
) = q2. Thus q(r1, r2) is a run of A on t.

Since there is q ∈ F such that Tq 6= ∅, for all t ∈ Tq, we can construct a

successful run r of A on t, so that t ∈ L(A). This proves the first direction.

Conversely, if L(A) 6= ∅, there is a tree t ∈ L(A) and a successful run r of A

on t. For all q ∈ Q, we let Tq = {t|u | u ∈ Nt, r(u) = q}. The set {Tq | q ∈ Q} is a

solution of SA.

Let (A, 6=A) be a TAGED−, and consider the system S′
A consisting in SA ex-

tended with the constraints Xq ∩ Xp = ∅, for all q, p ∈ Q such that q 6=A p. It

is easy to extend the proof of Proposition 15 to prove that L(A, 6=A) 6= ∅ iff S′
A

has a solution. Since deciding existence of a solution of a system of PNSC is in

NEXPTIME, we get:

Theorem 16. Emptiness of TAGED−s is decidable in NEXPTIME.

6. Vertically Bounded TAGEDs

In this section, we define a subclass of TAGEDs, called vertically bounded TAGEDs,

with both equality and disequality constraints and for which we can decide empti-
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qf
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q
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p q
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q s=

q q

q= 1
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q p

q

3 p=
p

p

p q

p

q s=

q

q= 2

q

q p

q

5 p=
p

p

p q

p

q s=

q q

Fig. 5: Elementary contexts of a run r over {q, p, qf , q=, p=, s=} where q= =A q=,
p= =A p= and s= =A s=. Their root nodes are identified by natural numbers. The set
C(r) is equal to {1, 2, 3, 4, 5}, the contexts rooted at 1 and 2, and 3,4,5 respectively are
isomorphic. The subtrees rooted at s= are not elementary contexts since they do not
contain a loop.

ness. In this class, only a bounded number of disequality tests is permitted along

any root-to-leaf path.

Definition 17. Let Σ be a ranked alphabet. A vertically bounded TAGED over Σ

is a pair (A, k) where A is a TAGED over Σ, and k ∈ N. A run r of (A, k) on a tree

t ∈ TΣ is a run of A on t. It is successful if r is successful for A and the number of

states from dom(6=A) occurring along any root-to-leaf path is bounded by k:

for all root-to-leaf path u1 ⊳
∗ . . . ⊳

∗ un, |{i | r(ui) ∈ dom(6=A)}| ≤ k

The notion of the defined language L(A, k) is defined similarly as for TAGEDs. In

the sequel, we are interested in the non-emptiness problem. We first weaken the

acceptance condition by introducing the notion of seed. Informally, a seed is a pair

(t, r) where r is a run on t which satisfies the equality constraints but not necessarily

all the disequality constraints. However, we introduce a sufficient condition on t and

r such that we can transform them – or repair them – into a pair (t′, r′) where r′

is successful on t′.

Given two multi-ary contexts C1, C2, we say that C1 is included in C2 if C1

occurs in C2, i.e. if there are some unary context C′
0 and some contexts C′

1, . . . , C
′
n

such that n is the arity of C1, and C2 = C′
0[C1[C

′
1, . . . , C

′
n]]. Let t ∈ L(A) and

r a successful run of A on t. A context C of r is elementary if it is a maximal

context (w.r.t. context inclusion) included in r, such that (i) all its nodes (except

the root) are labeled in Q − (dom(=A) ∪ dom(6=A)), (ii) the root is labeled in

dom(=A)∪ dom(6=A), (iii) there is a loop in C, i.e. two descendant nodes of C are

labeled by the same state in r. We denote by C(r) the set of nodes which enroot an

elementary context. For all nodes u ∈ C(r), we denote by cxtr(u) the elementary

context over Q rooted at u in r, and by cxtt(u) the context of t over Σ rooted at

u and edge-isomorphic to cxtr(u). Fig. 5 represents a run r on some tree t, and its

elementary contexts.
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v1 v2

u ∈ C(r) u′

elementary context

isomorphic paths

6∼t,r

Fig. 6: A configuration where Rep(t, r, v1, v2, u) holds.

