Learning-Based Mean-Payoff Optimization in an Unknown MDP under Omega-Regular Constraints

Jan Křetínský, Guillermo A. Pérez, and Jean-François Raskin

Technische Universität München Université libre de Bruxelles

> MF&V Seminar May, 2018

Parity games

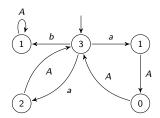
Playing on an automaton

A strategy σ in a parity automaton (Q, A, T, p) is a function $(Q \cdot A)^* Q \to \mathcal{D}(A)$. It is winning from q_0 if the min priority seen infinitely often is even, along all runs $q_0 a_0 \cdots \in (Q \cdot A)^{\omega}$ consistent with it.

Parity games

Playing on an automaton

A strategy σ in a parity automaton (Q, A, T, p) is a function $(Q \cdot A)^* Q \to \mathcal{D}(A)$. It is winning from q_0 if the min priority seen infinitely often is even, along all runs $q_0 a_0 \cdots \in (Q \cdot A)^{\omega}$ consistent with it.

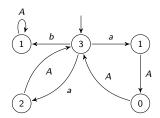


Strategies: (i) play b, (ii) always play a.

Parity games

Playing on an automaton

A strategy σ in a parity automaton (Q, A, T, p) is a function $(Q \cdot A)^* Q \to \mathcal{D}(A)$. It is winning from q_0 if the min priority seen infinitely often is even, along all runs $q_0 a_0 \cdots \in (Q \cdot A)^{\omega}$ consistent with it.



Strategies: (i) play b, (ii) always play a.

Expected mean-payoff optimization in MDPs

Reward MDPs

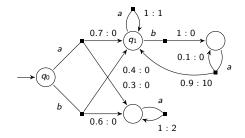
For a strategy σ in an MDP $\mathcal{M} = (Q, A, \alpha, \delta, r)$, we denote $\mathbb{E}_{\mathcal{M}^{\sigma}}^{q_0}$ [MP] the expected (lim inf) mean payoff¹ from q_0 under σ .

1
MP $(x_0x_1\dots) := \liminf_{n \in \mathbb{N}} \frac{1}{n+1} \sum_{i=0}^n x_i$

Expected mean-payoff optimization in MDPs

Reward MDPs

For a strategy σ in an MDP $\mathcal{M} = (Q, A, \alpha, \delta, r)$, we denote $\mathbb{E}_{\mathcal{M}^{\sigma}}^{q_0}$ [**MP**] the expected (lim inf) mean payoff¹ from q_0 under σ .



1
MP $(x_0 x_1 ...) := \liminf_{n \in \mathbb{N}} \frac{1}{n+1} \sum_{i=0}^{n} x_i$

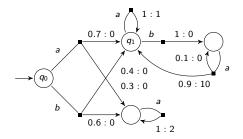
J. Křetínský, G. A. Pérez, J.-F. Raskin @ TUM, ULB

MP Optimization in an Unknown MDP under Parity Constraints

Expected mean-payoff optimization in MDPs

Reward MDPs

For a strategy σ in an MDP $\mathcal{M} = (Q, A, \alpha, \delta, r)$, we denote $\mathbb{E}_{\mathcal{M}^{\sigma}}^{q_0}$ [**MP**] the expected (lim inf) mean payoff¹ from q_0 under σ .



 $\mathbb{E}_{\mathcal{M}^{\sigma}}^{q_1}\left[\mathsf{MP}
ight] \geq 4.5 ext{ for } \sigma: q_1 \mapsto (b \mapsto 1)$

1
MP $(x_0x_1\dots) := \liminf_{n\in\mathbb{N}} \frac{1}{n+1}\sum_{i=0}^n x_i$

J. Křetínský, G. A. Pérez, J.-F. Raskin @ TUM, ULB

MP Optimization in an Unknown MDP under Parity Constraints

State of the art

Parity games

It is known that

- ▶ they are uniformly, deterministically, and memoryless determined
- ▶ they can be decided in UP ∩ coUP [Jurdziński 98]
- ▶ and in QP [Calude et al. 17]

State of the art

Parity games

It is known that

- ▶ they are uniformly, deterministically, and memoryless determined
- ▶ they can be decided in UP ∩ coUP [Jurdziński 98]
- ▶ and in QP [Calude et al. 17]

Mean-payoff MDPs

It is known that

- memoryless deterministic strategies suffice [Gimbert 07]
- uniformly optimal (mem-less and det.) unichain strategies
- ▶ the above can be computed in polynomial time [Puterman 05]

A.s. parity satisfaction and mean-payoff optimality The existence of strategies σ s.t.

