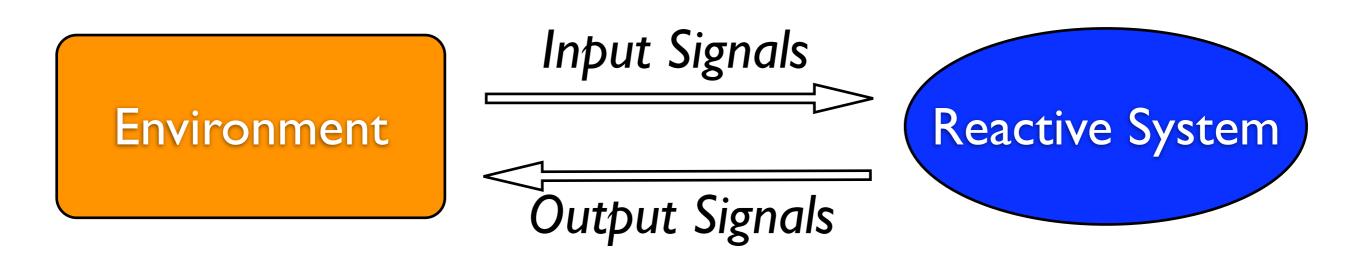
Towards Efficient Synthesis of LTL Specifications

Emmanuel Filiot joint with Naiyong Jin and Jean-François Raskin Université Libre de Bruxelles

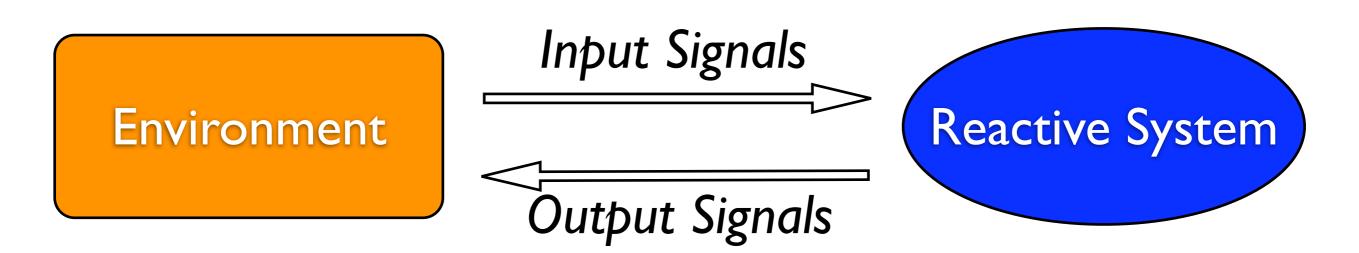
FNRS contact day

Reactive Systems



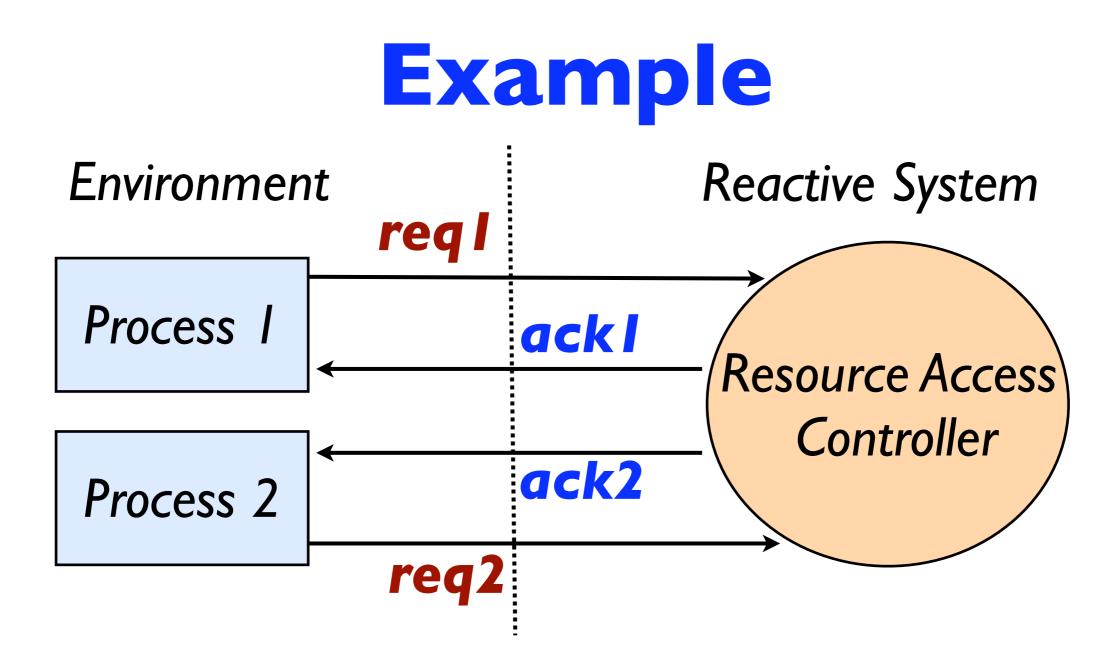
- continuous interaction with their environment
- non-terminating
- have to respect real-time properties (e.g. safety properties)
- have to cope with the uncontrollable behavior of their environment

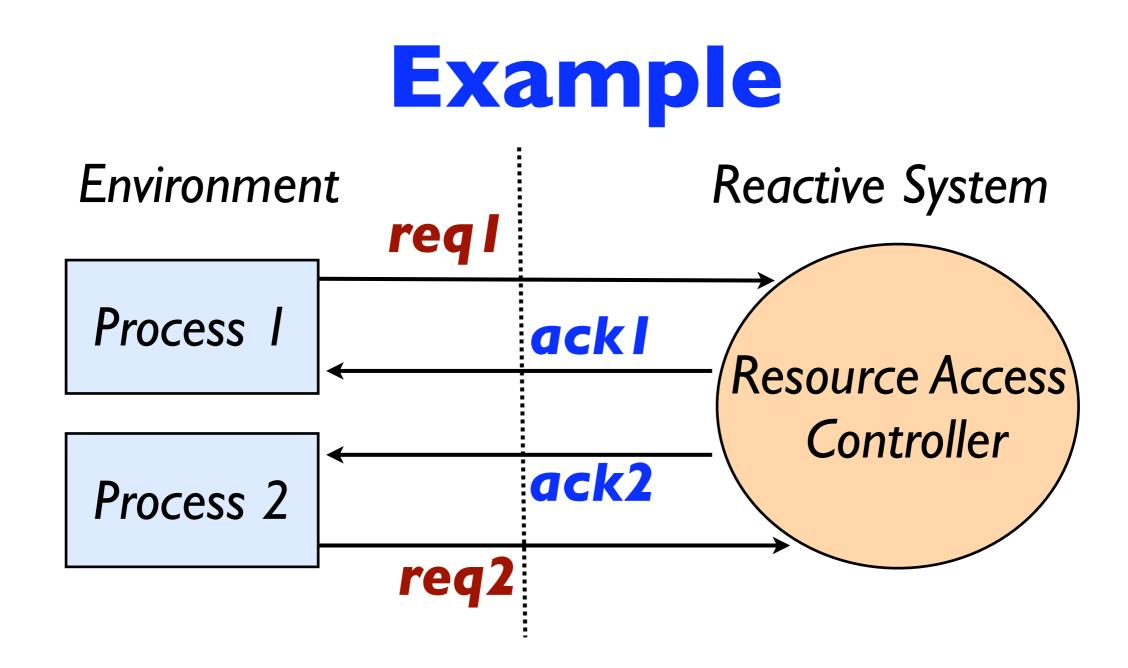
Reactive Systems



- continuous interaction with their environment
- non-terminating
- have to respect real-time properties (e.g. safety properties)
- have to cope with the uncontrollable behavior of their environment

