Regular n-ary Queries in Trees and Variable Independence

Emmanuel Filiot

Sophie Tison

Laboratoire d'Informatique Fondamentale de Lille (LIFL) INRIA Lille Nord-Europe, Mostrare Project

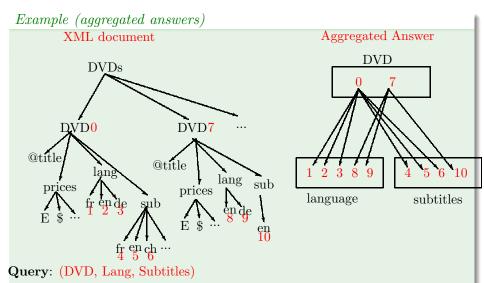
IFIP TCS, 2008

Motivations

- n-ary queries $\phi(x_1,\ldots,x_n)$ in trees t: select n-tuples of nodes
- fundamental to XML processing tasks
- the set of answers can grow exponentially in |t| ($O(|t|^n)$ in the worst case)
- the answers share common information
- a compact representation is needed

Aggregated Answers (Meuss, Schulz, Bry, ICDT'01)

• join-free term over $\{\times, \vee\}$ and constants $[x \mapsto n]$;



Advantages of this representation

- efficient model-checking: $\tau \in Ans(\phi, t)$?
- efficient enumeration: $\tau_1, \ldots, \tau_i, \ldots$
- advanced query answering:
 - ▶ answer searching, statistics
 - answer browsing
 - cascade style query-answering
- view computing

Objective

How compact are aggregated answers? How to measure compactness?

Objective

How compact are aggregated answers? How to measure compactness?

- compactness is related to variable independence
- variable independence in the context of infinite constraint databases (Chomicki et. al., PODS'96) (Libkin, TOCL'03)
- only between blocks of variables, and fixed database
- we propose a more general notion: dependency forests
- MSO in ordered finite binary trees

Objective

How compact are aggregated answers? How to measure compactness?

- compactness is related to variable independence
- variable independence in the context of infinite constraint databases (Chomicki et. al., PODS'96) (Libkin, TOCL'03)
- only between blocks of variables, and fixed database
- we propose a more general notion: dependency forests
- MSO in ordered finite binary trees

Question

Given a dependency forest, and a query, are the variables independent w.r.t. this forest?

Outline

- variable independence w.r.t. a partition
- variable independence w.r.t. a dependency forest

Trees and MSO

- finite ordered **binary** trees t are viewed as structures over the signature $S_1(x, y), S_2(x, y), lab_a(x), a \in \Sigma$, with domain nodes(t)
- first-order variables x, y, z, \ldots denote **nodes**
- second-order variables X, Y, Z, \ldots denote **set of nodes**
- existential quantifiers $\exists x, \exists X$, Boolean operators \neg, \lor, \land , and membership $x \in X$;
- an MSO formula $\phi(x_1,\ldots,x_n)$ defines an *n*-ary query:

$$Ans(\phi,t) = \{(u_1,\ldots,u_n) \in nodes(t)^n \mid t \models \phi(u_1,\ldots,u_n)\}$$

Trees and MSO

- finite ordered **binary** trees t are viewed as structures over the signature $S_1(x, y), S_2(x, y), lab_a(x), a \in \Sigma$, with domain nodes(t)
- first-order variables x, y, z, \ldots denote **nodes**
- second-order variables X, Y, Z, \ldots denote **set of nodes**
- existential quantifiers $\exists x, \exists X$, Boolean operators \neg, \lor, \land , and membership $x \in X$;
- an MSO formula $\phi(x_1,\ldots,x_n)$ defines an *n*-ary query:

$$Ans(\phi,t) = \{(u_1,\ldots,u_n) \in nodes(t)^n \mid t \models \phi(u_1,\ldots,u_n)\}$$

Example

Select all the DVDs:

$$\phi(x) = lab_{DVD}(x)$$

Trees and MSO

- finite ordered binary trees t are viewed as structures over the signature $S_1(x,y), S_2(x,y), lab_a(x), a \in \Sigma$, with domain nodes(t)
- first-order variables x, y, z, \ldots denote **nodes**
- second-order variables X, Y, Z, \ldots denote **set of nodes**
- existential quantifiers $\exists x, \exists X$, Boolean operators \neg, \lor, \land , and membership $x \in X$;
- an MSO formula $\phi(x_1,\ldots,x_n)$ defines an *n*-ary query:

$$Ans(\phi,t) = \{(u_1,\ldots,u_n) \in nodes(t)^n \mid t \models \phi(u_1,\ldots,u_n)\}$$

