Transducer Theory and Streaming Transformations

Emmanuel Filiot

Université Libre de Bruxelles

		VPTs	[Church Problem]	[Conclusion]
Finite State Aut	tomata			
• finite string	acceptors over a fi	nite alphal	pet Σ	
-	put tape, left-to-rig	•		

• finite set of states

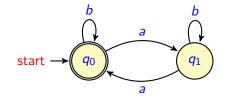
Definition (Finite State Automaton)

A finite state automaton (FA) on Σ is a tuple $A = (Q, I, F, \delta)$ where

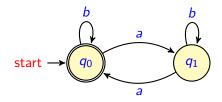
- Q is the set of states,
- $I \subseteq Q$, reps. $F \subseteq Q$ is the set of initial, resp. final, states,
- $\delta: Q \times \Sigma \to Q$ is the transition relation.

 $L(A) = \{w \in \Sigma^* \mid \text{there exists an accepting run on } w\}$

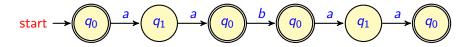
		VPTs	[Church Problem]	[Conclusion]
Finite State Au	tomata – Exar	nple		



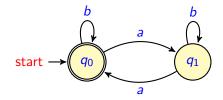
		VPTs	[Church Problem]	[Conclusion]
Finite State Aut	omata – Exam	ple		



Run on *aabaa*:



		VPTs	[Church Problem]	[Conclusion]
Finite State Aut	omata – Exam	ple		



Run on aabaa:

start
$$\rightarrow q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_0$$

 $L(A) = \{w \in \Sigma^* \mid w \text{ contains an even number of } a\}$

	VPTs	[Church Problem]	[Conclusion]
Properties of FA			

Expressiveness

 $FA = regular \ languages = MSO[+1] = regular \ expressions = ...$

Properties of FA

Expressiveness

$$FA = regular \ languages = MSO[+1] = regular \ expressions = ...$$

Closure Properties

- closed under Boolean operations (union, intersection, complement).
- closed under various extensions:
 - non-determinism (NFA): $\delta \subseteq Q \times \Sigma \times Q$
 - two-way input head (2NFA): $\delta \subseteq Q \times \Sigma \times \{-1, 0, 1\} \times Q$
 - regular look-ahead: $\delta \subseteq Q \times \Sigma \times Reg \times Q$
 - alternation: $\delta : Q \times \Sigma \to B(Q)$ (Boolean formulas over Q)

Properties of FA

Expressiveness

$$FA = regular \ languages = MSO[+1] = regular \ expressions = ...$$

Closure Properties

- closed under Boolean operations (union, intersection, complement).
- closed under various extensions:
 - non-determinism (NFA): $\delta \subseteq Q \times \Sigma \times Q$
 - two-way input head (2NFA): $\delta \subseteq Q \times \Sigma \times \{-1, 0, 1\} \times Q$
 - regular look-ahead: $\delta \subseteq Q \times \Sigma \times Reg \times Q$
 - alternation: $\delta: Q \times \Sigma \to B(Q)$ (Boolean formulas over Q)

Decision Problems

Membership, emptiness, universality, inclusion, equivalence \dots are decidable.

		VPTs	[Church Problem]	[Conclusion]
From Languages	s to Transduct	ions		

Let Σ and Δ be two finite alphabets.

Definition	
Language on Σ	Transduction from Σ to Δ
function from Σ^* to $\{0,1\}$	relation $R \subseteq \Sigma^* \times \Delta^*$
defined by automata	defined by transducers
accept strings	transform strings

transducer = automaton + output mechanism.

Finite State Transducers

- read-only left-to-right input head
- write-only left-to-right output head
- finite set of states

[Finite State Transducers] [Extensions of NFT] VPTs [Church Problem] [Conclusion] Finite State Transducers

- read-only left-to-right input head
- write-only left-to-right output head
- finite set of states

Definition (Finite State Transducers)

- A finite state transducer from Σ to Δ is a pair T = (A, O) where
 - $A = (Q, I, F, \delta)$ is the <u>underlying automaton</u>
 - *O* is an <u>output</u> morphism from δ to Δ^* .
 - If $t = q \xrightarrow{a} q' \in \delta$, then O(t) defines its <u>output</u>.
 - $q \xrightarrow{a|w} q'$ denotes a transition whose output is $w \in \Delta^*$.

[Finite State Transducers] [Extensions of NFT] VPTs [Church Problem] [Conclusion] Finite State Transducers

- read-only left-to-right input head
- write-only left-to-right output head
- finite set of states

Definition (Finite State Transducers)

- A finite state transducer from Σ to Δ is a pair T = (A, O) where
 - $A = (Q, I, F, \delta)$ is the <u>underlying automaton</u>
 - *O* is an <u>output</u> morphism from δ to Δ^* .
 - If $t = q \xrightarrow{a} q' \in \delta$, then O(t) defines its <u>output</u>.
 - $q \xrightarrow{a|w} q'$ denotes a transition whose output is $w \in \Delta^*$.

Two classes of transducers:

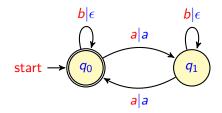
- DFT if *A* is deterministic
- NFT if A is non-deterministic.

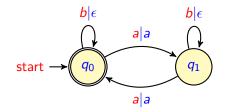
[Finite State Transducers]		VPTs	[Church Problem]	[Conclusion]
Some application	ons			

- language and speech processing (e.g. see work by Mehryar Mohri)
- model-checking infinite state-space systems¹
- verification of web sanitizers²
- string pattern matching

¹<u>A survey of regular model checking</u>, P. Abdulla, B. Jonsson, M. Nilsson, M. Saksena. 2004 ²see BEK, developped at Microsoft Research

Finite State Transducers – Example 1

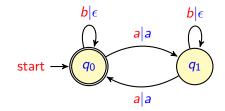


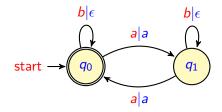


Run on *aabaa*:

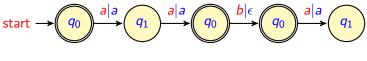
start
$$\rightarrow$$
 q_0 $\xrightarrow{a|a}$ q_1 $\xrightarrow{a|a}$ q_0 $\xrightarrow{b|\epsilon}$ q_0 $\xrightarrow{a|a}$ q_1 $\xrightarrow{a|a}$ q_0

 $T(aabaa) = a.a.\epsilon.a.a = aaaa.$



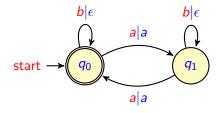


Run on *aaba*:



T(aaba) = undefined

[Finite State Transducers] [Extensions of NFT] VPTs [Church Problem] [Conclusion] Finite State Transducers – Example 1 [State Transducers – Example 1] [State Transducers

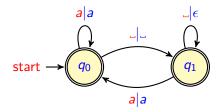


Semantics

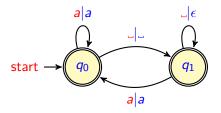
$$dom(T) = \{ w \in \Sigma^* \mid \#_a w \text{ is even} \}$$
$$R(T) = \{ (w, a^{\#_a w}) \mid w \in dom(T) \}$$

[Finite State Transducers]		VPTs	[Church Problem]	[Conclusion]
Finite State Tran	sducers – Exa	ample 2		

 $_$ = white space



 $_$ = white space



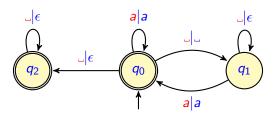
Semantics

Replace blocks of consecutive white spaces by a single white space.

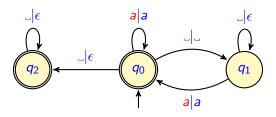
$$T(\Box aa \Box \Box a \Box \Box) = \Box aa \Box a \Box$$

Finite State Transducers – Example 3

 $_$ = white space



 $_$ = white space



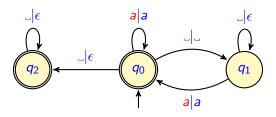
Semantics

Replace blocks of consecutive white spaces by a single white space $\ensuremath{\mathsf{and}}$

remove the last white spaces (if any).

 $T(\Box aa \Box a \Box a) = \Box aa \Box a$

 $_$ = white space



Semantics

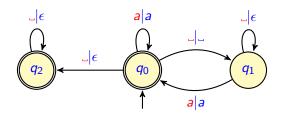
Replace blocks of consecutive white spaces by a single white space **and**

remove the last white spaces (if any).

