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Abstract. Visibly Pushdown Transducer¥PT) form a subclass of pushdown
transducers. In this paper, we investigate the extensidtPart with visibly push-
down look-ahead\(PT,). Their transitions are guarded by visibly pushdown
automata that can check whether the well-nested subwortingtat the cur-
rent position belongs to the language they define. First,heevghatVPT,, are
not more expressive tharP T, but are exponentially more succinct. Second, we
show that the class of deterministPT,, corresponds exactly to the class of
functional VPT, yielding a simple characterization of functiondPT. Finally,
we show that while/PT,, are exponentially more succinct th&i® T, checking
equivalence of functiond/PT, is, as forVPT, EXPT-C. As a consequence, we
show that any functiona/PT is equivalent to an unambiguous one.

1 Introduction

Visibly pushdown transducer¥PT) [17, 9] form an interesting subclass of pushdown
transducersRT). Several problems that are undecidablefdrare decidable fovYPT,
noticeably: functionality is decidable in PME, k-valuedness in NPiME and equiva-
lence of functionaVPT is ExXPT-C [9].

Visibly pushdown machines [1], automat&RA) or transducers, are pushdown ma-
chines such that the behavior of the stack, i.e. whethesii@sior pops, is visible in the
input word. Technically, the input alphabet is partitiorietb call, return and internal
symbols. When reading a call the machine must push a symlbemstack, when read-
ing a return symbol it must pop and when reading an internalb®} it cannot touch
the stack. The partitioning of the input alphabet inducessting structure of the input
words [2]. A call symbol delimits an additional level of niest, while a return symbol
is a position in the word that ends a level of nesting. A worgédl-nested if each call,
respectively each return, has a matching return, resgdgtavmatching call. Visibly
pushdown transductions are transductions that can be défynéPT.

Unranked trees in their linear form (such as XML documen#s) be viewed as
well-nested wordsVPT are therefore a suitable formalism for unranked tree trans-
formations. In particular, they can express operationk siscnode deletion, renaming
and insertion. Furthermore, over well-nested words, alsmpd expressive subclass of
VPT, the class of well-nestedPT [9], is closed under composition and has a decidable
type checking problem. In the setting of XML documeMBA, as they read the tree in
a left-to-right depth-first traversal manner, are welkadifor streaming validation [12,
16] or streaming XML queries [11]. In the same way well-nd3{®T are amenable to
define streaming transformations.

In this paper, one of our motivations is to give a simple cbidzation of func-
tional VPT that can be checked easily. Determinidfie T are not expressive enough
to capture all functional/PT, as for instance swapping the first and last letters of a
word cannot be done deterministically. Instead of nontteiteism, we show that some



limited inspection of the longest well-nested subwordtstgrat the current position
(called thecurrent well-nested prefjxs required to capture (hon-deterministic) func-
tional VPT. More precisely, we show that functiondPT-transductions are captured
by deterministia/PT extended with visibly pushdown look-aheads that inspectth-
rent well-nested prefix. Moreover, inspecting the curregitawested prefix is somehow
the minimal necessary information to capture all functlofT .

In this paper, we therefore introduce and investigate tagscbfVPT with visibly
pushdown look-ahead. MPT with visibly pushdown look-ahead/fT,) is a VPT
such that call transitions are guarded with visibly pushd@utomata \{PA). When
reading a call at position, a VPT,, can apply a call transition provided the longest
well-nested word starting at positians included in the language of théPA of the
transition. In the same way one can defWiRA with look-ahead {PA|;). Our main
contributions are the following:

1.VPT, (resp.VPA,,) are as expressive agPT (resp.VPA), but exponentially more
succinct.

For this we present an exponential construction that shawsaVPT can simulate
look-aheads. Moreover we show this exponential blow-umavoidable.

2. DeterministicVP T, and functionaMPT are equally expressive

This equivalence is obtained by a construction (which is algponential) that replaces
the non-determinism of the functionslPT with deterministic look-ahead. This also
yields a simple characterization of functiond?T.

3. Equivalence of functionalPT,, (respVPA},) is, as forVPT (respVPA), EXPT-C.

Therefore even thougWiP T, are exponentially more succinct theR® T, testing equiv-
alence of functionaV/PT|, is not harder than for function®PT. This is done in two
steps. First one checks equivalence of the domains. Theohmuks that the union of
the two transducers is still functional. We show that tegfinctionality is EXPT-C
for VPT,: get rid of the look-aheads with an exponential blow-up asl in PTME
the functionality of the constructedPT. To verify that the domains are equivalent,
the naive technique (removing the look-aheads and thefyiragithe mutual inclusion
of the domains) yields a doubly exponential algorithm. éast, we show that the do-
mains of VPT,, are linearly reducible to alternating top-down tree auttam@esting
the equivalence of such automata can be donexinTH3].

4. FunctionalVPT and unambiguou8PT are equally expressive

As an application of look-aheads, we show that a nice coresegpof the construc-
tions involved in contribution$ and3 is that functionaMPT are effectively character-
ized by unambiguougPT. This result was already known for finite-state transducers
[4,15,5] and here we extend it ¥PT with rather simple constructions based on the
concept of look-aheads. This characterization of funetidinite-state transducers has
been generalized to-valued and:-ambiguous finite-state transducers [18] and recently
with a better upper-bound [14] based on lexicographic deuasition of transducers.

Finally, we discuss slightly different look-aheads. Finge consider look-aheads
that are allowed to inspect the whole current prefix untilehd. We show that this does
not add expressivity nor succinctness. Second, we showahtiicting the look-ahead
to the current prefix in between the current call and its miatcreturn ¢.c. the subtree
rooted at the current node) is not sufficient to have a chariaeation of functional/PT



by deterministicVPT),. All these results are new indications that the clas¥®T is
robust, and they show that the class/&fT , is interesting in itself.

