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Abstract. Pioneered by Büchi, Elgot and Trakhtenbrot, connections
between automata and logics that define languages of words and trees
are now well-established. During the last decade, some of these powerful
connections have been extended to binary relations (transformations) of
words and trees. This paper is a survey of known automata-logic con-
nections for transformations.

1 Introduction

The connections between mathematical logics and computational models have a
long research history, which goes back to the foundations of theoretical computer
science and the seminal works of Church and Turing [12,44]. In particular, Turing
has shown how to express the behaviour of a universal machine in first-order
logic, and then proved that first-order logic is undecidable, as a consequence of
the undecidability of the halting problem. The Curry-Howard isomorphism is
another important example of connection that shows correspondences between
the formulas of a logic and the types of a computational model, and between
proofs and programs [18,30].

Further connections between mathematical logic and automata theory have
been discovered in the 60s by Büchi [10], Elgot [21] and Trakhtenbrot [43], who
have shown that the class of finite word languages definable in monadic second-
order logic corresponds, in an effective way, to the class of languages definable by
finite state automata, and thus to regular languages. While logical formalisms
have a high-level descriptive power, automata are easier to analyse algorith-
mically. For instance, checking whether the language defined by a finite state
automaton is empty can be decided in linear-time. Therefore, as an application
of Büchi-Elgot-Trakhtenbrot’s theorem, monadic second-order logic (interpreted
on finite words) has decidable satisfiability problem. Since this seminal result,
many other similar connections have been shown, most notably for regular lan-
guages of infinite words and trees [11,36,37] and first-order definable languages
of words [39]. More details can be found in the following survey: [42], [45] and
[19].

A language of finite words over an alphabet Σ is a mapping from the set of
words Σ∗ to {0, 1}. A transformation of finite words is a binary relation R on
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Σ∗, and therefore it generalises the concept of languages. It is functional if R
is a function. Although transformations are as fundamental as languages, much
less is known on the relation between automata and logic for transformations.
Nevertheless, some important results have been obtained in the last decade. In
this paper, we survey some of them.

A transformation R of finite words over an alphabet Σ can be seen as a
language, for instance the language {u#v | (u, v) ∈ R}, where # 6∈ Σ. However,
the formalisms from language theory, such as automata, are not well-suited to
describe transformations defined on this encoding and therefore, proper exten-
sions have been introduced to define transformations. Automata have been for
instance extended to automata with outputs, usually called transducers. Perhaps
the most studied transducer model is that of finite state transducers [32,38].
Finite state transducers (FST) extend finite state automata with an output
mechanism. Whenever an FST reads an input symbol, it moves to the next
symbol, updates its internal state, and write a partial output word. The final
output word is the concatenation, taken in order, of all the partial output words
produced while processing the whole input word.

The expressiveness of FST is limited and other, more powerful, state-based
models have been introduced and studied, such as two-way transducers and more
recently, streaming string transducers [2]. On the logic side, monadic-second or-
der logic has been extended in a natural way to MSO-transducers by B. Cour-
celle, to define transformations of logical structures [14,16]. The predicates of
the output structure are defined by MSO formulas interpreted over a fixed num-
ber of copies of the input structure. The first automata-logic connection, or one
should say transducer-logic connection, has been shown in [22] by J. Engelfriet
and H.J. Hoogeboom. They have extended Büchi-Elgot-Trakhtenbrot’s theorem
to functional transformations by showing that any transformation definable by a
deterministic two-way finite state transducer is definable by an MSO-transducer
(interpreted over finite words), and conversely. Moreover, this correspondence is
effective, i.e., an MSO-transducer can be effectively constructed from a determin-
istic two-way finite state transducer and conversely. An important consequence
of this result is the decidability of equivalence of MSO-transducers, since the
equivalence problem for deterministic two-way transducers is decidable [17].

Since then, other transducer-logic connections have been established for fi-
nite word transformations and other structures such as infinite words and finite
trees. Functional MSO-transformations of finite words have been shown to cor-
respond to transformations definable by streaming string transducers [2], and
this result has been extended to infinite words [3] and to non-functional MSO-
transformations [22,5]. Engelfriet-Hoogeboom’s theorem has been extended to
finite trees [8,23,24]. First-order definable transformations of finite words have
been considered in [27] and [33]. Some of these connections have been considered
under a stronger semantics, the origin semantics, in [9].

This paper surveys some of these important results. All the transducer-logic
connections presented in this paper are effective. The setting of functional trans-
formations of finite words is presented in details, in contrast to the other results,



which come nevertheless with the main bibliographic references. In Section 2, we
present some preliminary notions. In Section 3, we define first-order and monadic
second-order logics interpreted on finite words, and define MSO-transducers, for
which we give several examples. In Section 4, we introduce the main state-based
models of transformations used in this paper. In Section 5, we present the main
transducer-logic connection for transformations of finite words. Finally in Section
6, we briefly survey some extensions of the finite word setting.

2 Word Transformations

We define the preliminary notions used all over this paper.

Words An alphabet Σ is a finite set of symbols, called letters. A word w over Σ is
a finite sequence of letters (σ1, . . . , σn), denoted w = σ1 . . . σn. The empty word
(empty sequence) is denoted by ε. The length of a non-empty word w = σ1 . . . σn
is defined by |w| = n, and |ε| = 0. We denote by dom(w) = {1, . . . , |w|} ⊆ N∗
the domain of w. In particular, dom(ε) = ∅. For all i ∈ dom(w), i is called a
position of w and w(i) denotes the i-th letter of w. The set of words over Σ is
denoted by Σ∗, while the set of non-empty words over Σ is denoted by Σ+.

Given two words w1 = σ1 . . . σn and w2 = β1 . . . βm, their concatenation,
denoted w1.w2 (or simply w1w2), is defined by w1.w2 = σ1 . . . σnβ1 . . . βm. In
particular, εw = wε = w for all words w ∈ Σ∗. For all w ∈ Σ∗ and n ∈ N, we
denote by wn the concatenation of w, n times. In particular, w0 = ε, w1 = w
and w2 = ww.

Transformations A transformation R of finite words over an alphabet Σ is a
binary relation over Σ∗, i.e. R ⊆ Σ∗ × Σ∗. For all words u ∈ Σ∗, we let R(u)
be the set of images of u by R, i.e. R(u) = {v ∈ Σ∗ | (u, v) ∈ R}. The word
u is usually called an input word while the words v such that (u, v) ∈ R are
called output words. We denote by dom(R) the domain of R, and by range(R)
its range, i.e. dom(R) = {u ∈ Σ∗ | R(u) 6= ∅} and range(R) = {v ∈ Σ∗ | ∃u ∈
Σ∗, v ∈ R(u)}.

A transformation R is functional if R is a function, i.e. for all words u ∈ Σ∗,
the cardinality of R(u) is smaller than or equal to 1, i.e. |R(u)| ≤ 1. Functional
transformations are rather denoted by f, g, h . . . . For a functional transformation
f , we write f(u) = v instead of f(u) = {v}, for all (u, v) ∈ f .

Example 1. Let Σ = {a, b}. The following examples of (functional) transforma-
tions of finite words over Σ are running examples in this paper.

– The transformation fdel : Σ∗ → Σ∗ deletes all letters a, i.e. for all input
words u = σ1 . . . σn, fdel(u) = σi1 . . . σik such that {i1 < · · · < ik} = {i ∈
dom(w) | w(i) 6= a}. E.g. fdel(abaabb) = bbb.

– The transformation fdouble doubles every input letter, i.e. for all u = σ1 . . . σn,
fdouble(u) = σ1σ1 . . . σnσn, e.g. fdouble(abaa) = aabbaaaa.



– The transformation fcopy copies input words twice, i.e. for all u ∈ Σ∗,
fcopy(u) = uu.

– The transformation frev reverses input words, i.e. frev(σ1 . . . σn) = σn . . . σ1.
E.g. frev(abaa) = aaba.

– The transformation f1/2 is defined over a∗ by, for all n ≥ 0, f1/2(an) =

abn/2c. E.g. f1/2(a8) = a4 and f1/2(a3) = a.
– The transformation fexp exponentiates the number of a symbols in a word

of the form an, e.g. fexp(a
n) = a2

n

, and fexp(w) is undefined if w contains
at least one b.

3 Logical Transducers for Word Transformations

In this section, we introduce logical transducers, a logic-based formalism intro-
duced by B. Courcelle [15] to define transformations of logical structures. We
refer the reader to [16] for more details and results about logical transducers. Al-
though logical transducers can generally define transformations of arbitrary log-
ical structures, we specialise them to finite word transformations in this section.
We first introduce the notion of word logical structures, and then the classical
first-order and monadic second-order logics, interpreted over (logical structures
of) words.

