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Abstract In this paper, we present new monolithic and compositiofgdréghms to solve
theLTL realizability problem. Those new algorithms are based adaction of the TL re-
alizability problem to a game whose winning condition is defl by a universal automaton
on infinite words with a-co-Blichi acceptance condition. This acceptance camdédsks
that runs visit at mosk accepting states, so it implicitly definesafety gameTo obtain
efficient algorithms from this construction, we need sehadditional ingredients. First, we
study the structure of the underlying automata constrostiand we show that there ex-
ists a partial order that structures the state space of thierlying safety game. This partial
order can be used to define an efficiantichain algorithm Second, we show that the al-
gorithm can be implemented in &mcremental wayy considering increasing values bf
in the acceptance condition. Finally, we show that for ldrge formulas that are written as
conjunctions of smaller formulas, we can solve the probtemmpositionallyby first com-
puting winning strategies for each conjunct that appeatkararge formula. We report on
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the behavior of those algorithms on several benchmarks. W@ ¢hat the compositional
algorithms are able to handlg L formulas that are several pages long.

Keywords LTL realizability and synthesisAutomata on infinite words Compositional
algorithms. Antichain algorithms.

1 Introduction

Context and motivations The realizability problemis best seen as a game between two
players [24]. Given ahTL formula ¢ and a partition of its atomic propositiorn2 into 7
and O, Player1 starts by giving a subset, C O of proposition$, Player2 responds by
giving a subset of propositionig C I, then Playerl giveso; and Player2 responds by
i1, and so on. This game lasts forever and the outcome of the gathe infinite word

w = (igUop) (i1 Uoy)(iaUog) - -- € (2F). Playerl wins if the resulting infinite wordy is

a model of¢. The synthesis problerasks to produce a winning strategy for Player 1 when
theLTL formula is realizable.

The LTL realizability problem is central when reasoning about Bjpations for reac-
tive systems and has been studied starting from the end dfigfities with the seminal
works by Pnueli and Rosner [24], and Abadi, Lamport and WolpE It has been shown
2ExPTIME-C in [26]°. Despite their high worst-case computation complexity,neteve
that it is possible to solvETL realizability and synthesis problems in practice. We pedce
here along recent research efforts that have brought newvithlignic ideas to attack this
important problem.

The classical automata-based solution T synthesis can be summarized as follows.
Given anLTL formula ¢, construct a nondeterministic Buichi automatép that accepts
all models of¢, transformA, into a deterministic Rabin automatdh using Safra’s de-
terminization procedure [27], and uggas an observer in a turn-based two-player game.
Unfortunately, this theoretically elegant procedure has pbut to be very difficult to im-
plement. Indeed, Safra’s determinization procedure geegrvery complex state spaces:
states are colored trees of subsets of states of the origutamaton. No nice symbolic
data-structure is known to handle such state spaces. Mengbe game to solve as the last
step (on a potentially doubly-exponential state spaceRslsn game, and this problem is
known to be NP complete

This situation has triggered further research for altévegirocedures. Most notably,
Kupferman and Vardi in [19] have recently proposed procesltinat avoid the determiniza-
tion step and so Safra’s constructfoin particular, they reduce tHa'L realizability prob-
lem to the emptiness of a Universal Co-Biichi Tree autom@i@). They show how to test
emptiness of &CT by translation to an alternating weak Biichi tree automadgain trans-
lated into a non-deterministic Biichi tree automaton forohiesting emptiness is easy. All
these steps have been implemented and optimized in seweyalby Jobstmann and Bloem

1 Technically, we could have started with Playzrfor modeling reason it is conservative to start with
Player1. All the techniques developed in this paper can be trivialigpted to the other setting.

2 Older pioneering works consider the realizability probleat for more expressive and computationally
intractable formalisms like MSO, see [31] for pointers.

3 Instead of Rabin automata, Parity automata can also be @g&dNevertheless, there are no known
polynomial time algorithm to solve parity games.

4 As a consequence, they call their new proced@esalessprocedures. Nevertheless they use the result
by Safra in their proof of correctness.



in a tool calledLily [15]. In 2007, Schewe and Finkbeiner has shown how to reduee t
emptiness problem dJCT into the emptiness of safety tree automata.

Contributions In this paper, our contributions are threefold. First, weagk a Safraless de-
cision procedure for thETL realizability and synthesis problem directly in the foriaal of
infinite word automata. Second, we identify structural grbies in the underlying automata
constructions that allow us to define an antichain algoritorrsolving the LTL realizabil-
ity problem. This is in line with our previous works in [6, B,8] that use subsumption to
obtain efficient implementations of several variants ofssilzonstructions. Third, we study
compositional algorithms to solve safety games, and we stmwthey can be used to de-
velop compositional algorithms for solving the realizapiand synthesis problems of large
and structured TL specifications.

Safraless proceduréur Safraless procedure uses Universal Co-Buichi WordweatmUCW.
While solving the emptiness problem is easy for nondeteastiirautomata, solving the uni-
versality problem is easy for universal automat&d@W A accepts all the words i&* if

all cycles inA reachable from an initial state only contain non final sfatas a direct con-
sequenced is universal if and only if all paths starting from initialagés inA can visit at
mostn times a final state, where is the number of states iA. So universality easily re-
duces to safety fodCW. This simple property can be exploited in synthesis asvidlaf a
Moore machineM (representing a strategy) with states defines a language (the outcome
of the strategy) included in the language dJ&W A with n states, denoted b¥,.(A),
i.e., L(M) C Luc(A), then every run on the words generatediMgycontains at mostmn
final states ofA. As a consequence, a strategy represented by a Moore mabhinen-
forces a language defined by BCW also enforces atronger specificatiowefined by the
same automaton where the acceptance condition is strewgthe a so called2mn-co-
Bichi”: a run is accepting if it passes at ma@stn times by a final state. Those automata
are calledJniversalk-co-Bichi automatadenoted byJK CW. The language oft with this
acceptance condition is denoted by, ;,(A).

Using the result by Safra [27], we know that the size of a Maochine that real-
izes a language defined byl W A can be bounded by some valée € N, which is at
most exponential in the size of. This gives a reduction from the general problem to the
problem of the realizability of &K CW specification. Contrarily to gener&lCW speci-
fications, universak’-co-Biichi specifications asafety conditionsand they can easily be
made deterministic. The ideas underlying our constructi@nsimilar to the ones used in
the reduction fronUCT to safety tree automata proposed in [28].

Antichain and incremental algorithnThe realizability and synthesis problems of laFL
formula ¢ can thus be reduced to a game whose winning objective is ssguldoy dJCW

Ay, WhereAy is the UCW that accepts all the models of formula The acceptance con-
dition of this automata can be strengthened #-ao-Biichi condition and made determin-
istic using an extension of the classical subset constmuctivhen applied to a universal
automatonA with set of states), the classical subset construction consists in building a
new automatom’ whose states are subsetspfThus, each state of’ encodes the set of
states ofA that are active at each level of the run tree. In the cagé-0b-Buchi automata,
one needs additionally to remember how many times final stage been visited on the

5 Analysis of cycles in automata over infinite words has presip been exploited in bounded model-
checking, see [18] for a formal treatment.



branches that lead to each active state. Clearly only thémadaumber (up tak + 1) of
visits to final states among all the branches that reduhs to be remembered. So, we need
one counter, that counts up i0+ 1, for each state of the automatary,. To implement this
approach in practice, we face two difficulties. First, theoauatonA,, can be exponentially
larger thanp, and so its determinization can be doubly-exponentialigdathany. Second,
the maximal valugk € N that we need to consider in theory is also doubly exponeimtial
the size of the formula. To overcome those two difficulties, we study the structdréhe
underlying automata constructions, and we develop theviatig two heuristics.

First, we show that the set of states of the deterministioraaton is partially ordered.
The underlying partial order can be used to define an effidatd-structure to compactly
represent and efficiently manipulate the game positioneeassociated safety game. This
allows us to develop an antichain algorithm, in the spirif&)f to efficiently compute the
winning positions in the safety game.

Second, for alUCW A, and for allk1, k2 € N, if k1 < kathenLy, ., (A) C Ly , (A).
So, instead of solving the safety game associated with tbefgationL,,. x (Ag) (for the
theoretical bound< given by the Safra’s construction), we adopt an incremeaygtoach,
and we solve the games underlying. ;(A) for increasing values of i = 0,1,2,..., K.

As soon as one of this game can be won by Player 1, we know thé&btmula is realizable
becaus.,. i(Ag) C Lyc,k (Ap) € Luc(Ag). For unrealizable specification, this approach
is not reasonable. This is why we consider in parallel theegassociated with the spec-
ifications L, ; (A-) for increasing values of, i = 0,1,2, ..., K’, and decide if Player 2
has a winning strategy in those garhiess LTL games are determined [21], we know that if
Player 1 cannot realizg, then Player 2 can realizep. In practice, we will see that for all the
LTL formulas that we consider in our benchmarks, one of the theifigationsL . ;(Ag)

Or Lyc,i(A-g) Is realizable for a small value af(less than 3 in all our experiments). This
incremental algorithm has been implemented in a prototypeocb calledAcacia. We have
applied it to a set of benchmarks provided with the tatt and compared the performances
of the two approaches on those benchmarks.

Compositional algorithmLargeLTL formulas are often written as conjunctions of smaller
formulas. We show that if theTL formula has the forn® = ¢1 A g2 A -+ A ¢n, i.E., @
conjunction ofLTL sub-specifications, the@(®), the safety game underlying the formula
@ (as sketched above), can be constructed and solved coropalit The compositional
algorithms are able to handle formulas that are severalsdagg while non-compositional
algorithms are limited to much smaller formulas.

The compositional algorithms rely on the following nice ppecty of safety games: for
any safety gamé&, there exists a function that maps each positiofi Player 1 to the set of
all actions that are safe to play énWe call this function thenaster plarof Player 1 inG.

It encompasses all the winning strategies of Player 1. i§ the master plan aff then we
denote byG[A] the game&Z where the behavior of Player 1 is restricted/hy

To compute the winning positions of a safety gati¥ = G' @ G2 defined as the
composition of two sub-games, we compute the master plarthéolocal games’' and
G? before composition. Letl; (resp.A;) be the master plan fag* (resp.G2), then the
winning positions inG'? are the same as the winning positionsdh[4;] ® G%[A3]. We
develop backward and forward algorithms that exploit thapperty.

Sometimes, theTL formula is given in the following formA;™, v; — A_; ¢; where
1; are hypothesis that are made on the environment of the syste@ontrol, andyp; are

6 Note that in this game, Player 1 is first to play as in the ogbgame.



guarantees that the controller has to ensure. For thoseufasiwe show how to rewrite
them in order to apply the compositional algorithms and howimplify the formula that
we obtain after rewriting.

We have implemented the two compositional algorithms inpototypeAcacia and
we provide an empirical evaluation of their performancetheset of benchmarks on which
we have evaluated the monolithic incremental approactckkdtbefore, and on a realistic
case study taken from the IBRuleBase tutorial [14].

Related works The first solution [24] to th&TL realizability and synthesis problem was
based on Safra’s procedure for the determinization of Béistomata [27].

Following [19], the method proposed in our paper can be cbi@afraless” approach
to the realizability and synthesis @TL as it avoids the determinization (based on Safra’s
procedure) of the automaton obtained from kA& formula. Our approach relies on a re-
duction to safety games, as in [28]. There, the construdiamsed to justify a reduction
of the emptiness of universal co-Bichi tree automata tdS#E problem. In turn, this re-
duction is used to obtain a semi-algorithm for the distéousynthesis problem which is
undecidable. Our algorithms are not reductions to SAT betdfigoint algorithms that can
be implemented compositionally and symbolically usinddatins. Recently, Ehlers [9] has
also implemented this reduction with a fixed point algoritismg BDDs and not antichains.

In [19], Kupferman and Vardi proposed the first Safraless@ggh that reduces thaL
realizability problem to Buichi games, which has been imm@ated in the tooLily [15],
their algorithm is incremental as the algorithm proposethat paper. In [17], a composi-
tional approach taTL realizability and synthesis is proposed. Their algoritsrbased on a
Safraless approach that transforms the synthesis probtera Biichi and not a safety game
as in our case. There is no notion like the master plan fohBgames. To the best of our
knowledge, their algorithm has not been implemented.

In [4], the idea of checking the realizability af by Player 1 in parallel with the re-
alizability of -+ by Player 2 is also proposed. Nevertheless, the procedare th only
complete forw-regular specifications that are definable by determiniichi automata.

In [23, 3], an algorithm for the realizability problem for emgment ofLTL, known as
GR(1), is presented and evaluated on the case study of [14]. Théisp&on into theGR(1)
fragment for this case study is not trivial to obtain and s®dhin in term of complexity
comes with a cost in term of expressing the problem in thenfiexg. Our approach is dif-
ferent as we want to consider the fUllL logic. In our opinion, it is important to target full
LTL as it often allows for writing more declarative and more naltgpecifications.

In [29], the authors also considerL formulas of the formp = ¢ Aga A-- - Agy. They
propose an algorithm to construct compositionally a payayne from such.TL specifica-
tions. Their algorithm uses a variant of Safra’s deternaition procedure and additionally
tries to detect local parity games that are equivalent tetgafames (because the associated
LTL subformula is a safety property). For efficiently solving #ntire game, they use BDDs.