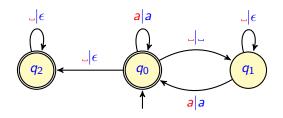
 $T(\Box aa \Box a \Box a) = \Box aa \Box a$

Non-deterministic but still defines a function: functional NFT

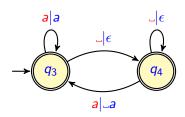
Is non-determinism needed ?

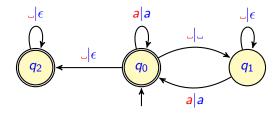


Is non-determinism needed ?



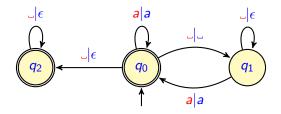
 \equiv





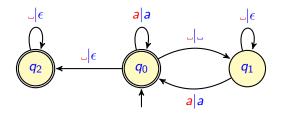
- extend automata subset construction with outputs
- output the longest common prefix

[Finite State Transducers]		VPTs	[Church Problem]	[Conclusion]
How to get a de	eterministic FT	?		



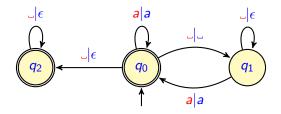
- extend automata subset construction with outputs
- output the longest common prefix

[Finite State Transducers]		VPTs	[Church Problem]	[Conclusion]
How to get a de	eterministic FT	?		

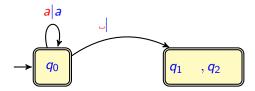


- extend automata subset construction with outputs
- output the longest common prefix

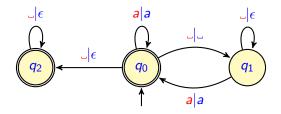
[Finite State Transducers]		VPTs	[Church Problem]	[Conclusion]
How to get a de	eterministic FT	?		



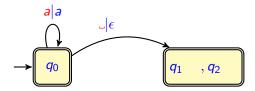
- extend automata subset construction with outputs
- output the longest common prefix



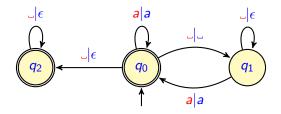
[Finite State Transducers]		VPTs	[Church Problem]	[Conclusion]
How to get a de	eterministic FT	?		



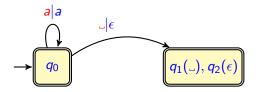
- extend automata subset construction with outputs
- output the longest common prefix



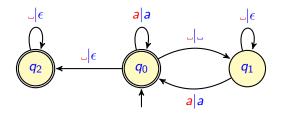
[Finite State Transducers]		VPTs	[Church Problem]	[Conclusion]
How to get a d	eterministic FT	?		



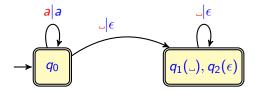
- extend automata subset construction with outputs
- output the longest common prefix



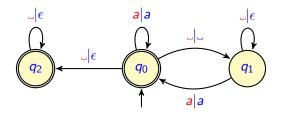
[Finite State Transducers]		VPTs	[Church Problem]	[Conclusion]
How to get a d	eterministic FT	?		



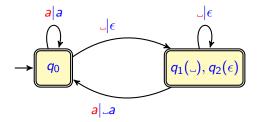
- extend automata subset construction with outputs
- output the longest common prefix



[Finite State Transducers]		VPTs	[Church Problem]	[Conclusion]
How to get a de	eterministic FT	?		



- extend automata subset construction with outputs
- output the longest common prefix



xtensions of NFT]

VPTs

[Church Problem

[Conclusion]

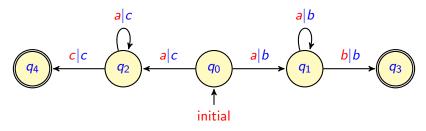
Can we always get an equivalent deterministic FT ?

Can we always get an equivalent deterministic FT ?

- not in general: DFT define functions, NFT define relations
- what about functional NFT ?

Can we always get an equivalent deterministic FT ?

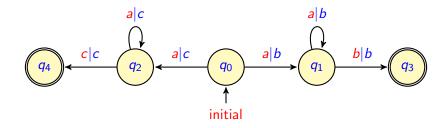
- not in general: DFT define functions, NFT define relations
- what about functional NFT ?

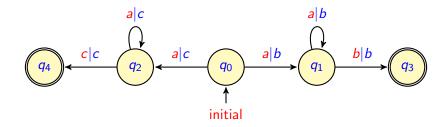


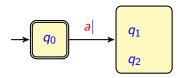
Semantics

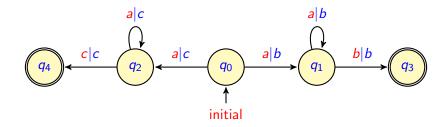
$$R(T): \begin{cases} a^n b \mapsto b^{n+1} \\ a^n c \mapsto c^{n+1} \end{cases}$$

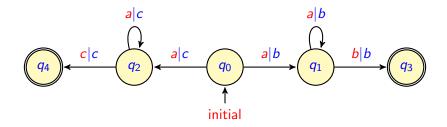
functional but not determinizable

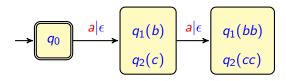


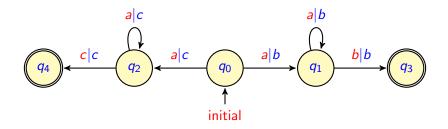


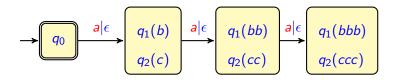


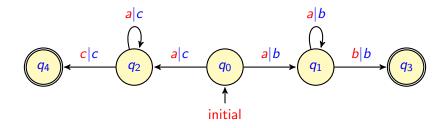


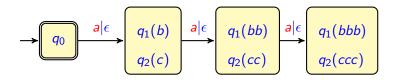












[Finite State Transducers]

Extensions of NFT]

VPTs

[Church Problem

How to guarantee termination of subset construction?

LAG

LAG(u, v) = (u', v') such that $u = \ell u'$, $v = \ell v'$ and $\ell = lcp(u, v)$.

E.g. LAG(abbc, abc) = (bc, c).

Finite State Transducers

Extensions of NFT]

VPTs

[Church Proble

[Conclusion]

How to guarantee termination of subset construction?

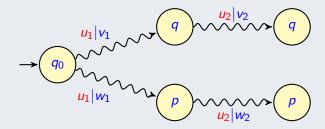
LAG

$$LAG(u, v) = (u', v')$$
 such that $u = \ell u'$, $v = \ell v'$ and $\ell = Icp(u, v)$.

E.g. LAG(abbc, abc) = (bc, c).

Lemma (Twinning Property)

Subset construction terminates iff for all such situations



it is the case that $LAG(v_1, w_1) = LAG(v_1v_2, w_1w_2)$.

VPTs

[Church P

[Conclusion]

Determinizability is decidable

Theorem (Choffrut 77, Beal Carton Prieur Sakarovitch 03)

Given a functional NFT T, the following are equivalent:

- it is determinizable
- Ithe twinning property holds.

Moreover, the twinning property is decidable in PTime.

Proof.

Intuition

- If TP holds, then subset construction terminates and produces an equivalent DFT
- for the converse, uses the fact that TP is machine-independent: for all $T \equiv T'$, $T \models TP$ iff $T' \models TP$.

VPTs

[Church Pro

[Conclusion]

Determinizability is decidable

Theorem (Choffrut 77, Beal Carton Prieur Sakarovitch 03)

Given a functional NFT T, the following are equivalent:

- it is determinizable
- Ithe twinning property holds.

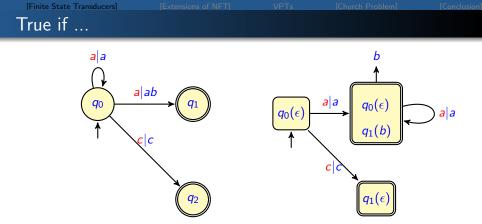
Moreover, the twinning property is decidable in PTime.

Proof.

Intuition

- If TP holds, then subset construction terminates and produces an equivalent DFT
- for the converse, uses the fact that TP is machine-independent: for all $T \equiv T'$, $T \models TP$ iff $T' \models TP$.

