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Abstract In this paper, we present new monolithic and compositional algorithms to solve
theLTL realizability problem. Those new algorithms are based on a reduction of theLTL re-
alizability problem to a game whose winning condition is defined by a universal automaton
on infinite words with ak-co-Büchi acceptance condition. This acceptance condition asks
that runs visit at mostk accepting states, so it implicitly defines asafety game. To obtain
efficient algorithms from this construction, we need several additional ingredients. First, we
study the structure of the underlying automata constructions, and we show that there ex-
ists a partial order that structures the state space of the underlying safety game. This partial
order can be used to define an efficientantichain algorithm. Second, we show that the al-
gorithm can be implemented in anincremental wayby considering increasing values ofk
in the acceptance condition. Finally, we show that for largeLTL formulas that are written as
conjunctions of smaller formulas, we can solve the problemcompositionallyby first com-
puting winning strategies for each conjunct that appears inthe large formula. We report on
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the behavior of those algorithms on several benchmarks. We show that the compositional
algorithms are able to handleLTL formulas that are several pages long.

Keywords LTL realizability and synthesis· Automata on infinite words· Compositional
algorithms· Antichain algorithms.

1 Introduction

Context and motivations The realizability problemis best seen as a game between two
players [24]. Given anLTL formula φ and a partition of its atomic propositionsP into I
andO, Player1 starts by giving a subseto0 ⊆ O of propositions1, Player2 responds by
giving a subset of propositionsi0 ⊆ I, then Player1 giveso1 and Player2 responds by
i1, and so on. This game lasts forever and the outcome of the gameis the infinite word
w = (i0 ∪ o0)(i1 ∪ o1)(i2 ∪ o2) · · · ∈ (2P )ω. Player1 wins if the resulting infinite wordw is
a model ofφ. Thesynthesis problemasks to produce a winning strategy for Player 1 when
theLTL formula is realizable.

The LTL realizability problem is central when reasoning about specifications for reac-
tive systems and has been studied starting from the end of theeighties with the seminal
works by Pnueli and Rosner [24], and Abadi, Lamport and Wolper [1]. It has been shown
2EXPTIME -C in [26]2. Despite their high worst-case computation complexity, webelieve
that it is possible to solveLTL realizability and synthesis problems in practice. We proceed
here along recent research efforts that have brought new algorithmic ideas to attack this
important problem.

The classical automata-based solution toLTL synthesis can be summarized as follows.
Given anLTL formula φ, construct a nondeterministic Büchi automatonAφ that accepts
all models ofφ, transformAφ into a deterministic Rabin automatonB using Safra’s de-
terminization procedure [27], and useB as an observer in a turn-based two-player game.
Unfortunately, this theoretically elegant procedure has turn out to be very difficult to im-
plement. Indeed, Safra’s determinization procedure generates very complex state spaces:
states are colored trees of subsets of states of the originalautomaton. No nice symbolic
data-structure is known to handle such state spaces. Moreover, the game to solve as the last
step (on a potentially doubly-exponential state space) is aRabin game, and this problem is
known to be NP complete3.

This situation has triggered further research for alternative procedures. Most notably,
Kupferman and Vardi in [19] have recently proposed procedures that avoid the determiniza-
tion step and so Safra’s construction4. In particular, they reduce theLTL realizability prob-
lem to the emptiness of a Universal Co-Büchi Tree automaton(UCT). They show how to test
emptiness of aUCT by translation to an alternating weak Büchi tree automaton, again trans-
lated into a non-deterministic Büchi tree automaton for which testing emptiness is easy. All
these steps have been implemented and optimized in several ways by Jobstmann and Bloem

1 Technically, we could have started with Player2, for modeling reason it is conservative to start with
Player1. All the techniques developed in this paper can be triviallyadapted to the other setting.

2 Older pioneering works consider the realizability problembut for more expressive and computationally
intractable formalisms like MSO, see [31] for pointers.

3 Instead of Rabin automata, Parity automata can also be used [22]. Nevertheless, there are no known
polynomial time algorithm to solve parity games.

4 As a consequence, they call their new proceduresSafralessprocedures. Nevertheless they use the result
by Safra in their proof of correctness.
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in a tool calledLily [15]. In 2007, Schewe and Finkbeiner has shown how to reduce the
emptiness problem ofUCT into the emptiness of safety tree automata.

Contributions In this paper, our contributions are threefold. First, we phrase a Safraless de-
cision procedure for theLTL realizability and synthesis problem directly in the formalism of
infinite word automata. Second, we identify structural properties in the underlying automata
constructions that allow us to define an antichain algorithmfor solving the LTL realizabil-
ity problem. This is in line with our previous works in [6,7,25,8] that use subsumption to
obtain efficient implementations of several variants of subset constructions. Third, we study
compositional algorithms to solve safety games, and we showhow they can be used to de-
velop compositional algorithms for solving the realizability and synthesis problems of large
and structuredLTL specifications.

Safraless procedureOur Safraless procedure uses Universal Co-Büchi Word automata,UCW.
While solving the emptiness problem is easy for nondeterministic automata, solving the uni-
versality problem is easy for universal automata: aUCW A accepts all the words inΣω if
all cycles inA reachable from an initial state only contain non final states5. As a direct con-
sequence,A is universal if and only if all paths starting from initial states inA can visit at
mostn times a final state, wheren is the number of states inA. So universality easily re-
duces to safety forUCW. This simple property can be exploited in synthesis as follows: if a
Moore machineM (representing a strategy) withm states defines a language (the outcome
of the strategy) included in the language of aUCW A with n states, denoted byLuc(A),
i.e.,L(M) ⊆ Luc(A), then every run on the words generated byM contains at most2mn
final states ofA. As a consequence, a strategy represented by a Moore machinethat en-
forces a language defined by aUCW also enforces astronger specificationdefined by the
same automaton where the acceptance condition is strengthened to a so called ”2mn-co-
Büchi”: a run is accepting if it passes at most2mn times by a final state. Those automata
are calledUniversalk-co-Büchi automata, denoted byUK CW. The language ofA with this
acceptance condition is denoted byLuc,k(A).

Using the result by Safra [27], we know that the size of a Mooremachine that real-
izes a language defined by aUCW A can be bounded by some valueK ∈ N, which is at
most exponential in the size ofA. This gives a reduction from the general problem to the
problem of the realizability of aUK CW specification. Contrarily to generalUCW speci-
fications, universalK-co-Büchi specifications aresafety conditions, and they can easily be
made deterministic. The ideas underlying our constructionare similar to the ones used in
the reduction fromUCT to safety tree automata proposed in [28].

Antichain and incremental algorithmThe realizability and synthesis problems of anLTL
formulaφ can thus be reduced to a game whose winning objective is expressed by aUCW
Aφ, whereAφ is theUCW that accepts all the models of formulaφ. The acceptance con-
dition of this automata can be strengthened to aK-co-Büchi condition and made determin-
istic using an extension of the classical subset construction. When applied to a universal
automatonA with set of statesQ, the classical subset construction consists in building a
new automatonA′ whose states are subsets ofQ. Thus, each state ofA′ encodes the set of
states ofA that are active at each level of the run tree. In the case ofK-co-Büchi automata,
one needs additionally to remember how many times final states have been visited on the

5 Analysis of cycles in automata over infinite words has previously been exploited in bounded model-
checking, see [18] for a formal treatment.
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branches that lead to each active state. Clearly only the maximal number (up toK + 1) of
visits to final states among all the branches that reachq has to be remembered. So, we need
one counter, that counts up toK + 1, for each state of the automatonAφ. To implement this
approach in practice, we face two difficulties. First, the automatonAφ can be exponentially
larger thanφ, and so its determinization can be doubly-exponentially larger thanφ. Second,
the maximal valueK ∈ N that we need to consider in theory is also doubly exponentialin
the size of the formulaφ. To overcome those two difficulties, we study the structure of the
underlying automata constructions, and we develop the following two heuristics.

First, we show that the set of states of the deterministic automaton is partially ordered.
The underlying partial order can be used to define an efficientdata-structure to compactly
represent and efficiently manipulate the game positions of the associated safety game. This
allows us to develop an antichain algorithm, in the spirit of[8], to efficiently compute the
winning positions in the safety game.

Second, for allUCW A, and for allk1, k2 ∈ N, if k1 ≤ k2 thenLuc,k1
(A) ⊆ Luc,k2

(A).
So, instead of solving the safety game associated with the specificationLuc,K(Aφ) (for the
theoretical boundK given by the Safra’s construction), we adopt an incrementalapproach,
and we solve the games underlyingLuc,i(Aφ) for increasing values ofi, i = 0, 1, 2, ..., K.
As soon as one of this game can be won by Player 1, we know that the formula is realizable
becauseLuc,i(Aφ) ⊆ Luc,K(Aφ) ⊆ Luc(Aφ). For unrealizable specification, this approach
is not reasonable. This is why we consider in parallel the games associated with the spec-
ificationsLuc,i(A¬φ) for increasing values ofi, i = 0, 1, 2, ..., K′, and decide if Player 2
has a winning strategy in those games6. As LTL games are determined [21], we know that if
Player 1 cannot realizeφ, then Player 2 can realize¬φ. In practice, we will see that for all the
LTL formulas that we consider in our benchmarks, one of the the specificationsLuc,i(Aφ)

or Luc,i(A¬φ) is realizable for a small value ofi (less than 3 in all our experiments). This
incremental algorithm has been implemented in a prototype of tool calledAcacia. We have
applied it to a set of benchmarks provided with the toolLily and compared the performances
of the two approaches on those benchmarks.

Compositional algorithmLargeLTL formulas are often written as conjunctions of smaller
formulas. We show that if theLTL formula has the formΦ = φ1 ∧ φ2 ∧ · · · ∧ φn, i.e., a
conjunction ofLTL sub-specifications, thenG(Φ), the safety game underlying the formula
Φ (as sketched above), can be constructed and solved compositionally. The compositional
algorithms are able to handle formulas that are several pages long while non-compositional
algorithms are limited to much smaller formulas.

The compositional algorithms rely on the following nice property of safety games: for
any safety gameG, there exists a function that maps each positions of Player 1 to the set of
all actions that are safe to play ins. We call this function themaster planof Player 1 inG.
It encompasses all the winning strategies of Player 1. IfΛ is the master plan ofG then we
denote byG[Λ] the gameG where the behavior of Player 1 is restricted byΛ.

To compute the winning positions of a safety gameG12 = G1 ⊗ G2 defined as the
composition of two sub-games, we compute the master plans for the local gamesG1 and
G2 before composition. LetΛ1 (resp.Λ2) be the master plan forG1 (resp.G2), then the
winning positions inG12 are the same as the winning positions inG1[Λ1] ⊗ G2[Λ2]. We
develop backward and forward algorithms that exploit this property.

Sometimes, theLTL formula is given in the following form:
Vm

i=1 ψi →
Vn

j=1 φj where
ψi are hypothesis that are made on the environment of the systemto control, andφj are

6 Note that in this game, Player 1 is first to play as in the original game.
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guarantees that the controller has to ensure. For those formulas, we show how to rewrite
them in order to apply the compositional algorithms and how to simplify the formula that
we obtain after rewriting.

We have implemented the two compositional algorithms in ourprototypeAcacia and
we provide an empirical evaluation of their performances onthe set of benchmarks on which
we have evaluated the monolithic incremental approach sketched before, and on a realistic
case study taken from the IBMRuleBase tutorial [14].

Related works The first solution [24] to theLTL realizability and synthesis problem was
based on Safra’s procedure for the determinization of Büchi automata [27].

Following [19], the method proposed in our paper can be coined ”Safraless” approach
to the realizability and synthesis ofLTL as it avoids the determinization (based on Safra’s
procedure) of the automaton obtained from theLTL formula. Our approach relies on a re-
duction to safety games, as in [28]. There, the constructionis used to justify a reduction
of the emptiness of universal co-Büchi tree automata to theSAT problem. In turn, this re-
duction is used to obtain a semi-algorithm for the distributed synthesis problem which is
undecidable. Our algorithms are not reductions to SAT but fixed-point algorithms that can
be implemented compositionally and symbolically using antichains. Recently, Ehlers [9] has
also implemented this reduction with a fixed point algorithmusing BDDs and not antichains.

In [19], Kupferman and Vardi proposed the first Safraless approach that reduces theLTL
realizability problem to Büchi games, which has been implemented in the toolLily [15],
their algorithm is incremental as the algorithm proposed inthat paper. In [17], a composi-
tional approach toLTL realizability and synthesis is proposed. Their algorithm is based on a
Safraless approach that transforms the synthesis problem into a Büchi and not a safety game
as in our case. There is no notion like the master plan for Büchi games. To the best of our
knowledge, their algorithm has not been implemented.

In [4], the idea of checking the realizability ofψ by Player 1 in parallel with the re-
alizability of ¬ψ by Player 2 is also proposed. Nevertheless, the procedure there is only
complete forω-regular specifications that are definable by deterministicBüchi automata.

In [23,3], an algorithm for the realizability problem for a fragment ofLTL, known as
GR(1), is presented and evaluated on the case study of [14]. The specification into theGR(1)

fragment for this case study is not trivial to obtain and so the gain in term of complexity7

comes with a cost in term of expressing the problem in the fragment. Our approach is dif-
ferent as we want to consider the fullLTL logic. In our opinion, it is important to target full
LTL as it often allows for writing more declarative and more natural specifications.

In [29], the authors also considerLTL formulas of the formΦ = φ1∧φ2∧· · ·∧φn. They
propose an algorithm to construct compositionally a paritygame from suchLTL specifica-
tions. Their algorithm uses a variant of Safra’s determinization procedure and additionally
tries to detect local parity games that are equivalent to safety games (because the associated
LTL subformula is a safety property). For efficiently solving the entire game, they use BDDs.

In [16], a compositional algorithm is proposed for reasoning about network of com-
ponents to control under partial observability. The class of properties that they consider is
safety properties and notLTL properties. They propose a backward algorithm and no forward
algorithm.

The implementation supporting the approaches described in[29] and [3] uses BDDs
while our toolAcacia does not. While our algorithms could have been implemented with
BDDs (see [9] for such an implementation), we deliberately decided not to use them for two

7 GR(1) has a better worst-case complexity than fullLTL.
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reasons. First, to fairly compare our Safraless approach with the one proposed in [19] and
implemented inLily, we needed to exclude BDDs asLily does not use them. Second, several
recent works on the efficient implementation of decision procedures based on variants of
the subset construction show that antichain based algorithms may outperform BDD-based
implementations by several orders of magnitude, see [6,7] for more details.

