Towards Efficient Synthesis

of LTL Specifications

Emmanuel Filiot
joint with Naiyong Jin and Jean-Frangois Raskin

Universite Libre de Bruxelles

FNRS contact day

Reactive Systems

i) Input Signals

! — :
Environment Reactive System
< -
s ° Qutput Signals

® continuous interaction with their environment
® non-terminating

® have to respect real-time properties (e.g. safety
properties)

® have to cope with the uncontrollable behavior of their
environment

Monday, February 15, 2010

Reactive Systems

i) Input Signals

- - T :
Environment Reactive System

< -
s ° Qutput Signals

® continuous interaction with their environment
® non-terminating

® have to respect real-time properties (e.g. safety
properties)

® have to cope with the uncontrollable behavior of their
environment

Hard to design, needs synthesis from specification!

Monday, February 15, 2010

Example

Environment Reactive System
reql:
Process | Eack I
< Resource Access
< Controller
Process 2 ack2

req2

Monday, February 15, 2010

Example

Environment Reactive System
reql:
Process | éack I
< Resource Access
< Controller
Process 2 ack2
req2;

Executions: infinite sequences of sets of signals

{reql, req2} {ackl} {reql} {ack2} {reql} {ackl} ...

Monday, February 15, 2010

Example

Environment Reactive System
reql:
Process | éack I
< Resource Access
< Controller
Process 2 ack2
req2;

Properties we would like to ensure
Liveness property: G (reqi ->Facki) i=1,2

Safety property: G (nackl v -~ack2)

Monday, February 15, 2010

LTL Synthesis

--
*

Tl Liveness property: G (reqi -> F acki) i=I ,2
Spec Safety property: G (~ackl v —ack2) |

. .

l generate a RS that realizes the spec

ackl ack2
All

All

Monday, February 15, 2010

LTL Synthesis

Realizability

Given an LTL spec, does there exists a RS
such that all its executions (whatever the environment
does) satisfy the spec !

Monday, February 15, 2010

Unrealizable Spec

G (ackl -> F reql)

“Each time the system acknowledge, the environment
eventually sends a request”

Monday, February 15, 2010

Synthesis as Game

kfflL///' req2
ack | ackZ ack | ack?2
r%eqz reql/ \req2 req) \req2 reql req2

ack |/ \ack?2

Reactive System as a Strategy

W req2

r;cy eq2 req)/ % rqu req2

ck2

All the infinite paths have to satisfy the spec

Existing Procedures

® if a spec is realizable, it is realizable by a
finite-steate strategy

® 2ExpTime-Complete [Rosner, 92]

® “classical” procedure [Pnueli, Rosner, 89]
LTL > Rabin Game

Monday, February 15, 2010

Existing Procedures

® if a spec is realizable, it is realizable by a
finite-steate strategy

® 2ExpTime-Complete [Rosner, 92]

® “classical” procedure [Pnueli, Rosner, 89]

[Needs Safra’s Determinization ! J

Monday, February 15, 2010

Existing Procedures

® if a spec is realizable, it is realizable by a
finite-steate strategy

® 2ExpTime-Complete [Rosner, 92]

® “classical” procedure [Pnueli, Rosner, 89]

[Needs Safra’s Determinization ! J

® Safraless procedure [Kupferman,Vardi, 05]

LTL > Buchi Game

Monday, February 15, 2010

Existing Procedures

® if a spec is realizable, it is realizable by a
finite-steate strategy

® 2ExpTime-Complete [Rosner, 92]

® “classical” procedure [Pnueli, Rosner, 89]

[Needs Safra’s Determinization ! J

® Safraless procedure [Kupferman,Vardi, 05]

4)

Implemented in Lily [Jobstmann, Bloem]

- J

Monday, February 15, 2010

Existing Procedures

® if a spec is realizable, it is realizable by a
finite-steate strategy

® 2ExpTime-Complete [Rosner, 92]

® “classical” procedure [Pnueli, Rosner, 89]

[Needs Safra’s Determinization ! J

® Safraless procedure [Kupferman,Vardi, 05]

4)

Implemented in Lily [Jobstmann, Bloem]

- J

® in this tallk: LTL > Safety Game

Monday, February 15, 2010

K=-CoBuchi Automata

LG

b

An (infinite) word is accepted
iff
all its runs visits at most K accepting states

In this example: words with at most K symbols b

Monday, February 15, 2010

Automata as a spec

® K-co-Buchi automata specify infinite words

® they can be used as RS specifications

Theorem

For any LTL specification @, one can construct a
K-co-Buchi automaton A such that:

D is realizable
iff
A is realizable

Construction: exptime and K = O(2/%))

Monday, February 15, 2010

Determinization

® K-Co-Buchi automata are easily determinizable

® extend subset construction with counters (up
to K+/)

® states: Functions F:Q —{0,I,...,K+1}

Monday, February 15, 2010

Playing on automata

System Environment

4)

Safety Winning Condition:

Avoid functions with some
counter K+/

- J

Monday, February 15, 2010

Controllable Predecessors

e PCF: subset of system positions

® safe controllable predecessors of P
Pre(P) = { F | 30O, vF’, ((Fo),F’)eT=F<P}

® greatest fixpoint Pre™ = winning region for System

Controllable Predecessors

|. partial order on counting functions:
F<4F if vg: F(q) < F(q)

2. if System wins from F’, she also wins from

3. Pre(.) preserves downward-closed sets

4. represent each (downward) set of the fixpoint
computation by its maximal elements

Monday, February 15, 2010

Symbolic Fixpoint

Computation

Symbolic Fixpoint

Computation

Symbolic Fixpoint
Computation

I (counting functions)

Pre(IF)

Pre(Pre(fF))

oooooooooooooooooooooo

Symbolic Fixpoint
Computation

I (counting functions)

Pre(IF)
Pre(Pre(F))

Pre*

oooooooooooooooooooooo

Symbolic Fixpoint
Computation

I (counting functions)

Pre(IF)
Pre(Pre(F))

Pre*

oooooooooooooooooooooo

Incremental Algorithm

® the bound K is very big (doubly exponential)

® if the spec is realizable with a “small” bound, it is
realizable with a “big”’ bound

® iterate over k=0, 1,...K

Monday, February 15, 2010

Incremental Algorithm

Incremental Algorithm

® is unrealizable for the System iff =@ is realizable
: for the Environment.

