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ABSTRACT. We consider the problem of evaluating in streaming (i.e. in a single left-to-right pass) a nested
word transduction with a limited amount of memory. A transduction T is said to be height bounded memory
(HBM) if it can be evaluated with a memory that depends only on the size of T and on the height of the input
word. We show that it is decidable in NPTIME for a nested word transduction defined by a visibly pushdown
transducer (VPT), if it is HBM. In this case, the required amount of memory may depend exponentially on the
height of the word. We exhibit a sufficient, decidable condition for a VPT to be evaluated with a memory that
depends quadratically on the height of the word. This condition defines a class of transductions that strictly
contains all determinizable VPTs.

1 Introduction
Memory analysis is an important tool for ensuring system robustness. In this paper we focus on the
analysis of programs processing nested words [2], i.e., words with a recursive structure, like program
traces, XML documents, or more generally unranked trees. On huge inputs, a streaming mode is
often used, where the nested word is read only once, from left to right. This corresponds to a depth-
first left-to-right traversal when the nested word is considered as a tree. For such programs, dynamic
analysis problems have been addressed in various contexts. For instance, runtime verification detects
dynamically, and as early as possible, whether a property is satisfied by a program trace [18, 6].
On XML streams, some algorithms outputting nodes selected by an XPath expression at the earliest
possible event have also been proposed [7, 13]. These algorithms allow minimal buffering [3].

In this paper, we investigate static analysis of memory usage for a special kind of programs
on nested words, namely programs defined by transducers. We assume that the transducers are
functional and non-deterministic. Non-determinism is required as input words are read from left
to right in a single pass and some actions may depend on the future of the stream. For instance, the
XML transformation language XSLT [11] uses XPath for selecting nodes where local transformations
are applied, and XPath queries relies on non-deterministic moves along tree axes, such as a move
to any descendant. We require our transducers to be functional, as we are mainly interested by
transformation languages like XSLT [11], XQuery [8] and XQuery Update Facility [20], for which
any transformation maps each XML input document to a unique output document.

Visibly pushdown transducers (VPTs) form a subclass of pushdown transducers adequate for
dealing with nested words and streaming evaluation, as the input nested word is processed from left
to right. They are visibly pushdown automata [2] extended with arbitrary output words on transitions.
VPTs capture interesting fragments of the aforementioned XML transformation languages that are
amenable to efficient streaming evaluation, such as all editing operations (insertion, deletion, and
relabeling of nodes, as used for instance in XQuery Update Facility [20]) under all regular tests. Like
for visibly pushdown automata, the stack behavior of VPTs is imposed by the type of symbols read by
the transducer. Those restrictions on stack operations allow to decide functionality and equivalence
of functional VPTs in PTIME and EXPTIME respectively [12].
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Some transductions defined by (functional and non-deterministic) VPTs cannot be evaluated
efficiently in streaming. For instance, swapping the first and last letter of a word can be defined
by a VPT as follows: guess the last letter and transform the first letter into the guessed last letter,
keep the value of the first letter in the state, and transform any value in the middle into itself. This
transformation requires to keep the entire word in memory until we can verify that the guess was
correct. It is not reasonable in practice as for instance XML documents can be very huge.

Our aim is thus to identify decidable classes of transductions for various memory requirements
that are suitable to space-efficient streaming evaluation. We first consider the requirement that a
transducer can be implemented by a program using a bounded memory (BM), i.e. computing the
output word using a memory independent of the size of the input word. However when dealing with
nested words in a streaming setting, the bounded memory requirement is quite restrictive. Indeed,
even performing such a basic task as checking that a word is well-nested or checking that a nested
word belongs to a regular language of nested words requires a memory dependent on the height (the
level of nesting) of the input word [22]. This observation leads us to the second question: decide,
given a transducer, whether the transduction can be evaluated with a memory that depends only on the
size of the transducer and the height of the word (but not on its length). In that case, we say that the
transduction is height bounded memory (HBM). This is particularly relevant to XML transformations
as XML documents can be very long but have usually a small depth [5]. HBM does not specify how
memory depends on the height. A stronger requirement is thus to consider HBM transductions whose
evaluation can be done with a memory that depends polynomially on the height of the input word.

Contributions First, we give a general space-efficient evaluation algorithm for functional VPTs.
After reading a prefix of an input word, the number of configurations of the (non-deterministic)
transducer as well as the number of output candidates to be kept in memory may be exponential in
the size of the transducer and the height of the input word (but not in its length). Our algorithm
produces as output the longest common prefix of all output candidates, and relies on a compact
representation of sets of configurations and remaining output candidates (the original output word
without the longest common prefix). We prove that it uses a memory polynomial in the size of the
transducer, linear in the height of the input word, and linear in the maximal length of a remaining
output candidate.

We prove that BM is equivalent to subsequentiability for finite state transducers (FSTs), which
is known to be decidable in PTIME. BM is however undecidable for arbitrary pushdown transducers
but we show that it is decidable for VPTs in NPTIME.

Like BM, HBM is undecidable for arbitrary pushdown transductions. We show that it is de-
cidable in NPTIME for transductions defined by VPTs. In particular, we show that the previously
defined algorithm runs in HBM iff the VPT satisfies some property, which is an extension of the so
called twinning property for FSTs [10] to nested words. We call it the horizontal twinning property,
as it only cares about configurations of the transducers with stack contents of identical height. This
property only depends on the transduction, i.e. is preserved by equivalent transducers.

When a VPT-transduction is height bounded memory, the memory needed may be exponential
in the height of the word. We thus refine VPT-transductions to twinned transductions for which
performing the transformation with our algorithm uses a memory quadratic in the height of the input
word. This class is characterized by a twinning property that takes the height of the configurations
into account. A VPT satisfying this twinning property is called twinned. We show, via a non-
trivial reduction to the emptiness of pushdown automata with bounded reversal counters, that it is
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decidable in NPTIME whether a VPT is twinned. Moreover, the most challenging result of this paper
is to show that being twinned depends only on the transduction and not on the VPT that defines
it. Thus, this property indeed defines a class of transductions. As a consequence of this result, all
subsequentializable VPTs are twinned, because subsequential VPTs trivially satisfy the twinning
property. The class of twinned transductions captures a strictly larger class than subsequentializable
VPTs while staying in the same complexity class for evaluation, i.e. polynomial space in the height
of the input word when the transducer is fixed.

Related Work In the XML context, visibly pushdown automata based streaming processing has
been extensively studied for validating XML streams [17, 22, 4, 21]. The validation problem with
bounded memory is studied in [4] when the input is assumed to be a well-nested word and in [22, 21]
when it is assumed to be a well-formed XML document (this problem is still open). Querying XML
streams has been considered in [14]. It consists in selecting a set of tuples of nodes in the tree
representation of the XML document. For monadic queries (selecting nodes instead of tuples), this
can be achieved by a functional VPT returning the input stream of tags, annotated with Booleans
indicating selection by the query. However, functional VPTs cannot encode queries of arbitrary
arities. The setting for functional VPTs is in fact different to query evaluation, because the output
has to be produced on-the-fly in the right order, while query evaluation algorithms can output nodes
in any order: an incoming input symbol can be immediately output, while another candidate is still
to be confirmed. This makes a difference with the notion of concurrency of queries, measuring the
minimal amount of candidates to be stored, and for which algorithms and lower bounds have been
proposed [3]. VPTs also relate to tree transducers [12], for which no comparable work on memory
requirements is known. When allowing two-way access on the input stream, more space-efficient
algorithms for XML validation [16] and querying [19] have been proposed.

2 Visibly Pushdown Languages and Transductions
Words and nested words In this paper, we consider nested words accessed in streaming. Their
nesting structure is thus discovered on-the-fly, so we consider a finite alphabet Σ partitioned into
three disjoint sets Σc, Σr and Σι, denoting respectively the call, return and internal alphabets. We
denote by Σ∗ the set of (finite) words over Σ and by ε the empty word. The length of a word u is
denoted by |u|. For all words u, v ∈ Σ∗, we denote by u ∧ v the longest common prefix of u and
v. More generally, for any non-empty finite set of words V ⊆ Σ∗, the longest common prefix of V,
denoted by lcp(V), is inductively defined by lcp({u}) = u and lcp(V ∪ {u}) = lcp(V) ∧ u. The
set of well-nested words Σ∗wn is the smallest subset of Σ∗ such that Σ∗ι ⊆ Σ∗wn and for all c ∈ Σc, all
r ∈ Σr, all u, v ∈ Σ∗wn, cur ∈ Σ∗wn and uv ∈ Σ∗wn. Let u = α1 . . . αn ∈ Σ∗ be a prefix of a well-
nested word. A position i ∈ {1, . . . , n} is a pending call if αi ∈ Σc and for all j ≥ i, αi . . . αj 6∈ Σ∗wn.
The height of u is the maximal number of pending calls on any prefix of u, i.e.

h(u) = max1≤i≤n|{k | 1 ≤ k ≤ i, αk is a pending call of α1 . . . αi}|

For instance, h(crcrcc) = h(ccrcrr) = 2. In particular, for well-nested words, the height corresponds
to the usual height of the nesting structure of the word.

Given two words u, v ∈ Σ∗, the delay of u and v, denoted by ∆(u, v), is the unique pair of
words (u′, v′) such that u = (u ∧ v)u′ and v = (u ∧ v)v′. For instance, ∆(abc, abde) = (c, de).
Informally, in a word transduction, if there are two output candidates u and v during the evaluation,
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we are sure that we can output u ∧ v and ∆(u, v) is the remaining suffixes we still have to keep in
memory.

Visibly pushdown transducers (VPTs) As finite-state transducers extend finite-state automata
with outputs, visibly pushdown transducers extend visibly pushdown automata [2] with outputs [12].
To simplify notations, we suppose that the output alphabet is Σ, but our results still hold for an ar-
bitrary output alphabet. Informally, the stack behavior of a VPT is similar to the stack behavior of
visibly pushdown automata (VPA). On a call symbol, the VPT pushes a symbol on the stack and
produces some output word (possibly empty), on a return symbol, it must pop the top symbol of the
stack and produce some output word (possibly empty) and on an internal symbol, the stack remains
unchanged and it produces some output word. Formally:

DEFINITION 1. A visibly pushdown transducer (VPT) on finite words over Σ is a tuple T =
(Q, I, F, Γ, δ) where Q is a finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q the
set of final states, Γ is the stack alphabet, δ = δc ] δr ] δι the (finite) transition relation, with
δc ⊆ Q× Σc × Σ∗ × Γ×Q, δr ⊆ Q× Σr × Σ∗ × Γ×Q, and δι ⊆ Q× Σι × Σ∗ ×Q.

A configuration of a VPT is a pair (q, σ) ∈ Q× Γ∗. A run of T on a word u = a1 . . . al ∈ Σ∗

from a configuration (q, σ) to a configuration (q′, σ′) is a finite sequence ρ = {(qk, σk)}0≤k≤l such
that q0 = q, σ0 = σ, ql = q′, σl = σ′ and for each 1 ≤ k ≤ l, there exist vk ∈ Σ∗ and γk ∈ Γ such
that either (qk−1, ak, vk, γk, qk) ∈ δc and σk = σk−1γk or (qk−1, ak, vk, γk, qk) ∈ δr and σk−1 = σkγk,
or (qk−1, ak, vk, qk) ∈ δι and σk = σk−1. The word v = v1 . . . vl is called an output of ρ. We write

(q, σ)
u/v−−→ (q′, σ′) when there exists a run on u from (q, σ) to (q′, σ′) producing v as output. We

denote by ⊥ the empty word on Γ. A configuration (q, σ) is accessible (resp. is co-accessible) if

there exist u, v ∈ Σ∗ and q0 ∈ I (resp. q f ∈ F) such that (q0,⊥) u/v−−→ (q, σ) (resp. such that

(q, σ)
u/v−−→ (q f ,⊥)). A transducer T is reduced if every accessible configuration is co-accessible.

Given any VPT, computing an equivalent reduced VPT can be performed in polynomial time [9]∗.
In this paper, we assume all VPTs to be reduced. A transducer T defines the binary word relation

JTK = {(u, v) ∈ Σ∗ × Σ∗ | ∃q ∈ I, q′ ∈ F, (q,⊥) u/v−−→ (q′,⊥)}.
A transduction is a binary relation R ⊆ Σ∗ × Σ∗. We say that a transduction R is a VPT-

transduction if there exists a VPT T such that R = JTK. For any input word u ∈ Σ∗, we denote
by R(u) the set {v | (u, v) ∈ R}. Similarly, for a VPT T, we denote by T(u) the set JTK(u). A
transduction R is functional if for all u ∈ Σ∗, R(u) has size at most one. If R is functional, we
identify R(u) with the unique image of u if it exists. A VPT T is functional if JTK is functional, and
this can be decided in PTIME [12]. The class of functional VPTs is denoted by fVPT. The domain of
T (denoted by Dom(T)) is the domain of JTK. Note that the domain of T contains only well-nested
words, which is not necessarily the case of the codomain.

EXAMPLE 2. Consider the VPT T of Fig. 1 represented in plain arrows. The left and right parts
accept the same input words except for the last letter of the word. The domain of T is Dom(T) =
{cnrn | n ≥ 2} ∪ {ccnrnr′ | n ≥ 1}. Any word cnrn is translated into ancn, and any word ccnrnr′ is
translated into bn+1cn+1. Therefore the translation of the first sequence of calls depends on the last
letter r or r′. This transformation cannot be evaluated with a bounded amount of memory, but with a
memory which depends on the height n of the input word.