Outline The rest of the paper is structured as follows. Sect. 2 recalls the formal definitions
of LTL, the realizability problem, universal automata operatingon infinite words, and Moore
machines to represent finite memory strategies. Sect. 3 recalls formal definitions for safety
games, and two algorithms to solve them, one that operates backward and one that operates
forward. Sect. 4 shows how the realizability problem of aω-regular language defined by a
universal automaton with co-Büchi acceptance condition can be reduced to the realizability
problem of a language defined by the same automaton but with aK-co-Büchi acceptance
condition. Sect. 5 uses this reduction to associate with each LTL formula a safety game.
Sect. 6 studies the structure underlying this safety game todefine an incremental antichain
algorithm to solve the realizability problem. Sect. 7 evaluates the algorithms proposed in
Sect. 6 on a large number of benchmarks. Sect. 8 introduces the compositional algorithms
for solving the realizability problem of largeLTL formulas given as conjunctions of smaller
formulas. Sect 9 evaluates the compositional algorithms onthe benchmarks of Sect. 7, and
on a larger, scalable, and more realistic example.

2 LTL and Realizability Problem

Linear Temporal Logic (LTL) The formulas ofLTL are defined over a set of atomic propo-
sitionsP . The syntax is given by the grammar:

φ ::= p | φ ∨ φ | ¬φ | Xφ | φUφ p ∈ P

The notationstrue, false, φ1 ∧ φ2, ♦φ and�φ are defined as usual. In particular,♦φ =

trueUφ and�φ = ¬♦¬φ. LTL formulasφ are interpreted on infinite wordsw = σ0σ1σ2 · · · ∈
(2P )ω via a satisfaction relationw |= φ inductively defined as follows:

(i) w |= p if p ∈ σ0;
(ii) w |= φ1 ∨ φ2 if w |= φ1 orw |= φ2;

(iii) w |= ¬φ if w 6|= φ;
(iv) w |= Xφ if σ1σ2 . . . |= φ, and(v) w |= φ1 Uφ2 if there isn ≥ 0 such thatσnσn+1 . . . |=

φ2 and for all0 ≤ i < n, σiσi+1 . . . |= φ1.

Given aLTL formulaφ, we note[[φ]] the set of infinite wordsw s.t.w |= φ.

LTL Realizability and SynthesisAs mentioned in the introduction, the realizability problem
for LTL is best seen as a game between two players. Each of the playersis controlling a
subset of the setP of propositions on which theLTL formula is constructed. Accordingly,
unless otherwise stated, we partition the set of propositionsP into I the set ofinput signals
that are controlled by Player 2 (the environment), andO the set ofoutput signalsthat are
controlled by Player 1 (the controller). It is also useful toassociate this partition ofP with
the three following alphabets:Σ = 2P ,Σ1 = 2O, andΣ2 = 2I . We denote by∅ the empty
set.
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The realizability game is played in turns. Player 1 starts bygiving a subseto0 of propo-
sitions, Player 2 responds by giving a subset of propositions i0, then Player 1 giveso1 and
Player 2 responds byi1, and so on. This game lasts forever and the output of the game is the
infinite word(i0 ∪ o0)(i1 ∪ o1)(i2 ∪ o2) · · · ∈ Σ

ω .
The players play according to strategies. A strategy for Player 1 is a (total) mappingλ1 :

(Σ1Σ2)
∗ → Σ1 while a strategy for Player 2 is a (total) mappingλ2 : Σ1(Σ2Σ1)

∗ → Σ2.
The outcome of the strategiesλ1 andλ2 is the wordoutcome(λ1, λ2) = (o0 ∪ i0)(o1 ∪

i1) . . . such thato0 = λ1(ǫ), i0 = λ2(o0) and for allj ≥ 1, oj = λ1(o0i0 . . . oj−1ij−1) and
ij = λ2(o0i0 . . . oj−1ij−1oj).

Given anLTL formulaφ (the specification), therealizability problemis to decide whether
there exists a strategyλ1 of Player 1 such that for all strategiesλ2 of Player 2,outcome(λ1, λ2) |=

φ. If such a strategy exists, we say that the specificationφ is realizable. If an LTL specifi-
cation is realizable, there exists a finite-state strategy that realizes it [24]. Thesynthesis
problemis to compute a finite-state strategy that realizes theLTL specification.

Example 1Let I = {q}, O = {p} andψ = pUq. The formulaψ is not realizable. Asq is
controlled by the environment, he can decide to leave it always false and the outcome does
not satisfyφ. However♦q → (pUq) is realizable. The assumption♦q states thatq will hold
at some point, and so, one of the possible winning strategiesfor Player 1 is to always assert
p.

Infinite Word AutomataAn infinite word automatonover the finite alphabetΣ is a tuple
A = (Σ,Q, q0, α, δ) whereQ is a finite set of states,q0 ∈ Q is the initial state,α ⊆ Q is a
set of final states andδ ⊆ Q×Σ×Q is a transition relation. For allq ∈ Q and allσ ∈ Σ, we
let δ(q, σ) = {q′ | (q, σ, q′) ∈ δ}. We let |A| = |Q| + |δ| be the size ofA. We say thatA is
deterministicif ∀q ∈ Q·∀σ ∈ Σ·|δ(q, σ)| ≤ 1. It is completeif ∀q ∈ Q·∀σ ∈ Σ·δ(q, σ) 6= ∅.
In this paper, unless otherwise stated and w.l.o.g., the automata are complete. Arun of A on
a wordw = σ0σ1 · · · ∈ Σ

ω is an infinite sequence of statesρ = ρ0ρ1 · · · ∈ Q
ω such that

ρ0 = q0 and∀i ≥ 0 · ρi+1 ∈ δ(ρi, σi). We denote byRunsA(w) the set of runs ofA onw.
We denote byVisit(ρ, q) the number of times the stateq occurs along the runρ. We consider
three acceptance conditions (a.c.) for infinite word automata. A wordw is accepted byA if
(depending on the a.c.):

Non-deterministic Büchi : ∃ρ ∈ RunsA(w) · ∃q ∈ α · Visit(ρ, q) =∞

Universal Co-Büchi : ∀ρ ∈ RunsA(w) · ∀q ∈ α · Visit(ρ, q) <∞
UniversalK-Co-Büchi : ∀ρ ∈ RunsA(w) ·

P
q∈α Visit(ρ, q) ≤ K

The set of words accepted byA with the non-deterministic Büchi a.c. is denoted by
Lb(A), and with this a.c. in mind, we say thatA is a non-deterministic Büchi word automa-
ton, NBW for short. Similarly, we denote respectively byLuc(A) andLuc,K(A) the set of
words accepted byA with the universal co-Büchi and universalK-co-Büchi a.c. respec-
tively. With those interpretations, we say thatA is a universal co-Büchi automaton (UCW)
and that the pair(A,K) is a universalK-co-Büchi automaton (UKCW) respectively. By du-
ality, we have clearlyLb(A) = Luc(A), for any infinite word automatonA. Finally, note that
for any0 ≤ K1 ≤ K2, we have thatLuc,K1

(A) ⊆ Luc,K2
(A) ⊆ Luc(A).

Infinite automata andLTL It is well-known (see for instance [30]) thatNBWs subsumeLTL
in the sense that for allLTL formulaφ, there is anNBW Aφ (possibly exponentially larger)
such thatLb(Aφ) = {w | w |= φ}. Similarly, by duality it is straightforward to associate
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an equivalentUCW with anyLTL formulaφ: takeA¬φ with the universal co-Büchi a.c., so
Luc(A¬φ) = Lb(A¬φ) = {w | w 6|= ¬φ} = {w | w |= φ}.

To reflect the game point of view of the realizability problem, we introduce the notion
of turn-based automata to define the specification. Aturn-based automatonA over the input
alphabetΣ2 and the output alphabetΣ1 is a tupleA = (Σ2, Σ1, Q2, Q1, q0, α, δ2, δ1) where
Q2, Q1 are finite sets of input and output states respectively,q0 ∈ Q1 is the initial state,
α ⊆ Q2∪Q1 is the set of final states, andδ2 ⊆ Q2×Σ2×Q1, δ1 ⊆ Q1×Σ1×Q2 are the input
and output transition relations respectively. It iscompleteif for all q2 ∈ Q2, and allσ2 ∈ Σ2,
δ2(q2, σ2) 6= ∅, and for allq1 ∈ Σ1 and allσ1 ∈ Σ1, δ1(q1, σ1) 6= ∅. As for usual automata,
in this paper we assume that turn-based automata are always complete. Turn-based automata
still run on words fromΣω as follows: a run on a wordw = (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω is a
wordρ = ρ0ρ1 · · · ∈ (Q1Q2)

ω such thatρ0 = q0 and for allj ≥ 0, (ρ2j , oj , ρ2j+1) ∈ δ1 and
(ρ2j+1, ij , ρ2j+2) ∈ δ2. All the acceptance conditions considered in this paper carry over
to turn-based automata. Turn-based automata with acceptance conditionsC are denoted
by tbC, e.g. tbNBW. Every UCW (resp.NBW) with state setQ and transition set∆ is
equivalent to atbUCW (resp.tbNBW) with |Q|+ |∆| states: the new set of states isQ∪∆,

final states remain the same, and each transitionr = q
σo∪σi−−−−→ q′ ∈ ∆ whereσo ∈ Σ1 and

σi ∈ Σ2 is split into a transitionq
σo−−→ r and a transitionr

σi−→ q′.

Moore MachinesLTL realizability is equivalent toLTL realizability by a finite-state strategy
[24]. We use Moore machines to represent finite-state strategies. AMoore machineM with
input alphabetΣ2 and output alphabetΣ1 is a tuple(Σ2, Σ1, QM , q0, δM , gM ) whereQM

is a finite set of states with initial stateq0, δM : QM × Σ2 → QM is a (total) transition
function, andgM : QM → Σ1 is a (total) output function. We extendδM to δ∗M : Σ∗

2 → QM

inductively as follows:δ∗M (ǫ) = q0 and δ∗M (uσ) = δM (δ∗M (u), σ). The language ofM ,
denoted byL(M), is the set of wordsw = (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω

P such that for
all j ≥ 0, δ∗M (i0 . . . ij−1) is defined andoj = gM (δ∗M (i0 . . . ij−1)). In particular,o0 =

gM (δ∗M (ǫ)) = gM (q0). The size of a Moore machine is defined similarly as the size ofan
automaton.

As for everyLTL formulaφ we can construct atbUCW Aφ such thatLuc(Aφ) =[[φ]],
the LTL realizability problem reduces to decide, given atbUCW A over inputsΣ2 and
outputsΣ1, whether there is a non-empty Moore machineM such thatL(M) ⊆ Luc(A). If
L(M) ⊆ Luc,K(A) for someK, we say that thetbUK CW (A,K) is realizable.

Example 2 (running example)Fig. 1(a) represents atbUCW equivalent to the formula�(r →
X (♦g)) 8, wherer is an input signal andg is an output signal. States ofQ1 are denoted by
circles while states ofQ2 are denoted by squares. Stateq4 is denoted by a square because
it is a final state. The transitions on missing letters are going to an additional sink non-final
state that we do not represent for the sake of readability. Ifa requestr is never granted, then
a run will visit the final stateq4 infinitely often.

3 Safety Games

In this section, we provide a definition of safety games that is well-suited to support our
synthesis methods detailed in the following sections. Player 1 will play the role of the system

8 Note that thistbUCW is equivalent to thetbNBW of the negation of the specification, i.e., the formula
♦(r ∧ �¬g). So, tools for translation ofLTL to NBW can be used to obtain theUCW when applied to the
negation of the specification.
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(a) UCW

(q1, 0) (q2, 0)
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g,¬g

¬r
r

g

¬gr,¬r
¬g

g

(b) Safety gameG(φ, 1)

Fig. 1 UCW and safety game for the formulaφ ≡ �(r → X♦g)

while Player 2 will play the role of the environment. This is why, as the reader will see, our
definition of games is asymmetric. In those games, Players move alternatively.

Turn-based gamesA turn-based gameon a finite set of movesMoves = Moves1⊎Moves2

such thatMoves2 6= ∅ is a tupleG = (S1, S2, Γ1,∆1,∆2) where:

(i) S1 is the set of Player 1 positions,S2 is the set of Player 2 positions,S1 ∩ S2 = ∅. We
let S = S1 ⊎ S2.

(ii) Γ1 : S1 → 2Moves1 is a function that assigns to each position of Player 1 the subset of
moves that are available in that position. For Player 2, we assume that all the moves in
Moves2 are available in all the positionss ∈ S2.

(iii) ∆1 : S1 × Moves1 → S2 is a partial function that maps a pair(s,m) to the position
reached froms when Player1 choosesm ∈ Γ1(s). ∆2 : S2 × Moves2 → S1 is a
function that maps(s,m) to the position reached froms when Player 2 choosesm.

We define the partial function∆ as the union of the partial function∆1 and the function
∆2. Unless stated otherwise, we fix for the sequel of this section a turn-based gameG =

(S1, S2, Γ1,∆1,∆2) on movesMoves = Moves1 ⊎Moves2.
Given a functionΛ : S1 → 2Moves1 , the restriction ofG by Λ is the gameG[Λ] =

(S1, S2,cΓ1, c∆1,∆2) where for alls ∈ S1, cΓ1(s) = Γ1(s) ∩ Λ(s) and c∆1 equals∆1 on the
domain restricted to the pairs{(s,m) | s ∈ S1 ∧m ∈ cΓ1(s)}, i.e.,G[Λ] is asG but with the
moves of Player 1 restricted byΛ.

Rules of the gameThe game onG is played in rounds and generates a finite or an infinite
sequence of positions that we call aplay. In the initial round, the game is in some position,
says0, and we assume that Player 1 owns that position. Then ifΓ1(s0) is non-empty Player 1
chooses a movem0 ∈ Γ1(s0), and the game evolves to positions1 = ∆1(s0,m0), otherwise
the game stops. If the game does not stop then the next round starts ins1. Player 2 chooses
a movem1 ∈ Moves2 and the game proceeds to positions2 = ∆2(s1,m1). The game
proceeds accordingly either for an infinite number of roundsor it stops when a position
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s ∈ S1 is reached such thatΓ1(s) = ∅. Player 1 wins if the game does not stop otherwise
Player 2 wins (safety winning condition). Our variant of safety games are thus zero-sum
games as usual. In particular, the positionss ∈ S1 such thatΓ1(s) 6= ∅ are the safe positions
of Player 1.