Definition 18. Let t ∈ TΣ and r ∈ TQ. The pair (t, r) is a seed if the following

conditions are satisfied:

(1) r is a run of A on t which satisfies the equality constraints, whose root is labeled

by a final state, and such that in any ⊳∗-ordered chain, there are at most k nodes

whose labels in r belong to dom(6=A);

(2) for all u, v ∈ Nr, if u ∼t,r v then r|u = r|v;

(3) for all (v1, v2) ∈ cstA
6=(t, r), if t|v1

= t|v2
, then there is u ∈ C(r) such that

Rep(t, r, v1, v2, u) holds (illustrated in Fig. 6), i.e.:

(i) either v1 ⊳
∗ u or v2 ⊳

∗ u;

(ii) if v1 ⊳∗ u, then if u′ ∈ Nt is the node such that v2 ⊳∗ u′ and patht(v1, u) ≡

patht(v2, u
′), then u 6∼t,r u′;

(iii) if v2 ⊳∗ u, we define the condition symmetrically as (ii).

The degree of (t, r), denoted by deg(t, r), is the number of unsatisfied inequality

constraints in (t, r),i.e. deg(t, r) = |{(u, v) ∈ cstA
6=(t, r) | t|u = t|v}|.

We now prove that a seed can indeed be repaired, and it can be done inductively.

Before proving it formally, let us first introduce a general pumping idea, often used

in the sequel. Let t and r be tree and a run respectively such that for all u, v ∈ Nt,

if u ∼t,r v, then r|u = r|v . Suppose also that the equality constraints are satisfied.

The first idea of the pumping method is to transform subtrees (or subruns) below

all equivalent nodes in parallel, at isomorphic positions. This is possible since the

(sub)runs are the same below equivalent nodes. It ensures that equality constraints

are still satisfied. We often refer to this as a parallel pumping technique.

Lemma 19 (Base Lemma) If (t, r) is a seed of degree 0, then t ∈ L(A, k).

Proof. By definition a seed always satisfies the equality constraints.

Lemma 20 (Induction Lemma) For all seeds (t, r) such that deg(t, r) > 0, one

can construct a seed (t′, r′) such that deg(t′, r′) < deg(t, r).

Proof. Informally, to obtain (t′, r′), we repair some unsatisfied contraints in

(t, r) while preserving equality constraints. This is done by choosing some ∼t,r-

equivalence class ω ⊆ C(r), and by increasing in parallel the size of the elementary
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αi αj∼t1,r1

∼t1,r1

t1

αi αj

βi

C

∼t2,r2

∼t2,r2

t2

C

t

C

C

t

βj

C

t

C

t

βi βj

Fig. 7: Parallel pumping in elementary contexts

contexts in r (and t) rooted at nodes of ω, thanks to the loop they contain. This

allows us to repair some unsatisfied inequality constraints that involve a node above

some node of ω, while preserving equality constraints and the condition of being

a seed. We can pump in a way that does not create new unsatisfied inequality

constraints, making the degree strictly decreasing.

Construction of (t′, r′). Since deg(t, r) > 0, C(r) 6= ∅, and there is a class of

nodes ω ⊆ C(r). Let ω = {u1, . . . , un}. We first define formally how to increase the

size of the elementary contexts rooted at uis, while keeping the equality constraints

satisfied. By definition of elementary contexts, there are two descendant nodes α1⊳
+

β1 contained in cxtt(u1), and a state q ∈ Q − (dom(=A) ∪ dom(6=A)) such that

r(α1) = r(β1) = q. For all i ∈ {2, . . . , n}, we define αi as the node below ui such

that patht(ui, αi) ≡ patht(u1, α1) (it exists since u1 ∼t,r ui and t|u1
= t|ui

by Prop.

