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Introduction

• Concurrency: property of a “system” in which 
many “entities” act at the same time and 
interact.

• Often found in many application:

• Computer science (e.g.: parallel computing)

• Workflow

• Manufacturing systems

• ....
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Introduction

• Petri nets are a tool to model 
concurrent systems and 
reason about them.

• Invented in 1962 by C.A. 
Petri.
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The aim of the talk

• Introduce you to Petri nets (and some of 
their extensions)

• Explain several analysis methods for PN

• i.e., what can you ‘ask’ about a PN ?

• Give a rough idea of the research in the  
verification group at ULB...

• ... and foster new collaborations ?
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How I use Petri nets

template <typename T> T Max(T a, 
T b)
{
    return a < b ? b : a;
}
 
#include <string>
int main()  // fonction main
{
    int i = Max(3, 5);
    char c = Max('e', 'b');
    std::string s = Max(std::string
("hello"), std::string("world"));
    float f = Max<float>(1, 2.2f);
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Figure 1: The Petri net on which the algorithm proposed in [?] may not compute the whole
coverability set.
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(c) Step 3.

Figure 2: A counter-example to Finkel’s algorithm. Nodes and edges in grey have been
removed. Thick grey arrows represent the proofs.
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Ingredients
A Petri net is made up of...

Places

Transitions

Tokens

= some type of resource

consume and produce
resources

= one unity of a 
certain resource

Tokens ‘live’ in the places
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Transitions
Input places

Output places

2

3
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Firing a transition
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Transitions consume tokens from the input places 
and produce tokens in the output places
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Firing a transition

2

3

Transitions consume tokens from the input places 
and produce tokens in the output places

Now, the transition 
cannot be fired anymore
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Can write or
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The two machines cannot write at the 
same time
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Example 216 CHAPTER 2. PRELIMINARIES
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Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

mutex M ;

Process P {
   repeat {
      take M ;
      critical ;
      release M ;
   }
}
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mutex M ;

Process P {
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      take M ;
      critical ;
      release M ;
   }
}

Here, we have applied a counting abstraction
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Plan of the talk

• Preliminaries

• Tools for the analysis of PN

• reachability tree and reachability graph

• place invariants

• Karp & Miller and the coverability set

• The coverability problem

• More on PN: extensions...

• Conclusion
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Formal definition

• A Petri net is a tuple 〈P, T〉where:

• P is the (finite) set of places

• T is the (finite) set of transitions. Each 
transition t is a tuple 〈I, O〉where:

• I: is a function s.t. t consumes I(p) tokens 
in each place p

• O is a function s.t. t produces O(p) 
tokens in each place p
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Example

2

3

t
p1

p2

p5

p4

p3

I(p1)=2   I(p2)=1   I(p3)=0   I(p4)=0   I(p5)=0
O(p1)=0   O(p2)=0   O(p3)=1   O(p4)=3   O(p5)=1
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Markings

• The distribution of the tokens in the places 
is formalised by the notion of marking, which 
can be seen:

• either as a function m, s.t. m(p) is the 
number of tokens in place p

• or as a vector m=〈m1, m2,... mn〉where 
mi is the number of tokens in place pi
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Example

2

3
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p2
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m =〈1,1,1,2,0〉
m = 〈 p1, p2, p3, 2p4〉

m(p1)=1, m(p2)=1, m(p3)=1, m(p4)=2, m(p5)=0
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Firing a transition

• A transition t = 〈I,O〉can be fired from m 
iff for any place p:

                      m(p) ≥ I(p) 

• The firing transforms the marking m into a 
marking m’ s.t. for any place p:

             m’(p) = m(p) - I(p) + O(p)

• Notation: m→m’

• Notation: Post(m) = {m’ | m→m’}
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Initial marking
Reachable markings

• All PN are equipped with an initial marking m0

• If two markings m and m’ are s.t.:

              m→m1→m2→…→m’

Then m’ is reachable from m

• Let N be a PN with initial marking m0: 

       Reach(N) = {m reachable from m0}

is the set of reachable markings of N.
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Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

Reach(N ) =
{〈i,1,0〉 | i ∈ N}

∪
{〈i,0,1〉 | i ∈ N}
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• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

Reach(N ) =
{〈i,1,0〉 | i ∈ N}

∪
{〈i,0,1〉 | i ∈ N}

This set allows us to 
prove that the mutual 

exclusion is indeed 
enforced
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Ordering on markings

• Markings can be compared thanks to 4:

   m4m’ iff for any place p: m(p)6      m’(p)

   mpm’ iff m4m’ and m≠m’

• Examples:

• 〈1, 0, 0〉p〈1, 1, 0〉4〈1, 1, 0〉 4〈5, 7, 2〉

• 〈1, 0, 0〉 is not comparable to 〈0, 1, 0〉
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Questions on PN
• Meaningful questions about PN include:

• