
Visibly Pushdown Transducers with Look-Ahead

Emmanuel Filiot1 Frédéric Servais1

1 Université Libre de Bruxelles

Abstract. Visibly Pushdown Transducers (VPT) form a subclass of pushdown
transducers. In this paper, we investigate the extension ofVPT with visibly push-
down look-ahead (VPTla). Their transitions are guarded by visibly pushdown
automata that can check whether the well-nested subword starting at the cur-
rent position belongs to the language they define. First, we show thatVPTla are
not more expressive thanVPT, but are exponentially more succinct. Second, we
show that the class of deterministicVPTla corresponds exactly to the class of
functionalVPT, yielding a simple characterization of functionalVPT. Finally,
we show that whileVPTla are exponentially more succinct thanVPT, checking
equivalence of functionalVPTla is, as forVPT, EXPT-C. As a consequence, we
show that any functionalVPT is equivalent to an unambiguous one.

1 Introduction
Visibly pushdown transducers (VPT) [17, 9] form an interesting subclass of pushdown
transducers (PT). Several problems that are undecidable forPT are decidable forVPT,
noticeably: functionality is decidable in PTIME, k-valuedness in NPTIME and equiva-
lence of functionalVPT is EXPT-C [9].

Visibly pushdown machines [1], automata (VPA) or transducers, are pushdown ma-
chines such that the behavior of the stack, i.e. whether it pushes or pops, is visible in the
input word. Technically, the input alphabet is partitionedinto call, return and internal
symbols. When reading a call the machine must push a symbol onthe stack, when read-
ing a return symbol it must pop and when reading an internal symbol it cannot touch
the stack. The partitioning of the input alphabet induces a nesting structure of the input
words [2]. A call symbol delimits an additional level of nesting, while a return symbol
is a position in the word that ends a level of nesting. A word iswell-nested if each call,
respectively each return, has a matching return, respectively a matching call. Visibly
pushdown transductions are transductions that can be defined byVPT.

Unranked trees in their linear form (such as XML documents) can be viewed as
well-nested words.VPT are therefore a suitable formalism for unranked tree trans-
formations. In particular, they can express operations such as node deletion, renaming
and insertion. Furthermore, over well-nested words, a simple and expressive subclass of
VPT, the class of well-nestedVPT [9], is closed under composition and has a decidable
type checking problem. In the setting of XML documents,VPA, as they read the tree in
a left-to-right depth-first traversal manner, are well-suited for streaming validation [12,
16] or streaming XML queries [11]. In the same way well-nestedVPT are amenable to
define streaming transformations.

In this paper, one of our motivations is to give a simple characterization of func-
tionalVPT that can be checked easily. DeterministicVPT are not expressive enough
to capture all functionalVPT, as for instance swapping the first and last letters of a
word cannot be done deterministically. Instead of non-determinism, we show that some

limited inspection of the longest well-nested subword starting at the current position
(called thecurrent well-nested prefix) is required to capture (non-deterministic) func-
tionalVPT. More precisely, we show that functionalVPT-transductions are captured
by deterministicVPT extended with visibly pushdown look-aheads that inspect the cur-
rent well-nested prefix. Moreover, inspecting the current well-nested prefix is somehow
the minimal necessary information to capture all functional VPT.

In this paper, we therefore introduce and investigate the class ofVPT with visibly
pushdown look-ahead. AVPT with visibly pushdown look-ahead (VPTla) is aVPT

such that call transitions are guarded with visibly pushdown automata (VPA). When
reading a call at positioni, a VPTla can apply a call transition provided the longest
well-nested word starting at positioni is included in the language of theVPA of the
transition. In the same way one can defineVPA with look-ahead (VPAla). Our main
contributions are the following:

1. VPTla (resp.VPAla) are as expressive asVPT (resp.VPA), but exponentially more
succinct.

For this we present an exponential construction that shows how aVPT can simulate
look-aheads. Moreover we show this exponential blow-up is unavoidable.

2. DeterministicVPTla and functionalVPT are equally expressive.

This equivalence is obtained by a construction (which is also exponential) that replaces
the non-determinism of the functionalVPT with deterministic look-ahead. This also
yields a simple characterization of functionalVPT.

3. Equivalence of functionalVPTla (respVPAla) is, as forVPT (respVPA), EXPT-C.

Therefore even thoughVPTla are exponentially more succinct thanVPT, testing equiv-
alence of functionalVPTla is not harder than for functionalVPT. This is done in two
steps. First one checks equivalence of the domains. Then onechecks that the union of
the two transducers is still functional. We show that testing functionality is EXPT-C

for VPTla: get rid of the look-aheads with an exponential blow-up and test in PTIME

the functionality of the constructedVPT. To verify that the domains are equivalent,
the naive technique (removing the look-aheads and then verifying the mutual inclusion
of the domains) yields a doubly exponential algorithm. Instead, we show that the do-
mains ofVPTla are linearly reducible to alternating top-down tree automata. Testing
the equivalence of such automata can be done in EXPT [3].

4. FunctionalVPT and unambiguousVPT are equally expressive.

As an application of look-aheads, we show that a nice consequence of the construc-
tions involved in contributions1 and3 is that functionalVPT are effectively character-
ized by unambiguousVPT. This result was already known for finite-state transducers
[4, 15, 5] and here we extend it toVPT with rather simple constructions based on the
concept of look-aheads. This characterization of functional finite-state transducers has
been generalized tok-valued andk-ambiguous finite-state transducers [18] and recently
with a better upper-bound [14] based on lexicographic decomposition of transducers.

Finally, we discuss slightly different look-aheads. First, we consider look-aheads
that are allowed to inspect the whole current prefix until theend. We show that this does
not add expressivity nor succinctness. Second, we show thatrestricting the look-ahead
to the current prefix in between the current call and its matching return (i.e. the subtree
rooted at the current node) is not sufficient to have a characterization of functionalVPT

by deterministicVPTla. All these results are new indications that the class ofVPT is
robust, and they show that the class ofVPTla is interesting in itself.

Related WorksRegular look-aheads have been mainly considered for classes of tree
transducers, where a transition can be fired provided the current subtree belongs to
some regular tree language. For instance, regular look-aheads have been added totop-
down (ranked) tree transducersin order to obtain a robust class of tree transducers
that enjoys good closure properties wrt composition [6], orto macro tree transducers
(MTT) [8]. For top-down tree transducers, adding regular look-ahead strictly increases
their expressive power whileMTT are closed by regular look-ahead [8]. Another strong
result shows that every functional top-down tree transduction can be defined by adeter-
ministic top-down tree transducer with look-ahead [7].