Related WorksRegular look-aheads have been mainly considered for dasfsieee
transducers, where a transition can be fired provided theegusubtree belongs to
some regular tree language. For instance, regular loo&dzheave been addedttp-
down (ranked) tree transduceis order to obtain a robust class of tree transducers
that enjoys good closure properties wrt composition [6Jtoamacro tree transducers
(MTT) [8]. For top-down tree transducers, adding regular lob&eal strictly increases
their expressive power whil T T are closed by regular look-ahead [8]. Another strong
result shows that every functional top-down tree trandgdoatan be defined byaeter-
ministictop-down tree transducer with look-ahead [7].

Trees over an alphabgt can be linearized as well-nested words over the structured
alphabetr, = {c, | a € X}, X = {r, | a € X'}. Itis well-known that unranked trees
can be represented by binary trees via the classical fiilst-nbxt-sibling encoding
(fcns). Top-down (ranked) tree transducers can thus beasadranked tree transduc-
ers on fcns encodings of unranked trees. Inspecting a guibttee fncs encoding cor-
responds to inspecting the first subtree and its next-gjslifbtrees in an unranked tree,
which in turn corresponds to inspecting the current longedl-nested prefix in their
linearization. However top-down tree transducers@Rd are incomparable: top-down
tree transducers can copy subtrees Wik cannot, and/PT support concatenation
of tree sequences while top-down tree transducers canaoexample, the transfor-
mation that removes thgnode in unranked trees of the forflg(a, ..., a),b,b,...b)
produces trees of the forrfi(a, a,...,a,b,...b). This transformation can easily be
defined by a/PT, but not by a top-down ranked tree transducers with the fnced-
ing [13, 9]. Indeed, in the fncs encoding, this transfororatnaps any tree of the form
flg(ta,ty), L) t0 f(ta-ty, L), wheret,, ty, t,.tp are the binary encodings of the hedges
(a,...,a),(b,...,b), (a,...,a,b,...,b) respectively:

a cal(L, L))ty = (L b(L, .. b(L, 1)..)
oty = a(L,a(L,...a(L,b(L,b(L,...b(L,1)...)))

Therefore, this transformation requires to move the selréwhose size may be un-
bounded) as a leaf of the subtrgg(whose size may also be unbounded). This cannot
be done by a top-down tree transducer, but can be defined by 8O thanks to
parameters (some parameter will store the entire subtrehile evaluating,).

Modulo those encoding$4TT subsumeVPT [9] and as we said before, there is
a correspondence between the two notions of look-aheadgPfdo andMTT respec-
tively. However it is not clear how to derive our results oostire by look-aheads from
the same result oNITT, as the latter highly relies on parameters and it would requi
back-and-forth encodings between the two models. Thetdimtstruction we give in
this paper is self-contained and allows one to derive theadtarization of functional
VPT as unambiguougPT by a careful analysis of the construction.

2 Visibly Pushdown Languages and Transductions

All over this paper)’ denotes a finite alphabet partitioned into two disjoint getsy”,.,
denoting respectively theall andreturn alphabets. We denote y* the set of (finite)



words overX’ and bye the empty word. The length of a woidis denoted byu|. The
set ofwell-nestedvords X | is the smallest subset af* such that € X% and for all
ce X alre X, aluve Xy, cure Xy anduv € X7 .

A visibly pushdown automataivPA) [1] on finite words overY' is a tupleA =
(Q,I,F,I,5)whereQ is a finite set of stated, C @ the set of initial statest’ C @
the set of final stated, the (finite) stack alphabet, and= §. W 6, whered. C @ x
Y, x I x @ are thecall transitions 6,, C Q x X, x I x ) are thereturn transitions.

On a call transitioriq, a, v, ¢') € 4., 7 is pushed onto the stack and the control goes
from g to ¢’. On a return transitiofy, a, vy, ¢') € §,, v is popped from the stack.

A configurationof a VPA is a pair(q,o) € @ x I'*. A run of T on a wordu =
ay ...a; € X* froma configuratioriq, o) to a configuratiorig’, o’) is a finite sequence
p = {(qr, %) }o<k<i Such thaigy = ¢, 00 = 0, ¢ = ¢/, oy = o’ and for eachl <
k <, there existsy, € I' such that eithetgy—1, ax, &, qx) € . andoy, = ok—17% OF
(Qk—1, aksVk: Q) € Or andoy_1 = ok The runp is acceptingf ¢o € I, ¢ € F and
oo = 0 = 1 Aword w is acceptedy A if there exists an accepting run dfoverw.
L(A), thelanguageof 4, is the set of words accepted By A languagel overX' is a
visibly pushdown languagéthere is aVPA A over X such thatL.(A) = L. Finally, a
VPT is unambiguoud there is at most one accepting run per input word. In paldiG
any unambiguou¥PT is functional. Unambiguity can be checked inIRE [9].

As finite-state transducers extend finite-state automata auitputs, visibly push-
down transducers extend visibly pushdown automata withudg{9]. To simplify nota-
tions, we suppose that the output alphabet jdut our results still hold for an arbitrary
output alphabet. Informally, the stack behavior &fRT is similar to the stack behavior
of visibly pushdown automata/PA). On a call symbol, th&PT pushes a symbol on
the stack and produces some output word (possibly empty andetessarily well-
nested), on a return symbol, it must pop the top symbol of theksand produce some
output word (possibly empty) and on an internal symbol, taelsremains unchanged
and it produces some output word.

Definition 1. A visibly pushdown transduc€¥PT) on finite words ovel is a tuple

T = (Q,I,F I,0) where@ is a finite set of stated, C @ is the set of initial states,
F C Q the set of final stated] is the stack alphabet,= §. & §,. the (finite) transition

relation, withd, CQ x Y. x X" X I'x Q,6, CQ x X, x XJ* x I' x Q.