 $\mathbb{P}_{\mathcal{M}^{\sigma}}^{q_{0}}\left[\mathrm{PARITY}\right]=1 \text{ and } \mathbb{E}_{\mathcal{M}^{\sigma}}^{q_{0}}\left[\mathsf{MP}\right] \geq \nu$

for given \mathcal{M} , q_0 , and ν , has been studied before [CD11].

A.s. parity satisfaction and mean-payoff optimality The existence of strategies σ s.t.

 $\mathbb{P}_{\mathcal{M}^{\sigma}}^{q_{0}}\left[\mathrm{PARITY}\right] = 1 \text{ and } \mathbb{E}_{\mathcal{M}^{\sigma}}^{q_{0}}\left[\mathsf{MP}\right] \geq \nu$

for given \mathcal{M} , q_0 , and ν , has been studied before [CD11]. It is known that

- ▶ Infinite memory strategies are necessary in general.
- ► It can be decided in polynomial time.

A.s. parity satisfaction and mean-payoff optimality The existence of strategies σ s.t.

 $\mathbb{P}_{\mathcal{M}^{\sigma}}^{q_{0}}\left[\mathrm{PARITY}\right] = 1 \text{ and } \mathbb{E}_{\mathcal{M}^{\sigma}}^{q_{0}}\left[\mathsf{MP}\right] \geq \nu$

for given \mathcal{M} , q_0 , and ν , has been studied before [CD11]. It is known that

- Infinite memory strategies are necessary in general.
- ► It can be decided in polynomial time.

A.s. MP optimality under sure parity constraints The existence of strategies σ s.t.

 $\varrho \models \text{PARITY} \text{ for all } \varrho \text{ consistent with } \sigma, \text{ and } \varepsilon$ -"optimal" $\mathbb{E}_{\mathcal{M}^{\sigma}}^{q_0} [\mathbf{MP}]$

has also been studied [AKV16].

A.s. parity satisfaction and mean-payoff optimality The existence of strategies σ s.t.

 $\mathbb{P}_{\mathcal{M}^{\sigma}}^{q_{0}}\left[\mathrm{PARITY}\right]=1 \text{ and } \mathbb{E}_{\mathcal{M}^{\sigma}}^{q_{0}}\left[\mathsf{MP}\right] \geq \nu$

for given \mathcal{M} , q_0 , and ν , has been studied before [CD11]. It is known that

- ▶ Infinite memory strategies are necessary in general.
- It can be decided in polynomial time.

A.s. MP optimality under sure parity constraints The existence of strategies σ s.t.

 $\varrho \models \text{PARITY}$ for all ϱ consistent with σ , and ε -"optimal" $\mathbb{E}_{\mathcal{M}^{\sigma}}^{q_0}$ [MP]

has also been studied [AKV16].

- Infinite memory strategies are again necessary.
- It is in NP \cap coNP and parity-game hard.

Partially-specified MDPs

Verification problems for partially-spec'd models

There has been an increased interest in models with unknown parameters and the use of learning techniques.²

 $^{2}\mbox{and}$ in using AI techniques to deal with them

Partially-specified MDPs

Verification problems for partially-spec'd models

There has been an increased interest in models with unknown parameters and the use of learning techniques.²

- Safe reinforcement learning via shielding [Alshiekh et al. 17]
- ▶ Verification of MDPs using learning algorithms [Brázdil et al. 14]
- Safety-constrained reinforcement learning for MDPs [Junges et al. 16]
- Correct-by-synthesis reinforcement learning with temporal logic constraints [WET15]
- Probably approximately correct learning in stochastic games with temporal logic specifications [WT16]

²and in using AI techniques to deal with them

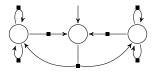
End component: $\exists \sigma, \mathbb{P}_{\mathcal{M}^{\sigma}}^{q_0} [q_0 \rightsquigarrow q_1] = 1$ for all q_0, q_1

End component: $\exists \sigma, \mathbb{P}^{q_0}_{\mathcal{M}^{\sigma}} \left[q_0 \leadsto q_1 \right] = 1$ for all q_0, q_1

So we have a uniform random exploration strategy λ that will almost-surely visit all states in the EC infinitely often.