Trees over an alphabetΣ can be linearized as well-nested words over the structured
alphabetΣc = {ca | a ∈ Σ}, Σr = {ra | a ∈ Σ}. It is well-known that unranked trees
can be represented by binary trees via the classical first-child next-sibling encoding
(fcns). Top-down (ranked) tree transducers can thus be usedas unranked tree transduc-
ers on fcns encodings of unranked trees. Inspecting a subtree in the fncs encoding cor-
responds to inspecting the first subtree and its next-sibling subtrees in an unranked tree,
which in turn corresponds to inspecting the current longestwell-nested prefix in their
linearization. However top-down tree transducers andVPT are incomparable: top-down
tree transducers can copy subtrees whileVPT cannot, andVPT support concatenation
of tree sequences while top-down tree transducers cannot. For example, the transfor-
mation that removes theg node in unranked trees of the formf(g(a, . . . , a), b, b, . . . b)
produces trees of the formf(a, a, . . . , a, b, . . . b). This transformation can easily be
defined by aVPT, but not by a top-down ranked tree transducers with the fncs encod-
ing [13, 9]. Indeed, in the fncs encoding, this transformation maps any tree of the form
f(g(ta, tb),⊥) to f(ta.tb,⊥), whereta, tb, ta.tb are the binary encodings of the hedges
(a, . . . , a), (b, . . . , b), (a, . . . , a, b, . . . , b) respectively:

ta = a(⊥, a(⊥, . . . a(⊥,⊥) . . .)) tb = b(⊥, b(⊥, . . . b(⊥,⊥) . . .))
ta.tb = a(⊥, a(⊥, . . . a(⊥, b(⊥, b(⊥, . . . b(⊥,⊥) . . .)))))

Therefore, this transformation requires to move the subtree tb (whose size may be un-
bounded) as a leaf of the subtreeta (whose size may also be unbounded). This cannot
be done by a top-down tree transducer, but can be defined by some MTT thanks to
parameters (some parameter will store the entire subtreetb while evaluatingta).

Modulo those encodings,MTT subsumeVPT [9] and as we said before, there is
a correspondence between the two notions of look-aheads, for VPT andMTT respec-
tively. However it is not clear how to derive our results on closure by look-aheads from
the same result onMTT, as the latter highly relies on parameters and it would require
back-and-forth encodings between the two models. The direct construction we give in
this paper is self-contained and allows one to derive the characterization of functional
VPT as unambiguousVPT by a careful analysis of the construction.

2 Visibly Pushdown Languages and Transductions

All over this paper,Σ denotes a finite alphabet partitioned into two disjoint setsΣc,Σr,
denoting respectively thecall andreturn alphabets. We denote byΣ∗ the set of (finite)

words overΣ and byǫ the empty word. The length of a wordu is denoted by|u|. The
set ofwell-nestedwordsΣ∗

wn is the smallest subset ofΣ∗ such thatǫ ∈ Σ∗
wn and for all

c ∈ Σc, all r ∈ Σr, all u, v ∈ Σ∗
wn, cur ∈ Σ∗

wn anduv ∈ Σ∗
wn.

A visibly pushdown automaton(VPA) [1] on finite words overΣ is a tupleA =
(Q, I, F, Γ, δ) whereQ is a finite set of states,I ⊆ Q the set of initial states,F ⊆ Q

the set of final states,Γ the (finite) stack alphabet, andδ = δc ⊎ δr whereδc ⊆ Q ×
Σc × Γ ×Q are thecall transitions, δr ⊆ Q×Σr × Γ ×Q are thereturn transitions1.

On a call transition(q, a, γ, q′) ∈ δc, γ is pushed onto the stack and the control goes
from q to q′. On a return transition(q, a, γ, q′) ∈ δr, γ is popped from the stack.

A configurationof a VPA is a pair(q, σ) ∈ Q × Γ ∗. A run of T on a wordu =
a1 . . . al ∈ Σ∗ from a configuration(q, σ) to a configuration(q′, σ′) is a finite sequence
ρ = {(qk, σk)}0≤k≤l such thatq0 = q, σ0 = σ, ql = q′, σl = σ′ and for each1 ≤
k ≤ l, there existsγk ∈ Γ such that either(qk−1, ak, γk, qk) ∈ δc andσk = σk−1γk or
(qk−1, ak, γk, qk) ∈ δr andσk−1 = σkγk. The runρ is acceptingif q0 ∈ I, ql ∈ F and
σ0 = σl = ⊥ A wordw is acceptedby A if there exists an accepting run ofA overw.
L(A), thelanguageof A, is the set of words accepted byA. A languageL overΣ is a
visibly pushdown languageif there is aVPA A overΣ such thatL(A) = L. Finally, a
VPT is unambiguousif there is at most one accepting run per input word. In particular,
any unambiguousVPT is functional. Unambiguity can be checked in PTIME [9].

As finite-state transducers extend finite-state automata with outputs, visibly push-
down transducers extend visibly pushdown automata with outputs [9]. To simplify nota-
tions, we suppose that the output alphabet isΣ, but our results still hold for an arbitrary
output alphabet. Informally, the stack behavior of aVPT is similar to the stack behavior
of visibly pushdown automata (VPA). On a call symbol, theVPT pushes a symbol on
the stack and produces some output word (possibly empty and not necessarily well-
nested), on a return symbol, it must pop the top symbol of the stack and produce some
output word (possibly empty) and on an internal symbol, the stack remains unchanged
and it produces some output word.

Definition 1. A visibly pushdown transducer(VPT) on finite words overΣ is a tuple
T = (Q, I, F, Γ, δ) whereQ is a finite set of states,I ⊆ Q is the set of initial states,
F ⊆ Q the set of final states,Γ is the stack alphabet,δ = δc ⊎ δr the (finite) transition
relation, withδc ⊆ Q×Σc ×Σ∗ × Γ ×Q, δr ⊆ Q×Σr ×Σ∗ × Γ ×Q.

Configurations and runs are defined similarly asVPA. Given a wordu = a1 . . . al ∈
Σ∗ and a wordv ∈ Σ∗, v is an output of u by T if there exists an accepting run
ρ = {(qk, σk)}0≤k≤l on u and l wordsv1, . . . , vl such thatv = v1 . . . vl and for all
0 ≤ k < l, there is a transition ofT from (qk, σk) to (qk+1, σk+1) that produces the

outputvk+1 on input letterak+1. We write(q, σ)
u/v
−−→ (q′, σ′) when there exists a run

on u from (q, σ) to (q′, σ′) producingv as output. A transducerT defines the binary

word relationJT K = {(u, v) | ∃q ∈ I, q′ ∈ F, (q,⊥)
u/v
−−→ (q′,⊥)}.