Configurations and runs are defined similarly&#\. Givenaworth = a; ...a; €
X* and a wordv € X*, v is anoutputof u by T if there exists an accepting run
p = {(qx,0%) }o<k<i ONu andl wordswvy, ..., v; such thaty = v, ... v, and for all
0 < k < [, there is a transition dI" from (g, o) t0 (qr+1,0%+1) that produces the

outputv41 on input lettera,.1. We write(q, o) u—/v> (¢’, o’) when there exists a run
onu from (¢,0) to (¢’, o’) producingv as output. A transducdr defines the binary

u/v

word relation[T] = {(u,v) | 3¢ € I,¢' € F, (¢, L) — (¢', L)}

1 n contrast to [1], we do not considimiternal symbolsi, as they can be simulated by a (unique)
call ¢; followed by a (unique) return;. All our results extend trivially to alphabets with in-
ternal symbols. We make this assumption to simplify notetidVloreover, we do not allow
return transition onl and we require the final stack to be empty. This implies tHatcalepted
words are well-nested.



A transductionis a binary relation? C X* x X*. We say that a transductiaR
is aVPT-transduction if there exists\PT T such thatR = [T7]. A transductionR?
is functionalif for all v € X*, there exists at most onee X* such thatu,v) € R.

A VPT T is functionalif [T7] is functional. Two transducefs,, T> areequivalentif
[T1] = [T»]. It is known [9] that functionality is decidable in PWE for VPT and
equivalence of functionafPT is EXPT-C.

The class of functionad PT is denoted byfVPT. For any input word:, € X*, we
denote byR(u) the set{v | (u,v) € R}. Similarly, for aVPT T, we denote byl"(u)
the set[T(u). If R is functional, we confound®(u) (which is at most of cardinality
1) and the unique image af if it exists. Thedomainof T' (denoted bypom(T")) is the
domain of[T]. Note that the domain df’ contains only well-nested words, which is
not necessarily the case of the codomain.

Example 1.Let . = {¢,a}, X = {r} be the call and return symbols of the alphabet.
The following VPT T transforms a word as followsi) « andr are mapped ta and

r respectively;(ii) c is mapped either te if no a appears in the longest well-nested
word starting at, and toa if an a appears. E.g:crrarcr is mapped tacrrarcr, and
ccerrercarrr t0 aacrraraarrr.

TheVPT T = (Q,I,F, I,0) is defined byQ = {q,¢a,q-a}, I = {¢}, F = Q,

I' = {~,74,7-} @andd contains the following transitions:

c/a,y c/a,va c/c,Ya
qorqge, —— qa qorqg, —— ¢ q — (q-a

afasy ¢/cr1ma
q0rgqg - q G—-a — Q-a

7'/7'7'Ya 7'/7',’7 7'/7'a'7ﬁa
qOrg-q — qaq qorg-g — ¢ q—a — 7 G-a

The statey,, resp.q-,, means that there is, resp. is not,@am the longest well-
nested word that starts at the current position. The statelicates that there is no
constraints on the appearancenoff T is in stateq and reads a, there are two cases:
it outputs aru or ac. If it chooses to output aa, then it must check that amoccurs
later. There are again two cases: eitfieguesses there is anin the well-nested word

that starts just after and takes the transitiorqsﬂ da, OF it guesses am appears in
the well-nested word that starts after the matching retfimn io that latter case it takes

the transitiory C/a—%> ¢ and uses the stack symbg] to carry over this information. If

onc it chooses to output, it must check that there is nolater by using the transition
g SLe0mey o Other cases are similar.

3 VPT with Visibly Pushdown Look-Ahead

Given a wordw overX' we denote by pref,(w) the longest well-nested prefix of E.g.
pref,,(ccrer) = € and pref, (crc) = cr. We define avPT T with visibly pushdown
look-ahead (simply called look-ahead in the sequel) infdlyras follows. The look-
ahead is given by ¥ PA A without initial state. On a call symbel T' can trigger the
look-ahead from a stateof the VPA (which depends on the call transition). The look-
ahead tests membership of the longest well-nested pretveaitrrent suffix (that starts
by the letterc) to L(A, p), where(A, p) is the VPA A with initial statep. If the prefix
isin L(A, p) then the transition of” can be fired. When we consider nested words that
encode trees, look-ahead correspond to inspecting theesuioibted at the current node
and all right sibling subtrees (in other words, the currexdde). Formally:
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Gy
Fig.1.A VPT,, (left) and its look-ahead (right) ob. = {¢,a} andX, = {r}

Definition 2. AVPT with look-aheadY{PT\,) is a pairT;, = (T, A) whereA is aVPA
A = (Q', Fle, e §le) without initial state andl is a tupleT = (Q, qo, F, I, )
such that@ is a finite set of stategy, € @ is an initial state,/" C @ is a set of
final states,I” is a stack alphabet, andl = §. W §,. is a transition relation such that
5. CQX T xX*xQxT'xQandd, CQ x X, x X*x I xQ.

A VPA with look-ahead{/PA,,) is defined similarly.

Letu € X*. Arunof T, onu = a3 ...a; IS a sequence of configuratiops=
{(gx, or) fo<k<: such that there exist € I" andviy, € X* such that(i) if ag41 €
X, then0k+1’y = g, and (qk,ak+1,vk+1,7,qk+1) € o, (’LZ) if ap4+1 € Y., then
ok+1 = oy, and there exists € Q' such that gy, axt1,vk+1,p,7, @rr1) € 0. and
pref, (ax+1...a;) € L(4,p). The runp is accepting ifoy = 0; =L andg; € F. The
wordv; ... v is an output ofu.