Plays and strategiesWe now define formally the notions of play, strategy, outcomeof a
strategy and winning strategies. Given a sequenceρ = s0s1 . . . sn . . . ∈ S

∗ ∪Sω, we denote
by |ρ| its length (which is equal toω if ρ is infinite). Given a non-empty sequenceρ, we
denote byfirst(ρ) the first element ofρ, and if ρ is finite, we denote bylast(ρ) its last
element.

A play in G is a finite or infinite sequence of positionsρ = s0s1 . . . sn . . . ∈ S
∗ ∪ Sω

such that :(i) if ρ is finite thenlast(ρ) ∈ S1 andΓ1(last(ρ)) = ∅; (ii) ρ is consistent with
the moves and transitions ofG, i.e., for alli, 0 ≤ i ≤ |ρ|, we have thatsi+1 = ∆(si,m) for
somem ∈ Γ1(si) if s ∈ S1, orm ∈ Moves2 if s ∈ S2.We denote byPlays(G) the set of
plays inG.

Given a set of finite or infinite sequencesL ⊆ S∗∪Sω, we writePrefj(L), j ∈ {1, 2}, for
the set of prefixes of sequences inL that end up in a position of Playerj. Let⊥ be such that
⊥ 6∈ Moves. A strategy for Player 1in G is a functionλ1 : Pref1(Plays(G))→ Moves1 ∪
{⊥} which is consistent with the set of available moves, i.e., for all ρ ∈ Prefi(Plays(G)),
we have that:(i) λ1(ρ) ∈ Γ1(last(ρ)) ∪ {⊥}, and(ii) λ1(ρ) = ⊥ only if Γ1(last(ρ)) = ∅.
A strategy for Player 2in G is a functionλ2 : Pref2(Plays(G)) → Moves2. Note that a
Player 2’s strategy never contains⊥ as all the moves of Player 2 are allowed at any position,
whereas the moves of Player1 are restricted byΓ1.

A play ρ = s0s1 . . . sn . . . ∈ Plays(G) is compatiblewith a strategyλj of Playerj
(j ∈ {1, 2}), if for all i, 0 ≤ i < |ρ|, if si ∈ Sj thensi+1 = ∆j(si, λj(s0s1 . . . si)).We
denote byoutcome(G, s, λj) the subset of plays inPlays(G) that are compatible with the
strategyλj of Playerj, and that start ins. We denote byoutcome(G, s, λ1, λ2) the unique
play that is compatible with bothλ1 andλ2, and starts ins.

Thewinningplays for Player 1 are those that are infinite, i.e.,Win1(G) = Plays(G) ∩

Sω, or equivalently those that never reach an unsafe positions ∈ S1 of Player 1, i.e., a posi-
tion s such thatΓ1(s) = ∅. A strategyλ1 is winninginG from sini iff outcome(G, sini, λ1) ⊆

Win1(G) or equivalently, if the plays compatible withλ1 are infinite. We call a turn-based
game with such a winning condition in mind asafety game. We denote byWinPos1(G)

the subset of positionss ∈ S in G for which there existsλ1 such thatoutcome(G, s, λ1) ⊆
Win1(G).

Games with initial positionA safety game with initial positionis a pair(G, sini) where
sini ∈ S1∪S2 is a position of the game structureG called theinitial position. The set of plays
in (G, sini) are the plays ofG starting insini, i.e.,Plays(G, sini) = Plays(G)∩sini ·(S

∗∪Sω).
All the previous notions carry over to games with initial positions.

We now recall two classical algorithms to solve safety games. One explores the game
backward while the other explores it in a forward fashion.

Backward algorithm for solving safety gamesThe classical fixpoint algorithm to solve
safety games relies on iterating the following monotone operator over sets of game positions,
see [12] for example. The safety games we defined alternate between positions of Player 1
and positions of Player 2. We define two operatorsPre1 : 2S2 → 2S1 andPre2 : 2S1 → 2S2

such that for allX1 ⊆ S1, Pre2(X1) are the positions from which Player 2 cannot avoid
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reachingX1 in one step. For allX2 ⊆ S2, Pre1(X2) are the positions from which Player 1
can reachS2 in one step. We also defineCPre : 2S1 → 2S1 asPre1 ◦ Pre2:

Pre1(X2) = {s ∈ S1 | ∃m ∈ Γ1(s),∆1(s,m) ∈ X2}
Pre2(X1) = {s ∈ S2 | ∀m ∈ Moves2,∆2(s,m) ∈ X1}
CPre = Pre1 ◦ Pre2

Now, we define the following sequence of subsets of positions:

W0 = {s ∈ S1 | Γ1(s) 6= ∅} Wi = Wi−1 ∩CPre(Wi−1) for all i ≥ 1

Denote byW ♮ the fixpoint of this sequence. It is well known thatW ♮ = WinPos1(G).

Forward algorithm for solving safety gamesWe describe an algorithm that computes the
winning positions in a safety game in a forward fashion, starting from the initial position of
the game. The algorithm explores the positions of the game and once a position is known
to be losing, this information is back propagated to the predecessors. A position of Player 1
is losing (for Player 1) iff it has no successors or all its successors are losing. A position of
Player 2 is losing (for Player 1) iff one of its successors is losing. For solving safety games,
we use an variant ofOTFUR algorithm of [5] (Algo 1) based on an algorithm of [20].
At each step, the algorithm maintains an under-approximation Losing of the set of losing
positions. The algorithm has a waiting-listWaiting for reachable position exploration and
reevaluation of positions. In particular, an edge is put in the waiting-list if it is the first time it
has been reached, or the status of its target position has changed. The latter case means that
when the information that a position is losing is known, thisinformation is back-propagated
to all its predecessors. A setPassed records the visited positions. Finally, a setDepend

stores the edges(s, s′) which need to be reevaluated when the value ofs′ changes.
At each step, the algorithm picks an edgee = (s, s′) in the waiting list. If its targets′

has never been visited, one checks whether this target is obviously losing (when it has no
successors). In this case, we adde in the waiting list for reevaluation. This amounts to back
propagate the information ons′. Otherwise we add all the successors ofs′ in the waiting list
for reevaluation. Ifs′ has already been visited, then we compute the value ofs. If s is losing,
this information is back propagated to the positions whose safeness depends ons.

The overall complexity of this algorithm is linear in the size of the game, as every edge
is added at most twice to the waiting list. We refer the readerto [20,5] for the formal proof
of its correctness, expressed by the following theorem:

Theorem 1 After termination of Algorithm 1, the set of positionss such that¬Losing[s] is
equal to the winning positions (for Player 1) reachable fromthe initial position.

4 From UCW to UK CW Realizability

In this section, we reduce the realizability problem with a specification given by a turn-based
universal co-Büchi automaton (tbUCW) to a specification given by a turn-based universalK-
co-Büchi automaton (tbUKCW). A variant of this lemma expressed on universal co-Büchi
tree automata has been proved in [28].

Lemma 1 LetA be a tbUCW over inputsΣ2 and outputsΣ1 with n states, andM be a
Moore machine over inputsΣ2 and outputsΣ1 with m states. ThenL(M) ⊆ Luc(A) iff
L(M) ⊆ Luc,2mn(A).
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Algorithm 1 : OTFUR [5] algorithm for safety games

Data: G, sini
//Initialization
Passed := {sini}; Depend(sini) := ∅;1
for all positions do Losing[s] := false;2
Waiting := {(sini, s

′)|∃m ∈ Γ1(sini) : s′ = ∆1(sini, m)};3
//Saturation
while Waiting 6= ∅∧ ¬Losing[sini] do4

e = (s, s′) := pop(Waiting);5
if s′ 6∈ Passed then6

Passed := Passed ∪ {s′};7
Losing[s′] := s′ ∈ S1 ∧ Γ1(s′) = ∅;8
Depend[s′] := {(s, s′)};9
if Losing[s′] then10

Waiting := Waiting ∪ {e}; //adde for reevaluation11

else12
Waiting := Waiting ∪ {(s′, s′′)|∃m ∈ ∆(s′) : s′′ = ∆(s′, m)};13

else14
//reevaluation
Losing∗ := s ∈ S1 ∧

V

m∈Γ1(s),s′′=∆1(s,m) Losing[s′′]

∨ s ∈ S2 ∧
W

m∈Moves2,s′′=∆2(s,m) Losing[s′′];15

if Losing∗ then16
Losing[s] := true;17
Waiting := Waiting ∪ Depend[s] //back propagation18

if ¬Losing[s′] then Depend[s′] := Depend[s′] ∪ {e}19

return ¬Losing[sini]20

Proof The back direction is obvious sinceLuc,k(A) ⊆ Luc(A) for all k ∈ N. We sketch the
forth direction. Informally, the infinite paths ofM starting from the initial state define words
that are accepted byA. Therefore in the product ofM andA, there is no cycle visiting a
final state ofA, which allows one to bound the number of visited final states by the number
of states in the product. More formally, we first transformM into a tbNBW AM such that
L(M) = Lb(AM ). It suffices to copy every state ofM and to define the transitions as

follows: if q i
−→ q′ is a transition ofM with i ∈ Σ2, and the output ofq is o ∈ Σ1, then

we transform this transition into the twoAM transitionsq o
−→ qc andqc i

−→ q′ whereqc is
a fresh state denoting a copy ofq. All states ofAM are set to be final, so thatLb(AM ) is
exactly the set of traces of infinite paths ofAM (viewed as an edge-labeled graph) starting
from the initial state. By hypothesis,Lb(AM ) ⊆ Luc(A). Note thatAM has2m states.

Let Q be the set of states ofA, QAM
the set of states ofAM andA × AM the product of

A andAM , i.e. the automaton overΣ2 ∪Σ1 whose set of states isQ × QAM
, initial states

are pairs of initial states, and transitions have the form(q, p)
σ
−→ (q′, p′) for all transitions

q
σ
−→ q′ of A andp σ

−→ p′ of AM . SinceLb(AM ) ⊆ Luc(A), there is no cycle inA × AM

reachable from an initial state and that contains a state(q, p) whereq ∈ Q is final. Indeed,
otherwise there would exist an infinite path inA×AM , visiting (q, p) infinitely often. Every
infinite word obtained as a trace of this path would be accepted byAM but not byA (since
there would be a run on it visitingq infinitely often). Therefore the runs ofA on words
accepted byAM visit at most2nm final states, wheren (resp.2m) is the number of states
of A (resp.AM ). �
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The following result is proved in Th. 4.3 of [19], as a small model property of universal
co-Büchi tree automata. We also prove it here for the sake ofself-containedness.

Lemma 2 Given a realizabletbUCW A over inputsΣ2 and outputsΣ1 withn states, there
exists a non-empty Moore machine with at mostn2n+2 + 1 states that realizes it.

Proof We first sketch the proof. In the first step, we show by using Safra’s determinization of
NBWs thatA is equivalent to a turn-based deterministic and complete parity automatonAd.
Using a result from [22], we know thatAd has at mostm := 2n2n+2+2 states. We then view
Ad has a turn-based two-player parity gameG(Ad) (with at mostm states) such thatAd (or
equivalentlyA) is realizable iff Player1 has a winning strategy inG(Ad). It is known that
parity games admit memoryless strategies [12]. Therefore if Ad is realizable, there exists a
strategy for Player1 in G(Ad) that can be obtained by removing all but one outgoing edge
per Player1’s state. We can finally transform this strategy into a Moore machine with at
mostn2n+2 + 1 states that realizesAd (andA).

More formally, the proof uses the parity acceptance condition for automata and for
games. Given an automatonB with state setQB , a parity acceptance condition is given
by a mappingc fromQB to N. A runρ is accepting ifmin{c(q) | q ∈ Inf(ρ)} is even, where
Inf(ρ) is the set ofq ∈ Q that appear infinitely many times alongρ. Final states are not
needed inB for this acceptance condition. We denote byLpar,c(B) the language accepted
byB under the parity acceptance conditionc.

Given a turn-based two-player gameG = (S1, S2, s0,∆), the parity winning condition
is given by a mappingc : S1 ∪ S2 → N. In that case, for alli ∈ {1, 2}, a strategyλi for
Playeri is winning if OutcomeG(λi) ⊆ {π ∈ (S1S2)

ω |min{c(s) | s ∈ Inf(π)} is even}.
Let A = (Σ1, Σ2, Q1, Q2, q0, α, δ1, δ2). We letQ = Q1 ∪ Q2 andδ = δ1 ∪ δ2. Let

AOI be the automaton(Σ,Q, q0, α, δ). We denote bym : (Σ1Σ2)
ω → Σω the function that

maps any wordw = o0i0o1i1 . . . to m(w) = (o0 ∪ i0)(o1 ∪ i1) . . . . Note thatm admits
an inverse denoted bym−1. We have thatm(Lb(AOI)) = Lb(A) (*). By Safra’s deter-
minization, there exists a deterministic parity automatonDOI with a parity conditionc such
thatLpar,c(DOI) = Lb(AOI). Moreover, by [22], we can assume thatDOI has at most
n2n+2 states. SinceLpar,c(DOI ) ⊆ (Σ2Σ1)

ω, it is easy to transformDOI into a deter-
ministic turn-based parity automatonD with a parity conditionc′ such thatLpar,c(DOI ) =

m−1(Lpar,c′(D)): it suffices to take the product with the two-states automaton that accepts
(Σ1Σ2)

ω (let i and o its two states). The states of the product are therefore pairs (q, p)

with q a state ofDOI andp ∈ {i, o}, and we letc′(q, p) = c(q). Note thatD has at most
2n2n+2 states. From equality (*) and the equalitiesLpar,c(DOI ) = m−1(Lpar,c′(D)) and
Lpar,c(DOI ) = Lb(AOI), we getLpar,c′(D) = Lb(A). Then we complete the automatonD
by adding two dead states and get a complete deterministic turn-based automatonAd (with
at most2n2n+2+2 states). Finally, we take the dual parity conditioncd = c′+1 which incre-
ments the value of each state by1, so thatLpar,cd

(Ad) = Σω −Lpar,c′(D) = Σω−Lb(A),
from which we getLuc(A) = Lpar,cd

(Ad).
Let Ad = (Σ1, Σ2, Q

d
I , Q

d
O, q0, δ

d
2 , δ

d
1) andQd = Qd

I ∪ Q
d
O. We now viewAd has a

turn-based two-player parity gameG(Ad) = (Qd
0, Q

d
2, q0,∆): Qd

1 are Player 1’s states (q0
being the initial state) whileQd

2 are Player 2’s states, and we put a transition(q, p) ∈ ∆ from
a stateq ∈ Qd to a statep ∈ Qd if there existsσ ∈ Σ2 ∪ Σ1 and a transitionq σ

−→ p in Ad.
SinceAd has at most2n2n+2 + 2 states,G(Ad) has also at most2n2n+2 + 2 states.