3.1 Words as logical structures

A word w over an alphabet Σ can be seen as a logical structure1 w̃ over the
signature SΣ = {(La)a∈Σ ,�}, where (La)a∈Σ are monadic predicates that define
the labels of the positions in w, and � is a binary predicate that defines the order
on word positions. Formally, w̃ = (dom(w), (Lw̃a )a∈Σ ,�w̃) is the logical structure
whose domain is dom(w), and such that the predicates are interpreted as follows:

Lw̃a = {i ∈ dom(w) | w(i) = a} �w̃ = {(i, j) | i, j ∈ dom(w) ∧ i ≤ j}

When it is clear from the context, we rather write w instead of w̃.
A structure on SΣ is also called a SΣ-structure. We denote by M(SΣ) the

set of SΣ-structures. Note that a SΣ-structure may not be isomorphic to any
word. However for all w ∈ Σ∗, w̃ ∈ M(SΣ). Given a structure in M ∈ M(SΣ),
we denote by dom(M) its domain.

3.2 First-order and monadic second-order logics on words

Given an alphabet Σ, monadic second-order formulas (MSO formulas) over
the signature SΣ are built over first-order variables x, y . . . and second-order
variables X,Y . . . . They are defined by the following grammar:

φ ::= ∃X · φ | ∃x · φ | φ ∧ φ | ¬φ | x ∈ X | La(x) | x�y | (φ)

1 See for instance [20] or [41] for a definition of logical structures.



Universal quantifiers and other Boolean connectives are defined naturally: ∀x ·
φ ≡ ¬∃x·¬φ, ∀X ·φ ≡ ¬∃X ·¬φ, φ1∨φ2 ≡ ¬(φ1∧φ2) and φ1 → φ2 ≡ ¬φ1∨φ2. We
also define the formulas true and false: > ≡ ∀x · (La(x)∨¬La(x)) and ⊥ ≡ ¬>.
We do not define the semantics of MSO formulas, neither the standard notion of
free and bound variables, but rather give examples and refer the reader to [20]
or [41] for formal definitions.

Given an MSO formula φ, we write φ(x1, . . . , xn, X1, . . . , Xm) to emphasise
the fact that the free first-order variables of φ are exactly x1, . . . , xn, and its free
second-order variables are X1, . . . , Xm. Given a SΣ-structure M and an MSO
sentence φ, we write M |= φ when M satisfies φ. Let i1, . . . , in ∈ dom(M),
I1, . . . , Im ⊆ dom(M). For a formula φ(x1, . . . , xn, X1, . . . , Xm), we write M |=
φ(i1, . . . , in, I1, . . . , Im) to denote the fact that M together with the interpreta-
tion of xj by ij , j = 1, . . . , n and Xj by Ij , j = 1, . . . ,m, satisfy φ.

Given an MSO sentence φ, we write JφK the set of words that satisfy φ, i.e.
JφK = {w ∈ Σ∗ | w̃ |= φ}. Given a language L ⊆ Σ∗, if there exists an MSO
sentence φ such that JφK = L, we say that L is MSO-definable, and that φ defines
L.

First-order logic First-order (FO) formulas over SΣ are MSO formulas in which
no second-order variable occurs.

Example 2. Let Σ = {a, b}. The formula ∃x · > defines the set of non-empty
words. The formula ∃x · La(x) define the set of words over Σ that contain at
least one position labelled a, i.e. the language Σ∗aΣ∗.

The formula S(x, y) ≡ x�y ∧ x 6= y ∧ ∀z · (x�z�y → (x = z ∨ y = z) defines
the successor relation.

The formula ∀x∀y · (La(x) ∧ S(x, y) → Lb(y)) defines the set of words such
that any occurrence of the letter a is followed by the letter b. The formulas

first(x) ≡ ¬∃y · S(y, x) and last(x) ≡ ¬∃y · S(x, y)

are such that for all w ∈ Σ+ and i ∈ dom(w), w |= first(i) iff i = 1, and
w |= last(i) iff i = |w|.

The language a∗b∗ is definable by the following formula:

∀x∀y · (La(x) ∧ S(y, x)→ La(y))

More generally, it is known that the class of MSO-definable languages is the
class of regular languages [42]. The MSO formula

part(X1, . . . , Xn) ≡ (∀x ·
n∨
i=1

x ∈ Xi) ∧ ∀x ·
∧
i 6=j

(x 6∈ Xi ∨ x 6∈ Xj)

holds true whenever X1, . . . , Xn defines a partition of the domain. Finally, one
can define the set of words of even length in MSO, but one needs second-order



variables Xo and Xe to capture, respectively, odd and even positions of the word,
as defined by the formula

φo/e(Xo, Xe) ≡ part(Xo, Xe) ∧ ∀x · (first(x)→ x ∈ Xo)
∧∀x∀y · S(x, y)→ (x ∈ Xo → y ∈ Xe) ∧ (x ∈ Xe → y ∈ Xo)

Then, the set of words of even length is defined by the sentence

∃Xo∃Xe · φo/e(Xo, Xe) ∧ ∀x · (last(x)→ x ∈ Xe).

3.3 Logical transducers: definition

Logical transducers define functional transformations from input to output word
structures. The output structure is defined by taking a fixed number k of copies
of the input structure domain. Some node of these copies can be filtered out by
formulas with one free first-order variable. In particular, the nodes of the c-th
copy are the input positions that satisfy some given formula φcpos(x). The predi-
cates La and � of the output structure are defined by formulas with respectively
one and two free first-order variables, interpreted over the input structure. More
precisely, position labelled a of the c-th copy are defined by a given formula
φcLa(x), interpreted over the input word. If this formula holds true, it means
that the c-th copy of x, if it exists, is labelled a in the output word. The order
relation between two output positions is defined by formulas with two free vari-
ables interpreted over the input word. For instance, the order relation between
positions of the c-th copy and the d-th copy (c and d can be equal) is defined by
a formula φ�(x, y)c,d interpreted over the input structure. If this formula holds
true, it means the the c-th copy of x occurs before the d-th copy of y in the
output word. Let us formally define logical transducers.

Definition 1. Let Σ be an alphabet. A logical MSO-transducer (MSOT) on the
signature SΣ is a tuple

T = (k, φdom, (φ
c
pos(x))1≤c≤k, (φ

c
La(x))1≤c≤k,a∈Σ , (φ

c,d
� (x, y))1≤c,d≤k)

where k ∈ N and the formulas φdom, φcpos, φ
c
La

and φc,d� for all c, d ∈ {1, . . . , k}
and a ∈ Σ are MSO formulas over SΣ.

Semantics A logical MSO-transducer T defines a function from SΣ-structures
to SΣ-structures, denoted by JT K : M(SΣ) → M(SΣ). The domain of JT K
consists of all structures M such that M |= φdom. Given a structure M ∈
dom(JT K), the output structure N such that (M,N) ∈ JT K is defined by N =
(DN , (LNa )a∈Σ ,�N ) where:

– DN ⊆ dom(M)× {1, . . . , k} is defined by

DN = {(i, c) | i ∈ dom(M), c ∈ {1, . . . , k}, M |= φcpos(i)}

We rather denote by ic the elements of DM .



– for all a ∈ Σ, the interpretation LNa is defined by

LNa = {ic | i ∈ dom(M), c ∈ {1, . . . , k}, M |= φcLa(i)} ∩DN

– the interpretation �N is defined by

�N = {(ic, jd) | i, j ∈ dom(M), c, d ∈ {1, . . . , k}, M |= φc,d� (i, j)}∩(DN×DN )

Remark 1. Note that the size of the output structure N is linearly bounded by
the size of M , as it is at most k.|dom(M)|. We say that MSO-transducers define
linear-size increase transformations.

Logical transducers as word-to-word transformers Note that in general, an MSO-
transducer T over SΣ may not define a word-to-word transformation, as the
output structure of an input word structure may not be a word. We say that T
is an MSO-transducer of finite words over Σ if for all words w ∈ Σ∗ such that
w̃ ∈ dom(T ), JT K(w̃) is a word, i.e., there exists v ∈ Σ∗ such that JT K(w̃) is
isomorphic to ṽ. This property is decidable:

Proposition 1. It is decidable whether an MSO-transducer over SΣ is an MSO-
transducer of finite words over Σ.