The VPT,, T;, is deterministicif for all transitions(q, ¢, v1,p1,71,491) € 0. and
(q, ¢, v2,D2,72,q2) € d¢, if v1 7# v2 Or Y1 # Y2 OF g1 # G2 OF p1 # pa, thenL (A4, p1) N
L(A,p2) = @; and for all transitiongq, r,v1,71,¢1) € d, and(q,r,v2,72,q2) € o,
we havev; = vg, 71 = 72 andgq; = ¢2. Note that deciding whether sorvPT), is
deterministic can be done in IME. One has to check that for each statand each
call symbole, theVPL guarding the transition from stateand reading: arepairwise
disjoint. The number of states o\ T\, is the number of states of the transducer plus
the number of states of the look-ahead.

Example 2.A VPT, is represented in Figure 1. The look-ahead automaton i€tepi
on the right, while the transducer in itself is on the leftd#fines the transduction
of Example 1. When starting in staig, respectivelyy-,, the look-ahead automaton
accepts well-nested words that contains arespectively does not contain amyWhen
starting in statey it accepts any well-nested word. The transducer rewtigsnbols
into a if the well-nested word starting atontains am (transition on the top), otherwise
it just copy ac (transition on the right). This is achieved using theandq-,, states of
the look-ahead automaton. Other input symbols,d.@andr, are just copied to the
output (left and bottom transitions).

The next theorem states that adding look-ahead&b does not add expressiveness.
The main difficulty is to simulate an unbounded number of lableads at the same
time. Indeed, a look-ahead is triggered at each call andeaintil the end of the well-
nested subword starting at this call. We use summaries [hatalle look-aheads that
started at a strictly less deeper nesting level and a subsstraction for those that
started at the same nesting level.



Theorem 1. For anyVPT,, resp.VPA,, T;, with n states, one can construct an equiv-
alentVPT, resp.VPA, T” with O(n2"2+1) states. Moreover, if}, is deterministic, then
T’ is unambiguous.

Proof. We prove the result foWP T, only, this trivially implies the result fol/PA,,.
LetTy, = (T, A)with T = (Q, qo, F, I',§) andA = (Q'*, F'@, '@ §'@). We construct
T = (Q',q0, F', 1", 6") as follows (wherd dg,i. denotes the identity relation ap'e):
Q = Q x 29" Q" % 2" ¢t = (g0, Idge, 2), F' = {(¢, R, L) € Q' | g € F, L C
Fla}, " = I x 29'"xQ" » 20" x ¥

The transduc€er’ simulatesl” and its running look-aheads. A stateTdfis a triple
(¢, R, L). The first component is the state Bf The second and third components are
used to simulate the running look-aheads. When taking a,cBlinon-deterministically
chooses a new look-ahead triggeredibyt his look-ahead is added to all running look-
aheads that started at the same nesting |&Veknsures that the run will fail if the
longest well-nested prefix starting atis not in the language of the triggered look-
ahead. Thd, component contains the states of all running look-ahegisared at the
current nesting level. ThB componentis the summary (see [1]) necessary to update the
L-component. When reading a call thecomponent is put on the stack. When reading
a return, 7" must check that all look-ahead statedlimre final, i.e T’ ensures that the
chosen look-ahead are successful.

After reading a well-nested word if 7" is in state(q, R, L), with ¢ € @, R C
Q' x Q' andL C Q'*, we have the following properties. The péijr,p') € R iff
there exists a run ofl from p to p’ onw. If someyp” is in L, there exists a run of a
look-ahead that started when reading a call symbab @it depthO which is now in
statep”. Conversely, for all look-aheads that started when reaalicajl symbol ofw at
depth 0, there exists a staté € L and a run of this look-ahead that is in state

Let us consider a wordicw’r for some well-nested words, w’ (depicted on Fig.
2). Assume thaf” is in state(q, R, L) after readingw (on the figure, the relatiof
is represented by dashed arrows and the.dey big points, and other states by small
points). We do not represent tiecomponent of the states on the figure but rather focus
on R andL. The information that we push on the stack when readiisghe necessary
information to compute a staie’, R', L’) of 7" reached after readingcw’r. After
reading the call symbal, we go in state(q’, Id¢:., @) and produce the output for



someq’, v such thayy M q € 6., Wwherep, € Q' is the starting state of a new

look-ahead. Note that determinism ©fis preserved. On the stack we put the tuple
(v, R, LU{po}, c) wherey, R, L, py, c have been defined before.

Now, suppose that after reading-w’ the transducef” is in state(¢”, R”,L").
It means thafl" is in stateq” after readingwcw’, and(p,p’) € R’ iff there exists a
run of A from p to p’ onw’, andL” is some set of states reached by the look-aheads
that started at the same depthuds Therefore we first impose that any transition from
(¢",R", L") readingr must satisfyL” C F'e. Clearly, R’ can be constructed from
R andR”. Finally, L’ is a set which satisfies for alle L U {po}, there exist9’ € L’
such that there exists a run dffrom p to p’ oncw’r. If such anL’ does not exist, there
is no transition orr. The setl’ can be constructed froth U {p,} andR".

We now define the transitions formally. First, for @lIR, L, ¢, v, we have:

¢, Idgi., ) € 6, whenevey clwpon, q €d.