1 In contrast to [1], we do not considerinternalsymbolsi, as they can be simulated by a (unique)
call ci followed by a (unique) returnri. All our results extend trivially to alphabets with in-
ternal symbols. We make this assumption to simplify notations. Moreover, we do not allow
return transition on⊥ and we require the final stack to be empty. This implies that all accepted
words are well-nested.

A transductionis a binary relationR ⊆ Σ∗ × Σ∗. We say that a transductionR
is aVPT-transduction if there exists aVPT T such thatR = JT K. A transductionR
is functionalif for all u ∈ Σ∗, there exists at most onev ∈ Σ∗ such that(u, v) ∈ R.
A VPT T is functional if JT K is functional. Two transducersT1, T2 areequivalentif
JT1K = JT2K. It is known [9] that functionality is decidable in PTIME for VPT and
equivalence of functionalVPT is EXPT-C.

The class of functionalVPT is denoted byfVPT. For any input wordu ∈ Σ∗, we
denote byR(u) the set{v | (u, v) ∈ R}. Similarly, for aVPT T , we denote byT (u)
the setJT K(u). If R is functional, we confoundR(u) (which is at most of cardinality
1) and the unique image ofu if it exists. Thedomainof T (denoted byDom(T)) is the
domain ofJT K. Note that the domain ofT contains only well-nested words, which is
not necessarily the case of the codomain.
Example 1.Let Σc = {c, a}, Σr = {r} be the call and return symbols of the alphabet.
The followingVPT T transforms a word as follows:(i) a andr are mapped toa and
r respectively;(ii) c is mapped either toc if no a appears in the longest well-nested
word starting atc, and toa if an a appears. E.g.ccrrarcr is mapped toacrrarcr, and
cccrrcrcarrr to aacrraraarrr.

TheVPT T = (Q, I, F, Γ, δ) is defined byQ = {q, qa, q¬a}, I = {q}, F = Q,
Γ = {γ, γa, γ¬a} andδ contains the following transitions:

q or qa
c/a,γ
−−−→ qa q or qa

c/a,γa
−−−−→ q q

c/c,γ¬a
−−−−−→ q¬a

q or qa
a/a,γ
−−−→ q q¬a

c/c,γ¬a

−−−−−→ q¬a

q or q¬a
r/r,γa

−−−−→ qa q or q¬a
r/r,γ
−−−→ q q¬a

r/r,γ¬a

−−−−−→ q¬a

The stateqa, resp.q¬a, means that there is, resp. is not, ana in the longest well-
nested word that starts at the current position. The stateq indicates that there is no
constraints on the appearance ofa. If T is in stateq and reads ac, there are two cases:
it outputs ana or ac. If it chooses to output ana, then it must check that ana occurs
later. There are again two cases: eitherT guesses there is ana in the well-nested word

that starts just afterc and takes the transitionsq
c/a,γ
−−−→ qa, or it guesses ana appears in

the well-nested word that starts after the matching return of c, in that latter case it takes

the transitionq
c/a,γa
−−−−→ q and uses the stack symbolγa to carry over this information. If

on c it chooses to outputc, it must check that there is noa later by using the transition

q
c/a,γ¬a
−−−−−→ q¬a. Other cases are similar.

3 VPT with Visibly Pushdown Look-Ahead
Given a wordw overΣ we denote by prefwn(w) the longest well-nested prefix ofw. E.g.
prefwn(ccrcr) = ǫ and prefwn(crc) = cr. We define aVPT T with visibly pushdown
look-ahead (simply called look-ahead in the sequel) informally as follows. The look-
ahead is given by aVPA A without initial state. On a call symbolc, T can trigger the
look-ahead from a statep of the VPA (which depends on the call transition). The look-
ahead tests membership of the longest well-nested prefix of the current suffix (that starts
by the letterc) to L(A, p), where(A, p) is the VPAA with initial statep. If the prefix
is inL(A, p) then the transition ofT can be fired. When we consider nested words that
encode trees, look-ahead correspond to inspecting the subtree rooted at the current node
and all right sibling subtrees (in other words, the current hedge). Formally:

q0

c|a, qa, γ

c|c, q¬a, γ

a|a, qf , γ

r|r, γ

qa qf

q¬a

c, γ

r, γ
a, γ

c, γ

r, γ

a, γ

c, γ

r, γ

Fig. 1. A VPTla (left) and its look-ahead (right) onΣc = {c, a} andΣr = {r}

Definition 2. AVPT with look-ahead (VPTla) is a pairTla = (T,A) whereA is aVPA
A = (Qla, F la, Γ la, δla) without initial state andT is a tupleT = (Q, q0, F, Γ, δ)
such thatQ is a finite set of states,q0 ∈ Q is an initial state,F ⊆ Q is a set of
final states,Γ is a stack alphabet, andδ = δc ⊎ δr is a transition relation such that
δc ⊆ Q ×Σc ×Σ∗ ×Qla × Γ ×Q andδr ⊆ Q ×Σr ×Σ∗ × Γ ×Q.

AVPA with look-ahead (VPAla) is defined similarly.

Let u ∈ Σ∗. A run of Tla on u = a1 . . . al is a sequence of configurationsρ =
{(qk, σk)}0≤k≤l such that there existγ ∈ Γ andvk+1 ∈ Σ∗ such that(i) if ak+1 ∈
Σr, thenσk+1γ = σk and (qk, ak+1, vk+1, γ, qk+1) ∈ δr; (ii) if ak+1 ∈ Σc, then
σk+1 = σkγ, and there existsp ∈ Qla such that(qk, ak+1, vk+1, p, γ, qk+1) ∈ δc and
prefwn(ak+1 . . . al) ∈ L(A, p). The runρ is accepting ifσ0 = σl =⊥ andql ∈ F . The
wordv1 . . . vl is an output ofu.

TheVPTla Tla is deterministicif for all transitions(q, c, v1, p1, γ1, q1) ∈ δc and
(q, c, v2, p2, γ2, q2) ∈ δc, if v1 6= v2 or γ1 6= γ2 or q1 6= q2 or p1 6= p2, thenL(A, p1)∩
L(A, p2) = ∅; and for all transitions(q, r, v1, γ1, q1) ∈ δr and(q, r, v2, γ2, q2) ∈ δr
we havev1 = v2, γ1 = γ2 andq1 = q2. Note that deciding whether someVPTla is
deterministic can be done in PTIME. One has to check that for each stateq and each
call symbolc, theVPL guarding the transition from stateq and readingc arepairwise
disjoint. The number of states of aVPTla is the number of states of the transducer plus
the number of states of the look-ahead.