∗The reduction of VPAs in [9] trivially extends to VPTs.
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ip3 p2 p1 q3q1 q2
c/a, γr/c, γr/c, γ c/b, γ r/c, γ r′/c, γ

c/a, γr/c, γ c/b, γ r/c, γ

c/b, γc/a, γ

Figure 1: A functional VPT with Σc = {c}, Σr = {r, r′} and Σι = {a, b}

Finite state transducers (FSTs) A finite state transducer (FST) on an alphabet Σ is a tuple (Q, I, F, δ)
where Q is a finite set, I, F ⊆ Q and δ ⊆ Q× Σ× Σ∗ × Q with the standard semantics. This defi-
nition corresponds to the usual definition of real-time FSTs, as there is no ε-transitions. We always
consider real-time FSTs in this paper, so we just call them FSTs.

A subsequential FST (resp. VPT) is a pair (T, Ψ) where T is an (input) deterministic FST
(resp. VPT) and Ψ : F → Σ∗. The outputs of u by (T, Ψ) are the words v.Ψ(q) whenever
there is a run of T on u producing v and ending up in some accepting state q.

Given an integer k ∈ N and a VPT T, one can define an FST, denoted by FST(T, k), which is
the restriction of T to input words of height less than k. The transducer is naturally constructed by
taking as states the configurations (q, σ) of T such that |σ| ≤ k.

3 Online Evaluation Algorithm of VPT-Transductions
We present an online algorithm LCPIN to evaluate functional word transductions defined by fVPTs.
For clarity, we present this algorithm under some assumptions, without loss of generality. First, input
words of our algorithms are words u ∈ Σ∗ concatenated with a special symbol $ /∈ Σ, denoting the
end of the word. Second, we only consider input words without internal symbols, as they can easily
be encoded by successive call and return symbols. Third, input words are supposed to be valid, in the
sense that they produce an output. It is indeed easy to extend our algorithms in order to raise an error
message when the input is not in the domain: this happens when no run of the VPT applies on the
input.

The core task of this algorithm is to maintain the configuration for each run of the fVPT T on
the input u, and produce its output on-the-fly. As T is reduced, functionality ensures that, for a given
input word u, and for every accessible configuration (q, σ) of T, there is at most one v such that

(qi,⊥)
u/v−−→ (q, σ) with qi ∈ I. Hence, a configuration is a triple (q, σ, w) where q is the current

state of the run, σ its corresponding stack content, and w the part of the output that has been read but
not output yet. We call such a configuration d-configuration and write Dconfs(T) = Q× Γ∗ × Σ∗

for the set of d-configurations of T. Algorithm LCPIN relies on two main features.

Compact representation First, the set of current d-configurations is stored in a compact structure
that shares common stack contents. Consider for instance the VPT T1 in Fig. 2(a). After reading cc,
current d-configurations are {(q0, γ1γ1, aa), (q0, γ1γ2, ab), (q0, γ2γ1, ba), (q0, γ2γ2, bb)}. Hence
after reading cn, the number of current d-configurations is 2n. However, the transition used to update
a d-configuration relates the stack symbol and the output word. For instance, the previous set is the
set of tuples (q0, η1η2, α1α2) where (ηi, αi) is either (γ1, a) or (γ2, b). Based on this observation, we
propose a data structure avoiding this blowup. As illustrated in Fig. 2(b) to 2(d), this structure is a
directed acyclic graph (DAG). Nodes of this DAG are tuples (q, γ, i) where q ∈ Q, γ ∈ Γ and i ∈N

is the depth of the node in the DAG. Each edge of the DAG is labelled with a word, so that a branch of
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q0 q1

c/a, γ1

c/b, γ2

r1/ε, γ1

r1/ε, γ1

r2/ε, γ2

(a) VPT T1.

#

(q0,⊥, 0)

(q0, γ1, 1)(q0, γ2, 1)

a b

(b) After reading c.

#

(q0,⊥, 0)

(q0, γ1, 1) (q0, γ2, 1)

(q0, γ1, 2) (q0, γ2, 2)

a b

a

b a

b

(c) After reading cc.

#

(q0,⊥, 0)

(q1, γ1, 1)(q1, γ2, 1)

aa ba

(d) After reading ccr1.

Figure 2: Data structure used by LCPIN.

this DAG, read from the root # to the leaf, represents a d-configuration (q, σ, v): q is the state in the
leaf, σ is the concatenation of stack symbols in traversed nodes, and v is the concatenation of words on

edges. For instance, in the DAG of Fig. 2(c), the branch # −→ (q0,⊥, 0) b−→ (q0, γ2, 1) a−→ (q0, γ1, 2)
encodes the d-configuration (q0, γ2γ1, ba) of the VPT of Fig. 2.(a). However, this data structure
cannot store any set of accessible d-configurations of arbitrary functional VPTs: at most one delay w
has to be assigned to a d-configuration. Thus we assume all fVPTs to be reduced in this paper.

Computing outputs Second, after reading a prefix u′ of a word u, LCPIN will have output the
common prefix of all corresponding runs, i.e. lcpin(u′, T) = lcp(reach(u′)) where reach(u′) =

{v | ∃(q0, q, σ) ∈ I ×Q× Γ∗, (q0,⊥) u′/v−−→ (q, σ)}. When a new input symbol is read, the DAG
is first updated. Then, a bottom-up pass on this DAG computes lcpin(u′, T) in the following way.
For each node, let ` be the largest common prefix of labels of outgoing edges. Then ` is removed
from these outgoing edges, and concatenated at the end of labels of incoming edges. At the end,
the largest common prefix of all output words on branches is the largest common prefix of words on
edges outgoing from the root node #.

Let out 6=(u′) be the maximal size of outputs of T on u′ where their common prefix is removed:
out 6=(u′) = maxv∈reach(u′) |v| − |lcpin(u′, T)| and outmax

6= (u) its maximal value over prefixes of u:
outmax
6= (u) = maxu′ prefix of u out 6=(u′). We prove the following complexity results for LCPIN:

PROPOSITION 3. Let T be an fVPT, and u ∈ Σ∗. The space used by LCPIN for computing T(u) is
in O(|Q|2 · |Γ|2 · (h(u) + 1) · outmax

6= (u)), and processing each symbol of u is in time polynomial in
|Q|, |Γ|, |δ|, h(u), outmax

6= (u) and |Σ|.

4 Bounded Memory Evaluation Problems
In this section, we consider two classes of transductions: bounded memory and height bounded
memory transductions. Intuitively, the first one corresponds to transductions whose evaluation is in
constant memory if we fix the machine that defines the transduction, while for the second one the
evaluation is in constant memory if we fix both the machine and the height of the input word.

Turing Transducers In order to formally define the complexity classes we target, we introduce
a deterministic computational model for word transductions that we call Turing Transducers (TT).
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Turing transducers have three tapes: one read-only left-to-right input tape, one write-only left-to-
right output tape, and one standard working tape. Such a machine naturally defines a transduction:
the input word is initially on the input tape, and the result of the transduction is the word written on
the output tape after the machine terminates in an accepting state. We denote by JMK the transduction
defined by M. The space complexity is measured on the working tape only.

Bounded Memory Transductions We first consider transductions that can be evaluated with a
constant amount of memory:

DEFINITION 4. A (functional) transduction R ⊆ Σ∗ × Σ∗ is bounded memory (BM) if there exists
a Turing transducer M and K ∈ N such that JMK = R and on any input word u ∈ Σ∗, M runs in
space complexity at most K.

It is not difficult (see Appendix B) to verify that for FST-transductions, bounded memory is
characterized by subsequentializability, which is decidable in PTIME [23]. Moreover, BM is unde-
cidable for pushdown transducers, since it is as difficult as deciding whether a pushdown automaton
defines a regular language. For VPTs, BM is quite restrictive as it imposes to verify whether a word
is well-nested by using a bounded amount of memory. This can be done only if the height of the
words of the domain is bounded by some constant which depends on the transducer only:

PROPOSITION 5. Let T be a functional VPT with n states.
1. JTK is BM iff (i) for all u ∈ Dom(T), h(u) ≤ n2, and (ii) FST(T, n2) is BM;
2. It is decidable in NPTIME whether JTK is BM.

PROOF. [Sketch] The first assertion is obvious by using simple pumping techniques to show that
bounded memory implies bounded height. In the sequel, we define the class of height bounded
memory transductions, and show it is decidable in NPTIME. On words of bounded height, this class
collapses with bounded memory transductions.

Height Bounded Memory Transductions As we have seen, bounded memory is too restrictive to
still benefit from the extra expressiveness of VPT compared to FST, namely the ability to recognize
nested words of unbounded height. In this section, we define a notion of bounded memory which is
well-suited to VPTs.

DEFINITION 6. A (functional) transduction R ⊆ Σ∗ × Σ∗ is height bounded memory (HBM) if
there exists a Turing transducer M and a function f : N→ N such that JMK = R and on any input
word u ∈ Σ∗, M runs in space at most f (h(u)).

Note that this definition ensures that the machine cannot store all the input words on the working
tape in general. The VPT in Fig. 2(a) is not in BM, but is in HBM: the stack content suffices (and is
necessary) to determine the output. When the structured alphabet contains only internal letters, HBM
and BM coincides, thus it is undecidable whether a pushdown transducer is HBM. The remainder of
this section is devoted to the proof that HBM is decidable for fVPTs.

BM functional FST-transductions (or equivalently subsequentializable FSTs) are characterized
by the so called twinning property [10], which is decidable in PTIME [23]. We introduce a similar
characterization of HBM fVPTs-transductions, called the horizontal twinning property (HTP). The
restriction of the horizontal twinning property to FSTs is equivalent to the usual twinning property
for FSTs (see Appendix C.1). Intuitively, the HTP requires that two runs on the same input cannot
accumulate increasing output delay on loops.
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DEFINITION 7. Let T be an fVPT. T satisfies the horizontal twinning property (HTP) if for all
u1, u2, v1, v2, w1, w2 ∈ Σ∗, for all q0, q′0 ∈ I, for all q, q′ ∈ Q, and for all σ, σ′ ∈ Γ∗,

if

{
(q0,⊥) u1/v1−−−→ (q, σ)

u2/v2−−−→ (q, σ)

(q′0,⊥) u1/w1−−−→ (q′, σ′)
u2/w2−−−→ (q′, σ′)

(1) then ∆(v1, w1) = ∆(v1v2, w1w2).

EXAMPLE 8. Consider the VPT of Fig. 1 (including dashed arrows). It does not satisfy the HTP, as
the delays increase when looping on crcr... Without the dashed transitions, the HTP is satisfied.

LEMMA 9. The HTP is decidable in NPTIME for fVPTs.

PROOF. First, let us show that an fVPT T does not satisfy the HTP if and only if there exist
u1, u2, v1, v2, w1, w2 ∈ Σ∗, q0, q′0 ∈ I, q, q′ ∈ Q, and σ, σ′ ∈ Γ∗ that satisfy (1), and such that either
we have (i) |v2| 6= |w2|, or (ii) |v2| = |w2|, |v1| ≤ |w1| and not v1v2 � w1w2. Indeed, one can
easily check that it is a necessary condition. To prove that it is a sufficient condition, suppose we have
elements that satisfy (1) with ∆(v1, w1) 6= ∆(v1v2, w1w2) but conditions (i) and (ii) do not hold.
Wlog, we can assume that |v1| ≤ |w1|, therefore we have |v2| = |w2|, |v1| ≤ |w1|, v1v2 � w1w2
and ∆(v1, w1) 6= ∆(v1v2, w1w2). One can verify that there exists k ∈N such that replacing u2 with
u′2 = u2

k yields a system that satisfies (ii). We refer the reader to Appendix C.2 for the details.
Second, let T be an fVPT, we define a pushdown automaton with bounded reversal counters

[15], A, such that le language of A is empty if and only if T satisfies the HTP. More precisely, A
accepts the words u = u1u2u3 ∈ Dom(T) such that there exist v1, v2, w1, w2 ∈ Σ∗, q0, q′0 ∈ I,
q, q′ ∈ Q, and σ, σ′ ∈ Γ∗ that satisfy (1) and either (i) or (ii). A simulates in parallel any two runs
of T on the input word (product automaton). It guesses the end of u1 and stores the states q and q′

of the first and second run (in order to be able to check that the simulated runs of T are in state q,
resp. q′ after reading u2). Non-deterministically, it checks whether (i) or (ii) holds. To check (i),
it uses two counters, one for each run. It does so by, after reading u1, increasing the counters by the
length of the output word of each transition of the corresponding run. Then, when reaching the end
of u2 it checks that both counters are different (by decreasing in parallel both counters and checking
they do not reach 0). Similarly, using two other counters, A checks that (ii) holds as follows. Note
that condition (ii) implies that there is a position p such that the p-th letter a1 of v1v2 and the p-th
letter a2 of w1w2 are different. The automaton A guesses the position p ∈ N of the mismatch, and
initializes both counters to the value p. Then, while reading u1u2, it decreases each counter by the
length of the output words of the corresponding run. When a counter reaches 0, A stores the output
letter of the corresponding run. Finally, A checks that a1 6= a2. T satisfies the HTP iff the language
of A is empty. The later is decidable in NPTIME [12].

We now show that HTP characterizes HBM fVPTs-transductions and therefore by Lemma 9 we get:

THEOREM 10. Let T be an fVPT. It is decidable in NPTIME whether JTK is HBM. Moreover in
this case, Algorithm LCPIN runs in space complexity O(|Q|4 · |Γ|2h(u)+2 · (h(u) + 1) · M) when
evaluating u on T, where M = max{|v| | (q, a, v, γ, q′) ∈ δ}.

PROOF. [Sketch] We prove that JTK is HBM iff the HTP holds for T. To prove that the HTP is a
necessary condition to be in HBM, we proceed by contradiction. We find a counter-example for the
HTP and we let K be the height of the input word of this counter-example. It implies that the twinning
property for FSTs does not hold for FST(T, K), and therefore FST(T, K) is not BM by Proposition 5.
In particular, T is not HBM.
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For the converse, we show that if the HTP holds for T, then for any input word u ∈ Σ∗, the maximal
delay outmax

6= (u) between the outputs of u is bounded by (|Q| · |Γ|h(u))2M. This is done by a pump-
ing technique “by width” that relies on the property ∆(vv′, ww′) = ∆(∆(v, w) · (v′, w′)) for any
words v, v′, w, w′. In particular for an input word for which there are two runs that pass by the same
configurations twice at the same respective positions, the delay of the output is equal to the delay
when removing the part in between the identical configurations. Finally we apply Proposition 3.