(q,R,L) C\“v(’Y-,R-,LU{PO}-,C) (

Then, forallR, L,r,v,q¢",R",L",q', R', L’ we have:

(q// R" L//) rlu,(v,R,L,c)

(¢, R', L") € 6. if the following conditions hold:
() ¢" 1% ¢ €6, (i) L” C Fleo
(i) B = {(p,p) | 35 < &' € 612 3(s',s") € R - (p, ) € Rands" =2 pf € 5lo}
(iv) forallp € L, there exisp/ € L',y € T, s,s' € Q'* such that(s,s’) € R”,
p =D sedle, s 2Ly e dle,

The proof of correctness is sketched in AppendiX'lis deterministic, thefl” is un-
ambigous. Indeed, it is deterministic on return transgiolfi there are two possible

clut,p1,71 cluz,p2,v2

transitionsy ———— ¢; andg ——————= ¢» on a call symbot, asT is deterministic,
we know that either the look-ahead startingpinor the look-ahead starting jm, will
fail. In 7", there will be two transitions that will simulate both loakeads respectively,
and therefore at least one continuation of the two tramstigill fail as well. Therefore
there is at most one accepting computation per input wofid in a

SuccinctnessThe exponential blow-up in the construction of Theorem lriawoid-
able. Indeed, it is obviously already the case for finiteestattomata with regular look-
ahead. These finite state automata can be easily simulat®@®Myon flat words (in
(X.X,.)*) (in that case the stack is useless). For example, considaillfo the lan-
guageL,, = {vuv | |[v| = n}. One can construct a finite state automaton with regular
look-ahead withO(n) states that recognizds, It is done by using look-aheads that
check for alla € 3’ andi < n that them — n — i-th letter is equal ta, wherem is the
length of the word. Without a regular look-ahead, any autombas to store the-th
first letters ofw in its states, then it guesses the— n-th position and checks that the
prefix of sizen is equal to the suffix of size. A simple pumping argument shows that
the automaton needs at leaSy" states.

4 Functional VPT and VPT,,

While there is no known syntactic restriction ¥RT that captures all function&PT,
we show that the class of determiniséie T, captures all functionafPT. As there may



be an unbounded number of accepting runs, the equivsllefmt, has to choose only
one of them by using look-aheads. This is done by orderingthtes and extending
this order to runs. Similar ideas have been used in [7] to stieevsame result for
top-down tree transducers. The main new difficulty WP T is to cope with nesting.
Indeed, when the transducer enters an additional levelsting its look-ahead cannot
inspect the entire suffix but is limited to the current negtevel. When reading a call,
choosing (thanks to some look-ahead) the smallest run azutinent well-nested prefix
is not correct because it may not be possible to extend thisoran accepting run on
the entire word. Therefore the transducer has to pass sdoreniation from one to the
next level of nesting about the chosen global run, while ép-down tree transducers,
as the evaluation is top-down, the transformation of theenursubtree is independent
of the transition choices that have been made at upper levels

Theorem 2. For all VPT T, one can construct a deterministi® T, T}, with at most
exponentially many more states such tfiit,] C [7'] and Don{T},) = Dom(T). If T
is functional, theT},] = [T7].

Proof. We order the states df and use look-aheads to choose the smallest runs wrt to
an order on runs that depends on the structure of the wordl’ let(@, qo, F, I, §) be

a functionalVPT. Wlog we assume that for ajl ¢’ € Q, all « € X, there is at most
oneu € X* and oney € I" such that(q, o, u,v,q’) € 4. A transducer satisfying this
property can be obtained by duplicating the states wittstti@ms, i.e. by taking the set

of stateq) x A.

We construct an equivalent deterministie T\, (77, A) whereT” = (Q’, qo, F', I, 0")
with Q" = {q} UQ? F' = F x Q if qo ¢ F otherwiseF” = (F x Q) U {qo}. The
look-aheadA is defined later. Before defining formally, let us explain it informally.
There might be several accepting runs on an input wareach of them producing the
same output, a% is functional. To ensure determinisffi, has to choose exactly one
transition when reading a symbol. The idea is to order thestay a total orde« ¢ and
to extend this order to runs. The look-ahead will be used tmsh the next transition of
T that has to be fired, so that the choice will ensure Thédllows the smallest accept-
ing run onw. However the look-ahead can only visit the current longesit-nested
prefix, and not the entire word. Therefore the “parent” of ¢h# ¢ has to pass some
information about the global run to its chitd In particular, wher?™ is in state(q, ¢’)
for some state’, it means thaf’ is in stateg and the state reached after reading the last
return symbol of the longest-well nested current prefix nvest .

Consider a word of the formv = cywiriwaczwsrs wherew; are well-nested,
depicted on Fig. 3. Suppose that before evaluating’ is in state(¢;, ¢3). It means that
the last transitio” has to fire when reading has a target statg. When reading the
call symbole;, 77 uses a look-ahead to determine the smallest triple of sfgtes,, g2)
such that there exists a run anthat starts in;; and such that after reading it is in
stateq;, before reading it is in stateq), after readingr; it is in stategs and after
readingrs it is in stategs. Then,T” fires the call transition on; that with source and
target stateg; andq) respectively (it is unique by hypothesis), put on the stdnek t
states(¢2, ¢3) and passes t@; (in the state) the information that the chosen rungn
terminates by the statg, i.e. it goes to the stat@y], ¢5). (see Fig. 3). On the figure,
we do not explicit all the states and anonymous componeatsi@mnoted by. When
readingry, 7" pops from the stack the tupley, ¢2, ¢3) and therefore knows that the



transition to apply om; has target statg, and the transition to apply on, has target
stategs. Then it passegs to the current state.

c1 wq 1 w9 c3 w3 T3
| f f f | f f |
i (q1,93) ¢ - latochoose the smalle§yf , a5, a2) (42,93) (-a3) (-a3)
N\ Push(v,q2,43) /pop(v,42,93) AN e
i1 (q1,95) (g5,a5) () ()
Fig. 3.

When the computation starts g, we do not know yet what return transition has
to be fired at the end of the hedge. This case can be easilgdreaparately by a look-
ahead on the first call symbol that determine the smallesple bf state$q, ¢4, 92, ¢3)
which satisfies the conditions described before, but to Kiynfhe proof, we assume
that theVPT accepts only words of the formur, wherew is well-nested, so that one
only needs to consider triples of states.

