
Emmanuel Filiot
joint with Naiyong Jin and Jean-François Raskin

Université Libre de Bruxelles

FNRS contact day

Towards Efficient Synthesis
of LTL Specifications

Monday, February 15, 2010

• continuous interaction with their environment

• non-terminating

• have to respect real-time properties (e.g. safety
properties)

• have to cope with the uncontrollable behavior of their
environment

Environment Reactive System

Reactive Systems
Input Signals

Output Signals

Monday, February 15, 2010

• continuous interaction with their environment

• non-terminating

• have to respect real-time properties (e.g. safety
properties)

• have to cope with the uncontrollable behavior of their
environment

Environment Reactive System

Reactive Systems
Input Signals

Output Signals

Hard to design, needs synthesis from specification!
Monday, February 15, 2010

Example
Environment Reactive System

Resource Access
 Controller

Process 1

Process 2

req1

req2

ack1

ack2

Monday, February 15, 2010

Example
Environment Reactive System

Resource Access
 Controller

Process 1

Process 2

req1

req2

ack1

ack2

Executions: infinite sequences of sets of signals

{req1, req2} {ack1} {req1} {ack2} {req1} {ack1} ...

Monday, February 15, 2010

Example
Environment Reactive System

Resource Access
 Controller

Process 1

Process 2

req1

req2

ack1

ack2

Properties we would like to ensure

Liveness property: G (reqi -> F acki) i=1,2

Safety property: G (¬ack1 ∨ ¬ack2)

Monday, February 15, 2010

LTL Synthesis

Liveness property: G (reqi -> F acki) i=1,2

Safety property: G (¬ack1 ∨ ¬ack2)
LTL
Spec

generate a RS that realizes the spec

All

All

ack1 ack2

Monday, February 15, 2010

LTL Synthesis

Liveness property: G (reqi -> F acki) i=1,2

Safety property: G (¬ack1 ∨ ¬ack2)
LTL
Spec

generate a RS that realizes the spec

All

All

ack1 ack2

Realizability
Given an LTL spec, does there exists a RS

such that all its executions (whatever the environment
does) satisfy the spec ?

Monday, February 15, 2010

Unrealizable Spec

G (ack1 -> F req1)

“Each time the system acknowledge, the environment
eventually sends a request”

Monday, February 15, 2010

Synthesis as Game

ack1 ack2 ack1 ack2

ack1 ack2

req1 req2

req1 req2 req1 req2 req1 req2 req1 req2

Monday, February 15, 2010

Reactive System as a Strategy

ack1 ack2 ack1 ack2

ack1 ack2

req1 req2

req1 req2 req1 req2 req1 req2 req1 req2

All the infinite paths have to satisfy the spec
Monday, February 15, 2010

• “classical” procedure [Pnueli, Rosner, 89]
LTL Rabin Game

Existing Procedures

• 2ExpTime-Complete [Rosner, 92]

• if a spec is realizable, it is realizable by a
finite-steate strategy

Monday, February 15, 2010

• “classical” procedure [Pnueli, Rosner, 89]
LTL Rabin Game

Existing Procedures

• 2ExpTime-Complete [Rosner, 92]

• if a spec is realizable, it is realizable by a
finite-steate strategy

Needs Safra’s Determinization !

Monday, February 15, 2010

• “classical” procedure [Pnueli, Rosner, 89]
LTL Rabin Game

Existing Procedures

• Safraless procedure [Kupferman, Vardi, 05]

• 2ExpTime-Complete [Rosner, 92]

• if a spec is realizable, it is realizable by a
finite-steate strategy

LTL Büchi Game

Needs Safra’s Determinization !

Monday, February 15, 2010

Implemented in Lily [Jobstmann, Bloem]

• “classical” procedure [Pnueli, Rosner, 89]
LTL Rabin Game

Existing Procedures

• Safraless procedure [Kupferman, Vardi, 05]

• 2ExpTime-Complete [Rosner, 92]

• if a spec is realizable, it is realizable by a
finite-steate strategy

Needs Safra’s Determinization !