Almost true ...



- subsequential transducers are deterministic but can output a string in each accepting states
- in the previous theorem: "determinizable" ↔ "there exists an equivalent subsequential transducer"
- subsequential transducers ≡ DFT if last string symbol is unique

Application: analysis of streaming transformations

Bounded Memory Problem

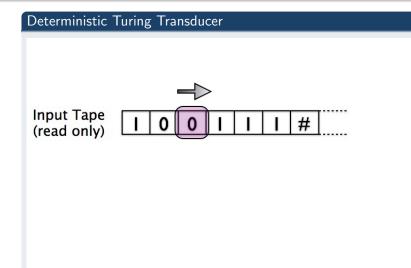
Hypothesis:

- input string is received as a (very long) stream
- output string is produced as a stream

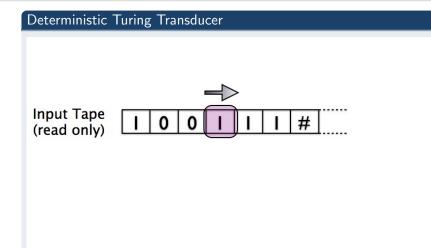
Input: a transformation defined by some functional NFT **Output:** can I realize this transformation with bounded memory ?

 $\exists B \in \mathbb{N} \cdot \forall u \in dom(T)$

T(u) can be computed with *B*-bounded memory ?



VPTs

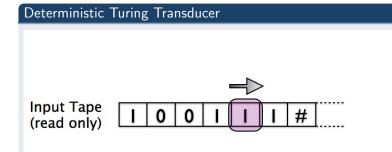


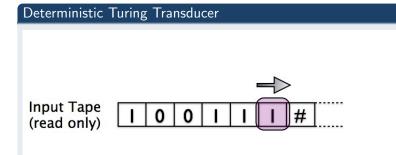
Finite State Transducers]	

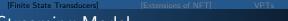
VPTs

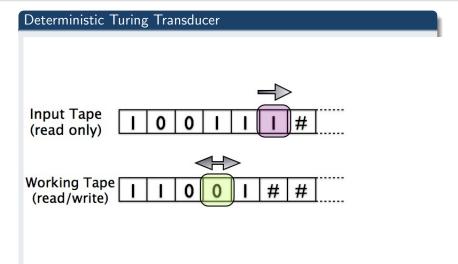
[Church Proble

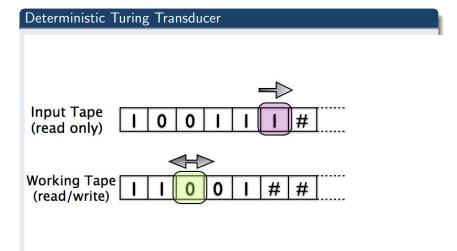
[Conclusion]

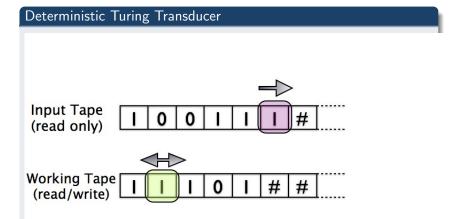


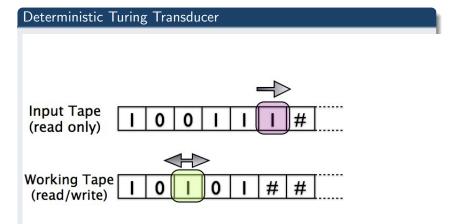


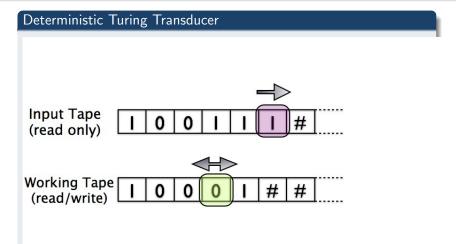


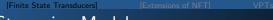


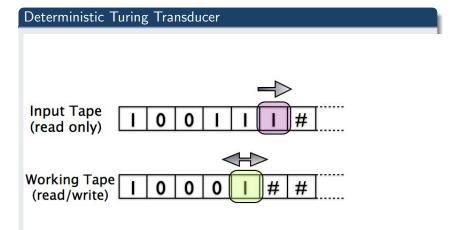


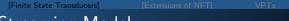


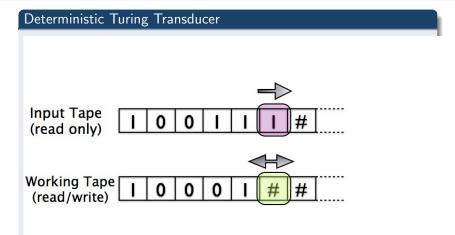


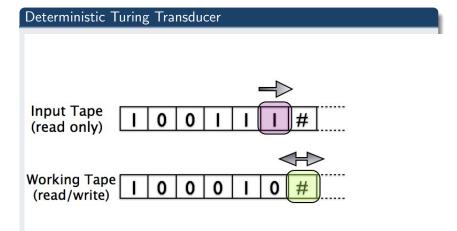


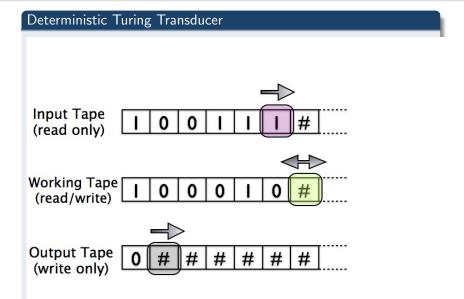


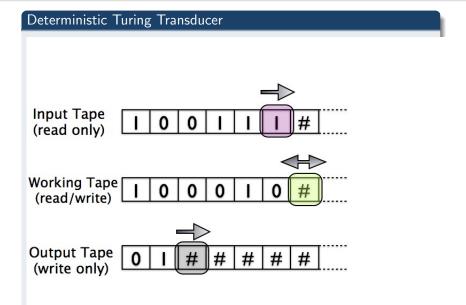


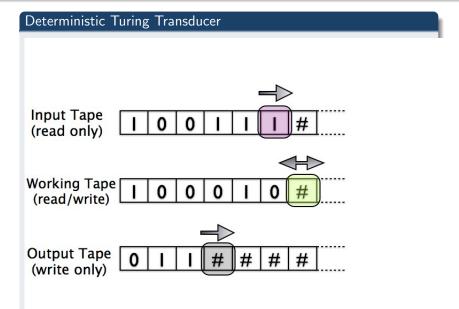


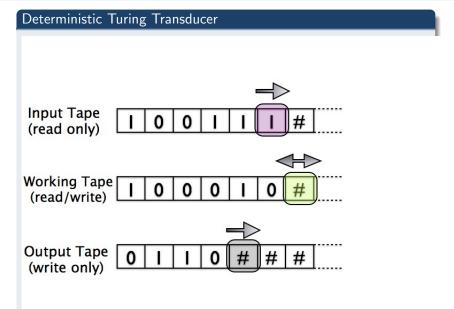


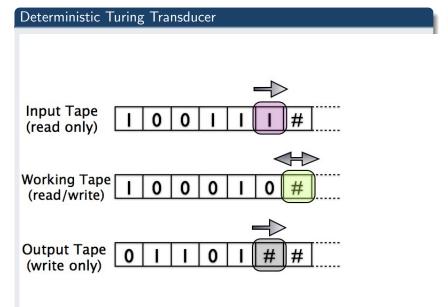


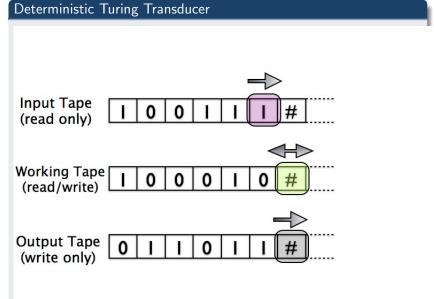


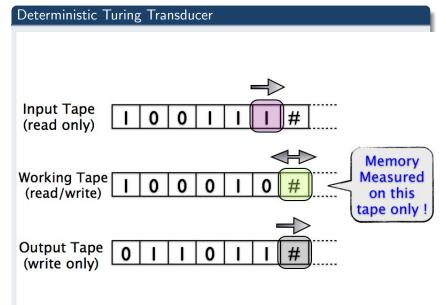












xtensions of NFT]

VPTs

[Church Proble

[Conclusion]

Bounded Memory Problem – Examples

$T_1: \left\{ egin{array}{l} a^nb\mapsto b^{n+1}\ a^nc\mapsto c^{n+1} \end{array} ight.$	Not bounded memory
$T_2: __a__b__ \mapsto _a_b$	Bounded memory

Bounded Memory Problem – Examples

$$T_1: \begin{cases} a^n b \mapsto b^{n+1} \\ a^n c \mapsto c^{n+1} \end{cases}$$
 Not bounded memory
$$T_2: __a__b__ \mapsto _a_b$$
Bounded memory

Theorem

For all functional NFT T, the following are equivalent:

- T is bounded memory
- Is determinizable
- T satisfies the twinning property.