Example

Select all the triples (dvd, lang, sub):

$$\phi(x, y, z) = lab_{DVD}(x) \wedge lab_{lang}(y) \wedge lab_{sub}(z) \wedge desc(x, y) \wedge desc(x, z)$$

Variable Independence w.r.t. a Partition

- input: a formula $\phi(x_1, \ldots, x_n)$, a partition $P = \{B_1, \ldots, B_k\}$ of $\{x_1, \ldots, x_n\}$
- **output**: is ϕ equivalent to a formula of the form:

$$\bigvee_{i=1}^{N} \phi_i^1(B_1) \wedge \cdots \wedge \phi_i^k(B_k)$$

where $freevar(\phi_i^j) = B_j$. We say that ϕ conforms to P.

Theorem

Variable independence w.r.t. a partition is decidable, and a decomposition is computable.

Towards a Characterization of Variable Independence

• For all $i \in \{1, \dots, k\}$, consider:

$$Swap_{i}(\overline{\boldsymbol{x}}, \overline{\boldsymbol{y}}) = \forall B_{1} \dots \forall B_{i-1} \forall B_{i+1} \dots \forall B_{n}$$

$$\phi(B_{1}, \dots, B_{i-1}, \overline{\boldsymbol{x}}, B_{i+1}, \dots, B_{n}) \leftrightarrow$$

$$\phi(B_{1}, \dots, B_{i-1}, \overline{\boldsymbol{y}}, B_{i+1}, \dots, x_{B_{n}})$$

Towards a Characterization of Variable Independence

• For all $i \in \{1, \dots, k\}$, consider:

$$Swap_{i}(\overline{\boldsymbol{x}}, \overline{\boldsymbol{y}}) = \forall B_{1} \dots \forall B_{i-1} \forall B_{i+1} \dots \forall B_{n}$$

$$\phi(B_{1}, \dots, B_{i-1}, \overline{\boldsymbol{x}}, B_{i+1}, \dots, B_{n}) \leftrightarrow$$

$$\phi(B_{1}, \dots, B_{i-1}, \overline{\boldsymbol{y}}, B_{i+1}, \dots, x_{B_{n}})$$

• intuition: if $t \models Swap_i(\overline{u}, \overline{v})$ then \overline{u} and \overline{v} are not distinguished by ϕ .

Towards a Characterization of Variable Independence

• For all $i \in \{1, \dots, k\}$, consider:

$$Swap_{i}(\overline{\boldsymbol{x}}, \overline{\boldsymbol{y}}) = \forall B_{1} \dots \forall B_{i-1} \forall B_{i+1} \dots \forall B_{n}$$

$$\phi(B_{1}, \dots, B_{i-1}, \overline{\boldsymbol{x}}, B_{i+1}, \dots, B_{n}) \leftrightarrow$$

$$\phi(B_{1}, \dots, B_{i-1}, \overline{\boldsymbol{y}}, B_{i+1}, \dots, x_{B_{n}})$$

- intuition: if $t \models Swap_i(\overline{u}, \overline{v})$ then \overline{u} and \overline{v} are not distinguished by ϕ .
- Every formula $Swap_i(\overline{x}, \overline{y})$ defines on a tree t an equivalence relation $Ans(Swap_i, t)$ between tuples of size $|B_i|$.

Variable Independence Reduces to Query Boundedness

Theorem

 ϕ conforms to $\{B_1, \ldots, B_k\}$ iff for all $i = 1, \ldots, k$, $Swap_i$ is of bounded index, i.e.:

$$\exists b_i \ge 0, \ \forall t, \ |nodes(t)^{|B_i|}/_{Ans(Swap_i,t)}| \le b_i$$

The decomposition has the following form:

$$\phi(x_1,\ldots,x_n) \leftrightarrow \bigvee_j \phi_j \wedge cl_1^j(B_1) \wedge \cdots \wedge cl_k^j(B_k)$$

On Deciding Boundedness

Theorem

Given a formula $\phi(x)$, we can decide if there is a bound $b \geq 0$ such that:

$$\forall t, |Ans(\phi, t)| \le b$$

Moreover, some bound b is computable.