Proof. Let T = (k, φdom, (φ
c
pos(x))1≤c≤k, (φ

c
La

(x))1≤c≤k,a∈Σ , (φ
c,d
� (x, y))1≤c,d≤k).

We construct a formula is wordT which is satisfiable in Σ∗ iff T is an MSO-
transducer of finite words over Σ. The result follows since MSO over finite words
is decidable, by Büchi-Elgot-Trakhtenbrot’s Theorem.

Before giving the construction, let us introduce the following useful shortcuts.
We write ∀xc ·φ instead of ∀x ·

∧k
c=1 φ and ∃xc ·φ instead of ∃x ·

∨k
c=1 φ. We also

write [∀xc] · φ instead of ∀xc · (φcpos(x) → φ) to mean that xc is quantified over

output nodes that belong to the domain of the output structure. By xc = yd we
denote the formula x = y if c = d, and ⊥ if c 6= d. Therefore, by xc 6= yd we
denote the formula x 6= y if c = d, and > if c 6= d.

It is also convenient to define the output successor relation. For all c, d ∈
{1, . . . , k}, we let

φc,dS (x, y) ≡ φc,d� (x, y)∧xc 6= yd∧∀ze ·(φc,e� (x, z)∧φe,d� (z, y)→ ze = xc∨ze = yd)

Finally, we can construct the expected formula:

is wordT ≡ φdom →
(1) [∀xc] ·

∧
a 6=b∈Σ ¬φiLa(x) ∨ ¬φiLb(x)

∧ (2) [∀xc] ·
∨
a∈Σ φ

c
La

(x)

∧ (3) [∀xc∀yd∀ze] · (φc,dS (x, y) ∧ φc,eS (x, z)→ yd = ze)

∧ (4) [∀xc∀yd∀ze] · (φd,cS (y, x) ∧ φe,cS (z, x)→ yd = ze)

∧ (5) [∀xc∀yd] · (xc 6= yd)→ ([∃ze] · φe,cS (z, x) ∨ [∃ze] · φe,dS (z, y))

∧ (6) [∃xc∀yd] · ¬φd,cS (y, x)



Subformula (1) ensures that each output node is labeled by at most one
letter. Subformula (2) ensures that each output node is labeled by at least one
letter. Subformula (3) ensures that the output successor relation is a function.
Subformula (4) ensures that the inverse of the output successor relation is a
function. Finally, Subformulas (5) and (6) ensures that there is exactly one
output node without predecessor. �

In the rest of this section, by MSO-transducer and MSOT we always mean
an MSO-transducer of finite words.

FO-transducers of finite words An FO-transducer (FOT) T is defined as an
MSO-transducer, except that each formula of T is an FO formula over SΣ .

Definability We say that a transformation R of finite words is definable by a
logical transducer T if R = JT K. We say that R is MSOT-definable (resp. FOT-
definable) if it is definable by an MSO-transducer (resp. FO-transducer) of finite
words.

3.4 Logical transducers: Examples

In this section, we give several examples of transformations that can be defined
by MSO-transducers.

Example 3. We show that all transformations of Example 1 but fexp are MSOT-
definable. They are illustrated in Fig. 1. Only the successor relations are depicted.
Input nodes filtered out by formulas φcpos(x) are represented by fuzzy nodes.

• The transformation fdel on Σ = {a, b} is definable by the transducer

Tdel=(1, φdom ≡ >, φ1pos(x) ≡ ¬La(x), (φ1Lσ (x) ≡ Lσ(x))σ∈Σ , φ
1,1
� (x, y) ≡ x � y)

Given an input word u ∈ Σ∗, let v ∈ Σ∗ such that ṽ = JTdelK(ũ). Then dom(ṽ) =
{i1 ∈ dom(u) | u(i) = b}, as defined by φ1pos, and �ṽ= {(i1, j1) | i1, j1 ∈
dom(ṽ), i ≤ j}.
• To define transformation fdouble, one needs to take two copies of the input
structure. It is defined by the transducer Tdouble with k = 2 and for i ∈ {1, 2}:

φdom ≡ > φipos(x) ≡ > φiLa(x) = La(x) φiLb(x) = Lb(x)

φ1,1� (x, y) ≡ x � y φ1,2� (x, y) ≡ x � y φ2,1� (x, y) ≡ x ≺ y φ2,2� (x, y) ≡ x � y

Note that the output predicate � from copy 2 to copy 1 is only defined when x
occurs strictly before y. It implies that an output node yd is a successor of xd

iff one of the two following conditions hold: (i) c = 1 and d = 2 and x = y, or
(ii) c = 2 and d = 1 and y is a successor of x in the input word. If one wants
to restrict the domain of Tdouble to words in a∗, it suffices to define the domain
formula by φdom ≡ ∀x · La(x).
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(a) Transformation fdel defined by Tdel
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(b) Transformation fdouble defined by Tdouble
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(c) Transformation fcopy defined by Tcopy
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(d) Transformation frev defined by Trev
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a a a a a a a a
φ1,1
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� φ1,1
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(e) Transformation f1/2 defined by T1/2

Fig. 1. Transformations of Example 1 defined by MSO-transducers

• Let us consider transformation fcopy. Again, one needs two copies of the input
structure. It is similar to Tdouble except the way the output order is defined:

φdom ≡ > φipos(x) ≡ > φiLa(x) = La(x) φiLb(x) = Lb(x)

φ1,1� (x, y) ≡ x � y φ1,2� (x, y) ≡ > φ2,1� (x, y) ≡ ⊥ φ2,2� (x, y) ≡ x � y



Note that compared to Tdouble, only the definition of φ2,1� differs. We indeed
completely disallow a node from copy 2 to be smaller than a node from copy 1.
• The transformation frev is defined by the transducer Trev: it suffices to take
only one copy of the input structure and to inverse the order relation. Formally,
Trev is defined by k = 1 and:

φdom ≡ > φipos(x) ≡ > φ1La(x) = La(x) φ1Lb(x) = Lb(x) φ1,1� (x, y) ≡ y � x

• To define with an MSO-transducer the transformation f1/2 : an 7→ abn/2c, one
takes one copy of the input domain, sets the domain formula to φdom ≡ ∀x·La(x),
and filters out all odd positions of the input word, which is possible by the MSO
formula φ1pos(x) ≡ ∃Xo∃Xe ·φo/e(Xo, Xe)∧x ∈ Xe, where φo/e has been defined

in Example 2. Finally, the order relation is just defined by φ1,1� (x, y) ≡ x � y.

• The transformation fexp : an 7→ a2
n

is not MSOT-definable, because it is not
linear-size increase, while MSOT-definable transformations are, by Remark 1.

Remark 2. Let us mention an other, logic-based, transformation formalism, called
first-order translations, that has been introduced by N. Immerman in [31], as a
way to define reductions between problems. In first-order translations, the do-
main of the output structure is a set of k-tuples of elements of the input do-
main, for some k. It is defined by a first-order formula with k free variables.
Predicates of arity n of the output structure are defined, similarly to Courcelle’s
logical transducers, by formulas with kn free variables, interpreted over the in-
put structure. In contrast to logical transducers which are linear-size increase,
first-order translations can map a structure to a polynomially larger output
structure. First-order translations have been introduced as a logical way to de-
fine reductions between decision problems and nothing is known about their
expressiveness as a formalism to define transformations. In this paper, we rather
focus on (Courcelle) logical transducers, for which connections with state-based
formalisms have been established. Nevertheless, let us mention the two papers
[33] and [35], where the particular case of length-preserving FO-translations with
k = 1 has been studied, as well as their connections with finite state transducers.
See Section 5.2 for more details.

4 State-based Models for Word Transformations

In this section, we introduce some of the main state-based models for defining
(finite) word transformations for which connections with logics are known. These
models are automata models extended with outputs, and are usually called trans-
ducers. We present three models: finite state transducers, two-way finite state
transducers, and streaming string transducers.

4.1 Finite state transducers

Finite state transducers (FST) extend finite state automata with partial output
words on their transitions. Whenever an FST reads an input letter, it moves



q a | εb | b

(a) fdel

q a | aab | bb

(b) fdouble

qe qo

a | ε

a | a

(c) f1/2

Fig. 2. Examples of finite state transducers.

deterministically to the next state and appends a word to the output tape.
Formally, an FST on an alphabet Σ is a tuple T = (Q, q0, F, δ) such that Q is a
finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is a set of accepting states,
and δ : Q×Σ → Q×Σ∗ is the transition function.