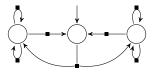
End component: $\exists \sigma, \mathbb{P}^{q_0}_{\mathcal{M}^{\sigma}} \left[q_0 \leadsto q_1 \right] = 1$ for all q_0, q_1

So we have a uniform random exploration strategy λ that will almost-surely visit all states in the EC infinitely often.



End component: $\exists \sigma, \mathbb{P}_{\mathcal{M}^{\sigma}}^{q_0} [q_0 \leadsto q_1] = 1$ for all q_0, q_1

So we have a uniform random exploration strategy λ that will almost-surely visit all states in the EC infinitely often.



General recipe: during episode *i* we first explore for L_i steps then exploit for O_i steps.

Input

We are given

- ► an automaton A whose transition relation T is the exact support of the MDP's unknown probabilistic transition function
- and a transition-probability lower bound π_{\min} .

Input

We are given

- ► an automaton A whose transition relation T is the exact support of the MDP's unknown probabilistic transition function
- and a transition-probability lower bound π_{\min} .

Assumptions

We suppose that

- ▶ the MDP is ergodic, i.e. it is an EC,
- ▶ and that the unknown reward function *r* instantaneously assigns transitions rewards from [0, 1].

Useful facts

 Since the MDP is ergodic, all hitting probabilities can be under-approx'd as biased coins X with success probability μ := (π_{min}/|A|)^{|Q|}, and we can use Hoeffding's inequality:

$$\mathbb{P}\left[\left|\frac{1}{k}\sum_{j=1}^{k}X_{j}-\mu\right|\geq arepsilon
ight]\leq 2\exp(-2karepsilon^{2}).$$

Useful facts

Since the MDP is ergodic, all hitting probabilities can be under-approx'd as biased coins X with success probability μ := (π_{min}/|A|)^{|Q|}, and we can use Hoeffding's inequality:

$$\mathbb{P}\left[\left|\frac{1}{k}\sum_{j=1}^{k}X_{j}-\mu\right|\geq arepsilon
ight]\leq 2\exp(-2karepsilon^{2}).$$

Expectation-optimal strategies \(\tau\) for any MDP \(\mathcal{N}\) with the same support as \(\mathcal{M}\) and s.t.

$$|\delta_\mathcal{N}(q, \mathsf{a}, q') - \delta_\mathcal{M}(q, \mathsf{a}, q')| \leq rac{\pi_{\min}}{2} \left(\left(1 + rac{arepsilon}{2}
ight)^{rac{1}{2|\mathbf{Q}|}} - 1
ight)$$
 give us

$$\mathbb{E}_{\mathcal{M}^{ au}}^{q_{0}}\left[\mathsf{MP}
ight] - \sup_{\sigma} \mathbb{E}_{\mathcal{M}^{\sigma}}^{q_{0}}\left[\mathsf{MP}
ight]
ight| \leq arepsilon$$

for all q_0 [Solan 03; Chatterjee 12].

One last useful fact:

One last useful fact:

Lemma (Convergence & ergodicitiy)

For all ergodic MDPs M, for all q_0 , for all unichain deterministic memoryless strategies μ , we have

•
$$\mathbb{P}_{\mathcal{M}^{\mu}}^{q_0} \left[\varrho : \mathsf{MP}(\varrho) \geq \mathbb{E}_{\mathcal{M}^{\mu}}^{q_0} \left[\mathsf{MP} \right] \right] = 1; \text{ and }$$

▶ for all
$$\varepsilon \in (0, 1)$$
, one can compute $M(\varepsilon) \in \mathbb{N}$ s.t.
 $\mathbb{P}_{\mathcal{M}^{\mu}}^{q_0} [\varrho : \forall k \ge M(\varepsilon), \operatorname{FinAvg}(\varrho(..k)) \ge \mathbb{E}_{\mathcal{M}^{\mu}}^{q_0} [\operatorname{MP}] - \varepsilon] \ge 1 - \varepsilon.$

In words

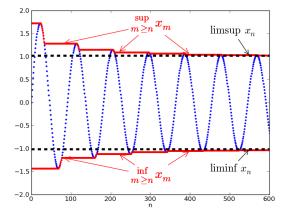
- Almost all runs have as their mean-payoff value the expected mean-payoff of the strategy.
- The finite averages eventually stay ever closer to the expected mean-payoff of the strategy with ever higher probability.