HBM vs Subsequentializable fVPTs We have seen that a functional transduction defined by an
FST T is BM iff T is subsequentializable. We give an example illustrating that for VPTs, being
subsequentializable is too strong to characterize HBM. Consider the VPT of Fig. 1 defined by the
plain arrows. The transduction it defines is in HBM by Proposition 3, as at any time the delay
between two outputs is bounded by the height of the input: outmax

6= (u)≤2h(u). However it is not
subsequentializable, as the transformation of c into a or b depends on the last return.

5 Quadratic Height Bounded Memory Evaluation
In the previous section, we have shown that a VPT-transduction is in HBM iff the horizontal twinning
property holds, and if it is in HBM, the algorithm of Section 3 uses a memory at most exponential
in the height of the word. We exhibit in Section 6 an fVPT proving that this exponential bound
is tight. To avoid this exponential cost, we identify in this section a subclass of HBM containing
transductions for which the evaluation algorithm of Section 3 uses a memory quadratic in the height
of the word. Therefore, we strengthen the horizontal twinning property by adding some properties
for well-matched loops. Some of our main and challenging results are to show the decidability of
this property and that it depends only on the transduction, i.e. is preserved by equivalent transducers.
We show that subsequential VPTs satisfy this condition and therefore our class subsumes the class of
subsequentializable transducers.

The property we introduce is a strengthening of the horizontal twinning property that we call the
twinning property (TP). Intuitively, the TP requires that two runs on the same input cannot accumulate
increasing output delay on well-matched loops. They can accumulate delay on loops with increasing
stack but this delay has to be caught up on the matching loops with descending stack.

DEFINITION 11. Let T = (Q, I, F, Γ, δ) be an fVPT. T satisfies the twinning property (TP) if for all
ui, vi, wi ∈ Σ∗ (i ∈ {1, . . . , 4}) such that u3 is well-nested, and u2u4 is well-nested, for all i, i′ ∈ I,
for all p, q, p′, q′ ∈ Q, and for all σ1, σ2 ∈ ⊥.Γ∗, for all σ′1, σ′2 ∈ Γ∗,

if

{
(i,⊥) u1/v1−−−→ (p, σ1)

u2/v2−−−→ (p, σ1σ′1)
u3/v3−−−→ (q, σ1σ′1)

u4/v4−−−→ (q, σ1)

(i′,⊥) u1/w1−−−→ (p′, σ2)
u2/w2−−−→ (p′, σ2σ′2)

u3/w3−−−→ (q′, σ2σ′2)
u4/w4−−−→ (q′, σ2)

then ∆(v1v3, w1w3) = ∆(v1v2v3v4, w1w2w3w4). We say that a VPT T is twinned whenever it
satisfies the TP.

Note that any twinned VPT also satisfies the HTP (with u3 = u4 = ε).

EXAMPLE 12. The VPT of Fig. 1 with plain arrows does not satisfy the TP, as the delay between
the two branches increases when iterating the loops. Consider now the VPT obtained by replacing
r by r′ in the transition (q1, r, c, γ, q2). It is obviously twinned, as we cannot construct two runs
on the same input which have the form given in the premises of the TP. However this transducer is
not subsequentializable, as the output on the call symbols cannot be delayed to the matching return
symbols.
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As for the HTP, we can decide the TP using a reduction to the emptiness of a pushdown automa-
ton with bounded reversal counters. A complete proof can be found in Appendix D.

LEMMA 13. The twinning property is decidable in NPTIME for fVPTs.

The most challenging result of this paper is to show that the TP only depends on the transduc-
tion and not on the transducer that defines it. The proof relies on fundamental properties of word
combinatorics that allow us to give a general form of the output words v1, v2, v3, v4, w1, w2, w3, w4
involved in the TP, that relates them by means of conjugacy of their primitive roots. The proof gives a
deep insight into the expressive power of VPTs which is also interesting on its own. As many results
of word combinatorics, the proof is a long case study, so that we give it in Appendix D.2 only.

THEOREM 14. Let T1, T2 be two fVPTs such that JT1K = JT2K. T1 is twinned iff T2 is twinned.

PROOF. [Sketch] We assume that T1 is not twinned and show that T2 is not twinned either. By
definition of the TP there are two runs of the form (i1,⊥) u1/v1−−−→ (p1, σ1)

u2/v2−−−→ (p1, σ1β1)
u3/v3−−−→ (q1, σ1β1)

u4/v4−−−→ (q1, σ1)

(i′1,⊥)
u1/v′1−−−→ (p′1, σ′1)

u2/v′2−−−→ (p′1, σ′1β′1)
u3/v′3−−−→ (q′1, σ′1β′1)

u4/v′4−−−→ (q′1, σ′1)

such that ∆(v1v3, v′1v′3) 6= ∆(v1v2v3v4, v′1v′2v′3v′4). We will prove that by pumping the loops on u2
and u4 sufficiently many times we will get a similar situation in T2, proving that T2 is not twinned.
It is easy to show that there exist k2 > 0, k1, k3 ≥ 0, wi, w′i ∈ Σ∗, i ∈ {1, . . . , 4}, some states
i2, p2, q2, i′2, p′2, q′2 of T2 and some stack contents σ2, β2, σ′2, γ′2 of T2 such that we have the following
runs in T2:(i2,⊥)

u1uk1
2 /w1−−−−−→ (p2, σ2)

uk2
2 /w2−−−→ (p2, σ2β2)

uk3
2 u3uk3

4 /w3−−−−−−→ (q2, σ2β2)
uk2

4 /w4−−−→ (q2, σ2)

(i′2,⊥)
u1uk1

2 /w′1−−−−−→ (p′2, σ′2)
uk2

2 /w′2−−−→ (p′2, σ′2β′2)
uk3

2 u3uk3
4 /w′3−−−−−−→ (q′2, σ′2β′2)

uk2
4 /w′4−−−→ (q′2, σ′2)

such that (q1, σ1) and (q2, σ2) are co-accessible with the same input word u5, and (q′1, σ′1) and (q′2, σ′2)
are co-accessible with the same input word u′5. Now for all i ≥ 0, we let

V(i) = v1(v2)k1+ik2+k3 v3(v4)
k1+ik2+k3 W(i) = w1(w2)iw3(w4)

i

V ′(i) = v′1(v
′
2)

k1+ik2+k3 v′3(v
′
4)

k1+ik2+k3 W ′(i) = w′1(w
′
2)

iw′3(w
′
4)

i

D1(i) = ∆(V(i), V ′(i)) D2(i) = ∆(W(i), W ′(i))

In other words, D1(i) (resp. D2(i)) is the delay in T1 (resp. T2) accumulated on the input word
u1(u2)k1+ik2+k3 u3(u4)

k1+ik2+k3 by the two runs of T1 (resp. T2). There is a relation between the
words V(i) and W(i). Indeed, since T1 and T2 are equivalent and (q1, σ1) and (q2, σ2) are both co-
accessible by the same input word, for all i ≥ 1, either V(i) is a prefix of W(i) or W(i) is a prefix of
V(i). We have a similar relation between V ′(i) and W ′(i).

We prove in Appendix the following intermediate results: (i) there exists i0 ≥ 0 such that for all
i, j ≥ i0 such that i 6= j, D1(i) 6= D1(j); (ii) for all i, j ≥ 1, if D1(i) 6= D1(j), then D2(i) 6= D2(j).
The proofs of those results rely on fundamental properties of word combinatorics and a non-trivial
case study that depends on how the words v1(v2)k1+ik2+k3 v3(v4)

k1+ik2+k3 and w1(w2)iw3(w4)
i are

overlapping. Thanks to (i) and (ii), we clearly get that D2(i0) 6= D2(i0 + 1), which provides a
counter-example for the twinning property.

Subsequential transducers have at most one run per input word, so we get the following:
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COROLLARY 15. Subsequentializable VPTs are twinned.

The TP is not a sufficient condition to be subsequentializable, as shown for instance by Exam-
ple 12. Therefore the class of transductions defined by transducers which satisfy the TP is strictly
larger than the class of transductions defined by subsequentializable transducers. However, these
transductions are in the same complexity class for evaluation, i.e. polynomial space in the height of
the input word for a fixed transducer:

THEOREM 16. Let T be an fVPT and u ∈ Σ∗. If T is twinned then the evaluation of T on u can be
done in space complexity quadratic in h(u) and exponential in |T|.

PROOF. [Sketch] We prove that Algo. LCPIN runs in space complexity O
(

p(T) · (h(u) + 1)2 ·M
)

on T and u ∈ Σ∗, with M = max{|v| : (q, a, v, γ, q′) ∈ δ} and p(T) = |Q|4 · |Γ|2|Q|4+2. Therefore,
we use a pumping technique to show that for any word u ∈ Σ∗ on which there is a run of T, we have
outmax
6= (u) ≤ (h(u) + 1)q(T) for some function q, whenever the TP holds for T. This is done as

follows: any such word can be uniquely decomposed as u = u0c1u1c2 . . . cnun with n ≤ h(u),
each ui is well-nested and each ci is a call. Then if the ui are long enough, we can pump them
vertically and horizontally without affecting the global delay, by using the property ∆(vv′, ww′) =
∆(∆(v, w).(v′, w′)). Then we can apply Proposition 3.

6 Conclusion and Remarks
This work investigates the streaming evaluation of nested word transductions, and in particular iden-
tifies an interesting class of VPT-transductions which subsumes subsequentializable transductions
and can still be efficiently evaluated. The following inclusions summarize the relations between the
different classes of transductions we have studied:

BM fVPTs ( Subsequentializable VPTs( twinned fVPTs ( HBM fVPTs( fVPTs

Moreover, we have shown that BM, twinned and HBM fVPTs are decidable in NPTIME.

Remarks:[HBM is tight] We have mentionned that the space complexity of a VPT in HBM is at
most exponential. We give here an example illustrating the tightness of this bound. The idea is to
encode the tree transduction f (t, a) 7→ f (t, a)∪ f (t, b) 7→ f (t, b) by a VPT, where t is a binary tree
over {0, 1} and t is the mirror of t, obtained by replacing the 0 by 1 and the 1 by 0 in t. Thus taking
the identity or the mirror depends on the second child of the root f . To evaluate this transformation
in a streaming manner, one has to store the whole subtree t in memory before deciding to transform
it into t or t. The evaluation of this transduction cannot be done in polynomial space as there are a
doubly exponential number of trees of height n, for all n ≥ 0.

Further Directions An important asset of the class of twinned fVPTs w.r.t. the class of subsequen-
tializable VPTs is that it is decidable. It would thus be interesting to determine whether or not the
class of subsequentializable VPTs is decidable. In addition, we also plan to extend our techniques to
more expressive transducers, such as those recently introduced in [1], which extend VPTs with global
variables and are as expressive as MSO-transductions, and can therefore swap or reverse sub-trees.
Another line of work concerns the extension of our evaluation procedure, which holds for functional
transductions, to finite valued transductions.



12 STREAMABILITY OF NESTED WORD TRANSDUCTIONS

References
[1] R. Alur and L. D’Antoni. Streaming tree transducers. Available on: http://www.cis.

upenn.edu/˜alur/, 2011. Submitted.
[2] R. Alur and P. Madhusudan. Adding nesting structure to words. JACM, 56(3):16:1–16:43, 2009.
[3] Z. Bar-Yossef, M. Fontoura, and V. Josifovski. Buffering in query evaluation over XML streams.

In PODS, pages 216–227. ACM-Press, 2005.
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A Online Evaluation Algorithm of Visibly Pushdown Transduc-
tions

All over this section we assume an implementation of VPTs such that the set S of transitions with
a given left-hand side can be retrieved in time O(|S|). We define the current height of a prefix of a
nested word in the following way: hc(u) = 0 if u is well-nested, and hc(ucv) = hc(u) + 1 if c ∈ Σc
and v is well-nested.

A.1 NAIVE algorithm

We start with the algorithm NAIVE, that we will later improve to obtain LCPIN. The algorithm NAIVE

simply computes all the runs (with their respective outputs) of the fVPT T on the input word u, stores
them in a data structure and, at the end of u, outputs the only output word: it will be the same in all
accepting runs, as T is functional.

NAIVE consists in maintaining the set of d-configurations corresponding to the runs of T on the
input word u. Hence, it is based on the operation update(C, a) that returns the set of d-configurations
obtained after applying rules of T using input symbol a to each d-configuration of C. The function
update : Dconfs(T) × Σ → Dconfs(T) maps a set of d-configurations and an input symbol to
another set of d-configurations. For call symbols c ∈ Σc,

update(C, c) =
⋃

(q,σ,v)∈C

{(q′, σγ, vv′) | (q, c, v′, γ, q′) ∈ δc}

and for return symbols r ∈ Σr,

update(C, r) =
⋃

(q,σγ,v)∈C

{(q′, σ, vv′) | (q, r, v′, γ, q′) ∈ δr}

The function update can be considered as the transition function of a transition system with
states Dconfs(T) (i.e. an infinite number of states). We can easily turn it into an infinite state trans-
ducer, i.e. an FST with infinitely many states: this transducer returns ε at every input symbol, except
for the last one $, where it returns the output word. This is illustrated in Fig. 3. Formally, an infi-

q0 q1

c/a, γ1

c/b, γ2

r1/ε, γ1

r1/ε, γ1

r2/ε, γ2

(a) A VPT T1.

(q0,⊥, ε)
(q0, γ1, a)
(q0, γ2, b)

(q0, γ1γ1, aa)
(q0, γ1γ2, ab)
(q0, γ2γ1, ba)
(q0, γ2γ2, bb)

(q1, γ1, aa)
(q1, γ2, ba)

(q1,⊥, ba)q f

c/ε c/ε

r1/ε

r2/ε$/ba

(b) Part of the IST t corresponding to T1, computed on ccr1r2.