We now define the transition relation formally. Let be a total order on states,
extended lexicographically to tuples. For all statesy;, ¢, ¢2, 93 € Q, it is easy to
define aVPA Ay, 4 4.4..4: WhOSE size is polynomial in the size ®fthat accepts a
word w iff it is of the form ¢, w1 w3 wherew,, w3 are well-nested and there exists a
run of T on w that starts in state; and is state); after reading:, in stateg, before
readingry, in stateq, after reading-; and in statey; after readingws. Note that if
wz = e thenifgs # qo, thenw ¢ L(A . We denote byA,, o 4/ the
complement ofd

We letB

q1-,q§7qéyqz-,q3) 42,93

91,91:95:92:93"

0.4, db 2,05 @VPAWiIth initial statepg, o/ ¢: 4.4, that defines the language:

L(Bql-,q§7QQ7qz-,q3) = L(Am-,qﬂ-,q;,qz,qa) N ﬂ L(Aql,m.,sé.,sz,%)

(5;‘1-,5’2752) GQ/B'
(s1,585,52) < (q1,45,92)

Such avVPA exists as/PA are closed by intersection and complement. Its size how-
ever may be exponential {®)|. We define the look-aheadPA as the union of all those
VPA, Aiu = ) By, ¢! qt.42.05- WE now define the call and return transitionsidfas
follows, forallc € X.,r € X,y € I q1, 41,45, 3,9 € Q,u € X*:

clu, (7,42:43); Pqy o 0ty .a2,a3 cluyy

(¢1,45) if (n —= ¢}) € 6.
clu, (7,43,83): Pag,q! 1q!, a3, qs i |,
9 DB (g, qh) 1 (g0 =5 qf) € 6.

) T vdanda), (g2,05) if (g 2“7 g5) €6,

(Q1, QS)

We show in Appendix thdf” is deterministic. a0

This construction, followed by the construction of Theorkthat removes the look-
aheads, yields a nice characterization of functicar

Theorem 3. For all functional VPT 7', one can effectively construct an equivalent un-
ambiguous/PT T".



| VPA[L] VPA, VPT[9] VPT, |

Emptiness PTIME EXPT-C PTIME EXPT-C
Universality || ExPT-c  EXPT-C NA NA
Inclusion ExpT-c EXPT-C EXPT-C ExPT-C
Equivalence|| ExPT-c ExPT-c EXxpT-c (for fVPT) EXPT-c (for fVPT)
Functionalit NA NA PTIME EXPT-C

Table 1.Decision Problems foYPA,VPA,,VPT,VPT,

5 Decision Problems

In this section, we study the problems of functionality\@®T, and equivalence of
functionalVPT,,. In particular, we prove that while being exponentially eastccinct
thanVPT, the equivalence of function®P T, remains decidable inXT, as equiva-
lence of functionaVPT.

Theorem 4. Functionality ofVP T, is EXPT-C, even for deterministic look-aheads.

Proof. For the EXPT upper-bound, we first apply Theorem 1 to remove the look-
aheads. This results in\APT possibly exponentially bigger. Then functionality can
be tested in PIME [9]. For the lower-bound, we reduce the problem of decidimgpt-
ness of the intersection of deterministic top-down tree automata, which is known to
be ExpT-c whenn is part of the input [3]. The full proof is in Appendix.

We know that the equivalence of two functiondPT is EXPT-c [9]. For equiva-
lence of functionaVPT,, one can first remove the look-aheads, modulo an exponential
blow-up, and use the procedure #oPT. This would yield a 2-&PT procedure for the
equivalence of functiona/P T ,. However, it is possible to decide it inT:

Theorem 5. Emptiness o¥/PT,,, resp. ofVPA,,, equivalence and inclusion of func-
tional VPT),, resp. ofVPA,,, is EXPT-C, even if the transducers, resp. automata, and
the look-aheads are deterministic.

Proof. The lower bounds are obtained, as for functionality, by otidm of the empti-
ness ofn (deterministic) tree automata (see Appendix).

Emptiness o¥PA,, can be checked by first removing the look-aheads (modulopoex
nential blow-up) and then check emptiness of the equivM@At(in PTiME). Checking
emptiness of &P T, amounts to check emptiness of its domain, which\&4a,, .

To show that equivalence and inclusion of tWBA, is in EXPT, we construct two alter-
nating (ranked) tree automata equivalent to\Wf#& modulo the first-child next-sibling
encoding in PTME. Look-aheads are encoding as universal transitions (spemx).
Equivalence and inclusion of alternating tree automata BiPT [3].

Then, let us show how to check the equivalence, resp. iriusif twoVPT ,: trans-
form eachVPT), into an equivalenVPT with at most an exponential blow-up, take the
union and verify (in PTME) that the resulting/PT is still functional. Then check that
their domains (which arg€PA,, obtained by ignoring the output of the tWd°T),) are
equivalent, resp. included. a



6 Discussion and Conclusion

Summary We have introduced visibly pushdown transducers (respnaata) with
look-ahead and have shown that while there are expongmialie succinct, it comes
with no cost in time complexity, except for emptiness andcfionality. Table 1 sum-
marizes our results. Note that universalit\dd?A,, is in EXPT as it amounts to check
equivalence with the universal language. It isFE-hard because universality BPA
is already EXPT-hard. Finally, note that universality is not relevant tartsducers as
VPT are never universal. As future work, we would like to extelndse results td:-
valuedVPT: is anyk-valuedVPT equivalent to d&-ambiguous/PT,,? This question
is more difficult than for functiona/PT, as fork-valuedVPT, among a set of possi-
ble transitions it is necessary to choose for each outputl \f@nong at most output
words) exactly one transition, in order to tutrvaluedness inté-ambiguity. It is not
clear how to use look-aheads to make such choices.