In [16], a compositional algorithm is proposed for reasgnabout network of com-
ponents to control under partial observability. The clasgroperties that they consider is
safety properties and nbTL properties. They propose a backward algorithm and no fatwar
algorithm.

The implementation supporting the approaches describ§2Qijnand [3] uses BDDs
while our toolAcacia does not. While our algorithms could have been implementiga w
BDDs (see [9] for such an implementation), we deliberatelgided not to use them for two

7 GR(1) has a better worst-case complexity than IL.



reasons. First, to fairly compare our Safraless approatt tive one proposed in [19] and
implemented irLily, we needed to exclude BDDs iy does not use them. Second, several
recent works on the efficient implementation of decisioncpdures based on variants of
the subset construction show that antichain based algwithay outperform BDD-based
implementations by several orders of magnitude, see [@y#hbre details.

Outline The rest of the paper is structured as follows. Sect. 2 et formal definitions
of LTL, the realizability problem, universal automata operatingnfinite words, and Moore
machines to represent finite memory strategies. Sect. 8géoamal definitions for safety
games, and two algorithms to solve them, one that operatdsvbad and one that operates
forward. Sect. 4 shows how the realizability problem aof-aegular language defined by a
universal automaton with co-Biichi acceptance conditamtee reduced to the realizability
problem of a language defined by the same automaton but wifkca-Biichi acceptance
condition. Sect. 5 uses this reduction to associate with &€&t formula a safety game.
Sect. 6 studies the structure underlying this safety gandefioe an incremental antichain
algorithm to solve the realizability problem. Sect. 7 eads the algorithms proposed in
Sect. 6 on a large number of benchmarks. Sect. 8 introdueesotihpositional algorithms
for solving the realizability problem of lardel' L formulas given as conjunctions of smaller
formulas. Sect 9 evaluates the compositional algorithmtgherbenchmarks of Sect. 7, and
on a larger, scalable, and more realistic example.

2 LTL and Realizability Problem

Linear Temporal Logicl(TL) The formulas olLTL are defined over a set of atomic propo-
sitions P. The syntax is given by the grammar:

¢ = ploVeo|-p|Xo| U pep

The notationdrue, false, ¢1 A ¢2, O¢ and¢ are defined as usual. In particulgry =
true ¢ anddg = —~O—¢. LTL formulase are interpreted on infinite words = ogo109 - - - €
(2P)« via a satisfaction relatiom |= ¢ inductively defined as follows:

(i) wEpif p € op;
(i) wE= ¢1V P2 Ifwlqul orw = ¢2;
(#i7)

)

(v

w =g if w  ¢;
wE X¢if o10o... E ¢,and(v) w | ¢1 Uge ifthereisn > 0 such thabpop,y1 ...
oo and foralld <i < n,o;0i11... E ¢1.

Given aLTL formula¢, we note[¢] the set of infinite words s.t.w = ¢.

LTL Realizability and Synthesids mentioned in the introduction, the realizability prahble
for LTL is best seen as a game between two players. Each of the piayastrolling a
subset of the seP of propositions on which theTL formula is constructed. Accordingly,
unless otherwise stated, we partition the set of propasitidinto I the set ofinput signals
that are controlled by Player 2 (the environment), anthe set ofoutput signalghat are
controlled by Player 1 (the controller). It is also usefubssociate this partition @ with
the three following alphabetsr = 27, ; = 2©, and X, = 27. We denote by the empty
set.



The realizability game is played in turns. Player 1 startgiing a subsebq of propo-
sitions, Player 2 responds by giving a subset of propositipnthen Player 1 gives; and
Player 2 responds by, and so on. This game lasts forever and the output of the gathe i
infinite word (ig U 0g) (i1 Uo1)(ig Uog)--- € X,

The players play according to strategies. A strategy foyd?la is a (total) mapping; :
(X139)" — X1 while a strategy for Player 2 is a (total) mappiRg: X1 (X2 X1)* — Xs.
The outcome of the strategies and \s is the wordoutcome (A1, \2) = (09 U ig)(01 U
i1)... suchthaby = A1 (e€), iop = A2(0g) and for allj > 1, 0; = A1(ogig .. .0j—1i;—1) and
i = A2 (00 - . .Oj_lij_loj).

Given anLTL formula¢ (the specification), theealizability problemis to decide whether
there exists a strategy of Player 1 such that for all strategigg of Player 2putcome (A1, \2) E
¢. If such a strategy exists, we say that the specificatigmrealizable If an LTL specifi-
cation is realizable, there exists a finite-state stratbégy tealizes it [24]. Thesynthesis
problemis to compute a finite-state strategy that realized ffiespecification.

Example 1Let I = {¢}, O = {p} andy) = pUq. The formulay is not realizable. Ag is
controlled by the environment, he can decide to leave it ywalse and the outcome does
not satisfyy. However(q — (pUq) is realizable. The assumptidry states thag will hold
at some point, and so, one of the possible winning stratégiddlayer 1 is to always assert

p.

Infinite Word AutomataAn infinite word automatorover the finite alphabel’ is a tuple
A= (X,0Q,q0,a,6) whereQ is a finite set of stategy € @ is the initial statex C Q is a
set of final states anfliC Q x X x ) is a transition relation. For ajl € Q and allo € X, we
lets(q,0) = {¢' | (¢,0,q") € 6}. We let|A| = |Q]| + |5| be the size ofd. We say thatd is
deterministidf Vq € Q-Vo € X-|6(q,0)| < 1.Itiscompletdf Vq € Q-Vo € X-0(q,0) # @.
In this paper, unless otherwise stated and w.l.0.g., trenzati are complete. Ain of A on
awordw = ogop --- € X is an infinite sequence of states= pgp1 --- € Q¥ such that
po = qo andvi > 0- p; 41 € §(p;, 0;). We denote byRuns 4 (w) the set of runs ofA onw.
We denote byisit(p, ¢) the number of times the stajedccurs along the rup. We consider
three acceptance conditions (a.c.) for infinite word autam@ wordw is accepted bw if
(depending on the a.c.):

Non-deterministic Blchi : Jp € Runsy(w) - 3¢ € o - Visit(p, q¢) = oo
Universal Co-Buchi o VpeRUNS 4 (w) - Vg € a - Visit(p, q) < 0o
UniversalK-Co-Buchi D VpeRunsy(w) -3, e, Visit(p,q) < K

The set of words accepted by with the non-deterministic Biichi a.c. is denoted by
Ly(A), and with this a.c. in mind, we say thatis a non-deterministic Buchi word automa-
ton, NBW for short. Similarly, we denote respectively Byc(A) and L x (A) the set of
words accepted byl with the universal co-Biichi and universal-co-Bichi a.c. respec-
tively. With those interpretations, we say thais a universal co-Buchi automatob ¢W)
and that the paifA, K) is a universalk-co-Biichi automatonUKCW) respectively. By du-
ality, we have clearly.,(A) = Luc(A), for any infinite word automatod. Finally, note that
forany0 < Ky < Ko, we have thatl x, (A) C Lyc k,(A) C Luc(A).

Infinite automata andTL Itis well-known (see for instance [30]) thBiBWs subsum&TL
in the sense that for allTL formula ¢, there is alNBW A, (possibly exponentially larger)
such thatZp(Ag) = {w | w = ¢}. Similarly, by duality it is straightforward to associate



an equivalenCW with anyLTL formula ¢: take A4 with the universal co-Biichi a.c., so

Lu(A~g) = Lo(A_g) = {w | w }& =6} = {w | w |= ¢}.

To reflect the game point of view of the realizability problemwe introduce the notion
of turn-based automata to define the specificatioturA-based automatoA over the input
alphabetY; and the output alphabél; is a tupleA = (X9, X1, Q2, Q1, g0, @, d2, d1) Where
Q2, Q1 are finite sets of input and output states respectivglye @1 is the initial state,
a C Q2UQ1 isthe set of final states, adg C Qo x Xy xQ1, 01 C Q1 x X1 xQ4 are the input
and output transition relations respectively. itenpletdf for all ¢o € Q2, and alloy € X5,
02(q2,02) # @,and forallg; € ¥1 and alloy € X1, 61(q1,01) # 2. As for usual automata,
in this paper we assume that turn-based automata are aleaysete. Turn-based automata
still run on words fromY as follows: a run on a worth = (og Uig) (01 Uip)--- € X¥ isa
wordp = pop1 -+ € (Q1Q2)” suchthapy = go and forallj > 0, (p25, 04, p2+1) € d1 and
(p2j+1.15, p2j4+2) € 2. All the acceptance conditions considered in this papeaty aarer
to turn-based automata. Turn-based automata with acaptonditionsC are denoted
by thC, e.g.tbNBW. Every UCW (resp.NBW) with state setp and transition set\ is
equivalent to abUCW (resp.tboNBW) with |Q| + | 4| states: the new set of stategis) A,
final states remain the same, and each transitieng Zolai, q¢ € Awheres, € X and
o; € X9 is splitinto a transitior; 22 r and a transition 2% ¢’.

Moore MachinesLTL realizability is equivalent thTL realizability by a finite-state strategy
[24]. We use Moore machines to represent finite-state gieteAMoore machineV/ with
input alphabet’s and output alphabet; is a tuple(Xq, X1, Qar, g0, 0ar, gar) WhereQ

is a finite set of states with initial statg, oy : Qnr X Yo — Q) is a (total) transition
function, andyy, : Qs — X1 is a (total) output function. We exterdd; to 63, : 5 — Qs
inductively as follows:y,(e) = go andéy;(uc) = dar(d34(u), o). The language of/,
denoted byL(M), is the set of wordsy = (op U ig)(01 Ui1)--- € X% such that for
all j >0, 6y (io...4—1) is defined andb; = gpr (034 (%0 ... i5—1)). In particular,og =

g (634(€)) = gnr(qo). The size of a Moore machine is defined similarly as the siznof
automaton.

As for everyLTL formula¢ we can construct tbUCW Ay such thatL,.(Ag) =[],
the LTL realizability problem reduces to decide, giveribdJCW A over inputsX, and
outputsy';, whether there is a non-empty Moore machiiesuch thatl (M) C Luc(A). If
L(M) C Ly, x (A) for somekK, we say that thtbUKCW (A, K) is realizable.

Example 2 (running exampl€)g. 1(a) representstaBUCW equivalent to the formulal(r —
X(0g)) 8 wherer is an input signal and is an output signal. States ¢f, are denoted by
circles while states of), are denoted by squares. Staieis denoted by a square because
it is a final state. The transitions on missing letters aragd® an additional sink non-final
state that we do not represent for the sake of readabiliyréjuest is never granted, then
a run will visit the final state, infinitely often.

3 Safety Games

In this section, we provide a definition of safety games thawell-suited to support our
synthesis methods detailed in the following sections. &laywill play the role of the system

8 Note that thigshUCW is equivalent to thebNBW of the negation of the specification, i.e., the formula
O(r A Og). So, tools for translation dfTL to NBW can be used to obtain thiéCW when applied to the
negation of the specification.



(q1,0), (g3, 1) (q1,0), (g3,0)

(92,0), (g4, 1)
(92,0), (q4,2)

(a) UCW (b) Safety gamé& (¢, 1)

Fig. 1 UCW and safety game for the formufa= C(r — X Og)

while Player 2 will play the role of the environment. This ibyyas the reader will see, our
definition of games is asymmetric. In those games, Playexe mlbernatively.

Turn-based gameg\ turn-based gamen a finite set of movelsloves = Moves; wMoves,
such thaMoves, # @ is a tupleG = (S, S2, I'1, A1, Ag) where:

(i) Sy is the set of Player 1 positionS; is the set of Player 2 positions; N .Sy = @. We
letS = S W Ss.

(i3) I : S; — 2MOVest s a function that assigns to each position of Player 1 theetubf
moves that are available in that position. For Player 2, vserag that all the moves in
Moves, are available in all the positionse S5.

(#i1) A1 : S1 x Moves; — Ss is a partial function that maps a pdit, m) to the position
reached froms when Playerl choosesn € I7(s). As : Sy x Movess — S is a
function that mapss, m) to the position reached fromwhen Player 2 chooses.

We define the partial functiosh as the union of the partial functia; and the function
As. Unless stated otherwise, we fix for the sequel of this sediturn-based gamé =
(S1, 82,11, A1, Ag) on movesMoves = Moves; & Movess.

Given a functiond : S; — 2MOves1the restriction of G by A is the gameG[4] =
(S1, 82,171, A1, Ay) where for alls € Sy, Ti(s) = I'i(s) N A(s) and Ay equalsA; on the

domain restricted to the paifgs, m) | s € S; Am € I'1(s)}, i.e.,G[A] is asG but with the
moves of Player 1 restricted by

Rules of the gamé&he game or@ is played in rounds and generates a finite or an infinite
sequence of positions that we calplay. In the initial round, the game is in some position,
saysp, and we assume that Player 1 owns that position. ThE(Hy) is non-empty Player 1
chooses a movey, € I'1(sg), and the game evolves to positisn= A; (sg, mg), otherwise
the game stops. If the game does not stop then the next roarid ists;. Player 2 chooses

a movem; € Moves, and the game proceeds to position = As(s1,m1). The game
proceeds accordingly either for an infinite number of rouad# stops when a position
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s € Sy is reached such thdt (s) = @. Player 1 wins if the game does not stop otherwise
Player 2 wins (safety winning condition). Our variant ofetgfgames are thus zero-sum
games as usual. In particular, the positierss S; such that'; (s) # @ are the safe positions
of Player 1.