Theorem

One can compute a sequence $(L_i, O_i)_{i \in \mathbb{N}}$ s.t. for the resulting strategy σ_{∞} , we have $\mathbb{P}^{q_0}_{\mathcal{M}^{\sigma_{\infty}}} \left[\varrho : \mathsf{MP}(\varrho) \ge \sup_{\tau} \mathbb{E}^{q_0}_{\mathcal{M}^{\tau}} \left[\mathsf{MP} \right] \right] = 1$ for all q_0 .

Theorem

One can compute a sequence $(L_i, O_i)_{i \in \mathbb{N}}$ s.t. for the resulting strategy σ_{∞} , we have $\mathbb{P}^{q_0}_{\mathcal{M}^{\sigma_{\infty}}} \left[\varrho : \mathsf{MP}(\varrho) \ge \sup_{\tau} \mathbb{E}^{q_0}_{\mathcal{M}^{\tau}} \left[\mathsf{MP} \right] \right] = 1$ for all q_0 .



Theorem

One can compute a sequence $(L_i, O_i)_{i \in \mathbb{N}}$ s.t. for the resulting strategy σ_{∞} , we have $\mathbb{P}^{q_0}_{\mathcal{M}^{\sigma_{\infty}}} \left[\varrho : \mathsf{MP}(\varrho) \ge \sup_{\tau} \mathbb{E}^{q_0}_{\mathcal{M}^{\tau}} \left[\mathsf{MP} \right] \right] = 1$ for all q_0 .

A more detailed recipe

Take any $(\varepsilon_i)_{i \in \mathbb{N}}$ s.t. $0 < \varepsilon_k < \varepsilon_j < 1$ for all j < k. We define σ_{∞} as operating in episodes $i \in \mathbb{N}$:

- 1. It first explores during L_i steps so that with high probability we will be able to compute δ_i and r_i s.t. expectation-opt. strategies for $\mathcal{A}_{\delta_i,r_i}$ are ε_i -opt. for \mathcal{M} .
- 2. Then, σ_{∞} follows an expectation-opt. strategy $\sigma_{MP}^{\delta_i}$ for $\mathcal{A}_{\delta_i,r_i}$ during O_i steps that account for
 - previous average drops,
 - convergence speed of the finite averages, and
 - ▶ future average drops during the next *L*_{*i*+1} exploration steps,

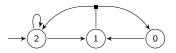
with high probability.

Let's add a parity constraint

- ▶ INPUT: a parity automaton and π_{\min}
- ASSUMPTIONS: the MDP is ergodic, its minimal priority is even, and all states are parity-winning, i.e. there is a winning strategy from them,
- SYNTH: a parity-winning strategy that achieves an optimal mean payoff with high probability

Let's add a parity constraint

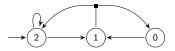
- ▶ INPUT: a parity automaton and π_{\min}
- ASSUMPTIONS: the MDP is ergodic, its minimal priority is even, and all states are parity-winning, i.e. there is a winning strategy from them,
- SYNTH: a parity-winning strategy that achieves an optimal mean payoff with high probability



Why not probability 1?

Let's add a parity constraint

- ▶ INPUT: a parity automaton and π_{\min}
- ASSUMPTIONS: the MDP is ergodic, its minimal priority is even, and all states are parity-winning, i.e. there is a winning strategy from them,
- SYNTH: a parity-winning strategy that achieves an optimal mean payoff with high probability



Why not probability 1? Parity-bad exploration must be made finite, lest we violate the parity constraint.