Variants of look-aheadVe discuss in Appendix some variants of look-ahead. The clo-

sure by look-ahead (Theorem 1) and the equivalence betwatemainisticVP T, and
functionalVPT (Theorem 2) still hold when the look-ahead can inspect thelevbuf-
fix and can also be triggered on return transitions. Howevieen the look-ahead can
inspect only the current well-nested prefix of the faormv: (corresponding to the first
subtree of the current hedge in a tree), it is not sufficiemixaress all functiond/PT
with determinism.
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A VPT with Visibly Pushdown Look-Ahead

Proof (Correctness of the construction of Theoremv#. sketch the proof of correct-
ness of the construction. Let € X* such thaww is a prefix of well-nested word. We
definesh(w) as the longest well-nested suffix of we call sh(w) the subhedgef w.
For instance, ifw = cycaracsrs, thensh(w) = caracsrs. However ifw = ¢;cq, then
sh(w) = ¢

First, one can check (e.g. by induction on the lengtivpthat the successive com-
putations of theR component of the state ensures that the following propestgtsh
for all wordsw € X* prefix of a well-nested word, if there is a run Bf from ¢; to
(¢, R, L) onw, then for allp,p’ € Q', (p,p’) € R iff there is a run of4 on sh(w)
fromptoyp'.

With this last property it is easy to show that the followingperty also holds: let
W = clwiTiCoWars . .. cow, T, Where allw; are well-nested. A run of” on w will
trigger a new look-ahead at each agllall these look-ahead will still be ’live’ untit,,.
These look-aheads are simulated by theomponent of the state @F. If there is a run
of T onw, it means that all look-aheads accepts the respective namyasuffixes of
w, and therefore after readingthere are accepting runs of the previous look-aheads.
Suppose that those accepting runs are in the stateafter readingr;. By suitable
choices ofL-components®’ is non-deterministic orl.-components), we can ensure
that there is an accepting run ®f such that after reading the L-component of the
states i), for all i. Conversely, if there is an accepting rundfon w, then one can
easily reconstruct accepting runs of the look-aheads. a

Proof (End of the proof of Theorem Zjhe transducer” is deterministic: return tran-
sitions are fully determined by the statgs g, g3 and the input letter (by our first as-
sumption there is at most one transitior¥ifirom ¢/ to ¢2). For call transitions, suppose
that from(q1, g3) there are two possible look-aheads /¢, .q.,¢s @NADg, 5! s}, 52,55+

By definition of the look-aheads, we hal€B,, ;4 4., qS) N L(By, s/ ,sy,52,53) = -
Moreover, there cannot be two transitions with the same-tidad as transitions are
fully determinied byqu, g3, ¢2, ¢4, ¢; (there is at most one call transition by our as-
sumption with source and target statgsand¢| respectively). A simple analysis of
the complexity shows that the look-aheddhas exponentially many more states tfian

(the exponentiation comes from the complementin the defingf B, . 41 4..45)- O

B Decisions Problems

Proof of Theorem 4, Lower Boun&iven n deterministic top-down binary tree au-
tomatalt, . .., T, over an alphabef\, one can construct in linear-timedeterministic
VPA Ay, ..., A, that define the same languagedas. . ., T}, respectively, modulo the
natural encoding of trees as nested words over the stractlipbabet = {¢, | a €

A} W {r, | a € A} [10]. The encoding corresponds to a depth-first left-tdvrigaver-

sal of the tree. For instancenc(f(f(a,b),c)) = crepearacyrvrpeerery. We now con-
struct aVP Ty, T over the alphabefi such thafl is functional iff ), L(7;) = @. The
domain ofT" are words of the formw,, ; = ci7; ... cprpenc(t) for some ranked tree
overA. Itis easy to define ¥PA that accepts such words and whose size is polynomial
in n and A. Then first call symbols are used to runlook-aheads. When theth call



c; is read, a look-aheaB; checks thaenc(t) € L(A;): it first count tha(n — i + 1)
symbols have been read and go to the initial statelofThe output words of" are
produced as follows: when reading there are two possible transitions, that both push
the same symbol on the stack, launch the same look-aheadpasdo the same state,
but output two different words, let say, andr, respectively. If the look-ahead is not
accepting the suffix, then none of these transitions can bd find the computation
stops. Any run off” on the wordw,, ; is accepting. Therefore there is an accepting run
of T onw,,, iff enc(t) € (), L(A;), and in that case there a2& accepting runs whose
output words are of the form; . .. a,, respectively wherey; € {c,,7,}. Thereforel’

is not functional iff there is a treesuch thatenc(t) € (), L(A;), iff there is a treet
such that € (), L(T;). Note that the look-aheads are deterministic. O

Equivalence (resp. inclusion) &fPA,, in EXPT (Theorem 5)We then show how to
check the equivalence, resp. inclusion, of MA, in EXPT. Let us denotel;, A, the
VPA with look-ahead that definBom(T}) andDom(7%) respectively. We show how
to checkL(A;) = L(As) in EXPT. The idea is to reduce the problem to equivalence,
resp. inclusion, of finite alternating tree automata, whgknown to be in KPT [3].
Well-nested words over the alphabigt= ¥, ¥ X, can be translated as unranked trees
over the alphabel = ¥, x .. Those unranked trees can be again translated as binary
trees via the classical first-child next-sibling encodiBlg Y PA over X’ can be translated
into equivalent top-down tree automata over first-childtrekaling encodings ot of
well-nested words oveE’ in PTIME [10]. Look-aheads o¥/PA inspect the longest
well-nested prefix of the current suffix. This correspondstitbtrees in first-child next-
sibling encodings of unranked trees. ThereféRA with look-aheads can be translated
into top-down tree automata with look-aheads that insgeetcurrent subtree. Top-
down tree automata with such look-aheads can be againdtadshto alternating tree
automata: triggering a new look-ahead corresponds to &tsaltransition towards two
states: the current state of the automaton and the initité tf the look-ahead. This
again can be done in RWE. Since equivalence, resp. inclusion, of finite alternating
tree automata is in 2T [3].

