Minimizing Regret in Infinite-Duration Games Played on Graphs

Guillermo A. Pérez in collaboration with E. Filiot, P. Hunter, I. Jecker, N. Lhote, J.-F. Raskin

Université libre de Bruxelles

LiVe 2018

Key Words

Weighted graphs, $\exists ve$, $\forall dam$, Strategies, Infinite plays, and Payoff functions

Key Words

Weighted graphs, \exists ve, \forall dam, Strategies, Infinite plays, and Payoff functions

□ ∃ve ○ ∀dam

Key Words

Weighted graphs, \exists ve, \forall dam, Strategies, Infinite plays, and Payoff functions

$$\Box \quad \exists \mathsf{ve} \quad \sigma : V^* V_{\exists} \to V$$
$$\bigcirc \quad \forall \mathsf{dam} \quad \tau : V^* V_{\forall} \to V$$

Key Words

Weighted graphs, $\exists ve$, $\forall dam$, Strategies, Infinite plays, and Payoff functions

A payoff function is of the form $Val : \mathbb{Q}^{\omega} \to \mathbb{R}$.

A payoff function is of the form $Val : \mathbb{Q}^{\omega} \to \mathbb{R}$. Classical payoff functions

- parity $\mathbb{N}^{\omega} \to \mathbb{B}$, positive energy $\mathbb{Z}^{\omega} \to \mathbb{B}$
- ▶ sup, inf, lim sup, lim inf, mean payoff, discounted sum

A payoff function is of the form $Val : \mathbb{Q}^{\omega} \to \mathbb{R}$. Classical payoff functions

- parity $\mathbb{N}^{\omega} \to \mathbb{B}$, positive energy $\mathbb{Z}^{\omega} \to \mathbb{B}$
- ▶ sup, inf, lim sup, lim inf, mean payoff, discounted sum

In this talk We consider the mean-payoff function

$$\mathbf{Val}(x_1, x_2, \dots) = \liminf_{n \ge 1} \frac{1}{n} \sum_{i=1}^n x_i$$

A payoff function is of the form $Val : \mathbb{Q}^{\omega} \to \mathbb{R}$. Classical payoff functions

- parity $\mathbb{N}^{\omega} \to \mathbb{B}$, positive energy $\mathbb{Z}^{\omega} \to \mathbb{B}$
- ► sup, inf, lim sup, lim inf, mean payoff, discounted sum

In this talk We consider the mean-payoff function

$$\mathbf{Val}(x_1, x_2, \dots) = \liminf_{n \ge 1} \frac{1}{n} \sum_{i=1}^n x_i$$

Denote by $Val(\sigma, \tau)$ the value $Val(w(v_0, v_1), w(v_1, v_2), ...)$ where $\pi_{\sigma\tau} = v_0 v_1 v_2 ...$

Motivation 1: Modelling power

Mean-payoff games

are able to model [Zwick, Paterson 1996]

- online metrical task systems,
- finite window online string matching, and
- selection with limited storage.

Motivation 2: Reactive synthesis

Consider a sequential circuit C with input set X partitioned into uncontrollable X_u and controllable X_c and output set B

Motivation 2: Reactive synthesis

Consider a sequential circuit C with input set X partitioned into uncontrollable X_u and controllable X_c and output set B

uncontrollable
$$\begin{cases} \vdots \\ u_0 \\ \vdots \\ controllable \\ \begin{cases} \vdots \\ c_0 \\ \end{cases} \\ controllable \\ \begin{cases} \vdots \\ c_0 \\ \end{cases} \\ b_0 \\ \end{cases}$$
 $b_k \\ \vdots \\ b_0 \\ b_0$

Motivation 2: Reactive synthesis

Consider a sequential circuit C with input set X partitioned into uncontrollable X_u and controllable X_c and output set B

$$\begin{array}{c|c}
\vdots \\
u_0 \\
\vdots \\
u_0 \\
 \end{array} \mathcal{T} \\
 \mathcal{C} \\
 \vdots \\
b_0 \\
 b_0 \\
 b_0 \\
 \vdots \\
 b_0 \\
 \end{array} b_k \\
 \vdots \\
 b_k \\
 \vdots \\
 b_0 \\
 b_i \\
 b_$$

Synthesis

Does there exist \mathcal{T} such that $Val(w_1, w_2, ...) \models Spec$ for all sequences of valuations of X_u ?