Proof based on the following two observations:

- any DFT is bounded memory
- 2 bounded memory Turing Transducer \equiv DFT

xtensions of NFT]

VPTs

[Church Proble

[Conclusion]

Closure Properties of Finite State Transducers

Domain, co-domain

i.

The domains and co-domains of NFT are regular.

	T^{-1}	T	$T_1 \cup T_2$	$T_1 \cap T_2$	$T_1 \circ T_2$	
NFT			yes	no	yes	
DFT	no	no	no	no	yes	
Table: Closure Properties for NFT and DFT.						

VPTs

Closure Properties of Finite State Transducers

Domain, co-domain

The domains and co-domains of NFT are regular.

	T^{-1}	T	$T_1 \cup T_2$	$T_1 \cap T_2$	$T_1 \circ T_2$
NFT	no	no	yes	no	yes
DFT	no	no	no	no	yes
Table: Closure Properties for NFT and DFT.					

Non-closure by intersection

• $R(T_1) = \{(a^m b^n, c^m) \mid m, n \ge 0\}$

2
$$R(T_2) = \{(a^m b^n, c^n) \mid m, n \ge 0\}$$

③ $R(T_1) \cap R(T_2) = \{(a^n b^n, c^n) | n ≥ 0\}$

[Finite State Transducers]		VPTs	[Church Problem]	[Conclusion]
Decision problems	S			

 $\begin{array}{l} \text{Membership } (u,v) \in R(T)?\\ \text{Emptiness } R(T) = \emptyset?\\ \text{Type checking } T(L_{in}) \subseteq L_{out}?\\ \text{Equivalence } R(T_1) = R(T_2)?\\ \text{Inclusion } R(T_1) \subseteq R(T_2)? \end{array}$

÷.

	emptiness /	type checking	equiv /	
	membership	(vs NFA)	inclusion	
NFT	PTIME	PSpace-c	undec	
DFT	PTIME	PSpace-c	PTIME	
Table: Decision problems for NFT and DFT.				

Undecidability of equivalence and inclusion proved in [Griffiths68].

tensions of NET

VPTs

Functional Finite State Transducers

A transduction (transducer) is $\underline{functional}$ if each word has at most 1 image.

Theorem (Gurari and Ibarra 83)

Functionality is decidable in PTIME for NFT.

Theorem

The equivalence and inclusion of <u>functional</u> NFT is PSPACE-C.

Proof.

 T_1 is included in T_2 if and only if

- $dom(T_1) \subseteq dom(T_2)$, and
- $T_1 \cup T_2$ is functional.

k-valued Finite State Transducers

A transduction (transducer) is \underline{k} -valued if each word has at most k images.

Theorem (GI83, Web89, SdS08)

Let $k \in \mathbb{N}$ be fixed.

k-valuedness is decidable in PTIME for NFT.

Theorem (IK86, W<u>eb88)</u>

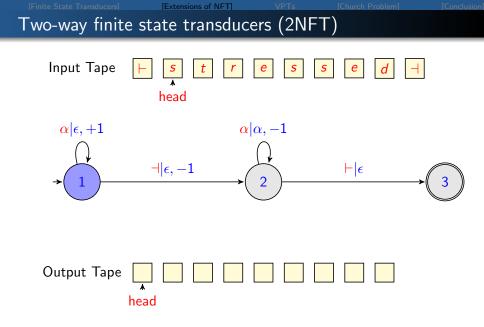
The equivalence and inclusion of <u>k-valued</u> NFT are PSPACE-C.

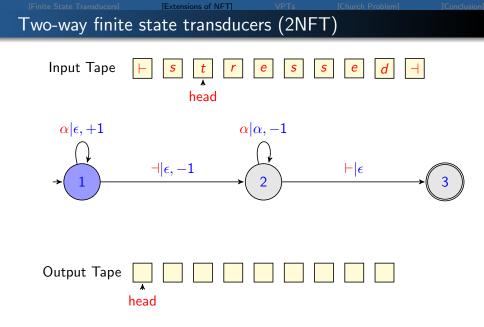
Extensions of NFT

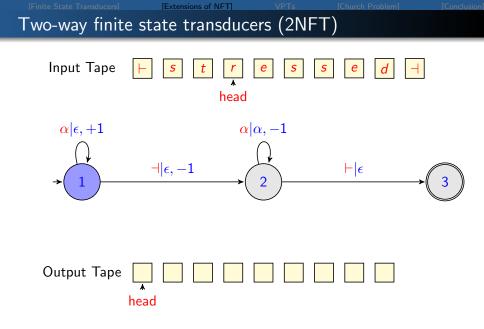
	[Extensions of NFT]	VPTs	[Church Problem]	[Conclusion]
Extensions of	NFT			

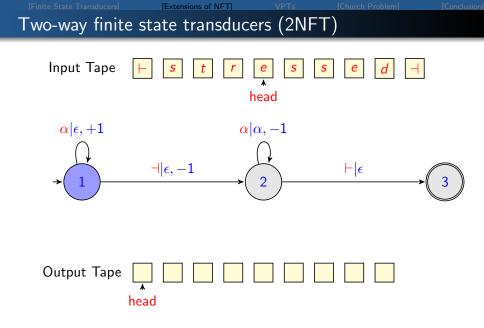
Various more expressive extensions have been considered:

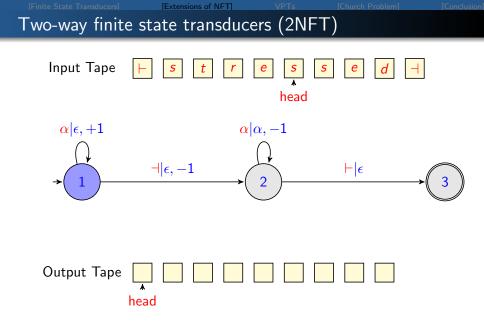
- two-way input tape
- string variables (Alur Cerny 2010)
- ø pushdown stack

