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Objective of the talk

What about transductions ?

f : Σ∗ ↪→ Σ∗

Append a # abbab 7→ abbab#

Delete all b abbab 7→ aa

Squeeze all white space sequences ≥ 2 fsttcs 18 7→ fsttcs 18

Add a parity bit 0100101 7→ 1100101

Mirror the input word trends18 7→ 81sdnert

Copy the input word krishna 7→ krishnakrishna
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Outline

1. automata for transductions

2. logics for transductions

3. recent results
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Automata for transductions: transducers

fdel :

b:ε b:εa:a

a:a

aabaa 7→ aaaa

aaba 7→ undefined

dom(fdel) = ’even number of a’
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Parity bit 01101 7→ 101101, 01111 7→ 001111

qe

qo

0:0

0:0

1:11:1

q0

0:00

0:10

1:11

1:01

I input non-determinism needed here (aka non-sequential)

I PTime decidable whether non-determinism is necessary
Choffrut, Sakarovitch, Carton,Beal,Prieur

7 / 30



Introduction Transducers Logic Conclusion

Parity bit 01101 7→ 101101, 01111 7→ 001111

qe

qo

0:0

0:0

1:11:1q0

0:00

0:10

1:11

1:01

I input non-determinism needed here (aka non-sequential)

I PTime decidable whether non-determinism is necessary
Choffrut, Sakarovitch, Carton,Beal,Prieur

7 / 30



Introduction Transducers Logic Conclusion

Parity bit 01101 7→ 101101, 01111 7→ 001111

qe

qo

0:0

0:0

1:11:1q0

0:00

0:10

1:11

1:01

I input non-determinism needed here (aka non-sequential)

I PTime decidable whether non-determinism is necessary
Choffrut, Sakarovitch, Carton,Beal,Prieur

7 / 30



Introduction Transducers Logic Conclusion

Parity bit 01101 7→ 101101, 01111 7→ 001111

qe

qo

0:0

0:0

1:11:1q0

0:00

0:10

1:11

1:01

I input non-determinism needed here (aka non-sequential)

I PTime decidable whether non-determinism is necessary
Choffrut, Sakarovitch, Carton,Beal,Prieur

7 / 30



Introduction Transducers Logic Conclusion

Equivalence problem

Def Let f, g : Σ∗ ↪→ Σ∗ given by transducers Tf , Tg such that
dom(f) = dom(g). Decide whether f = g.

Lem (Schützenberger) Inequivalence is witnessed by runs r1, r2

such that
(1) r1, r2 are over the same input
(2) r1, r2 produce different outputs
(3) r1, r2 have polynomial length

Coro Equivalence is decidable in PSpace.

Thm (Gurari,Ibarra,83). Equivalence is decidable in PTime.
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Equivalence problem

Lem Proof Assume v = f(u) 6= g(u) = w. If u is long enough,
there exists a decomposition:

with u = u1u2u3u4 (|u2| > 0,|u3| > 0), v = v1v2v3v4,
w = w1w2w3w4.

Show one of the following cases hold:

1. f(u1u4) = v1v4 6= g(u1u4) = w1w4

2. f(u1u2u4) = v1v2v4 6= g(u1u2u4) = w1w2w4

3. f(u1u3u4) = v1v3v4 6= g(u1u3u4) = w1w3w4
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Transducer equivalence vs Automata equivalence

T1 :
a:ε

a:a

T2 :
a:ε

a:a

I Same transduction but different languages:

(a, ε)(a, a)(a, a) 6= (a, a)(a, a)(a, ε)

I Transducers are asynchronous

I Make most transducer problems conceptually difficult (and
even computationally).
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Non-determinism and relations
In general, transducers define binary relations in Σ∗ × Σ∗

σ:ε

σ:σ

realizes {(u, v) | v is a subword of u}

Thm. (Gurari, Ibarra 83) PTIME-decidable whether a given
transducer defines a function.

Equivalence Problem
Let R1, R2 ⊆ Σ∗ × Γ∗ given by transducers. Decide if R1 = R2.

I Undecidable (Griffith 68), even if one alphabet is unary
(Ibarra 78)

I Decidable for bounded-valued transducers (Culik
Karhumäki 86) 1.