The specificationAd is realizable (or equivalentlyA is realizable) iff Player1 has a
winning strategy inG(Ad). Therefore ifA is realizable, Player1 has a winning strategy in
G(Ad) given by a mappingγ fromQd

1 toQd
2 such thatOutcomeG(Ad)(γ) are wordsρ over
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(Qd
1Q

d
2)ω such thatmin{c(q) | q ∈ Inf(ρ)} is even. Moreover, those words correspond to

accepting runs ofAd on words overΣ. Therefore the strategyγ can easily be used to define
a Moore machineM such thatL(M) ⊆ Lpar,c(A

d) = Luc(A): first we assume thatΣ is
totally ordered. The machineM is defined as follows:Qd

1 are its states,q0 is the initial state,
the output functiong is defined byg(q) = min{σo | (q, σo, γ(q)) ∈ δ

d
1}, for all q ∈ Qd

1, and
finally we put a transitionq σi−→ q′, for all q, q′ ∈ Qd

1, and allσi ∈ Σ2 if γ(q) σi−→ q′ ∈ δd
2 .

Note that the transition relation ofM is a (total) function sinceAd is complete, and has less
than(2n2n+2 + 2)/2 = n2n+2 + 1 states. �

The following theorem states that we can reduce the realizability of a tbUCW specifica-
tion to the realizability of atbUKCW specification.

Theorem 2 LetA be atbUCW overΣ2, Σ1 with n states andK = 2n(n2n+2 + 1). Then
A is realizable iff(A,K) is realizable.

Proof If A is realizable, by Lem. 2, there is a non-empty Moore machineM with m states
(m ≤ n2n+2 + 1) realizingA. ThusL(M) ⊆ Luc(A) and by Lem. 1, it is equivalent to
L(M) ⊆ Luc,2mn(A). We can conclude sinceLuc,2mn(A) ⊆ Luc,K(A) (2mn ≤ K). The
converse is obvious asLuc,K(A) ⊆ Luc(A). �

5 From UK CW Realizability to Safety Games

In the last section, we reduced thetbUCW realizability problem to thetbUKCW realizability
problem. In this section, we reduce this new problem to a safety game. It is based on the
determinization oftbUKCWs into complete turn-based deterministic0-Co-Büchi automata,
which can obviously be viewed as safety games.

Determinization ofUKCW LetA be atbUKCW (Σ1, Σ2, Q1, Q2, q0, α,∆1,∆2) with K ∈
N. We letQ = Q1∪Q2 and∆ = ∆1∪∆2. It is easy to construct an equivalent complete turn-
based deterministic0-co-Büchi automatondet(A,K). Intuitively, it suffices to extend the
usual subset construction with counters, for allq ∈ Q, that count (up toK + 1) the maximal
number of accepting states which have been visited by runs ending up in q. We set the
counter of a stateq to−1 when no run on the prefix read so far ends up inq. The final states
are the sets in which a state has its counter greater thanK. For anyn ∈ N, [n] denotes the
set{−1, 0, 1, . . . , n}. Formally, we letdet(A,K) = (Σ1, Σ2,F1,F2, F0, α

′, δ1, δ2) where:

F1 = {F | F is a mapping fromQ1 to [K + 1]}
F2 = {F | F is a mapping fromQ2 to [K + 1]}

F0 = q ∈ Q1 7→


−1 if q 6= q0
(q0 ∈ α) otherwise

α′ = {F ∈ F2 ∪ F1| ∃q, F (q) > K}
succ(F, σ) = q 7→ max{min(K + 1, F (p) + (q ∈ α)) | q ∈ ∆(p, σ), F (p) 6= −1}
δ1 = succ|F1×Σ1

δ2 = succ|F2×Σ2

wheremax ∅ = −1, and(q ∈ α) = 1 if q is inα, and0 otherwise. The automatondet(A,K)

has the following properties:

Proposition 1 LetA be atbUCW andK ∈ N. Thendet(A,K) is deterministic, complete,
andLuc,0(det(A,K)) = Luc,K(A).
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Reduction to a safety gameFinally, we define the gameG(A,K) as follows: it isdet(A,K)

where input states are viewed as Player2’s states and output states as Player1’s states.
Formally, we defineG(A,K) = (F1,F2, Γ1,∆1, ∆2, F0) over the set of movesMoves1 =

Σ1 andMoves2 = Σ2, whereF0 is the initial position. The set of available moves in a
Player 1’s position are defined via a successor functionsucc. An actionσ1 ∈ Moves1 is
available for Player1 in a positionF ∈ S1 if the counters ofF andsucc(F, σ1) do not
exceedK. More formally,σ1 ∈ Γ1(F ) iff for all p ∈ Q1 and allq ∈ Q2, F (p) ≤ K and
succ(F, σ1)(q) ≤ K. The transition function∆1 is defined by∆1(F, σ) = succ(F, σ) for
all F ∈ S1 and allσ ∈ Γ1(s). The function∆2 is defined by∆2(F, σ2) = succ(F, σ2) for
all F ∈ S2 and allσ2 ∈ Moves2.

As an obvious consequence of Th. 2 and Prop. 1, we get:

Theorem 3 (Reduction to a safety game9) LetA be atbUCW over inputsΣ2 and outputs
Σ1 with n states (n > 0), and letK = 2n(n2n+2 + 1). The specificationA is realizable iff
Player1 has a winning strategy in the gameG(A,K).

Proof Suppose thatA is realizable. By Theorem 2 and Proposition 1,(A,K) is also re-
alizable, as well asdet(A,K). Thus there is exists a non-empty Moore machineM over
inputsΣ2 and outputsΣ1 such thatL(M) ⊆ Luc,0(det(A,K)). We now construct a win-
ning strategyγ for Player1 in G(A,K). Intuitively, OutcomeG(A,K)(γ) will correspond
to runs ofdet(A,K) on words ofL(M). Therefore, sinceL(M) ⊆ Luc,0(det(A,K)),
OutcomeG(A,K)(γ) won’t visit final states. For the sake of clarity, we view thisMoore
machine as a (total) mappingλ : Σ∗

2 → Σ1. First assume thatΣ1 andΣ2 are totally or-
dered by some order≺. We define a strategyγ inG(A,K) inductively on its outcome. First,
γ(F0) = λ(ǫ), whereǫ is the empty sequence. Clearly, sinceλ is winning,λ(ǫ) is an avail-
able move inF0. Then, for any finite outcomeH = F 1

0 F
2
0 . . . F

2
m−1F

1
m ∈ (F1F2)

∗F1 of
γ of lengthm, we associateH with the wordw(H) defined as follows:w(H) = σI

1 . . . σ
I
m

where for all1 ≤ i ≤ m, σI
i = min{σ | succ(F 2

i−1, σ) = F 1
i }. We letγ(H) = λ(w(H)).

It is easy to prove by induction thatλ(w(H)) is an available move at positionF 1
m (this is

becauseλ is winning and generates outcomes that are accepted bydet(A,K)). The strategy
λ is clearly winning since it always chooses moves that are available, so that its outcomes
are all infinite.

Conversely, suppose that Player 1 has a winning strategyγ in G(A,K). It is known
that we can assume thatγ is memoryless [12]. So letγ be a mapping fromF1 to Σ1. We
construct a winning strategy for the controller, represented as a Moore machineMγ =

(Σ1, Σ2,F1, F0, δγ , γ). Its state set isF1 with initial stateF0; for all F ∈ F1, the output of
F is γ(F ); for all F ∈ F1, and allσi ∈ Σ2, the transition function is defined byδγ(F, σi) =

δ2(δ1(F, γ(F )), σi). Sinceγ is winning, it is clear by construction that all states ofMγ

reachable from the initial state are non-final. ThereforeL(Mγ) ⊆ Luc,0(det(A,K)) =

Luc(A). Moreover, the transition relation ofMγ is a (total) function, asdet(A,K) is com-
plete. Since there is a winning strategyγ in G(A,K), it means thatG(A,K) is non-empty,
and so isMγ , which concludes the proof. �

Associating a safety game with anLTL formula φ is done as follows:(1) construct a
UCW Aφ equivalent toφ, (2) constructG(Aφ, K), denoted asG(ψ,K) in the sequel, where
K = 2n(n2n+2 + 1) andn is the number of states ofAφ.

9 An similar result expressed on co-Büchi tree automata can be found in [28].
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Incremental Algorithm.In practice, for checking the existence of a winning strategy for
Player1 in the safety game, we rely on an incremental approach. We usethe following
property ofUK CWs: for all k1, k2 · 0 ≤ k1 ≤ k2 · Luc,k1

(A) ⊆ Luc,k2
(A) ⊆ Luc(A). So,

the following theorem which is a direct consequence of the previous property allows us to
test the existence of strategies for increasing values ofK:

Theorem 4 For all tbUCWsA, for all k ≥ 0, if Player1 has a winning strategy in the game
G(A, k) then the specification defined byA is realizable.

Example 3Fig. 1(b) represents the safety gameG(φ, 1) whereφ = �(r → X♦g). Positions
are pairs of states of theUCW with their counter values. Player 1’s positions are denotedby
circles while Player 2’s positions are denoted by squares. The unavailable move of Player
1 from position(q2, 0) is denoted by a dashed arrow. It goes to a position where a counter
exceeds the valueK. Any winning strategy in this game is a strategy which chooses the
moves attached to plain arrows, as indeed Player 1 wins the game iff she never follows the
dashed arrow.

Unrealizable Specifications.The incremental algorithm is not reasonable to test unrealiz-
ability. Indeed, with this algorithm it is necessary to reach the bound2n(n2n+2 + 1) to
conclude for unrealizability. To obtain a more practical algorithm, we rely on the determi-
nacy ofω-regular games (a corollary of the general result by Martin [21]).

Theorem 5 For all LTL formulasφ, either(i) there exists a Player1’s strategyλ1 s.t. for
all Player 2’s strategiesλ2, outcome(λ1, λ2) |= φ, or there exists a Player2’s strategyλ2

s.t. for all Player1’s strategiesλ1, outcome(λ1, λ2) |= ¬φ.

So, when anLTL specificationφ is not realizable for Player1, it means that¬φ is realizable
for Player2. To avoid in practice the enumeration of values forK up to2n(n2n+2 + 1), we
propose the following algorithm. First, given the LTL formula φ, we construct twoUCWs:
one that accepts all the models ofφ, denoted byAφ, and one that accepts all the models
of ¬φ, denoted byA¬φ. Then we check realizability by Player1 of φ, and in parallel real-
izability by Player2 of ¬φ, incrementing the value ofK. When one of the two processes
stops, we know ifφ is realizable or not. In practice, we will see that eitherφ is realizable for
Player1 for a small value ofK or¬φ is realizable for Player2 for a small value ofK. In the
next section, we show that the gameG(A,K) has a nice structure that allows to compactly
represent and efficiently manipulate sets of winning positions.

6 Antichain-based Symbolic Algorithms

In the previous section, we have shown how to reduce the realizability problem of aUCW A

with n states to a family of safety gameG(A,k) for 0 ≤ k ≤ 2n(n2n+2 + 1). From now on,
we fix somek ∈ N. In this section, we show that the positions of the gameG(A, k) can be
partially ordered. We also show that the sets of positions manipulated during the backward
algorithm for safety games (see Section 3) are downward closed for this order. This allows
to compactly represent those sets by the antichain of their maximal elements. Therefore it
is not necessary to construct explicitly the gameG(A,k), which may be very large even for
small values ofk. We also show that the forward algorithm for safety games canalso benefit
from the particular structure ofG(A, k).
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Recall thatG(A, k) is defined by the tuple(F1,F2, Γ1, ∆1,∆2, F0) over the set of
movesΣ1 for Player 1 (controller) andΣ2 for Player 2 (environment). We also letF =

F1 ∪ F2, and we denote bysafe ⊆ F the set of counting functions whose counters do not
exceedk.

Ordering of game positionsWe define the relation�⊆ F2 ×F2 ∪ F1 × F1 by

F � F ′ iff ∀q, F (q) ≤ F ′(q).

It is clear that� is a partial order. Intuitively, if Player1 can win fromF ′ then she can
also win from allF � F ′, as it is somehow more difficult to stay below the boundk from
F ′ than fromF . Formally,� is a game simulation relation in the terminology of [2].

Closed sets and antichains.A setS ⊆ F is closed for�, if ∀F ∈ S · ∀F ′ � F · F ′ ∈ S.
We usually omit references to� if clear from the context. LetS1 andS2 be two closed sets,
thenS1 ∩ S2 andS1 ∪ S2 are closed. Theclosureof a setS ⊆ F , denoted by↓S, is the set
S′ = {F ′ ∈ F | ∃F ∈ S · F ′ � F}. Note that for all closed setsS ⊆ F , ↓S = S. A set
L ⊆ F is anantichainif all elements ofL are incomparable for�. LetS ⊆ F , we denote by
⌈S⌉ the set of maximal elements ofS, that is⌈S⌉ = {F ∈ S |6 ∃F ′ ∈ S ·F ′ 6= F ∧F � F ′},
it is an antichain. IfS is closed then↓⌈S⌉ = S, i.e. antichains arecanonical representations
for closed sets. Similarly, we denote by⌊S⌋ and ↑ S the minimal elements ofS and its
upward closure, respectively. Since the size of a stateF ∈ F is in practice much smaller
than the number of elements in the antichains, we consider that comparing two states is in
constant time.