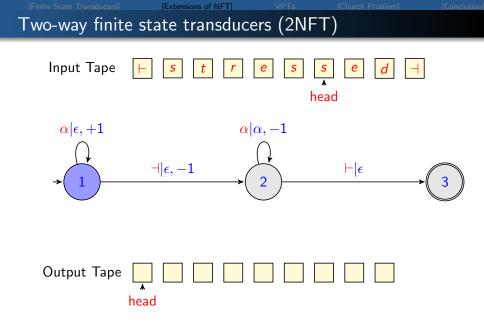


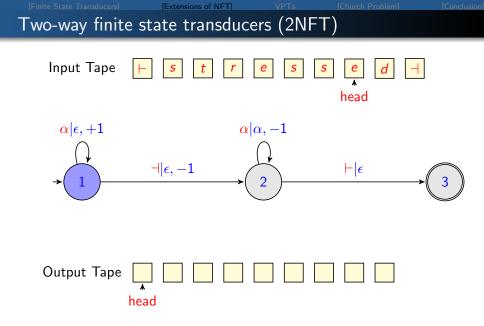


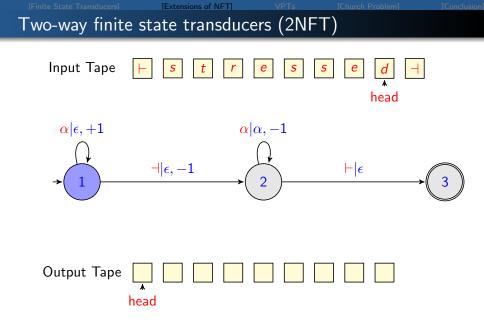


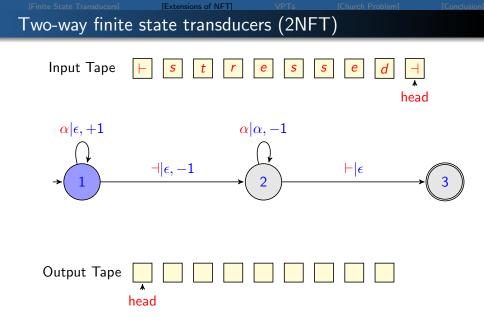


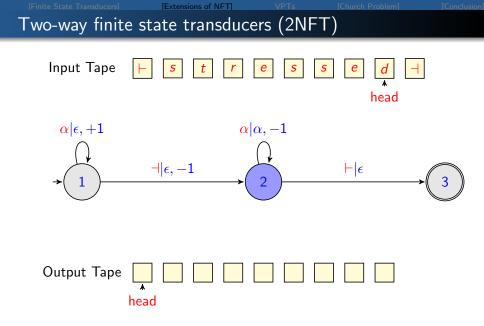


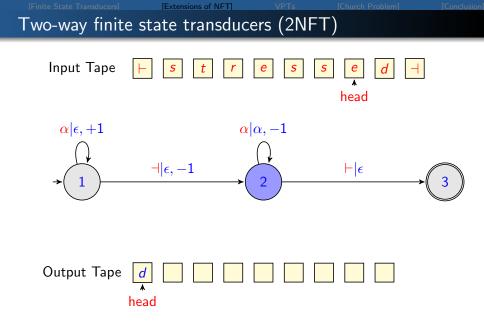


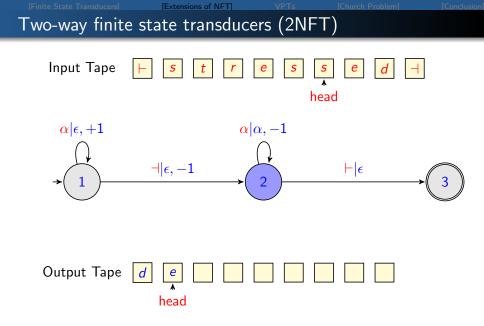


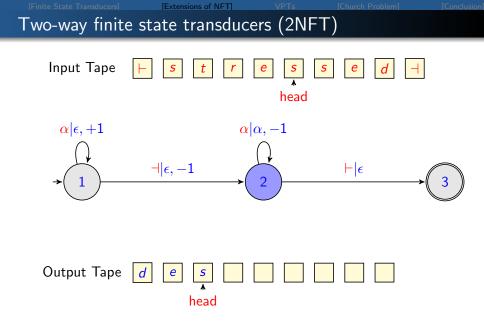


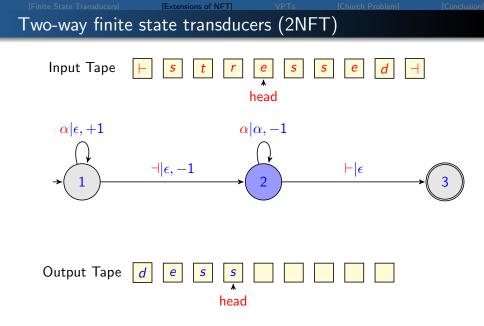


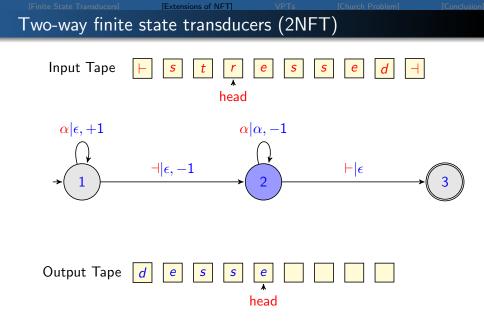


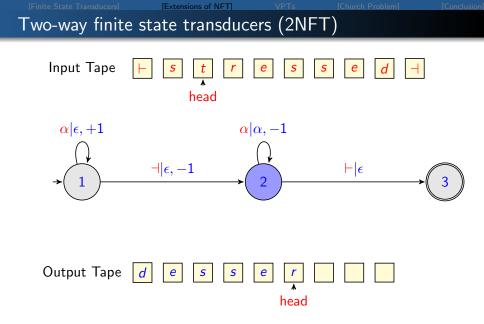


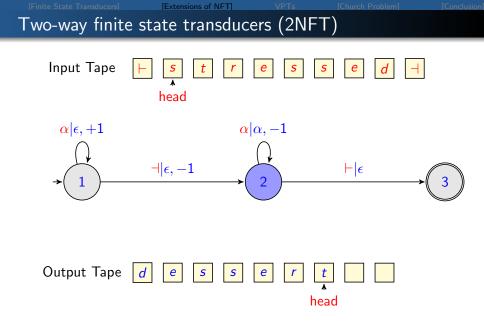


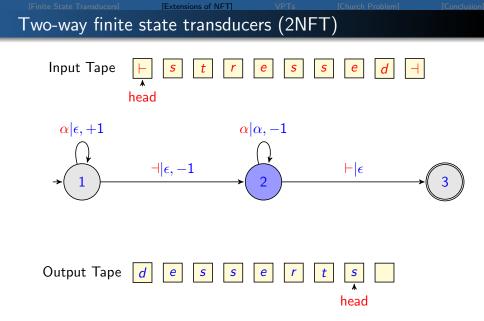


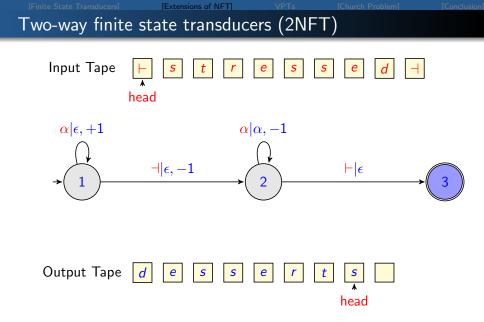












Two-way finite state transducers – Properties

Main Properties of 2NFT

- still closed under composition (Chytil Jakl 77)
- equivalence of functional 2NFT is decidable (Culik, Karhumaki, 87)
- functional 2NFT \equiv 2DFT (Hoogeboom Engelfriet 01, De Souza 13)

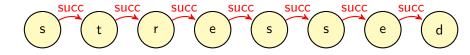
Logical Characterization (Hoogeboom Engelfriet 01)

 $2\text{DFT} \equiv \text{MSO}$ transductions

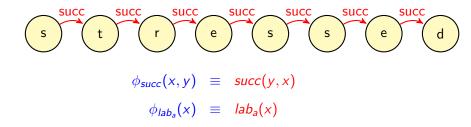
2DFT define regular functions.

- input string seen as the logical structure over $\{succ, (lab_a)_{a \in \Sigma}\}$
- output predicates defined with MSO formulas interpreted over the input structure

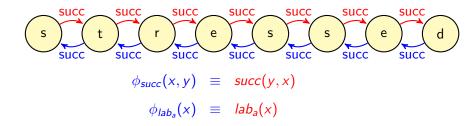
- input string seen as the logical structure over {succ, (lab_a)_{a∈Σ}}
- output predicates defined with MSO formulas interpreted over the input structure



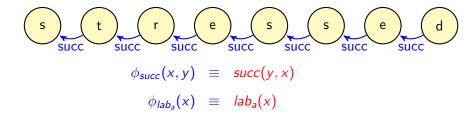
- input string seen as the logical structure over {succ, (lab_a)_{a∈Σ}}
- output predicates defined with MSO formulas interpreted over the input structure



- input string seen as the logical structure over {succ, (lab_a)_{a∈Σ}}
- output predicates defined with MSO formulas interpreted over the input structure



- input string seen as the logical structure over {succ, (lab_a)_{a∈Σ}}
- output predicates defined with MSO formulas interpreted over the input structure



Streaming String Transducers (Alur, Cerny, 2010)

[Extensions of NFT]

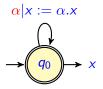
On every transitions, a finite set of variables can be updated by

- appending a string: x := x.u
- prepending a string: x := u.x
- concatenating two variables: x := yz

Streaming String Transducers (Alur, Cerny, 2010)

On every transitions, a finite set of variables can be updated by

- appending a string: x := x.u
- prepending a string: x := u.x
- concatenating two variables: x := yz

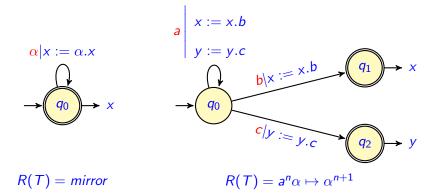


R(T) = mirror

Streaming String Transducers (Alur, Cerny, 2010)

On every transitions, a finite set of variables can be updated by

- appending a string: x := x.u
- prepending a string: x := u.x
- concatenating two variables: x := yz



Theorem (Alur Cerny 2010)

The following models are expressively equivalent:

- two-way DFT
- MSO transductions
- Ideterministic (one-way) streaming string transducers with copyless update

Moreover, SSTs have good algorithmic properties and have been used to analyse list processing programs (Alur Cerny 2011).