8). Note that by Prop. 8, α1 ∼t,r αi. We define the nodes βi similarly, and also get

β1 ∼t,r βi. By condition 2, for all i ∈ {1, . . . , n}, r(αi) = r(βi) = q. Hence there

is a unary context C over Σ such that for all i ∈ {1, . . . , n}, t|αi
= C[t|βi

]. We let

t1 = t, t2 = t{αi ← C[C[t|βi
]], i = 1, . . . , n} the tree t where the subtree at node

αi has been substituted by C[C[t|βi
]], for all i ∈ {1, . . . , n}. Similarly, for all j ∈ N,

we define tj by iterating this substitution j times. We define rj similarly. First note

that rj is a run of A on tj . Moreover, since we make the substitution in parallel at

isomorphic positions in the elementary contexts rooted at [u1]t,r, and by definition

of ∼t,r, the equality constraints are still satisfied by rj on tj , for all j ∈ N. This

pumping is illustrated in Fig. 7.

Existence of a Repairing Seed We let ↑ω be the ancestors of the nodes of

ω, i.e. the set {w | ∃w′ ∈ ω, w ⊳∗ w′}. The pumpings ri, ti (i ∈ N) may create

unsatisfied disequality constraints which involve a node (or two) of ↑ω. On the

contrary, it may also repair unsatisfied disequality constraints in r and t. We define

a set of pairs of nodes (u, v) ∈ Nt × Nt between which there is an unsatisfied



August 17, 2010 14:19 main

Tree Automata With Global Constraints 19

constraint in t and r, or which may create a disequality constraint when pumping,

but for which there is some i ∈ N such that the constraint is satisfied in ti and ri.

These pairs are called candidates. We denote by Cand(ω) this set. For all u, v ∈ Nt,

(u, v) ∈ Cand(ω) if (i) u ∈ ↑ω, (ii) r(u) 6=A r(v), and (iii) if t|u = t|v, then there is

w ∈ ω such that Rep(t, r, u, v, w) holds.

Note that by definition of the pumping, for all i > 0, for all nodes u ∈ Nt such

that r(u) ∈ dom(=A) ∪ dom(6=A), u is still a node of ti. For all i > 0, and all pairs

(u, v) ∈ Cand(ω), we say that i is incompatible with (u, v) if ti|u = ti|v.

Claim 1. For all pairs (u, v) ∈ Cand(ω), there is at most one i > 0 such that i

is incompatible with (u, v).

It is proved at the end of this proof. From Claim 1, we deduce that there is i0 ∈ N

such that i0 is compatible with all pairs of Cand(ω). We let t′ = ti0 and r′ = ri0 .

Remark 1 By definition of the pumping, all inequality constraints between

pairs of nodes (u, v) ∈ Cand(ω) are satisfied in r′.

Correctness We prove that (t′, r′) is a seed. By definition of the pumping,

condition 2 of the definition of a seed still holds for ∼t′,r′ , since we pump the

elementary contexts in parallel below all nodes of ω, both in r and t. Moreover, the

equality constraints are still satisfied (thanks to parallel pumping), the root of r′

is labeled by a final state, and the pumping does not increase the number of nodes

ordered by ⊳
∗ which are labeled in dom(6=A). Hence condition 1 of the definition of

a seed holds for r′. To prove that (t′, r′) satisfies condition 3 of the seed definition,

let v1, v2 ∈ Nt′ such that t′|v1
= t′|v2

and r′(v1) 6=A r′(v2). We need to consider

only two cases:

Case 1. v1 6∈ ↑ω and v2 6∈ ↑ω. Since r(v1), r(v2) ∈ dom(6=A), neither v1 nor v2

are in the elementary contexts rooted at the nodes of ω. Hence the subtrees at posi-

tions v1 and v2 have not changed during the pumping. Hence t|v1
= t|v2

. Since (t, r)

is a seed, there is an equivalence class c ∈ C(r) and u ∈ c such that Rep(t, r, v1, v2, u)

holds. Necessarily, c ⊆ C(r′), otherwise it would mean that u ∈ ω, which would con-

tradict v1 6∈ ↑ω or would contradict v2 6∈ ↑ω. Thus Rep(t′, r′, v1, v2, u) holds;