Proposition 2 LetL1, L2 ⊆ F be two antichains andF ∈ F , then:
(i) ↓L1 ∪ ↓L2 = ↓⌈L1∪L2⌉, this antichain can be computed in timeO((|L1|+ |L2|)

2)

and its size is bounded by|L1|+ |L2|;
(ii) ↓L1∩ ↓L2 = ↓⌈L1 ⊓ L2⌉, whereF1 ⊓ F2 : q 7→ min(F1(q), F2(q)), this antichain

can be computed in timeO(|L1|
2 × |L2|

2) and its size is bounded by|L1| × |L2|,
(iii) ↓L1 ⊆↓L2 iff ∀F1 ∈ L1 · ∃F2 ∈ L2 · F1 � F2, which can be established in time

O(|L1| × |L2|),
(iv) F ∈↓L1 can be established in timeO(|L1|).

6.1 Backward algorithm for safety games with antichains

The image of a closed setS by the functionsPre2, Pre1, andCPre are closed sets:

Lemma 3 For all closed setsS1, S2 ⊆ F2, S3 ⊆ F1, the setsPre1(S1), CPre(S2), and
Pre2(S3) are closed.

As a consequence, all the sets manipulated by the backward fixpoint algorithm are closed
sets, and can therefore be compactly represented by the antichain of their maximal elements.
Next, we show how to manipulate those sets efficiently.

Let us now turn to the computation of controllable predecessors. LetF ∈ F , andσ ∈
Σ2 ∪Σ1. We denote byΩ(F, σ) ∈ F the function defined by:

Ω(F, σ) : q ∈ Q 7→ min{max(−1, F (q′)− (q′ ∈ α)) | (q, σ, q′) ∈ δ}
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Note that sinceA is complete, the argument of min is a non-empty set. The function Ω is
not the inverse of the functionsucc, assucc has no inverse in general. Indeed, it might be
the case that a stateF ∈ F has no predecessors or has more than one predecessorH such
thatsucc(H,σ) = F . However, we prove the following:

Proposition 3 For all F, F ′ ∈ F ∩ safe, and allσ ∈ Σ2 ∪Σ1,

(i) F � F ′ =⇒ Ω(F, σ) � Ω(F ′, σ) (iii) F � Ω(succ(F, σ), σ)

(ii) F � F ′ =⇒ succ(F, σ) � succ(F ′, σ) (iv) succ(Ω(F, σ), σ) � F

Proof We establish the four items as follows:

(i) It holds as max(−1, F (q)− q ∈ α) ≤max(−1, F ′(q)− q ∈ α), ∀q ∈ Q.
(ii) it holds as min(K + 1, F (q′) + q ∈ α) ≤min(K + 1, F ′(q′) + q ∈ α), ∀q′ ∈ Q.

(iii) Let q ∈ Q. We show that for allq′ ∈ δ(q, σ), F (q) ≤ succ(F, σ)(q′) − (q′ ∈ α). This
will be sufficient to conclude since it implies thatF (q) ≤ max(−1,succ(F, σ)(q′) −

(q′ ∈ α)), for all q′ ∈ δ(q, σ), and therefore thatF (q) ≤ Ω(succ(F, σ), σ)(q). So let
q′ ∈ δ(q, σ), and letI(q′) = {q′′ | (q′′, σ, q′) ∈ δ, F (q′′) 6= −1}. Since(q, σ, q′) ∈ δ,
we haveq ∈ I(q′). We know thatsucc(F, σ)(q′) = max{min(K + 1, F (q′′) + q′ ∈
α) | q′′ ∈ I(q′)}. Sinceq ∈ I(q′), succ(F, σ)(q′) ≥ min(K + 1, F (q) + q′ ∈ α). If
F (q)+q′ ∈ α ≤ K+1, thensucc(F, σ)(q′)−(q′ ∈ α) ≥ F (q). The caseF (q)+(q′ ∈ α)

is impossible sinceF (q) ≤ K, asF ∈ safe.
(iv) Let q ∈ Q. We first show that for allq′ such that(q′, σ, q) ∈ δ andΩ(F, σ)(q′) 6= −1,

Ω(F, σ)(q′) ≤ F (q) − (q ∈ α). This will be sufficient to conclude since it implies
thatmin(K + 1, Ω(F, σ)(q′) + (q ∈ α)) ≤ F (q), for all q′ such that(q′, σ, q) ∈ δ,
and therefore thatsucc(Ω(F, σ), σ)(q) ≤ F (q). So letq′ such that(q′, σ, q) ∈ δ and
Ω(F, σ)(q′) 6= −1. Let I(q′) = {q′′ | (q′, σ, q′′) ∈ δ}. Since(q′, σ, q) ∈ δ, we have
q ∈ I(q′). We know thatΩ(F, σ)(q′) = min{max(−1 , F (q′′) − (q′′ ∈ α)) | q′′ ∈
I(q′)}. Sinceq ∈ I(q′), we getΩ(F, σ)(q′) ≤ max(−1, F (q) − (q ∈ α)). The case
F (q)− (q ∈ α) < −1 is impossible, since otherwise we would haveΩ(F, σ)(q′) = −1,
which contradicts the hypothesis. Thereforemax(−1, F (q)−(q ∈ α)) = F (q)−(q ∈ α)

andΩ(F, σ)(q′) ≤ F (q)− (q ∈ α). �

Example 4We illustrate point(iii) of the proposition 3 on the example of Fig. 1(a). Let us
consider the position[q3 7→ 1]. While succ([q2 7→ 0, q4 7→ 1], r) = [q3 7→ 1], we have
thatΩ([q3 7→ 1], r) = [q2 7→ 1, q4 7→ 1], i.e.,Ω([q3 7→ 1], r) returns the largest possible
predecessor of[q3 7→ 1] by r, so succ([q2 7→ 0, q4 7→ 1], r) � Ω(succ([q2 7→ 0, q4 7→
1], r), r).

For allS ⊆ F andσ ∈ Σ2 ∪ Σ1, we denote byPre(S, σ) = {F | succ(F, σ) ∈ S} the set
of predecessors ofS. The set of predecessors of a closed set↓F is closed and has a unique
maximal elementΩ(F, σ):

Lemma 4 For all F ∈ F ∩ safe andσ ∈ Σ2 ∪Σ1, Pre(↓F, σ) =↓Ω(F, σ).

Proof LetH ∈ Pre(↓F, σ). Hencesucc(H,σ) � F . By Prop. 3(i), we have
Ω(succ(H,σ), σ) � Ω(F, σ), from which we getH � Ω(F, σ), by Prop. 3(iii).
Conversely, letH � Ω(F, σ). By Prop. 3(ii), succ(H,σ) � succ(Ω(F, σ), σ). Since by
Prop. 3(iv), succ(Ω(F, σ), σ) � F , we getsucc(H,σ) � F . �

We can now use the previous result to compute the controllable predecessors:
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Proposition 4 LetA be atbUK CW. Given two antichainsL1, L2 such thatL1 ⊆ F2∩safe
andL2 ⊆ F1 ∩ safe:

Pre1(↓L1) =
S

σ∈Σ1
Pre(↓L1, σ) =

S
σ∈Σ1

↓{Ω(F, σ) | F ∈ L1}

Pre2(↓L2) =
T

σ∈Σ2
Pre(↓L2, σ) =

T
σ∈Σ2

↓{Ω(F, σ) | F ∈ L2}

Pre1(↓L1) can be computed in timeO(|Σ1| × |A| × |L1|), andPre2(↓L2) can be computed
in timeO((|A| × |L2|)

|Σ2|).

As stated in the previous proposition, the complexity of ouralgorithm for computing the
Pre2 is worst-case exponential. We establish as a corollary of the next proposition that
there is no polynomial times algorithm for computingPre2 unlessP=NP . Given a graph
G = (V,E), a set of verticesW is independent iff no pairs of elements inW are linked by
an edge inE. We denote byIND(G) = {W ⊆ V | ∀{v, v′} ∈ E · v 6∈ W ∨ v′ 6∈ W} the
set of independent sets inG. The problem ”independent set” asks given a graphG = (V,E)

and an integer0 ≤ k ≤ |V |, if there exists an independent set inG of size larger thank. It is
known to beNP -complete.

Proposition 5 Given a graphG = (V,E), we can construct in deterministic polynomial
time aUK CWA, withK = 0, and an antichainL such thatIND(G) =↓Pre2(Pre1(Pre1((L))).

Proof We start by a simple remark. LetA betbUKCW with input statesQ2 and output states
Q1. Whenk = 0, Player 2’s locations inG(A, k) are exactly the subsets ofQ2 and Player
1’s locations are the subsets ofQ1, and the partial order� corresponds to set inclusion.

Now, let us consider for eache = {v, v′} ∈ E the antichain (for⊆) L{v,v′} = {V \

{v}, V \ {v′}}, L compactly represents all the subsets ofV that are independent of the
edge{v, v′}. Clearly IND(G) =

T
{v,v′}∈E ↓L{v,v′}. As a direct consequence of the NP

completeness of the independent set problem, there cannot exist a polynomial time algorithm
to compute the antichain for this intersection unlessP = NP . Indeed, this antichain contains
the maximal independent sets.

Now, we show how to construct aUK CW A and an antichain of subsets of statesL such
that Pre2(Pre1(Pre1(L)) is exactlyIND(G). We can assume thatV is totally ordered by
some order, and for all edgese = {v, v′} ∈ E, we denote byπ1(e) the minimal element of
e and byπ2(e) its maximal element. Now, the set of state of the automaton isstructured in
four layers:S3 = {ok, ko} belongs to Player 2,S2 = {(v, e, i) | v ∈ V, e ∈ E, i ∈ {1, 2}}
belongs to Player 1,S1 = {(v, e) | v ∈ V, e ∈ E} belongs to Player 1. Finally,S0 = {v | v ∈

V } belongs to Player 2. Note that we do not make players strictlyalternate here to simplify
the exposition, it is easy to add a layer between the two actions of Player 1 to make the
automaton turn-based. In those additional states, Player 2would have only one action and
the operationPre2 would simulate the identity. The objective of Player 1 is to ensure that
the control ends up in stateok ∈ S3, so we takeL = {{ok}}. Now, we explain how to put
transitions between states and computePre2(Pre1(Pre1(((L))). The transitions fromS2

andS3 are{((v, e, i), (e, i), ok) | πi(e) 6= v} ∪ {((v, e′, i), (e, i), ko) | πi(e) = v ∨ e 6= e′)},
it is easy to verify thatPre1(L) is equal to↓∪e∈E{{(v, e, 1) | v 6= π1(e)}, {(v, e, 2) | v 6=

π2(e)}. The transitions fromS1 to S2 are{((v, e), i, (v, e, i)) | i ∈ {1, 2} ∧ v ∈ V ∧ e ∈
E}. As states ofS1 belongs to Player 1 the controllable configurationsPre1(Pre1((L))

are↓∪e∈E{{(v, e) | v 6= π1(e)}, {(v, e) | v 6= π2(e)}}. The transitions fromS0 to S1

are{(v, e, (v, e)) | v ∈ V ∧ e ∈ E}. As states inS0 belongs to Player 2, we have that
↓Pre2(Pre1(Pre1((L))) = IND(G), indeed Player 2 can decide to verify any edge for
independence, so only independent set of vertices can be inPre2(Pre1(Pre1((L))). �



20

FO

{g}

{r}

∅

Fig. 2 Moore machine

Corollary 1 There is no polynomial time algorithm to compute thePre2 operation on an-
tichains unlessP = NP .

Note that this negative result is not a weakness of antichains. Indeed, it is easy to see from the
proofs of those results that any algorithm based on a data structure that is able to represent
compactly the set of subsets of a given set has this property.

SynthesisIf a UCW A is realizable, it is easy to extract from the greatest fixpoint computa-
tion a Moore machine that realizes it. LetF∗

2 andF∗
1 be the two sets obtained by the greatest

fixpoint computation. In particular,F∗
2 andF∗

1 are downward-closed andPre1(F
∗
2 ) = F∗

1 ,
Pre2(F

∗
1 ) = F∗

2 . By definition ofPre1, for all F ∈ ⌈F∗
1 ⌉, there existsσF ∈ Σ such that

succ(F, σF ) ∈ F∗
2 , and thisσF can be computed. From this we can extract a Moore ma-

chine whose set of states is⌈F∗
1 ⌉, the output function maps any stateF ∈ ⌈F∗

1 ⌉ to σF , and
the transition function, when reading someσ ∈ Σ2, mapsF to a stateF ′ ∈ ⌈F∗

1 ⌉ such that
succ(succ(F, σF ), σ) � F ′ (it exists by definition of the fixpoint and by monotonicity of
succ). The initial state is some stateF ∈ ⌈F∗

1 ⌉ such thatF0 � F (it exists if the specifi-
cation is realizable). LetM be this Moore machine. For any wordw accepted byM , it is
clear thatw is also accepted bydet(A,K), assucc is monotonic andF∗

1 ⊆ safe. Therefore
L(M) ⊆ Luc,0(det(A,K)) = Luc,K(A) ⊆ Luc(A).

Theorem 6 LetF∗
2 andF∗

1 be the two sets obtained by the greatest fixpoint computation
of the backward algorithm, ifF0 ∈ F

∗
1 , then there exists a Moore machine with less than

|⌈F∗
1 ⌉| states that encodes a winning strategy for Player 1 in the underlying safety game.

Example We apply the antichain algorithm on the game of Figure 1(b). Remember that
I = {r} andO = {g}, so thatΣ2 = {∅, {r}} andΣ1 = {∅, {g}}. We denote counting
functions in brackets and omit the states that map to−1. Note that some counting functions
of the game do not appear in the picture as they are not reachable. We start the computation
from the set of safe positionsS1 = {[q1 7→ 0, q3 7→ 1], [q1 7→ 0, q3 7→ 0], [q1 7→ 0]}

represented by the antichain{[q1 7→ 0, q3 7→ 1]}. One application ofPre2 on S1 returns
the setS2 =↓ [q2 7→ 0, q4 7→ 1]. Then one application ofPre1 on S2 returns the setS1.
Therefore, we reach the fixpointS2 in one application ofCPre.
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From this fixpoint, we can compute a Moore machine. LetF1 = [q1 7→ 0, q3 7→ 1] and
F2 = [q2 7→ 0, q4 7→ 1]. Notice thatS0 =↓F1 andS1 =↓F2. The Moore machine has
only one stateF1. We then look at controller moves fromF1 that lead to a winning position.
There is only one move{g}, which leads to the position[q2 7→ 0]. This position is subsumed
byF2, from which whatever the environment does, the next position isF1. Therefore there is
a loop fromF1 toF1 in the Moore machine, for the two possible moves of the environment:
{r} and∅. It is depicted in Figure 2. Therefore the controller strategy obtained with our
procedure is to always output a grant.