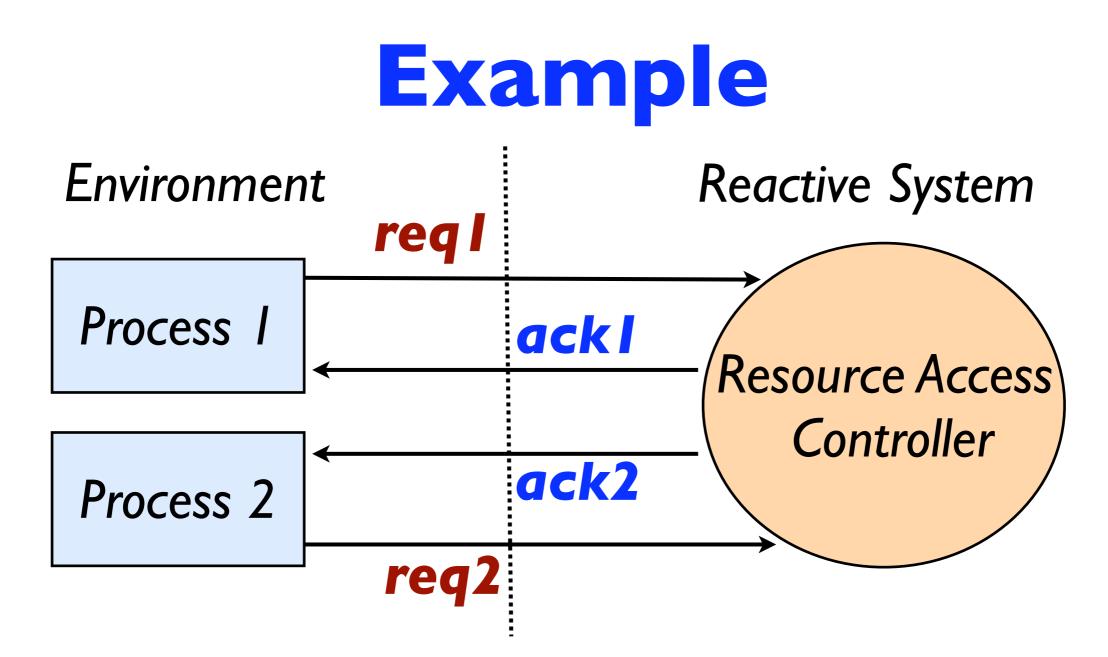
Hard to design, needs synthesis from specification!





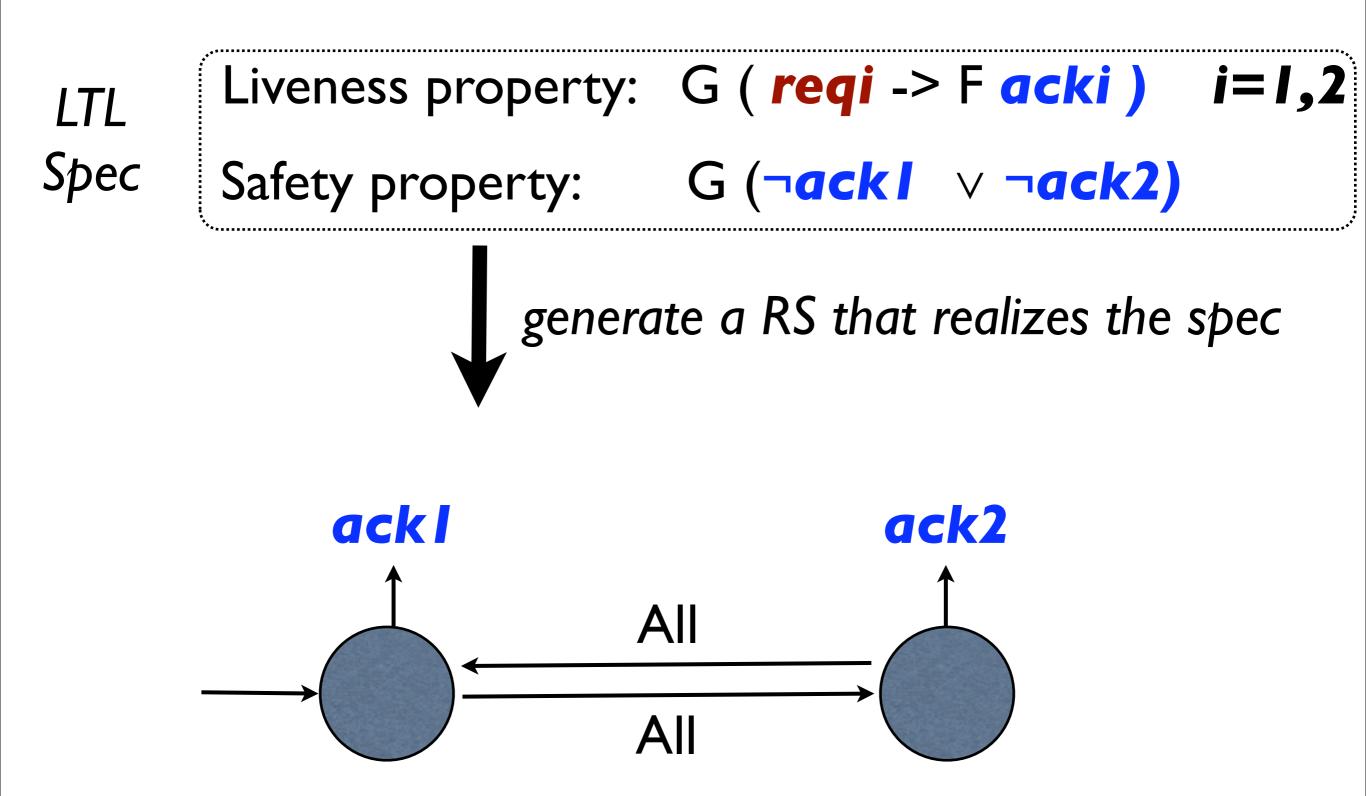
Executions: infinite sequences of sets of signals