Motivation 3: Interesting open problems

Existence of winning strategies Does there exist a (finite memory) strategy σ of \exists ve such that

 $\inf_{\tau} \operatorname{Val}(\sigma, \tau) \geq \ell?$

Motivation 3: Interesting open problems

Existence of winning strategies Does there exist a (finite memory) strategy σ of \exists ve such that

 $\inf_{\tau} \operatorname{Val}(\sigma, \tau) \geq \ell?$

Parity games

Given a parity game, to determine if $\exists ve$ has a winning strategy is in UP \cap coUP [Jurdziński 1998] as well as in QP [Calude et al. 2017].

Motivation 3: Interesting open problems

Existence of winning strategies Does there exist a (finite memory) strategy σ of \exists ve such that

 $\inf_{\tau} \operatorname{Val}(\sigma, \tau) \geq \ell?$

Parity games

Given a parity game, to determine if $\exists ve$ has a winning strategy is in UP \cap coUP [Jurdziński 1998] as well as in QP [Calude et al. 2017].

Known reductions [Zwick, Paterson 1996; Jurdziński 1998] The following hold when graphs are given explicitly; weights (and discount factor), in binary.

$$PGs \leq_P MPGs \leq_P DSGs \leq_P SSGs$$

In words...

We want to find a strategy of $\exists ve$ that minimizes the difference between her actual payoff and the payoff she could have achieved if she had known the strategy of $\forall dam$ in advance.

In words...

We want to find a strategy of \exists ve that minimizes the difference between her actual payoff and the payoff she could have achieved if she had known the strategy of \forall dam in advance.

In words...

We want to find a strategy of \exists ve that minimizes the difference between her actual payoff and the payoff she could have achieved if she had known the strategy of \forall dam in advance.

- ▶ "A better solution concept than NE" [Halpern, Pass 2011]
 - less pessimistic than winning strategies

In words...

We want to find a strategy of \exists ve that minimizes the difference between her actual payoff and the payoff she could have achieved if she had known the strategy of \forall dam in advance.

- ▶ "A better solution concept than NE" [Halpern, Pass 2011]
 - less pessimistic than winning strategies
- Competitive analysis of
 - online metrical task systems
 - finite window online string matching
 - selection with limited storage

In words...

We want to find a strategy of \exists ve that minimizes the difference between her actual payoff and the payoff she could have achieved if she had known the strategy of \forall dam in advance.

- ▶ "A better solution concept than NE" [Halpern, Pass 2011]
 - less pessimistic than winning strategies
- Competitive analysis of
 - online metrical task systems
 - finite window online string matching
 - selection with limited storage
- Automata determinization by pruning [Aminof, Kupferman, Lampert 2010], good-for-games automata [Henzinger, Piterman 2006]

Values of a game

Let ${\mathcal G}$ be a game.

Cooperative value

$$\mathsf{cVal}(\mathcal{G}) := \sup_{\sigma} \sup_{\tau} \mathsf{Val}(\sigma, \tau)$$

Values of a game

Let \mathcal{G} be a game.

$$\mathbf{cVal}(\mathcal{G}) := \sup_{\sigma} \sup_{\tau} \mathbf{Val}(\sigma, \tau)$$

Antagonistic value

$$\mathsf{aVal}(\mathcal{G}) := \sup_{\sigma} \inf_{\tau} \mathsf{Val}(\sigma, \tau)$$