A run of T is a sequence r = p0σ1p1 . . . σnpn ∈ (QΣ)∗Q such that p0 = q0
and for all i ∈ {1, . . . , n}, there exists vi ∈ Σ∗ such that δ(pi−1, σi) = (pi, vi).
Given u ∈ Σ∗, one says that r is a run on u if u = σ1 . . . σn. The output of r,
denoted by O(r), is defined as the word O(r) = v1 . . . vn. The run r is accepting
if pn ∈ F .

An FST T realises a functional transformation JT K : Σ∗ → Σ∗ defined by

JT K = {(u, v) | there exists an accepting run r of T on u such that v = O(r)}

Note that indeed, since T is deterministic, JT K is a function. The extension of
FST with non-determinism allows one to define relations instead of functions.

A non-deterministic finite state transducer (NFT) over an alphabet Σ is a
tuple T = (Q, q0, F,∆) where Q, q0, F are defined as for FST, and ∆ : Q×Σ ×
Q→ Σ∗ is a (partial) function that defines the transitions2. A run of T is defined
similarly as a run of an FST, as a sequence r = p0σ1p1 . . . σnpn such that p0 = q0
and for all i ∈ {1, . . . , n}, δ(pi−1, σi, pi) exists and is equal to some vi ∈ Σ∗. The
output O(r) is defined by O(r) = v1 . . . vn. The other notions defined for FST
carry over to NFT. Note that JT K may not be a function, since there can be
several accepting runs on an input word. However, whether an NFT defines a
function is decidable in PTime (see, for instance, [7]). NFT defining functions
are known as functional NFT.

Example 4. Fig. 2 illustrates three FST that define the functions fdel, fdouble
and f1/2 respectively. On these figures, the vertical arrow represents the initial
state, the double circles the accepting states, and the arrows labelled σ | v the
transitions that read σ ∈ Σ and produce v ∈ Σ∗. The other functions, fcopy, frev
and fexp are not definable by finite state transducers (even NFT). As we will
see in Section 5.3, any NFT-definable functional transformation is definable by
an MSO-transducer. We define in Section 5.3 a restriction on MSO-transducer
that captures exactly NFT-definable functions.

2 These NFT are sometimes called real-time NFT, in contrast to a more general class
of NFT that allow productive ε-transitions.



4.2 Two-way finite state transducers

Two-way finite state transducers (2FST) extend (one-way) finite state transducer
with a bidirectional input head. Depending on the current state and letter, a
2FST updates its internal state and moves its input head either left or right. In
order to detect the first and last positions of the input word, 2FST are assumed
to run on words that are nested with begin and end markers `,a respectively.

Formally, a two-way finite state transducer (2FST) over an alphabet Σ is
a tuple T = (Q, q0, δ, δhalt) where Q is a finite set of states, q0 ∈ Q is the
initial state, and δ is the transition relation3, of type δ : Q× (Σ∪{`,a})→ Q×
{+1,−1}×Σ∗, such that δ(q,`) ∈ Q×{+1}×Σ∗, and δ(q,a) ∈ Q×{−1}×Σ∗, for
all q ∈ Q. Finally, δhalt is the halting function, of type δhalt : Q× (Σ∪{`,a})→
Σ∗. In order to ensure determinism, it is required that dom(δ)∩dom(δhalt) = ∅.

In order to see how a word u ∈ Σ∗ is evaluated by T , it is convenient to see
the input as a tape containing ` u a. Initially the head of T is on the first cell in
state q0 (the cell labelled `). When T reads an input symbol, depending on the
transitions in δ, its head moves to the left (−1) if the head was not in the first
cell, or to the right (+1) if the head was not in the last cell, then it updates its
state, and appends a partial output word to the final output. T stops as soon
as it can apply the halting transition δhalt, and produces a last partial output
word.

A configuration of T is a pair (q, i) ∈ Q × N where q is a state and i is a
position on the input tape. A run r of T is a finite sequence of configurations. Let
u = σ1 . . . σn ∈ Σ∗, let σ0= ` and let σn+1= a. A run r = (p1, i0) . . . (pm, im)
is accepting on u if (i) p1 = q0, i0 = 0; (ii) δhalt(pm, σim) is defined and equal
to vm for some vm ∈ Σ∗; (iii) for all k ∈ {0, . . . ,m − 1}, δ(pk, σik) is defined
and equal to (pk+1, ik+1 − ik, vk) for some vk ∈ Σ∗. The output of r is defined
by O(r) = v1 . . . vm. Like FST, the (functional) transformation defined by T ,
denoted by JT K, is the set of pairs (u, v) such that there exists an accepting run
r of T on u such that O(r) = v.

Example 5. Unlike FST, 2FST can define the functions fcopy and frev, as shown
in Fig. 3. Therefore, there are strictly more expressive than FST. However, check-
ing whether a 2FST is equivalent to some FST is decidable [26]. 2FST define
linear-size increase transformations, because it can be proved that due to de-
terminism, the number of times an input position can be visited is in O(|Q|).
Therefore, fexp is not 2FST-definable.

4.3 Streaming string transducers

3 In the literature, some definitions also include stay transition, i.e. transitions where
the input head does not move. In the deterministic case, these transitions can how-
ever be removed without loss of expressiveness.
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Fig. 4. SST for fexp

Recently, an appealing transducer model for word
transformations, whose expressiveness is exactly the
same as 2FST, has been proposed in [2], as an ex-
tension of FST with registers, called streaming string
transducers (SST). Partial output words are stored in
a fixed number of registers that can be concurrently
updated and combined in different ways to define the
output word. Moreover, SST are deterministic and,
unlike 2FST, are one-way (left-to-right), making them
easier to manipulate algorithmically. It is has been applied, for instance, to the
automatic verification of some important classes of list-processing programs [1].

Let X be a finite set of registers denoted by the capital letters U, V,W . . . and
Σ be an alphabet. A substitution s is defined as a mapping s : X → (Σ ∪ X )∗.
A valuation is defined as a substitution v : X → Σ∗. Let SX ,Σ be the set of all
substitutions. Any substitution s can be extended to ŝ : (Σ ∪ X )∗ → (Σ ∪ X )∗

in a straightforward manner. The composition s1s2 of two substitutions s1 and
s2 is defined as the standard function composition ŝ1 ◦ s2.

A streaming string transducer (SST) over Σ is a tuple T = (Q, q0, δ,X , ρ, O)
where Q is a finite set of states with initial state q0; δ : Q×Σ → Q is a transition
function; X is a finite set of registers; ρ : δ → SX ,Σ is a register update function;
and O : Q ⇀ X ∗ is a (partial) output function.

Like FST, a run r of an SST T is an alternating sequence of states and letters
r = p0σ1p1 . . . σnpn such that p0 = q0 and for all i ∈ {0, . . . , n−1}, δ(pi, σi+1) is
defined and equal to pi+1. The run r is accepting if pn ∈ dom(O). We let |r| = n
the length of r. In particular, a run of length 1 follows exactly one transition.
The sequence 〈sr,i〉0≤i≤|r| of substitutions induced by r is defined inductively
as: sr,0 is the identity function over X , and sr,i=sr,i−1ρ(pi−1, σi) for 1 ≤ i ≤ |r|.
We denote sr,|r| by sr.

If the run r is accepting, we can extend the output function O to the run r
by O(r) = sεsr(O(pn)), where sε substitutes all registers by their initial value ε.
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Fig. 5. Examples of streaming string transducers

As for FST and 2FST, the functional transformation JT K defined by an SST
T is the set of pairs (u, v) such that there exists an accepting run r of T on u
such that v = O(r).

Example 6. The definition of SST is best understood with some examples. Any
FST can be encoded as an SST with a single register. As an example, consider
the SST that defines the function f1/2 in Fig. 5(a). It has only one register
U . The register update substitutions are represented on the edges by the the
assignment operator :=, while the output function is represented by the ver-
tical arrows leading to an expression, here U . The function f1/2 can also be
defined with only one state, but using one additional register V , as depicted by
Fig. 5(b). The function fcopy can be defined with one or two registers, as depicted
by Fig. 5(c) and Fig. 5(d). Finally, frev is defined by the SST of Fig. 5(e). Un-
like MSO-transformations, SST-definable transformations may not be linear-size
increase, as shown by the SST of Fig.4 which defines the transformation fexp.
To capture MSO-transformations, various syntactic restrictions on SST register
updates have been defined in several papers [2,3,4,6], which can be defined as
restrictions of a uniform notion of transition monoids for SSTs [27], as presented
in the next section.