Theorem

For all $\gamma \in (0,1)$ there exists a strategy σ s.t. for all q_0

- 1. $\varrho \models \text{PARITY}$ for all ϱ consistent with σ and
- 2. $\mathbb{P}_{\mathcal{M}^{\sigma}}^{q_0} \left[\varrho : \mathsf{MP}(\varrho) \ge \sup_{\tau} \mathbb{E}_{\mathcal{M}^{\tau}}^{q_0} \left[\mathsf{MP} \right] \right] = 1 \gamma.$

Theorem

For all $\gamma \in (0,1)$ there exists a strategy σ s.t. for all q_0

1. $\varrho \models \text{PARITY}$ for all ϱ consistent with σ and

2. $\mathbb{P}_{\mathcal{M}^{\sigma}}^{q_0} \left[\varrho : \mathsf{MP}(\varrho) \ge \sup_{\tau} \mathbb{E}_{\mathcal{M}^{\tau}}^{q_0} \left[\mathsf{MP} \right] \right] = 1 - \gamma.$

We modify σ_{∞} go "give up":

We give up and switch to a parity-winning strategy forever if for sufficiently many episodes we have not witnessed the minimal even priority.

Theorem

For all $\gamma \in (0,1)$ there exists a strategy σ s.t. for all q_0

- 1. $\varrho \models \text{PARITY}$ for all ϱ consistent with σ and
- 2. $\mathbb{P}_{\mathcal{M}^{\sigma}}^{q_0} \left[\varrho : \mathsf{MP}(\varrho) \ge \sup_{\tau} \mathbb{E}_{\mathcal{M}^{\tau}}^{q_0} \left[\mathsf{MP} \right] \right] = 1 \gamma.$

We modify σ_{∞} go "give up":

We give up and switch to a parity-winning strategy forever if for sufficiently many episodes we have not witnessed the minimal even priority.

▶ σ_{∞} explores (for $\geq |Q|$ steps) infinitely often

Theorem

For all $\gamma \in (0,1)$ there exists a strategy σ s.t. for all q_0

1. $\varrho \models \text{PARITY}$ for all ϱ consistent with σ and

2. $\mathbb{P}_{\mathcal{M}^{\sigma}}^{q_0} \left[\varrho : \mathsf{MP}(\varrho) \ge \sup_{\tau} \mathbb{E}_{\mathcal{M}^{\tau}}^{q_0} \left[\mathsf{MP} \right] \right] = 1 - \gamma.$

We modify σ_{∞} go "give up":

We give up and switch to a parity-winning strategy forever if for sufficiently many episodes we have not witnessed the minimal even priority.

- ▶ σ_{∞} explores (for $\geq |Q|$ steps) infinitely often
- \blacktriangleright every |Q| steps of exploration we visit every state with probability at least $(\pi_{\min}/|A|)^{|Q|}$

Theorem

For all $\gamma \in (0,1)$ there exists a strategy σ s.t. for all q_0

1. $\varrho \models \text{PARITY}$ for all ϱ consistent with σ and

2. $\mathbb{P}_{\mathcal{M}^{\sigma}}^{q_0} \left[\varrho : \mathsf{MP}(\varrho) \ge \sup_{\tau} \mathbb{E}_{\mathcal{M}^{\tau}}^{q_0} \left[\mathsf{MP} \right] \right] = 1 - \gamma.$

We modify σ_{∞} go "give up":

We give up and switch to a parity-winning strategy forever if for sufficiently many episodes we have not witnessed the minimal even priority.

- ▶ σ_{∞} explores (for $\geq |Q|$ steps) infinitely often
- \blacktriangleright every |Q| steps of exploration we visit every state with probability at least $(\pi_{\min}/|A|)^{|Q|}$

$$lim_{i\in\mathbb{N}}\prod_{j=i}^{\infty}(1-2^{-j})=1$$

Theorem

For all $\gamma \in (0,1)$ there exists a strategy σ s.t. for all q_0

1. $\varrho \models \text{PARITY}$ for all ϱ consistent with σ and

2. $\mathbb{P}_{\mathcal{M}^{\sigma}}^{q_0} \left[\varrho : \mathsf{MP}(\varrho) \ge \sup_{\tau} \mathbb{E}_{\mathcal{M}^{\tau}}^{q_0} \left[\mathsf{MP} \right] \right] = 1 - \gamma.$

We modify σ_{∞} go "give up":

We give up and switch to a parity-winning strategy forever if for sufficiently many episodes we have not witnessed the minimal even priority.