Example 2.A VPTla is represented in Figure 1. The look-ahead automaton is depicted
on the right, while the transducer in itself is on the left. Itdefines the transduction
of Example 1. When starting in stateqa, respectivelyq¬a, the look-ahead automaton
accepts well-nested words that contains ana, respectively does not contain anya. When
starting in stateqf it accepts any well-nested word. The transducer rewritesc symbols
intoa if the well-nested word starting atc contains ana (transition on the top), otherwise
it just copy ac (transition on the right). This is achieved using theqa andq¬a states of
the look-ahead automaton. Other input symbols, i.e.a and r, are just copied to the
output (left and bottom transitions).

The next theorem states that adding look-aheads toVPT does not add expressiveness.
The main difficulty is to simulate an unbounded number of look-aheads at the same
time. Indeed, a look-ahead is triggered at each call and is live until the end of the well-
nested subword starting at this call. We use summaries [1] tohandle look-aheads that
started at a strictly less deeper nesting level and a subset construction for those that
started at the same nesting level.

Theorem 1. For anyVPTla, resp.VPAla, Tla withn states, one can construct an equiv-
alentVPT, resp.VPA, T ′ withO(n2n

2+1) states. Moreover, ifTla is deterministic, then
T ′ is unambiguous.

Proof. We prove the result forVPTla only, this trivially implies the result forVPAla.
LetTla = (T,A) with T = (Q, q0, F, Γ, δ) andA = (Qla, F la, Γ la, δla). We construct
T ′ = (Q′, q′0, F

′, Γ ′, δ′) as follows (whereIdQla denotes the identity relation onQla):

Q′ = Q× 2Q
la×Qla

× 2Q
la

, q′0 = (q0, IdQla ,∅), F ′ = {(q, R, L) ∈ Q′ | q ∈ F,L ⊆

F la}, Γ ′ = Γ × 2Q
la×Qla

× 2Q
la

×Σc.
The transducerT ′ simulatesT and its running look-aheads. A state ofT ′ is a triple

(q, R, L). The first component is the state ofT . The second and third components are
used to simulate the running look-aheads. When taking a callc,T ′ non-deterministically
chooses a new look-ahead triggered byT . This look-ahead is added to all running look-
aheads that started at the same nesting level.T ′ ensures that the run will fail if the
longest well-nested prefix starting atc is not in the language of the triggered look-
ahead. TheL component contains the states of all running look-aheads triggered at the
current nesting level. TheR component is the summary (see [1]) necessary to update the
L-component. When reading a call theL component is put on the stack. When reading
a return,T ′ must check that all look-ahead states inL are final, i.e.T ′ ensures that the
chosen look-ahead are successful.

After reading a well-nested wordw if T ′ is in state(q, R, L), with q ∈ Q, R ⊆
Qla × Qla andL ⊆ Qla, we have the following properties. The pair(p, p′) ∈ R iff
there exists a run ofA from p to p′ on w. If somep′′ is in L, there exists a run of a
look-ahead that started when reading a call symbol ofw at depth0 which is now in
statep′′. Conversely, for all look-aheads that started when readinga call symbol ofw at
depth 0, there exists a statep′′ ∈ L and a run of this look-ahead that is in statep′′.

w c w′ r

L

new l-ap0

pushc, R, L ∪ {p0} popc, R, L ∪ {p0}

R L′′ ⊆ F la

R′′

L′

R′

Fig. 2.

Let us consider a wordwcw′r for some well-nested wordsw,w′ (depicted on Fig.
2). Assume thatT ′ is in state(q, R, L) after readingw (on the figure, the relationR
is represented by dashed arrows and the setL by big points, and other states by small
points). We do not represent theT -component of the states on the figure but rather focus
onR andL. The information that we push on the stack when readingc is the necessary
information to compute a state(q′, R′, L′) of T ′ reached after readingwcw′r. After
reading the call symbolc, we go in state(q′, IdQla ,∅) and produce the outputv for

someq′, v such thatq
c|v,p0,γ
−−−−−→ q′ ∈ δc, wherep0 ∈ Qla is the starting state of a new

look-ahead. Note that determinism ofT is preserved. On the stack we put the tuple
(γ,R, L ∪ {p0}, c) whereγ,R, L, p0, c have been defined before.

Now, suppose that after readingwcw′ the transducerT ′ is in state(q′′, R′′, L′′).
It means thatT is in stateq′′ after readingwcw′, and(p, p′) ∈ R′′ iff there exists a
run ofA from p to p′ on w′, andL′′ is some set of states reached by the look-aheads
that started at the same depth asw′. Therefore we first impose that any transition from
(q′′, R′′, L′′) readingr must satisfyL′′ ⊆ F la. Clearly,R′ can be constructed fromc,
R andR′′. Finally,L′ is a set which satisfies for allp ∈ L ∪ {p0}, there existsp′ ∈ L′

such that there exists a run ofA from p to p′ oncw′r. If such anL′ does not exist, there
is no transition onr. The setL′ can be constructed fromL ∪ {p0} andR′′.

We now define the transitions formally. First, for allq, R, L, c, γ, we have:

(q, R, L)
c|u,(γ,R,L∪{p0},c)
−−−−−−−−−−−−→ (q′, IdQla ,∅) ∈ δ′c wheneverq

c|u,p0,γ
−−−−−→ q′ ∈ δc

Then, for allR,L, r, γ, q′′, R′′, L′′, q′, R′, L′ we have:

(q′′, R′′, L′′)
r|u,(γ,R,L,c)
−−−−−−−−→ (q′, R′, L′) ∈ δ′r if the following conditions hold:

(i) q′′
r|u,γ
−−−→ q′ ∈ δr, (ii) L′′ ⊆ F la

(iii) R′ = {(p, p′) | ∃s
c,γ
−−→ s′ ∈ δlac · ∃(s′, s′′) ∈ R′′ · (p, s) ∈ R ands′′

r,γ
−−→ p′ ∈ δlar }

(iv) for all p ∈ L, there existp′ ∈ L′, γ ∈ Γ , s, s′ ∈ Qla such that(s, s′) ∈ R′′,
p

c,γ
−−→ s ∈ δlac , s′

r,γ
−−→ p′ ∈ δlar .

The proof of correctness is sketched in Appendix. IfT is deterministic, thenT ′ is un-
ambigous. Indeed, it is deterministic on return transitions. If there are two possible

transitionsq
c|u1,p1,γ1
−−−−−−→ q1 andq

c|u2,p2,γ2
−−−−−−→ q2 on a call symbolc, asT is deterministic,

we know that either the look-ahead starting inp1 or the look-ahead starting inp2 will
fail. In T ′, there will be two transitions that will simulate both look-aheads respectively,
and therefore at least one continuation of the two transitions will fail as well. Therefore
there is at most one accepting computation per input word inT . ⊓⊔

Succinctness.The exponential blow-up in the construction of Theorem 1 is unavoid-
able. Indeed, it is obviously already the case for finite state automata with regular look-
ahead. These finite state automata can be easily simulated byVPA on flat words (in
(ΣcΣr)

∗) (in that case the stack is useless). For example, consider for all n the lan-
guageLn = {vuv | |v| = n}. One can construct a finite state automaton with regular
look-ahead withO(n) states that recognizesLn It is done by using look-aheads that
check for alla ∈ Σ andi ≤ n that them− n− i-th letter is equal toa, wherem is the
length of the word. Without a regular look-ahead, any automaton has to store then-th
first letters ofw in its states, then it guesses them − n-th position and checks that the
prefix of sizen is equal to the suffix of sizen. A simple pumping argument shows that
the automaton needs at least|Σ|n states.

