
Learning-Based Mean-Payoff Optimization in an
Unknown MDP under Omega-Regular

Constraints
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Parity games

Playing on an automaton
A strategy σ in a parity automaton (Q,A,T , p) is a function
(Q ·A)∗Q → D(A). It is winning from q0 if the min priority seen infinitely
often is even, along all runs q0a0 · · · ∈ (Q · A)ω consistent with it.
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Strategies: (i) play b, (ii) always play a.
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J. Křet́ınský, G. A. Pérez, J.-F. Raskin @ TUM, ULB MP Optimization in an Unknown MDP under Parity Constraints slide 2 /18



Parity games

Playing on an automaton
A strategy σ in a parity automaton (Q,A,T , p) is a function
(Q ·A)∗Q → D(A). It is winning from q0 if the min priority seen infinitely
often is even, along all runs q0a0 · · · ∈ (Q · A)ω consistent with it.

31

2

1

0

b

A

a

A

a

AA

Strategies: (i) play b, (ii) always play a.
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Expected mean-payoff optimization in MDPs

Reward MDPs
For a strategy σ in an MDP M = (Q,A, α, δ, r), we denote Eq0

Mσ [MP]
the expected (lim inf) mean payoff1 from q0 under σ.
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Eq1
Mσ [MP] ≥ 4.5 for σ : q1 7→ (b 7→ 1)

1MP(x0x1 . . . ) := lim infn∈N
1

n+1
∑n

i=0 xi
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State of the art

Parity games
It is known that
I they are uniformly, deterministically, and memoryless determined
I they can be decided in UP ∩ coUP [Jurdziński 98]
I and in QP [Calude et al. 17]

Mean-payoff MDPs
It is known that
I memoryless deterministic strategies suffice [Gimbert 07]
I uniformly optimal (mem-less and det.) unichain strategies
I the above can be computed in polynomial time [Puterman 05]
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Mean-payoff parity MDPs
A.s. parity satisfaction and mean-payoff optimality
The existence of strategies σ s.t.

Pq0
Mσ [Parity] = 1 and Eq0

Mσ [MP] ≥ ν

for givenM, q0, and ν, has been studied before [CD11].

It is known that
I Infinite memory strategies are necessary in general.
I It can be decided in polynomial time.

A.s. MP optimality under sure parity constraints
The existence of strategies σ s.t.

% |= Parity for all % consistent with σ, and ε-“optimal” Eq0
Mσ [MP]

has also been studied [AKV16].
I Infinite memory strategies are again necessary.
I It is in NP ∩ coNP and parity-game hard.
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Partially-specified MDPs

Verification problems for partially-spec’d models
There has been an increased interest in models with unknown parameters
and the use of learning techniques.2

I Safe reinforcement learning via shielding [Alshiekh et al. 17]
I Verification of MDPs using learning algorithms [Brázdil et al. 14]
I Safety-constrained reinforcement learning for MDPs [Junges et al.

16]
I Correct-by-synthesis reinforcement learning with temporal logic

constraints [WET15]
I Probably approximately correct learning in stochastic games with

temporal logic specifications [WT16]

2and in using AI techniques to deal with them
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MP optimization in unknown ergodic MDPs

End component: ∃σ, Pq0
Mσ [q0 q1] = 1 for all q0, q1

I So we have a uniform random exploration strategy λ that will
almost-surely visit all states in the EC infinitely often.

I General recipe: during episode i we first explore for Li steps then
exploit for Oi steps.
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Almost-sure optimality (under weak assumptions)

Input
We are given
I an automaton A whose transition relation T is the exact support of

the MDP’s unknown probabilistic transition function
I and a transition-probability lower bound πmin.

Assumptions
We suppose that
I the MDP is ergodic, i.e. it is an EC,
I and that the unknown reward function r instantaneously assigns

transitions rewards from [0, 1].
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Almost-sure optimality (under weak assumptions)
Useful facts
I Since the MDP is ergodic, all hitting probabilities can be

under-approx’d as biased coins X with success probability
µ := (πmin/|A|)|Q|, and we can use Hoeffding’s inequality:

P

[∣∣∣∣∣ 1k
k∑

j=1
Xj − µ

∣∣∣∣∣ ≥ ε
]
≤ 2 exp(−2kε2).

I Expectation-optimal strategies τ for any MDP N with the same
support as M and s.t.
|δN (q, a, q′)− δM(q, a, q′)| ≤ πmin

2

((
1 + ε

2
) 1

2|Q| − 1
)

give us∣∣∣∣Eq0
Mτ [MP]− sup

σ
Eq0
Mσ [MP]

∣∣∣∣ ≤ ε
for all q0 [Solan 03; Chatterjee 12].
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Almost-sure optimality (under weak assumptions)

One last useful fact:

Lemma (Convergence & ergodicitiy)
For all ergodic MDPs M, for all q0, for all unichain deterministic
memoryless strategies µ, we have
I Pq0

Mµ [% : MP(%) ≥ Eq0
Mµ [MP]] = 1; and

I for all ε ∈ (0, 1), one can compute M(ε) ∈ N s.t.
Pq0
Mµ [% : ∀k ≥ M(ε), FinAvg(%(..k)) ≥ Eq0

Mµ [MP]− ε] ≥ 1− ε.