Monday, February 15, 2010

• “classical” procedure [Pnueli, Rosner, 89]
LTL Rabin Game

Existing Procedures

• Safraless procedure [Kupferman, Vardi, 05]

• 2ExpTime-Complete [Rosner, 92]

LTL Büchi Game

• if a spec is realizable, it is realizable by a
finite-steate strategy

• in this talk: LTL Safety Game

Implemented in Lily [Jobstmann, Bloem]

Needs Safra’s Determinization !

Monday, February 15, 2010

K-CoBüchi Automata

An (infinite) word is accepted
iff

all its runs visits at most K accepting states

In this example: words with at most K symbols b
Monday, February 15, 2010

• K-co-Büchi automata specify infinite words

• they can be used as RS specifications

Automata as a spec

Theorem
For any LTL specification Φ, one can construct a
K-co-Büchi automaton A such that:

Φ is realizable
iff

A is realizable

Construction: exptime and K = O(2|Φ|)
Monday, February 15, 2010

• K-Co-Büchi automata are easily determinizable

• extend subset construction with counters (up
to K+1)

• states: Functions F: Q {0,1,...,K+1}

Determinization

Monday, February 15, 2010

EnvironmentSystem

o1 F4

F5

i1

i2

F0,o1

o2

i1,i2

F3

Playing on automata

F0,o1F2F0

Safety Winning Condition:

Avoid functions with some
counter K+1

Monday, February 15, 2010

Controllable Predecessors
• P⊆F: subset of system positions

• safe controllable predecessors of P
Pre(P) = { F | ∃o⊆O, ∀F’, ((F,o),F’)∈T⇒F’∈P}

PF F,o
∃ ∀

• greatest fixpoint Pre* = winning region for System
Monday, February 15, 2010

Controllable Predecessors

1. partial order on counting functions:

2. if System wins from F’, she also wins from

3. Pre(.) preserves downward-closed sets

4. represent each (downward) set of the fixpoint
computation by its maximal elements

1. F ≤d F’ if ∀q: F(q) ≤ F’(q)

Monday, February 15, 2010

Symbolic Fixpoint
Computation

F(counting functions)

Monday, February 15, 2010

Symbolic Fixpoint
Computation

F

Pre(F)

(counting functions)

Monday, February 15, 2010

Symbolic Fixpoint
Computation

F

Pre(F)

Pre(Pre(F))

(counting functions)

Monday, February 15, 2010

Symbolic Fixpoint
Computation

F

Pre(F)

Pre(Pre(F))

Pre*

(counting functions)

Monday, February 15, 2010

Symbolic Fixpoint
Computation

F

Pre(F)

Pre(Pre(F))

Pre*

(counting functions)

Monday, February 15, 2010

• the bound K is very big (doubly exponential)

• if the spec is realizable with a “small” bound, it is
realizable with a “big” bound

• iterate over k=0,1,...,K

Incremental Algorithm

Monday, February 15, 2010

• the bound K is very big (doubly exponential)

• if the spec is realizable with a “small” bound, it is
realizable with a “big” bound

• iterate over k=0,1,...,K

Incremental Algorithm

Not reasonable for unrealizable specifications

Monday, February 15, 2010

• the bound K is very big (doubly exponential)

• if the spec is realizable with a “small” bound, it is
realizable with a “big” bound

• iterate over k=0,1,...,K

Incremental Algorithm

Not reasonable for unrealizable specifications

 But by Martin’s determination theorem:

ϕ is unrealizable for the System iff ¬ϕ is realizable
for the Environment.

Monday, February 15, 2010

Experiments

• implementation in Perl (as Lily)

• if the spec is realizable, output a Moore machine
that realizes it

• formula to automata construction borrowed
from Lily (based on Wring [Somenzi, Bloem])

• significantly faster on all realizable Lily’s examples

• bottleneck: formula to automaton construction

Monday, February 15, 2010

Example

Monday, February 15, 2010

• compositionnality

• avoid automata construction to handle larger formulas

Future Work ...

Monday, February 15, 2010

Future Work ...

• compositionnality

• avoid automata construction to handle larger formulas

 ... Thank You
Monday, February 15, 2010