4 Functional VPT andVPTla

While there is no known syntactic restriction onVPT that captures all functionalVPT,
we show that the class of deterministicVPTla captures all functionalVPT. As there may

be an unbounded number of accepting runs, the equivalentVPTla has to choose only
one of them by using look-aheads. This is done by ordering thestates and extending
this order to runs. Similar ideas have been used in [7] to showthe same result for
top-down tree transducers. The main new difficulty withVPT is to cope with nesting.
Indeed, when the transducer enters an additional level of nesting, its look-ahead cannot
inspect the entire suffix but is limited to the current nesting level. When reading a call,
choosing (thanks to some look-ahead) the smallest run on thecurrent well-nested prefix
is not correct because it may not be possible to extend this run to an accepting run on
the entire word. Therefore the transducer has to pass some information from one to the
next level of nesting about the chosen global run, while for top-down tree transducers,
as the evaluation is top-down, the transformation of the current subtree is independent
of the transition choices that have been made at upper levels.

Theorem 2. For all VPT T , one can construct a deterministicVPTla Tla with at most
exponentially many more states such thatJTlaK ⊆ JT K and Dom(Tla) = Dom(T). If T
is functional, thenJTlaK = JT K.

Proof. We order the states ofT and use look-aheads to choose the smallest runs wrt to
an order on runs that depends on the structure of the word. LetT = (Q, q0, F, Γ, δ) be
a functionalVPT. Wlog we assume that for allq, q′ ∈ Q, all α ∈ Σ, there is at most
oneu ∈ Σ∗ and oneγ ∈ Γ such that(q, α, u, γ, q′) ∈ δ. A transducer satisfying this
property can be obtained by duplicating the states with transitions, i.e. by taking the set
of statesQ×∆.

We construct an equivalent deterministicVPTla (T
′, A)whereT ′ = (Q′, q0, F

′, Γ ′, δ′)
with Q′ = {q0} ∪ Q2, F ′ = F × Q if q0 6∈ F otherwiseF ′ = (F × Q) ∪ {q0}. The
look-aheadA is defined later. Before definingδ′ formally, let us explain it informally.
There might be several accepting runs on an input wordw, each of them producing the
same output, asT is functional. To ensure determinism,T ′ has to choose exactly one
transition when reading a symbol. The idea is to order the states by a total order<Q and
to extend this order to runs. The look-ahead will be used to choose the next transition of
T that has to be fired, so that the choice will ensure thatT follows the smallest accept-
ing run onw. However the look-ahead can only visit the current longest well-nested
prefix, and not the entire word. Therefore the “parent” of thecall c has to pass some
information about the global run to its childc. In particular, whenT ′ is in state(q, q′)
for some stateq′, it means thatT is in stateq and the state reached after reading the last
return symbol of the longest-well nested current prefix mustbeq′.

Consider a word of the formw = c1w1r1w2c3w3r3 wherewi are well-nested,
depicted on Fig. 3. Suppose that before evaluatingw, T ′ is in state(q1, q3). It means that
the last transitionT has to fire when readingr3 has a target stateq3. When reading the
call symbolc1,T ′ uses a look-ahead to determine the smallest triple of states(q′1, q

′
2, q2)

such that there exists a run onw that starts inq1 and such that after readingc1 it is in
stateq′1, before readingr1 it is in stateq′2, after readingr1 it is in stateq2 and after
readingr3 it is in stateq3. Then,T ′ fires the call transition onc1 that with source and
target statesq1 andq′1 respectively (it is unique by hypothesis), put on the stack the
states(q2, q3) and passes tow1 (in the state) the information that the chosen run onw1

terminates by the stateq′2, i.e. it goes to the state(q′1, q
′
2). (see Fig. 3). On the figure,

we do not explicit all the states and anonymous components are denoted by. When
readingr1, T ′ pops from the stack the tuple(γ, q2, q3) and therefore knows that the

transition to apply onr1 has target stateq2 and the transition to apply onr3 has target
stateq3. Then it passesq3 to the current state.

(q1,q3)

(q′1,q
′

2) (q′2,q
′

2)

(q2,q3) (,q3)

(,) (,)

(,q3)l.a. to choose the smallest(q′1, q′2, q2)i

i+1

c1 w1 r1 w2 c3 w3 r3

push(γ,q2 ,q3) pop(γ,q2,q3)

Fig. 3.

When the computation starts inq0, we do not know yet what return transition has
to be fired at the end of the hedge. This case can be easily treated separately by a look-
ahead on the first call symbol that determine the smallest 4-tuple of states(q1, q′2, q2, q3)
which satisfies the conditions described before, but to simplify the proof, we assume
that theVPT accepts only words of the formcwr, wherew is well-nested, so that one
only needs to consider triples of states.

We now define the transition relation formally. Let< be a total order on states,
extended lexicographically to tuples. For all statesq1, q

′
1, q

′
2, q2, q3 ∈ Q, it is easy to

define aVPA Aq1,q′1,q
′

2,q2,q3
whose size is polynomial in the size ofT that accepts a

wordw iff it is of the form c1w1r1w3 wherew1, w3 are well-nested and there exists a
run of T onw that starts in stateq1 and is stateq′1 after readingc1, in stateq′2 before
readingr1, in stateq2 after readingr1 and in stateq3 after readingw3. Note that if
w3 = ǫ then if q3 6= q2, thenw 6∈ L(Aq1,q′1,q

′

2,q2,q3
). We denote byAq1,q′1,q

′

2,q2,q3
the

complement ofAq1,q′1,q
′

2,q2,q3
.