 $\{ reql, req2 \} \{ ackl \} \{ reql \} \{ ack2 \} \{ reql \} \{ ackl \} \dots$

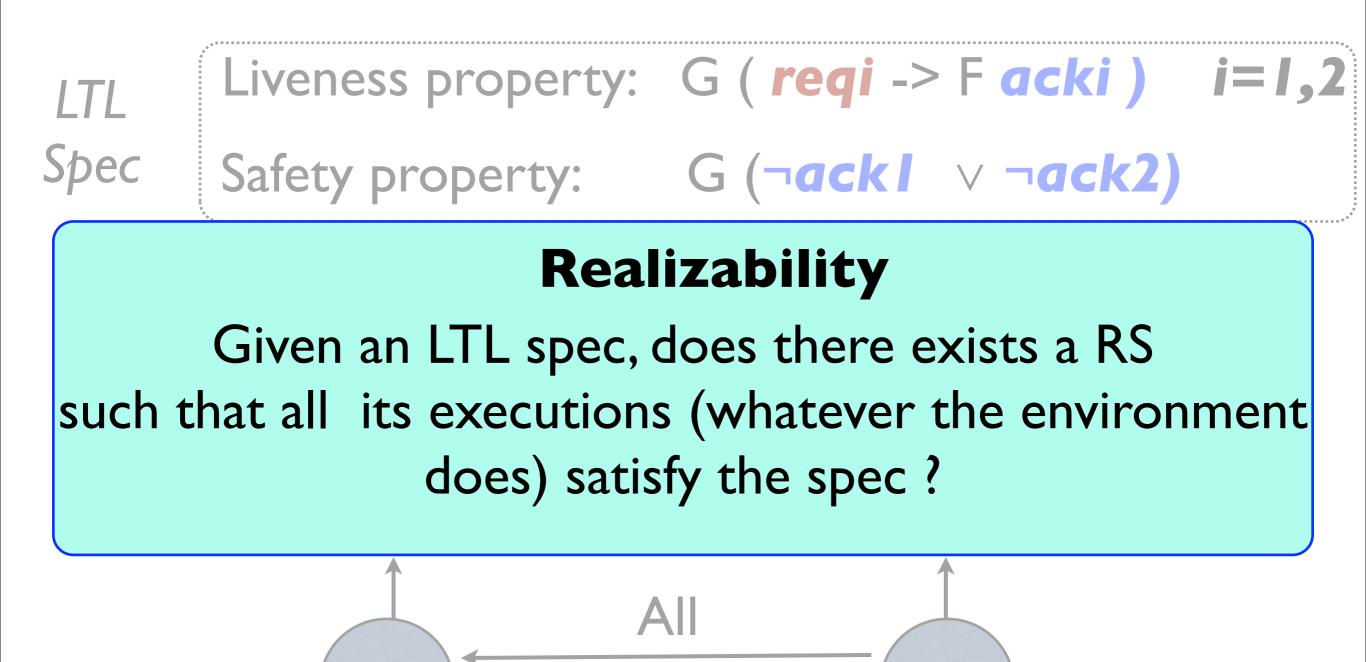


Properties we would like to ensureLiveness property:G(reqi -> Facki)Safety property: $G(\neg ackl \lor \neg ack2)$

