Safra's Determinization

Emmanuel Filiot

Sources: Lecture* by K. Narayan Kumar

Chennai Mathematical Institute, India

* pdf available at <u>http://www.cmi.ac.in/~kumar/</u>

Outline

- Introduction
- Preliminaries
- 2-Exponential Determinization Procedure
- Optimal Determinization Procedure by Safra

Introduction

- Non-deterministic Büchi word automata are not determinizable
- Safra gives a construction to go to Deterministic Rabin automata
- This construction is optimal 2^O(n.log n)

Why a lecture on it?

- Safra's procedure manipulates a complex state space (trees of subsets of states)
- most explanations are quite intricate
- in this lecture: structure of accepting runs to structure of the state space

Related Work

- Muller, 1963: uncorrect construction
- Mc Naughton, 1966. Gives a determinization to Muller automata.
- Safra, 1988. To Rabin automata, 2^O(n.log n)
- Muller/Schupp, 1995.

Outline

- Introduction
- Preliminaries
- 2-Exponential Determinization Procedure
- Optimal Determinization Procedure by Safra

alphabet $\Sigma = \{a, b\}$

Acceptance Condition

Visits *p* infinitely often

L(A) = ???

alphabet $\Sigma = \{a, b\}$

Acceptance Condition

Visits *p* infinitely often

L(A) = words w in which a occurs
finitely many times

alphabet $\Sigma = \{a, b\}$

Acceptance Condition

Visits *p* infinitely often

w = ababaaababbbbbbbbbb....r = qqqqqqqqqqpppppp....r' = qqqqqqqqqqqqqpppp.....

alphabet $\Sigma = \{a, b\}$

Acceptance Condition

Visits *p* infinitely often

L(A) = words w in which a occurs finitely many times

There is no deterministic NBW B s.t. L(A) = L(B)

Notations

- $A = (\Sigma, Q, i, F, \Delta)$
- Q: set of states with initial state i
- F: set of final states
- Δ : set of rules
- runs: r
- inf(r) = states that occur <u>infinitely</u> often in r
- fin(r) = states that occur finitely often in r

Rabin Automata

- Acceptance Condition: Finite set $\Phi = (I_i, F_i)_{1 \le i \le n}$ $F_i, E_i \subseteq Q$
- A run *r* is accepting if $\exists i:inf(r) \subseteq I_i, fin(r) = F_i$

Rabin Automata (Example)

• Finitely many a's

•
$$\Phi = \{ (\{p\}, \{q\}) \}$$

Outline

- Introduction
- Preliminaries
- 2-Exponential Determinization Procedure
- Optimal Determinization Procedure by Safra

Running Example

 $A = (\Sigma, Q, p, F, \delta)$ L(A) = "finitely many b"

Infinitely many runs: the deterministic automaton should simulate all those runs

Powerset Automaton

 $A_p = (2^Q, \Sigma, \delta_p, \{s\}, \{X \mid X \cap F \neq \emptyset\}) \text{ with } \delta_p(X, a) = \{q \mid \exists p \in X. \ q \in \delta(p, a)\}$

Too generous: abababababab is accepted

Change the acceptance criterion

- Let $r = S_0 S_1 S_2 S_3 S_4 S_5$... be a run of A_p on $w = a_0 a_1 a_2 a_3 a_4 a_5$
- Accept r if it can be decomposed into S_{i1}S_{i2}S_{i3}... such that:
 - $\forall k \forall q \in S_{i(k+1)} \exists q' \in S_{ik}$ such that there is a run from q to q' on $a_{ik}a_{ik+1}...a_{i(k+1)}$
 - this run visits an accepting state
- clearly A accepts w

Express it as a Büchi acceptance condition

- turn the previous acceptance condition into a Büchi acceptance condition
- in a deterministic way ...

Let
$$A_m = (Q_m, \Sigma, \delta_m, (\{s\}, \emptyset), \{(X, X) \mid X \subseteq Q\}$$
 where

$$Q_m = \{(X, Y) \mid Y \subseteq X \subseteq Q\}$$

$$\delta_m((X, Y), a) = (\delta_p(X, a), \delta_p(Y, a) \cup \delta(X, a) \cap F) \quad \text{if } X \neq Y$$

$$\delta_m((X, X), a) = (\delta_p(X, a), \delta_p(X, a) \cap F)$$

 $L(A_m) \subseteq L(A)$

aaaaaa... is not accepted

aaaaaa... is not accepted

Start A_m with initial state $(\{q\}, \emptyset)$ after a have been read

Non-determinism is needed only on a finite prefix

Definition: Automaton B

- run A

- non-deterministically choose to run A_m with initial state ({q}, \emptyset), where q is the state reached by A so far.

$$L(A) = L(B)$$

- Consider a run tree and an accepting path of it
- Suppose there is only one accepting path

What happens if we fork a copy of A_m at position p_0 with initial state $(\{p_0\}, \emptyset)$?