- lacktriangledown translate $\phi(x)$ into a canonical $\{0,1\}$ -labeling transducer T_ϕ
- \bigcirc decide whether the number of images of any tree by T_{ϕ} is bounded by some constant [Seidl, habilitation thesis].

Extension to n-ary queries

 $\phi(x_1,\ldots,x_n)$ is bounded iff for each i, the following is bounded: $proj_i(\mathbf{x}) = \exists x_1 \ldots \exists x_{i-1} \exists x_{i+1} \ldots \exists x_n \phi(x_1,\ldots,x_{i-1},\mathbf{x},x_{i+1},\ldots,x_n)$

Bounded Index Property

Corollary

Bounded index property is decidable for every $Swap_i(\overline{x}, \overline{y})$, moreover, an index is computable.

- ② define a total order $\overline{x} \leq^n \overline{y}$ on *n*-tuples of nodes (by an MSO formula);
- $ext{@}$ decide boundedness of $Min(\overline{x})$, which selects the minimal representatives of the relation defined by $Swap_i(\overline{x}, \overline{y})$.

$Orthographic\ Dimension$

Definition (Grumbach, Rigaux, Segoufin, ICDT'99)

Let $\phi(x_1, \ldots, x_n)$ be a formula, and \mathcal{P} the set of partitions P such that ϕ conforms to P. The orthographic dimension $d(\phi)$ is defined by:

$$d(\phi) = \min_{\{B_1, \dots, B_k\} \in \mathcal{P}} \max_i |B_i|$$

- how to compute it? try every partition of $\{x_1, \ldots, x_n\}$.
- improvement: consider only 2-partitions, thanks to the following theorem, adapted from (Cosmadakis, Kuper, Libkin, 01):

$Orthographic\ Dimension$

Definition (Grumbach, Rigaux, Segoufin, ICDT'99)

Let $\phi(x_1, \ldots, x_n)$ be a formula, and \mathcal{P} the set of partitions P such that ϕ conforms to P. The orthographic dimension $d(\phi)$ is defined by:

$$d(\phi) = \min_{\{B_1, \dots, B_k\} \in \mathcal{P}} \max_i |B_i|$$

- how to compute it? try every partition of $\{x_1, \ldots, x_n\}$.
- improvement: consider only 2-partitions, thanks to the following theorem, adapted from (Cosmadakis, Kuper, Libkin, 01):

Theorem

If ϕ conforms to P_1 and P_2 , then ϕ conforms to $P_1 \sqcap P_2$.

Relation to answer set representation

We can compute a formula equivalent to $\phi(x_1, \ldots, x_n)$ which corresponds to the orthographic dimension, i.e. a formula

$$\bigvee_{i=1}^{N} \phi_i^1(B_1) \wedge \cdots \wedge \phi_i^k(B_k) \quad \text{where } d(\phi) = \max_i |B_i|$$

Relation to answer set representation

We can compute a formula equivalent to $\phi(x_1, \ldots, x_n)$ which corresponds to the orthographic dimension, i.e. a formula

$$\bigvee_{i=1}^{N} \phi_i^1(B_1) \wedge \cdots \wedge \phi_i^k(B_k) \quad \text{where } d(\phi) = \max_i |B_i|$$

The aggregated answer on a tree t is of size $O(f(|\phi|).|t|^{d(\phi)})$.

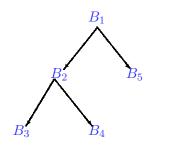
- compute the answer sets A_i^j of each ϕ_i^j
- represent the answer set by a union (whose size only depends on ϕ , which is fixed) of cartesian products $A_i^1 \times \cdots \times A_i^k$.