We letBq1,q′1,q
′

2,q2,q3
aVPA with initial statepq1,q′1,q′2,q2,q3 that defines the language:

L(Bq1,q′1,q
′

2,q2,q3
) = L(Aq1,q′1,q

′

2,q2,q3
) ∩

⋂

(s1, s
′

2, s2) ∈ Q3

(s1, s
′

2, s2) < (q1, q
′

2, q2)

L(Aq1,s1,s′2,s2,q3
)

Such aVPA exists asVPA are closed by intersection and complement. Its size how-
ever may be exponential in|Q|. We define the look-aheadVPA as the union of all those
VPA, Ala =

⊎
Bq1,q′1,q

′

2,q2,q3
. We now define the call and return transitions ofT ′ as

follows, for all c ∈ Σc, r ∈ Σr, γ ∈ Γ, q1, q
′
1, q

′
2, q3, q ∈ Q, u ∈ Σ∗:

(q1, q3)
c|u, (γ,q2,q3), pq1,q′

1
,q′

2
,q2,q3

−−−−−−−−−−−−−−−−−−→ (q′1, q
′
2) if (q1

c|u,γ
−−−→ q′1) ∈ δc

q0
c|u, (γ,q3,q3), pq0,q′

1
,q′

2
,q3,q3

−−−−−−−−−−−−−−−−−−→ (q′1, q
′
2) if (q0

c|u,γ
−−−→ q′1) ∈ δc

(q′2, q)
r|u,(γ,q2,q3)
−−−−−−−−→ (q2, q3) if (q′2

r|u,γ
−−−→ q2) ∈ δr

We show in Appendix thatT ′ is deterministic. ⊓⊔

This construction, followed by the construction of Theorem1 that removes the look-
aheads, yields a nice characterization of functionalVPT:

Theorem 3. For all functionalVPT T , one can effectively construct an equivalent un-
ambiguousVPT T ′.

VPA [1] VPAla VPT [9] VPTla

Emptiness PTIME EXPT-C PTIME EXPT-C

Universality EXPT-C EXPT-C NA NA
Inclusion EXPT-C EXPT-C EXPT-C EXPT-C

Equivalence EXPT-C EXPT-C EXPT-C (for fVPT) EXPT-C (for fVPT)
Functionality NA NA PTIME EXPT-C

Table 1.Decision Problems forVPA,VPAla,VPT,VPTla

5 Decision Problems

In this section, we study the problems of functionality ofVPTla and equivalence of
functionalVPTla. In particular, we prove that while being exponentially more succinct
thanVPT, the equivalence of functionalVPTla remains decidable in EXPT, as equiva-
lence of functionalVPT.

Theorem 4. Functionality ofVPTla is EXPT-C, even for deterministic look-aheads.

Proof. For the EXPT upper-bound, we first apply Theorem 1 to remove the look-
aheads. This results in aVPT possibly exponentially bigger. Then functionality can
be tested in PTIME [9]. For the lower-bound, we reduce the problem of deciding empti-
ness of the intersection ofn deterministic top-down tree automata, which is known to
be EXPT-C whenn is part of the input [3]. The full proof is in Appendix.

We know that the equivalence of two functionalVPT is EXPT-C [9]. For equiva-
lence of functionalVPTla, one can first remove the look-aheads, modulo an exponential
blow-up, and use the procedure forVPT. This would yield a 2-EXPT procedure for the
equivalence of functionalVPTla. However, it is possible to decide it in EXPT:

Theorem 5. Emptiness ofVPTla, resp. ofVPAla, equivalence and inclusion of func-
tional VPTla, resp. ofVPAla, is EXPT-C, even if the transducers, resp. automata, and
the look-aheads are deterministic.

Proof. The lower bounds are obtained, as for functionality, by reduction of the empti-
ness ofn (deterministic) tree automata (see Appendix).
Emptiness ofVPAla can be checked by first removing the look-aheads (modulo an expo-
nential blow-up) and then check emptiness of the equivalentVPA (in PTIME). Checking
emptiness of aVPTla amounts to check emptiness of its domain, which is aVPAla.
To show that equivalence and inclusion of twoVPAla is in EXPT, we construct two alter-
nating (ranked) tree automata equivalent to theVPA modulo the first-child next-sibling
encoding in PTIME. Look-aheads are encoding as universal transitions (see Appendix).
Equivalence and inclusion of alternating tree automata is in EXPT [3].
Then, let us show how to check the equivalence, resp. inclusion, of twoVPTla: trans-
form eachVPTla into an equivalentVPT with at most an exponential blow-up, take the
union and verify (in PTIME) that the resultingVPT is still functional. Then check that
their domains (which areVPAla obtained by ignoring the output of the twoVPTla) are
equivalent, resp. included. ⊓⊔

6 Discussion and Conclusion
Summary We have introduced visibly pushdown transducers (resp. automata) with
look-ahead and have shown that while there are exponentially more succinct, it comes
with no cost in time complexity, except for emptiness and functionality. Table 1 sum-
marizes our results. Note that universality ofVPAla is in EXPT as it amounts to check
equivalence with the universal language. It is EXPT-hard because universality ofVPA
is already EXPT-hard. Finally, note that universality is not relevant to transducers as
VPT are never universal. As future work, we would like to extend those results tok-
valuedVPT: is anyk-valuedVPT equivalent to ak-ambiguousVPTla? This question
is more difficult than for functionalVPT, as fork-valuedVPT, among a set of possi-
ble transitions it is necessary to choose for each output word (among at mostk output
words) exactly one transition, in order to turnk-valuedness intok-ambiguity. It is not
clear how to use look-aheads to make such choices.

Variants of look-aheadWe discuss in Appendix some variants of look-ahead. The clo-
sure by look-ahead (Theorem 1) and the equivalence between deterministicVPTla and
functionalVPT (Theorem 2) still hold when the look-ahead can inspect the whole suf-
fix and can also be triggered on return transitions. However,when the look-ahead can
inspect only the current well-nested prefix of the formcwr (corresponding to the first
subtree of the current hedge in a tree), it is not sufficient toexpress all functionalVPT
with determinism.

References
1. R. Alur and P. Madhusudan. Visibly pushdown languages. InSTOC, pages 202–211, 2004.
2. R. Alur and P. Madhusudan. Adding nesting structure to words. JACM, 56(3):1–43, 2009.
3. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and

M. Tommasi. Tree automata techniques and applications, 2007.
4. S. Eilenberg.Automata,Languages,andMachines. Academic Press, Inc., 1974.
5. C. C. Elgot and J. E. Mezei. On relations defined by generalized finite automata.IBM