	[Extensions of NFT]	VPTs	[Church Problem]	[Conclusion]
Pushdown Trar	sducers			

Definition

A pushdown transducer is a pair (A, O) where A is a pushdown automaton and O is an output morphism.

(Bad) Properties

- closure under composition is lost
- Functionality, determinizability, equivalence and inclusion of functional transducers are lost.

[Finite State Transducers]

[Extensions of NFT]

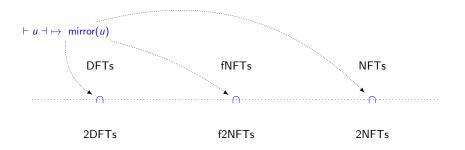
VPTs

[Church Problem]

[Conclusion]

Finite State Transducers – Summary

D="(input) deterministic" f="functional"

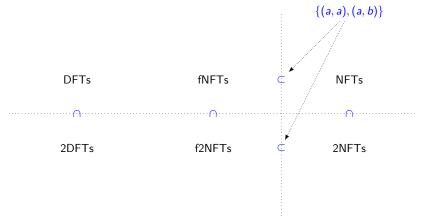


[Finite State Transducers] [Extensions of NFT] VPTs

[Church Prob

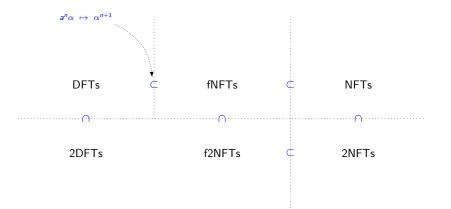
[Conclusion]

Finite State Transducers – Summary



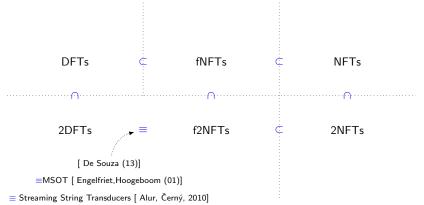
 [Finite State Transducers]
 [Extensions of NFT]
 VPTs
 [Church Problem]
 [Conclusion]

 Finite State Transducers – Summary



 [Finite State Transducers]
 [Extensions of NFT]
 VPTs
 [Church Problem]
 [Conclusion]

 Finite State Transducers – Summary



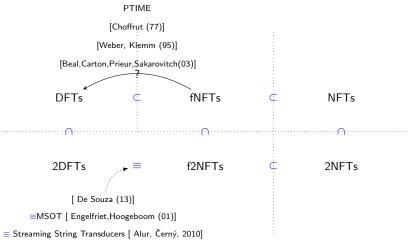
xtensions of NET1

VPTs

[Church Pro

[Conclusion]

Finite State Transducers – Summary



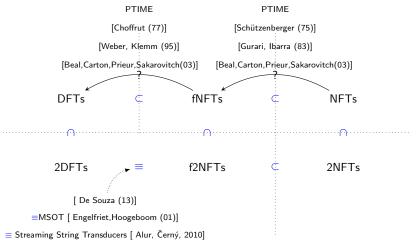
xtensions of NFT]

VPTs

[Church Proble

[Conclusion]

Finite State Transducers – Summary



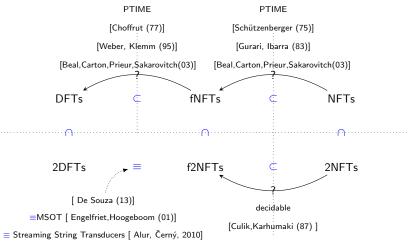
xtensions of NFT

VPTs

[Church Proble

[Conclusion]

Finite State Transducers – Summary



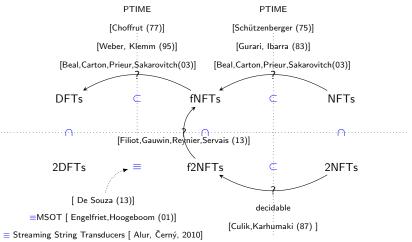
tensions of NET

VPTs

[Church Problem]

[Conclusion]

Finite State Transducers – Summary



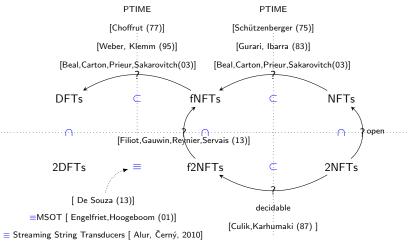
tensions of NET

VPTs

[Church Problem]

[Conclusion]

Finite State Transducers – Summary



tensions of NFT1

VPTs

A word about infinite strings

- most transducer models can be extended to (right-) infinite strings
- Büchi / Muller accepting conditions
- most of the results seen so far still hold with some complications ...
- determinization of one-way transducers: TP is too strong

• deterministic 2way < functional 2way:

$$\mathcal{T} : u \mapsto \begin{cases} a^{\omega} \text{ if infinite number of 'a'} \\ u \text{ otherwise} \end{cases}$$

• functional 2way \equiv determinitic 2way + ω -regular look-ahead $\equiv \omega$ -MSO transductions $\equiv \omega$ -SST (Alur,Filiot,Trivedi,12)

	VPTs	[Conclusion]

Transducers for Nested Words (\sim Trees)

Streaming XML Transformations

- XML are words with a nesting structure
- XML documents can be (very) wide but usually not deep
- in a streaming setting, not reasonable to keep the entire document in memory
- bounded memory streaming transformations ?

Streaming XML Transformations

- XML are words with a nesting structure
- XML documents can be (very) wide but usually not deep
- in a streaming setting, not reasonable to keep the entire document in memory
- bounded memory streaming transformations ?

Visibly Pushdown Transducers (VPTs)

- extend Visibly Pushdown Automata (Alur Madhusudan 04)
- well-suited for streaming nested words transformations
- bounded memory analysis for VPT transductions.

xtensions of NFT]

VPTs

Structured Alphabet

Definition (Structured Alphabet)

A structured alphabet, Σ , is a set $\Sigma = \Sigma_c \uplus \Sigma_i \uplus \Sigma_r$, where

- Σ_c are <u>call</u> symbols,
- Σ_i are internal symbols,
- Σ_r , are return symbols.
- a nested word is a word over a structured alphabet

 $c_1 c_2 a r_1$

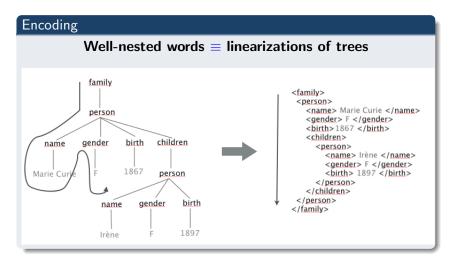
• it is well-nested if there is no pending call nor return symbols

*c*₁ *c*₂ *a r*₂ *b r*₁

xtensions of NFT1

VPTs

Nested Words vs Trees



nested words are well-suited to model tree streams

Visibly Pushdown Automata (VPAs) [Alur,Madhusudan,04]

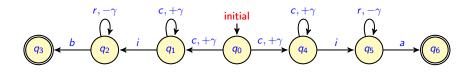
VPAs = Pushdown Automata on <u>structured</u> alphabet $<math display="block">\Sigma = \Sigma_c \uplus \Sigma_r \uplus \Sigma_i:$

- push one stack symbol on call symbols Σ_c
- pop **one** stack symbol on return symbols Σ_r
- don't touch the stack on internal symbols Σ_i
- in this talk, accept on empty stack and final state