Outline

- variable independence w.r.t. a partition
- variable independence w.r.t. a dependency forest

Dependency Forest F

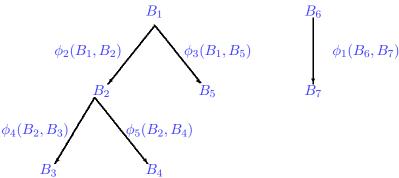
• over a set $V = \{x_1, \dots, x_n\}$ of variables



where $\{B_1, \ldots, B_7\}$ partitions V

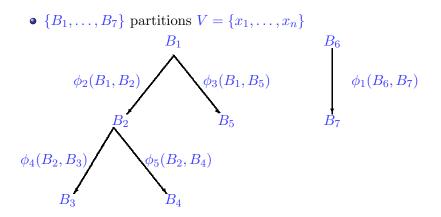
Conformance to a Dependency Forest F

• $\{B_1, ..., B_7\}$ partitions $V = \{x_1, ..., x_n\}$



- μ : edges(F) \rightarrow MSO formulas
- $\mu(F) = \phi_1(B_6, B_7) \wedge \phi_2(B_1, B_3) \wedge \phi_3(B_1, B_5) \wedge \phi_4(B_2, B_3) \wedge \phi_5(B_2, B_5)$

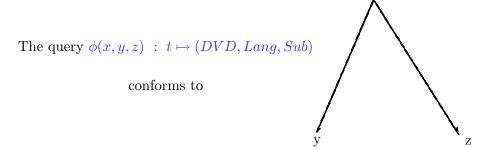
Conformance to a Dependency Forest F



Definition

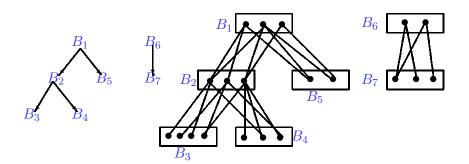
A formula $\phi(x_1, \ldots, x_n)$ conforms to F if there is a finite sequence μ_1, \ldots, μ_k such that $\phi \leftrightarrow \bigvee_i \mu_i(F)$.

Example



Relation to Answer Set Representation

The set of answers can be represented by an aggregated answer of size $O(f(|\phi|).|t|^{2b})$, where $b = \max_i |\overline{y}_i|$.



Main Result

Theorem

It is decidable whether a formula $\phi(x_1, \ldots, x_n)$ conforms to a dependency forest F.

② decide it for forests of the form $B_1(B_2, B_3) \to \text{signature}$ $\Sigma \times \{0, 1\}^{B_1}$

Main Result

Theorem

It is decidable whether a formula $\phi(x_1, \ldots, x_n)$ conforms to a dependency forest F.

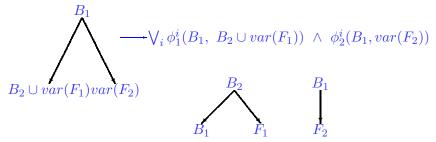
- decide it for forests of the form $B_1(B_2, B_3) \to \text{signature}$ $\Sigma \times \{0, 1\}^{B_1}$
- \bigcirc inductively: if $F = \{T_1, \ldots, T_k\}$
 - decompose ϕ w.r.t. the partition $\{var(T_1), \dots, var(T_k)\}$
 - get a disjunction of the form $\bigvee_i \alpha_i^1(var(T_1)) \wedge \cdots \wedge \alpha_i^k(var(T_k))$
 - decompose each α_i^j w.r.t. T_j

Main Result

Theorem

It is decidable whether a formula $\phi(x_1, \ldots, x_n)$ conforms to a dependency forest F.

- decide it for forests of the form $B_1(B_2, B_3) \to \text{signature}$ $\Sigma \times \{0, 1\}^{B_1}$
- \bigcirc inductively: if $F = B_1(B_2(F_1), F_2)$:



Are tuples of variables really needed in F?

Proposition

There is an MSO formula ϕ which **does not conform** to any dependency forest whose nodes are labeled by **single variables**.

- take $\phi(x, y, z)$ defined by lca(x, y) = lca(x, z)
- find counter-examples for every forest F over $\{x, y, z\}$

Perspectives

- extend the structures beyond trees
 - need an MSO-definable total order
 - decidability of boundedness
 - variable independence is decidable for unranked trees

Perspectives

extend the structures beyond trees

- need an MSO-definable total order
- decidability of boundedness
- variable independence is decidable for unranked trees

• tree pattern queries

- \triangleright n-ary tree patterns with desc, child, next sibling, label tests
- fragments for which the aggregated answers have size $O(poly(|\phi|).|t|)$