- ▶ σ_{∞} explores (for $\geq |Q|$ steps) infinitely often
- every |Q| steps of exploration we visit every state with probability at least $(\pi_{\min}/|A|)^{|Q|}$

$$\blacktriangleright \lim_{i \in \mathbb{N}} \prod_{j=i}^{\infty} (1-2^{-j}) = 1 \implies \exists \mathcal{K}_0, \prod_{j=\mathcal{K}_0}^{\infty} (1-2^{-j}) \ge (1-\gamma)$$

Theorem

For all $\gamma \in (0,1)$ there exists a strategy σ s.t. for all q_0

1. $\varrho \models \text{PARITY}$ for all ϱ consistent with σ and

2. $\mathbb{P}_{\mathcal{M}^{\sigma}}^{q_0} \left[\varrho : \mathsf{MP}(\varrho) \ge \sup_{\tau} \mathbb{E}_{\mathcal{M}^{\tau}}^{q_0} \left[\mathsf{MP} \right] \right] = 1 - \gamma.$

We modify σ_{∞} go "give up":

We give up and switch to a parity-winning strategy forever if for sufficiently many episodes we have not witnessed the minimal even priority.

- ▶ σ_{∞} explores (for $\geq |Q|$ steps) infinitely often
- \blacktriangleright every |Q| steps of exploration we visit every state with probability at least $(\pi_{\min}/|A|)^{|Q|}$
- $\blacktriangleright \lim_{i \in \mathbb{N}} \prod_{j=i}^{\infty} (1-2^{-j}) = 1 \implies \exists \mathcal{K}_0, \prod_{j=\mathcal{K}_0}^{\infty} (1-2^{-j}) \ge (1-\gamma)$
- So we wait for enough episodes so that the probability of seeing the minimal even priority is at least $1 2^{-K_0}$, then $1 2^{-K_0-1}$, ...

Let's weaken the assumptions

- ▶ INPUT: a parity automaton and π_{\min}
- ASSUMPTIONS: the MDP is ergodic, and all states are parity-winning, i.e. there is a winning strategy from them,
- SYNTH: a parity-winning strategy that achieves a near-optimal mean payoff with high probability

Let's weaken the assumptions

- ▶ INPUT: a parity automaton and π_{\min}
- ASSUMPTIONS: the MDP is ergodic, and all states are parity-winning, i.e. there is a winning strategy from them,
- SYNTH: a parity-winning strategy that achieves a near-optimal mean payoff with high probability

Optimality w.r.t. what?

 $\mathbf{sVal}(\mathcal{M}) := \max_{q_0} \sup \{ \mathbb{E}_{\mathcal{M}^{\tau}}^{q_0} \; [\mathsf{MP}] : \tau \text{ is a winning strategy} \}$

Let's weaken the assumptions

- \blacktriangleright INPUT: a parity automaton and π_{\min}
- ASSUMPTIONS: the MDP is ergodic, and all states are parity-winning, i.e. there is a winning strategy from them,
- SYNTH: a parity-winning strategy that achieves a near-optimal mean payoff with high probability

Optimality w.r.t. what?

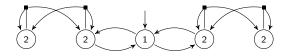
$$sVal(\mathcal{M}) := \max_{q_0} sup\{\mathbb{E}_{\mathcal{M}^{\tau}}^{q_0} [\mathsf{MP}] : \tau \text{ is a winning strategy}\}$$

- Since all states are parity-winning, the MDP contains at least one EC with even min priority.
- From [AKV16] we know $\mathbf{sVal}(\mathcal{M})$ is equal to

$$\max \left\{ \sup_{\tau} \mathbb{E}_{S^{\tau}}^{q_0} \left[\mathsf{MP} \right] \mid S \text{ is an EC with even min priority in } \mathcal{M} \right\}$$

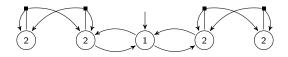


Why near-optimality?



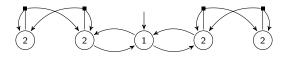
Why near-optimality?

 Global exploration must be made finite since the minimal priority may be odd.



Why near-optimality?

- Global exploration must be made finite since the minimal priority may be odd.
- So, we can only choose ε-maximal ECs with even minimal priority (with high probability). This can be done via an initial exploration phase.



Why near-optimality?