LTL Synthesis



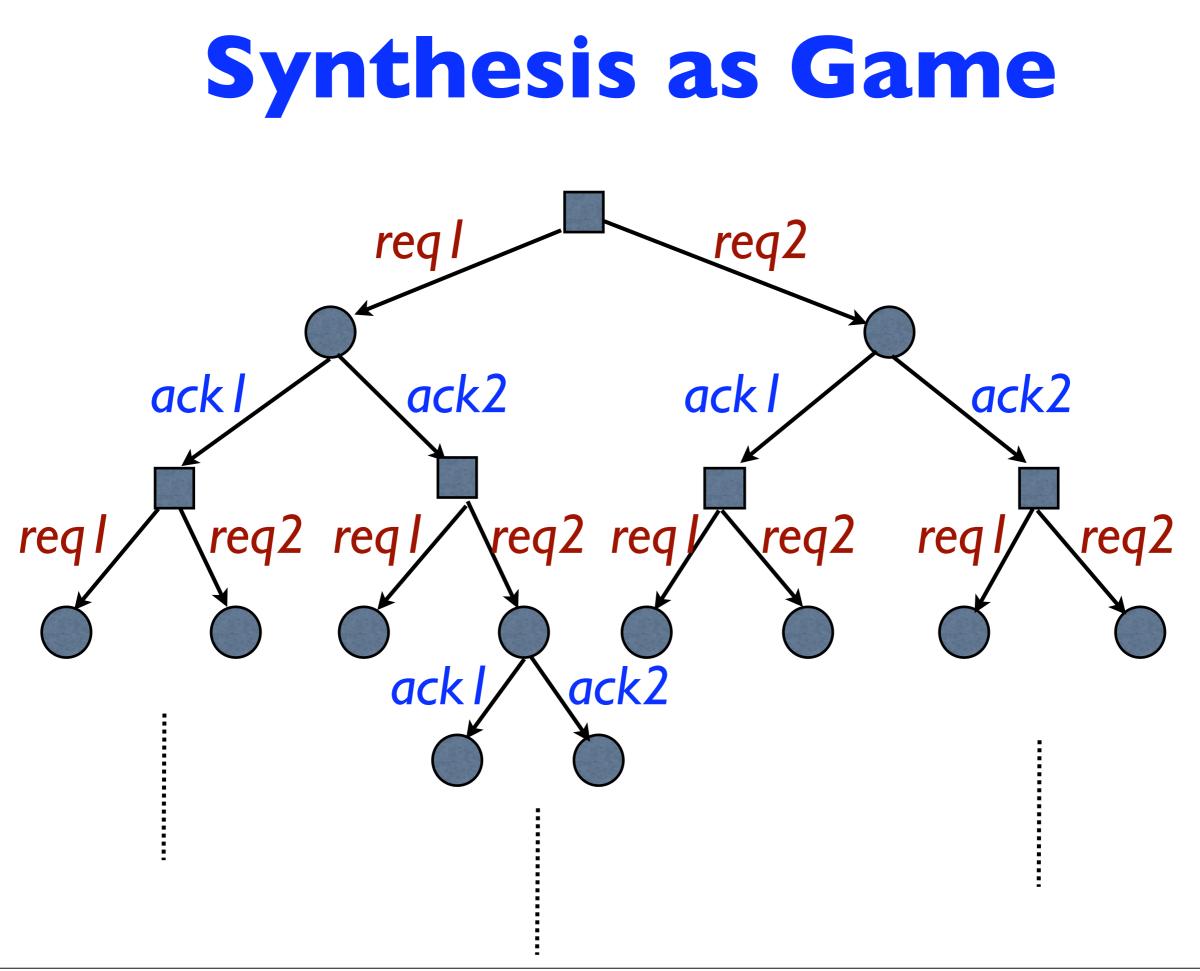
LTL Synthesis



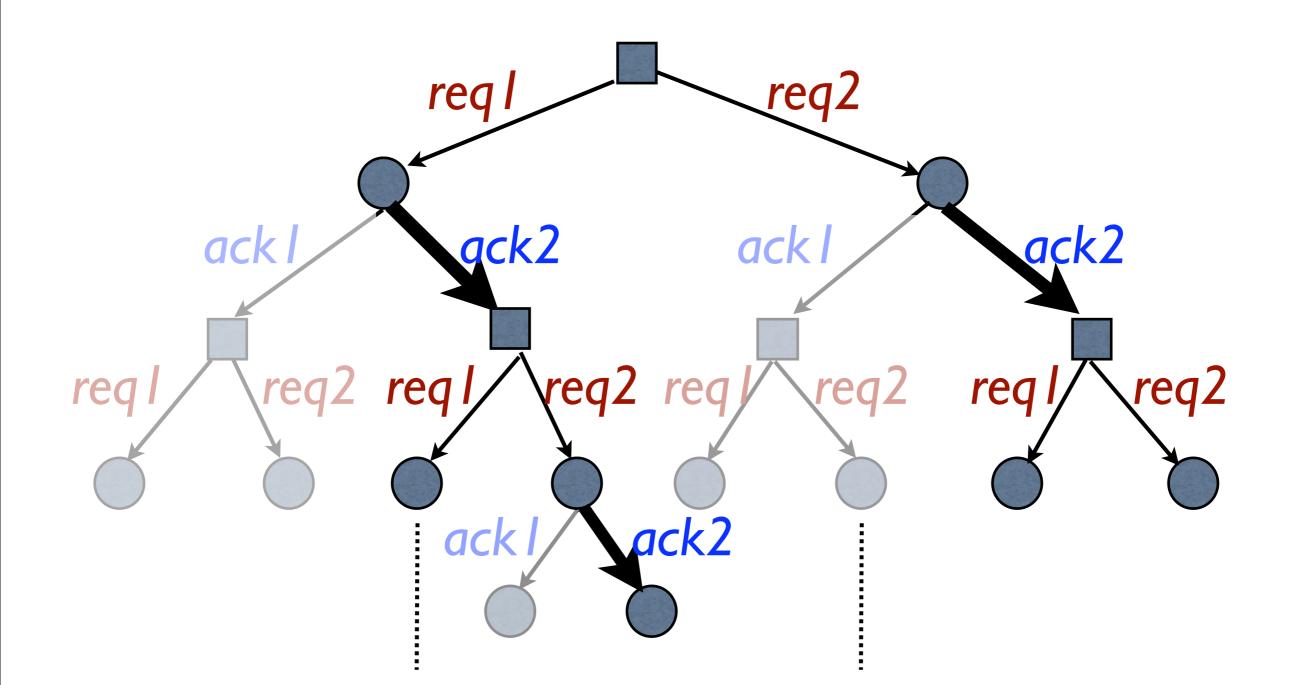
Unrealizable Spec

G (ackl -> F reql)

"Each time the system acknowledge, the environment eventually sends a request"



Reactive System as a Strategy



All the infinite paths have to satisfy the spec

- if a spec is realizable, it is realizable by a finite-steate strategy
- 2ExpTime-Complete [Rosner, 92]
- "classical" procedure [Pnueli, Rosner, 89]

- if a spec is realizable, it is realizable by a finite-steate strategy
- 2ExpTime-Complete [Rosner, 92]
- "classical" procedure [Pnueli, Rosner, 89]

Needs Safra's Determinization !

- if a spec is realizable, it is realizable by a finite-steate strategy
- 2ExpTime-Complete [Rosner, 92]
- "classical" procedure [Pnueli, Rosner, 89]

Needs Safra's Determinization !

• Safraless procedure [Kupferman, Vardi, 05]

LTL ------ Büchi Game

- if a spec is realizable, it is realizable by a finite-steate strategy
- 2ExpTime-Complete [Rosner, 92]
- "classical" procedure [Pnueli, Rosner, 89]

Needs Safra's Determinization !

• Safraless procedure [Kupferman, Vardi, 05]

Implemented in Lily [Jobstmann, Bloem]

- if a spec is realizable, it is realizable by a finite-steate strategy
- 2ExpTime-Complete [Rosner, 92]
- "classical" procedure [Pnueli, Rosner, 89]

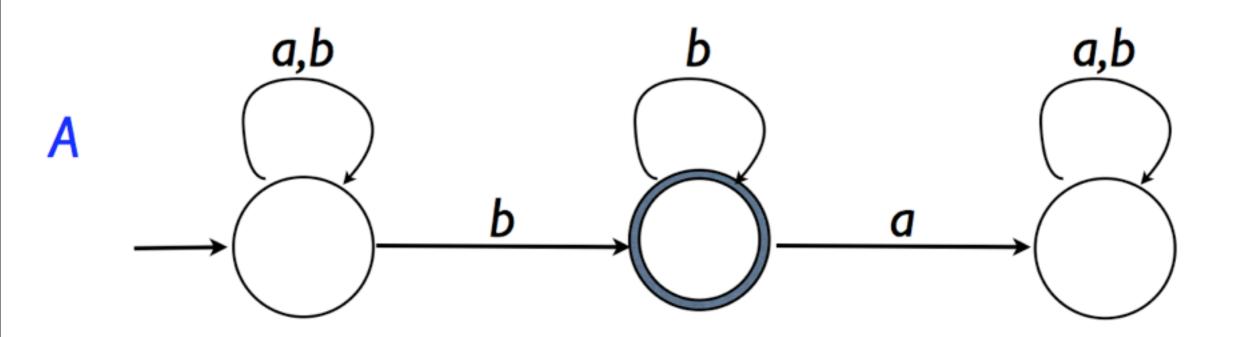
Needs Safra's Determinization !

• Safraless procedure [Kupferman, Vardi, 05]

Implemented in Lily [Jobstmann, Bloem]

• in this talk: LTL \longrightarrow Safety Game

K-CoBüchi Automata



An (infinite) word is accepted iff all its runs visits at most K accepting states

In this example: words with at most K symbols b

Monday, February 15, 2010

Automata as a spec

- K-co-Büchi automata specify infinite words
- they can be used as RS specifications