1∃K∀u |T (u)| ≤ K
10 / 30
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Two-way finite transducers (2FT)

input

output

`

`

d

d e

e

c

c

2

2

0

0

1

1

8

8

a

a

88 11 00 22 cc ee d

1

1 2

2

3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
dec, 2018 7→ 2018, dec
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)
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Some important results on two-way transducers

Over (functional) transductions:

I equivalence is decidable in PSPace
(Gurari 82) (Culik, Karhumäki,87)

I closed under composition
(Chytil, Jakl, 77)

I equivalent to reversible two-way transducers
(Dartois,Fournier,Jecker,Lhote,17)

I and to many other models ...
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Transducers with registers

X

σ | X := σX

mirror

Y X

σ

∣∣∣∣∣∣ X := σX

Y := Y σ

id.mirror

aX

a | X := aXX

exp:an 7→ a2n

I deterministic one-way

I equivalent to 2FT if linear updates
(Alur, Cerny, 10)

I decidable equivalence problem
(F., Reynier,17) (Benedikt et. al., 17)
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Summary – Expressiveness

input-deterministic functional non-functional

1-way

(rational)

2-way

(regular)

PSPace

PTimePTime
UndecDec

(F., Gauwin,Reynier,Servais,13)

(Baschenis, Gauwin,Muscholl,Puppis,17)

< <

= <
∧ ∧ ∧
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Summary – Equivalence problem

input-deterministic functional non-functional

1-way

(rational)

2-way

(regular)

PSPace

PTime PTime

PSPace

undec

undec
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Logics for transductions
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MSO on words
Over some finite alphabet Σ:

ϕ ::= ϕ ∧ ϕ | ¬ϕ | ∃xϕ | ∃Xϕ | x ∈ X | σ(x) | S(x, y) σ ∈ Σ

Over finite words, (set) variables interpreted by (sets of)
positions.

Some examples

I ≤: transitive closure of S

I first position is an a: a(x) ∧ ∀y(x ≤ y)

I counting modulo: odd number of a, even length, ...

Lφ = {w ∈ Σ∗ | w |= φ}
Büchi-Elgot-Trakhenbrot

A language L is MSO-definable iff it is recognisable by some
finite automaton.
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Introduction Transducers Logic Conclusion

Extension to transductions

Example (Delete all b)

I replace input label by a if it is a

φa(x) ≡ a(x)

I replace input label by ε if it is b

φε(x) ≡ b(x)
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Example (Append #)

I replace label σ of x by σ if x is not the last position
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Extension to transductions
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Büchi Theorem for Rational Transductions

Def f : Σ∗ ↪→ Σ∗ is MSO-definable if it can be “described” by a
finite set of formulas φv1(x), . . . , φvk(x) (v1, . . . , vk ⊆ Σ∗).

Thm f : Σ∗ ↪→ Σ∗ is MSO-definable iff it is realisable by a
finite state transducer.
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Proof Idea Transducers → MSO

For all transitions t = p
σ:v−−→ q define φtv(x)

I which expresses the existence of an accepting run
which at position x triggers transition t.

I latter property is regular, so MSO-definable (Büchi’s
Theorem)

(the transducer must be unambiguous)
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I states must hold enough information to decide MSO
satisfiability

I states are MSO-types (τ1, τ2) of (prefix,suffix)

I if formula φv(x) holds at (τ1, τ2), output v
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Büchi Theorem for Rational Transductions

Def f : Σ∗ ↪→ Σ∗ is MSO-definable if it can be “described” by a
finite set of formulas φv1(x), . . . , φvk(x) (v1, . . . , vk ⊆ Σ∗).

Thm f : Σ∗ ↪→ Σ∗ is MSO-definable iff it is realisable by a
finite state transducer.

Proof Idea MSO → Transducers

I states must hold enough information to decide MSO
satisfiability

I states are MSO-types (τ1, τ2) of (prefix,suffix)

I if formula φv(x) holds at (τ1, τ2), output v

19 / 30



Introduction Transducers Logic Conclusion

Büchi Theorem for Rational Transductions

What about mirror ? csl2018 7→ 8102lsc

Replace label of position x by σ if last− x is labeled σ.