Case 2 v1 ∈ ↑ω. In this case (v1, v2) 6∈ Cand(ω), otherwise t′|v1
6= t′|v2

. By

definition of Cand(ω), t|v1
= t|v2

and for all w ∈ ω, Rep(t, r, v1, v2, w) does not

hold. Since (t, r) is a seed, there is are an equivalence class c ⊆ C(r) and u ∈ c such

that Rep(t, r, v1, v2, u) holds. Hence u 6∈ ω, and c 6= ω. Therefore c ⊆ C(r′) and

Rep(t′, r′, v1, v2, u) holds.

deg(t′, r′) < deg(t, r). Let (u1, u2) ∈ Nt′ × Nt′ be an unsatisfied inequality

constraints in r′. We prove that it was also an unsatisfied inequality constraints in

r. Suppose the contrary, i.e. t|u1
6= tu2

. This means that either u1 or u2 (or both)

is above some node u of ω (otherwise we would have t|u1
= t′u1

and t|u2
= t′|u2

).

By definition of Cand(ω), we get (u1, u2) ∈ Cand(ω), which contradicts Remark 1.

End of proof of Lemma 20 �

Proof of Claim 1 Suppose that there are two indices i < j incompatible with

(u, v). We consider the following two cases:
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Case 1 v 6∈ ↑ω. By hypothesis, ri(v) 6=A ri(u), ti|v = ti|u, rj(v) 6=A rj(u) and

tj |v = tj |u. Since r(v) ∈ dom(6=A), and v 6∈ ↑ω, v is below, or incomparable, to

any node which belongs to an elementary context rooted at a node of ω. Hence the

subtree at node v remains unchanged during the pumping. Therefore t|v = ti|v =

tj |v. Since by hypothesis, ti|v = ti|u and tj |v = tj |u, we also get tj |u = ti|u. Since

i < j, and u ∈ ↑ω, by definition of the pumping, we have ‖tj |u‖ > ‖ti|u‖, which

contradicts tj |u = ti|u;

Case 2 v ∈ ↑ω. Again we consider two cases:

Case 2.1 t|u = t|v. By definition of candidates, there is u′ ∈ ω such that

Rep(t, r, u, v, u′) holds. Suppose that u⊳∗u′ and let v′ be the node below v such that

patht(u, u′) ≡ patht(v, v′) (it exists since t|u = t|v). By definition of the predicate

Rep, u′ 6∼t,r v′. Since patht(u, u′) ≡ patht(v, v′), and t|u = t|v, we also get t|u′ =

t|v′ . This implies that there is no node of ω comparable to v′ (by ⊳
∗). Therefore the

subtree at position v′ does not change during the pumping. In particular, ti|v′ =

tj |v′ . Since u′ ∈ ω, we pump below u′. Thus we have ti|u′ 6= tj |u′ . Therefore, either

ti|u′ 6= ti|v′ or tj |u′ 6= tj |v′ . Since patht(u, u′) ≡ patht(v, v′), and there is no node

of ω comparable to v′, by definition of the pumping, we also have pathti(u, u′) ≡

pathti(v, v′) and pathtj (u, u′) ≡ pathtj (v, v′). Therefore, either ti|v 6= ti|u or tj |v 6=

tj |u;

Case 2.2 t|u 6= t|v. By hypothesis, ti|u = ti|v. We first prove that there is

necessarily u′ ∈ ω such that Rep(ti, ri, u, v, u′) holds. Suppose the contrary. This

means that for all u′ ∈ ω such that u ⊳∗ u′, and for all v′ such that pathti(u, u′) ≡

pathti(v, v′), we have v′ ∼t,r u′. And symmetrically, for all v′ ∈ ω such that v ⊳∗ v′,

and for all u′ such that pathti(u, u′) ≡ pathti(v, v′), we have u′ ∼t,r v′. It is not

difficult to see that in that case, we already had t|u = t|v. Informally, we can pump

backward to get (ti−1, ri−1) from (ti, ri), with the same technique. This would

preserve the equality ti−1|u = ti−1|v. Applying this inductively we can get (t, r)

and in particular t|u = t|v, which is absurd. Therefore there is u′ ∈ ω such that