Plays and strategiesVe now define formally the notions of play, strategy, outcarhe
strategy and winning strategies. Given a sequeneesgs; ... sy ... € S*USY, we denote
by |p| its length (which is equal ta if p is infinite). Given a non-empty sequengewe
denote byfirst(p) the first element op, and if p is finite, we denote byast(p) its last
element.

A play in G is a finite or infinite sequence of positiops= sgs1 ...s, ... € S* U S¥
such that (7) if p is finite thenlast(p) € S; and I (last(p)) = &; (i7) p is consistent with
the moves and transitions 6f, i.e., for alli, 0 < ¢ < |p|, we have that;,; = A(s;,m) for
somem € I'1(s;) if s € S, orm € Moves; if s € S;.We denote byPlays(G) the set of
plays inG.

Given a set of finite or infinite sequences- S*US*, we writePref; (L), j € {1, 2}, for
the set of prefixes of sequencedithat end up in a position of PlaygrLet | be such that
L ¢ Moves. A strategy for Player in G is a function); : Pref; (Plays(G)) — Moves; U
{L} which is consistent with the set of available moves, i.a.albp € Pref;(Plays(Q)),
we have that(i) A1 (p) € I'1(last(p)) U {L}, and(ii) A1(p) = L only if I'1(last(p)) = @.
A strategy for Player 4n G is a function\y : Prefy(Plays(G)) — Movesy. Note that a
Player 2's strategy never containsas all the moves of Player 2 are allowed at any position,
whereas the moves of Playeare restricted by .

Aplay p = sgs1...sn... € Plays(G) is compatiblewith a strategy\; of Player
(j € {1,2}),ifforall 4,0 < i < |p|, if s; € Sj thens;;1 = Aj(s;, Aj(sos1...5;)).We
denote byoutcome(G, s, A;) the subset of plays iRlays(G) that are compatible with the
strategy); of Playerj, and that start in. We denote byutcome(G, s, A1, A2) the unique
play that is compatible with both; and),, and starts irs.

Thewinningplays for Player 1 are those that are infinite, iWin; (G) = Plays(G) N
S¥, or equivalently those that never reach an unsafe positiors; of Player 1, i.e., a posi-
tion s suchthat'; (s) = @. A strategy\; iswinningin G from sjy,; iff outcome(G, sini, A1) C
Wini (G) or equivalently, if the plays compatible witty are infinite. We call a turn-based
game with such a winning condition in mindsafety game We denote byWinPos; (G)
the subset of positionse .S in G for which there exists,; such thabutcome(G, s, A1) C
Winy (G).

Games with initial positionA safety game with initial positioms a pair (G, sjyi) where
sinj € S1US9 is a position of the game structutecalled thenitial position. The set of plays
in (G, sin) are the plays of; starting insiy;, i.€.,Plays(G, sini) = Plays(G)Nsini- (S*US®).
All the previous notions carry over to games with initial pioss.

We now recall two classical algorithms to solve safety gar@see explores the game
backward while the other explores it in a forward fashion.

Backward algorithm for solving safety gamé@$e classical fixpoint algorithm to solve
safety games relies on iterating the following monotone a@ioe over sets of game positions,
see [12] for example. The safety games we defined alternatebe positions of Player 1
and positions of Player 2. We define two operafers; : 2°2 — 251 andPre, : 251 — 252
such that for allX; C Si, Pres(X7) are the positions from which Player 2 cannot avoid
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reachingX; in one step. For alKs C S,, Pre;(X2) are the positions from which Player 1
can reaclbs in one step. We also defir@Pre : 251 _, 951 asPre; o Prey:

Pre;(X2) ={s €81 |Im e I'1(s),A1(s,m) € Xa}
Prea(X1) = {s € S2 | Vm € Movesy, Ax(s,m) € X1}
CPre = Pre; o Preg

Now, we define the following sequence of subsets of positions
Wo={seS1|Ii(s) # o} W; =W,;_1 NCPre(W,_q) foralli > 1

Denote byiv'? the fixpoint of this sequence. It is well known tHat! = WinPos; (G).

Forward algorithm for solving safety gamea/e describe an algorithm that computes the
winning positions in a safety game in a forward fashion,tstgifrom the initial position of
the game. The algorithm explores the positions of the garmdeoane a position is known
to be losing, this information is back propagated to the @cedsors. A position of Player 1
is losing (for Player 1) iff it has no successors or all itscgssors are losing. A position of
Player 2 is losing (for Player 1) iff one of its successor®srig. For solving safety games,
we use an variant oOTFUR algorithm of [5] (Algo 1) based on an algorithm of [20].
At each step, the algorithm maintains an under-approxondtbsing of the set of losing
positions. The algorithm has a waiting-liBtaiting for reachable position exploration and
reevaluation of positions. In particular, an edge is pubhawaiting-list if it is the first time it
has been reached, or the status of its target position hagetiaThe latter case means that
when the information that a position is losing is known, thfermation is back-propagated
to all its predecessors. A sélussed records the visited positions. Finally, a 9etpend
stores the edges, s’) which need to be reevaluated when the valug’ @hanges.

At each step, the algorithm picks an edge- (s,s’) in the waiting list. If its target’
has never been visited, one checks whether this target isudly losing (when it has no
successors). In this case, we add the waiting list for reevaluation. This amounts to back
propagate the information afi. Otherwise we add all the successors’daf the waiting list
for reevaluation. I’ has already been visited, then we compute the valueldf is losing,
this information is back propagated to the positions whaderess depends en

The overall complexity of this algorithm is linear in the siaf the game, as every edge
is added at most twice to the waiting list. We refer the read¢20, 5] for the formal proof
of its correctness, expressed by the following theorem:

Theorem 1 After termination of Algorithm 1, the set of positiofisuch that-Losing|s] is
equal to the winning positions (for Player 1) reachable frima initial position.

4 From UCW to UK CW Realizability

In this section, we reduce the realizability problem witlpadfication given by a turn-based
universal co-Buchi automatoebUCW) to a specification given by a turn-based universal
co-Buichi automatontbUKCW). A variant of this lemma expressed on universal co-Bichi
tree automata has been proved in [28].

Lemmal Let A be atbUCW over inputsXs and outputsy; with n states, andV/ be a
Moore machine over input&, and outputsy; with m states. Ther.(M) C Lyc(A) iff
L(M) g Luc,an(A)-
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Algorithm 1: OTFUR [5] algorithm for safety games
Data: G, sinj
Mnitialization
1 Passed := {sjn}; Depend(sin) := &
2 for all positions do Losing[s] := false;
3 Waiting := {(sini, s')|3m € I'i(sini) : 8" = A1 (sini, m)};
/ISaturation
while Waiting # @& A —Losing|sjnj] do

4
5 e = (s,s’) := pop(Waiting);
6 if s’ ¢ Passed then
7 Passed := Passed U {s'};
8 Losing[s'] := s’ € S1 A T'1(s") = @;
9 Depend[s’] := {(s,s")};
10 if Losing[s’] then
11 | Waiting := Waiting U {e}; //adde for reevaluation
12 else
13 || Waiting := Waiting U {(s', s”)|Tm € A(s') : s” = A(s',m) };
14 else
/Ireevaluation
Losing® := s€ S1 A /\merl(s),s”:Al(s,m) Losing[s”]
15 V' s € 82 AV, eMovessy s = As (s,m) Losing[s"];
16 if Losing™ then
17 Losing|[s] := true;
18 Waiting := Waiting U Depend|s] //back propagation
19 | if —Losing[s’] then Depend|[s’] := Depend[s'] U {e}

20 return —Losing|sin

Proof The back direction is obvious sindg ;(A) C Luc(A) for all k € N. We sketch the
forth direction. Informally, the infinite paths @ starting from the initial state define words
that are accepted hyt. Therefore in the product off and A, there is no cycle visiting a
final state of4, which allows one to bound the number of visited final staiethk number
of states in the product. More formally, we first transfolhinto atboNBW A, such that
L(M) = Lyp(Ap). It suffices to copy every state dff and to define the transitions as

follows: if ¢ & ¢ is a transition ofM with ¢ € X5, and the output of is o € X1, then

we transform this transition into the twaé,, transitionsg -2 ¢¢ and¢® - ¢’ whereg® is

a fresh state denoting a copy @fAll states of A, are set to be final, so thdf,(Ay,) is
exactly the set of traces of infinite paths.4f; (viewed as an edge-labeled graph) starting
from the initial state. By hypothesigy(A ;) C Luc(A). Note thatd ), has2m states.

Let @ be the set of states of, Q 4,, the set of states ol ,; and A x A, the product of
AandA,y, i.e. the automaton over, U ¥ whose set of states @ x Q 4,,, initial states
are pairs of initial states, and transitions have the fagm) 2 (¢/,p’) for all transitions
¢ % ¢ of Aandp % p’ of Ay, SinceLp(Ay) C Luc(A), there is no cycle im x Ay,
reachable from an initial state and that contains a stat® whereq € Q is final. Indeed,
otherwise there would exist an infinite pathAnx A, visiting (g, p) infinitely often. Every
infinite word obtained as a trace of this path would be acckpyeA , but not by A (since
there would be a run on it visiting infinitely often). Therefore the runs of on words
accepted byA ,, visit at most2nm final states, where (resp.2m) is the number of states
of A (resp.Ayy). O
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The following result is proved in Th. 4.3 of [19], as a smalldebproperty of universal
co-Buchi tree automata. We also prove it here for the sakelficontainedness.

Lemma 2 Given a realizablebUCW A over inputs¥, and outputst; with n states, there
exists a non-empty Moore machine with at mgdtt2 + 1 states that realizes it.

Proof We first sketch the proof. In the first step, we show by usinge&afleterminization of
NBWs thatA is equivalent to a turn-based deterministic and completiéymutomaton4?.
Using a result from [22], we know that? has at mosi» := 2n%" 12 42 states. We then view
A4 has a turn-based two-player parity gagiea?) (with at mostm states) such that? (or
equivalentlyA) is realizable iff Playell has a winning strategy i(}*(Ad). It is known that
parity games admit memoryless strategies [12]. Therefa#¢ iis realizable, there exists a
strategy for Playet in G(A?) that can be obtained by removing all but one outgoing edge
per Playerl’s state. We can finally transform this strategy into a Moomchine with at
mostn?"*2 + 1 states that realize4? (and A).

More formally, the proof uses the parity acceptance coonlifor automata and for
games. Given an automatdn with state set) g, a parity acceptance condition is given
by a mapping: from Q g toN. A run p is accepting ifinin{c(q) | ¢ € Inf(p)} is even, where
Inf(p) is the set ofg € @ that appear infinitely many times along Final states are not
needed inB for this acceptance condition. We denote by, -(B) the language accepted
by B under the parity acceptance conditian

Given a turn-based two-player garie= (S1, S2, so, 4), the parity winning condition
is given by a mapping : S; U S2 — N. In that case, for all € {1,2}, a strategy\; for
Playeri is winning if Outcomeg (X\;) C {m € (5152)“ | min{c(s) | s € Inf(x)} is every.

Let A = (X, X2,Q1,Q2,q0, e, 01,02). We letQ = Q1 UQ2 andd = §; U ds. Let
Aoy be the automato(, Q, qo, «, §). We denote byn : (X X2)¢ — X“ the function that
maps any wordv = ogigo1i1 ... t0 m(w) = (0g Uig)(o1 Uip).... Note thatm admits
an inverse denoted by~ 1. We have thain(Lp(Aor)) = Lp(A) (*). By Safra’s deter-
minization, there exists a deterministic parity automaftgsy with a parity conditiore such
that Lpar,c(Dor) = Lp(Aor). Moreover, by [22], we can assume thag; has at most
n?"*2 states. SinCe.par,c(Dor) C (X2X1)“, it is easy to transfornDy; into a deter-
ministic turn-based parity automatdnwith a parity conditione’ such thatl.par.c(Dor) =
m™(Lyar, (D)): it suffices to take the product with the two-states autométat accepts
(X1X9)“ (lets ando its two states). The states of the product are therefores paip)
with ¢ a state of Doy andp € {i, o}, and we letc/(¢,p) = c(q). Note thatD has at most
2n?" 12 states. From equality (*) and the equaliti&sur,c(Dor) = m ™ (Lpar.« (D)) and
Lpar,c(Dor) = Lo(Aor), We getL,,, (D) = Lp(A). Then we complete the automaton
by adding two dead states and get a complete deterministicoised automatoa? (with
at most2n?" 12 4+ 2 states). Finally, we take the dual parity conditign= ¢’ +1 which incre-
ments the value of each state hyso thatLpqr ¢, (A%) = X% — Lpgr,c (D) = X% — Lp(A),
from which we getLuc(A) = Lpar.c, (A?).

Let A = (21, 52,Q%,Q%, q0,04,6¢) andQ? = Q¢ U Q%. We now viewA? has a
turn-based two-player parity gani( A%) = (QZ, @4, g0, A): Qf are Player 1's stateg(
being the initial state) whil€)? are Player 2’s states, and we put a transifigm) € A from
a stateg € Q% to a statey € Q? if there existsr € X U ¥ and a transitioyy = p in A%
SinceA? has at mosen?"*2 + 2 states(7(A?) has also at mostn?"*+2 + 2 states.