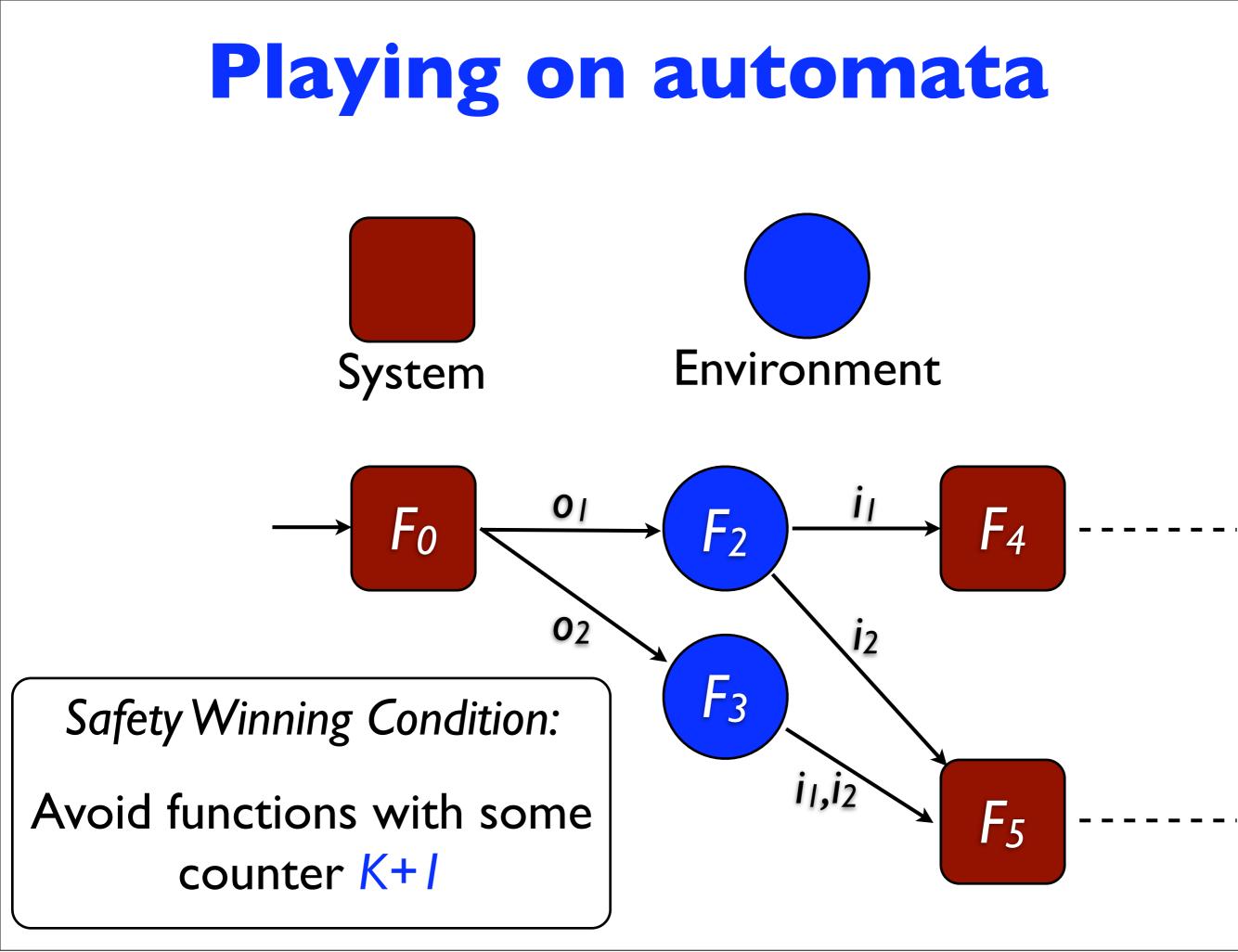
Theorem

For any LTL specification Φ , one can construct a K-co-Büchi automaton A such that: Φ is realizable iff A is realizable

Construction: exptime and $K = O(2^{|\phi|})$

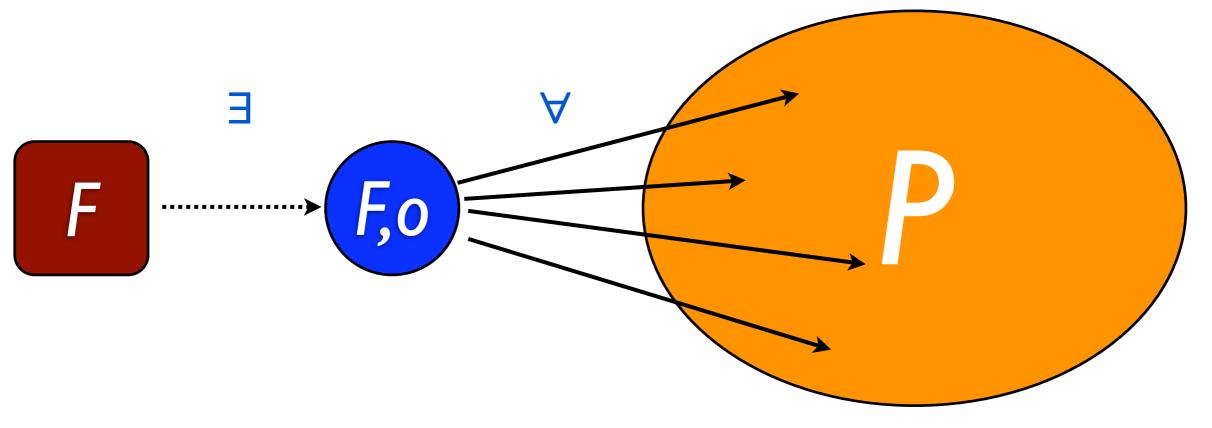
Determinization

- K-Co-Büchi automata are easily determinizable
- extend subset construction with counters (up to K+1)
- states: Functions $F: Q \longrightarrow \{0, 1, \dots, K+1\}$



Controllable Predecessors

- **P\Germin F**: subset of system positions
- safe controllable predecessors of P $Pre(P) = \{ F \mid \exists o \subseteq O, \forall F', ((F,o),F') \in T \Rightarrow F' \in P \}$