Rep(ti, ri, u, v, u′). Suppose that u ⊳∗ u′ (the case v ⊳∗ u′ is symmetric). Let v′

such that v ⊳∗ v′ and pathti(v, v′) ≡ pathti(u, u′). By definition of Rep, we have

u′ 6∼ti,ri v′. Since ti|u = ti|v, we also get ti|u′ = ti|v′ . For the same reasons as the

previous case, there is no node w ∈ ω which is comparable to v′. Since we pump

only in the elementary contexts rooted at nodes of ω, the subtree rooted at v′ does

not change during pumping. Since the subtree rooted at u′ changes during pumping

and pathti(u, u′) ≡ pathti(v, v′), we necessarily have tj |u 6= tj|v, which contradicts

the hypothesis.

Lemma 21. Let (A, k) be a rigid vbTAGED and B = 2(k + |dom(=A)|)|Q|. If

L(A, k) 6= ∅, there is a seed (t, r) such that height(t) ≤ B.

Before proving this lemma, let us informally explain the main ideas. Given a

tree t and a successful run r on it (this is a particular case of seed), we decrease the

size of elementary contexts rooted at equivalent nodes in parallel, while preserving



August 17, 2010 14:19 main

Tree Automata With Global Constraints 21

ui

αi

βi

γi

uj

αj

βj

γj

∼t,r

∼t,r

∼t,r

∼t,r

Fig. 8: Decreasing the size of elementary contexts

the equality constraints. This is done by collapsing the loops they contain. It may

“break” some inequality constraints, but we do it in a way that preserves the fact

to be a seed.

Given an elementary context C in r, we say that C contains a 3-loop if there

is a chain of nodes of C which contains at least 3 nodes labeled by the same state.

For the proof of the lemma we will need two claims. More exactly:

Claim 1 For all seeds (t, r) such that there is an elementary context of r which

contains a 3-loop, there exists a seed (t′, r′) such that |Nt′ | < |Nt|

Proof. The proof of this claim is divided in several parts. We first show how to

construct t′ and r′ and then prove the correctness. We pump in parallel in elemen-

tary contexts which contain a 3-loop (and that are rooted to equivalent nodes). This

ensures that equality constraints remain satisfied. In particular, in each elementary

context, we collapse the two greatest nodes of the 3-loop (for ⊳∗), so that there is

still a loop in the elementary context after pumping.

By hypothesis, there is u ∈ C(r) such that cxtr(u) contains a 3-loop. By def-

inition of a seed, r|v = r|u, for all v ∈ [u]t,r. Thus v ∈ C(r) for all v ∈ [u]t,r.

By definition of ∼t,r, all the nodes of [u]t,r are incomparable. Let n = |[u]t,r|

and {u1, . . . , un} = [u]t,r. Let C be the n-ary context over Q such that r =

C[r|u1
, . . . , r|un

]. For all i ∈ {1, . . . , n}, there are three nodes αi, βi, γi ∈ Ncxtr(ui)

and a state q 6∈ dom(=A)∪dom(6=A) such that αi ⊳+ βi ⊳+ γi, and r(αi) = r(βi) =

r(γi) = q. Moreover, we can take αi, βi, γi such that for all i, j ∈ {1, . . . , n}, we have

patht(ui, αi) ≡ patht(uj , αj), patht(αi, βi) ≡ patht(αj , βj), and patht(βi, γi) ≡

patht(βj , γj). We let r′ = C[r1, . . . , rn], where for all i ∈ {1, . . . , n}, ri is the tree

r|ui
in which the subtree rooted at βi has been substituted by r|γi

. We do the cor-

responding substitution in t and obtain a tree t′. This pumping is described in Fig.

8.

It is technical but not difficult to prove that conditions 1 and 2 of the definition

of a seed hold for (t′, r′). We now prove that condition 3 also holds. Let (v1, v2) ∈

cstA
6=(t′, r′) such that t′|v1

= t′|v2
. We consider two cases:

Case 1 t|v1
6= t|v2

. This means that the pumping has “broken” this disequality.