The specificationA? is realizable (or equivalently is realizable) iff Playerl has a
winning strategy inG(A?). Therefore ifA is realizable, Playet has a winning strategy in
G(A”) given by a mapping from Qf to Q4 such thaDutcome g 44 (v) are wordsp over
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(Q4Q%)“ such thatnin{c(q) | ¢ € Inf(p)} is even. Moreover, those words correspond to
accepting runs oft? on words overr. Therefore the strategycan easily be used to define
a Moore machine/ such thatL(M) C Lpar.c(A%) = Luc(A): first we assume that is
totally ordered. The machin¥ is defined as foIIost‘f' are its statesy is the initial state,
the output functiory is defined byy(q) = min{oo | (¢,00,7(q)) € 6{}, forall ¢ € Q¢, and
finally we put a transitioy 2 ¢/, for all ¢, ¢’ € Q¢, and allo; € s if v(¢q) 25 ¢ € 64.
Note that the transition relation af is a (total) function sincet? is complete, and has less
than(2n?"+2 4+ 2)/2 = n?"+2 4+ 1 states. O

The following theorem states that we can reduce the redlitgadf a tbUCW specifica-
tion to the realizability of abUKCW specification.

Theorem 2 Let A be atbUCW over Xy, X with n states andk = 2n(n?"*2 + 1). Then
Ais realizable iff(A, K) is realizable.

Proof If A is realizable, by Lem. 2, there is a non-empty Moore machiheith m states
(m < n®"*2 4 1) realizing A. Thus L(M) C Luc(A) and by Lem. 1, it is equivalent to
L(M) C Lyc2mn(A). We can conclude SinCByc 2mn(A) C Lyc,x (A) @mn < K). The
converse is obvious aS¢ i (A) C Luc(A). O

5 From UK CW Realizability to Safety Games

In the last section, we reduced tti®) CW realizability problem to thebUKCW realizability
problem. In this section, we reduce this new problem to atgafame. It is based on the
determinization otbUKCWs into complete turn-based determinist€o-Bichi automata,
which can obviously be viewed as safety games.

Determinization oUKCW Let A be atbUKCW (X1, X9, Q1, Q2, qo, v, A1, Ag) with K €

N. We letQ = Q1UQ2 andA = A;UA,. Itis easy to construct an equivalent complete turn-
based deterministig-co-Buchi automatonlet(A, K). Intuitively, it suffices to extend the
usual subset construction with counters, forgadl @, that count (up td< + 1) the maximal
number of accepting states which have been visited by rudm@rup ing. We set the
counter of a state to —1 when no run on the prefix read so far ends up.ifhe final states
are the sets in which a state has its counter greaterihdfor anyn € N, [n] denotes the
set{—1,0,1,...,n}. Formally, we letdet(A, K) = (21, Xo, F1, Fo, Fo, &, 61, d2) where:

Fi = {F | F is a mapping fronQ; to [K + 1]}
Fo = {F | F isamapping fronQy to [K + 1]}
-1 if ¢ # qo
Fo =q€i { (qo € «) otherwise
o ={FecF UF|3qF(q > K}
SUCC(F,0) = ¢ — max{min(K + 1, F(p) + (¢ € o)) | ¢ € A(p,0), F(p) # —1}
o1 = SUCC| 7, x 3, 62 = SUCC|r,x x,

wheremax () = —1, and(q € ) = 1if ¢ isin a, and0 otherwise. The automatelet(A, K)
has the following properties:

Proposition 1 Let A be atbUCW and K € N. Thendet(A, K) is deterministic, complete,
and Lyco(det(A, K)) = Ly i (A).
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Reduction to a safety gaminally, we define the gam@(A, K) as follows: it isdet(A, K')
where input states are viewed as Plagsrstates and output states as Playerstates.
Formally, we define= (A, K) = (Fy, Fo, I, A1, Ag, Fy) over the set of movelloves; =
)1 andMovesy; = Y5, where Iy is the initial position. The set of available moves in a
Player 1's position are defined via a successor fundiicet. An actiono; € Moves; is
available for Playen in a positionF' € S; if the counters ofF' andsucc(F, ;) do not
exceedK. More formally,o; € I'1(F) iff for all p € Q1 and allg € Q2, F(p) < K and
succ(F,o1)(q) < K. The transition functiom); is defined byA; (F, o) = succ(F, ) for
all F € Sy and allo € I'1(s). The functionA, is defined byAs (F, o2) = succ(F, o9) for
all F € Sy and alloy € Movess.

As an obvious consequence of Th. 2 and Prop. 1, we get:

Theorem 3 (Reduction to a safety gam® Let A be atbUCW over inputs¥, and outputs
X1 with n states ¢ > 0), and letK = 2n(n?"*2 + 1). The specification! is realizable iff
Player1 has a winning strategy in the gani§ A, K).

Proof Suppose that is realizable. By Theorem 2 and Proposition(4, K) is also re-
alizable, as well aslet(A, K). Thus there is exists a non-empty Moore machideover
inputs ¥» and outputst such thatL(M) C Lyco(det(A, K)). We now construct a win-
ning strategyy for Playerl in G(A, K). Intuitively, Outcomec 4, k() Will correspond
to runs ofdet(A, K) on words of L(M). Therefore, sincel(M) C Lyco(det(A, K)),
Outcomeg 4, i) (v) won't visit final states. For the sake of clarity, we view thioore
machine as a (total) mapping: X5 — X;. First assume that’; and X, are totally or-
dered by some ordet. We define a strategyin G(A, K) inductively on its outcome. First,
~v(Fy) = A(e), wheree is the empty sequence. Clearly, sinces winning, A(e) is an avail-
able move inFy. Then, for any finite outcomél = FiF3 ... F2_ Y € (F1F)*Fy of
~ of lengthm, we associaté! with the wordw(H) defined as followsw(H) = of ... ok,
where for alll < i < m, o = min{o | succ(F2 ,,0) = F}}. We lety(H) = \w(H)).
It is easy to prove by induction thatw(H)) is an available move at positiafi, (this is
because\ is winning and generates outcomes that are acceptédedtioyl, K)). The strategy
A is clearly winning since it always chooses moves that ardadte, so that its outcomes
are all infinite.

Conversely, suppose that Player 1 has a winning strajeigyG (A, K). It is known
that we can assume thatis memoryless [12]. So lef be a mapping fron#; to ;. We
construct a winning strategy for the controller, represdrais a Moore maching/, =
(X1, X9, Fi1, Fo, 04, 7). Its state set ig; with initial stateFy; for all F € F;, the output of
Fis~(F); forall F € 71, and allo; € X5, the transition function is defined By, (F, ;) =
d2(01(F,~v(F)),0;). Since~ is winning, it is clear by construction that all states/af,
reachable from the initial state are non-final. Therefd(@/,) C Lyco(det(A, K)) =
Lyc(A). Moreover, the transition relation @ff, is a (total) function, aslet(A, K') is com-
plete. Since there is a winning strategyn G(A, K), it means thaG (A, K') is non-empty,
and so isM~, which concludes the proof. O

Associating a safety game with &L formula ¢ is done as follows(1) construct a
UCW A4 equivalent tap, (2) constructz(Ay, K), denoted a&/(y, K) in the sequel, where
K = 2n(n*"*? 4 1) andn is the number of states of.

9 An similar result expressed on co-Biichi tree automata ediotind in [28].
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Incremental Algorithm.In practice, for checking the existence of a winning stratéey
Player1 in the safety game, we rely on an incremental approach. Weheséollowing
property ofUKCWs: for all k1, k2 - 0 < k1 < ko - Lye g, (A) € Lyc i, (A) € Luc(A). SO,
the following theorem which is a direct consequence of tlewipus property allows us to
test the existence of strategies for increasing valugs:of

Theorem 4 For all tbUCWSs A, for all £ > 0, if Player1 has a winning strategy in the game
G(A, k) then the specification defined Byis realizable.

Example 3Fig. 1(b) represents the safety ga@igp, 1) whereg = O(r — X Og). Positions
are pairs of states of tHéCW with their counter values. Player 1's positions are denbied
circles while Player 2’s positions are denoted by squarhs. dnavailable move of Player
1 from position(g2, 0) is denoted by a dashed arrow. It goes to a position where geroun
exceeds the valu&. Any winning strategy in this game is a strategy which cheabe
moves attached to plain arrows, as indeed Player 1 wins tine gashe never follows the
dashed arrow.

Unrealizable SpecificationsThe incremental algorithm is not reasonable to test urreali
ability. Indeed, with this algorithm it is necessary to feahe bound2n(n?"*2 + 1) to
conclude for unrealizability. To obtain a more practicgalthm, we rely on the determi-
nacy ofw-regular games (a corollary of the general result by Magi).

Theorem 5 For all LTL formulase, either (i) there exists a Playet’s strategy\; s.t. for
all Player 2's strategies\s, outcome(Ai, A2) = ¢, or there exists a Playel’s strategy\s
s.t. for all Player1’s strategies\;, outcome (A1, \2) E —¢.

So, when aiTL specificationp is not realizable for Playelr, it means that-¢ is realizable
for Player2. To avoid in practice the enumeration of values foup to2n(n?"*2 4+ 1), we
propose the following algorithm. First, given the LTL fortaw, we construct twdJCWs:
one that accepts all the models @fdenoted by4,, and one that accepts all the models
of —¢, denoted byA_ 4. Then we check realizability by Playérof ¢, and in parallel real-
izability by Player2 of —¢, incrementing the value oK. When one of the two processes
stops, we know if) is realizable or not. In practice, we will see that eithes realizable for
Player1 for a small value ofX or —¢ is realizable for Playet for a small value of<. In the
next section, we show that the gaifiéA, K) has a nice structure that allows to compactly
represent and efficiently manipulate sets of winning posgti

6 Antichain-based Symbolic Algorithms

In the previous section, we have shown how to reduce thezedality problem of dUCW A
with . states to a family of safety gant& A, k) for 0 < k < 2n(n?"*2 +1). From now on,
we fix somek € N. In this section, we show that the positions of the gaifid, k) can be
partially ordered. We also show that the sets of positionsipugated during the backward
algorithm for safety games (see Section 3) are downwaredlés this order. This allows
to compactly represent those sets by the antichain of thaxinmal elements. Therefore it
is not necessary to construct explicitly the gaf#el, k), which may be very large even for
small values of.. We also show that the forward algorithm for safety gamesatsmbenefit
from the particular structure @¥ (A, k).
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Recall thatG(A, k) is defined by the tupléF,, F», I}, A1, Aa, Fy) over the set of
moves X' for Player 1 (controller) and’; for Player 2 (environment). We also It =
F1 U Fy, and we denote bgafe C F the set of counting functions whose counters do not
exceedk.

Ordering of game position$Ve define the relatiorC Fo x Fo U F1 x F1 by
F < F'iff Vg, F(q) < F'(q).

It is clear that= is a partial order. Intuitively, if Player can win fromF’ then she can
also win from allF < F’, as it is somehow more difficult to stay below the bounfiiom
F’ than fromF. Formally,< is a game simulation relation in the terminology of [2].

Closed sets and antichainé\ setS C Fis closed for<, if VF € S-VF' < F-F' ¢ S.
We usually omit references t¢ if clear from the context. Le§; and.S; be two closed sets,
thenS; N S, andS; U S, are closed. Thelosureof a setS C F, denoted by.S, is the set
S"={F' € F|3F €S- F =< F}. Note that for all closed sets C F, | S = S. A set
L C Fis anantichainif all elements ofZ are incomparable for. Let.S C F, we denote by
[S] the set of maximal elements 6f thatis[S] = {F € S |AF' € S-F' # FAF < I},

it is an antichain. IfS is closed therj[ S| = S, i.e. antichains areanonical representations
for closed sets. Similarly, we denote g | and 7 S the minimal elements of and its
upward closure, respectively. Since the size of a skate F is in practice much smaller
than the number of elements in the antichains, we consi@ercttimparing two states is in
constant time.

Proposition 2 Let Ly, Ly C F be two antichains and” € F, then:

(i) |[L1 U |Ly = |[L1 U Ly], this antichain can be computed in tir6&(|L; | +|Lz2|)?)
and its size is bounded b4 | + |La;

(#) |Lin |Le = |[L1 M La], whereF} M Fy : ¢ — min(F}(q), F2(q)), this antichain
can be computed in tim@(|L;|? x |L»|?) and its size is bounded b1 | x |Ls|,

(#it) | L1 Cl Lo iff VFy € Ly - 3F; € Ly - F1 < F>, which can be established in time
O(|L1| % |L2]),

(v) Fe|L; can be established in tim@(|L|).

6.1 Backward algorithm for safety games with antichains
The image of a closed sstby the functiondre,, Pre;, andCPre are closed sets:

Lemma 3 For all closed setss;, Se C Fa, S3 C Fi, the setPre;(S1), CPre(S2), and
Pre,(S3) are closed.

As a consequence, all the sets manipulated by the backwaddrfbalgorithm are closed
sets, and can therefore be compactly represented by tlbaintof their maximal elements.
Next, we show how to manipulate those sets efficiently.