Monday, February 15, 2010

Experiments

® implementation in Perl (as Lily)

® if the spec is realizable, output a Moore machine
that realizes it

® formula to automata construction borrowed
from Lily (based on Wring [Somenzi, Bloem])

® significantly faster on all realizable Lily’s examples

® bottleneck: formula to automaton construction

Monday, February 15, 2010

Example

ossume StoB_REQL.D;

assuse G((StoB_REQD-1 * BLoS_ACKA=0) -> X(SteB_REQS=-1));
assume G((StoB_REQL-1 * BtoS_ACK1-0) -> X(StoB_REQL=1));

assuwe G(BtoS_ACKE=1 -> X(5tcB_REQS=8));
assuwe G(BtoS_ACK1=1 -> X(Sto8_REQL=8));

(BtoS_ACKR=D *

G((5toB_REQD=N * X(StoB REMD=1)) -» X(EtoS_ACKD=D * X(F(BtoS_ ACKR=1)))) *
G((BtoS_ACKDsN * X({StoB_REMDD)) -» X(EtoS_ACKRsD)) *

G(BLOS_ACKDeD + BLoS_ACKieD)

)H

(BLoS_ACKi.0 *

G((StoB_REQ1=0 * X(StoB_REQL=1)) —> X(BtoS_ACKi-8 * X(F(BLoS_ACKi=1)))) *
G((BtoS_ACK1=0 * %(StoB_REQ1=0)) -> X(BtoS_ACKi=8)) *

G(BLoS_ACKB=D + BtoS_ACKi=0)

);

assuse Rtol_ACKH=0;
assuse Rto8_ACK1=0;

ossume G(BtoR_REQR=N -> X(RtoB_ACKD=D));
#ossume G((BtoR_REQDel * RtoB_ACKOe1) -> X(RtoB_ACKD«1));

oszume G(BLoR_REQLD -> X(RtoB_ACK1«2));
scssume G((BLoR_REQlel * RLOB_ACK1e1) -> X(RtoB_ACKie1));

assume G(BLoR_FEQE-1 -> X(F(RLoB_ACKE2=1)));
assume G(BtoR_REQL=1 —> X(F(RtoB_ACK1=1)));

(BtoR_RE(D=H *

G(RECB_ACXD=1 —> X(BtoR_REQOsD)) *

G((BtoR_REQD=1 * RtoB_ACKD=R) -> X(BtoR_REQDs1)) *

G((BtoR_REMD=1 * X(BtoR_REQO=D)) -> X(BtoR_REDH U (BtoR_REQAD * BtoR_REQLs1))) *
G(F (BtoR_REQDs1)) *

G({BtoR_REMDR) + (BtoR_REQL«D))

(BtoR_REQL.D *

G(RECB_ACK1=1 -> X(BLoR_REQL.B)) *

G((BtoR_REQi=1 * RLoB_ACK1.8) -> X(BLoR_REQL-1)) *

G((BtoR_REQL=1 * X(BLoR_REQL-8)) -> X(BLoR_REQi-B U (BLoR_FEQL-D * BtoR_RE(D.1))) *
G(F (BtoR_REQ1=1)) *

G((BtoR_REQ=0) + (BtoR_REQL=8))

’

{BtoS_ACKA=H *

G{ (StoB_REQ=A * X(StoB_REQB=1)) -> X(BtoS_ACKB=0 * X(F(BtoS_ACKE=1)))) *
G{ (BLoS_ACKB=8 * X(StoB_REQ2=0)) -> X(BLoS_ACKB:0)) *

G(BLoS_ACKDD + BtoS_ACK1.8)

)

(BtoS_ACK1=0 *

G{ (StoB_REQ1=A * X(StoB_REQ1=1)) -> X(BtoS_ACK1=0 * X(F(BtoS_ACK1=1)))) *
G{ (BLoS_ACK1-8 * X(StoB_REQ1=0)) -»> X(BLoS_ACK1-0)) *

G(BtoS_ACKDa + BtoS_ACK1.8)

)

(BLoR_REQB=0 *

G(RtOB_ACKDe1 -> X(BtoR_REQ0.D)) *

G (BtoR_REQB=1 * REoB_ACKA=0) —> X(BtoR_REQB=1)) *

G((BtoR_REQ2=1 * X(BtoR_REQH=8)) -> X(BtoR_RENH=0 U (BtoR_REQB=H * BLoR_REQi=1))) *
G(F(BtoR_REQ81)) *

G((BtoR_REQB<D) + (BtoR_REQL0))

.....
...........................

Monday, February 15, 2010

Future Work ...

® compositionnality

® avoid automata construction to handle larger formulas

Monday, February 15, 2010

Future Work ...

® compositionnality

® avoid automata construction to handle larger formulas

.« 1 hHhank You