Figure 3: Illustration of the computations of NAIVE on an input word.
nite state transducer t (IST for short) is defined exactly like an FST, except that its number of states
may be infinite (but countable). In particular, the acceptance condition remains the same, so that the
transduction JtK is still a set of pairs of finite words (u, v).
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Given the functional VPT T = (Q, I, F, Γ, δ), consider the IST t = (Dconfs(T)]{q f }, It, {q f }, δt)
where It = {{(q0,⊥, ε) | q0 ∈ I}}. To deal with the last symbol $, we have to characterize the sets
of d-configurations reached after reading words in Dom(T). T being functional, each of these sets of
d-configurations C comes with a single output word v:

C =
{
(C, v) ∈ Dconfs(T)× Σ∗ | ∃q ∈ F. (q,⊥, v) ∈ C and

∀(q′,⊥, v′) ∈ C, q′ ∈ F =⇒ v′ = v

}
Rules in δt are:

C a/ε−−→ update(C, a) for C ∈ Dconfs(T) and a ∈ Σ

C $/v−−→ q f for (C, v) ∈ C

LEMMA 17. (u, v) ∈ JTK iff (u$, v) ∈ JtK.

PROOF. It can be checked easily by induction on |u| that for every u ∈ Σ∗, the current state of

t after reading u is
⋃

q0∈I{(q, σ, v) | (q0,⊥) u/v−−→ (q, σ)}. Let us check whether reading the last
symbol $ leads to a correct state. Let u ∈ Σ∗. If u /∈ Dom(T), then there is no run of T on u of the

form (q,⊥) u/v−−→ (q′,⊥) with q ∈ I and q′ ∈ F. Hence, the state C reached by t after reading u, if
it exists, is such that (C, v) /∈ C for all v ∈ Σ∗, so u /∈ Dom(t). If u ∈ Dom(T), then the state of t

reached after reading u is C =
⋃

q0∈I{(q,⊥, v) | (q0,⊥) u/v−−→ (q,⊥)}. As T is functional, there is
a unique v for all (q,⊥, v) ∈ C such that q ∈ F, and such elements of C exist, so that (C, v) ∈ C,
and (u$, v) ∈ JtK.

As t is deterministic, the algorithm NAIVE only consists in computing the unique run of t on the
input word u. Let out(u) = maxv∈reach(u) |v|, and let outmax(u) be its maximal value over prefixes:
outmax(u) = maxu′ prefix of u out(u′).

PROPOSITION 18. The maximal amount of memory used by NAIVE for processing u ∈ Σ∗ is in
O(|Q| · |Γ|h(u) · outmax(u)). The preprocessing time, and the time used by NAIVE to process each
symbol of u are both polynomial in |Q|, |Γ|, |δ|, h(u), outmax(u) and |Σ|.
PROOF. As T is functional, there cannot be two distinct co-accessible d-configurations (q, σ, v)
and (q, σ, v′) in C. This remark proves the space complexity. For time complexity, updating a d-
configuration is just a research of rules to apply. Each of them will generate a new d-configuration,
and is retrieved in constant time.

A.2 Compact representation of runs of fVPTs: NAIVECOMPACT.

We present the data structure ST
u representing all d-configurations stored by NAIVE on the VPT T

after reading u, i.e., the state of t reached after reading u. This structure is illustrated in Fig. 2.
This first improvement avoids the exponential blowup in h(u). The structure ST

u is a labeled DAG
(directed acyclic graph) whose nodes are configurations of T (with an additional root node #, and each
node has a depth) and edges are labeled by delays: nodes(ST

u ) = {#} ] Q× (Γ ∪ {⊥})×N and
edges(ST

u ) ⊆ nodes(ST
u )× Σ∗ × nodes(ST

u ). This DAG will have as leaves (nodes without outgoing
edges) current configurations. The structure ST

u is defined inductively on u according to the following
algorithms.

edges(ST
ε ) = {#

ε
↪−→ (q,⊥, 0) | q ∈ I}
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When a call letter c ∈ Σc is read, the structure ST
u is updated such that, for every leaf of ST

u ,
a child is added for every way of updating the corresponding configuration according to a rule of
T. If a leaf cannot be updated, it is removed, and also the possible new generated leaves (procedure
REMOVE EDGES). Algorithm 1 describes how ST

uc is computed from ST
u . For a return letter r ∈ Σr,

Algorithm 1 Updating structure S with a call symbol.
procedure UPDATE CALL(S, c)

2: newEdges← ∅
orphans← ∅

4: for (q, γ, i) ∈ leaves(S) do
if ∃v, γ′, q′ | (q, c, v, γ′, q′) ∈ δ then

6: for (v, γ′, q′) | (q, c, v, γ′, q′) ∈ δ do
newEdges.add((q, γ, i)

v
↪−→ (q′, γ′, i + 1))

8: else
orphans.add((q, γ, i))

10: edges(S)← edges(S) ∪ newEdges

12: procedure REMOVE EDGES(S, orphans)
while orphans 6= ∅ do

14: n← orphans.pop()
for m | ∃v, m

v
↪−→ n do

16: remove(S, m
v
↪−→ n)

if @n′, v′, m
v′
↪−→ n′ then orphans.add(m)

we try to pop every leaf: if it is possible, the leaf is removed and the new leaves updated, otherwise we
remove the leaf and propagate the removal upwards (procedure REMOVE EDGES). This is described
in Algorithm 2. Only edges and reachable nodes need to be stored, so that |ST

u | ≤ (hc(u) + 1) ·
|Q|2 · |Γ|2 · out(u, T).

We prove the correctness of this construction using the transition function =⇒u based on
edges of ST

u , that gathers the stack content and delay. The relation =⇒u is the smallest relation
in (Q× Γ∗ ×N)× Σ∗ × (Q× Γ∗ ×N) containing ↪−→ such that: if (q0, σ0, i) v

=⇒u (q1, σ1γ, j)

and (q1, γ, j)
v′
↪−→ (q2, γ′, j + 1) then (q0, σ0, i) vv′

=⇒u (q2, σ1γγ′, j + 1) (we may have σ = ε and
γ = ⊥). The set of d-configurations stored in ST

u is defined by: C(ST
u ) = {(q, σ, v) | ∃i, (q, σ, i) ∈

leaves(ST
u ) and # v

=⇒u (q, σ, i)}. The following lemma shows that ST
u exactly encodes the d-configurations

computed by the IST t.

LEMMA 19. C(ST
u ) is the state of the IST t after reading u.

PROOF. As mentioned in the proof of Lemma 17, the current state of t after reading u is
⋃

qi∈I{(q, σ, v) |
(qi,⊥)

u/v−−→ (q, σ)}. Hence proving the following invariant is sufficient to prove this lemma:

For every 0 ≤ i ≤ hc(u), # v
=⇒u (q, σ, i) iff there exists qi ∈ I such that (qi,⊥)

u1···uk/v−−−−→
(q, σ) where k = max{j | hc(u1 · · · uj) = i}.

We prove it by induction on |u|. If |u| = 0, then i = 0 and the equivalence holds, as we can assume
ε-loops (without output) on initial states.
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Algorithm 2 Updating structure S with a return symbol.
procedure UPDATE RETURN(S, r)

2: newEdges← ∅
orphans← ∅

4: for (q`, γ`, i) ∈ leaves(S) do
if ∃v, q | (q`, r, v, γ`, q) ∈ δ then

6: for (v, q) | (q`, r, v, γ`, q) ∈ δ do
for (q0, γ0, v0) | (q0, γ0, i− 1)

v0
↪−→ (q`, γ`, i) ∈ edges(S) do

8: for (n, v1) | n
v1
↪−→ (q0, γ0, i− 1) ∈ edges(S) do

newEdges.add(n
v1v0v
↪−−→ (q, γ0, i− 1))

10: else
orphans.add((q`, γ`, i))

12: remove edges(S, orphans)
remove leaves(S)

14: edges(S)← edges(S) ∪ newEdges

16: procedure REMOVE LEAVES(S)
for n ∈ leaves(S) do

18: for (m, v) | m
v
↪−→ n ∈ edges(S) do

remove(S, m
v
↪−→ n)

Assume that the property holds for a given u, we prove that if also holds for the well-nested pre-
fix uc. Let orphans be the set of leaves collected by the outermost for-loop of UPDATE CALL. These
are the leaves (q, γ, hc(u)) of ST

u such that no rule (q, c, v, γ′, q′) exists in δ. Hence, corresponding
configurations are blocked, and can be removed. The procedure REMOVE EDGES propagates these
deletions, so that after the call to this procedure, the structure exactly contains configurations that can
be updated by c. Hence, by induction hypothesis, the equivalence holds for 0 ≤ i ≤ hc(u). For
i = hc(uc) = hc(u) + 1, let k = max{j | hc(u1 · · · uj) = i}. We have:

# vv′
=⇒uc (q, σγγ′, i)

iff ∃q1, # v
=⇒uc (q1, σγ, i− 1) and (q1, γ, i− 1)

v′
↪−→ (q, γ′, i) (1)

iff ∃q1, ∃qi ∈ I, (qi,⊥)
u/v−−→ (q1, σγ) and (q1, γ, i− 1)

v′
↪−→ (q, γ′, i) (2)

iff ∃q1, ∃qi ∈ I, (qi,⊥)
u/v−−→ (q1, σγ) and (q1, c, v′, γ′, q) ∈ δ (3)

iff ∃qi ∈ I, (qi,⊥)
uc/vv′−−−→ (q, σγγ′)

(1) is by definition of =⇒uc . (2) holds because, as mentioned above, REMOVE EDGES removes
non-accessible configurations, and by induction hypothesis. Here, we also have k− 1 = max{j |
hc(u1 · · · uj) = i− 1}, as uc ends with a call symbol: so u1 · · · uk−1 = u and u1 · · · uk = uc. (3)
is due to the way UPDATE CALL operates: it adds children to leaves according to rules of δ.

Now we show that the property holds for the well-nested prefix ur, if it holds for u. Let h =
hc(u). Procedure UPDATE RETURN checks, for each leaf, whether a rule can be applied. If not,
the leaf is removed, and orphaned edges too, as explained for call symbols. Then, the hth level is
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removed and the (h − 1)th updated, according to rules of T. Hence the property remains true for
0 ≤ i ≤ h− 2. We have:

# v
=⇒ur (q, σγγ0, h− 1)

iff ∃q0, q1, q`, γ`, v′, v0, v1, # v′
=⇒u (q1, σγ, h− 2) and

(q1, γ, h− 2)
v1
↪−→ (q0, γ0, h− 1) ∈ edges(ST

u ) and

(q0, γ0, h− 1)
v0
↪−→ (q`, γ`, h) ∈ edges(ST

u ) and
(q`, r, v′′, γ`, q) ∈ δ and v = v′v1v0v′′ (1)

iff ∃q0, q`, γ`, v′, v0, # v′
=⇒u (q0, σγγ0, h− 1) and

(q0, γ0, h− 1)
v0
↪−→ (q`, γ`, h) ∈ edges(ST

u ) and
(q`, r, v′′, γ`, q) ∈ δ and v = v′v0v′′ (2)

iff ∃q`, γ`, v′, # v′
=⇒u (q`, σγγ0γ`, h) ∈ edges(ST

u ) and
(q`, r, v′′, γ`, q) ∈ δ and v = v′v′′ (3)

iff ∃q`, γ`, v′, qi ∈ I (qi,⊥)
u/v′−−→ (q`, σγγ0γ`) and

(q`, r, v′′, γ`, q) ∈ δ and v = v′v′′ (4)

iff ∃qi ∈ I, (qi,⊥)
ur/v−−→ (q, σγγ0)

Equivalence (1) reflects how UPDATE RETURN generates the new leaves. (2) and (3) come from
the definition of =⇒u . (4) is obtained by induction hypothesis and the fact that, if k = max{j |
hc(u1 · · · uj) = h}, then u1 · · · uk = u.

The depth of the DAG obtained after reading u is the current height of u plus 1, each level has
at most |Q| · |Γ| nodes, and each edge is labelled with a word of length less than out(u).

PROPOSITION 20. The maximal amount of memory used by NAIVECOMPACT on u ∈ Σ∗ is in
O(|Q|2 · |Γ|2 · (h(u) + 1) · outmax(u)). The preprocessing time, and the time used by NAIVE to
process each symbol of u are both polynomial in |Q|, |Γ|, |δ|, h(u), outmax(u) and |Σ|.

A.3 LCPIN algorithm

We extend the definition of the largest common prefix to sets of d-configurations: if C ⊆ Dconfs(T),
then lcp(C) = lcp({v | (q, σ, v) ∈ C}). Let rem lcp be the function that removes the largest
common prefix to a set of d-configurations: rem lcp(C) = {(q, σ, v′) ∈ Dconfs(T) | (q, σ, lcp(C) ·
v′) ∈ C}. From an fVPT T, we define the IST τ = (Dconfs(T) ] {q f }, Iτ, {q f }, δτ) where Iτ =
{{(q0,⊥, ε) | q0 ∈ I}}. We keep the same definition of C as in NAIVE, and rules of δτ are:

C
a/lcp(update(C,a))−−−−−−−−−−→ rem lcp(update(C, a)) for C ∈ Dconfs(T) and a ∈ Σ

C $/v−−→ q f for (C, v) ∈ C

We start by proving the correctness of the definition of the IST τ. This definition is illustrated in
Fig. 5.
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c1/d f c, γ1
c3/ab, γ3 r3/ε, γ3

c1/d, γ1

c3/ f , γ3 r3/cab, γ3 r1/gh, γ1

r1/gh, γ1

c2/ε, γ2 r2/cabcab, γ2

c2/abc, γ2 r2/cab, γ2

Figure 4: A functional VPT on Σc = {c1, c2, c3} and Σr = {r1, r2, r3}.