Let us now turn to the computation of controllable predegesd etF’ € F, ando €
X9 U X1. We denote by?(F, o) € F the function defined by:

QF,0):q€Q+— min{max—1,F(¢) — (¢ € )| (g,0,q") € 5}



18

Note that sinced is complete, the argument of min is a non-empty set. The ioma? is
not the inverse of the functiosucc, assucc has no inverse in general. Indeed, it might be
the case that a staté € F has no predecessors or has more than one prededésaarh
thatsucc(H, o) = F. However, we prove the following:

Proposition 3 For all F, F’ ¢ Fnsafe,and alloc € X5 U X,

(i) FXF = QF,0) X 2(F,0) (iii) F < £2(succ(F, o), 0)
(i) F <= F' = succ(F,o) < succ(F’,o) (i) succ(2(F,o),0) = F

Proof We establish the four items as follows:

(4) Itholds as mag-1, F(q) — q € o) <max—1, F'(¢) — q € o), Yq € Q.

(i1) it holds as miK + 1, F(¢') 4+ ¢ € o) <min(K + 1, F'(¢) + g € a), V¢ € Q.

(iii) Letq € Q. We show that for alt’ € §(q,0), F(q) < succ(F,o)(¢") — (¢ € «). This
will be sufficient to conclude since it implies thatq) < maxz(—1,succ(F,o)(q") —
(¢ € ), for all ¢ € 6(q,0), and therefore thaF (q) < 2(succ(F,o),0)(q). So let
q € 6(q,0), and leti(¢') = {q¢" | (¢",0,q¢") € §,F(¢") # —1}. Since(q,0,q') € 6,
we haveq € I(q’). We know thatsucc(F,o)(q') = max{min(K +1,F(¢") + ¢ €
@) | ¢" € I(¢)}. Sinceq € I(¢'), succ(F,o)(q) > min(K 4+ 1,F(q) + ¢ € ). If
F(q)+q € a < K+1,thensucc(F,o)(¢')—(q € a) > F(q). The casé (q)+(¢’ € a)
is impossible sincé’(¢q) < K, asF € safe.

(iv) Letq € Q. We first show that for all such thatq’, o, q) € § and2(F,0)(¢') # —1,
Q(F,0)(¢") < F(q) — (¢ € a). This will be sufficient to conclude since it implies
thatmin(K + 1, 2(F,0)(¢) + (¢ € a)) < F(q), for all ¢’ such that(¢’, 0, q) € 4,
and therefore thasucc(Q(F ),a)( ) < F(q ) So letq’ such that(¢’,0,q) € 6 and
Q(F,a)( "y # —1. LetI(¢) = {¢" | (¢',0,¢") € 6}. Since(d,a,q9) € 5, we have
q € I(¢"). We know thatQ( a)(¢) = min{maz(-1, F(¢") — (¢" € o)) | ¢ €
1(¢")}. Sinceq € I(¢"), we getQ(F o)(¢") < maz(—1,F(q) — (¢ € a)). The case
F(q) — (q € a) < —1 is impossible, since otherwise we would havéF, o)(¢') = —1,
which contradicts the hypothesis. Thereforexz(—1, F(¢)—(q € «)) = F(q)—(q € «)
and2(F,0)(¢") < F(q) — (¢ € a). O

Example 4We illustrate point(ii:) of the proposition 3 on the example of Fig. 1(a). Let us
consider the positiofiys — 1]. While succ([g2 — 0,q4 — 1],7) = [¢g3 — 1], we have
that 2([g3 — 1],7) = [g2 — 1,qa — 1], i.e.,2([gz — 1],r) returns the largest possible
predecessor dfjs — 1] by r, sosucc([gz — 0,q4 — 1],7) < 2(succ([gz — 0,q4 —

1],7),7).

Forall.S C Fando € ¥y U X}, we denote byPre(S,0) = {F | succ(F,o) € S} the set
of predecessors &f. The set of predecessors of a closed|geis closed and has a unique
maximal element2(F, o):

Lemma4 Forall F' € Fnsafeando € Xy U X1, Pre(|F, o) =|02(F,0).

Proof Let H € Pre(|F, o). Hencesucc(H,o) < F. By Prop. 3:), we have
Q(succ(H,o),0) = 2(F,0), from which we getd < 2(F, o), by Prop. 3iii).
Conversely, letH < 2(F,0). By Prop. 3ii), succ(H,o) = succ(f2(F,o), o). Since by
Prop. Jiv), succ(2(F,0),0) = F, we getsucc(H,o) < F. O

We can now use the previous result to compute the contrellat@decessors:
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Proposition 4 Let A be atbUK CW. Given two antichaing.;, L, such thatl.; C F>nsafe
and L, C F1 N safe:

Prei(1L1) = U,ex, Pre(lL1,0) = Uyes, HR2(F,0) | F € L1}
Prea(lL2) = N,ex, Pre(lLe,0) = Nyex, HR(F,0)| F € La}

Pre;(|L1) can be computed in tim@(| X1 | x |A| x |L1]), andPrey(|L2) can be computed
intime O((|A| x |La|)/>21).

As stated in the previous proposition, the complexity of algorithm for computing the
Pres is worst-case exponential. We establish as a corollary efréext proposition that
there is no polynomial times algorithm for computiRge, unlessP=NP. Given a graph
G = (V, E), a set of vertice$V is independent iff no pairs of elementslifi are linked by
an edge ink. We denote byND(G) = {W C V | V{v,v'} € E-v g W Vv & W} the
set of independent setsdi The problem "independent set” asks given a graph (V, E)
and an integed < k < |V, if there exists an independent setirof size larger thaik. It is
known to beNP-complete.

Proposition 5 Given a graphG = (V, E'), we can construct in deterministic polynomial
time aUK CW A, with K = 0, and an antichairl such thaiND(G) =|Prea(Pre; (Pre;((L))).

Proof We start by a simple remark. LdtbetbUKCW with input state€), and output states
Q1. Whenk = 0, Player 2's locations iti7( A, k) are exactly the subsets @f, and Player
1’s locations are the subsets®@f, and the partial order corresponds to set inclusion.

Now, let us consider for each= {v,v'} € E the antichain (forC) Liywy = AV \
{v},V \ {v'}}, L compactly represents all the subsetsiothat are independent of the
edge{v,v'}. ClearlyIND(G) = Niv,vrer 1 L{vy- As adirect consequence of the NP
completeness of the independent set problem, there caxiabagolynomial time algorithm
to compute the antichain for this intersection unlss N P. Indeed, this antichain contains
the maximal independent sets.

Now, we show how to constructldk CW A and an antichain of subsets of stafesuch
that Preo(Preq (Pre1 (L)) is exactlyIND(G). We can assume thai is totally ordered by
some order, and for all edges= {v,v’} € E, we denote byr; (¢) the minimal element of
e and by (e) its maximal element. Now, the set of state of the automatatrigtured in
four layers:Ss = {ok, ko} belongs to Player 255 = {(v,e,i) | v € V,e € E,i € {1,2}}
belongs to Player 15, = {(v,e) | v € V, e € E} belongs to Player 1. Finallgy = {v | v €
V'} belongs to Player 2. Note that we do not make players stiédtéynate here to simplify
the exposition, it is easy to add a layer between the two Bt Player 1 to make the
automaton turn-based. In those additional states, Playen®d have only one action and
the operatiorPre; would simulate the identity. The objective of Player 1 is ts@re that
the control ends up in staté € S3, so we takel. = {{ok}}. Now, we explain how to put
transitions between states and compBtes (Pre; (Pre;(((L))). The transitions frombs
andsSs are{((v, e, i), (e, i), 0k) | mi(e) # v} U{((v,€ i), (e,i),ko) | mi(e) = v Ve #e)},
it is easy to verify thaPre; (L) is equal to|U.c g {{(v,e,1) | v # m1(e)},{(v,e,2) | v #
m2(e)}. The transitions fronb; to Sy are{((v,e),4, (v,e,i)) | i € {1,2} Av € V Ae €
E}. As states ofS; belongs to Player 1 the controllable configuratidhe; (Pre;((L))
are | Uecp{{(v,e) | v # mi(e)},{(v,e) | v # ma(e)}}. The transitions fromS, to Sy
are{(v,e, (v,e)) | v € V Ae € E}. As states inSy belongs to Player 2, we have that
| Prex(Prei(Prei((L))) = IND(G), indeed Player 2 can decide to verify any edge for
independence, so only independent set of vertices canPei{Pre; (Pre; ((L))). O
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Ok
Fig. 2 Moore machine

Corollary 1 There is no polynomial time algorithm to compute Bre, operation on an-
tichains unles® = N P.

Note that this negative result is not a weakness of antish&ideed, it is easy to see from the
proofs of those results that any algorithm based on a datetste that is able to represent
compactly the set of subsets of a given set has this property.

Synthesislf a UCW A is realizable, it is easy to extract from the greatest fixpoomputa-
tion a Moore machine that realizes it. L8t andF; be the two sets obtained by the greatest
fixpoint computation. In particularFs andF; are downward-closed arRte, (F5) = F7,
Preo(F;) = F5. By definition of Prey, for all F € [F{], there existsrr € X such that
succ(F, o) € F5, and thisor can be computed. From this we can extract a Moore ma-
chine whose set of states|[i$7 |, the output function maps any statec [F;] to o, and
the transition function, when reading some X, mapsF to a stateF’ € [F;] such that
succ(succ(F,or),0) = F’ (it exists by definition of the fixpoint and by monotonicity of
succ). The initial state is some stafé € [F]] such thatFy, < F (it exists if the specifi-
cation is realizable). Led be this Moore machine. For any word accepted by, it is
clear thatw is also accepted hyet(A, K), assucc is monotonic andr; C safe. Therefore
L(M) C Lugo(det(A, K)) = Lyg x (A) C Luc(A).

Theorem 6 Let 75 and F; be the two sets obtained by the greatest fixpoint computation
of the backward algorithm, ify € F7, then there exists a Moore machine with less than
|[F7 ]| states that encodes a winning strategy for Player 1 in thestgthg safety game.

Example We apply the antichain algorithm on the game of Figure 1(mBmber that
I = {r} andO = {g}, so that¥y, = {@,{r}} andX; = {@, {g}}. We denote counting
functions in brackets and omit the states that map toNote that some counting functions
of the game do not appear in the picture as they are not releciab start the computation
from the set of safe positionS; = {[¢g1 — 0,q3 — 1],[¢1 — 0,93 — 0],[¢1 — 0]}
represented by the antichafify; — 0,¢3 — 1]}. One application oPres on S; returns
the setSe =|[¢g2 — 0,q4 — 1]. Then one application dPre; on Sy returns the sep;.
Therefore, we reach the fixpoist, in one application oCPre.
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From this fixpoint, we can compute a Moore machine. Egt= [¢1 — 0, g3 — 1] and
Fy = [g2 — 0,94 — 1]. Notice thatSy =| F; andS; =| F». The Moore machine has
only one state";. We then look at controller moves from that lead to a winning position.
There is only one movég}, which leads to the positiogs — 0]. This position is subsumed
by F», from which whatever the environment does, the next pasiti@’ . Therefore there is
a loop fromFy to Fy in the Moore machine, for the two possible moves of the envirent:
{r} and@. It is depicted in Figure 2. Therefore the controller stygtebtained with our
procedure is to always output a grant.

6.2 Forward algorithm for safety games with antichains

The forward algorithm of Section 3 can be used to solve theeg@iiy, k). As for the
backward algorithm, it is not necessary to construct theggarplicitly. Indeed, during the
execution of the OTFUR algorithm, the successors of a posifi, which is a counting
function, can be computed on demand via the successor darsxicc. Compared to the
backward algorithm, the forward algorithm has the follogveddvantage: it computes only
the winning positiong” (for Player 1) which are reachable from the initial positigve now
show how to optimize this algorithm with antichains. We déseseveral optimizations.

Optimization 1: antichain of losing positionkset denote by the set of losing positions for
Player 1 inG(A, k). Clearly, this set is upward closed. Indeed if Player 1 isaidé¢ to win

in some position, then she cannot win from any position where one or severaiteos

of F have been increased. Therefatean be represented by the antichain of its minimal
elements. We can computkincrementally during the execution of the OTFUR algorithm.
For this we maintain an antichaif of (minimal) losing positions computed so far, i.e. at
each step of the algorithth = |{F' | Losing[F| = true}|. This set is updated each time a
new position is known to be losing. We can use this infornmatmprune the search space.
Indeed, when we pick an edge, s’) in the waiting list, ifs" has never been visited before
ands’ €1 L, then we can directly sdtosing[s'] = true and we do not need to add the
successors of in the waiting list. Ifs" has never been visited anti¢{ L, then among the
successors” of s’, we add in the waiting list only those which are notih. Finally if s’
has already been visited, we check that? L. In this case we do not need to inspect the
successors of.

Optimization 2: minimal and maximal successdrst F' be a position of7(A, k) owned by
Player 1 (the controller). Clearly, is losing (for the controller) iff all its minimal successor
are losing. We get the dual of this property wheris a position owned by Player 2 (the
environment). In this casg is losing (for the controller) iff one of its maximal success

is losing. Therefore to decide whether a position is losoiepending on whether it is a
controller or an environment position, we have to visit iigimal or its maximal successors
only. At line 11, this is done by adding to the waiting list pitihe edgess’, s”') such that”

is a minimal (or maximal) successor gf In the case of a position owned by the controller,
we can do even better. Indeed, we can add only one minimagssocin the waiting list at a
time. If it turns out that this successor is losing, we addtfagominimal successor. Among
the minimal successors, the choice is done as follows: wieri@add an edgés’, s”') such
thats” has already been visited. Indeed, this potentially avoitseaessary developments
of new parts of the game.
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We call FORWARDALL the method which consists of the OTFUR algorithm with op-
timization 1. We call FORWARLCEXI the method which consists of the OTFUR algorithm
with optimizations 1 and 2. The difference between the twahwoes in the context of a
compositional reasoning is discussed in depth in the fafigvsection. Informally, FOR-
WARD_ALL computes the set of all reachable winning positions &f ¢lame, while FOR-
WARD_EXI computes only a subset of it, as some pruning methodssa@. tHowever this
subset is sufficient to decide whether the formula is reblezar not.