4.4 Transition monoids for streaming string transducers

The transition monoid of an SST is a set of matrices Mw, for all words w ∈ Σ∗,
that represent the state and variable flow of the SST over w [27]. Let T =
(Q, q0, δ,X , ρ, O) be an SST over an alphabet Σ, let two states q1, q2 ∈ Q , two
registers U1, U2 ∈ X , a word w ∈ Σ∗ and n ∈ N ∪ {⊥}. Intuitively, if n ≥ 0,
the pair (q1, U1) n-flows to (q2, U2) on reading w if there exists a run of T on w
from q1 to q2, on which the sequence of register updates makes U1 contributes
n times to the content of U2. The pair (q1, U1) ⊥-flow to (q2, U2) if there is no
run on w from q1 to q2. For example, for the SST of Fig. 5(a), (q0, U) 1-flows to
(q1, U) on reading a, as well as ak for all odd integers k. On Fig. 5(b), (q0, U)
1-flows to (q0, V ) on reading a. On Fig. 4, (q0, U) 2k-flows to (q0, U) on reading
ak for all k ≥ 0.

Formally, (q1, U1) n-flows to (q2, U2) on w (n ≥ 0), denoted (q1, U1)
w
 n

(q2, U2), if there exists a run r of T on w, from state q1 to state q2, such that



U1 occurs n times in sr(U2), where sr is the substitution defined by r. The pair
(q1, U2) ⊥-flows to (q2, U2) if there is no run of T on w, from state q1 to state
q2. We denote by Mw the (N∪{⊥})-valued square matrices of dimension |Q|.|X |
defined, for all q1, q2 ∈ Q and all U1, U2 ∈ X , and all n ∈ N ∪ {⊥}, by

Mw[q1, U1][q2, U2] = n iff (q1, U1)
w
 n (q2, U2)

Definition 2 (SST transition monoid). The transition monoid of an SST T
is the set of matrices M(T ) = {Mw | w ∈ Σ∗}.

Note that M(T ) is indeed a monoid with matrix multiplication and Mε as
neutral element (Mε is equal to the identity matrix on Q × X ). Moreover, the
mapping w ∈ Σ∗ 7→ Mw is a morphism, as it can be shown that Mw1w2

=
Mw1Mw2 for all w1, w2 ∈ Σ∗ [27].

Classes of transition monoids We define several classes of transition monoids.
The transition monoid M(T ) of an SST T is copyless if for all M ∈ M(T ),
M is {⊥, 0, 1}-valued, and every row M [q, U ][.] contains at most one 1, for all
q ∈ Q and U ∈ X . In other words, U can be copied in at most one other
register (included itself). The monoid M(T ) is restricted copy if all M ∈M(T )
is {⊥, 0, 1}-valued. In other words, a register can be copied more than once, but
these copies must not be combined later on. Finally, we will also consider SST
whose transition monoid is finite. The registers with a finite transition monoid
can be copied, but not on loops. Note that any copyless transition monoid is
restricted copy, and any restricted copy transition monoid is finite. It has been
shown, as we will see, that the corresponding classes of SST are, however, of
equal expressive power.

Several restrictions on register updates that have been defined in several
papers, with ad-hoc definitions, are nicely captured by these simple classes of
transition monoids. The copyless restriction of [2] corresponds to SST with copy-
less transition monoid. The restricted copy restriction of [6] corresponds to SST
with restricted copy transition monoids. Finally, the bounded copy restriction of
[3] corresponds to SST with finite transition monoid.

5 Automata-logic connections for word transformations

In this section, we present the main known automata-logic connections for word
transformations.

5.1 MSO transformations

The first automata-logic connection for word transformations has been discov-
ered by J. Engelfriet and H.J. Hoogeboom [22]:

Theorem 1 (J. Engelfriet, H.J. Hoogeboom [22]). Let f : Σ∗ → Σ∗. The
function f is MSOT-definable iff it is 2FST-definable.



The proof of MSOT⇒2FST is based on intermediate models of 2FST which
can perform “MSO jumps” φ(x, y), where φ(x, y) is an MSO formula that defines
a function from x positions to y positions. Intuitively, the machine can move from
position x to position y providing φ(x, y) holds true. 2FST with MSO jumps are
then converted, based on Büchi-Elgot-Trakhtenbrot’s theorem, into 2FST with
regular look-around. These 2FST can move only to positions which are in the 1-
neighbourhood of the current position, but their move can be based on a regular
property of the current prefix and suffix of the word. Finally, it is shown that
2FST with regular look-around are equivalent to 2FST.

The converse, 2FST⇒MSOT, is shown by first constructing an MSOT that
takes as input a word structure, and output an edge-labeled graph (edges are
labelled by words of bounded length) whose nodes are exactly the configurations
(q, i) in which the 2FST is successively (where q is a state and i a position in the
input word). This MSOT is then composed with an MSOT that transforms an
edge-labeled graph into a node-labeled graph (nodes are here labelled with letters
from Σ). The result follows as MSOT are closed under composition [16,15].

As we have seen in Fig. 4, SST can define functions which are exponential-
size increase (fexp), and therefore, not MSOT-definable. However, any MSOT-
definable transformation is SST-definable, and, by weakening the expressiveness
of SST, it is possible to capture exactly MSOT:

Theorem 2 (R. Alur, P. Černý [2], R. Alur, E. Filiot, A. Trivedi [3]).
Let f : Σ∗ → Σ∗. The following statements are equivalent:

1. f is MSOT-definable.
2. f is definable by an SST with copyless transition monoid.
3. f is definable by an SST with finite transition monoid.

The equivalence between (1) and (2) was shown in [2]. The proof of (1)⇒ (2)
of [2] goes through the intermediate model of 2FST and relies on Theorem 1.
More precisely, it is shown that any 2FST can be encoded as an SST, by ex-
tending to transducers the classical Sheperdson’s construction that transforms
a two-way finite automaton as a (one-way) finite automaton [40]. The resulting
SST may not be necessarily copyless, and the main challenge is to show that it
can be converted into a copyless SST. Conversely, it is shown how to directly
encode an SST as an MSO-transducer. In [3], it has been shown that SST with
finite transition monoid (called bounded copy) are equivalent to SST with copy-
less transition monoid. Although the proof of (1) ⇒ (2) in [2] relies on 2FST,
a direct construction was also given in [6], in which the states of the SST are
MSO-types of bounded quantifier rank.

5.2 FO transformations

Recall that first-order transformations are transformations definable by FO-
transducers, which are defined as MSO-transducers, except that only first-order
formulas can be used. In automata theory for languages, first-order definable



languages are captured by aperiodic automata, i.e. finite automata whose transi-
tion monoid is aperiodic [41,19]. A survey on first-order definable languages can
be found in [19]. A monoid (M, ·, e) (with operator · and neutral element e) is
aperiodic if there exists k ∈ N such that for all m ∈M , mk = mk+1. Recall that
the language (aa)∗ is not FO-definable, while the language (ab)∗ is.

As we have seen, the functions fdel, fdouble, fcopy, and frev are FOT-definable.
However, the function f1/2 is not FOT-definable [27], although its domain, a∗,
is. So clearly, the FOT-definability of a function not only depends on the FO-
definability of its domain. It can be seen on an example. In Fig. 5(a), the transi-
tion monoid of the underlying automaton of the SST defining f1/2 (the automa-
ton obtained by dropping the register updates) is not aperiodic. Therefore, in
order to get FOT-definable functions, a first restriction would be to require that
the underyling automaton of an SST is aperiodic. However, it is not sufficient,
as shown by the SST of Fig. 5(b), whose underlying automaton has aperiodic
transition monoid. However, the register flow, which alternates between U and
V registers on reading a, is not aperiodic. If one requires that the transition
monoid of an SST, which also speaks about the register flow, is aperiodic, then
one gets exactly FOT-definable functions:

Theorem 3 (E. Filiot, K. Shankara Narayanan and A. Trivedi [27]).
Let f : Σ∗ → Σ∗. The function f is FOT-definable iff it is definable by an SST
with aperiodic and restricted copy transition monoid.

This theorem should not be understood as an effective characterization of
FOT-definable functions. Indeed, it could be the case that an SST which de-
fines an FOT-definable function has not an aperiodic transition monoid. As an
example, consider an SST which alternates on reading the letter a between two
states, both accepting, and realizes the identity function with a single register. Its
transition monoid is not aperiodic, but the function it defines if FOT-definable.

It is also the case for automata: a non-aperiodic automaton may define a
first-order language. However for automata, FO-definable languages can be al-
gebraically characterised, as show by M.P. Schützenberger : a language L is
FO-definable iff its syntactic monoid is aperiodic [39]. This characterisation is
effective if L is given as a finite automaton, and decidable in PSPace [19].