greatest fixpoint Pre* = winning region for System

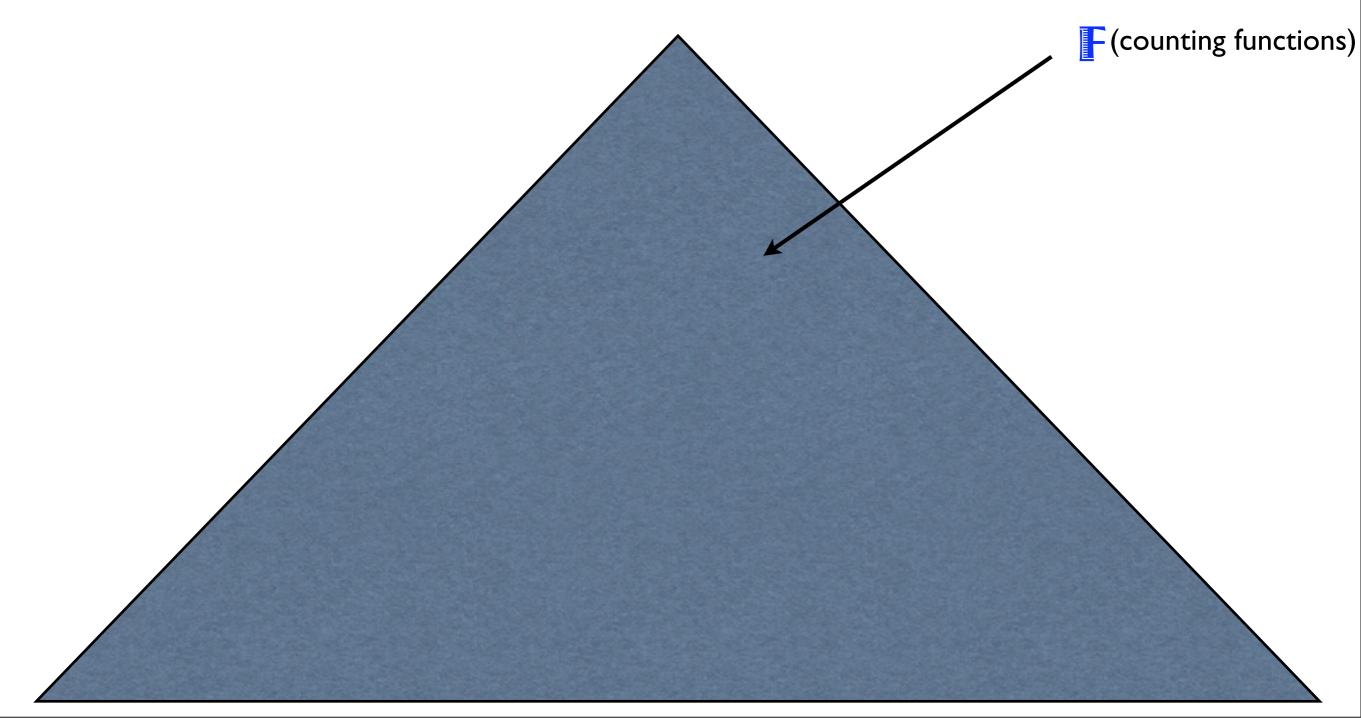
Controllable Predecessors

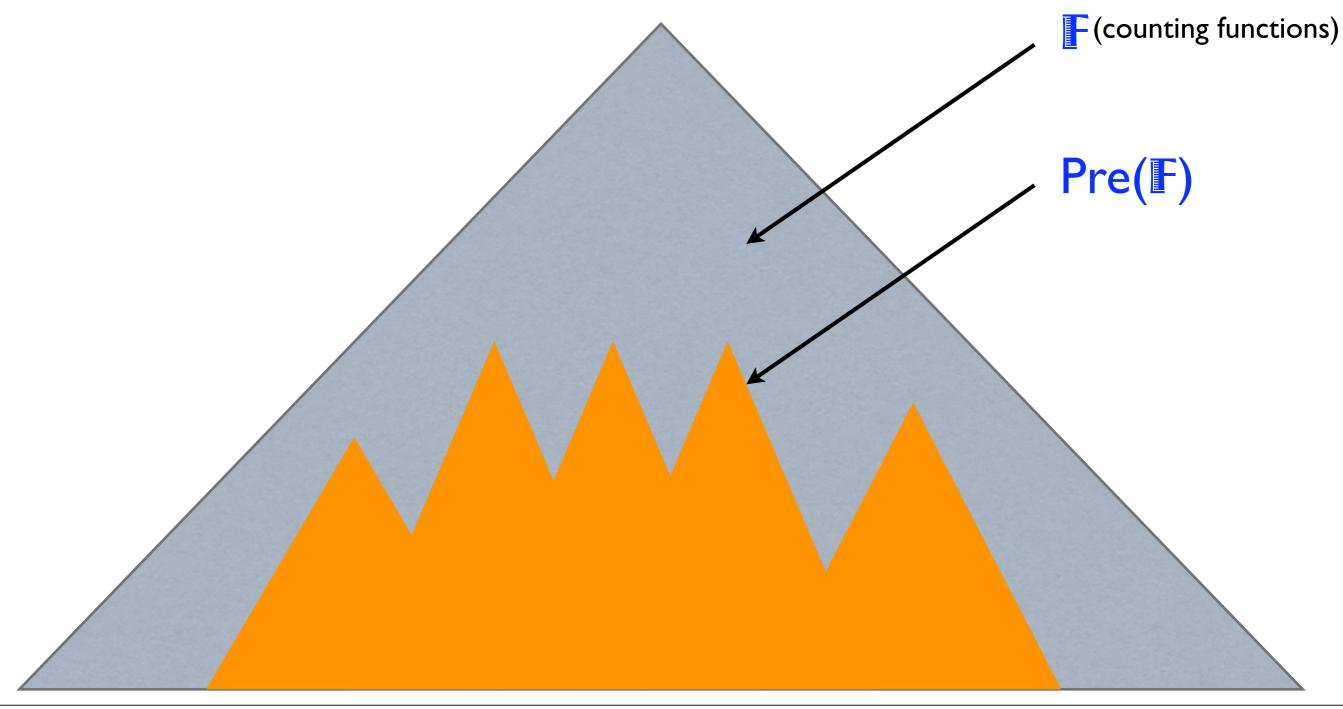
I. partial order on counting functions:

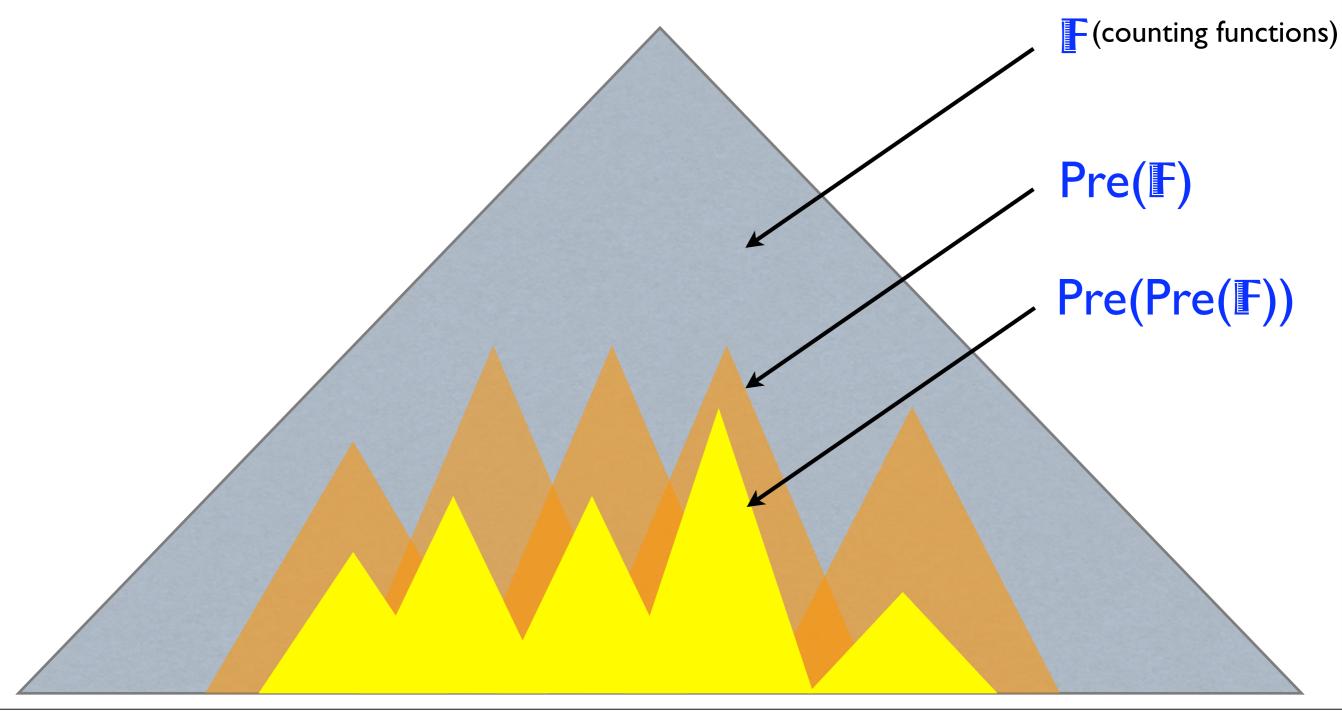
$F \leq_d F'$ if $\forall q$: $F(q) \leq F'(q)$

