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• continuous interaction with their environment

• non-terminating 

• have to respect real-time properties (e.g. safety 
properties)

• have to cope with the uncontrollable behavior of their 
environment

Environment Reactive System

Reactive Systems
Input Signals

Output Signals
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• continuous interaction with their environment

• non-terminating 

• have to respect real-time properties (e.g. safety 
properties)

• have to cope with the uncontrollable behavior of their 
environment

Environment Reactive System

Reactive Systems
Input Signals

Output Signals

Hard to design, needs synthesis from specification!
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Example
Environment Reactive System

Resource Access
 Controller

Process 1

Process 2

req1

req2

ack1

ack2
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Example
Environment Reactive System

Resource Access
 Controller

Process 1

Process 2

req1

req2

ack1

ack2

Executions: infinite sequences of sets of signals

{req1, req2} {ack1} {req1} {ack2} {req1} {ack1} ...
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Example
Environment Reactive System

Resource Access
 Controller

Process 1

Process 2

req1

req2

ack1

ack2

Properties we would like to ensure

Liveness property:   G ( reqi -> F acki )    i=1,2

Safety property:       G (¬ack1  ∨ ¬ack2)
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LTL Synthesis

Liveness property:   G ( reqi -> F acki )    i=1,2

Safety property:       G (¬ack1  ∨ ¬ack2)
LTL 
Spec

generate a RS that realizes the spec

All

All

ack1  ack2  
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LTL Synthesis

Liveness property:   G ( reqi -> F acki )    i=1,2

Safety property:       G (¬ack1  ∨ ¬ack2)
LTL 
Spec

generate a RS that realizes the spec

All

All

ack1  ack2  

Realizability 
Given an LTL spec, does there exists a RS 

such that all  its executions (whatever the environment 
does) satisfy the spec ?
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Unrealizable Spec

G ( ack1 -> F req1)

“Each time the system acknowledge, the environment 
eventually sends a request”
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Synthesis as Game

ack1 ack2 ack1 ack2

ack1 ack2

req1 req2

req1 req2 req1 req2 req1 req2 req1 req2
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Reactive System as a Strategy

ack1 ack2 ack1 ack2

ack1 ack2

req1 req2

req1 req2 req1 req2 req1 req2 req1 req2

All the infinite paths have to satisfy the spec
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• “classical” procedure [Pnueli, Rosner, 89]
LTL                Rabin Game

Existing Procedures

• 2ExpTime-Complete [Rosner, 92]

• if a spec is realizable, it is realizable by a 
finite-steate strategy
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Implemented in Lily [Jobstmann, Bloem]
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• “classical” procedure [Pnueli, Rosner, 89]
LTL                Rabin Game

Existing Procedures

• Safraless procedure [Kupferman, Vardi, 05]

• 2ExpTime-Complete [Rosner, 92]

LTL                    Büchi Game

• if a spec is realizable, it is realizable by a 
finite-steate strategy

• in this talk: LTL                    Safety Game

Implemented in Lily [Jobstmann, Bloem]

Needs Safra’s Determinization !
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K-CoBüchi Automata

An (infinite) word is accepted 
iff

all its runs visits at most K accepting states 

In this example: words with at most K symbols b
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• K-co-Büchi automata specify infinite words

• they can be used as RS specifications

Automata as a spec

Theorem
For any LTL specification Φ, one can construct a 
K-co-Büchi automaton A such that:

Φ is realizable
iff

A is realizable

Construction: exptime and  K = O(2|Φ|)
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• K-Co-Büchi automata are easily determinizable

• extend subset construction with counters (up 
to K+1)

• states:  Functions  F: Q        {0,1,...,K+1}

Determinization
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EnvironmentSystem

o1 F4

F5

i1

i2

F0,o1

o2

i1,i2

F3

Playing on automata

F0,o1F2F0

Safety Winning Condition:

Avoid functions with some 
counter K+1
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Controllable Predecessors
• P⊆F: subset of system positions 

• safe controllable predecessors of P                          
Pre(P) = { F | ∃o⊆O, ∀F’, ((F,o),F’)∈T⇒F’∈P}

PF F,o
∃ ∀

• greatest fixpoint Pre* = winning region for System
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Controllable Predecessors

1. partial order on counting functions:

2. if System wins from F’, she also wins from 

3. Pre(.) preserves downward-closed sets

4. represent each (downward) set of the fixpoint 
computation by its maximal elements

1.         F ≤d F’  if ∀q:  F(q) ≤ F’(q)
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Symbolic Fixpoint 
Computation

F(counting functions)
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Symbolic Fixpoint 
Computation

F

Pre(F)

(counting functions)

Monday, February 15, 2010



Symbolic Fixpoint 
Computation

F

Pre(F)

Pre(Pre(F))

(counting functions)
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Symbolic Fixpoint 
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Pre(Pre(F))

Pre*
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Symbolic Fixpoint 
Computation

F

Pre(F)

Pre(Pre(F))

Pre*

(counting functions)
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• the bound K is very big (doubly exponential)

• if the spec is realizable with a “small” bound, it is 
realizable with a “big” bound

• iterate over k=0,1,...,K

Incremental Algorithm
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• the bound K is very big (doubly exponential)

• if the spec is realizable with a “small” bound, it is 
realizable with a “big” bound

• iterate over k=0,1,...,K

Incremental Algorithm

Not reasonable for unrealizable specifications

  But by Martin’s determination theorem:

ϕ is unrealizable for the System iff ¬ϕ is realizable 
for the Environment.
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Experiments

• implementation in Perl (as Lily)

• if the spec is realizable, output a Moore machine 
that realizes it

• formula to automata construction borrowed 
from Lily (based on Wring [Somenzi, Bloem])  

• significantly faster on all realizable Lily’s examples

• bottleneck: formula to automaton construction
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Example
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• compositionnality

• avoid automata construction to handle larger formulas

Future Work ...
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Future Work ...

• compositionnality

• avoid automata construction to handle larger formulas

    ... Thank You
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