7 Performance Evaluation on the Monolithic Approach

In this section, we briefly present our implementaticacia and compare it tdily [15].
Acacia is a prototype implementation of the backward and forwatathain algorithms for
LTL synthesis. To achieve a fair compariséacia is written in Perl ad.ily. Given anLTL
formula and a partition of its propositions into inputs andiputs,Acacia tests realizability
of the formula. If it is realizable, it outputs a Moore maahiepresenting a winning strategy
for the output playéf, otherwise it outputs a winning strategy for the input playes Lily,
Acacia runs in two steps. The first step buildsk&) CW for the formula, and the second step
checks realizability of the automaton. As Lily, we borrove T L-to-tbUCW construction
procedure fromWring [30] and adopt the automaton optimizations frauty, so that we
can exclude the influence of automata construction to tHermeance comparison between
Acacia andLily.!?

Comparison with Kupferman-Vardi’'s Approach (implemeritedily) In [19], the authors
give a Safraless procedure foFL synthesis. It is a three steps algorithfi): transform an
LTL formula into a universal co-Biichi tree automat®C(T) A that accepts the winning
strategies of the systerfi;) transformA into an alternating weak tree automatBr{AWT)
such thatL(B) # @ iff L(A) # @, (iii) transformB into an equivalent Biichi tree automa-
ton C' (NBT) and test its emptiness. This latter problem can be seerhdsga game with

a Buchi objective. This approach differs from our approgcthe following points. First, in
[19], the authors somehow reduce the realizability problera game with @ichi objec-
tive, while our approach reduces it to a game witkadety objectiveSecond, our approach
allows one to define a natural partial order on states thabeagxploited by an antichain
algorithm, which is not obvious in the approach of [19]. Higan [19], states ofAWT are
equipped with unique ranks that partition the set of stai&s layers. States which share
the same rank are either all accepting or all non-acceplihg.transition function allows
one to stay in the same layer or to go in a layer with lower raxkun is accepting if it
gets stuck in a non-accepting layer. While our notion of ¢etslooks similar to ranks, it
is different. Indeed, the notion of rank does not constra@runs to visit accepting states a
bounded number of times (bounded by a constant). This is wBichi acceptance condi-
tion is needed, while counting the number of visited accgpsitates allows us to define a
safety acceptance condition. Therefore the baumek use in our approach and the rank are
different notions. It is possible to construct examplesvibich our bound is exponentially
larger than the rank dfily.

10 Note that the correctness of this Moore machine can be atitativa verified by model-checking tools
if desired.

11 1n Lily, this first step produces universal co-Blichi tree autoroata X1 -labeled ¥o-trees, which can
easily be seen @abUCWSs over inputs¥’s and outputsy; . Although the two models are close, we introduced
tbUCWs for the sake of clarity (as all our developments are donepastouction for word automata).
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Lily k Backward | ForwardALL | ForwardEXI
€ @ =3 & =2
g |22 | % | E E E|E|E| E |E| E
El 8 3 = = X o X o X o X
s s E|8| 8 |=x| ¢ g | ¢ |8 foi S| o
3| 2| B8] B S| © = |6 |2| © 2| ©
3 y 32 20 0.49 1 0.12 0 2 0.00 | 2 0.01 2 0.01
5 y 41 26 0.72 1 0.27 0 2 0.00| 3 0.02 3 0.01
6 y 45 37 1.22 1 0.42 0 3 002 | 4 0.04 5 0.02
7 y a7 22 0.60 1 0.13 0 2 0.00| 3 0.02 3 0.01
8 y 11 7 0.04 1 0.01 0 1 000 | 1 0.00 1 0.00
9 y 21 13 0.13 1 0.02 1 2 001 3 0.00 3 0.00
10 y 19 18 0.28 1 0.05 0 1 001 1 0.00 1 0.00
12 y 19 14 0.14 1 0.03 0 1 0.00 | 2 0.01 1 0.00
13 y 11 7 0.00 1 0.01 1 2 0.00| 3 0.01 2 0.01
14 y 29 14 0.11 1 0.01 1 3 0.00| 2 0.01 2 0.01
15 y 35 16 0.06 1 0.01 2 6 002 6 0.02 6 0.00
16 y 60 21 0.22 1 0.60 3 20 | 0.31 | 17 0.22 17 0.07
17 y 47 17 0.16 1 0.13 2 7 004 6 0.19 3 0.03
18 y 77 22 0.34 1 1.02 2 19 | 0.21 | 18 1.82 11 0.11
19 y 33 18 0.31 3 1.86 2 3 001 4 0.06 4 0.01
20 y 71 | 105 | 2.67 1 0.56 0 1 001 6 0.30 2 0.01
21 y 99 27 7.38 1 0.88 0 25 | 0.22 | 64 0.34 64 0.28
22 y 58 45 7.08 1 0.51 1 4 003 | 4 0.06 4 0.02
23 y 21 14 0.02 1 0.02 0 2 0.00| 3 0.01 3 0.00
1 n 25 16 0.11 - 0.01 1 1 0.00 | 2 0.00 2 0.01
(0.08)
2 n 25 43 0.78 - 0.01 3 1 002 | 7 0.07 6 0.01
(0.07)
4 n 35 55 1.37 1 0.28 2 3 0.03 | 10 0.11 7 0.02
(0.86)
11 n 13 9 0.02 - 0.01 0 1 0.00| 4 0.00 4 0.00
(0.64)
32|y 56 36 0.94 1 3.42 0 4 002 4 0.18 2 0.00
33|y 80 56 1.80 1| 22682| 0 8 015 8 3.37 2 0.02
34|y | 104 | 84 3.12 - >t 0 16 | 1.24 | 16 70 2 0.04
35| y | 128 | 128 | 4.74 - >t 0| 32 | 994 32 1808 2 0.14
36|y | 152 | 204 | 10.2 - >t 0 64 100 - >m 2 0.46
37|y | 176 | 344 | 26.5 - >t 0 | 128 | 660 - >m 2 2.35

Table 1 Performance comparison on tests included in Lily

ResultsWe carried out experiments on a Linux platform with a 3.2GHAIntel i7) and
12GB of memory. We compareficacia andLily on the test suite included inly, and on
other examples derived froirily’s examples, as detailed in the sequel. Let consider Table
1. Formula sizegives the sizes of the formulas. They correspond to the nuwibatomic
propositions and connectives. For realizability tegif; and Acacia construct the same
tbUCW. However to check unrealizability, the methods differ, ethresults in different
tbUCW. Indeed, while we check realizability by the environmenttedf negated specifica-
tion, where the system does the first moldy checks realizability by the environment of
the negated specification, where the environment does #etfave. Thereforeily takes as
input the negated formula where every occurrence of an vstgoals is replaced byo.
The number of states (colunthUCW statg as well as the time to construct thieUCW
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(column tbUCW Time(s) are given in the table (for unrealizable specifications, pué
this time in parenthesis fdrily). We consider different algorithms for testing realizpil
Lily, the backward antichain algorithm, and two versions of trevérd algorithm, FOR-
WARD_ALL and FORWARD.EXI respectively, described in the previous section. Fbr al
the methods, we give the time to check for realizability gooh Check time(9) The col-
umn [Moore machinggives the size of the synthesized Moore machine. We alsothese
rank used inLily and the bound (columnk) needed for our methods (it is common to the
three methods we use). Finally, the timeout is fixed to 1 hand, is denoted by ¢. When
the execution runs out of memory, we denote ithyn.

Comments Lily’s test suite includes examples 1 to 23. Except examples4l ghd 11, they
are all realizable. In the test suite, demo 3 describes alstdre We have taken a scalability
test by introducing more clients. In Table 1, from 3.4 to 3vhen the number of clients
reached 4, Lily ran over-timex( 3600 seconds). HoweveAcacia managed in finishing
the check within the time bound. Clearly, the FORWARIXI method is most efficient.
When considerindily’s examples 1 to 23 and the total time to check realizabilitglgding
the tbUCW construction), the improvement in time complexity complate Lily is less
impressive, because the time to construction the automatofien much bigger than the
realizability check time. However it was not expected thé first step would have been the
bottleneck of the approach. Indeed in the classical approaf24], the foreseen bottleneck
is clearly the second step, which relies on Safra’s detematiion. In the following sections,
we will focus on a compositional approach that overcomes hoblem, as indeed in this
approach the formulas are divided into smaller specifioatfor which we can construct the
automaton independently.

8 Compositional Safety Games and LTL Synthesis

In this section, we define compositional safety games andldp\two compositional algo-
rithms to solve such games. Compositional reasoning ornysgéenes are supported by the
existence of a most permissive strategy, that we formalizetr the notion ofmaster plan

Master planLet G = (57, 52,11, A1, A2) be a safety game on a finite set of moves
Moves = Moves; & Moves,. Let W be the winning positions of; for Player1. Let

Ay = S — 2Moves1 pe defined as follows: for all € Sy, A1(s) = {m € I'i(s) | Ai(s,m) €
Wf} i.e., A1(s) contains all the moves that Playkecan play ins in order to win the safety
game. We calll; themaster plarof Player 1 and we write iMP(G). The following lemma
states thaMP(G) can be interpreted as a compact representation of all theingrstrate-
gies of Player 1 in the gamg:

Lemma5 For all strategies\; of Player1 in G, for all s € S, A1 is winning inG from s iff
A1 is a strategy iNG[MP(G)], s) and A1 (s) #.L.

The master plan associated with a game can be computed inkevdraicfashion by
using variants of th&€€Pre operator and sequend® defined in Section 3. The variant of
CPre considers the effect of some Player 1's move followed by sBrager 2's move. Let

CPre : (S; — 2Movesty _, (g, —, oMoves:) ha defined as follows. For alle Sy, let:

CPre(A)(s) = {m € A(s) | Ym' € Moves, : A(Ay(Ay(s,m),m’)) # @}
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Consider the following sequence of functionls; = Iy, andA; = C/I5r\e(/1i,1),i > 1. This
sequence stabilizes after at moxts)) iterations and we denote by the function on which
the sequence stabilizes. Clearly, the value on which theesee stabilizes corresponds
exactly to the master plan of:

Theorem 7 A% = MP(@).

Composition of safety gamesle now consider products of safety games. (8t i €
{1,...,n}, ben safety games?® = (S%,5%, I, A}, AY) defined on the same sets of
movesMoves = Moves; W Movess. Their product, denoted b@ﬁj i is the safety
gameG® = (P, 85, I, AP, AY)* defined as follows:

—S;»X):S;XSJQ'X~~><S;7', j=1,2

—fors=(s',s%...,s") € SO, I'®(s) = [T (s" )y N I (sH) NN I (s™);

—forj e {1,2} ands = (s',5%,...,s") € 52, letm € I'?(s) if j = 1 orm € Moves,
if j = 2. ThenA;@(s) = (t',¢%,...,t"), wheret' = A%(s',m) foralli € {1,2,...,n};

Backward compositional reasoning/e now define a backward compositional algorithm
to solve the safety gam&®. The correctness of this algorithm is justified by the foliagy
simple lemmas. For readability, we express the propeniesdmposed games defined from
two components. All the properties generalize to any nurobeomponents. The first part
of the lemma states that to compute the master plan of a catigposve can first reduce
each component to itecal master plan. The second part of the lemma states that themast
plan of a component is the master plan of the component wherehoices of Player 1 has

been restricted by one application of @ere operator.
Lemma6 (a) LetG'2 = G @ G2, letA; = MP(G') and Ay = MP(G?) then

MP(G'?) = MP(G'[A1] @ G?[A3))

—

(b) For any gameZ, MP(G)=MP(G[CPre(I%)]).

LetA: S x 52 x ... x S — 2V we letr; (A) the function with domairsi and co-
domain2M°ves: such that for alk € Si, m;(A4)(s) is the set of moves allowed byin one tu-
ple(st,s%,...,s") suchthak’ = s. Formally,m;(A)(s) = U{A(s',s,...,s") | (s},s%,...,s")
5P, s' = s}. Given two functions; : S; — 2Vt and A : S; — 2Vt we define
A1 N Ag as the function on domaish; such that for alk € S1: A3 N Aa(s) = A1 (s) N Aa(s).
Given two functionsA; : S; — 2Vt and Ay : Sy — 2MOVeS1 e define(A; x As) :

S1 X So — gMoves, as(/h X /12)(51,82) = /11(81) N /12(82).

Based on Lemma 6, we propose the following compositionabrityn (Algo 2) to
compute the master plan of a safety game defined as the cdiopagilocal safety games.
First, compute locally the master plans of the componertienTcompose the local master
plans and apply one time tf@Pre operator to this composition. This application@
compute a new functiorl that contains information about the one-step inconsigterime-
tween local master plans. Project back on the local compsriba information gained by
the function4, and iterate. Correctness is asserted by Theorem 8.