In words
I Almost all runs have as their mean-payoff value the expected

mean-payoff of the strategy.
I The finite averages eventually stay ever closer to the expected

mean-payoff of the strategy with ever higher probability.
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Almost-sure optimality (under weak assumptions)

Theorem
One can compute a sequence (Li ,Oi )i∈N s.t. for the resulting strategy
σ∞, we have Pq0

Mσ∞ [% : MP(%) ≥ supτ E
q0
Mτ [MP]] = 1 for all q0.
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Almost-sure optimality (under weak assumptions)

Theorem
One can compute a sequence (Li ,Oi )i∈N s.t. for the resulting strategy
σ∞, we have Pq0

Mσ∞ [% : MP(%) ≥ supτ E
q0
Mτ [MP]] = 1 for all q0.

A more detailed recipe
Take any (εi )i∈N s.t. 0 < εk < εj < 1 for all j < k. We define σ∞ as
operating in episodes i ∈ N:

1. It first explores during Li steps so that with high probability we will
be able to compute δi and ri s.t. expectation-opt. strategies for
Aδi ,ri are εi -opt. for M.

2. Then, σ∞ follows an expectation-opt. strategy σδi
MP for Aδi ,ri during

Oi steps that account for
I previous average drops,
I convergence speed of the finite averages, and
I future average drops during the next Li+1 exploration steps,

with high probability.
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Limit-sure optimality under sure-parity constraints

Let’s add a parity constraint
I INPUT: a parity automaton and πmin

I ASSUMPTIONS: the MDP is ergodic, its minimal priority is even,
and all states are parity-winning, i.e. there is a winning strategy
from them,

I SYNTH: a parity-winning strategy that achieves an optimal mean
payoff with high probability

2 1 0

Why not probability 1? Parity-bad exploration must be made finite, lest
we violate the parity constraint.
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Limit-sure optimality under sure-parity constraints

Theorem
For all γ ∈ (0, 1) there exists a strategy σ s.t. for all q0

1. % |= Parity for all % consistent with σ and
2. Pq0

Mσ [% : MP(%) ≥ supτ E
q0
Mτ [MP]] = 1− γ.

We modify σ∞ go “give up”:
We give up and switch to a parity-winning strategy forever if for
sufficiently many episodes we have not witnessed the minimal even
priority.
I σ∞ explores (for ≥ |Q| steps) infinitely often
I every |Q| steps of exploration we visit every state with probability at

least (πmin/|A|)|Q|

I limi∈N
∏∞

j=i (1− 2−j) = 1 =⇒ ∃K0,
∏∞

j=K0
(1− 2−j) ≥ (1− γ)

I So we wait for enough episodes so that the probability of seeing the
minimal even priority is at least 1− 2−K0 , then 1− 2−K0−1, . . .
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J. Křet́ınský, G. A. Pérez, J.-F. Raskin @ TUM, ULB MP Optimization in an Unknown MDP under Parity Constraints slide 13 /18



Limit-sure optimality under sure-parity constraints

Theorem
For all γ ∈ (0, 1) there exists a strategy σ s.t. for all q0

1. % |= Parity for all % consistent with σ and
2. Pq0

Mσ [% : MP(%) ≥ supτ E
q0
Mτ [MP]] = 1− γ.

We modify σ∞ go “give up”:
We give up and switch to a parity-winning strategy forever if for
sufficiently many episodes we have not witnessed the minimal even
priority.
I σ∞ explores (for ≥ |Q| steps) infinitely often
I every |Q| steps of exploration we visit every state with probability at

least (πmin/|A|)|Q|

I limi∈N
∏∞

j=i (1− 2−j) = 1 =⇒ ∃K0,
∏∞

j=K0
(1− 2−j) ≥ (1− γ)

I So we wait for enough episodes so that the probability of seeing the
minimal even priority is at least 1− 2−K0 , then 1− 2−K0−1, . . .
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Mσ [% : MP(%) ≥ supτ E
q0
Mτ [MP]] = 1− γ.

We modify σ∞ go “give up”:
We give up and switch to a parity-winning strategy forever if for
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I every |Q| steps of exploration we visit every state with probability at
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Limit-sure near-optimality under sure-parity constraints
Let’s weaken the assumptions
I INPUT: a parity automaton and πmin

I ASSUMPTIONS: the MDP is ergodic, and all states are
parity-winning, i.e. there is a winning strategy from them,

I SYNTH: a parity-winning strategy that achieves a near-optimal
mean payoff with high probability

Optimality w.r.t. what?

sVal(M) := max
q0

sup{Eq0
Mτ [MP] : τ is a winning strategy}

I Since all states are parity-winning, the MDP contains at least one
EC with even min priority.