- Global exploration must be made finite since the minimal priority may be odd.
- So, we can only choose ε-maximal ECs with even minimal priority (with high probability). This can be done via an initial exploration phase.

Theorem

For all $\varepsilon, \gamma \in (0,1)$ there exists a strategy σ s.t. for all q_0

1.
$$\rho \models \text{PARITY}$$
 for all ρ consistent with σ and

2. $\mathbb{P}_{\mathcal{M}^{\sigma}}^{q_0} \left[\varrho : \mathsf{MP}(\varrho) \geq \mathsf{sVal}(\mathcal{M}) - \varepsilon \right] \geq 1 - \gamma.$

Let's weaken the assumptions further

- ▶ INPUT: a parity automaton and π_{\min}
- ASSUMPTIONS: all states are parity-winning, i.e. there is a winning strategy from them,
- SYNTH: a parity-winning strategy that achieves a near-optimal mean payoff with high probability

Theorem

For all $arepsilon,\gamma\in(0,1)$ there exists a strategy σ s.t. for all $q_0\in Q$

- $\rho \models \text{PARITY}$ for all ρ consistent with σ and

Theorem

For all $arepsilon,\gamma\in(0,1)$ there exists a strategy σ s.t. for all $q_0\in Q$

- $\rho \models \text{PARITY}$ for all ρ consistent with σ and
- ▶ $\mathbb{P}_{\mathcal{M}^{\sigma}}^{q_0} [\varrho : \mathsf{MP}(\varrho) \ge \mathsf{sVal}(S) \varepsilon \mid \mathrm{Inf} \subseteq S] \ge 1 \gamma$ for all ECs containing an EC S with even min priority and s.t. $\mathbb{P}_{\mathcal{M}^{\sigma}}^{q_0} [\mathrm{Inf} \subseteq S] > 0.$

Strategy recipe

- Follow a parity-winning strategy until a new (previously unvisited) EC containing an EC with even min priority is reached.
- Switch to our solution for such ECs.
- If we ever exit it, switch back to a parity-winning strategy and mark the EC as visited.

Theorem

For all $arepsilon,\gamma\in(0,1)$ there exists a strategy σ s.t. for all $q_0\in Q$

- $\rho \models \text{PARITY}$ for all ρ consistent with σ and
- ▶ $\mathbb{P}_{\mathcal{M}^{\sigma}}^{q_0} [\varrho : \mathsf{MP}(\varrho) \ge \mathsf{sVal}(S) \varepsilon \mid \mathrm{Inf} \subseteq S] \ge 1 \gamma$ for all ECs containing an EC S with even min priority and s.t. $\mathbb{P}_{\mathcal{M}^{\sigma}}^{q_0} [\mathrm{Inf} \subseteq S] > 0.$

Theorem

For all $\varepsilon, \gamma \in (0,1)$ one can construct a finite-memory strategy σ s.t. for all $q_0 \in Q$

- ▶ $\mathbb{P}_{\mathcal{M}^{\sigma}}^{q_0}$ [PARITY] = 1 and
- ▶ $\mathbb{P}_{\mathcal{M}^{\sigma}}^{q_0} [\varrho : MP(\varrho) \ge sVal(S) \varepsilon \mid Inf \subseteq S] \ge 1 \gamma$ for all ECs containing an EC S with even min priority and s.t. $\mathbb{P}_{\mathcal{M}^{\sigma}}^{q_0} [Inf \subseteq S] > 0.$

A single exploration phase followed by alternating phases of exploitation and $\left|Q\right|$ random steps.

Fin

Conclusions

Given an unknown MDP, we have shown how to construct

- limit-sure near-optimal strategies that surely satisfy a parity constraint; and
- Iimit-sure near-optimal finite-memory strategies that almost-surely satisfy the parity constraint.

Fin

Conclusions

Given an unknown MDP, we have shown how to construct

- limit-sure near-optimal strategies that surely satisfy a parity constraint; and
- Iimit-sure near-optimal finite-memory strategies that almost-surely satisfy the parity constraint.

Future work

- Can we obtain model-free learning strategies that yield the same guarantees?
- How does one implement the finite-memory strategies efficiently? (Memory vs. processing power)
- Can we weaken the assumptions? Support, lower transition-probability bound, or bounded rewards?
- Can we obtain bounds on the sample complexity of these problems?