(q0,⊥, ǫ)
(q1, γ1, ǫ)
(q4, γ2, f c)

(q2, γ1γ3, ǫ)
(q5, γ2γ3, cab)

(q3, γ1, ǫ)
(q6, γ2, ǫ)

(q7,⊥, ǫ)q f

c1/d c3/ f

r3/cab

r1/gh$/ǫ

Figure 5: Part of the IST τ corresponding to the VPT in Fig. 4, computed by LCPIN on input c1c3r3r1.

LEMMA 21. (u, v) ∈ JTK iff (u$, v) ∈ JτK.

PROOF. By an induction on |u|, it can be checked that C0
u/lcpin(u,T)−−−−−−→τ C where C0 is the only

element in Iτ and C is obtained from the run of t on u: C = rem lcp(C′) with C0
u/ε−−→t C′. The

remainder of the proof is similar to the proof of Lemma 17.

We now provide algorithms for the second step of the computation performed by LCPIN on an
input symbol a. Recall that the first step is the same as in NAIVECOMPACT, i.e. Algorithm 1 if a is a
call symbol, and Algorithm 2 if it is a return symbol, which transforms ST

u to a new structure S′. The
second step is the computation of lcp(C(S′)), which is output, and removed from every branch of S′,
using Algorithm 3.

Algorithm 3 starts with the procedure factorize, that processes every nodes in a bottom-up man-
ner (from leaves to the root #). For every node, the lcp of all outgoing edges is moved to all incoming
edges. This is illustrated in Fig. 6.

For every node n ∈ nodes(ST
u ), let Sn be the structure obtained from ST

u just after returning
from factorize(S, n, done), and let =⇒n be the relation defined like =⇒u , but on Sn. Note that the

n

a b

abc

aba

aba

(a) Internal node n of the DAG.

n

aab bab

c
a

a

(b) Node n after update by factorize.

Figure 6: Changes performed by factorize on a node.
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Algorithm 3 Compute lcp(C(S)), and update S to the structure encoding rem lcp(C(S)).
procedure OUTPUT LCP(S)

2: f actorize(S, #, ∅)

`← lcp({v | ∃n, #
v
↪−→ n})

4: output `
for m, v | #

v
↪−→ m do

6: let p be such that v = ` · p
replace #

v
↪−→ m by #

p
↪−→ m in S

8:

function FACTORIZE(S, n, done)
10: if n /∈ leaves(S) then

for m, v | n
v
↪−→ m and m /∈ done do

12: done← f actorize(S, m, done)
if n = # then return done ∪ {n}

14: f actor ← lcp({v | ∃m, n
v
↪−→ m})

for m, v | n
v
↪−→ m do

16: let p be such that v = f actor · p
replace n

v
↪−→ m by n

p
↪−→ m in S

18: for p, v | p
v
↪−→ n do

replace p
v
↪−→ n by p

v· f actor
↪−−−−→ n in S

20: return done ∪ {n}

structure has the same set of nodes and edges after being processed by Algorithm 3, only the labels
of edges are updated. Let Bn be the set of branches from node n to a leaf: Bn0 = {(n0, n1, . . . , nk) |
∀0 ≤ i < k, ∃vi, ni

vi
↪−→ ni+1 and nk ∈ leaves(ST

u )}. For a branch b, we write Vn(b) for its output

in the structure Sn, and V(b) for its output in ST
u : Vn((n0, . . . , nk)) = v0 · · · vk−1 where ni

vi
↪−→ ni+1

for all 0 ≤ i < k in Sn. We extend this definition to sets of branches: Vn(B) = {Vn(b) | b ∈ B}.
Note also that each node is processed once using factorize, and in a bottom-up way: when processing
node n, all its descendants have been updated before (cf lines 11 and 12). The following property is
the main invariant proving the correctness of Algorithm 3.

LEMMA 22. For every node n 6= #, let ` = lcp(V(Bn)). Then,
1. for every branch b ∈ Bn, V(b) = ` ·Vn(b)

2. for every p, v such that p
v
↪−→ n in Sn, v = v′` with p

v′
↪−→ n in ST

u

PROOF. We prove the following property by bottom-up induction on the structure. This property
is true on leaves, as factorize does not modify their incoming edges. Assume that the property holds
for all descendants of a node n. Let ` = lcp(V(Bn)), and consider a branch b ∈ Bn. The function
factorize applied at n computes the lcp of edges outgoing from n and removes it on every branch.
Hence, if n′ be the node processed by factorize before n, then:

Vn′(b) = lcp({v | ∃p, n
v
↪−→ p in Sn′}) ·Vn(b) (1)
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Let p be the second node in branch b = (n, p, . . .). As p and all its descendants are processed before
n′ and not modified until the call of factorize on p, we have Vn′(b) = Vp(b). Let us decompose Vp(b)

according to p: Vp(b) = v0 · Vp(bp) where n
v0
↪−→ p in Sp and bp is the branch obtained from b by

removing n. Using the induction hypothesis applied at p, we get v0 = v1`
′ with `′ = lcp(V(Bp)),

n
v1
↪−→ p in ST

u , and V(bp) = `′ · Vp(bp). Thus Vp(b) = v1 · `′ · Vp(bp) = v1 · V(bp) = V(b).
Equation (1) becomes:

V(b) = lcp({v | ∃p, n
v
↪−→ p in Sn′}) ·Vn(b) (2)

Let us write `′′ = lcp({v | ∃p, n
v
↪−→ p in Sn′}). It remains to prove that `′′ = `. Notice that this

will prove both parts of the lemma. We have `′′ = lcp({v | ∃p, n
v
↪−→ p in Sp}) because p and its

descendants are unchanged between calls of factorize on p and n′. Using the induction hypothesis on
each p, we obtain:

`′′ = lcp({v · lcp(V(Bp)) | n
v
↪−→ p in ST

u}) = lcp(V(Bn)) = `

This concludes the proof.

The next lemma ensures that factorize preserves the semantic of the structure, i.e. the set of
encoded configurations.

LEMMA 23. C(F(ST
u )) = C(ST

u ).

PROOF.

(q, σ, v) ∈ C(ST
u )

iff ∃i, (q, σ, i) ∈ leaves(ST
u ) and # v

=⇒u (q, σ, i)
iff ∃i, (q, σ, i) ∈ leaves(ST

u ) and ∃p, #
v0
↪−→ p and p

v1=⇒u (q, σ, i) with v = v0v1

iff ∃i, (q, σ, i) ∈ leaves(ST
u ) and ∃p, #

v0
↪−→ p and v = v0V(b)

where b is a branch p =⇒u (q, σ, i)
iff ∃i, (q, σ, i) ∈ leaves(ST

u ) and ∃p, #
v0
↪−→ p and v = v0 · lcp(V(Bp)) ·Vn(b)

where b is a branch p =⇒u (q, σ, i) (1)
iff (q, σ, v) ∈ C(F(ST

u ))

Equivalence (1) is by Lemma 22.

PROOF. [Proposition 3] Correctness of Algorithm 3 is ensured by Lemma 22, and the fact that
at the root node, it uses the same technique to factorize and output the lcp. In terms of memory
requirement, the number of nodes of ST

u remains bounded as before, while words on edges have
length at most outmax

6= (u), as each of them participate in a d-configuration in C(ST
u ), as proved by

Lemma 23 and Lemma 19. All procedures are in polynomial time.

B Bounded Memory Evaluation Problems
B.1 Bounded Memory functional FSTs
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PROPOSITION 24. Let T be a functional FST.
1. JTK is BM iff T is subsequentializable;
2. It is decidable in PTIME if JTK is BM [30].

PROOF. Statement 2 is proved in [30] (it is proved that subsequentializability is decidable in
PTIME). We prove statement 1. Clearly, if JTK is definable by a subsequential transducer Td, then
evaluating Td on any input word u can be done with a space complexity that depends on the size of
Td only.

Conversely, if JTK is BM, there exists K ∈N and a TT M that transforms any input word u into
JTK(u) in space complexity K. Any word on the working tape of M is of length at most K. As M is
deterministic, we can therefore see M as a subsequential FST, whose states are pairs (q, w) where q
is a state of T and w a word on the working tape (modulo some elimination of ε-transitions).

B.2 Bounded Memory pushdown transductions

PROPOSITION 25. It is undecidable whether a pushdown transduction is BM.

PROOF. We reduce the problem of deciding whether the language of a pushdown automaton P over
an alphabet A is regular to BM. Any letter of A is seen as an internal symbol. We associate with P a
pushdown transducer IP which defines the identity on L(P). Clearly, if L(P) is regular, it is defined
by a finite automaton which can easily be turned into a Turing transducer defining JIPK and which
uses a memory that depends on the size of the automaton only. Conversely, if JIPK is BM, there exists
a function f and a TT M equivalent to IP and which uses at most f (1, |M|) bits of memory, i.e. an
amount of memory which depends on the size of M only. The machine M can easily be turned into
a finite automaton which defines P, whose states are the configurations of the working tape of M.

B.3 Proof of Proposition 5

PROOF. If JTK is BM, there exist K and a TT M such that M evaluates any input word in space
at most K. We can easily extract from M a finite automaton that defines Dom(T), whose number of
states m only depends on M and K. By a simple pumping argument, it is easy to show that the words
in Dom(T) have a height bounded by m. If the height of the words in Dom(T) is bounded, then
their height is bounded by n2. Indeed, assume that there exists a word u ∈ Dom(T) whose height is
strictly larger than n2. Then there exists a run of T on u of the following form:

(i,⊥) u1/v1−−−→ (q, σ)
u2/v2−−−→ (q, σσ′)

u3/v3−−−→ (p, σσ′)
u4/v4−−−→ (p, σ)

u5/v5−−−→ ( f ,⊥)

such that u = u1u2u3u4u5, σ′ is not empty, and i (resp. f ) is an initial (resp. final) state of T. The
existence of this decomposition follows from the consideration of the set of pairs of positions in u
corresponding to matching calls and returns of well-nested subwords of u. Then one can iterate the
matching loops around q and p to generate words in Dom(T) with arbitrarily large heights, yielding
a contradiction. Therefore FST(T, n2) is equivalent to T. As in the proof of Proposition 24, we can
regard M as a subsequential FST TM whose set of states are configurations of the machine. The
FST TM is equivalent to T, and therefore to FST(T, n2). Since TM is subsequential, FST(T, n2) is
subsequentializable and therefore by Proposition 24, FST(T, n2) is BM. The converse is obvious.
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Therefore to check whether JTK is BM, we first decide if the height of all input words accepted
by T is less or equal than n2. This can be done in PTIME O(|T| · n2) by checking emptiness of
the projection of T on the inputs (this is a visibly pushdown automaton) extended with counters up
to n2 + 1 that counts the height of the word. Then we check in NPTIME whether evaluating T can
be done in constant memory if we fix both the transducer and the height of the word (Theorem 10).
Since here the height is bounded by n2, it is equivalent to checking bounded memory.

C On deciding height bounded memory for VPTs
Before going into the proofs of the results of this section, we first prove that our horizontal twinning
property, when restricted to FSTs, is equivalent to the twinning property for FSTs defined in [24].

C.1 Twinning properties for FSTs

Since we use results on the twinning property for FSTs in this paper, we clarify the definition of
twinning property for FSTs. In the core of the paper, it is said that restricting the horizontal twinning
property to FSTs correspond to the usual twinning property of FSTs. By “usual” we mean the
following definition, taken from [24].

DEFINITION 26.[Twinning property for FSTs of [24]]
Let T = (Q, I, F, δ) be a reduced FST. T satisfies the twinning property if for all q0, q′0 ∈ I, for

all q, q′ ∈ Q, for all words u1, v1, w1, u2, v2, w2 ∈ Σ∗, if:

q0
u1/v1−−−→ q u2/v2−−−→ q q′0

u1/w1−−−→ q′ u2/w2−−−→ q′

Then either v2 = w2 = ε, or the following holds:
(i) |v2| = |w2|
(ii) v1(v2)ω = w1(w2)ω

Our twinning property for FSTs is obtained by restricting the horizontal twinning property of
VPTs to FSTs. By restricting we mean the following:

DEFINITION 27.[Twinning property for FSTs of this paper] Let T = (Q, I, F, δ) be a reduced
FST. T satisfies the twinning property if for all q0, q′0 ∈ I, for all q, q′ ∈ Q, for all words
u1, v1, w1, u2, v2, w2 ∈ Σ∗, if:

q0
u1/v1−−−→ q u2/v2−−−→ q q′0

u1/w1−−−→ q′ u2/w2−−−→ q′

Then ∆(v1, w1) = ∆(v1v2, w1w2).

The two definitions are equivalent, as shown by the next lemma:

LEMMA 28. Definitions 26 and 27 are equivalent.

PROOF. First suppose that Definition 26 holds. If v2 = w2 = ε, then clearly ∆(v1, w1) =
∆(v1v2, w1w2). Otherwise |v2| = |w2| and v1(v2)ω = w1(w2)ω. Then necessarily v1 � w1 (i.e. v1
is a prefix of w1) or w1 � v1. Wlog suppose that v1 � w1, i.e. w1 = v1w′1 for some w′1. Therefore
∆(v1, w1) = (ε, w′1), and ∆(v1v2, w1w2) = ∆(v2, w′1w2).
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We now prove that ∆(v2, w′1w2) = (ε, w′1). Since v1(v2)ω = w1(w2)ω, we have (v2)ω =
w′1(w2)ω. Therefore v2w′1(w2)ω = vω

2 = w′1(w2)ω. Since |v2| = |w2|, we get v2w′1 = w′1w2, from
which we have ∆(v2, w′1w2) = ∆(v2, v2w′1) = (ε, w′1).