Visibly Pushdown Automata (VPAs) [Alur,Madhusudan,04]

VPAs = Pushdown Automata on structured alphabet $\Sigma = \Sigma_c \uplus \Sigma_r \uplus \Sigma_i$:

- push **one** stack symbol on call symbols Σ_c
- pop **one** stack symbol on return symbols Σ_r
- don't touch the stack on internal symbols Σ_i
- in this talk, accept on empty stack and final state



 $L(A) = \{ c^n \ i \ r^n \ a \ | \ n > 0 \} \cup \{ c^n \ i \ r^n \ b \ | \ n > 0 \}$

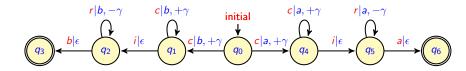
		VPTs	[Church Problem]	[Conclusion
Properties of VI	PA			

- NFA < VPA < PA
- close under all Boolean operations
- NFA algorithmic properties are preserved (equivalence, universality, ...)
- applications in
 - computer-aided verification
 - XML processing
- see http://www.cs.uiuc.edu/~madhu/vpa/

[Finite State Transducers] [Extensions of NFT] VPTs [Church Problem] [Conclution of NFT] Visibly Pushdown Transducers (VPTs) [Conclution of NFT] [

Definition

Pair (A, O) where A : VPA and O is an output morphism.



 $R(T) = \{ (c^n \ i \ r^n \ a, a^{2n}) \ | \ n > 0 \} \cup \{ (c^n \ i \ r^n \ b, b^{2n}) \ | \ n > 0 \}$

VPTs

Properties of Visibly Pushdown Transducers

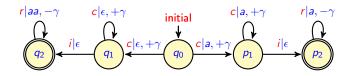
- NFT < VPT < PT
- dVPTs < (functional) VPT
- closed under composition if the output is well-nested
- closed under VPA-lookahead
- functionality is decidable in PTime
- k-valuedness is decidable
- equivalence of functional VPTs is decidable (in PTime of dVPTs)
- decidable typechecking problem (if the output is well-nested)

VPTs

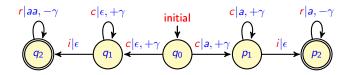
Properties of Visibly Pushdown Transducers

- NFT < VPT < PT
- dVPTs < (functional) VPT
- closed under composition if the output is well-nested
- closed under VPA-lookahead
- functionality is decidable in PTime
- k-valuedness is decidable
- equivalence of functional VPTs is decidable (in PTime of dVPTs)
- decidable typechecking problem (if the output is well-nested)
- **Open Problems**: equivalence of *k*-valued VPTs, determinizability
- more details in F. Servais's Phd thesis

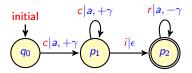
[Finite State Transducers] [Extensions of NFT] VPTs [Church Problem] Why is determinizability more difficult?



Why is determinizability more difficult?



It is determinizable by:



but lag increase arbitrarily in (p_1, q_1) .

ensions of NFT1

VPTs

[Church Probl

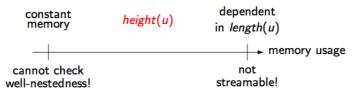
[Conclusion

Streamability Problem [F, Gauwin, Reynier, Servais, 11]

Streaming evaluation: avoid the storage of the whole input Fix a functional (non-deterministic) VPT T. How much memory is needed to compute T(u) from an input stream u?

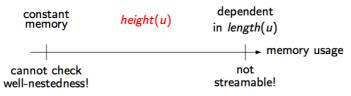
Streamability Problem [F, Gauwin, Reynier, Servais, 11]

Streaming evaluation: avoid the storage of the whole input Fix a functional (non-deterministic) VPT T. How much memory is needed to compute T(u) from an input stream u?



Streamability Problem [F, Gauwin, Reynier, Servais, 11]

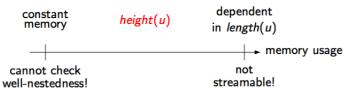
Streaming evaluation: avoid the storage of the whole input Fix a functional (non-deterministic) VPT T. How much memory is needed to compute T(u) from an input stream u?



Streamability Problem

Given a VPT T, decide if T defines a transformation that can be evaluated with memory O(f(height(u)))? Streamability Problem [F, Gauwin, Reynier, Servais, 11]

Streaming evaluation: avoid the storage of the whole input Fix a functional (non-deterministic) VPT T. How much memory is needed to compute T(u) from an input stream u?



Streamability Problem

Given a VPT T, decide if T defines a transformation that can be evaluated with memory O(f(height(u)))?

Decidable in NP for VPTs

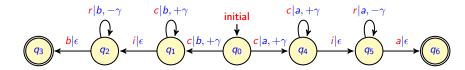
		VPTs	[Church Problem]	[Conclusion]
Determinizability	v is too strong			

Obs: Deterministic VPTs are always streamable (no output lag)

Obs: Deterministic VPTs are always streamable (no output lag)

However: determinizable VPTs < streamable VPTs:

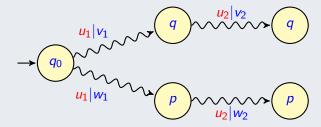
$$R(T): c^n \ i \ r^n \ \alpha \ \mapsto \alpha^{2n} \quad n > 0$$



Streamable but not determinizable !

		VPTs	[Conclusion]
Twinning Prope	rty for VPTs		

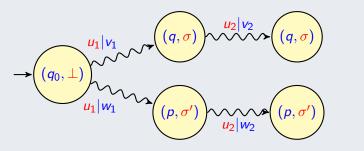
For all such situations



it is the case that $LAG(v_1, w_1) = LAG(v_1v_2, w_1w_2)$.

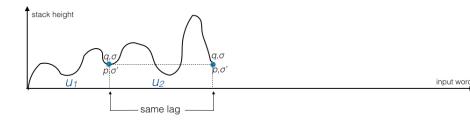
Definition

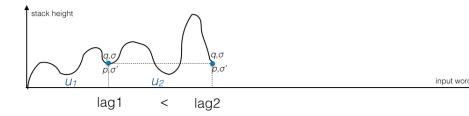
For all such situations

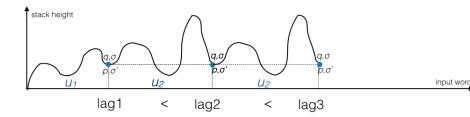


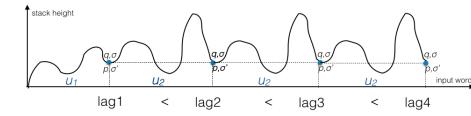
it is the case that $LAG(v_1, w_1) = LAG(v_1v_2, w_1w_2)$.

		VPTs	[Church Problem]	[Conclusion]
Twinning Proper	ty for VPTs			









		VPTs	[Church Problem]	[Conclusion]
Twinning Proper	ty for VPTs			

Theorem

Given a functional VPT T, T is streamable iff the twinning property holds. It can be decided in NPtime.

Twinning Property for VPTs

Theorem

Given a functional VPT T, T is streamable iff the twinning property holds. It can be decided in NPtime.

- TP is machine-independent: streamable VPTs is class of **transductions**.
- decidability based on reversal-bounded pushdown counter machines
- same result extend to **strongly streamable** (memory depends only on *current height*)

		VPTs	[Church Problem]	[Conclusion]
Other tree trans	ducer models			

• top-down tree transducers

 $q(f(x_1,\ldots,x_n)) \rightarrow C[q_1(x_{i_1}),\ldots,q_p(x_{i_p})]$

(see TATA 3 book

macro tree transducers

```
fun q(t1 t2 t3 t4 t)=
if t = a() then
return F (t1,t2)
else
if t=g(u,v) then
return C(q'(t1,t2,u), q''(t3,t4,v))
```

• see Joost Engelfriet and Sebastian Maneth's work

³*Tree Automata Techniques and Applications*, tata.gforge.inria.fr

Church Problem

xtensions of NFT]

VPTs

Church Problem

Church Problem (aka Church Synthesis Problem)

Definition (Church 57)

- *R* a relation, or *requirements*, from a domain *D* to a domain *D*'
- synthesize a program P such for all $X \in D$, $(X, P(X)) \in R$.

xtensions of NFT]

VPTs

Church Problem

Church Problem (aka Church Synthesis Problem)

Definition (Church 57)

- *R* a relation, or *requirements*, from a domain *D* to a domain *D*'
- synthesize a program P such for all $X \in D$, $(X, P(X)) \in R$.