Let [u]t,r = {u1, . . . , un} be the nodes defined in the definition of the pumping,
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a1 a2 a′
1 a′

2b′1 b′2 b1 b2
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Fig. 9:
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∈ C(r)
6∼t,r

6∼t,r

Fig. 10:

i.e. the nodes which enroot elementary contexts in which we have pumped. Note

that we still have [u]t,r ⊆ Nt′ and [u]t,r = [u]t′,r′ since we have pumped below the

nodes of [u]t,r. Let {a1, . . . , an1
} ⊆ [u]t,r (resp. {b1, . . . , bn2

} ⊆ [u]t,r) the nodes

of [u]t,r which are below v1 (resp. v2). For all ℓ ∈ {1, . . . , n1}, let a′
ℓ ∈ Nt′ such

that patht′(v2, a
′
ℓ) ≡ patht′(v1, αℓ) (it exists since t′|v1

= t′|v2
). Similarly, for all

ℓ ∈ {1, . . . , n2}, let b′ℓ the node below v1 such that patht′(v1, b
′
ℓ) ≡ patht′(v2, bℓ) (it

is depicted in Fig. 9).We prove that there is a node w in {a1, . . . , an1
, b1, . . . , bn2

}

such that Rep(t′, r′, v1, v2, w) holds. Suppose that for all ℓ ∈ {1, . . . , n1}, we have

aℓ ∼t′,r′ a′
ℓ, and for all ℓ ∈ {1, . . . , n2}, we have bℓ ∼t′,r′ b′ℓ. By definition of the

pumping, the maximal context of t which have nodes of [u]t,r as holes has not

changed during pumping. Intuitively this means that we have pumped similarly at

isomorphic positions, so that the two trees t|v1
and t|v2

were already equal, which

contradicts t|v1
6= t|v2

. Thus there is ℓ1 ∈ {1, . . . , n1} or ℓ2 ∈ {1, . . . , n2} such that

aℓ1 6∼t′,r′ a′
ℓ1

or bℓ2 6∼t′,r′ b′ℓ2 , which concludes this case.

Case 2 t|v1
= t|v2

. By definition of a seed, there is u ∈ C(r) and v ∼t,r u such

that Rep(t, r, v1, v2, v) holds. Suppose that v1 ⊳∗ v, the other case being symmetric.

Let v′ be such that patht(v1, v) ≡ patht(v2, v
′). By definition of the predicate Rep,

v 6∼t,r v′. We now consider three cases:

(i) there is a node w ∈ [u]t,r such that v1 ⊳∗w⊳∗ v. Let w′ such that patht(v1, w) ≡

patht(v2, w
′). This situation is depicted in Fig. 10. If w ∼t,r w′, then by Proposition

8, we also have v ∼t,r v′, which is impossible. Hence w 6∼t,r w′, and since we

pump only below nodes of [u]t,r, w is still a node of t′ and w ∈ C(r). Therefore

Rep(t′, r′, v1, v2, w) holds;

(ii) there is a node w ∈ [u]t,r such that v2 ⊳∗ w ⊳∗ v′. With exactly the same

arguments we can prove that Rep(t′, r′, v1, v2, w) holds;

(iii) there is no node w ∈ [u]t,r such that v1⊳∗w⊳∗v or v2⊳∗w⊳∗v′. Since we pump

inside elementary contexts rooted at nodes of [u]t,r, and r(v1), r(v2) ∈ dom(6=A), by

definition of elementary contexts, neither v1 nor v2 can be a node of some context

cxtt(v), for v ∈ [u]t,r. By definition of the pumping, patht′(v1, v) is still edge-

isomorphic to patht′(v2, v
′). Moreover, v ∈ C(r′). Finally, thanks to Claim 2 (next

stated), since v 6∼t,r v′, we also get v 6∼t′,r′ v′. Therefore Rep(t′, r′, v1, v2, v) holds.

Claim 2. Nt′ ⊆ Nt and for all v1, v2 ∈ Nt′ , v1 ∼t′,r′ v2 iff v1 ∼t,r v2.