A formal definition of regret

Let Σ_{\exists} be a set of strategies of $\exists ve \text{ and } \Sigma_{\forall} \text{ a set of strategies of } \forall dam$. The regret of σ

$$\operatorname{reg}_{\Sigma_{\exists},\Sigma_{\forall}}^{\sigma}(\mathcal{G}) := \sup_{\tau \in \Sigma_{\forall}} \left(\underbrace{\sup_{\sigma' \in \Sigma_{\exists}} \operatorname{Val}(\sigma',\tau)}_{\sigma' \in \Sigma_{\exists}} - \operatorname{Val}(\sigma,\tau) \right)$$

A formal definition of regret

Let Σ_{\exists} be a set of strategies of $\exists ve \text{ and } \Sigma_{\forall} \text{ a set of strategies of } \forall dam$. The regret of σ

$$\operatorname{reg}_{\Sigma_{\exists},\Sigma_{\forall}}^{\sigma}(\mathcal{G}) := \sup_{\tau \in \Sigma_{\forall}} \left(\underbrace{\sup_{\sigma' \in \Sigma_{\exists}} \operatorname{Val}(\sigma',\tau)}_{\sigma' \in \Sigma_{\exists}} - \operatorname{Val}(\sigma,\tau) \right)$$

The regret of $\exists ve \text{ in } \mathcal{G}$

$$\operatorname{\mathsf{Reg}}_{\Sigma_{\exists},\Sigma_{\forall}}(\mathcal{G}):=\inf_{\sigma\in\Sigma_{\exists}}\operatorname{\mathsf{reg}}_{\Sigma_{\exists},\Sigma_{\forall}}^{\sigma}(\mathcal{G})$$

Example: simple tree-like mean-payoff game (MPG)

$$\mathbf{cVal}(\mathcal{G}) = 5$$
, $\mathbf{aVal}(\mathcal{G}) = 2$, $\mathbf{Reg}(\mathcal{G}) = 2$

Example: it's a trap!

$$\mathbf{cVal}(\mathcal{G}) = 2$$
, $\mathbf{aVal}(\mathcal{G}) = \frac{1}{2}$, $\mathbf{Reg}(\mathcal{G}) = 1$

Results

Theorem (Hardness)

Computing the regret of a game is at least as hard as computing the antagonistic value of a (polynomial-size) game with the same payoff function.

If $W := \max_{e \in E} |w(e)|$ then $-W \leq a \operatorname{Val}(\mathcal{G}) \leq c \operatorname{Val}(\mathcal{G}) \leq W$

If $W := \max_{e \in E} |w(e)|$ then $-W \leq a \operatorname{Val}(\mathcal{G}) \leq c \operatorname{Val}(\mathcal{G}) \leq W$

If $W := \max_{e \in E} |w(e)|$ then $-W \leq a Val(\mathcal{G}) \leq c Val(\mathcal{G}) \leq W$

1. $\exists ve plays to v_l$

If $W := \max_{e \in E} |w(e)|$ then $-W \leq a Val(\mathcal{G}) \leq c Val(\mathcal{G}) \leq W$

- 1. $\exists ve plays to v_l$
- 2. $\forall dam$ plays antagonistically from v_l and allows W + 1 from v'_l

If $W := \max_{e \in E} |w(e)|$ then $-W \leq a Val(\mathcal{G}) \leq c Val(\mathcal{G}) \leq W$

- 1. $\exists ve plays to v_l$
- 2. $\forall dam$ plays antagonistically from v_l and allows W + 1 from v'_l
- 3. the regret of $\exists ve$ in the game is $W + 1 aVal(\mathcal{G})$

Results

Theorem (Hardness)

Computing the regret of a game is at least as hard as computing the antagonistic value of a (polynomial-size) game with the same payoff function.

Theorem (Algorithm)

Computing the regret reduces to computing the antagonistic value of a (polynomial-size) game with the same payoff function.