Not MSO-definable.
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(Courcelle) MSO Transducers
“interpreting the output structure in the input structure”

I output predicates defined by MSO formulas interpreted
over the input structure

s t r e s s e d

S S S S S S S

SSSSSSS

φS(x, y) ≡ S(y, x)

φσ(x) ≡ σ(x)

I input structure can be copied a fixed number of times:
u 7→ uu, or u 7→ u.mirror(u).
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Other example : u 7→ u.mirror(u)

s t r e s s e d

s t r e s s e d

copy 1

copy 2

S S S S S S S

S S S S S S S

SSSSSSS

S

SSSSSS

S

Formulas

copy 1: φ1S(x, y) ≡ S(x, y)

copy 2: φ2S(x, y) ≡ S(y, x)

copy 1 to copy 2: φ1→2
S (x, y) ≡ x = y ∧ last(x)

copy 2 to copy 1: φ2→1
S (x, y) ≡ ⊥

for all copies i: φiσ(x) ≡ σ(x)
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Büchi Theorem for Regular Transductions
Let f : Σ∗ ↪→ Σ∗.

Theorem (Engelfriet, Hoogeboom, 01)

The following are equivalent:

1. f is definable by a deterministic two-way transducer

2. f is MSO-definable.

Consequence Equivalence is decidable for MSO-transducers,
and they are closed under composition.

Proof ideas: MSO-transducers are 2-way transducers with MSO
jumps φc→c

′
S (x, y)

I turn jumps into walks
I hold enough information to decide MSO-formulas locally:

states = MSO-types

f = f̂ ◦ ftypes (use composition closure of 2-way trans)
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Some other (recent) results
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Other specification languages

I FO-transducers
I equivalent to aperiodic transducers with registers (F.,

Krishna, Trivedi, 14)

I and to aperiodic 2-way transducers (Dartois, Jecker, Reynier,

16)

I regular expressions for regular functions (called
combinators)

I iterated sum f∗(u) = f(u1)f(u2) . . . f(un) for u = u1 . . . un
I chain sum f c(u) = f(u1u2)f(u2u3) . . . f(un−1un)
I introduced by Alur, Freilich, Raghothaman in 14
I extended to infinite words by Dave, Gastin, Krishna in 18

I new FO-equivalent expressions based on function
composition ◦ by Bojanczyk, Daviaud and Krishna in 18

I an expressive decidable logic tailored to (non-functional)
transductions Dartois, F., Lhote, 18.
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Definability Problems

Definition
F : logical fragment of MSOT (e.g. FOT)
Input: T an MSOT
Output: Is JT K FO-definable ?

Results

I Decidable for “rational” MSO (=rational functions)
F., Gauwin, Lhote, 16

I Open for MSOT
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Origin semantics (Bojanczyk, 14)

a aa aa aa 7→ 6=
a aa aa aa 7→

Origin semantics JT Ko inherent to most transducer models T !

I existence of a canonical transducer if origin is taken into
account (Bojanczyk, ICALP’14)

I decidable FO-definability of MSOT with origin

I algorithmic problems modulo origin (JT1Ko = JT2Ko)
I extended to “similar” origins through resynchronisers (F.,

Maneth, Reynier, Talbot, 15) (F., Jecker, Löding, Winter,16), (Bose,

Muscholl, Penell, Puppis, 18)

I study of rational relation subclasses by control languages
REL(C), C ⊆ {in, out}∗ (Descotte, Figueira, Libkin, Puppis)
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Some Other Results

I machine-independent characterisations
Cadilhac,Krebs,Ludwig,Paperman, 15

I uniformisation problems (Ismaël’s Jecker and Sarah
Winter’s PhD thesis). E.g. given R rational, is there f
sequential such that

I Gf ⊆ R
I dom(f) = dom(R)

I ressource analysis (streaming, number of registers, etc.)
Baschenis, Daviaud, F., Gauwin, Muscholl, Puppis, Reynier, Talbot...

I learning
Boiret, Lemay, Niehren 12

I data word transducers Léo Exibard’s PhD thesis

I other structures: infinite strings, nested words, trees,
graphs, data words ...
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I other structures: infinite strings, nested words, trees,
graphs, data words ...

27 / 30



Introduction Transducers Logic Conclusion

Some Other Results

I machine-independent characterisations
Cadilhac,Krebs,Ludwig,Paperman, 15

I uniformisation problems (Ismaël’s Jecker and Sarah
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A Few Applications

I language and speech processing (M. Mohri)

I regular model-checking

I text analysis, document transformation

I reactive synthesis

I Tools: OpenFST, Vaucanson, DreX (Alur, d’Antoni,
Raghothaman)

I line of works on symbolic transducers (d’Antoni, Veanes ...)

But so far, no strong application of the “asynchronous” setting
(non letter-to-letter)
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