Conversely, suppose that Definition 27 holds and v2w2 6= ε. Since ∆(v1, w1) = ∆(v1v2, w1w2),
we have either v1 � w1 or w1 � v1. Wlog suppose that v1 � w1, i.e. w1 = v1w′1 for some w′1.
Therefore we have:

∆(v1, w1) = (ε, w′1) = ∆(v1v2, w1w2) = ∆(v2, w′1w2)

Consequently, v2 � w′1w2, and in particular, w′1w2 = v2w′1, which gives us the following series of
equalities:

w1(w2)
ω = v1w′1(w2)

ω = v1v2w′1(w2)
ω = v1(v2)

2w′1(w2)
ω = · · · = v1(v2)

ω

C.2 HTP is decidable

LEMMA 29. Let T be an fVPT, T does not satisfy the HTP if and only if there exist q0, q′0 ∈ I,
q, q′ ∈ Q, σ, σ′ ∈ Γ∗ and u1, v1, w1, u2, v2, w2 ∈ Σ∗, with either v2 6= ε or w2 6= ε and:

(q0,⊥) u1/v1−−−→ (q, σ)
u2/v2−−−→ (q, σ) (q′0,⊥) u1/w1−−−→ (q′, σ′)

u2/w2−−−→ (q′, σ′)

and either (i) |v2| 6= |w2| or (ii) |v2| = |w2|, |v1| ≤ |w1| and v1v2 6� w1w2.

PROOF. Let suppose that there exist q0, q′0 ∈ I, q, q′ ∈ Q, σ, σ′ ∈ Γ∗ and u1, v1, w1, u2, v2, w2 ∈
Σ∗, with either v2 6= ε or w2 6= ε and :

(q0,⊥) u1/v1−−−→ (q, σ)
u2/v2−−−→ (q, σ) (q′0,⊥) u1/w1−−−→ (q′, σ′)

u2/w2−−−→ (q′, σ′)

And let show that if (i) or (ii) hold so does ∆(v1, w1) 6= ∆(v1v2, w1w2).
First suppose that (i) holds. Let x = v1 ∧w1 and z = v1v2 ∧w1w2, clearly there exists y ∈ Σ∗

such that z = xy. By definition, we have ∆(v1, w1) = (x−1v1, x−1w1) and ∆(v1v2, w1w2) =
((xy)−1v1v2, (xy)−1w1w2). Therefore if (i) holds then either |x−1v1| 6= |(xy)−1v1v2| or |x−1w1| 6=
|(xy)−1w1w2)|. Indeed, suppose the first inequality does not hold, we have |x−1v1| = |v1| − |x| =
|(xy)−1v1v2| = |v1| + |v2| − |x| − |y|, that is 0 = |y| − |v2|. Therefore one can check that the
second inequality must hold. We have shown that (i) implies ∆(v1, w1) 6= ∆(v1v2, w1w2).

Now, suppose (ii) holds and let us show that we also have ∆(v1, w1) 6= ∆(v1v2, w1w2). We
have (ii) |v2| = |w2|, |v1| ≤ |w1| and v1v2 6� w1w2. Note that for any u, v, x, y ∈ Σ∗ with
∆(u, v) = (x, y) we have u 6� v if and only if x 6= ε and y 6= ε. Therefore, if we pose (y1, y2) =
∆(v1v2, w1w2), we have, by hypothesis, v1v2 6� w1w2 and so y1 6= ε and y2 6= ε. Let pose
(x1, x2) = ∆(v1, w1), if (x1, x2) = (y1, y2) then x1 6= ε and x2 6= ε, that is v1 6� w1, but then
∆(v1v2, w1w2) = ∆(v1, w1) · (v2, w2) which cannot be equal to ∆(v1, w1) (because, by hypothesis,
one of v2 and w2 is not the empty word).

Now let suppose the HTP does not hold and let show that (i) or (ii) is satisfied for some words
(as above). So there exist q0, q′0 ∈ I, q, q′ ∈ Q, σ, σ′ ∈ Γ∗ and u1, v1, w1, u2, v2, w2 ∈ Σ∗ with :

(q0,⊥) u1/v1−−−→ (q, σ)
u2/v2−−−→ (q, σ) (q′0,⊥) u1/w1−−−→ (q′, σ′)

u2/w2−−−→ (q′, σ′)
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such that ∆(v1, w1) 6= ∆(v1v2, w1w2). Moreover, let us suppose, by contradiction, that for all
k ∈N, if we replace u2 by u2

k (and thus v2 and w2 are replaced by v2
k and w2

k respectively), we get a
system such that neither (i) nor (ii) do hold, that is for all k ∈N we have |v2

k| = |w2
k|, |v1| ≤ |w1|

and v1v2
k � w1w2

k . We now prove that this implies ∆(v1, w1) = ∆(v1v2, w1w2), which is a
contradiction with the hypothesis. On the one hand, if for all k we have v1v2

k � w1w2
k then we have

w1 = v1v2
av′2 for some a ∈ N and some v′2 � v2. So, ∆(v1, w1) = ∆(v1, v1v2

av′2) = (ε, v2
av′2).

On the other hand, v1v2
k � w1w2

k and |v2| = |w2| implies that we have w1w2 = v1v2
a+1v′2. So we

have ∆(v1v2, w1w2) = ∆(v1v2, v1v2
a+1v′2) = (ε, v2

av′2). Therefore ∆(v1, w1) = ∆(v1v2, w1w2).
This concludes the proof.

C.3 Proof of Theorem 10

Let T be an fVPT. We show that JTK is HBM iff T satisfies the HTP.
If JTK is HBM, then the HTP holds for T by Lemma 30 (proved in this section). Conversely, if

T satisfies the HTP, then we apply Lemma 31 (proved this section) which bounds the maximal dif-
ference between outputs of T, and then Proposition 3 gives the complexity the evaluation algorithm.

LEMMA 30. Let T be an fVPT. If JTK is HBM, then the HTP holds for T.

PROOF. By definition of HBM and BM, if JTK is HBM and there exists K ∈ N such that for all
u ∈ Dom(T), h(u) ≤ K, then JTK is BM.

Now suppose that the HTP does not hold for T. Therefore there are words u1, u2, u3, u′3, v1, v2,
v3, w1, w2, w3, w3 ∈ Σ∗, stacks σ, σ′ and states q, q′ ∈ Q, q0, q′0 ∈ I and q f , q′f ∈ F such that: (q0,⊥) u1/v1−−−→ (q, σ)

u2/v2−−−→ (q, σ)
u3/v3−−−→ (q f ,⊥)

(q′0,⊥) u1/w1−−−→ (q′, σ′)
u2/w2−−−→ (q′, σ′)

u′3/w3−−−→ (q′f ,⊥)

and ∆(v1, w1) 6= ∆(v1v2, w1w2). Let K = max(h(u1u2u3), h(u′1u′2u′3)). By definition of FST(T, K)
(states are configurations of T) and of the twinning property for FSTs, the twinning property for FSTs
does not hold for FST(T, K). Therefore FST(T, K) is not subsequentializable [25] and by Propo-
sition 24 JFST(T, K)K is not BM. Therefore JTK is not HBM, otherwise JTK could be evaluated in
space complexity f (h(u)) on any input word u, for some function f . That corresponds to bounded
memory if we fix the height of the words to K at most.

For the converse, we can apply the evaluation algorithm of Section 3, whose complexity depends
on the maximal delay between all the candidate outputs of the input word. We first prove that this
maximal delay is exponentially bounded by the height of the word.

LEMMA 31. Let T be an fVPT. If the HTP holds for T, then for all s ∈ Σ∗ we have outmax
6= (s) ≤

(|Q| · |Γ|h(s))2M, where M = max{|t| | (q, a, t, γ, q′) ∈ δ}.
PROOF. Let s ∈ Σ∗. We consider two cases. We first assume that s ∈ Dom(T). Let u ∈ Σ∗

be a prefix of s, we will prove that out 6=(u) ≤ (|Q| · |Γ|h(u))2M. Note that there exist N =

|Q| · |Γ|h(u) configurations reachable by words of height less than h(u). The proof is similar to
that of [24] for FST. It proceeds by induction on the length of u. If |u| ≤ N2, then the result is
trivial. Otherwise, assume that |u| > N2 and let (q, σ, w), (q′, σ′, w′) ∈ Q × Γ∗ × Σ∗ such that

there exist runs ρ : (i,⊥) u|v−→ (q, σ) and ρ′ : (i′,⊥) u|v′−−→ (q′, σ′), with i, i′ ∈ I, v = lcpin(u, T) · w,
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v′ = lcpin(u, T) ·w′, and such that out 6=(u) = |w|. As |u| > N2, we can decompose these two runs
as follows:  ρ : (i,⊥) u1/v1−−−→ (q1, σ1)

u2/v2−−−→ (q1, σ1)
u3/v3−−−→ (q, σ)

ρ′ : (i′,⊥)
u1/v′1−−−→ (q′1, σ′1)

u2/v′2−−−→ (q′1, σ′1)
u3/v′3−−−→ (q′, σ′)

In addition, we have u = u1u2u3, u2 6= ε, v = lcpin(u, T) ·w = v1v2v3, and v′ = lcpin(u, T) ·w′ =
v′1v′2v′3. Indeed, by the choice of N, there must exist a pair of configurations that occurs twice. By
the HTP property, we obtain ∆(v1v2, v′1v′2) = ∆(v1, v′1). By Lemma 33 (see Appendix D.2), this
entails the equality ∆(v1v2v3, v′1v′2v′3) = ∆(∆(v1v2, v′1v′2) · (v3, v′3)) = ∆(∆(v1, v′1) · (v3, v′3)) =
∆(v1v3, v′1v′3). Thus, we obtain ∆(w, w′) = ∆(v, v′) = ∆(v1v2v3, v′1v′2v′3) = ∆(v1v3, v′1v′3). As
v1v3 and v′1v′3 are possible output words for the input word u1u3, whose length is strictly smaller
than |u|, we obtain |w| ≤ out 6=(u1u3) and the result holds by induction.

We now consider the second case: s 6∈ Dom(T). Let s′ be the longest prefix of s such that
there exists s′′ such that s′s′′ ∈ Dom(T). Since T is reduced (w.l.o.g., as explained in preliminar-
ies), s′ correspond to the longest prefix of s on which there exist a run of T. Therefore we have
outmax
6= (s) ≤ outmax

6= (s′) and we can apply the proof of the first case (as s′ is a prefix of a word that

belongs to Dom(T)) and we get outmax
6= (s′) ≤ (|Q| · |Γ|h(s′))2M. Moreover, h(s′) ≤ h(s), therefore

outmax
6= (s) ≤ outmax

6= (s′) ≤ (|Q| · |Γ|h(s))2M and we are done.

D Quadratic Height Bounded Memory Evaluation
D.1 Decidability of the twinning property

PROOF. [Lemma 13] Let T be a fVPT. We construct in polynomial time a pushdown automaton
with s counters † (one reversal) that accepts any word u = u1u2u3u4 that satisfies the premise of the
TP but such that ∆(v1v3, w1w3) 6= ∆(v1v2v3v4, w1w2w3w4) (i.e. the TP is not verified). Therefore
the TP holds if and only if no word is accepted by the automaton. This can be checked in NPTIME

[27].
The automaton simulates any two runs, and guesses the decomposition u1u2u3u4 (it checks that

the decomposition is correct by verifying that each run is in the same state after reading u1 and u2,
and in the same state after reading u3 and u4). With two counters it can check that |v2v4| = |w2w4|,
if it is not the case then it accepts u (indeed the TP is therefore not verified). The automaton
checks that ∆(v1v3, w1w3) 6= ∆(v1v2v3v4, w1w2w3w4) with the hypothesis (checked in parallel)
that |v2v4| = |w2w4|. Let A, B, C, D be four words with A = a1 . . . al , B = b1 . . . bm, C =
c1 . . . cn, D = d1 . . . dp, l ≥ m. We show in Lemma 32 below, that ∆(A, B) 6= ∆(C, D) holds
if, and only if, at least one out of four simple conditions is true. For example, the first condition states
that there exists k such that al−k 6= bl−k and either (i) k ≥ |C|, or (ii) cn−k = dn−k. The automaton
guesses which condition holds and verifies it with the help of counters.

We detail how to check the first condition, the others can be checked with the same technique.
The automaton guesses the value k and with two counters verifies that al−k 6= bl−k as follows. First
it initializes both counters to l − k (e.g. with an epsilon loop that increments both counters). Then
it counts the letters of both words A and B up to l − k and records al−k and bl−k and verifies that

†The number s does not depend on the transducer T.
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they are not equal. Finally it must verify that either (i) or (ii) is satisfied. The verification of (i) is
easy. To verify (ii), i.e. cn−k = dn−k, it uses two additional counters and proceeds similarly as for
checking al−k 6= bl−k, but checks equality instead of inequality.

LEMMA 32. Let A, B, C, D ∈ Σ∗, such that A = a1 . . . al , B = b1 . . . bm, C = c1 . . . cn, D =
d1 . . . dp, and l − m = n − p ≥ 0. We have that ∆(A, B) 6= ∆(C, D) if and only if one of the
following conditions is satisfied:

1. there exists k such that al−k 6= bl−k and either (i) k ≥ |C|, or (ii) cn−k = dn−k;
2. there exists k such that cn−k 6= dn−k and either (i) k ≥ |A|, or (ii) al−k = bl−k;
3. there exists k such that al−k 6= cn−k and either (i) k < l − m, or (ii) there exists k′ with

ak′ 6= bk′ and k + k′ ≤ l;
4. there exist k, k′ such that bm−k 6= dp−k and ak′ 6= bk′ and k + k′ ≤ m.

PROOF.
Let us define E = A∧ B and F = C∧D, and also A′, B′, C′, D′ ∈ Σ∗ such that A = EA′, B =

EB′, C = FC′ and D = FD′, i.e. (A′, B′) = ∆(A, B) and (C′, D′) = ∆(C, D).
We first prove that each condition implies ∆(A, B) 6= ∆(C, D), i.e. that (A′, B′) 6= (C′, D′).