August 17, 2010 14:19 main

Tree Automata With Global Constraints 23

Proof. Let v1, v2 ∈ Nt′ such that v1 ∼t,r v2 and v1 6= v2 (the case v1 = v2 is

obvious). We can provef that there are w1, w2 ∈ Nt such that w1 ⊳∗v1, w2 ⊳∗v2 and

r(w1) =A r(w2). Suppose that w1 6∈ Nt′ or w2 6∈ Nt′ . This means that w1, w2 have

been removed by the pumping. Since the elementary contexts in which we pump

do not contain nodes labeled by states from dom(=A) (except at their root), this

means that w1 and w2 are below elementary contexts, hence their whole subtrees

have been removed by the pumping. In particular, v1 and v2 are removed, which is

impossible. By contradiction, w1, w2 ∈ Nt′ . We consider two cases:

Case 1: there is no node u′ ∈ [u]t,r such that w1 ⊳∗ u′ ⊳∗ v1 or w2 ⊳∗ u′ ⊳∗ v2.

Then patht′(w1, v1) ≡ patht′(w2, v2). Since r′(w1) = r(w1) and r′(w2) = r(w2), we

get r′(w1) =A r′(w2) and therefore w1 ∼t′,r′ w2, from which we get v1 ∼t′,r′ v2.

Case 2: there is u′ ∈ [u]t,r such that w1 ⊳∗ u′ ⊳∗ v1. Let u′′ ∈ Nt such that

w2 ⊳∗ u′′ ⊳∗ v2 and patht(w1, u) ≡ patht(w2, u
′). Since w1 ∼t,r w2, we also have

u′′ ∼t,r u′. Hence u′′ ∈ [u]t,r. Since we pump in parallel in cxtt(u
′) and cxtt(u

′′),

patht′(w1, v1) is still edge-isomorphic to patht′(w2, v2), so that v1 ∼t′,r′ v2.

Conversely, suppose that v1 ∼t′,r′ v2 and v1 6= v2 (the case v1 = v2 is obvious).

For the same reason as before, there are w1, w2 ∈ Nt′ such that w1 ⊳∗ v1, w2 ⊳∗

v2 and r′(w1) =A r′(w2). Since Nt′ ⊆ Nt, we necessarily have w1, w2, v1, v2 ∈

Nt. By definition of the pumping, we also have w1 ⊳∗ v1 and w2 ⊳∗ v2. Suppose

that patht(w1, v1) is not edge-isomorphic to patht(w2, v2). We show a contradiction

(hence this will prove v1 ∼t,r v2). Since patht(w1, v1) and patht(w2, v2) are not edge-

isomorphic, and after pumping patht′(w1, v1) and patht′(w2, v2) are isomorphic,

necessarily a pumping has occurred in an elementary context rooted at some node

u′ ∈ [u]t,r such that w1⊳∗u′⊳∗v1 or w2⊳∗u′⊳∗v2. Suppose that w1⊳∗u′, and let u′′

such that patht(w1, u
′) ≡ patht(w2, u

′′) (it exists since w1 ∼t,r w2 and t|w1
= t|w2

).

If u′′ does not belong to the path from w2 to v2, then after pumping, we would

still have patht′(w1, v1) non-isomorphic to patht′(w2, v2), since we pump below u′

and u′′. Thus u′′ belongs to patht(w2, v2). It is not difficult to show that since we

pump in parallel at equivalent positions, we still have patht′(w1, v1) non-isomorphic

to patht′(w2, v2), which is a contradiction.