Finally, like for automata, deciding whether the transition monoid of an SST
is aperiodic and restricted copy is PSPace-C [27].

FO-translations in one-free variable Let us mention another transducer-logic
connection that has been shown for a less expressive class of functions, namely
the FO-translations of [31] restricted to FO-formulas in one-free variable and
length-preserving functions. Such a translation assumes a total order < on Σ and
is defined by a tuple T of FO-formulas in one-free variable x, say T = (φσ(x))σ∈Σ ,
such that φσm(x) =

∧
σ<σm

¬φσ(x), where σm is the maximal element of Σ.
Then, for all w ∈ Σ∗ of length n, T (w) = σ1 . . . σn such that for all i ∈ {1, . . . , n},
w |= φσi(i) ∧

∧
σ<σi

¬φσ(i). Note that T defines a total and length-preserving
function, which is actually definable by a one-copy (Courcelle) FO-transducer.
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Fig. 6. Encoding of NFT by MSO-transducer

It is shown in [33] that a function is definable by an FO-translation in one-free
variable iff it is definable by an aperiodic NFT, where aperiodic NFT are the
NFT whose underlying automata is aperiodic (i.e. they have aperiodic transition
monoid). This result was later on, in [35], generalised to V -translations and NFT
whose transition monoid is in V , where V is a pseudovariety of (finite) monoids
(for instance, the pseudovariety of finite aperiodic monoids).

5.3 Order-preserving MSO transducers

An MSO-transducer T with k copies is order-preserving if for all words w ∈
dom(T ), all positions i, j ∈ dom(w), and copies c, d ∈ {1, . . . , k}, if w |= φc,d� (i, j),
then i � j holds true. Note that this can be syntactically ensured by requiring
that formulas φc,d� (x, y) are of the form x � y ∧ φ. We show in Theorem 4
that order-preserving MSO-transducers characterise exactly the NFT-definable
functions. This theorem can also be obtained as a consequence of a result shown
in [9] for order-preserving transformations with origin semantics. However, we
give here a direct proof, which illustrates the techniques that are usually used to
derive automata-logic connections. Origin semantics is discussed later in Section
5.4.

Theorem 4. A function f : Σ∗ → Σ∗ is NFT-definable iff it is definable by an
order-preserving MSO-transducer.

Proof. We first show the “only if” direction. Let T = (Q, q0, F,∆) be an NFT
over Σ that defines a f . We construct an order-preserving MSO-transducer T ′

such that JT K = JT ′K = f . Since T defines a function, it is known that T is
equivalent to an unambiguous NFT [32], i.e. an NFT such that there exists at
most one accepting run on every input word. Therefore, we assume that T is
unambiguous.

Let K ∈ N be the maximal length of the words occurring on the transitions
of T , i.e. K = max{|w| | ∃p, q ∈ Q∃σ ∈ Σ, ∆(p, σ, q) = w}. Clearly, for all words
u ∈ dom(T ), |JT K(u)| ≤ K.|u|. In order to define JT K by an MSO-transducer,



one needs to take K copies of the input structure. Let us intuitively explain how
these copies will be used. Let u = σ1 . . . σn ∈ dom(T ) and r = q0σ1q1 . . . σnqn
be the accepting run of T on u, and let O(r) = v1 . . . vn, where each word vi is
produced by the i-th transition of r. Every position j ∈ dom(vi) will be encoded
by the j-th copy of the input position i, i.e., by the node ij . Of course, the j-th
copy exists since |vi| ≤ K. For all j such that |vi| < j ≤ K, one needs to filter
out all nodes ij , by the formula φjpos(x). The encoding is illustrated on Fig. 6.

The definition of T ′ relies on the existence of MSO formulas φt(x), for all
tuples t = (p, σ, v, q) ∈ Q × Σ × Σ∗ × Q, such that for all words u ∈ Σ∗ and
all positions i ∈ dom(u), u |= φt(i) iff u ∈ dom(T ) and the run of T on u, say
r = q0σ1q1 . . . σnqn, is such that qi−1 = p, σi = σ, qi = q and ∆(p, σ, q) = v.
We do not prove the existence of such formulas in this paper, it is obtained
as a direct consequence of Büchi-Elgot-Trakhtenbrot’s Theorem. Another direct
consequence of this theorem is the existence of an MSO formula φdom(T ) which
defines the domain of T (which is a regular language).

We define formally T ′ = (k, φdom, (φ
c
pos)1≤c≤k, (φ

c
Lσ

)1≤c≤k,σ∈Σ , (φ
c,d
� )1≤c,d≤k):

k = K
φdom ≡ φdom(T )

φcpos(x) ≡
∧
{φt(x)→ |v| ≥ c | t := (p, σ, v, q) s.t. ∆(p, σ, q) = v}

φcLσ (x) ≡
∧
{φt(x)→ (c ≤ |v| ∧ v(c) = σ) | t := (p, σ, v, q) s.t. ∆(p, σ, q) = v}

φc,d� (x, y) ≡ (x = y ∧ c ≤ d) ∨ x ≺ y

where the subformulas |v| ≥ c, c ≤ |v| ∧ v(c) = σ and c ≤ d (which do not
actually belong to MSO syntax) are either defined by > or ⊥ depending on
whether the Boolean expressions they represent hold true or not. Finally, note
that T ′ is indeed order-preserving since clearly, if u |= φc,d� (i, j), then i ≤ j.

Conversely, given an order-preserving MSO-transducer T , one shows how
to construct an equivalent NFT T ′. We start by a first observation. Let u =
σ1 . . . σn ∈ dom(T ) and v = JT K(u). Since T is order-preserving, there is no
backward edges in the output word structures produced by T . Therefore the
word v can be decomposed into v1 . . . vn such that each word vi is the subword
of v induced by the non-filtered copies of the input position i, i.e. the set Ni =
{i1, . . . , ik} ∩ {ij | u |= φjpos(i)}. It can be seen on Fig. 6: each vertical block of
the output structure correspond to a partial output word, and the result output
word of the transformation is obtained by concatenating, in order, these partial
words. Let Σ∗k be all the words over Σ of length at most k. For all w ∈ Σ∗k , one
can define an MSO formula Ψw(x) such that u |= Ψw(i) iff u ∈ dom(T ) implies
that w = vi, where vi is defined by the decomposition explained before. Note
that the definition of order-preservation does not require that copies are ordered
according to ≤ (on integers), i.e., whenever formula φc,d� (x, y) holds, it implies
that x � y, but not necessarily c ≤ d, unlike the example of Fig. 6. In other words,
it could be that the first position of vi corresponds to node i2 while the second
position corresponds to node i1 of the output structure. Therefore, in order to
define Ψw(x), one has to quantify, by a huge disjunction, over possible orders over
these copies. Formally, for all tuples t = (j1, . . . , j|w|) such that j` ∈ {1, . . . , k}



for all ` ∈ {1, . . . , |w|}, and j`1 6= j`2 for all `1 6= `2 ∈ {1, . . . , |w|}, we define an

intermediate formula Ψ
(j1,...,j|w|)
w (x) which holds true whenever the x-th partial

output word is w, and each position of w correspond to nodes xj` . Then, Ψw(x)

is obtained as the disjunction of the formulas Ψ
(j1,...,j|w|)
w (x) for all tuples:

Ψ tw(x) ≡
|w|∧
`=1

φj`pos(x) ∧ φj`Lw(`)
(x) ∧

∧
j∈{1,...,k}\{j1,...,j|w|}

¬φjpos(x)
∧|w|−1
`=1 φ

j`,j`+1

� (x, x)

Ψw(x) ≡
∨
{Ψ tw(x) | t = (j1, . . . , j|w|) ∈ {1, . . . , k}|w|, j`1 6= j`2 , ∀`1 6= `2}

In other words, for all u ∈ dom(T ), we have u |= Ψw(i) iff w is the i-the subword
of the output of u. This formula is of particular interest if we want to define
an NFT, because it tells us exactly what partial output word must be produced
while reading the i-th input letter.

The rest of the proof explains how one can construct an automaton A on the
alphabet Γ = Σ×Σ∗k which accepts all words (σ1, v1) . . . (σn, vn) ∈ Γ ∗ such that
for all i ∈ {1, . . . , n}, vi is the (unique) word such that σ1 . . . σn |= Ψvi(i). The
final NFT T ′ is obtained from this automaton A by replacing every transition

(q, (σ, v), p) of A by the transition q
σ|v−−→ p of T ′. Clearly, T ′ is equivalent to T .