Journalof ResearchandDevelopment, 9:47–68, 1965.
6. J. Engelfriet. Top-down tree transducers with regular look-ahead.MST, 10:289–303, 1977.
7. J. Engelfriet. On tree transducers for partial functions. IPL, 7(4):170–172, 1978.
8. J. Engelfriet and H. Vogler. Macro tree transducers.JCSS, 31(1):71–146, 1985.
9. E. Filiot, J.-F. Raskin, P.-A. Reynier, F. Servais, and J.-M. Talbot. Properties of visibly

pushdown transducers. InMFCS, pages 355–367, 2010.
10. O. Gauwin.StreamingTreeAutomataandXPath. PhD thesis, Université Lille 1, 2009.
11. O. Gauwin, J. Niehren, and S. Tison. Queries on xml streams with bounded delay and

concurrency.Inf. Comput., 209(3):409–442, 2011.
12. V. Kumar, P. Madhusudan, and M. Viswanathan. Visibly pushdown automata for streaming

xml. In WWW, pages 1053–1062, 2007.
13. T. Perst and H. Seidl. Macro forest transducers.IPL, 89(3):141–149, 2004.
14. J. Sakarovitch and R. de Souza. Lexicographic decomposition of k -valued transducers.TCS,

47(3):758–785, 2010.
15. M. P. Schützenberger. Sur les relations rationnelles entre monoides libres.TCS, 3(2):243–

259, 1976.
16. L. Segoufin and V. Vianu. Validating streaming xml documents. InPODS, pp 53–64, 2002.
17. S. Staworko, G. Laurence, A. Lemay, and J. Niehren. Equivalence of deterministic nested

word to word transducers. InFCT, volume 5699 ofLNCS, pages 310–322, 2009.
18. A. Weber. Decomposing finite-valued transducers and deciding their equivalence.SIAM

JournalonComputing, 22(1):175–202, 1993.

A VPT with Visibly Pushdown Look-Ahead

Proof (Correctness of the construction of Theorem 1).We sketch the proof of correct-
ness of the construction. Letw ∈ Σ∗ such thatw is a prefix of well-nested word. We
definesh(w) as the longest well-nested suffix ofw, we callsh(w) thesubhedgeof w.
For instance, ifw = c1c2r2c3r3, thensh(w) = c2r2c3r3. However ifw = c1c2, then
sh(w) = ǫ.

First, one can check (e.g. by induction on the length ofw) that the successive com-
putations of theR component of the state ensures that the following property holds:
for all wordsw ∈ Σ∗ prefix of a well-nested word, if there is a run ofT ′ from q′0 to
(q, R, L) on w, then for allp, p′ ∈ Qla, (p, p′) ∈ R iff there is a run ofA on sh(w)
from p to p′.

With this last property it is easy to show that the following property also holds: let
w = c1w1r1c2w2r2 . . . cnwnrn where allwi are well-nested. A run ofT on w will
trigger a new look-ahead at each callci, all these look-ahead will still be ’live’ untilrn.
These look-aheads are simulated by theL component of the state ofT ′. If there is a run
of T on w, it means that all look-aheads accepts the respective remaining suffixes of
w, and therefore after readingri there arei accepting runs of the previous look-aheads.
Suppose that those accepting runs are in the statesQi after readingri. By suitable
choices ofL-components (T ′ is non-deterministic onL-components), we can ensure
that there is an accepting run ofT ′ such that after readingri theL-component of the
states isQi, for all i. Conversely, if there is an accepting run ofT ′ onw, then one can
easily reconstruct accepting runs of the look-aheads. ⊓⊔

Proof (End of the proof of Theorem 2).The transducerT ′ is deterministic: return tran-
sitions are fully determined by the statesq′2, q2, q3 and the input letterr (by our first as-
sumption there is at most one transition inT from q′2 to q2). For call transitions, suppose
that from(q1, q3) there are two possible look-aheadspq1,q′1,q′2,q2,q3 andpq1,s′1,s′2,s2,s3 .
By definition of the look-aheads, we haveL(Bq1,q′1,q

′

2,q2,q3
) ∩ L(Bq1,s′1,s

′

2,s2,s3
) = ∅.

Moreover, there cannot be two transitions with the same look-ahead as transitions are
fully determinied byq1, q3, q2, q′2, q

′
1 (there is at most one call transition by our as-

sumption with source and target statesq1 andq′1 respectively). A simple analysis of
the complexity shows that the look-aheadA has exponentially many more states thanT
(the exponentiation comes from the complement in the definition ofBq1,q′1,q

′

2,q2,q3
). ⊓⊔

B Decisions Problems

Proof of Theorem 4, Lower BoundGiven n deterministic top-down binary tree au-
tomataT1, . . . , Tn over an alphabet∆, one can construct in linear-timen deterministic
VPA A1, . . . , An that define the same languages asT1, . . . , Tn respectively, modulo the
natural encoding of trees as nested words over the structured alphabet∆̃ = {ca | a ∈
∆} ⊎ {ra | a ∈ ∆} [10]. The encoding corresponds to a depth-first left-to-right traver-
sal of the tree. For instance,enc(f(f(a, b), c)) = cfcfcaracbrbrfccrcrf . We now con-
struct aVPTla T over the alphabet̃∆ such thatT is functional iff

⋂
i L(Ti) = ∅. The

domain ofT are words of the formwn,t = c1r1 . . . cnrnenc(t) for some ranked treet
over∆. It is easy to define aVPA that accepts such words and whose size is polynomial
in n and∆. Then first call symbols are used to runn look-aheads. When thei-th call

ci is read, a look-aheadBi checks thatenc(t) ∈ L(Ai): it first count that2(n− i + 1)
symbols have been read and go to the initial state ofAi. The output words ofT are
produced as follows: when readingci, there are two possible transitions, that both push
the same symbol on the stack, launch the same look-ahead, andgoes to the same state,
but output two different words, let sayca andra respectively. If the look-ahead is not
accepting the suffix, then none of these transitions can be fired and the computation
stops. Any run ofT on the wordwn,t is accepting. Therefore there is an accepting run
of T onwn,t iff enc(t) ∈

⋂
i L(Ai), and in that case there are2n accepting runs whose

output words are of the formα1 . . . αn respectively whereαi ∈ {ca, ra}. ThereforeT
is not functional iff there is a treet such thatenc(t) ∈

⋂
i L(Ai), iff there is a treet

such thatt ∈
⋂

i L(Ti). Note that the look-aheads are deterministic. ⊓⊔

Equivalence (resp. inclusion) ofVPAla in EXPT (Theorem 5)We then show how to
check the equivalence, resp. inclusion, of twoVPAla in EXPT. Let us denoteA1, A2 the
VPA with look-ahead that defineDom(T1) andDom(T2) respectively. We show how
to checkL(A1) = L(A2) in EXPT. The idea is to reduce the problem to equivalence,
resp. inclusion, of finite alternating tree automata, whichis known to be in EXPT [3].
Well-nested words over the alphabetΣ = Σc ⊎Σr can be translated as unranked trees
over the alphabet̃Σ = Σc×Σr. Those unranked trees can be again translated as binary
trees via the classical first-child next-sibling encoding [3].VPA overΣ can be translated
into equivalent top-down tree automata over first-child next-sibling encodings oñΣ of
well-nested words overΣ in PTIME [10]. Look-aheads ofVPA inspect the longest
well-nested prefix of the current suffix. This corresponds tosubtrees in first-child next-
sibling encodings of unranked trees. ThereforeVPA with look-aheads can be translated
into top-down tree automata with look-aheads that inspect the current subtree. Top-
down tree automata with such look-aheads can be again translated into alternating tree
automata: triggering a new look-ahead corresponds to a universal transition towards two
states: the current state of the automaton and the initial state of the look-ahead. This
again can be done in PTIME. Since equivalence, resp. inclusion, of finite alternating
tree automata is in EXPT [3].