Proof of the lower bound for Theorem bower bounds The lower bounds for the
decision problems (emptiness, inclusion, equivalencey®m,, are consequences of
the lower bounds for the respective problema/é,. The lower bounds for inclusion
and equivalence o¥PA,, are consequences of the lower bounds for the emptiness of
VPA,.

We obtain the exptime lower bound similarly as in the prooTbh&orem 4, i.e. to
the reduction of the emptiness wfdeterministic top-down tree automat, . .., B,.
In particular, we can construct\&PA|, A such that:

L(A) = {c1r1...cprpenc(t) |t € Treesan OL(Bi)}

3

whereT'rees 4 are the set of ranked trees over alphafiet



C \Variants of Look-Ahead

C.1 Discussion

We discuss several variants of visibly pushdown look-abeldtead of inspecting the
longest well-nested current prefix, one could visit only thierent well-nested prefix
of the formcwr. This would correspond to the first subtree of the currengbead
encodings of unranked trees as well-nested words. WHIE would still be closed by
such look-aheads, we would not have a correspondence betieéerministicVP T,
and functionaMPT anymore. For instance, the family of transducti¢hs ),, defined
in Section 3 would not be definable by a determini$tieT,, although it is a functional
transduction. In some sense, our definition of look-ahe#tEisninimal requirement to
get the equivalence between determini$titT , and functionaVVPT.

One could also allow look-aheads on return transitionshSack-aheads would
inspect the longest well-nested prefix starting just afterdurrent return symbol. This
could be easily simulated by look-aheads on call transitionPTiME, and it would
preserve determinism. Therefore our results still holdhia setting.

Another way of adding look-aheads is to allow them to inspleetwhole current
suffix. Such look-aheads can be defined by visibly pushdovwonaata where return
transitions on empty stack are allowed, as originally defime[1]. The construction
of Theorem 1 can be slightly modified to show tMRT are still closed by such look-
aheads. The idea is to extend the states with a new compénent Q'* that corre-
sponds to states of look-aheads that started at a deepgopdtisan the current position.
For those states we apply only return transitions on empksivhen reading a return
symbol. See the next subsection for a formal constructidavi@sly, VPT with such
look-aheads still satisfy the correspondence betweertiimad VPT and determinis-
tic VPT with look-ahead. However, the proof of thecET upper-bound for functional
equivalence cannot be adapted as we cannot reduce thermrobtesting equivalence
of the domains to equivalence of alternating tree autonvsigelet the question of find-
ing the exact complexity of functional equivalence #PT with visibly pushdown
look-ahead that inspect the whole suffix as future work.

C.2 Closure by Visibly Pushdown Look-Ahead Inspecting the Viole Suffix

We consider in this sectioviPA that can trigger return transitions on empty stack. Such
aVPAis atuple(Q, qo, F, I, 6 = 6, Wd. W, ) whered, C Q x X, x @ denotes the
set of those new transitions.

We denote byPT,! the set of visibly pushdown transducers with look-aheaal th
can inspect the whole suffix. We prove théRT are closed by such look-aheads. The
construction is done by a slight modification of the congiarcgiven in the proof of
Theorem 1.

The idea is extend the states a the construeted with a new component; C
Q'* that corresponds to states of look-aheads that startedesi@edposition than the
current position., and such that any position in betweenpibgtion at which they
started and the current position is not above the curreritiposFor instance, let us
consider a well-nested word of the foracciwiry ... c,w,r,rw’ wherew; is well-
nested. After reading;, L, contains current states of look-aheads that started when



reading the wordsq, . . ., w,. We therefore have twéa-components: the look-aheads
that started when reading, . . ., ¢, and the new look-ahead component. When reading
¢, we push on the stack this new component. Let us formally defie construction.
From aVPT,. T = (Q, qo, F, I', §) with look-aheadd = (Q'?, ¢}*, F'e, "' §'e), we
construct an equivaleMPT 77 = (Q’, q5, F', I, §") possibly exponentially bigger as
follows:

— Q/ — Q « 2QlaXQla « 2Qla % 2Ql“;
—I"=Tx QQLGXQLG X QQM X QQM % Ec,

~ F'={(¢,R,L,L1) €Q | g€ F,LC F',L, C F'},
- q6 = (g0, Idga, D, D).

The transitions are defined as follows:
First, forallq, R, L, L, c,y, we have:

clu,po,y

) ol (B LUtpo}, L1 ) (¢, Idgi, @,0) € 6, wheneveyy ——— ¢’ € .

(qv Ra La LJ_

Then, forallR,L,L,,r,~v,¢",R",L", L' ,¢',R', L', L', we have:

rlu,(v,R,L,L1,c)
‘—__)

(¢ R",L", L") (¢,R,L',L'") e,

if the following conditions hold:

(i) ¢" ™0 o €6,
(i1) R = {(p,p/) | Is 2L s’ € 6l-3(s',s") € R" - (p,s) € Rands” =0 p/ € 6%}
(iii) forall p € L (resp.L,), there exisp’ € L’ (resp.L’)), v € I', s,s' € Q'* such
that(s,s’) € R",p S se Sla, s BARN p' € ol
(iv) forallp € L[, there exisp’ € L' , such thap = p’ € §'¢.