In order to construct A, we again apply Büchi-Elgot-Trakhtenbrot’s theorem,
since the language of A is MSO-definable, by the sentence (on SΓ )

φA ≡ [φdom]Γ ∧ ∀x ·
∧

(σ,v)∈Γ

L(σ,v)(x)→ [Ψv(x)]Γ

where [φdom]Γ (resp. [Ψv(x)]Γ ) is obtained from φdom (resp. Ψv(x)), which is on
the signature SΣ , by replacing every atom Lβ(y) by

∨
w∈Σ∗k

L(β,w)(y). Clearly,

a word s = (σ1, v1) . . . (σn, vn) over Σ ×Σ∗k satisfies [φdom]Γ iff u = σ1 . . . σn |=
φdom. Similarly, s |= [Ψv(i)]Γ iff u |= Ψv(i), and therefore the correctness follows.�

Again, the power of transducer-logic connections is illustrated by the follow-
ing definability problem. It is decidable whether a deterministic two-way finite
state transducer T is equivalent to a (one-way) functional finite state transducer
[26]. As a consequence of this result, the connection between 2FST and MSOT
(Theorem 1), and the previous theorem (Theorem 4), we obtain the following
corollary:

Corollary 1. Given an MSO-transducer T , it is decidable whether T is equiva-
lent to some order-preserving MSO-transducer.

Proof. It suffices to translate T into a deterministic two-way transducer T ′, by
applying the (effective) encoding of Theorem 1, then to apply the procedure
of [26] which decides whether T ′ is equivalent some NFT, and finally to apply
Theorem 4. �



5.4 Transformations with origin

One of the difficulties in the theory of transducers is to deal with the asynchronic-
ity in the production of the output. For instance, two FST may not produce there
output letters at the same time when reading the same input position, but still,
they can be equivalent. This asynchronicity, which is implicitly present in the
Post correspondence problem (PCP), can even, in some cases, lead to undecid-
able problems. For instance, the equivalence problem of non-deterministic FST
is undecidable, and the undecidability proof is non surprisingly based on PCP
[29]. The asynchronicity between output words have been captured by a notion
of output delay, which have been used, for instance, to make elegant proofs of
the decidability of equivalence of functional FST [7].

Recently introduced by M. Bojanczyk, a stronger semantics have been given
to transformations, that takes into account the origin of the output letters in
the input word. Several classical problems have been revisited and most of them
become trivial with this new semantics [9]. Some problems, still open in the
classical semantics, have also been solved in the origin semantics, such as getting
a machine-independent characterisation of MSO-transformations, as well as an
effective characterisation of first-order transformations. We present some of these
new results in this section.

Definition 3. Let Σ be an alphabet, and u, v ∈ Σ∗. An origin function for v in
u is a mapping o : dom(v) → dom(u). A word transformation with origin over
Σ is a set of pairs (u, (v, o)) such that u, v ∈ Σ∗ and o is an origin function for
v in u.

Intuitively, o(i) is the position in the input word at which the position i of
the output word has been produced. Origin semantics can be defined for the
transducer models we have seen so far. For instance, the origin transformation
(or o-transformation) defined by an FST T is the set of pairs, denoted by JT Ko ,
of the form (u, (v, o)) such that (u, v) ∈ JT K, and for all i ∈ dom(v), o(i) the
position of u where T has produced v(i), i.e. where T has triggered a transition
on reading u(o(i)) which has produced a partial word containing the letter v(i).

With this semantics, the origin equivalence problem for FST, i.e. deciding
whether two FST T1, T2 satisfy JT1Ko = JT2Ko , can be easily solved, because T1
and T2 can be seen respectively as two automata A1, A2 over Σ ×Σ∗k , where k
is the longest output word occurring on the transitions of T1 and T2. Indeed,
JT1Ko = JT2Ko iff the automata A1 and A2 are equivalent, i.e., define the same
language. This trick, however, cannot be used for two-way FST, making origin
semantics more interesting in this context.

It is also possible to give a natural origin semantics to transformations re-
alised by MSO-transducers T . In that case, (u, (v, o)) ∈ JT Ko if (u, v) ∈ JT Ko and,
if ic is the k-th node of v (wrt to �), where i ∈ dom(u) and c is a copy, then we
let o(k) = i.

In the origin world, it is possible to characterise algebraically first-order de-
finable transformations with origin, while this problem is open in the classical



setting. Moreover, this characterisation is effective when the transformation is
defined by, say, an MSO-transducer.

Let u ∈ Σ∗, o : dom(u)→ N, and X ⊆ N. The abstraction u/X of u by X is
the word over Σ⊥ := Σ ∪ {⊥} obtained by replacing in u each letter at position
i ∈ dom(u) by ⊥ if o(i) ∈ X, where ⊥ is a fresh symbol not in Σ. For instance,
if u = aba with origin o(1) = 3, o(2) = 2 and o(3) = 1, then u/{2,3} = ⊥⊥a.

We let ∼⊥ the equivalence relation on Σ∗⊥ induced by the equation ⊥ = ⊥⊥.
E.g. ⊥a⊥b ∼⊥ ⊥⊥a⊥⊥⊥b, but a 6∼⊥ ⊥a.

Given an o-transformation f , one defines its reverse rev(f). For all u ∈ Σ∗,
if (v, o) = f(u), then rev(f) = (frev(v), rev(o)), where rev(o)(i) = o(|v| − i+ 1).

Similarly to the syntactic equivalence relation for languages, one can define
left- and right- equivalence relations for transformations with origin f , resp.
denoted by Lf and Rf .

Definition 4. Let f be a transformation with origin on Σ. Let v1, v2 ∈ Σ∗.
Then, v1Lfv2 if for all w ∈ Σ∗:

1. v1w ∈ dom(f) iff v2w ∈ dom(f)
2. if v1w ∈ dom(f), then f(v1w)/dom(v1) ∼⊥ f(v2w)/dom(v2).

Symmetrically, Rf = Lrev(f).

Example 7. For instance, consider the o-transformation g that maps any u ∈
Σ∗ to (frev(u)u, o), where, naturally, for all i ∈ {1, . . . , |u|}, o(i)=|u|−i+1 and
o(|u|+i)=i. Then, there are only two equivalence classes for both equivalence
relation: {ε} and Σ+. Indeed, for all w ∈ Σ∗,

f(v1w)/dom(v1) = (frev(w)frev(v1)v1w)/dom(v1) = frev(w)⊥2|v1|w.

Therefore f(v1w)/dom(v1) ∼⊥ frev(w)w if v1 = ε and f(v1w)/dom(v1) ∼⊥ frev(w)⊥w
otherwise. A similar arguments applies for Rf .

It is then possible to characterise MSOT-definable o-transformations by a
Myhill-Nerode like theorem, and to give an effective characterisation of FOT-
definable o-transformations.

Theorem 5 (M. Bojanczyk [9]4). Let f be a transformation with origin over
Σ. The following two statements hold true:

1. f is MSOT-definable iff both Lf and Rf have finite index.
2. f is FOT-definable iff both Lf and Rf have finite index and for all u ∈ Σ∗,

the Lf -class of u and the Rf -class of u are FO-definable languages.

As shown in [9], if f is MSOT-definable, then the Lf - and Rf -equivalence
classes are regular languages that can be effectively represented by automata.
Characterization (2) is therefore effective, as it suffices to decide whether all
equivalence classes are FO-definable, which is decidable [19].

4 We adopt in this paper a slightly different, but equivalent, formalisation as in [9].



6 Beyond functional finite word transformations

In this section, we discuss other transducer-logic connections for non-functional
transformations and other structures (infinite words and trees).

6.1 Non-functional finite word transformations

The state-based transducer models (FST, 2FST and SST) can all be extended
with non-determinism (leading to the classes NFT, 2NFT, and NSST resp.), and
rather define relations from word to words instead of functions. MSO-transducers
can, as well, be extended with non-determinism.

Non-deterministic state-based models We have already seen in Section 4.1 how
to extend FST with non-determinism. Similarly, 2FST can also be extended with
non-determinism, the transition relation ∆ being of type ∆ ⊆ Q × (Σ ∪ {a,`
})×Q× {+1,−1} ×Σ∗. Unlike FST, there can be infinitely many runs on the
same input word, leading to infinitely many outputs for that word. For instance,
2NFT can loop an arbitrary number of times between two input positions and
non-deterministically decide to apply the halting transition function. Their runs
can even be infinite but we consider only finite runs to define the transformation.

SST can, as well, be extended with non-determinism, with transition relation
∆ ⊆ Q × Σ × Q. Unlike 2NFT, there is alway a finite number (exponential in
the worst-case) of accepting runs on the same input word.