12 Clearly, the product operation is associative up to isorisrp.
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Algorithm 2 : Backward composition
Data G® =G' @ G*® -+ ® G"
A — F1®;
repeat

A= MP(G[m;(A))),1 <i < m;
A:=CPre(An (AL x - x A™))
until A does not change
return A

Theorem 8 The valued returned by Algorithm 2 is equal tdP(G®).

Forward compositional reasoningVhen solving safety games, we may be interested only
in computing winning strategies for a fixed starting posifisaysi,;. In this case, the value

of the master plan is not useful for positions that are nathieble when playing winning
strategies froms;,;. S0, we are interested in computing a master plan only fomihaing
andreachablepositions. Given a gamé@ and a state;,;, we denote byReach(G, si,) the
subset of positions that are reachable frggin G i.e., the positions’ such that there exists

a finite sequenceys; . .. sn With sg = sinj, sn = s" and for alli, 0 < i < n, there exists

m € I (s;) UMovesy such thats; 1 = A(s;, m). Themaster plan of reachable positions
for (G, sini), denoted bYMPgreach(G, sini) is defined for alls € S as follows:

MP(G)(s) if s € Reach(G[A], sini)

MPreach (G sini)(s) = {@ otherwise.

The following lemma states that for a game defined compaositig, its master plan
can also be defined compositionally. For readability we esprthe lemma only for two
components but, as for the previous lemmas, it extends toamper of components:

Lemma7 LetA; = MPreach(G?, i) and Ay = MPreach (G2, s2,).
MPReach(G" © G2, (sihi, sii)) = MPReacn(G" [A1] ® G*[Aa], (sini, simi))

Based on the previous lemma, Algorithm 3 shows how to comthwgenaster plan of
reachable positions of a safety game defined compositionall

Algorithm 3: Forward composition
Data G® =G' @ G @ --- @ G"
A" := MPReach(G", sfyi), 1 < i < n;
A= MPgeach (GHA'] @ - - - @ G™[A™], (siis Sty - - - > S1%0))
return A

As composition of safety games is an associative operatocam use variants of Algo-
rithm 3 above where we first compose some of the components@ngute their master
plan of reachable positions before doing the global contiposi

To efficiently compute the master plan of reachable postioha gameG, we can
use theOTFUR algorithm defined in Section 6 (Algo 1). Indeed, at the endhef algo-
rithm, the master plan which allows all moves that lead to anivig position is exactly
MPReach (G, sini)- Fig. 3 illustrates the result of tt@TFUR algorithms applied on the prod-
uct of two safety gameS'|, G5 over the possible moves, o2, o3 for Playerl andiy, io for
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Fig. 3 Two games and their common master plan of reachable pasition

Player2. We assume thaf;, G2 contains only winning actions, i.€; = G;[MP(G;)] for

i = 1,2. The master plan of reachable positions ¢or @ G» corresponds to plain arrows.
Dashed arrows are those which have been traversed durir@mRER algorithm but have
been removed due to back-propagation of information abmsihd) positions. From node
(A, A’y the moveos is not a common move, thereforg is not available in the product.
However o, is available in both games and leadscand C’ respectively. Similarlyp;

is available in both games and goes/f® B’). From (B, B') one can reackD, D) by i,
but from (D, D'} there is no common action. Therefqi®, D'} is unsafe. Since one of the
successor of B, B') is unsafe andB, B') is owned by Playez, (B, B’) is declared to be
unsafe as well. All the remaining moves are winning in the® Gs, as they are winning
both inG1 andGs.

Remark 11t should be noted that each’ in Alg. 2 can be replaced by the futhaster
plan without changing the output of the forward algorithm. Inde# is easy to see that
Reach(G[MPReach(G, sini)], sini) = Reach(G[MP(G)], sini). S0, we can mix the backward
and forward algorithms. For instance, we can compute lpth# master plan of eadf’
using the backward algorithm of section 6, and then checkajleealizability using the
OTFUR algorithm.

Compositional LTL Synthesig/e show how to define compositionally the safety game as-
sociated with arLTL formula when this formula is given as a conjunction of sulvfolas
e, = ¢1 A g A -+ A ¢n. We first construct for each subformufg the correspond-
ing tbUKCW A, on the alphabet of'3, and their associated safety gani&s;, ). The
gamed («, K) for the conjunctiony is isomorphic to the game!="G(¢;, K).

To establish this result, we rely on a notion of product atekel of turn-based automata.
Let A; = (X, X1, Q% Q4. qb, o, 6%, 6%) for i € {1,2} be two turn-based automata, then
their product4; ® A, is the turn-based automaton defined (8%, X1, Q3 & Q3, Q1 w

13 It is necessary to keep the entire alphabet when considérigubformulas to ensure proper definition
of the product of games that asks for components defined csathe set of moves.
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Q1, QL wWQ2, a1 Wag, 63 W3, 51 W 7). As we use universal interpretation i.e., we require
all runs to respect the accepting condition, it is clear éxatcuting thed; ® A, on a word

w IS equivalent to execute both; and A, on this word. Saw is accepted by the product iff
it is accepted by each of the automata.

Proposition 6 Let A; and A, be twoUCW on the alphabet; W X5, and K € N: (i)
Luc(A1 ® Az) = Luc(A1) N Luc(Az2), (i1) Lyc, i (A1 ® A) = Lyc, i (A1) N Lye, i (A2)

As the state space and transition relatiordef® As is the disjunct union of the space
spaces and transition relations 4f and A, the determinization ofl; ® A, for a fixed
K € Nis equivalent to the synchronized product of the deterrations of A; and A, for
that K, and so we get the following theorem.

Theorem 9 Lety) = ¢y Aga A--- A ¢, K € N, G(¢, K) is isomorphic tan =7 G(¢;, K).

Assume from now on that we have fixed solie € N. In order to solve the game
G (v, K), in practice we first solve locally the subgan@gp,, K') by computing their mas-
ter plans, or their reachable master plans, and then contpauteaster plan of their compo-
sition. In particular, to compute the master plan of a loeahg, we can use the backward
algorithm described in Section 6 with the optimizationsdehsn antichains. Indeed, the
antichain of winning positions provides a compact repregem of the master plan. In par-
ticular, let ¥ be some Playet’s position in some safety gan@(«, K) and letiW be the
antichain of maximal winning positions (for PlayBr Then:

1%} if F¢|W

MP(G (v, K))(F) = {{a € X1 | succ(F, o) €|W} otherwise

To compute the master plan of reachable positions, we cathaderward OTFUR al-
gorithm. However only the optimization which maintains artiehain of losing positions
(see Section 6) can be used in the forward algorithm. Indémdpptimization based on
the minimal and maximal successors are used to prune thehsgaaice. Although it works
when one wants to decide if there is a winning strategy, iiscorrect to use it for com-
puting the master plan (which is a representation of all thening strategies) as some
parts of the safety game may be ignored by the pruning strabegractice, we can use
the FORWARDALL or BACKWARD algorithms for the local intermediate gamasd the
FORWARD_EXI algorithm for the global game.

Dropping assumption€ven if it is natural to write largeTL specifications as conjunctions
of subformulasp; A - - - A ¢, formulas of the following form are often used:

i=n j=m
(N vi)— (N 65)
i=1 j=1

where1;'s formalize a set of assumptions made on the environmeaty@PI2) andy;’s
formalize a set of guarantees that the system (Player 1)enémtce. In this case, we rewrite
the formula into the logical equivalent formula

J=m 1=n

N\ (N i) — ¢;)
j 1

j=1 =
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which is a conjunction of.TL formulas as needed for the compositional construction de-
scribed above. As logical equivalence is maintained, zahllity is maintained as well. The
formulas of the form i.jl”((/\;j i) — ¢;) are larger than the original formula as as-

sumptions are duplicated. However the subformtﬂ}ﬁi’f’ vi) — ¢4, € {1,...,m} are
usually such that to guaranteg, Player 1 does not need all the assumptions on the left
of the implication. It is thus tempting to remove those agstions that aréocally unnec-
essary in order to get smaller local formulas. In practice,apply the following rule. Let
1 Ao — ¢ be a local formula such thats and ¢ do not share common propositions
then we replace); A ¢o — ¢ by 1 — ¢. This simplification is correct in the following
sense: if the formula obtained after dropping some assomgpiin local formulas is real-
izable then the original formula is also realizable. FurtlaePlayer 1's strategy to win the
game defined by the simplified formula is also a Player 1'segjsato win the game defined
by the original formula. This is justified by the fact that thew formula logically implies
the original formula i.ey; — ¢ logically implies«; A ¥ — ¢. However, this heuristic is
not complete because the local master plans may be morgtigstthan necessary as we
locally forget about global assumptions that exist in thgioal formula. We illustrate this
on two examples.

LetI = {req}, O = {grant} and¢ = (O¢req) — Oogrant. In this formula, the as-
sumptiondJ¢req is not relevant to the guaranteg)grant. Realizingg is thus equivalent to
realizingJ¢grant. However, the set of strategies realizinds not preserved when drop-
ping the assumption. Indeed, the strategy that outpgtaiat after eaclreq realizesy but
it does not realiz€l(grant, as this strategy relies on the behavior of the environnilénis
dropping assumption is weaker than the notiompén implicationof [13], which requires
that the strategies realizinghave to realiz&él{grant.

As illustrated by the previous example, dropping assumpdioes not preserve the set
of strategies that realize the formula. Therefore, it carthgecase that a realizable for-
mula cannot be shown realizable with our compositional ritlgm after locally dropping
assumptions. In addition, it can be the case that a formwdarbes unrealizable after drop-
ping local assumptions. Consider for instance the formuta O0req — (O¢grant A
O(Xx(—grant) U req)). This formula is realizable, for instance by the strategyciwlout-
puts agrant iff the environment signal at the previous tick waseg. Other strategies re-
alize this formula, like those which grant a request evengq signal ( is fixed), but all
the strategies that realizehave to exploit the behavior of the environment. Thus therei
strategy realizing the conjunction of¢grant and¢. Consequently, when we decompase
into JOreq — OJogrant andO¢req — O(X (—grant) U req), we must keefpJ¢req in the
two formulas.

Nevertheless, in our experiments, the dropping assumigamistic is very effective
and almost always maintaigempositional realizability

9 Experiments: Compositional Approach

As the monolithic methods, the compositional algorithmsehbeen implemented in our
prototype ACACIA. The performances are evaluated on the examples providedheitool
LiLy and on a larger specification of a buffer controller inspipgdhe IBM rulebase tuto-
rial [14]. Some results are reported on Table 3.

Lily’s test cases and a parametric examrst, we compare the performances of the new
compositional algorithms with the best results of the mithial approach, which are the
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ones obtained via the monolithic FORWAREXI| method. This is done ohily’s realiz-
able examples among 1 to 23 and the parametric examples 3.7 téor the compositional
approach, we use the backward fixpoint algorithm to solvddbal safety games, and the
forward method FORWARLEXI to solve the global game. The formula tested for the com-
parison with previous works are of moderate size. It shoalddied that for larger formulas,
it is often not possible to construct thECW at all, and so the monolithic algorithm are not
applicablé?. 4 ‘ 4

In those benchmarks, the formulas are of the f@{fiy v; — AJZ}" ¢; where ;=7 ;

are a set oAssumptionand /\jz’f ¢; are a set ojuaranteesWe decompose such formula

into several piece$/\§§’f ¥;) — ¢;, as described in the previous section. We consider
different methods for checking realizability: a monolitdpproach and two compositional
approaches. The second realizability method is the santeed# st but includes the drop-
ping assumption (DA) heuristic when it is applicable. Focleaf the method, we give the
size of the constructed automata and the time to constrent.tiVe also give the time for
realizability checking (including the strategy synthgs@nd finally the total time (the best
total time is in bold face). Let us mention that when apply@ng compositional algorithm,
we construct abUCW for each conjunc(Ajj’f’ i) — ¢;. Therefore the columitbUCW|
refers to the size dbUCW by monolithic approach an#’; (|tbUCW;,|) refers to the sum of
sizes oftbUCW corresponding to the sub-specifications of the decompositi

On small examples, we can see that the benefit of the compuaitipproach is not big
(and in some cases the monolithic approach is even bettewyetr for bigger formulas
(demo 3.2 to 3.7), decomposing the formulas decreasesnieetdi construct the automata,
and the total realizability time is therefore better.

Now, we evaluate the benefit of dropping assumptions (lastgof columns). For those
experiments, we only consider the subset of formulas forckltiis heuristic can be ap-
plied. Our dropping heuristic does not work for demo 9 as itdmees unrealizable after
the application of dropping assumptions. As we see in thie téfre benefit of dropping as-
sumptions is important and is growing with the size of therfolas that are considered. The
compositional algorithms outperform the monolithic onesew combined with dropping
assumptions. They also show promises for better scalahiliiis is confirmed by our next
benchmark.

A realistic case studyNow, we consider a set of realistic formulas. All those folasuare
out of reach of the monolithic approach as even the Bicluraaton for the formula cannot
be constructed with state of the art tools. The generalizdiéi(GenBuf) originates from
the IBM's tutorial for herRuleBase verification tool. The benchmark has also the nice
property that it can be scaled up by increasing the numbeeadivers in the protocol. A
detailed description of the case study is given in appenslixell as oul.TL formalization.
In this case study, the formulas are of the fomi’f' v; — ¢; and so they are readily
amenable to our compositional algorithms.