It might be the case this copy never reaches an accepting state of A_m (or only finitely many times)... but it can happen for finitely many positions p_i

$p_i \sim p_{i+1}$ if $\exists y \in \sum^* \cap suff(w) : \delta_p(p_i, xy) = \delta_p(p_{i+1}, y)$

Equivalence classes are made of consecutive nodes.

How many equivalence classes at most ?

Inclusions are strict: at most |Q| equivalence classes

$$\exists N_{0}, \forall i,j \geq N_{0}, p_{i} \sim p_{j}$$

Consequence: if we fork a copy of A_m at position p_{N0} , this copy will visit final states of A_m infinitely often

End of Proof.

Towards a deterministic Rabin

- Reminder: B = "run A and non-deterministically run A_m with initial state ({ q_f }, \emptyset) where q_f is a final state reached by A so far"
- How to turn B into a deterministic Rabin?
- Idea: run all the possible copies of A_m in parallel
 - for each final state q_f currently reached by A_p , fork a new copy of A_m with initial $(\{q_f\}, \emptyset)$
 - merge copies that reach the same states

Formally ...

 $Q_d = 2^Q \times (2^Q \times 2^Q \cup \{\bot\})^K \quad K = 2^{2n} + |F|$ $s_d = (\{s\}, \bot, \bot, \ldots \bot)$ $\delta_d((S, W_1, W_2 \ldots, W_K), a) =$

I/ First compute $V = (\delta_p(S, a), \delta_m(W_1, a), \delta_m(W_2, a) \dots \delta_m(W_K, a))$ 2/ for each final state $p \in \delta_p(S, a)$

add a copy of A_m with initial state ({p}, \emptyset)

at the lowest free slot in V 3/ If several copies have the same state in A_m , remove all but the one at lowest index

Acceptance: (F_i, I_i)

 F_i : tuples that contain \perp at ith component

 I_i : tuples that contain a final state of A_m at ith component

Correctness

- $L(A) \subseteq L(A_d)$: take an accepting run, after a finite prefix, there is a finite copy of A_m that visits final states infinitely often. In the tuple, this copy may move to lower components, but only finitely many times...
- $L(A_d) \subseteq L(A)$: Suppose that after finitely many steps, some component of the states visit final states infinitely often and is never equal to \bot , then it corresponds to a copy of A_m which is never merged (otherwise \bot will occur), and therefore this copy accepts the word, i.e. $L(A_d) \subseteq L(A_m) \subseteq L(A)$.

Outline

- Introduction
- Preliminaries
- 2-Exponential Determinization Procedure
- Optimal Determinization Procedure by Safra

Running Example

Α

L(A) = "infinitely many b"

Run Tree on abababa...

Run Tree on abababa...

Maintain ancestor-descendant relationship between copies

Use node names to refer to copies

The numbering respects the order the copies were forked

After reading a b

A

а

a,b

a,b

 (\mathbf{p})

Fork new copies for each final state of A

Bound the height by Q

- Let n_j be the child of n_i
- Merge n_i and n_j if n_i is labeled (X,Y) and n_j is labeled (X,Z) (keep n_i)
- i.e. the two copies n_i and n_j of A_m have merged

 \Rightarrow the height of the tree is bounded by |Q|

For each state, keep the left-most path that contains it

Bound The Width

The labels of the children of a node are pairwise disjoint \Rightarrow a node as at most |Q| children

Transition Function

- I/ Update all labels (X,Y) by $\delta_m((X,Y),a)$
- 2/ For all paths and all final states q_f, find the youngest occurrence of q_f and "fork a copy of A_m", i.e. create a new right-most child labeled {q_f}. Name this node by the smallest free node name.
- 3/ Merge descendant nodes with the same first component (keep the oldest copy)
- 4/ For all state q, remove q from all paths that contain it except the left-most

Acceptance Condition

- First: at each level we refine the label of the parent with disjoint labels
- we add at most |F| nodes
- \Rightarrow n = 3|Q| node names are sufficient
- Rabin AC: $(F_i, I_i) | \leq i \leq n$
- F_i = set of trees where node n_i does not occur
- I_i = set of trees where node n_i occurs and is labeled by an accepting state of A_m

Correctness (Sketch)

• $L(Safra) \subseteq L(A)$: if after a finite prefix, a node n_i always appears in the Safra states, and is labeled infinitely often by a final state of A_m , it means that the **same copy** of A_m visits a final state infinitely often. Therefore the word is accepted.

Correctness (Sketch)

- $L(A) \subseteq L(Safra)$: let $w \in L(A)$ and consider an accepting run ρ on w in its run-tree, and the run ρ ' of Safra on w
- **Claim I**: after a certain point, there is a node v that appears in all "Safra" states of ρ '
- **Claim 2**: this node is labeled infinitely often by final state of A_m

2nd component labels are useless

- The second component was needed to check if all current states visited an accepting state
- This is now the case when a merge occurs
- We can forget the 2nd component, but mark a label with a special symbol if its direct descendant have been merged

The End