Non-deterministic MSO-transducers (NMSOT) MSO-transducers can be ex-
tended with non-determinism by allowing all the formulas (including the domain
formula) to use a finite set of second-order of variables X1, . . . , Xn. Given an in-
put word u, the outputs of u depend on the valuations of these second order
variables by subsets of dom(u). In particular, modulo a valuation of X1, . . . , Xn

by subsets of dom(u), the transformation becomes functional, and the outputs
of u are the set of output words defined for each valuation. For instance, it is
possible to define with an NMSO-transducer Tsub the tranformation Rsub which
maps any word u to all its subwords, using one second-order variable X and
only one copy, as follows: φdom ≡ >, φ1pos(x,X) = x ∈ X, φ1σ(x) = Lσ(x) for

all σ ∈ Σ, and φ1,1� (x, y) ≡ x � y. If one wants to restrict all the subwords to
subwords generated by the even positions, it suffices to strengthen the domain
formula to φdom(X) ≡ ∃Y φo/e(Y,X), where φo/e has been defined in Example 2.

Transducer-Logic Connections A transformation R is finitary if for all words
u ∈ Σ∗, R(u) is finite. It is clear that NFT, NSST and NMSOT define fini-
tary transformations. However, 2NFT does not define, in general, finitary trans-
formations. It turns out that 2NFT and NMSOT define incomparable classes
of transformations.To capture exactly NMSOT with a two-way device, Hennie
machines have been introduced in [22]. Hennie machine can rewrite their input
tape, but each input position must be visited a constant number of times. On
the one-way model side, it has been shown that NSTT corresponds exactly to
NMSOT [5].



q0 q1 UVUV

a, b

∣∣∣∣U := Ua
V := ε

a

∣∣∣∣U := U
V := b

b

∣∣∣∣U := U
V := V b

Fig. 7. Example of ω-SST defining fω, with output function O({q1}) = UV .

6.2 Infinite word transformations

An ω-word over Σ is a mapping w : N → Σ. The i-th letter of w is w(i).
An infinite words w over Σ is either a finite word or an ω-word. The set of
ω-words over Σ is denoted by Σω, and the set of infinite words by Σ∞. Note
that Σ∞ = Σ∗ ∪ Σω. A transformation R of infinite words over Σ is a binary
relation from Σω to Σ∞ (we assume indeed in this section that the input word
is an ω-word).

MSO-transducers can naturally be generalised to define functional infinite
word transformations, by seeing an ω-word as a structure over SΣ whose domain
is N. For an MSO-transducer T to be an MSO-transducer of infinite words, we
require that for all input words u ∈ Σω, the image JT K(u) is a structure that
corresponds to an infinite word. Although it is a semantical restriction, it is
decidable, similarly as in the proof of Proposition 1.

As an example, consider the transformation fω : Σω → Σω, where Σ =
{a, b}, that maps any input word of the form uabω to a|u|bω, where u ∈ Σ∗. It is
definable by the following MSO-transducer with one copy and φdom ≡ ∃x·La(x),

φ1pos(x) ≡ > φ1a(x) ≡ ∃y � x · La(y) φ1b(x) ≡ ¬φ1a(x) φ1,1� (x, y) ≡ x � y

(Deterministic) 2FST can be extended to define functional infinite word trans-
formations, by using for instance a Muller acceptance condition (they are called
ω-2FST). However, they cannot even define fω, because they can never decide
locally whether a b letter should be transformed into an a letter or kept un-
changed, because it depends on the existence of an a letter in the future. They
could use the two-wayness as a kind of look-ahead to check the existence of
such an a, but they cannot come back exactly to the position they were coming
from, because they get lost, due to the finite state device. One therefore needs
to extend ω-2FST with regular look-ahead: each transition of an ω-2FST with
regular look-ahead is extended with a finite state automaton over ω-words that
checks a property of the (infinite) suffix. Such transition can be triggered only if
the suffix belong to the look-ahead automaton. It should be clear that ω-2FST
with regular look-ahead strictly extend the expressive power of ω-2FST.

SST have been extended to define functional infinite word transformations,
with a Muller accepting condition (called ω-SST). They run on ω-words in a
deterministic way, and the (partial) output function O has type 2Q → X ∗.
Given a run r over an ω-word u, let P the set of states visited infinitely many



times in r. The output of r is defined only if O(P ) is defined, as the limit of the
sequence of finite words sεsr,i(O(P )) for i → ∞ (remind that sε and sr,i have
been defined in Section 4.3). In order to ensure the existence of that limit (and
to make sure that this limit is an infinite word), syntactic restrictions are put
on the SST: if P ∈ dom(O) and O(P ) = U1 . . . Un, it is required that on the
connected component induced by P in T , the registers U1, . . . , Un−1 are never
modified, and the register Un can only be modified by appending something (i.e.
updates are of the form Un := Unα for some α ∈ (Σ ∪ X )∗). The transition
monoid of an ω-SST is defined similarly as SST.

As an example, consider the ω-SST of Fig. 7 that defines transformation fω.
It can loop an arbitrary number of steps in state q0 while replacing all symbols by
a, and storing the current output in register U . Non-deterministically, it guesses
the last occurrence of an input a symbol, and from that point on, never modifies
register U again, and always append b to register V . Register U is intended to
capture the word a|u| in the definition of fω, while V captures bω. The output is
then UV , and it is defined only for the singleton {q1}, which enforces that after
some time, only b symbols are read.

It has been shown in [3] that MSO-transducers of infinite words correspond
exactly to ω-2FST with regular look-ahead, to ω-SST with finite transition
monoid, and to ω-SST with copyless transition monoid.

6.3 Tree transformations

We present a result that establishes a correspondence between MSO-transducers,
and a transducer model for functional transformations of finite ranked trees.
Recall that ranked trees are ordered trees over a ranked alphabet. Each symbol
f of the alphabet has a rank denoted by r(f) and, if some node α is labelled
f , this node has exactly r(f) successor nodes, called the children of α (see [13]
for a formal definition). We denote by TΓ the set of ranked trees over a ranked
alphabet Γ , and a (ranked) tree transformation is a binary relation over TΓ .

Tree transducers and their connection with term rewriting systems have been
deeply studied, see for instance [28]. More recent results on tree transducers can
be found in [16]. Like words, ranked trees over Γ can be seen as logical structures
over the signature S = {S1, . . . , Sn, (La)a∈Γ }, where n is the maximum arity in
Γ , Si are binary successor predicates interpreted by pairs of nodes (α, β) such
that β is the i-th child of α, and La are unary predicates for the node labels. An
MSO-transducer over the signature S defines a functional tree transformation
on TΓ , provided the output is a ranked tree structure (which is a decidable
property). For instance, consider a ranked alphabet Γ = {g, a} where g is a
binary symbol and a a constant, and the transformation trev which reverses a
tree, i.e., reverses the order relation between the children of any internal node.
The transformation trev is definable by the following one-copy MSO-transducer:

φdom ≡ φ1pos(x) ≡ > φ1Lγ (x) ≡ Lγ(x) φ1,1Si (x, y) ≡
∨
γ∈Γ

Lγ(x)∧φSr(γ)−i+1
(x, y)

for γ ∈ Γ and i ∈ {1, 2}.



Correspondences between MSO-transducers on ranked trees and tree trans-
ducers has been first studied in [23,8,24] for attribute grammars and macro tree
transducers, and more recently in [4] for streaming tree transducers.

Macro tree transducers extend top-down tree transducers with parameters in
which to store partial output trees. They correspond to purely functional pro-
grams working on tree structures: states are mutually recursive functions and
can carry parameters. Due to lack of space, we do not define formally macro tree
transducers. MSO-transducers on ranked trees correspond exactly to (determin-
istic) macro tree transducers of linear-size increase, i.e. macro tree transducers
that define functions whose output tree size depends linearly on the size of
the input tree. It is shown in [23,8] that functional MSOT-transformations of
ranked trees are definable by macro tree transducers. The other, more difficult
direction, which shows that macro tree transducers of linear-size increase are
effectively MSOT-definable was proved in [24]. A consequence of this effective
correspondence is the decidability of equivalence for linear-size increase macro
tree transducers. It was indeed shown in [25] that MSO-transducers of ranked
trees have decidable equivalence problem (see [34] for a survey on equivalence
problems for tree transducers).

Other connections between MSO-transducers and tree transducers have been
obtained, for an extension of streaming string transducers to trees [4], and for
some classes of tree walking transducers [16].
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