Proof of the lower bound for Theorem 5Lower bounds The lower bounds for the
decision problems (emptiness, inclusion, equivalence) onVPTla are consequences of
the lower bounds for the respective problems onVPAla. The lower bounds for inclusion
and equivalence ofVPAla are consequences of the lower bounds for the emptiness of
VPAla.

We obtain the exptime lower bound similarly as in the proof ofTheorem 4, i.e. to
the reduction of the emptiness ofn deterministic top-down tree automataB1, . . . , Bn.
In particular, we can construct aVPAla A such that:

L(A) = {c1r1 . . . cnrnenc(t) | t ∈ Trees∆ ∩
⋂

i

L(Bi)}

whereTrees∆ are the set of ranked trees over alphabet∆.

C Variants of Look-Ahead

C.1 Discussion

We discuss several variants of visibly pushdown look-aheads. Instead of inspecting the
longest well-nested current prefix, one could visit only thecurrent well-nested prefix
of the formcwr. This would correspond to the first subtree of the current hedge in
encodings of unranked trees as well-nested words. WhileVPT would still be closed by
such look-aheads, we would not have a correspondence between deterministicVPTla

and functionalVPT anymore. For instance, the family of transductions(Ln)n defined
in Section 3 would not be definable by a deterministicVPTla, although it is a functional
transduction. In some sense, our definition of look-ahead isthe minimal requirement to
get the equivalence between deterministicVPTla and functionalVPT.

One could also allow look-aheads on return transitions. Such look-aheads would
inspect the longest well-nested prefix starting just after the current return symbol. This
could be easily simulated by look-aheads on call transitions in PTIME, and it would
preserve determinism. Therefore our results still hold in this setting.

Another way of adding look-aheads is to allow them to inspectthe whole current
suffix. Such look-aheads can be defined by visibly pushdown automata where return
transitions on empty stack are allowed, as originally defined in [1]. The construction
of Theorem 1 can be slightly modified to show thatVPT are still closed by such look-
aheads. The idea is to extend the states with a new componentL⊥ ⊆ Qla that corre-
sponds to states of look-aheads that started at a deeper position than the current position.
For those states we apply only return transitions on empty stack when reading a return
symbol. See the next subsection for a formal construction. Obviously,VPT with such
look-aheads still satisfy the correspondence between functionalVPT and determinis-
tic VPT with look-ahead. However, the proof of the EXPT upper-bound for functional
equivalence cannot be adapted as we cannot reduce the problem of testing equivalence
of the domains to equivalence of alternating tree automata.We let the question of find-
ing the exact complexity of functional equivalence forVPT with visibly pushdown
look-ahead that inspect the whole suffix as future work.

C.2 Closure by Visibly Pushdown Look-Ahead Inspecting the Whole Suffix

We consider in this sectionVPA that can trigger return transitions on empty stack. Such
aVPA is a tuple(Q, q0, F, Γ, δ = δr ⊎ δc ⊎ δ⊥) whereδ⊥ ⊆ Q× Σr ×Q denotes the
set of those new transitions.

We denote byVPT+
la

the set of visibly pushdown transducers with look-aheads that
can inspect the whole suffix. We prove thatVPT are closed by such look-aheads. The
construction is done by a slight modification of the construction given in the proof of
Theorem 1.

The idea is extend the states a the constructedVPT with a new componentL⊥ ⊆
Qla that corresponds to states of look-aheads that started at a deeper position than the
current position., and such that any position in between theposition at which they
started and the current position is not above the current position. For instance, let us
consider a well-nested word of the formwcc1w1r1 . . . cnwnrnrw

′ wherewi is well-
nested. After readingri, L⊥ contains current states of look-aheads that started when

reading the wordsw1, . . . , wn. We therefore have twoL-components: the look-aheads
that started when readingc1, . . . , cn and the new look-ahead component. When reading
c, we push on the stack this new component. Let us formally define the construction.
From aVPT+

la
T = (Q, q0, F, Γ, δ) with look-aheadA = (Qla, qla0 , F la, Γ la, δla), we

construct an equivalentVPT T ′ = (Q′, q′0, F
′, Γ ′, δ′) possibly exponentially bigger as

follows:

– Q′ = Q× 2Q
la×Qla

× 2Q
la

× 2Q
la

;
– Γ ′ = Γ × 2Q

la×Qla

× 2Q
la

× 2Q
la

×Σc;
– F ′ = {(q, R, L, L⊥) ∈ Q′ | q ∈ F,L ⊆ F la, L⊥ ⊆ F la}.
– q′0 = (q0, IdQla ,∅,∅).

The transitions are defined as follows:
First, for allq, R, L, L⊥, c, γ, we have:

(q, R, L, L⊥)
c|u,(γ,R,L∪{p0},L⊥,c)
−−−−−−−−−−−−−−−→ (q′, IdQla ,∅,∅) ∈ δ′c wheneverq

c|u,p0,γ
−−−−−→ q′ ∈ δc

Then, for allR,L, L⊥, r, γ, q
′′, R′′, L′′, L′′

⊥, q
′, R′, L′, L′

⊥ we have:

(q′′, R′′, L′′, L′′
⊥)

r|u,(γ,R,L,L⊥,c)
−−−−−−−−−−−→ (q′, R′, L′, L′

⊥) ∈ δ′r

if the following conditions hold:

(i) q′′
r|u,γ
−−−→ q′ ∈ δr;

(ii) R′ = {(p, p′) | ∃s
c,γ
−−→ s′ ∈ δlac · ∃(s′, s′′) ∈ R′′ · (p, s) ∈ R ands′′

r,γ
−−→ p′ ∈ δlar }

(iii) for all p ∈ L (resp.L⊥), there existp′ ∈ L′ (resp.L′
⊥), γ ∈ Γ , s, s′ ∈ Qla such

that(s, s′) ∈ R′′, p
c,γ
−−→ s ∈ δlac , s′

r,γ
−−→ p′ ∈ δlar ;

(iv) for all p ∈ L′′
⊥, there existp′ ∈ L′

⊥, such thatp
r
−→ p′ ∈ δla⊥ .