1. Label $\forall dam edges as w'(e) = -\infty$ and $\exists ve edges as follows: w'(e) = \max{cVal^{v'} : (u, v') \in E \setminus {e}}.$

- 1. Label $\forall dam edges as w'(e) = -\infty$ and $\exists ve edges as follows: w'(e) = \max{cVal^{v'} : (u, v') \in E \setminus {e}}.$
- 2. Let \mathcal{G}^{b} be the restriction of \mathcal{G} to edges e with $w'(e) \leq b$.

- 1. Label $\forall dam edges as w'(e) = -\infty$ and $\exists ve edges as follows: w'(e) = \max{cVal^{v'} : (u, v') \in E \setminus {e}}.$
- 2. Let \mathcal{G}^b be the restriction of \mathcal{G} to edges e with $w'(e) \leq b$.

- 1. Label $\forall dam edges as w'(e) = -\infty$ and $\exists ve edges as follows: w'(e) = \max{cVal^{v'} : (u, v') \in E \setminus {e}}.$
- 2. Let \mathcal{G}^b be the restriction of \mathcal{G} to edges e with $w'(e) \leq b$.

$$\implies$$
 aVal $(\mathcal{G}') = - \mathsf{Reg}(\mathcal{G})$

Example: it's a trap!

$$\mathbf{cVal}(\mathcal{G}) = 2$$
, $\mathbf{aVal}(\mathcal{G}) = \frac{1}{2}$, $\mathbf{Reg}(\mathcal{G}) = 1$

From MP Regret games to MPGs (example)

$$aVal(\mathcal{G}') = -1$$

Motivating example: Learning in an MPG

Assume $\forall dam$ plays positionally.

$$extbf{cVal}(\mathcal{G})=2, extbf{aVal}(\mathcal{G})=1, extbf{Reg}_{\operatorname{Pos}_{orall}}(\mathcal{G})=0$$

Results

Theorem (Hardness)

Given $r \in \mathbb{Q}$ and a weighted graph \mathcal{G} , determining whether the regret value is less than r is PSPACE-hard.

Results

Theorem (Hardness)

Given $r \in \mathbb{Q}$ and a weighted graph \mathcal{G} , determining whether the regret value is less than r is PSPACE-hard.

Theorem (Algorithm)

The regret value can be computed using only polynomial space.

We construct a new graph $\hat{\mathcal{G}}$ where

 \blacktriangleright the vertices record the witnessed choices of $\forall dam$

$$\hat{V} = V \times \mathcal{P}(E)$$

We construct a new graph $\hat{\mathcal{G}}$ where

 \blacktriangleright the vertices record the witnessed choices of $\forall dam$

$$\hat{V} = V \times \mathcal{P}(E)$$

the new weight function uses this info to reduce the value of potential alternatives

$$\hat{w}((u, C), (v, D)) = w(u, v) - \mathsf{cVal}(\mathcal{G} \cap D)$$

►
$$\mathsf{aVal}(\hat{\mathcal{G}}) = -\mathsf{Reg}_{\text{Pos}_{\forall}}(\mathcal{G})$$

Motivating example: Learning in an MPG

Assume $\forall dam$ plays positionally.

$$\mathbf{cVal}(\mathcal{G}) = 2$$
, $\mathbf{aVal}(\mathcal{G}) = 1$, $\mathbf{Reg}_{Pos_{\forall}}(\mathcal{G}) = 0$

From MP Regret games to MPGs (example)

$$\mathbf{aVal}(\hat{\mathcal{G}}) = 0$$

Any questions?

	sup	inf	lim sup	lim inf	MP	DS
Any	poly-time equiv to regular game					in NP
Positional	$\in PSPACE$			PSPACE-c		in EXP

Future work

- Compare to work on metrical task systems, etc.
- Improve SOTA for DS-games
- Compare to ML works on regret minimization

References

- On Delay and Regret Determinization of Max-Plus Automata. Filiot, Jecker, Lhote, P., Raskin. LICS 2017.
- Reactive Synthesis Without Regret. Acta Informatica 2017. Hunter, P., Raskin.
- Minimizing Regret in Discounted-Sum Games. CSL 2016. Hunter, P., Raskin.