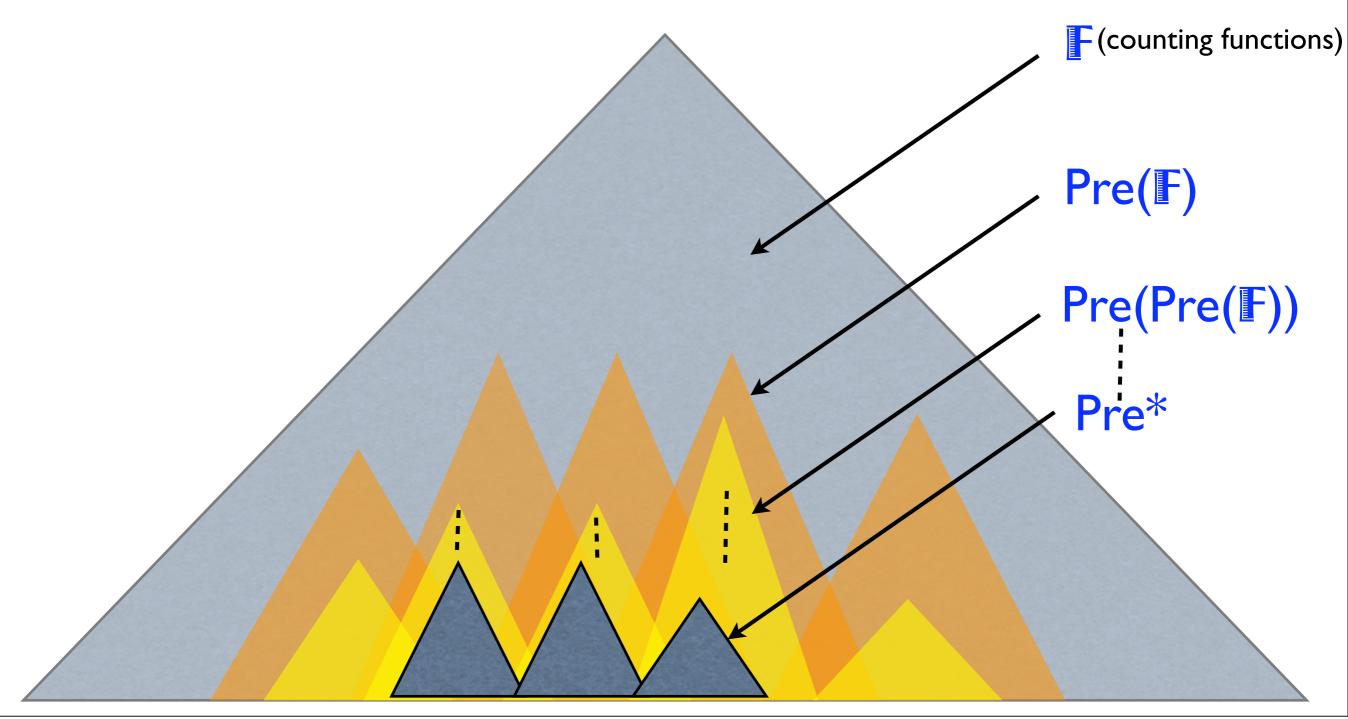
- 2. if System wins from F', she also wins from
- 3. Pre(.) preserves downward-closed sets

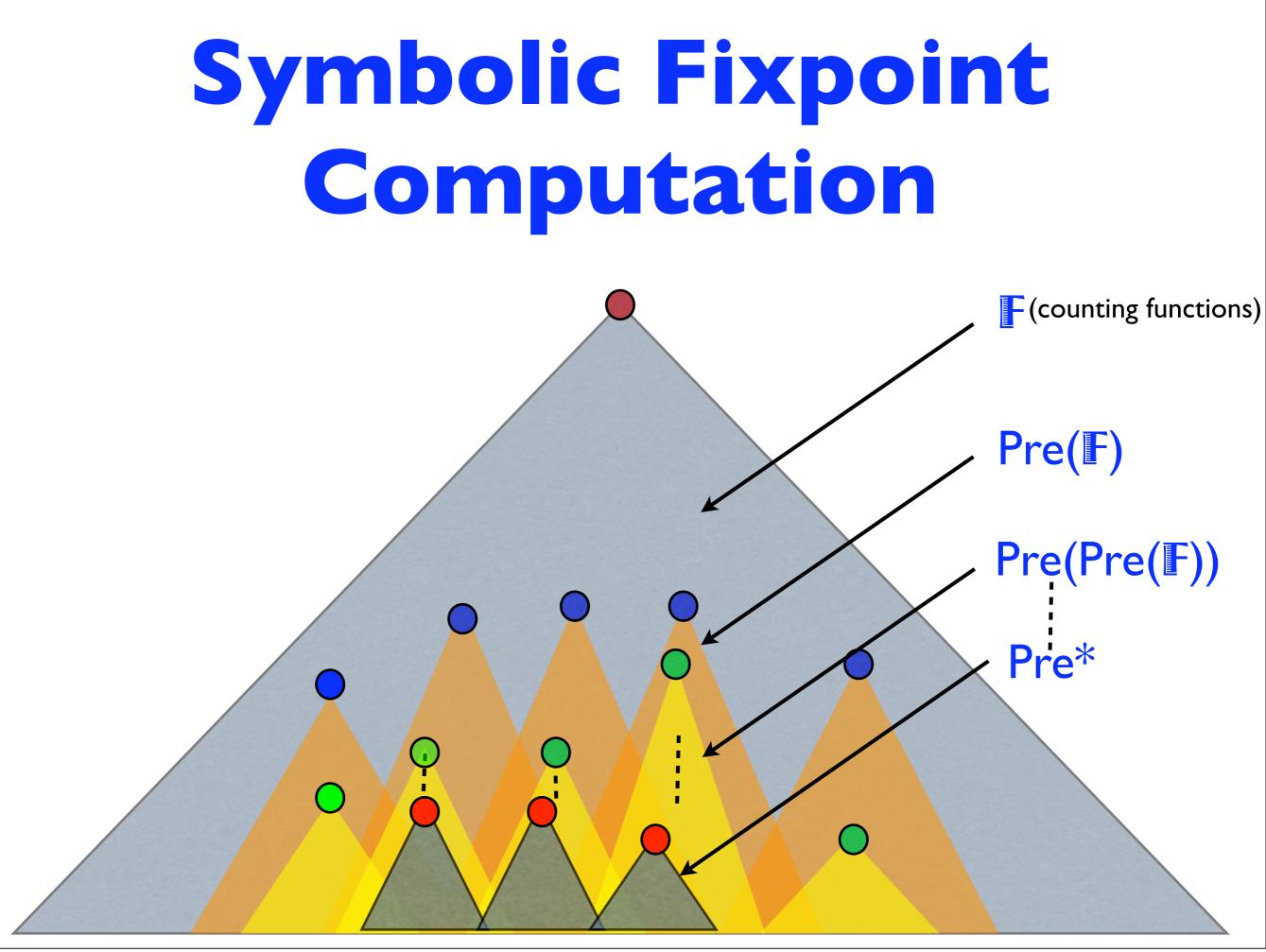
4. represent each (downward) set of the fixpoint computation by its maximal elements