Proof of Lemma 21 If L(A, k) 6= ∅, there is t ∈ L(A, k) and r a successful

run of (A, k) on t. By Lemma 12, we can suppose that for all nodes u, v ∈ Nt, if

u ∼t,r v, then r|u = r|v . Note that (t, r) is a seed. The idea is to apply exhaustively

f It can be shown by induction: it is obvious if v1 = v2 or v1↔t,rv2, by definition of ↔t,r. Suppose
that there is v3 such that v1 ∼t,r v3 and v3↔t,rv2, and there are some nodes w1, w3 above v1, v3

such that r(w3) =A r(w1). By definition of ↔t,r, there are w′

3
and w′

2
such that patht(w

′

3
, v3) ≡

patht(w
′

2
, v2), and r(w′

3
) =A r(w′

2
). By definition of ∼t,r , we have w′

3
∼t,r w′

2
, and by definition

of a seed, we get r|w′

3

= r|w′

2

, and, similarly, we get r|w1
= r|w3

. Suppose that w3 ⊳
∗ w′

3, and

let w′

1 above v1 such that patht(w1, w′

1) ≡ patht(w3, w′

3): it exists since r|w1
= r|w3

, moreover,
r(w′

1) =A r(w′

3). Since r(w′

3) =A r(w′

2) and =A⊆ idQ, we also have r(w′

1) =A r(w′

2). The case
w′

3 ⊳
+ w3 is proved similarly.
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Claim 1 until we can bound the height of a seed by some constant that depends

only on A and k.

Suppose that the height of t is strictly greater than B. In any ⊳∗-ordered chain,

they are at most k nodes labeled by a state of dom(6=A) in r, and at most |dom(=A

)| nodes labeled by a state of dom(=A) (otherwise there would be two different

descendant nodes enrooting equal subtrees in t, which is impossible). Let π be a

root-to-leaf path of r of length strictly greater than B. If there is no node in π

labeled by a state of dom(6=A) ∪ dom(=A), then there are necessarily a loop in

π that we can collapse to create a new tree and a new run of strictly less size

which still form a seed. Otherwise let u be the least node in π labeled by a state

of dom(6=A) ∪ dom(=A). We now consider two cases. If the path from the root

to u is strictly longer than B, again this means that there is a loop that we can

collapse without changing the constraints. Otherwise, by definition of B, and the

fact that there are at most |dom(=A)| nodes labeled by an equality state in π, there

is necessarily a node in π which enroots an elementary context which contains a

3-loop. Applying Claim 1 allows us to get a seed (t′, r′) of strictly less size than

(t, r).

Finally, we can iterate this reasoning until there is no root-to-leaf path of length

strictly greater than B, and we are done. �

Theorem 22. Let (A, k) be a vbTAGED. Testing emptiness of (A, k) can be done

in 2NEXPTIME. It is in NEXPTIME if A is rigid and k ≤ |Q| (or k is represented

by a unary encoding).

Proof. Let B = 2(k + |dom(=A)|)|Q| if A is rigid, and B = (k + 2|Q|)2|Q|+1

otherwise. Let A′ equal to A if A is rigid, or an equivalent rigid TAGED otherwise

(as constructed in Corollary 11). By Lemmata 21, 19 and 20, L(A, k) 6= ∅ iff there

exists a seed (t, r) (for A′) such that height(t) ≤ B. Therefore, it suffices to guess

a seed (t, r) of height at most B (and sizes at most 2B+1). Moreover, checking

whether a pair (t, r) is a seed can be done in PTIME in ‖t‖, ‖r‖, and ‖A′‖. If

B = (k + 2|Q|)2|Q|+1, this gives a non-deterministic algorithm doubly exponential

in |Q| and ‖k‖, since ‖k‖ = log2(k). However, if B = 2(k + |dom(=A)|)|Q| and the

encoding of k is unary, or k is polynomial in |Q|, the non-deterministic algorithm

is simply exponential in |Q| and ‖k‖.

Acknowledgments We are grateful to the referees for their valuable comments.

We warmly thank Hitoshi Osaki and Frédéric Servais for fruitful discussions.

References

[1] A. Aiken, D. Kozen, and E. L. Wimmers. Decidability of systems of set constraints
with negative constraints. Information and Computation, 122(1):30–44, 1995.

[2] S. Anantharaman, P. Narendran, and M. Rusinowitch. Closure properties and deci-
sion problems of dag automata. Information Processing Letters, 94(5):231–240, 2005.



August 17, 2010 14:19 main

Tree Automata With Global Constraints 25
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