In this case study, formulas are large: for example, the sutheonumber of states in
the UCW of the components is 96 fab(s2,r2) , and 2399 states fgb(sa, 7). Note that
the tool Wring cannot handigb(s2, 7o) monolithically.

This case study allows us to illustrate the effect of différgtrategies for exploiting as-
sociativity of the product operation. In particular, we ulerent ways of parenthesizing
the local games. In all those examples, the local games dedriediate combination of
local games are solved with the backward antichain algoritiuhile the last compositional

14 This is the case for the larger formulas in 1BM case study below.
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Monolithic Compositional Compositional + DA
FORWARD.EXI FORWARD.EXI(global) FORWARD.EXI(global)
FORWARD.EXI BACKWARD(local) BACKWARD(local)

7] 5 % o

sl s |2 | =] 5|2 ||| Z|

> £ o 0 = £ o @ S | E o »
0 = = £ @ = = £ 5] = = £ @
[=% o = x = 2 = ™~ = 2 = ™~ =
£ @) 3 — e @) 3 T 2 O 3 ©
s | 2 =) 2 g =] 3 2 g S = S I I
s | = | B8 @) s A 2 O P N | e O P
3 20 | 049 | 001| 05 28 | 040 | 0.01| 041 | 17 | 0.06 | 0.00 | 0.06
5 26 | 071 | 0.01| 0.72 | 42 | 0.70 | 0.02| 0.72 | 34 | 0.40 | 0.02 | 0.42
6 37 | 122 | 0.02| 1.24 | 57 114 | 0.03| 1.17 | 45 | 0.79 | 0.06 | 0.85
7 22 | 060 | 0.01| 061 | 41 | 0.66 | 0.02| 0.68 | 33 | 0.40 | 0.02 | 0.42
9 13 | 0.13 | 0.00| 0.13 | 31 | 0.26 | 0.00 | 0.26 | na na na na
13 7 0.00 | 0.01| 0.01 4 0.01 | 0.00 | 0.01 | na na na na

14 14 0.11 | 0.01| 0.12 27 0.77 | 0.01 | 0.78 15 | 0.03 | 0.00 | 0.03
15 16 0.06 | 0.00 | 0.06 22 0.11 | 0.03 | 0.14 na na na na
16 21 0.22 | 0.07 | 0.29 45 0.20 | 0.14 | 0.34 na na na na
17 17 0.16 | 0.03 | 0.19 23 0.16 | 0.05| 0.21 na na na na
18 22 0.34 | 0.11 | 045 45 0.35 | 0.16 | 0.51 na na na na
19 18 0.31 | 0.01| 0.32 27 0.25 | 0.03 | 0.28 27 | 0.26 | 0.01 | 0.27
20 | 105 | 2.67 | 0.01| 2.68 | 154 | 2.43 | 0.03| 2.46 | 101 | 1.52 | 0.02 | 1.54
21 27 7.38 | 0.28 | 7.66 43 1.40 | 0.52 | 1.92 44 | 055 | 0.51 | 1.06
22 45 7.08 | 0.02 7.1 80 | 10.26 | 0.05| 10.31| 49 | 151 0.13 | 1.64

32| 36 0.94 | 0.00 | 0.94 40 0.79 | 0.02 | 0.81 na na na na
3.3 | 56 1.80 | 0.02 | 1.82 60 1.21 | 0.06 | 1.27 na na na na
34| 84 3.12 | 0.04 | 3.16 80 1.63 | 0.10 | 1.73 na na na na
35| 128 | 352 | 0.12| 3.64 | 100 | 2.04 | 0.17 | 2.21 na na na na
3.6 | 204 | 10.22 | 0.46 | 10.68 | 120 | 2.40 | 0.39 | 2.79 na na na na
3.7 | 344 | 2648 | 235| 28.82 | 140 | 2.96 | 1.02 | 3.98 na na na na

Table 2 Performance comparison of the different compositionabitigms implemented iAcacia onLily’s
benchmark

step (at the top) is done with the FORWAREXI method. In each strategy we first com-
pute the master plan of each sub-formula. Then the colblatrefers to the strategy that
check global realizability directly. The colunBinary refers to the strategy that computes
global realizability incrementally using the binary trdesab-formulas. Finally, the column
Heuristic refers to the strategy that computes global realizabitityementally using a spe-
cific tree of sub-formula defined by the uSeThe column UCWOPT refers to the time to
optimize the automata withily’s optimizations (this time was included in the UCW time in
Table 2).

The last column in Table 2 gives the size of the Moore macHimatsare constructed by
our algorithm. Those machines are small when compared tthth€W from which they
are constructed. For example, the Moore machine that es@d@ning strategy for Player
1in the largest example{_s2_r7) has 149 states while thlbUCW for the specification has
2399 states. This is striking as in theory, the winning sggegs could be exponentially larger
than thetbUCW of their specification.

15 The input language of our tool allow us to specify sub-forn(dpec-units) and composition rules to
guide the incremental construction of the global winnimategy, see Appendix.
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FLAT | BINARY | HEURISTIC
—~ Q.
5 @ @ 2| £
s Bl & : z E| g
S gl S = = F| E
) = N i~ i~ i~ o
8 Q =0 ] ] ] 8
= - O E = = < §
k A 2 D O O O =
gbs2r2 | 2 91 4.83 0.08 0.84 0.99 0.98 54
gbs2r3 | 2 150 8.52 0.17 7.33 36.27 6.99 63
gbs2rd | 2 265 | 15.64 0.53 36.88 125.60 24.19 86
gbs2r5 | 2 | 531 | 26.48 2.11| 154.02| 266.36 70.41 | 107
gbs2r6 | 2 | 1116 | 50.70 | 14.38 | 889.12 | 1164.44 335.44 | 132
gb_s2_r7 | 2 | 2399 | 92.01 | 148.46 | 2310.74 >t 1650.83 | 149

Table 3 Performance comparison on a scalability test for the fodvaethods
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Fig. 4 Diagram of a buffer controller connected with 2 senders aretgivers

A Description of the Generalized Buffer Controller

The generalized buffer (GenBuf) originates from the IBMitotial for herRuleBase verification tool.
Figure. 4 illustrates the interface of a controller. To focus on itsitcol flow, we abstract away the
data buse®I| andDO. And we do not connect it with a FIFO which is presentinzu. Except those, our
controller shares witRRuleBase andAnzu the same interface.
The interface between GenBuf and the senders is a 4-phadsteking protocol described below:

1. When a sender, say sender i, has data to send, it initidtesisfer by asserting2b_req(i) (Server to
Buffer Request). One cycle later, the sender puts the daita data bus.

2. When GenBuf can service the sender, it reads the data fremiata bus and assebs_ack (i).

3. In the cycle following the assertion é2s_ack(i), the sender should deassert the sigrdl_req(7).
From this point onwards, the data on the data bus is considievelid.

4. The end of the transaction is marked by GenBuf deasseéifingick (7). A new transaction may begin
one cycle after the deassertiont@s_ack(i). GenBuf may holdh2s_ack(i) asserted for several cycles
before eventually deasserting it.

The protocol between GenBuf and the receivers is similazepixthat the GenBuf initiates the data
transfer and it guarantees round-robin scheduling on teess to the receivers.
Table. 4lists the behavior properties of GenBuf and its environment
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Properties of the behavior between GenBuf and the senders.
Assumption 1 The initial value ofs2b_req(z) is low.
$2b_req(i) =0
Assumption 2 Arequest is not lowered until it is served.
O((s2b_req(i) = 1 A b2s_ack(i) = 0) — s2b_req(i) = 1)
Assumption 3 In the cycle following the assertion é2s_ack(i), the sender should
deassert the signalb_req(7).
O(b2s_ack(i) = 1 — X (s2b-req(i) = 0))
Guarantee 1 The initial value oft2s_ack(%) is low.
b2s_ack(i) =0
Guarantee 2 When GenBuf can service the sender, it asg@isack(i). Immediate
acknowledge is forbidden. Because the data of the sender
are not valid until one step after the assertion of the reiques
A Request from a sender shall always be acknowledged.
O( (s2breg(i) = 0 A X(s2b_req(i) = 1))
— X (b2s_ack(i) = 0 A O(b2s_ack(i) = 1)))
Guarantee 3  There is no acknowledge without a request.
O((b2s-ack(z) = 0 A X (s2breq(i) = 0)) — X (b2s_ack(i) = 0))
Guarantee 4  Only one sender sends data at any one time.
mQvp Nji b2s-ack(j) = 0)

Properties of the behavior between GenBuf and the receivers
Assumption 4 The initial value ofr2b_ack(7) is low.
r2b_ack(i) =0
Assumption 5  There is no acknowledge without a request.
O(b2rreq(i) = 0 — X(r2b_ack(z) = 0))
Assumption 6 A request from the buffer is always acknowledged.
Ob2rreq(i) =1 — X(O(r2b-ack(i) = 1)))
Guarantee 5  The initial value ofb2r_req(<) is low.
b2r_req(i) =0
Guarantee 6  Arequest is not lowered until it is served.
O((v2r_req(i) = 1 A r2b_ack(i) = 0) — X (b2r_req(i) = 1))
Guarantee 7 GenBuf will deassert its request to receivamne cycle after the receiver
acknowledged the request.
O(r2b-ack(i) = 1 — X(R2B_Req(i) = 0))
Guarantee 8  GenBuf will not make two consecutive requests to any receared guarantee
round-robin scheduling. Suppose there are two receivers.
O( (R2B-Req(0) = 1 A X(R2B-Req(0) = 0))
— X(R2B_Req(0) = 0 U (R2B-Req(0) = 0 A R2B_Req(1) = 1)))
O((R2B-Req(1) = 1 A X(R2B-Regq(1) = 0))
— X(R2B_Req(1) = 0 U (R2B-Req(1) = 0 A R2B_Req(0) = 1)))
Guarantee 9  GenBuf does not request two receivers simultaneously.
mQvy /\j;éi b2r_req(j) = 0)

Property linking the sender side and the receiver side.
Guarantee 10 A request from the senders will always trigger a requesteaéceivers.
O((V; s2b-req(i) = 1) — X(O(V,; b2rreg(j) = 1))

Table 4 Behavior properties of GenBuf and its environment

We present the formulas @hb(s2,72) as an example for the file format of Acacia’10. In this exam-
ple, we define 4 components in termssgfec_uni t . If all of them are realizable, the clause directed by
group-order instructs Acacia'l0 to continue along the parenthesizezlpg, like(sb_0 br_1) and
(sb_-1 br_0).The process halts whenever an unrealizable subgroupadsieted]. The final step is to check
the group which includes all the components.

dtb R R P e s s s R R s e
[spec_unit sb_0]
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g
assune s2b_req0=0;

assune G (s2b_req0=1 » b2s_ack0=0) -> X(s2b_req0=1));
assune G b2s_ack0=1 -> X(s2b_req0=0));

b2s_ack0=0;

G((s2b_req0=0 * X(s2b_req0=1)) -> X(b2s_ack0=0 * X(F(b2s_ack0=1))));
G (b2s_ack0=0 * X(s2b_req0=0)) -> X(b2s_ack0=0));

G(b2s_ack0=0 + b2s_ack1=0);

G A G A I e
[spec_unit sb_1]

G A G G A I e
assume s2b_reql=0;

assune G (s2b_reql=1 » b2s_ackl1l=0) -> X(s2b_reql=1));
assunme G b2s_ackl=1 -> X(s2b_reql=0));

b2s_ack1=0;

G((s2b_reql=0 * X(s2b_reql=1l)) -> X(b2s_ackl=0 * X(F(b2s_ackl=1))));
G (b2s_ack1=0 * X(s2b_reql=0)) -> X(b2s_ack1l=0));

G(b2s_ack0=0 + b2s_ack1=0);

S
[spec_unit br_0]
i
assune r2b_ack0=0;

assune G b2r_req0=0 -> X(r2b_ack0=0));

assunme G b2r_req0=1 -> X(F(r2b_ack0=1)));

b2r _req0=0;

G(r2b_ack0=1 -> X(b2r_req0=0));

G((b2r_req0=1 * r2b_ack0=0) -> X(b2r_req0=1));

G (b2r_req0=1 * X(b2r_req0=0)) -> X(b2r_req0=0 U (b2r_req0=0 * b2r_reql=1)));
G (b2r_req0=0) + (b2r_reql=0) );

G((s2b_req0=1 + s2b_reql=1) -> X(F(b2r_req0=1 + b2r_reql=1)));

T T R
[spec_unit br_1]

T R R
assune r2b_ack1=0;

assune G b2r_reql=0 -> X(r2b_ack1=0));

assume G b2r_reql=1 -> X(F(r2b_ackl=1)));

b2r _reql=0;

G(r2b_ackl=1 -> X(b2r_reql=0));

G (b2r_reql=1 * r2b_ack1l=0) -> X(b2r_reql=1));

G((b2r_reql=1 = X(b2r_reql=0)) -> X(b2r_reql=0 U (b2r_reql=0 * b2r_req0=1)));
G (b2r_req0=0) + (b2r_reql=0) );

G((s2b_req0=1 + s2b_reql=1) -> X(F(b2r_req0=1 + b2r_reql=1)));

group_order = (sb_0 br_1) (sb_1 br_0);