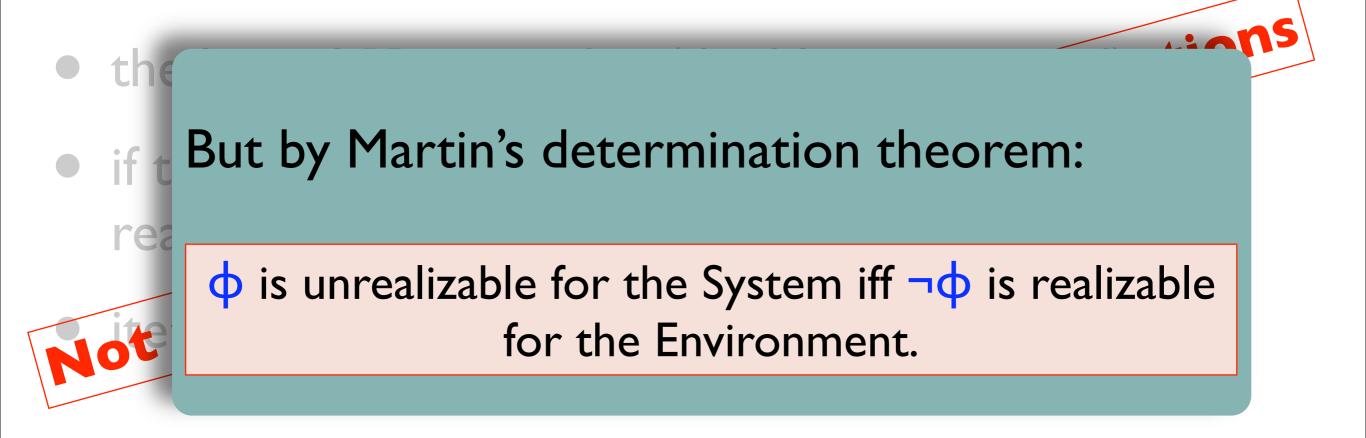
Incremental Algorithm

- the bound K is very big (doubly exponential)
- if the spec is realizable with a "small" bound, it is realizable with a "big" bound
- iterate over k=0,1,...,K

Incremental Algorithm

- the bound K is very big (doubly exponentiacations)
 if the spec is realizable with a specific transmission of the specific transmission of tra

Incremental Algorithm



Experiments

- implementation in Perl (as Lily)
- if the spec is realizable, output a Moore machine that realizes it
- formula to automata construction borrowed from Lily (based on Wring [Somenzi, Bloem])
- significantly faster on all realizable Lily's examples
- bottleneck: formula to automaton construction

Example

);

(BtoS_ACK0=0 *

G(BtoS_ACK0=0 + BtoS_ACK1=0)

assume StoB_REQ1=0;

```
assume G((StoB_REQ0=1 * BtoS_ACK0=0) -> X(StoB_REQ0=1));
assume G((StoB_REQ1=1 * BtoS_ACK1=0) -> X(StoB_REQ1=1));
assume G(BtoS_ACK0=1 -> X(StoB_REQ0=0));
assume G(BtoS_ACK1=1 -> X(StoB_REQ1=8));
(BtoS_ACK0=0 *
 G( (StoB_REQ0=0 * X(StoB_REQ0=1)) -> X(BtoS_ACK0=0 * X(F(BtoS_ACK0=1))) ) *
 G( (BtoS_ACK8=0 * X(StoB_REQ8=0)) -> X(BtoS_ACK8=0) ) *
 G(BtoS_ACK0=0 + BtoS_ACK1=0)
);
(BtoS_ACK1=0 *
G( (StoB_REQ1=0 * X(StoB_REQ1=1)) -> X(BtoS_ACK1=0 * X(F(BtoS_ACK1=1))) ) *
 G( (BtoS_ACK1=0 * X(StoB_REQ1=0)) -> X(BtoS_ACK1=0) ) *
 G(BtoS_ACK0=0 + BtoS_ACK1=0)
);
assume RtoB_ACK0=0;
assume RtoB_ACK1=0;
assume G(BtoR_REQ0=0 -> X(RtoB_ACK0=0));
#assume G((BtoR_REQ8=1 * RtoB_ACK8=1) -> X(RtoB_ACK8=1));
assume G(BtoR_REQ1=0 -> X(RtoB_ACK1=0));
#cssume G((BtoR_REQ1=1 * RtoB_ACK1=1) -> X(RtoB_ACK1=1));
assume G(BtoR_REQ0=1 -> X(F(RtoB_ACK0=1)));
assume G(BtoR_REQ1=1 -> X(F(RtoB_ACK1=1)));
(BtoR_REQ0=0 *
 G(Rto8_ACK0=1 -> X(BtoR_REQ0=0)) *
 G((BtoR_REQ0=1 * RtoB_ACK0=0) -> X(BtoR_REQ0=1)) *
 G((BtoR_REQ0=1 * X(BtoR_REQ0=0)) -> X( BtoR_REQ0=0 U (BtoR_REQ0=0 * BtoR_REQ1=1))) *
 G(F(BtoR_RE08=1)) *
 G((BtoR_REQ0=0) + (BtoR_REQ1=0))
);
(BtoR_REQ1=0 *
G(RtoB_ACK1=1 -> X(BtoR_REQ1=8)) *
 G((BtoR_REQ1=1 * RtoB_ACK1=0) -> X(BtoR_REQ1=1)) *
 G((BtoR_REQ1=1 * X(BtoR_REQ1=0)) -> X( BtoR_REQ1=0 U (BtoR_REQ1=0 * BtoR_REQ0=1))) *
 G(F(BtoR_REQ1=1)) *
 G((BtoR_REQ0=0) + (BtoR_REQ1=0))
);
```

G((StoB_REQ0=0 * X(StoB_REQ0=1)) -> X(BtoS_ACK0=0 * X(F(BtoS_ACK0=1)))) *

G((BtoS_ACK0=0 * X(StoB_REQ0=0)) -> X(BtoS_ACK0=0)) *

(BtoR_REQ0=0 * G(RtoB_ACK0=1 -> X(BtoR_REQ0=0)) * G((BtoR_REQ0=1 * RtoB_ACK0=0) -> X(BtoR_REQ0=1)) * G((BtoR_REQ0=1 * X(BtoR_REQ0=0)) -> X(BtoR_REQ0=0 U (BtoR_REQ0=0 * BtoR_REQ1=1))) * G(F(BtoR_REQ0=1)) * G((BtoR_REQ0=0) + (BtoR_REQ1=0)));

Future Work ...

- compositionnality
- avoid automata construction to handle larger formulas

Future Work ...

- compositionnality
- avoid automata construction to handle larger formulas

... Thank You