If |A′| 6= |C′| or |B′| 6= |D′| then the result is immediate. Now, assume that |A′| = |C′| and
|B′| = |D′|.

1. By hypothesis we have al−k 6= bl−k therefore |A′| ≥ k + 1 (as al−k ∈ A′) and |B′| ≥
k + 1− (l −m) (as bl−k ∈ B′). Thus |C′| ≥ k + 1 and |D′| ≥ k + m− l + 1. In particular,
this implies that we are in case (ii) as |C| ≥ |C′| ≥ k + 1. We consider two cases: (a) if
al−k 6= cn−k we have A′ 6= C′ (because al−k ∈ A′ and cn−k ∈ C′ and are at the same position
in A′ and C′ as |A′| = |C′|), or (b) if al−k = cn−k this means that bl−k 6= dn−k (because
al−k 6= bl−k and cn−k = dn−k), and so B′ 6= D′ (because bl−k ∈ B′ and dn−k ∈ D′ because
|B′| = |D′|).

2. Similar to proof of 1.
3. We prove that condition (i) implies ∆(A, B) 6= ∆(C, D). Condition (ii) is proved similarly.

We know that |A′| ≥ |A| − |B| = l−m > k therefore al−k ∈ A′. Similarly, |C′| = |A′| > k,
so cn−k ∈ C′. By hypothesis al−k 6= cn−k, therefore, as |A′| = |C′|, A′ and C′ differ on their
kth letter from the right.

4. Similar to proof of 3.
Now suppose that ∆(A, B) 6= ∆(C, D) and let us show that one of the conditions is satisfied.

First note that if B′ = ε, then B is a prefix of A, and thus |A′| = l − m. In particular, we obtain
|A′| ≤ |C′| ≤ |C|. We call this property (†B). Similarly, D′ = ε entails |C′| ≤ |A′| ≤ |A|, what
we denote by (†D).

We prove the property by considering several cases:
• |A′| > |C|: take k = |A′| − 1, we have al−k 6= bl−k. Note that bl−k does not exist iff

l − k > m, i.e. B′ = ε. By property (†B), this can not occur. In addition, by definition of k,
we have k ≥ |C| and thus condition 1.(i) is satisfied.
• |C′| > |A|: take k = |C′| − 1, we have cn−k 6= dn−k (as above, (†D) ensures that dl−k is well

defined) and k ≥ |A|: condition 2.(i) is satisfied.
• |A′| ≤ |C| and |C′| ≤ |A|:

– |A′| > |C′| (this implies |B′| > |D′|): take k = |A′| − 1, we have al−k 6= bl−k and
cn−k = dn−k (existence of bl−k and dn−k is ensured by (†B) and (†D)): condition 1.(ii)
is satisfied.
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– |C′| > |A′| (this implies |D′| > |B′|): take k = |C′| − 1, then condition 2.(ii) is
satisfied.

– |A′| = |C′| (this implies |B′| = |D′|), we suppose A′ 6= C′ and prove that condition 3
holds (the case B′ 6= D′ is similar with condition 4 holding). Because A′ 6= C′ and they
have the same size, there must be a k < |A′| with al−k 6= cn−k, we consider two cases:
∗ |A′| ≤ |A| − |B|, this implies that k < |A| − |B| = l − m therefore condition

3.(i) is satisfied.
∗ |A′| > |A| − |B|, take k′ = l − |A′|+ 1 (the first position of A′ in A). Then we

have ak′ 6= bk′ and thus condition 3.(ii) is satisfied.

D.2 TP is preserved by equivalent transducers

In this section we prove Theorem 14. We extend the concatenation to pairs of words and denote it by
·, i.e. (u, v) · (u′, v′) = (uu′, vv′).

Proof of Theorem 14 PROOF. We assume that T1 is not twinned and show that T2 is not twinned
either. By definition of the TP there are two runs of the form (i1,⊥) u1|v1−−→ (p1, σ1)

u2|v2−−→ (p1, σ1β1)
u3|v3−−→ (q1, σ1β1)

u4|v4−−→ (q1, σ1)

(i′1,⊥)
u1|v′1−−→ (p′1, σ′1)

u2|v′2−−→ (p′1, σ′1β′1)
u3|v′3−−→ (q′1, σ′1β′1)

u4|v′4−−→ (q′1, σ′1)

such that (q, σ1) and (q′, σ′1) are co-accessible and ∆(v1v3, v′1v′3) 6= ∆(v1v2v3v4, v′1v′2v′3v′4). We will
prove that by pumping the loops on u2 and u4 sufficiently many times we will get a similar situation in
T2, proving that T2 is not twinned. It is easy to show that there exist k2 > 0, k1, k3 ≥ 0, wi, w′i ∈ Σ∗,
i ∈ {1, . . . , 4}, some states i2, p2, q2, i′2, p′2, q′2 of T2 and some stack contents σ2, β2, σ′2, γ′2 of T2 such
that we have the following runs in T2:

(i2,⊥)
u1uk1

2 |w1−−−−→ (p2, σ2)
uk2

2 |w2−−−→ (p2, σ2β2)
uk3

2 u3uk3
4 |w3−−−−−−→ (q2, σ2β2)

uk2
4 |w4−−−→ (q2, σ2)

(i′2,⊥)
u1uk1

2 |w′1−−−−→ (p′2, σ′2)
uk2

2 |w′2−−−→ (p′2, σ′2β′2)
uk3

2 u3uk3
4 |w′3−−−−−−→ (q′2, σ′2β′2)

uk2
4 |w′4−−−→ (q′2, σ′2)

such that (q1, σ1) and (q2, σ2) are co-accessible with the same input word u5, and (q′1, σ′1) and (q′2, σ′2)
are co-accessible with the same input word u′5. Now for all i ≥ 0, we let

V(i) = v1(v2)k1+ik2+k3 v3(v4)
k1+ik2+k3 W(i) = w1(w2)iw3(w4)

i

V ′(i) = v′1(v
′
2)

k1+ik2+k3 v′3(v
′
4)

k1+ik2+k3 W ′(i) = w′1(w
′
2)

iw′3(w
′
4)

i

D1(i) = ∆(V(i), V ′(i)) D2(i) = ∆(W(i), W ′(i))

In other words, D1(i) (resp. D2(i)) is the delay in T1 (resp. T2) accumulated on the input word
u1(u2)k1+ik2+k3 u3(u4)

k1+ik2+k3 by the two runs of T1 (resp. T2).
There is a relation between the words V(i) and W(i). Indeed, since T1 and T2 are equivalent

and (q1, σ1) and (q2, σ2) are both co-accessible by the same input word, for all i ≥ 1, either V(i)

is a prefix of W(i) or W(i) is a prefix of V(i), i.e. there exist X ∈ Σ∗ such that: for all i ≥ 1,
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V(i) = W(i)X or for all i ≥ 1 V(i)X = W(i). Similarly, there exists X′ ∈ Σ∗ such that for all i ≥ 1,
V ′(i) = W ′(i)X′ or for all i ≥ 1, V ′(i)X′ = W ′(i).

We now prove the following key result: for all i, j ≥ 1,

D1(i) 6= D1(j) =⇒ D2(i) 6= D2(j)

We consider two cases (the other ones being symmetric):
• for all ` ≥ 1, V(`) = W(`)X and V ′(`) = W ′(`)X′. Then we have:

∆(V(i), V ′(i)) 6= ∆(V(j), V ′(j))

⇒ ∆(W(i)X, W ′(i)X′) 6= ∆(W(j)X, W ′(j)X′)
⇒ ∆(∆(W(i), W ′(i)) · (X, X′)) 6= ∆(∆(W(j), W ′(j)) · (X, X′)) (Lemma 33)
⇒ ∆(W(i), W ′(i)) 6= ∆(W(j), W ′(j))

• for all ` ≥ 1, V(`) = W(`)X and V ′(`)X′ = W ′(`). Then we have:

∆(V(i), V ′(i)) 6= ∆(V(j), V ′(j))

⇒ ∆(W(i)X, V ′(i)) 6= ∆(W(j)X, V ′(j))

⇒ ∆(∆(W(i), V ′(i)) · (X, ε)) 6= ∆(∆(W(j), V ′(j)) · (X, ε)) (Lemma 33)
⇒ ∆(W(i), V ′(i)) 6= ∆(W(j), V ′(j))

⇒ ∆(∆(W(i), V ′(i)) · (ε, X′)) 6= ∆(∆(W(j), V ′(j)) · (ε, X′)) (Lemma 34)
⇒ ∆(W(i), V ′(i)X′) 6= ∆(W(j), V ′(j)X′) (Lemma 33)
⇒ ∆(W(i), W ′(i)) 6= ∆(W(j), W ′(j))

Now by Lemma 36, since ∆(v1v3, v′1v′3) 6= ∆(v1v2v3v4, v′1v′2v′3v′3), there exists i0 ≥ 1 such
that for all i, j ≥ i0, if i 6= j then ∆(v1(v2)iv3(v4)

i, v′1(v
′
2)

iv′3(v
′
4)

i) 6= ∆(v1(v2)jv3(v4)
j, v′1(v

′
2)

jv′3(v
′
4)

j).
In particular since k2 ≥ 1, we have D1(i) 6= D1(j) for all i, j ≥ i0 and i 6= j. By the last intermediate
result, we get D2(i0) 6= D2(i0 + 1). Therefore the TP does not hold for T2.

x

LEMMA 33. For all u, u′, v, v′ ∈ Σ∗, ∆(uu′, vv′) = ∆(∆(u, v) · (u′, v′)).

PROOF. Let X = uu′ ∧ vv′ and Y = u ∧ v. There exists A, B, C, D such that A ∧ B = ε,
C ∧ D = ε, and:

uu′ = XA u = YC
vv′ = XB v = YD
∆(uu′, vv′) = (A, B) ∆(u, v) = (C, D)

We have necessarily |X| ≥ |Y| since X is the longest common prefix of uu′ and vv′ and Y is the
longest common prefix of u and v. Now we have YCu′ = XA and YDv′ = XB, i.e. Cu′ = Y−1XA
and Dv′ = Y−1XB. Since A ∧ B = ε, we have ∆(Cu′, Dv′) = (A, B), i.e. ∆(∆(u, v) · (u′, v′)) =
(A, B) = ∆(uu′, vv′).

LEMMA 34. For all u, u′, v, v′, w, w′ ∈ Σ∗, we have

∆(∆(u, u′) · (w, w′)) = ∆(∆(v, v′) · (w, w′)) iff ∆(u, u′) = ∆(v, v′)

PROOF. There exists A, B, C, D and X, Y such that:

∆(u, u′) = (A, B) ∆(v, v′) = (C, D) u = XA u′ = XB v = YC v′ = YD



FILIOT, GAUWIN, REYNIER, SERVAIS 29

Let also E, F, G, H such that ∆(Aw, Bw′) = (E, F) and ∆(Cw, Dw′) = (G, H). Clearly, if A = C
and B = D, we have E = G and F = H.

Conversely, suppose that A 6= C (the case B 6= D is symmetric). We show that E 6= G or
F 6= H. By definition of the delay, we know that A ∧ B = ε, and C ∧D = ε. Therefore we have the
following cases, for some words A′, B′, C′, D′ and letters a, b, c, d such that a 6= b and c 6= d:

1. A = aA′ and B = bB′, C = cC′ and D = dD′ for some A′, B′, C′, D′. Therefore
∆(Aw, Bw′) = (Aw, Bw′) = (E, F) and ∆(Cw, Dw′) = (Cw, Dw′) = (G, H). Since
A 6= C, we get E 6= G;

2. A = aA′ and B = bB′, and D = ε. Therefore ∆(Aw, Bw′) = (Aw, Bw′) = (E, F) and
∆(Cw, Dw′) = ∆(Cw, w′) = (G, H). We have necessarily |H| ≤ |w′|. Since B 6= ε, we
have |F| = |Bw′| > |w′| ≥ |H|. Therefore F 6= H;

3. A = aA′ and B = bB′ and C = ε. We can apply the same argument as case 2;
4. A = ε and C = cC′ and D = dD′. This case is symmetric to case 2;
5. B = ε and C = cC′ and D = dD′. This case is symmetric to case 2;
6. A = ε and C = ε. This case is not possible since we have assumed A 6= C;
7. A = ε and D = ε (C 6= ε). We have ∆(Aw, Bw′) = ∆(w, Bw′) and ∆(Cw, Dw′) =

∆(Cw, w′). Suppose that E = G and F = H. Then there exists Z, Z′ such that w = ZE,
Bw′ = ZF, Cw = Z′E and w′ = Z′F. Therefore Bw′ = BZ′F = ZF, and BZ′ = Z, so that
w = BZ′E and Cw = CBZ′E = Z′E, i.e. CB = ε, which contradicts C 6= ε;

8. B = ε and C = ε. This case is symmetric to the previous case;
9. B = ε and D = ε. Then we have ∆(Aw, Bw′) = ∆(Aw, w′) and ∆(Cw, Dw′) = ∆(Cw, w′).

Again suppose that E = G and F = H, therefore there exists Z, Z′ such that Aw = ZE,
w′ = ZF, Cw = Z′E and w′ = Z′F. Therefore Z = Z′, which implies Aw = Cw. This
contradicts A 6= C.

LEMMA 35. Let v1, v2, v3, v4, w1, w2, w3, w4 ∈ Σ∗ and for all i ≥ 0, let

V(i) = v1(v2)
iv3(v4)

i W(i) = w1(w2)
iw3(w4)

i.

If there exist K ≥ 0 and X ∈ Σ∗ such that for all i ≥ K, V(i) = W(i)X, then for all i ≥ 0,
V(i) = W(i)X.

PROOF. First note that we have |v2v4| = |w2w4|, this is a straight consequence from the fact that
for all i ≥ K, V(i) = W(i)X. We consider two cases:
• |v2| 6= |v4|: in that case we can show that the primitive roots of v2, v4, w2, w4 are conjugate

(see for example [26]) and therefore have the same length. Therefore we can apply Theorem 1
of [28] which yields the result.