6.2 Forward algorithm for safety games with antichains

The forward algorithm of Section 3 can be used to solve the game G(A,k). As for the
backward algorithm, it is not necessary to construct the game explicitly. Indeed, during the
execution of the OTFUR algorithm, the successors of a position F , which is a counting
function, can be computed on demand via the successor function succ. Compared to the
backward algorithm, the forward algorithm has the following advantage: it computes only
the winning positionsF (for Player 1) which are reachable from the initial position. We now
show how to optimize this algorithm with antichains. We describe several optimizations.

Optimization 1: antichain of losing positionsLet denote byL the set of losing positions for
Player 1 inG(A, k). Clearly, this set is upward closed. Indeed if Player 1 is notable to win
in some positionF , then she cannot win from any position where one or several counters
of F have been increased. ThereforeL can be represented by the antichain of its minimal
elements. We can computeL incrementally during the execution of the OTFUR algorithm.
For this we maintain an antichainL of (minimal) losing positions computed so far, i.e. at
each step of the algorithmL = ⌊{F | Losing[F ] = true}⌋. This set is updated each time a
new position is known to be losing. We can use this information to prune the search space.
Indeed, when we pick an edge(s, s′) in the waiting list, ifs′ has never been visited before
and s′ ∈↑L, then we can directly setLosing[s′] = true and we do not need to add the
successors ofs′ in the waiting list. Ifs′ has never been visited ands′ 6∈↑L, then among the
successorss′′ of s′, we add in the waiting list only those which are not in↑L. Finally if s′

has already been visited, we check thats ∈↑L. In this case we do not need to inspect the
successors ofs.

Optimization 2: minimal and maximal successorsLetF be a position ofG(A,k) owned by
Player 1 (the controller). Clearly,F is losing (for the controller) iff all its minimal successors
are losing. We get the dual of this property whenF is a position owned by Player 2 (the
environment). In this caseF is losing (for the controller) iff one of its maximal successors
is losing. Therefore to decide whether a position is losing,depending on whether it is a
controller or an environment position, we have to visit its minimal or its maximal successors
only. At line 11, this is done by adding to the waiting list only the edges(s′, s′′) such thats′′

is a minimal (or maximal) successor ofs′. In the case of a position owned by the controller,
we can do even better. Indeed, we can add only one minimal successor in the waiting list at a
time. If it turns out that this successor is losing, we add another minimal successor. Among
the minimal successors, the choice is done as follows: we prefer to add an edge(s′, s′′) such
that s′′ has already been visited. Indeed, this potentially avoids unnecessary developments
of new parts of the game.



22

We call FORWARDALL the method which consists of the OTFUR algorithm with op-
timization 1. We call FORWARDEXI the method which consists of the OTFUR algorithm
with optimizations 1 and 2. The difference between the two methods in the context of a
compositional reasoning is discussed in depth in the following section. Informally, FOR-
WARD ALL computes the set of all reachable winning positions of the game, while FOR-
WARD EXI computes only a subset of it, as some pruning methods are used. However this
subset is sufficient to decide whether the formula is realizable or not.

7 Performance Evaluation on the Monolithic Approach

In this section, we briefly present our implementationAcacia and compare it toLily [15].
Acacia is a prototype implementation of the backward and forward antichain algorithms for
LTL synthesis. To achieve a fair comparison,Acacia is written in Perl asLily. Given anLTL
formula and a partition of its propositions into inputs and outputs,Acacia tests realizability
of the formula. If it is realizable, it outputs a Moore machine representing a winning strategy
for the output player10, otherwise it outputs a winning strategy for the input player. As Lily,
Acacia runs in two steps. The first step builds atbUCW for the formula, and the second step
checks realizability of the automaton. As Lily, we borrow the LTL-to-tbUCW construction
procedure fromWring [30] and adopt the automaton optimizations fromLily, so that we
can exclude the influence of automata construction to the performance comparison between
Acacia andLily.11

Comparison with Kupferman-Vardi’s Approach (implementedin Lily) In [19], the authors
give a Safraless procedure forLTL synthesis. It is a three steps algorithm:(i) transform an
LTL formula into a universal co-Büchi tree automaton (UCT) A that accepts the winning
strategies of the system,(ii) transformA into an alternating weak tree automatonB (AWT)
such thatL(B) 6= ∅ iff L(A) 6= ∅, (iii) transformB into an equivalent Büchi tree automa-
tonC (NBT) and test its emptiness. This latter problem can be seen as solving a game with
a Büchi objective. This approach differs from our approachin the following points. First, in
[19], the authors somehow reduce the realizability problemto a game with aBüchi objec-
tive, while our approach reduces it to a game with asafety objective. Second, our approach
allows one to define a natural partial order on states that canbe exploited by an antichain
algorithm, which is not obvious in the approach of [19]. Finally, in [19], states ofAWT are
equipped with unique ranks that partition the set of states into layers. States which share
the same rank are either all accepting or all non-accepting.The transition function allows
one to stay in the same layer or to go in a layer with lower rank.A run is accepting if it
gets stuck in a non-accepting layer. While our notion of counters looks similar to ranks, it
is different. Indeed, the notion of rank does not constrain the runs to visit accepting states a
bounded number of times (bounded by a constant). This is why aBüchi acceptance condi-
tion is needed, while counting the number of visited accepting states allows us to define a
safety acceptance condition. Therefore the boundk we use in our approach and the rank are
different notions. It is possible to construct examples forwhich our bound is exponentially
larger than the rank ofLily.

10 Note that the correctness of this Moore machine can be automatically verified by model-checking tools
if desired.

11 In Lily, this first step produces universal co-Büchi tree automataoverΣ1-labeledΣ2-trees, which can
easily be seen astbUCWs over inputsΣ2 and outputsΣ1. Although the two models are close, we introduced
tbUCWs for the sake of clarity (as all our developments are done on construction for word automata).
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5 y 41 26 0.72 1 0.27 0 2 0.00 3 0.02 3 0.01
6 y 45 37 1.22 1 0.42 0 3 0.02 4 0.04 5 0.02
7 y 47 22 0.60 1 0.13 0 2 0.00 3 0.02 3 0.01
8 y 11 7 0.04 1 0.01 0 1 0.00 1 0.00 1 0.00
9 y 21 13 0.13 1 0.02 1 2 0.01 3 0.00 3 0.00
10 y 19 18 0.28 1 0.05 0 1 0.01 1 0.00 1 0.00
12 y 19 14 0.14 1 0.03 0 1 0.00 2 0.01 1 0.00
13 y 11 7 0.00 1 0.01 1 2 0.00 3 0.01 2 0.01
14 y 29 14 0.11 1 0.01 1 3 0.00 2 0.01 2 0.01
15 y 35 16 0.06 1 0.01 2 6 0.02 6 0.02 6 0.00
16 y 60 21 0.22 1 0.60 3 20 0.31 17 0.22 17 0.07
17 y 47 17 0.16 1 0.13 2 7 0.04 6 0.19 3 0.03
18 y 77 22 0.34 1 1.02 2 19 0.21 18 1.82 11 0.11
19 y 33 18 0.31 3 1.86 2 3 0.01 4 0.06 4 0.01
20 y 71 105 2.67 1 0.56 0 1 0.01 6 0.30 2 0.01
21 y 99 27 7.38 1 0.88 0 25 0.22 64 0.34 64 0.28
22 y 58 45 7.08 1 0.51 1 4 0.03 4 0.06 4 0.02
23 y 21 14 0.02 1 0.02 0 2 0.00 3 0.01 3 0.00

1 n 25 16 0.11 - 0.01 1 1 0.00 2 0.00 2 0.01
(0.08)

2 n 25 43 0.78 - 0.01 3 1 0.02 7 0.07 6 0.01
(0.07)

4 n 35 55 1.37 1 0.28 2 3 0.03 10 0.11 7 0.02
(0.86)

11 n 13 9 0.02 - 0.01 0 1 0.00 4 0.00 4 0.00
(0.64)

3.2 y 56 36 0.94 1 3.42 0 4 0.02 4 0.18 2 0.00
3.3 y 80 56 1.80 1 226.82 0 8 0.15 8 3.37 2 0.02
3.4 y 104 84 3.12 - >t 0 16 1.24 16 70 2 0.04
3.5 y 128 128 4.74 - >t 0 32 9.94 32 1808 2 0.14
3.6 y 152 204 10.2 - >t 0 64 100 - >m 2 0.46
3.7 y 176 344 26.5 - >t 0 128 660 - >m 2 2.35

Table 1 Performance comparison on tests included in Lily

ResultsWe carried out experiments on a Linux platform with a 3.2GHz CPU (Intel i7) and
12GB of memory. We comparedAcacia andLily on the test suite included inLily, and on
other examples derived fromLily’s examples, as detailed in the sequel. Let consider Table
1. Formula sizegives the sizes of the formulas. They correspond to the number of atomic
propositions and connectives. For realizability tests,Lily and Acacia construct the same
tbUCW. However to check unrealizability, the methods differ, which results in different
tbUCW. Indeed, while we check realizability by the environment ofthe negated specifica-
tion, where the system does the first move,Lily checks realizability by the environment of
the negated specification, where the environment does the first move. ThereforeLily takes as
input the negated formula where every occurrence of an output signalσ is replaced byXσ.
The number of states (columntbUCW state) as well as the time to construct thetbUCW
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(column tbUCW Time(s)) are given in the table (for unrealizable specifications, weput
this time in parenthesis forLily). We consider different algorithms for testing realizability:
Lily, the backward antichain algorithm, and two versions of the forward algorithm, FOR-
WARD ALL and FORWARDEXI respectively, described in the previous section. For all
the methods, we give the time to check for realizability (column Check time(s)). The col-
umn |Moore machine| gives the size of the synthesized Moore machine. We also givethe
rank used inLily and the boundk (columnk) needed for our methods (it is common to the
three methods we use). Finally, the timeout is fixed to 1 hour,and is denoted by> t. When
the execution runs out of memory, we denote it by> m.

Comments Lily’s test suite includes examples 1 to 23. Except examples 1, 2,4, and 11, they
are all realizable. In the test suite, demo 3 describes a scheduler. We have taken a scalability
test by introducing more clients. In Table 1, from 3.4 to 3.7,when the number of clients
reached 4, Lily ran over-time (> 3600 seconds). However,Acacia managed in finishing
the check within the time bound. Clearly, the FORWARDEXI method is most efficient.
When consideringLily’s examples 1 to 23 and the total time to check realizability (including
the tbUCW construction), the improvement in time complexity compared to Lily is less
impressive, because the time to construction the automatonis often much bigger than the
realizability check time. However it was not expected that this first step would have been the
bottleneck of the approach. Indeed in the classical approach of [24], the foreseen bottleneck
is clearly the second step, which relies on Safra’s determinization. In the following sections,
we will focus on a compositional approach that overcomes this problem, as indeed in this
approach the formulas are divided into smaller specifications for which we can construct the
automaton independently.

8 Compositional Safety Games and LTL Synthesis

In this section, we define compositional safety games and develop two compositional algo-
rithms to solve such games. Compositional reasoning on safety games are supported by the
existence of a most permissive strategy, that we formalizedunder the notion ofmaster plan.

Master plan Let G = (S1, S2, Γ1,∆1,∆2) be a safety game on a finite set of moves
Moves = Moves1 ⊎ Moves2. Let W ♮ be the winning positions ofG for Player1. Let
Λ1 : S1 → 2Moves1 be defined as follows: for alls ∈ S1, Λ1(s) = {m ∈ Γ1(s) | ∆1(s,m) ∈
W ♮} i.e.,Λ1(s) contains all the moves that Player1 can play ins in order to win the safety
game. We callΛ1 themaster planof Player 1 and we write itMP(G). The following lemma
states thatMP(G) can be interpreted as a compact representation of all the winning strate-
gies of Player 1 in the gameG:

Lemma 5 For all strategiesλ1 of Player1 in G, for all s ∈ S, λ1 is winning inG from s iff
λ1 is a strategy in(G[MP(G)], s) andλ1(s) 6=⊥.

The master plan associated with a game can be computed in a backward fashion by
using variants of theCPre operator and sequenceW defined in Section 3. The variant of
CPre considers the effect of some Player 1’s move followed by somePlayer 2’s move. Let

ĈPre : (S1 → 2Moves1)→ (S1 → 2Moves1) be defined as follows. For alls ∈ S1, let:

ĈPre(Λ)(s) =
˘
m ∈ Λ(s) | ∀m′ ∈ Moves2 : Λ(∆2(∆1(s,m),m′)) 6= ∅

¯
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Consider the following sequence of functions:Λ0 = Γ1, andΛi = ĈPre(Λi−1), i ≥ 1. This
sequence stabilizes after at mostO(|S|) iterations and we denote byΛ♮ the function on which
the sequence stabilizes. Clearly, the value on which the sequence stabilizes corresponds
exactly to the master plan ofG:

Theorem 7 Λ♮ = MP(G).

Composition of safety gamesWe now consider products of safety games. LetGi, i ∈
{1, . . . , n}, be n safety gamesGi = (Si

1, S
i
2, Γ

i
1,∆

i
1,∆

i
2) defined on the same sets of

movesMoves = Moves1 ⊎ Moves2. Their product, denoted by⊗i=n
i=1G

i, is the safety
gameG⊗ = (S⊗

1 , S
⊗
2 , Γ

⊗
1 ,∆

⊗
1 ,∆

⊗
2 )12 defined as follows:

– S⊗
j = S1

j × S
2
j × · · · × S

n
j , j = 1, 2;

– for s = (s1, s2, . . . , sn) ∈ S⊗
1 , Γ⊗

1 (s) = Γ 1
1 (s1) ∩ Γ 2

1 (s2) ∩ · · · ∩ Γn
1 (sn);

– for j ∈ {1, 2} ands = (s1, s2, . . . , sn) ∈ S⊗
j , letm ∈ Γ⊗

1 (s) if j = 1 orm ∈ Moves2

if j = 2. Then∆⊗
j (s) = (t1, t2, . . . , tn), whereti = ∆i

j(s
i,m) for all i ∈ {1, 2, . . . , n};

Backward compositional reasoningWe now define a backward compositional algorithm
to solve the safety gameG⊗. The correctness of this algorithm is justified by the following
simple lemmas. For readability, we express the properties for composed games defined from
two components. All the properties generalize to any numberof components. The first part
of the lemma states that to compute the master plan of a composition, we can first reduce
each component to itslocal master plan. The second part of the lemma states that the master
plan of a component is the master plan of the component where the choices of Player 1 has
been restricted by one application of thêCPre operator.

