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What is this talk about?

Key Words
Weighted graphs, ∃ve, ∀dam, Strategies, Infinite plays, and Payoff
functions
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Which payoff functions?

A payoff function is of the form Val : Qω → R.

Classical payoff functions
I parity Nω → B, positive energy Zω → B
I sup, inf, lim sup, lim inf, mean payoff, discounted sum

In this talk
We consider the mean-payoff function

Val(x1, x2, . . . ) = lim inf
n≥1

1
n

n∑
i=1

xi

Denote by Val(σ, τ) the value Val(w(v0, v1),w(v1, v2), . . . ) where
πστ = v0v1v2 . . .
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Motivation 1: Modelling power

Mean-payoff games
are able to model [Zwick, Paterson 1996]

I online metrical task systems,
I finite window online string matching, and
I selection with limited storage.

G. A. Pérez @ ULB Regret Minimization in Quantitative Games slide 4 /24



Motivation 2: Reactive synthesis

Consider a sequential circuit C with input set X partitioned into
uncontrollable Xu and controllable Xc and output set B

C

u0

...

b0

bk

...

... bin(wi ) = (bk , . . . , b0)

c0
controllable

{
uncontrollable

{
...T

u0

...

Synthesis
Does there exist T such that Val(w1,w2, . . . ) |= Spec for all sequences
of valuations of Xu?
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Motivation 3: Interesting open problems

Existence of winning strategies
Does there exist a (finite memory) strategy σ of ∃ve such that

inf
τ

Val(σ, τ) ≥ `?

Parity games
Given a parity game, to determine if ∃ve has a winning strategy is in
UP ∩ coUP [Jurdziński 1998] as well as in QP [Calude et al. 2017].

Known reductions [Zwick, Paterson 1996; Jurdziński 1998]
The following hold when graphs are given explicitly; weights (and
discount factor), in binary.

PGs ≤P MPGs ≤P DSGs ≤P SSGs
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What do you mean by regret minimization?

In words. . .
We want to find a strategy of ∃ve that minimizes the difference between
her actual payoff and the payoff she could have achieved if she had
known the strategy of ∀dam in advance.

Is it useful?
I “A better solution concept than NE” [Halpern, Pass 2011]

I less pessimistic than winning strategies
I Competitive analysis of

I online metrical task systems
I finite window online string matching
I selection with limited storage

I Automata determinization by pruning [Aminof, Kupferman, Lampert
2010], good-for-games automata [Henzinger, Piterman 2006]
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G. A. Pérez @ ULB Regret Minimization in Quantitative Games slide 7 /24



What do you mean by regret minimization?

In words. . .
We want to find a strategy of ∃ve that minimizes the difference between
her actual payoff and the payoff she could have achieved if she had
known the strategy of ∀dam in advance.

Is it useful?
I “A better solution concept than NE” [Halpern, Pass 2011]

I less pessimistic than winning strategies
I Competitive analysis of

I online metrical task systems
I finite window online string matching
I selection with limited storage

I Automata determinization by pruning [Aminof, Kupferman, Lampert
2010], good-for-games automata [Henzinger, Piterman 2006]
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Values of a game

Let G be a game.

Cooperative value

cVal(G) := sup
σ

sup
τ

Val(σ, τ)

Antagonistic value

aVal(G) := sup
σ

inf
τ

Val(σ, τ)
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A formal definition of regret

Let Σ∃ be a set of strategies of ∃ve and Σ∀ a set of strategies of ∀dam.

The regret of σ

regσΣ∃,Σ∀
(G) := sup

τ∈Σ∀

 best-response value︷ ︸︸ ︷
sup
σ′∈Σ∃

Val(σ′, τ)−Val(σ, τ)



The regret of ∃ve in G

RegΣ∃,Σ∀
(G) := inf

σ∈Σ∃
regσΣ∃,Σ∀

(G)
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Example: simple tree-like mean-payoff game (MPG)

x

u

v

2

3

1

5

cVal(G) = 5, aVal(G) = 2, Reg(G) = 2
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Example: it’s a trap!

v1 v2

v3

v4

v5

1
1

−1

1
2

2

1

2

1

cVal(G) = 2, aVal(G) = 1
2 , Reg(G) = 1
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Results

Theorem (Hardness)
Computing the regret of a game is at least as hard as computing the
antagonistic value of a (polynomial-size) game with the same payoff
function.