I From [AKV16] we know sVal(M) is equal to

max
{

sup
τ

Eq0
Sτ [MP] | S is an EC with even min priority in M

}
where q0 is any state in S
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J. Křet́ınský, G. A. Pérez, J.-F. Raskin @ TUM, ULB MP Optimization in an Unknown MDP under Parity Constraints slide 14 /18



Limit-sure near-optimality under sure-parity constraints
Let’s weaken the assumptions
I INPUT: a parity automaton and πmin

I ASSUMPTIONS: the MDP is ergodic, and all states are
parity-winning, i.e. there is a winning strategy from them,

I SYNTH: a parity-winning strategy that achieves a near-optimal
mean payoff with high probability

Optimality w.r.t. what?

sVal(M) := max
q0

sup{Eq0
Mτ [MP] : τ is a winning strategy}

I Since all states are parity-winning, the MDP contains at least one
EC with even min priority.

I From [AKV16] we know sVal(M) is equal to

max
{

sup
τ

Eq0
Sτ [MP] | S is an EC with even min priority in M

}
where q0 is any state in S
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Limit-sure near-optimality under sure-parity constraints

122 2 2

Why near-optimality?

I Global exploration must be made finite since the minimal priority
may be odd.

I So, we can only choose ε-maximal ECs with even minimal priority
(with high probability). This can be done via an initial exploration
phase.

Theorem
For all ε, γ ∈ (0, 1) there exists a strategy σ s.t. for all q0

1. % |= Parity for all % consistent with σ and
2. Pq0

Mσ [% : MP(%) ≥ sVal(M)− ε] ≥ 1− γ.
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J. Křet́ınský, G. A. Pérez, J.-F. Raskin @ TUM, ULB MP Optimization in an Unknown MDP under Parity Constraints slide 15 /18



Limit-sure near-optimality under sure-parity constraints

122 2 2

Why near-optimality?
I Global exploration must be made finite since the minimal priority

may be odd.
I So, we can only choose ε-maximal ECs with even minimal priority

(with high probability). This can be done via an initial exploration
phase.

Theorem
For all ε, γ ∈ (0, 1) there exists a strategy σ s.t. for all q0

1. % |= Parity for all % consistent with σ and
2. Pq0

Mσ [% : MP(%) ≥ sVal(M)− ε] ≥ 1− γ.
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General non-ergodic MDPs

Let’s weaken the assumptions further
I INPUT: a parity automaton and πmin

I ASSUMPTIONS: all states are parity-winning, i.e. there is a winning
strategy from them,

I SYNTH: a parity-winning strategy that achieves a near-optimal
mean payoff with high probability
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General non-ergodic MDPs

Theorem
For all ε, γ ∈ (0, 1) there exists a strategy σ s.t. for all q0 ∈ Q
I % |= Parity for all % consistent with σ and
I Pq0

Mσ [% : MP(%) ≥ sVal(S)− ε | Inf ⊆ S] ≥ 1− γ for all ECs
containing an EC S with even min priority and s.t.
Pq0
Mσ [Inf ⊆ S] > 0.
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General non-ergodic MDPs

Theorem
For all ε, γ ∈ (0, 1) there exists a strategy σ s.t. for all q0 ∈ Q
I % |= Parity for all % consistent with σ and
I Pq0

Mσ [% : MP(%) ≥ sVal(S)− ε | Inf ⊆ S] ≥ 1− γ for all ECs
containing an EC S with even min priority and s.t.
Pq0
Mσ [Inf ⊆ S] > 0.

Strategy recipe
I Follow a parity-winning strategy until a new (previously unvisited)

EC containing an EC with even min priority is reached.
I Switch to our solution for such ECs.
I If we ever exit it, switch back to a parity-winning strategy and mark

the EC as visited.
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General non-ergodic MDPs

Theorem
For all ε, γ ∈ (0, 1) there exists a strategy σ s.t. for all q0 ∈ Q
I % |= Parity for all % consistent with σ and
I Pq0

Mσ [% : MP(%) ≥ sVal(S)− ε | Inf ⊆ S] ≥ 1− γ for all ECs
containing an EC S with even min priority and s.t.
Pq0
Mσ [Inf ⊆ S] > 0.

Theorem
For all ε, γ ∈ (0, 1) one can construct a finite-memory strategy σ s.t. for
all q0 ∈ Q
I Pq0

Mσ [Parity] = 1 and
I Pq0

Mσ [% : MP(%) ≥ sVal(S)− ε | Inf ⊆ S] ≥ 1− γ for all ECs
containing an EC S with even min priority and s.t.
Pq0
Mσ [Inf ⊆ S] > 0.

A single exploration phase followed by alternating phases of exploitation
and |Q| random steps.
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Fin

Conclusions
Given an unknown MDP, we have shown how to construct
I limit-sure near-optimal strategies that surely satisfy a parity

constraint; and
I limit-sure near-optimal finite-memory strategies that almost-surely

satisfy the parity constraint.

Future work
I Can we obtain model-free learning strategies that yield the same

guarantees?
I How does one implement the finite-memory strategies efficiently?

(Memory vs. processing power)
I Can we weaken the assumptions? Support, lower

transition-probability bound, or bounded rewards?
I Can we obtain bounds on the sample complexity of these problems?
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