Lemma 6 (a) LetG12 = G1 ⊗G2, letΛ1 = MP(G1) andΛ2 = MP(G2) then

MP(G12) = MP(G1[Λ1]⊗G2[Λ2])

(b) For any gameG, MP(G)=MP(G[ĈPre(Γ1)]).

LetΛ : S1
1 ×S

2
1 ×· · ·×S

n
1 → 2Moves, we letπi(Λ) the function with domainSi

1 and co-
domain2Moves1 such that for alls ∈ Si

1, πi(Λ)(s) is the set of moves allowed byΛ in one tu-
ple(s1, s2, . . . , sn) such thatsi = s. Formally,πi(Λ)(s) =

S
{Λ(s1, s2, . . . , sn) | (s1, s2, . . . , sn) ∈

S⊗
1 , s

i = s}. Given two functionsΛ1 : S1 → 2Moves1 andΛ2 : S1 → 2Moves1 , we define
Λ1∩Λ2 as the function on domainS1 such that for alls ∈ S1: Λ1 ∩Λ2(s) = Λ1(s)∩Λ2(s).
Given two functionsΛ1 : S1 → 2Moves1 andΛ2 : S2 → 2Moves1 , we define(Λ1 × Λ2) :

S1 × S2 → 2Moves1 as(Λ1 × Λ2)(s1, s2) = Λ1(s1) ∩ Λ2(s2).
Based on Lemma 6, we propose the following compositional algorithm (Algo 2) to

compute the master plan of a safety game defined as the composition of local safety games.
First, compute locally the master plans of the components. Then compose the local master
plans and apply one time thêCPre operator to this composition. This application of̂CPre
compute a new functionΛ that contains information about the one-step inconsistencies be-
tween local master plans. Project back on the local components the information gained by
the functionΛ, and iterate. Correctness is asserted by Theorem 8.

12 Clearly, the product operation is associative up to isomorphism.
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Algorithm 2 : Backward composition

Data: G⊗ = G1 ⊗G2 ⊗ · · · ⊗Gn

Λ← Γ⊗
1 ;

repeat
Λi := MP(Gi[πi(Λ)]), 1 ≤ i ≤ n;

Λ := ĈPre(Λ ∩ (Λ1 × · · · × Λn))
until Λ does not change;
return Λ

Theorem 8 The valueΛ returned by Algorithm 2 is equal toMP(G⊗).

Forward compositional reasoningWhen solving safety games, we may be interested only
in computing winning strategies for a fixed starting position, saysini. In this case, the value
of the master plan is not useful for positions that are not reachable when playing winning
strategies fromsini. So, we are interested in computing a master plan only for thewinning
andreachablepositions. Given a gameG and a statesini, we denote byReach(G, sini) the
subset of positions that are reachable fromsini in G i.e., the positions′ such that there exists
a finite sequences0s1 . . . sn with s0 = sini, sn = s′ and for alli, 0 ≤ i < n, there exists
m ∈ Γ1(si) ∪Moves2 such thatsi+1 = ∆(si,m). Themaster plan of reachable positions
for (G, sini), denoted byMPReach(G, sini) is defined for alls ∈ S as follows:

MPReach(G, sini)(s) =


MP(G)(s) if s ∈ Reach(G[Λ], sini)

∅ otherwise.

The following lemma states that for a game defined compositionally, its master plan
can also be defined compositionally. For readability we express the lemma only for two
components but, as for the previous lemmas, it extends to anynumber of components:

Lemma 7 LetΛ1 = MPReach(G
1, s1ini) andΛ2 = MPReach(G

2, s2ini).

MPReach(G
1 ⊗G2, (s1ini, s

2
ini)) = MPReach(G

1[Λ1]⊗G2[Λ2], (s1ini, s
2
ini))

Based on the previous lemma, Algorithm 3 shows how to computethe master plan of
reachable positions of a safety game defined compositionally.

Algorithm 3 : Forward composition

Data: G⊗ = G1 ⊗G2 ⊗ · · · ⊗Gn

Λi := MPReach(G
i, siini), 1 ≤ i ≤ n;

Λ := MPReach(G
1[Λ1]⊗ · · · ⊗Gn[Λn], (s1ini, s

2
ini, . . . , s

n
ini))

return Λ

As composition of safety games is an associative operator, we can use variants of Algo-
rithm 3 above where we first compose some of the components andcompute their master
plan of reachable positions before doing the global composition.

To efficiently compute the master plan of reachable positions of a gameG, we can
use theOTFUR algorithm defined in Section 6 (Algo 1). Indeed, at the end of the algo-
rithm, the master plan which allows all moves that lead to a winning position is exactly
MPReach(G, sini). Fig. 3 illustrates the result of theOTFUR algorithms applied on the prod-
uct of two safety gamesG1, G2 over the possible moveso1, o2, o3 for Player1 andi1, i2 for
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C, C′

D, D′ E,E′

o1

i1

o2

i1, i2

i2
o2

(G1 ⊗ G2)[MPReach(G1 ⊗ G2)]
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D E
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A′
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o2 i2

o2

GameG2

Fig. 3 Two games and their common master plan of reachable positions

Player2. We assume thatG1, G2 contains only winning actions, i.e.Gi = Gi[MP(Gi)] for
i = 1, 2. The master plan of reachable positions forG1 ⊗ G2 corresponds to plain arrows.
Dashed arrows are those which have been traversed during theOTFUR algorithm but have
been removed due to back-propagation of information about losing positions. From node
〈A,A′〉 the moveo3 is not a common move, thereforeo3 is not available in the product.
Howevero2 is available in both games and leads toC andC′ respectively. Similarly,o1
is available in both games and goes to〈B,B′〉. From〈B,B′〉 one can reach〈D,D′〉 by i1
but from〈D,D′〉 there is no common action. Therefore〈D,D′〉 is unsafe. Since one of the
successor of〈B,B′〉 is unsafe and〈B,B′〉 is owned by Player2, 〈B,B′〉 is declared to be
unsafe as well. All the remaining moves are winning in theG1 ⊗ G2, as they are winning
both inG1 andG2.

Remark 1It should be noted that eachΛi in Alg. 2 can be replaced by the fullmaster
plan without changing the output of the forward algorithm. Indeed, it is easy to see that
Reach(G[MPReach(G, sini)], sini) = Reach(G[MP(G)], sini). So, we can mix the backward
and forward algorithms. For instance, we can compute locally the master plan of eachGi

using the backward algorithm of section 6, and then check global realizability using the
OTFUR algorithm.

Compositional LTL SynthesisWe show how to define compositionally the safety game as-
sociated with anLTL formula when this formula is given as a conjunction of subformulas
i.e., ψ = φ1 ∧ φ2 ∧ · · · ∧ φn. We first construct for each subformulaφi the correspond-
ing tbUK CW Aφi

on the alphabet ofψ13, and their associated safety gamesG(φi,K). The
gameG(ψ,K) for the conjunctionψ is isomorphic to the game⊗i=n

i=1G(φi, K).
To establish this result, we rely on a notion of product at thelevel of turn-based automata.

Let Ai = (Σ2, Σ1, Q
i
2, Q

i
1, q

i
0, α

i, δi
2, δ

i
1) for i ∈ {1, 2} be two turn-based automata, then

their productA1 ⊗ A2 is the turn-based automaton defined as(Σ2, Σ1, Q
1
2 ⊎ Q

2
2, Q

1
1 ⊎

13 It is necessary to keep the entire alphabet when consideringthe subformulas to ensure proper definition
of the product of games that asks for components defined on thesame set of moves.
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Q2
1, Q

1
ini ⊎Q

2
ini, α1 ⊎α2, δ

1
2 ⊎ δ

2
2 , δ

1
1 ⊎ δ

2
1). As we use universal interpretation i.e., we require

all runs to respect the accepting condition, it is clear thatexecuting theA1 ⊗ A2 on a word
w is equivalent to execute bothA1 andA2 on this word. Sow is accepted by the product iff
it is accepted by each of the automata.

Proposition 6 Let A1 andA2 be twoUCW on the alphabetΣ1 ⊎ Σ2, andK ∈ N: (i)

Luc(A1 ⊗ A2) = Luc(A1) ∩ Luc(A2), (ii) Luc,K(A1 ⊗ A2) = Luc,K(A1) ∩ Luc,K(A2)

As the state space and transition relation ofA1 ⊗ A2 is the disjunct union of the space
spaces and transition relations ofA1 andA2, the determinization ofA1 ⊗ A2 for a fixed
K ∈ N is equivalent to the synchronized product of the determinizations ofA1 andA2 for
thatK, and so we get the following theorem.

Theorem 9 Letψ = φ1 ∧ φ2 ∧ · · · ∧ φn,K ∈ N,G(ψ,K) is isomorphic to⊗i=n
i=1G(φi,K).

Assume from now on that we have fixed someK ∈ N. In order to solve the game
G(ψ,K), in practice we first solve locally the subgamesG(φi,K) by computing their mas-
ter plans, or their reachable master plans, and then computethe master plan of their compo-
sition. In particular, to compute the master plan of a local game, we can use the backward
algorithm described in Section 6 with the optimizations based on antichains. Indeed, the
antichain of winning positions provides a compact representation of the master plan. In par-
ticular, letF be some Player1’s position in some safety gameG(ψ,K) and letW be the
antichain of maximal winning positions (for Player1). Then:

MP(G(ψ,K))(F ) =


∅ if F 6∈↓W
{σ ∈ Σ1 | succ(F, σ) ∈↓W} otherwise

To compute the master plan of reachable positions, we can usethe forward OTFUR al-
gorithm. However only the optimization which maintains an antichain of losing positions
(see Section 6) can be used in the forward algorithm. Indeed,the optimization based on
the minimal and maximal successors are used to prune the search space. Although it works
when one wants to decide if there is a winning strategy, it is not correct to use it for com-
puting the master plan (which is a representation of all the winning strategies) as some
parts of the safety game may be ignored by the pruning strategy. In practice, we can use
the FORWARDALL or BACKWARD algorithms for the local intermediate gamesand the
FORWARD EXI algorithm for the global game.

Dropping assumptionsEven if it is natural to write largeLTL specifications as conjunctions
of subformulasφ1 ∧ · · · ∧ φn, formulas of the following form are often used:

(
i=n̂

i=1

ψi)→ (

j=m̂

j=1

φj)

whereψi’s formalize a set of assumptions made on the environment (Player 2) andφj ’s
formalize a set of guarantees that the system (Player 1) mustenforce. In this case, we rewrite
the formula into the logical equivalent formula

j=m̂

j=1

((
i=n̂

i=1

ψi)→ φj)
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which is a conjunction ofLTL formulas as needed for the compositional construction de-
scribed above. As logical equivalence is maintained, realizability is maintained as well. The
formulas of the form

Vj=m
j=1 ((

Vi=n
i=1 ψi) → φj) are larger than the original formula as as-

sumptions are duplicated. However the subformulas(
Vi=n

i=1 ψi) → φj , j ∈ {1, . . . ,m} are
usually such that to guaranteeφj , Player 1 does not need all the assumptions on the left
of the implication. It is thus tempting to remove those assumptions that arelocally unnec-
essary in order to get smaller local formulas. In practice, we apply the following rule. Let
ψ1 ∧ ψ2 → φ be a local formula such thatψ2 andφ do not share common propositions
then we replaceψ1 ∧ ψ2 → φ by ψ1 → φ. This simplification is correct in the following
sense: if the formula obtained after dropping some assumptions in local formulas is real-
izable then the original formula is also realizable. Further, a Player 1’s strategy to win the
game defined by the simplified formula is also a Player 1’s strategy to win the game defined
by the original formula. This is justified by the fact that thenew formula logically implies
the original formula i.e.ψ1 → φ logically impliesψ1 ∧ ψ2 → φ. However, this heuristic is
not complete because the local master plans may be more restrictive than necessary as we
locally forget about global assumptions that exist in the original formula. We illustrate this
on two examples.

Let I = {req}, O = {grant} andφ = (�♦req) → �♦grant. In this formula, the as-
sumption�♦req is not relevant to the guarantee�♦grant. Realizingφ is thus equivalent to
realizing�♦grant. However, the set of strategies realizingφ is not preserved when drop-
ping the assumption. Indeed, the strategy that outputs agrant after eachreq realizesφ but
it does not realize�♦grant, as this strategy relies on the behavior of the environment.Thus
dropping assumption is weaker than the notion ofopen implicationof [13], which requires
that the strategies realizingφ have to realize�♦grant.

As illustrated by the previous example, dropping assumption does not preserve the set
of strategies that realize the formula. Therefore, it can bethe case that a realizable for-
mula cannot be shown realizable with our compositional algorithm after locally dropping
assumptions. In addition, it can be the case that a formula becomes unrealizable after drop-
ping local assumptions. Consider for instance the formulaφ = �♦req → (�♦grant ∧
�(X (¬grant) U req)). This formula is realizable, for instance by the strategy which out-
puts agrant iff the environment signal at the previous tick was areq. Other strategies re-
alize this formula, like those which grant a request everyn req signal (n is fixed), but all
the strategies that realizeφ have to exploit the behavior of the environment. Thus there is no
strategy realizing the conjunction of�♦grant andφ. Consequently, when we decomposeφ
into �♦req→ �♦grant and�♦req→ �(X (¬grant) U req), we must keep�♦req in the
two formulas.

Nevertheless, in our experiments, the dropping assumptionheuristic is very effective
and almost always maintainscompositional realizability.

9 Experiments: Compositional Approach

As the monolithic methods, the compositional algorithms have been implemented in our
prototype ACACIA. The performances are evaluated on the examples provided with the tool
L ILY and on a larger specification of a buffer controller inspiredby the IBM rulebase tuto-
rial [14]. Some results are reported on Table 3.