Reactive System Synthesis

Let Σ_{in} and Σ_{out} be to finite alphabets.

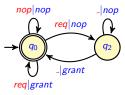
- reactive systems continuously react to stimuli produced by some **uncontrollable** environment
- $D = \Sigma_{in}^{\omega}, D' = \Sigma_{out}^{\omega}$
- *R* is a synchronous relation given by a (non-deterministic) symbol-to-symbol Büchi transducer
- *P* is a Mealy machine (deterministic symbol-to-symbol transducer)

tensions of NFT1

VPTs

Reactive System Synthesis: Example

- $\Sigma_{in} = \{req, nop\}$
- $\Sigma_{out} = \{grant, nop\}.$
- Requirement *R*: if there is a request, it must be eventually granted

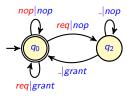


tensions of NFT

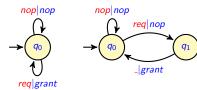
VPTs

Reactive System Synthesis: Example

- $\Sigma_{in} = \{req, nop\}$
- $\Sigma_{out} = \{grant, nop\}.$
- Requirement *R*: if there is a request, it must be eventually granted



• Possible programs (Mealy machines) that realize R:



Definition

- turn-based game between two players
- Player *in* chooses input symbols in \sum_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Definition

- turn-based game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player in (Σ_{in}) : Player *out* (Σ_{out}) :

Definition

- turn-based game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player in (Σ_{in}) : i_1 Player out (Σ_{out}) :

Definition

- turn-based game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player in (Σ_{in}) : i_1 Player out (Σ_{out}) : o_1

Definition

- turn-based game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player in (Σ_{in}) : i_1 i_2 Player out (Σ_{out}) : o_1

Definition

- turn-based game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player in (Σ_{in}) : i_1 i_2 Player out (Σ_{out}) : o_1 o_2

Definition

- turn-based game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player in (Σ_{in}) : i_1 i_2 i_3 Player out (Σ_{out}) : o_1 o_2

Definition

- turn-based game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player in (Σ_{in}) : i_1 i_2 i_3 Player out (Σ_{out}) : o_1 o_2 o_3

Definition

- turn-based game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player in (Σ_{in}) : i_1 i_2 i_3 i_4 Player out (Σ_{out}) : o_1 o_2 o_3

Definition

- turn-based game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player in (Σ_{in}) : i_1 i_2 i_3 i_4 Player out (Σ_{out}) : o_1 o_2 o_3 o_4

Definition

- turn-based game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player in (Σ_{in}) : i_1 i_2 i_3 i_4 i_5 Player out (Σ_{out}) : o_1 o_2 o_3 o_4

Definition

- turn-based game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player in (Σ_{in}) : i_1 i_2 i_3 i_4 i_5 Player out (Σ_{out}) : o_1 o_2 o_3 o_4 o_5

Definition

- turn-based game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player in (Σ_{in}) : i_1 i_2 i_3 i_4 i_5 ... Player out (Σ_{out}) : o_1 o_2 o_3 o_4 o_5 ...

Definition

- turn-based game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player in (Σ_{in}) : i_1 i_2 i_3 i_4 i_5 ... Player out (Σ_{out}) : o_1 o_2 o_3 o_4 o_5 ...

• **Def:** Player *out* wins if $(i_1i_2i_3..., o_1o_2o_3...) \in R$.

Definition

- turn-based game between two players
- Player *in* chooses input symbols in Σ_{in}
- Player *out* chooses output symbols in Σ_{out}
- they play during an infinite number of rounds.

Player in (Σ_{in}) : i_1 i_2 i_3 i_4 i_5 ... Player out (Σ_{out}) : o_1 o_2 o_3 o_4 o_5 ...

- **Def:** Player *out* wins if $(i_1i_2i_3..., o_1o_2o_3...) \in R$.
- **Prop:** There exists a program that realizes the requirements *R* iff Player *out* has a winning strategy.

State of the Art

- reactive system synthesis from ω -regular specifications is decidable (Büchi Landweber 69)
- reactive system synthesis from LTL specifications is 2-ExpTime-c (Pnueli Rosner 89)
- several tools for LTL synthesis:
 - Lily (Jobstmann Bloem 06)
 - Acacia (Filiot Jin Raskin 09)
 - Unbeast (Ehlers 10)
- very active community in game theory for synthesis
 - quantitative games
 - multi-player games
 - stochastic games
 - ...

VPTs

Acacia Tool

GenBuf spec from IBM

Scalable example

From 1-page long to 4-page long specifications

server to b 0) server to b 0 server to

b2s_ack0=0;

G{(a5b_req0=0 * X{a2b_req0=1}) -> X{b2s_ack0=0 * X{F(b2s_ack0=1)}); G{(b2s_ack0=0 * X{a2b_req0=1}) -> X{b2s_ack0=0}); G{b2s_ack0=0 * b2s_ack1=0};

second sb_l (spec_unit sb_l)

assume s2b_reql=0; assume G((s2b_reql=1 * b2s_ackl=0) -> X(s2b_reql=1)); assume G(b2s_ackl=1 -> X(s2b_reql=0));

b2s_ack1=0;

G{(a2b_reql=0 * X(a2b_reql=1)) -> X(b2s_ackl=0 * X(F(b2s_ackl=1)))); G{(b2s_ackl=0 * X(a2b_reql=0)) -> X(b2s_ackl=0)); G{b2s_ackl=0 * b2s_ackl=0);

assume G(b2r_reg0=0 -> X(r2b_ack0=0)); assume G(b2r_reg0=1 -> X(F(r2b_ack0=1)));

```
b2r_req0=0;
```

```
G(r2b_ackd=1 -> x(b2r_req0=0));
G((b2r_req0=1 + r2b_ackd=0) -> X(b2r_req0=1));
G((b2r_req0=1 + x(b2r_req0=0)) -> X(b2r_req0=0 U (b2r_req0=0 + b2r_req1=
G((b2r_req0=0) + (b2r_req1=0));
G((a2b_req0=1 + a2b_req1=1) -> X((b2r_req0=1 + b2r_req1=1)));
```

```
securit bs_l)
securit bs_l
securit
securit bs_l
se
```

http://lit2.ulb.ac.be/acaciaplus

- reactive systems are streaming machines
- from a relation R, extract a function f such that:
 - $dom(R) \subseteq dom(f)$
 - 2 for all $u \in dom(R)$, $f(u) \in R(u)$.
 - Is a deterministic symbol-to-symbol transducer
- this problem is known as the uniformization problem in transducer theory
- equivalently, is there a bounded memory (symbol-to-symbol) function f such that $f \subseteq R$ and $dom(R) \subseteq dom(f)$?

Conclusion

	VPTs	[Church Problem]	[Conclusion
Contributions			

- finite transducers have good closure and algorithmic properties
- nicely extend to visibly pushdown transducers
- streamability problem \equiv synthesis problem

sions of NFT1

VPTs

Open Problems and Future Work

Open problems

- equivalence of k-valued VPTs
- determinizability of VPTs
- extension of streaming results to more expressive transducers, e.g. macro tree transducers
- shift from reactive systems to list processing program synthesis

- E. Filiot, O. Gauwin, P.-A. Reynier, F. Servais: From Two-Way to One-Way Finite State Transducers, LICS 2013.
- R. Alur, E. Filiot, A. Trivedi: <u>Regular Transformations of Infinite Strings</u>, LICS 2012.
- E. Filiot and F. Servais: <u>Visibly Pushdown Transducers with Look Ahead</u>, SOFSEM 2012.
- E. Filiot, O. Gauwin, P.-A. Reynier and F. Servais: <u>Streamability of</u> <u>Nested Word Transductions</u>, FSTTCS 2011.
- E. Filiot, N. Jin, J.-F. Raskin: <u>Antichain and Compositional Algorithms</u> for LTL Synthesis, FMSD 2011.
- E. Filiot, J.-F. Raskin, P.-A. Reynier, F. Servais and J.-M. Talbot: Properties of Visibly Pushdown Transducers, MFCS 2010.
- J.-F. Raskin, F. Servais: Visibly Pushdown Transducers, ICALP 2008.