Theorem (Algorithm)
Computing the regret reduces to computing the antagonistic value of a
(polynomial-size) game with the same payoff function.

G. A. Pérez @ ULB Regret Minimization in Quantitative Games slide 12 /24



From MPGs to MP Regret games

If W := maxe∈E |w(e)| then −W ≤ aVal(G) ≤ cVal(G) ≤W

v ′
I

vI

0

0
0

0

W + 1

−3W − 2

1. ∃ve plays to vI

2. ∀dam plays antagonistically from vI and allows W + 1 from v ′I
3. the regret of ∃ve in the game is W + 1− aVal(G)
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From MP Regret games to MPGs

1. Label ∀dam edges as w ′(e) = −∞ and ∃ve edges as follows:
w ′(e) = max{cValv

′
: (u, v ′) ∈ E \ {e}}.

2. Let Gb be the restriction of G to edges e with w ′(e) ≤ b.

v0 v1 v⊥

vb1
I · · ·

vbn
I · · ·

Gb1

...

Gbn

0

0
−2W − 1

0

0

w(e)− b1

w(e)− bn

if w ′(e) > b1

if w ′(e) > bn

=⇒ aVal(G′) = −Reg(G)

G. A. Pérez @ ULB Regret Minimization in Quantitative Games slide 15 /24



From MP Regret games to MPGs

1. Label ∀dam edges as w ′(e) = −∞ and ∃ve edges as follows:
w ′(e) = max{cValv

′
: (u, v ′) ∈ E \ {e}}.

2. Let Gb be the restriction of G to edges e with w ′(e) ≤ b.

v0 v1 v⊥

vb1
I · · ·

vbn
I · · ·

Gb1

...

Gbn

0

0
−2W − 1

0

0

w(e)− b1

w(e)− bn

if w ′(e) > b1

if w ′(e) > bn

=⇒ aVal(G′) = −Reg(G)
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Example: it’s a trap!

v1 v2

v3

v4

v5

1,w ′ 7→ 1
1,w ′ 7→ 2

−1

1
2

2

1

2

1

cVal(G) = 2, aVal(G) = 1
2 , Reg(G) = 1
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From MP Regret games to MPGs (example)

v1 v2 v4

v1 v2

v3

v4

v5

v⊥

1− 1

1− 2
1− 2

−1− 1

−1− 2

1
2 − 2

2− 1

2− 2

1− 2

2− 1

2− 2

1− 2

G1

G2

0

0 −2(2)− 1

0

0

aVal(G′) = −1
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Motivating example: Learning in an MPG

Assume ∀dam plays positionally.

u

v x

1

00

0

0

6

cVal(G) = 2, aVal(G) = 1, RegPos∀
(G) = 0
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Results

Theorem (Hardness)
Given r ∈ Q and a weighted graph G, determining whether the regret
value is less than r is PSPACE-hard.

Theorem (Algorithm)
The regret value can be computed using only polynomial space.
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From MP Regret games to MPGs

We construct a new graph Ĝ where
I the vertices record the witnessed choices of ∀dam

V̂ = V × P(E )

I the new weight function uses this info to reduce the value of
potential alternatives

ŵ
(
(u,C), (v ,D)

)
= w(u, v)− cVal(G ∩ D)

I aVal(Ĝ) = −RegPos∀
(G)
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u

v x

1

00

0

0

6
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From MP Regret games to MPGs (example)

u, {xv , xu}

v , {xv , xu}

x , {xv , xu}

u, {xu} v , {xu}

x , {xu}

u, {xv}v , {xv}

x , {xv}

−1

−2−2

−2

4

−1

−1

−2

−2

−2

4

−1

−1

−1−1
0

aVal(Ĝ) = 0
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Any questions?
sup inf lim sup lim inf MP DS

Any poly-time equiv to regular game in NP
Positional ∈ PSPACE PSPACE-c in EXP

Future work
I Compare to work on metrical task systems, etc.
I Improve SOTA for DS-games
I Compare to ML works on regret minimization
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