• |v2| = |v4|: in that case we also have |w2| = |w4|, and suppose |v1| ≥ |w1| (the case
|v1| < |w1| is similar). There exists Y ∈ Σ∗, such that for any i ≥ K we have v1v2

i =
w1w2

iY and Yv3v4
i = w3w4

iX. Therefore we can apply Theorem 2 of [28] which shows
that these equalities hold for any i. For any i we have V(i) = v1v2

iv3v4
i = w1w2

iYv3v4
i =

w1w2
iw3w4

iX = W(i)X.
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LEMMA 36. Let v1, v2, v3, v4, w1, w2, w3, w4 ∈ Σ∗ and for all i ≥ 0, let

V(i) = v1(v2)
iv3(v4)

i W(i) = w1(w2)
iw3(w4)

i.

If ∆(V(0), W(0)) 6= ∆(V(1), W(1)), then there exists i0 ≥ 1 such that for all i, j ≥ i0, if i 6= j then
∆(V(i), W(i)) 6= ∆(V(j), W(j)).

PROOF. First note that since ∆(V(0), W(0)) 6= ∆(V(1), W(1)), we clearly have |v2v4| 6= ε or
|w2w4| 6= ε, We write u � v if u is a prefix of v, and u||v if u and v are incomparable, i.e.
u ∧ v = ε. We consider several cases:

1. there is K ≥ 1 such that for all i ≥ K, V(i) � W(i) or W(i) � V(i). Consider the lengths of
V(i) and W(i). When K is large enough, one of V(i) and W(i) is always the prefix of the other,
for i ≥ K: V(i) � W(i) if |v2v4| ≤ |w2w4|, and W(i) � V(i) otherwise. Let us assume that
|v2v4| ≤ |w2w4|, i.e., for all i ≥ K, there exists Xi such that W(i) = V(i)Xi. The other case
is symmetric. We have |W(i+1)| − |W(i)| = |w2w4| = |V(i+1)|+ |Xi+1| − |V(i)| − |Xi|, i.e.
|w2w4| = |V(i)|+ |v2v4|+ |Xi+1| − |V(i)| − |Xi|, i.e. |Xi+1| − |Xi| = |w2w4| − |v2v4|. We
again consider several cases:

1.1 |w2w4| > |v2v4|. We have |XK| < |XK+1| < |XK+2| . . ., and by definition of the delay,
∆(V(i), W(i)) = (ε, Xi). Therefore the delay always increases in size as i icreases and
we get the result;

1.2 |w2w4| = |v2v4|. We show that this case is not possible. Indeed, it implies that |XK| =
|XK+1| = |XK+2| . . . . Therefore by definition of V(i) and W(i), there exists K′ ≥ K
and X ∈ Σ∗ such that X = XK′ = XK′+1 = XK′+2 . . . . By Lemma 35, we get
W(0) = V(0)X and W(1) = V(1)X, which contradicts ∆(W(0), V(0)) 6= ∆(W(1), V(1)).

2. for all K ≥ 1, there is i ≥ K such that V(i)||W(i). We show in this case that one of the two
components of the delay always increases in size when i increases. We consider several cases
depending on where the first difference between V(i) and W(i) occurs. The cases we consider
also depend on K. In particular, by taking a large K it can reduce the number of cases we have
to consider. For some α1, α2, α3 ∈ Σ∗ and a, b ∈ Σ such that a 6= b, and for a K large enough,
one of the following condition holds:

2.1 there is i ≥ K such that v1(v2)i = α1aα2 and w1(w2)i = α1bα3, as illustrated below.

V(i)

v1(v2)
i v3(v4)

i

α1 α2

W(i)

w1(w2)
i w3(w4)

i

α1 α3

a

b

Then for all j ≥ i:

∆(V(j), W(j)) = (aα2(v2)
j−iv3(v4)

j, bα3(w2)
j−iw3(w4)

j)

Since |v2v4| 6= ε or |w2w4| 6= ε, some of the two components of the delays is always
increasing in size as j icreases, which proves the result;

2.2 w2 = ε and v1 = α1aα2 and there is i ≥ K such that w1w3(w4)
i = α1bα3, as illustrated

below.
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V(i)

v1 (v2)
iv3(v4)

i

α1 α2

W(i)

w1w3(w4)
i

α1 α3

a

b

Then for all j ≥ i:

∆(V(j), W(j)) = (aα1vj
2v3(v4)

j, bα3(w4)
j−i)

Since v2v4 6= ε or w4 6= ε, one of the two components of the delays is always increaing
in size;

2.3 there is i ≥ K such that v1(v2)i = α1aα2 and w1(w2)iw3 = α1bα3, with |α1| ≥ |v1|
and |α1| ≥ |w1(w2)i| (otherwise it is case 2.1). We also assume that w2 6= ε (otherwise
it can be proved similarly as case 2.1). Therefore v2 6= ε. This case is illustrated below:

V(i)

v1 (v2)
i v3(v4)

i

α1 α2

W(i)

w1(w2)
i w3 (w4)

i

α1 α3

a

b

We have taken K large enough, so that vi
2 and wi

2 have a common factor of length at least
|v2|+ |w2|. The strong theorem of Fine and Wilf [29] implies that the primitive roots of
v2 and w2 are conjugate: there are t1, t2 ∈ Σ∗ and n, p ≥ 1 such that v2 = (t1t2)n and
w2 = (t2t1)

p. It can be shown (see for instance [26]) that we can choose t1 and t2 such
that there exist k1, k2 ≥ 0 verifying:

v1 = (v1 ∧ w1)(t2t1)
k1 t2 w1 = (v1 ∧ w1)(t2t1)

k2

Let α′1 be such that α1 = w1(w2)iα′1. There exist k3, X and Y such that α′1 = (t2t1)
k3 X

with t2t1 = XaY, and w3 = α′1bα3, as illustrated below (we assume that |w1| < |v1| on
the picture).

V(i)

v1 (v2)
i v3(v4)

i

α1 α2

W(i)

w1 (w2)
i w3 (w4)

i

α1 α3
α′1

a

b

t2t1t2t1t2t1t2t1t2t1t2t1t2t1t2t1t2t1t2t1t2t1t2t1t2
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We have for all j ≥ i:

∆(V(j), W(j))
= ∆(v1(v2)jv3(v4)

j, w1(w2)jw3(w4)
j)

= ∆((v1 ∧ w1)(t2t1)
k1 t2(t1t2)jnv3(v4)

j, w1(w2)jw3(w4)
j)

= ∆((v1 ∧ w1)t2(t1t2)k1+jnv3(v4)
j, w1(w2)jw3(w4)

j)
= ∆((v1 ∧ w1)t2(t1t2)k1+jnv3(v4)

j, (v1 ∧ w1)(t2t1)
k2(w2)jw3(w4)

j)
= ∆(t2(t1t2)k1+jnv3(v4)

j, (t2t1)
k2+jpw3(w4)

j)
= ∆((t2t1)

k1+jnt2v3(v4)
j, (t2t1)

k2+jpw3(w4)
j)

We now consider the following subcases:
2.3.1 |v2| > |w2|. As a consequence, n > p, and we can assume that K is big enough,

so that k1 − k2 + j(n− p) > 0. We get:

∆(V(j), W(j)) = ∆((t2t1)
k1−k2+j(n−p)t2v3(v4)

j, w3(w4)
j)

= ∆((t2t1)
k1−k2+j(n−p)t2v3(v4)

j, α′1bα3(w4)
j)

= ∆((t2t1)
k1−k2+j(n−p)t2v3(v4)

j, (t2t1)
k3 Xbα3(w4)

j)

We can take j such that k1 − k2 + j(n− p) > k3, and therefore we finally have:

∆(V(j), W(j))

= ∆((t2t1)
k1−k2+j(n−p)−k3 t2v3(v4)

j, Xbα3(w4)
j)

= ∆(XaY(t2t1)
k1−k2+j(n−p)−k3−1t2v3(v4)

j, Xbα3(w4)
j)

= (aY(t2t1)
k1−k2+j(n−p)−k3−1t2v3(v4)

j, bα3(w4)
j)

Since t2t1 6= ε, we get that the first component of the delay always increases in
size when j increases;

2.3.2 |v2| < |w2|. We can take K large enough such that this case never happens, i.e.
(v2)i and w3 do not overlap.

2.3.3 |v2| = |w2|. Therefore n = p, and we have for all j ≥ i:

∆(V(j), W(j)) = ∆((t2t1)
k1 t2v3(v4)

j, (t2t1)
k2 w3(w4)

j)

As case 2.3.1, since by hypothesis there is an overlap between (v2)i and w3, we
have k1 > k2 + k3, and we get:

∆(V(j), W(j)) = ∆((t2t1)
k1−k2 t2v3(v4)

j, w3(w4)
j)

= ∆((t2t1)
k1−k2 t2v3(v4)

j, (t2t1)
k3 Xbα3(w4)

j)
= ∆((t2t1)

k1−k2−k3 t2v3(v4)
j, Xbα3(w4)

j)
= ∆(XaY(t2t1)

k1−k2−k3−1t2v3(v4)
j, Xbα3(w4)

j)
= (aY(t2t1)

k1−k2−k3−1t2v3(v4)
j, bα3(w4)

j)

Therefore if v4 6= ε and w4 6= ε, we are done as one of the two components of
the delay will increase in size when j increases. If v4 = w4 = ε we can explicitly
give the form of ∆(V(0), W(0)) and ∆(V(1), W(1)):

∆(V(0), W(0)) = ∆((t2t1)
k1 t2v3, (t2t1)

k2+k3 Xbα3)
= ∆((t2t1)

k1−k2−k3 t2v3, Xbα3)
= ∆((t2t1)

k1 t2(t1t2)nv3, (t2t1)
k2+k3+nXbα3)

= ∆(V(1), W(1))

This is excluded by hypothesis, so this case is not possible.
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2.4 the other cases (the first difference occurs between (v2)i and (w4)
i, or between v3 and

w3, or between v3 and (w4)
i, or between (v4)

i and (w4)
i) are proved similarly as case

2.3 by decomposing the words as power of their primitive roots. For instance, if the first
difference occurs between v3 and w3, then either v2 = w2 = ε and it is the same as
case 2.1, or v2 6= ε and w2 = ε but we can take K large enough so that this case is
impossible, or v2 6= ε and w2 6= ε. In this latter case we can take K large enough so
that the primitive roots of v2 and w2 are conjugate. We have again to distinguish several
cases on the relative lengths of v2 and w2 (as for 2.3) but the proofs are similar. Similar
techniques were already applied to prove that functionality is decidable for VPTs [26].

D.3 Proof of Theorem 16

We can use the same proof as the proof of back direction of Theorem 10, the only difference is the
lemma that bounds the maximal difference between outputs of T.

We prove the following lemma, which states that the TP implies that in the evaluation algorithm,
the delays stored by the algorithm can be bounded linearly in the height of the input word.

LEMMA 37. Let T be an fVPT. If the TP holds for T, then for any word s ∈ Σ∗, we have
outmax
6= (s) ≤ (h(s) + 1) ·

(
(|Q| · |Γ||Q|4)2 + 1

)
·M, where M = max{|t| | (q, a, t, γ, q′) ∈ δ}.

PROOF. Let s ∈ Σ∗. We assume that s ∈ Dom(T) (we can handle the case s 6∈ Dom(T) as in
the proof of Lemma 31 for the HTP). We use the notion of current height hc(u) of a prefix u of s
as defined at the beginning of Appendix A. Consider a word u prefix of s. There exists a unique
decomposition of u as follows: u = u0c1u1c2 . . . un−1cnun, where n = hc(u), and for any i, we
have ci ∈ Σc and ui is well-nested. Indeed, as n = hc(u), the word u contains exactly n pending
calls, that correspond to ci’s, and other parts of u can be gathered into well-nested words.

If each of the ui’s is such that |ui| ≤ (|Q| · |Γ||Q|4)2, then the property holds as length of word
u can be bounded by (hc(u) + 1) ·

(
(|Q| · |Γ||Q|4)2 + 1

)
.

Otherwise, we prove that there exists a strictly shorter input word that produces the same delays

as u when evaluating the transduction on it. Therefore, consider a word w such that (q0,⊥) u/w−−→
(q, σ) for some q0 ∈ I. Then there exist runs $, $′ in T producing respectively as output words v and
v′, such that v = (v ∧ v′) · w. Consider the smallest index i such that |ui| > (|Q| · |Γ||Q|4)2. We
distinguish two cases:

1. if h(ui) ≤ |Q|4, then we can reduce the length of ui using the HTP by exhibiting two config-
urations occurring twice in runs $ and $′. This yields an input word u′, strictly shorter than u,
that produces the same delays as u (see the proof of Lemma 31).

2. if h(ui) > |Q|4, then we prove that we can “pump vertically” ui, and then reduce its length
too. Indeed, let k be the first position in word ui at which height h(ui) is obtained. As ui is
well-nested, we can define for each 0 ≤ j < h(ui) the unique position le f t(j) (resp. right(j))
as the largest index, less than k (resp. the smallest index, larger than k), whose height is j (see
Figure 7). As h(ui) > |Q|4, there exist two heights j and j′ such that configurations reached
at positions le f t(j), le f t(j′), right(j) and right(j′) in runs $ and $′ satisfy the premises of
the twinning property, considering the prefix u0c1 . . . ciui of u. Thus, one can replace in this
prefix ui by a shorter word u′i and hence reduce its length, while preserving the delays reached
after it. Let u′ be the word obtained from u by substituting u′i to ui, hence |u′| < |u|. By
Lemma 33, this entails that the delays reached after u and u′ are the same, proving the result.
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height

length

(p, q)

(p, q)

(p′, q′)

(p′, q′)j

j′

le f t(j′) le f t(j)

right(j)

right(j′)

Figure 7: Vertical pumping in a well-nested word
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