Lily’s test cases and a parametric exampleFirst, we compare the performances of the new
compositional algorithms with the best results of the monolithic approach, which are the
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ones obtained via the monolithic FORWARDEXI method. This is done onLily’s realiz-
able examples among 1 to 23 and the parametric examples 3.1 to3.7. For the compositional
approach, we use the backward fixpoint algorithm to solve thelocal safety games, and the
forward method FORWARDEXI to solve the global game. The formula tested for the com-
parison with previous works are of moderate size. It should be noted that for larger formulas,
it is often not possible to construct theUCW at all, and so the monolithic algorithm are not
applicable14.

In those benchmarks, the formulas are of the form
Vi=n

i=1 ψi →
Vj=m

j=1 φj where
Vi=n

i=1 ψi

are a set ofassumptionsand
Vj=m

j=1 φj are a set ofguarantees. We decompose such formula

into several pieces(
Vi=n

i=1 ψi) → φj, as described in the previous section. We consider
different methods for checking realizability: a monolithic approach and two compositional
approaches. The second realizability method is the same as the first but includes the drop-
ping assumption (DA) heuristic when it is applicable. For each of the method, we give the
size of the constructed automata and the time to construct them. We also give the time for
realizability checking (including the strategy synthesis), and finally the total time (the best
total time is in bold face). Let us mention that when applyingour compositional algorithm,
we construct atbUCW for each conjunct(

Vi=n
i=1 ψi)→ φj . Therefore the column|tbUCW|

refers to the size oftbUCW by monolithic approach andΣi(|tbUCWi|) refers to the sum of
sizes oftbUCW corresponding to the sub-specifications of the decomposition.

On small examples, we can see that the benefit of the compositional approach is not big
(and in some cases the monolithic approach is even better). However for bigger formulas
(demo 3.2 to 3.7), decomposing the formulas decreases the time to construct the automata,
and the total realizability time is therefore better.

Now, we evaluate the benefit of dropping assumptions (last group of columns). For those
experiments, we only consider the subset of formulas for which this heuristic can be ap-
plied. Our dropping heuristic does not work for demo 9 as it becomes unrealizable after
the application of dropping assumptions. As we see in the table, the benefit of dropping as-
sumptions is important and is growing with the size of the formulas that are considered. The
compositional algorithms outperform the monolithic ones when combined with dropping
assumptions. They also show promises for better scalability. This is confirmed by our next
benchmark.

A realistic case studyNow, we consider a set of realistic formulas. All those formulas are
out of reach of the monolithic approach as even the Büchi automaton for the formula cannot
be constructed with state of the art tools. The generalized buffer (GenBuf) originates from
the IBM’s tutorial for herRuleBase verification tool. The benchmark has also the nice
property that it can be scaled up by increasing the number of receivers in the protocol. A
detailed description of the case study is given in appendix as well as ourLTL formalization.
In this case study, the formulas are of the form

Vi=n
i=1 ψi → φi and so they are readily

amenable to our compositional algorithms.
In this case study, formulas are large: for example, the sum of the number of states in

theUCW of the components is 96 forgb(s2, r2) , and 2399 states forgb(s2, r7). Note that
the tool Wring cannot handlegb(s2, r2) monolithically.

This case study allows us to illustrate the effect of different strategies for exploiting as-
sociativity of the product operation. In particular, we usedifferent ways of parenthesizing
the local games. In all those examples, the local games and intermediate combination of
local games are solved with the backward antichain algorithm, while the last compositional

14 This is the case for the larger formulas in theIBM case study below.
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3 20 0.49 0.01 0.5 28 0.40 0.01 0.41 17 0.06 0.00 0.06
5 26 0.71 0.01 0.72 42 0.70 0.02 0.72 34 0.40 0.02 0.42
6 37 1.22 0.02 1.24 57 1.14 0.03 1.17 45 0.79 0.06 0.85
7 22 0.60 0.01 0.61 41 0.66 0.02 0.68 33 0.40 0.02 0.42
9 13 0.13 0.00 0.13 31 0.26 0.00 0.26 na na na na
13 7 0.00 0.01 0.01 4 0.01 0.00 0.01 na na na na
14 14 0.11 0.01 0.12 27 0.77 0.01 0.78 15 0.03 0.00 0.03
15 16 0.06 0.00 0.06 22 0.11 0.03 0.14 na na na na
16 21 0.22 0.07 0.29 45 0.20 0.14 0.34 na na na na
17 17 0.16 0.03 0.19 23 0.16 0.05 0.21 na na na na
18 22 0.34 0.11 0.45 45 0.35 0.16 0.51 na na na na
19 18 0.31 0.01 0.32 27 0.25 0.03 0.28 27 0.26 0.01 0.27
20 105 2.67 0.01 2.68 154 2.43 0.03 2.46 101 1.52 0.02 1.54
21 27 7.38 0.28 7.66 43 1.40 0.52 1.92 44 0.55 0.51 1.06
22 45 7.08 0.02 7.1 80 10.26 0.05 10.31 49 1.51 0.13 1.64

3.2 36 0.94 0.00 0.94 40 0.79 0.02 0.81 na na na na
3.3 56 1.80 0.02 1.82 60 1.21 0.06 1.27 na na na na
3.4 84 3.12 0.04 3.16 80 1.63 0.10 1.73 na na na na
3.5 128 3.52 0.12 3.64 100 2.04 0.17 2.21 na na na na
3.6 204 10.22 0.46 10.68 120 2.40 0.39 2.79 na na na na
3.7 344 26.48 2.35 28.82 140 2.96 1.02 3.98 na na na na

Table 2 Performance comparison of the different compositional algorithms implemented inAcacia onLily’s
benchmark

step (at the top) is done with the FORWARDEXI method. In each strategy we first com-
pute the master plan of each sub-formula. Then the columnFlat refers to the strategy that
check global realizability directly. The columnBinary refers to the strategy that computes
global realizability incrementally using the binary tree of sub-formulas. Finally, the column
Heuristic refers to the strategy that computes global realizability incrementally using a spe-
cific tree of sub-formula defined by the user15. The column UCWOPT refers to the time to
optimize the automata withLily’s optimizations (this time was included in the UCW time in
Table 2).

The last column in Table 2 gives the size of the Moore machinesthat are constructed by
our algorithm. Those machines are small when compared to thetbUCW from which they
are constructed. For example, the Moore machine that encodes a winning strategy for Player
1 in the largest example (gb s2 r7) has 149 states while thetbUCW for the specification has
2399 states. This is striking as in theory, the winning strategies could be exponentially larger
than thetbUCW of their specification.

15 The input language of our tool allow us to specify sub-formula (spec-units) and composition rules to
guide the incremental construction of the global winning strategy, see Appendix.
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FLAT BINARY HEURISTIC
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gb s2 r2 2 91 4.83 0.08 0.84 0.99 0.98 54
gb s2 r3 2 150 8.52 0.17 7.33 36.27 6.99 63
gb s2 r4 2 265 15.64 0.53 36.88 125.60 24.19 86
gb s2 r5 2 531 26.48 2.11 154.02 266.36 70.41 107
gb s2 r6 2 1116 50.70 14.38 889.12 1164.44 335.44 132
gb s2 r7 2 2399 92.01 148.46 2310.74 >t 1650.83 149

Table 3 Performance comparison on a scalability test for the forward methods
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Generalized Buffer
Controller

Fig. 4 Diagram of a buffer controller connected with 2 senders and 2receivers

A Description of the Generalized Buffer Controller

The generalized buffer (GenBuf) originates from the IBM’s tutorial for herRuleBase verification tool.
Figure. 4 illustrates the interface of a controller. To focus on its control flow, we abstract away the

data busesDI andDO. And we do not connect it with a FIFO which is present inAnzu. Except those, our
controller shares withRuleBase andAnzu the same interface.

The interface between GenBuf and the senders is a 4-phase handshaking protocol described below:

1. When a sender, say sender i, has data to send, it initiates atransfer by assertings2b req(i) (Server to
Buffer Request). One cycle later, the sender puts the data onits data bus.

2. When GenBuf can service the sender, it reads the data from the data bus and assertsb2s ack(i).
3. In the cycle following the assertion ofb2s ack(i), the sender should deassert the signals2b req(i).

From this point onwards, the data on the data bus is considered invalid.
4. The end of the transaction is marked by GenBuf deassertingb2s ack(i). A new transaction may begin

one cycle after the deassertion ofb2s ack(i). GenBuf may holdb2s ack(i) asserted for several cycles
before eventually deasserting it.

The protocol between GenBuf and the receivers is similar, except that the GenBuf initiates the data
transfer and it guarantees round-robin scheduling on the requests to the receivers.

Table. 4 lists the behavior properties of GenBuf and its environment.
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Properties of the behavior between GenBuf and the senders.
Assumption 1 The initial value ofs2b req(i) is low.

s2b req(i) = 0
Assumption 2 A request is not lowered until it is served.

�((s2b req(i) = 1 ∧ b2s ack(i) = 0) → s2b req(i) = 1)
Assumption 3 In the cycle following the assertion ofb2s ack(i), the sender should

deassert the signals2b req(i).
�(b2s ack(i) = 1 → X (s2b req(i) = 0))

Guarantee 1 The initial value ofb2s ack(i) is low.
b2s ack(i) = 0

Guarantee 2 When GenBuf can service the sender, it assertsb2s ack(i). Immediate
acknowledge is forbidden. Because the data of the sender
are not valid until one step after the assertion of the request.
A Request from a sender shall always be acknowledged.
�( (s2b req(i) = 0 ∧ X (s2b req(i) = 1))

→ X (b2s ack(i) = 0 ∧ ♦(b2s ack(i) = 1)))
Guarantee 3 There is no acknowledge without a request.

�((b2s ack(i) = 0 ∧ X (s2breq(i) = 0)) → X (b2s ack(i) = 0))
Guarantee 4 Only one sender sends data at any one time.

�(
W

i

V

j 6=i b2s ack(j) = 0)

Properties of the behavior between GenBuf and the receivers.
Assumption 4 The initial value ofr2b ack(i) is low.

r2b ack(i) = 0
Assumption 5 There is no acknowledge without a request.

�(b2r req(i) = 0 → X (r2b ack(i) = 0))
Assumption 6 A request from the buffer is always acknowledged.

�(b2r req(i) = 1 → X (♦(r2b ack(i) = 1)))
Guarantee 5 The initial value ofb2r req(i) is low.

b2r req(i) = 0
Guarantee 6 A request is not lowered until it is served.

�((b2r req(i) = 1 ∧ r2b ack(i) = 0) → X (b2r req(i) = 1))
Guarantee 7 GenBuf will deassert its request to receiveri one cycle after the receiveri

acknowledged the request.
�(r2b ack(i) = 1 → X (R2B Req(i) = 0))

Guarantee 8 GenBuf will not make two consecutive requests to any receiver, and guarantee
round-robin scheduling. Suppose there are two receivers.
�( (R2B Req(0) = 1 ∧ X (R2B Req(0) = 0))

→ X (R2B Req(0) = 0 U (R2B Req(0) = 0 ∧ R2B Req(1) = 1)))
�( (R2B Req(1) = 1 ∧ X (R2B Req(1) = 0))

→ X (R2B Req(1) = 0 U (R2B Req(1) = 0 ∧ R2B Req(0) = 1)))
Guarantee 9 GenBuf does not request two receivers simultaneously.

�(
W

i

V

j 6=i b2r req(j) = 0)

Property linking the sender side and the receiver side.
Guarantee 10 A request from the senders will always trigger a request to the receivers.

�((
W

i s2b req(i) = 1) → X (♦(
W

j b2r req(j) = 1)))

Table 4 Behavior properties of GenBuf and its environment

We present the formulas ofgb(s2, r2) as an example for the file format of Acacia’10. In this exam-
ple, we define 4 components in terms ofspec unit. If all of them are realizable, the clause directed by
group order instructs Acacia’10 to continue along the parenthesized groups, like(sb 0 br 1) and
(sb 1 br 0). The process halts whenever an unrealizable subgroup is encounted. The final step is to check
the group which includes all the components.

################################################
[spec_unit sb_0]
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################################################
assume s2b_req0=0;
assume G((s2b_req0=1 * b2s_ack0=0) -> X(s2b_req0=1));
assume G(b2s_ack0=1 -> X(s2b_req0=0));

b2s_ack0=0;
G((s2b_req0=0 * X(s2b_req0=1)) -> X(b2s_ack0=0 * X(F(b2s_ack0=1))));
G((b2s_ack0=0 * X(s2b_req0=0)) -> X(b2s_ack0=0));
G(b2s_ack0=0 + b2s_ack1=0);

################################################
[spec_unit sb_1]
################################################
assume s2b_req1=0;
assume G((s2b_req1=1 * b2s_ack1=0) -> X(s2b_req1=1));
assume G(b2s_ack1=1 -> X(s2b_req1=0));

b2s_ack1=0;
G((s2b_req1=0 * X(s2b_req1=1)) -> X(b2s_ack1=0 * X(F(b2s_ack1=1))));
G((b2s_ack1=0 * X(s2b_req1=0)) -> X(b2s_ack1=0));
G(b2s_ack0=0 + b2s_ack1=0);

################################################
[spec_unit br_0]
################################################
assume r2b_ack0=0;
assume G(b2r_req0=0 -> X(r2b_ack0=0));
assume G(b2r_req0=1 -> X(F(r2b_ack0=1)));

b2r_req0=0;
G(r2b_ack0=1 -> X(b2r_req0=0));
G((b2r_req0=1 * r2b_ack0=0) -> X(b2r_req0=1));
G((b2r_req0=1 * X(b2r_req0=0)) -> X(b2r_req0=0 U (b2r_req0=0 * b2r_req1=1)));
G((b2r_req0=0) + (b2r_req1=0) );
G((s2b_req0=1 + s2b_req1=1) -> X(F(b2r_req0=1 + b2r_req1=1)));

################################################
[spec_unit br_1]
################################################
assume r2b_ack1=0;
assume G(b2r_req1=0 -> X(r2b_ack1=0));
assume G(b2r_req1=1 -> X(F(r2b_ack1=1)));

b2r_req1=0;
G(r2b_ack1=1 -> X(b2r_req1=0));
G((b2r_req1=1 * r2b_ack1=0) -> X(b2r_req1=1));
G((b2r_req1=1 * X(b2r_req1=0)) -> X(b2r_req1=0 U (b2r_req1=0 * b2r_req0=1)));
G((b2r_req0=0) + (b2r_req1=0) );
G((s2b_req0=1 + s2b_req1=1) -> X(F(b2r_req0=1 + b2r_req1=1)));

group_order = (sb_0 br_1) (sb_1 br_0);


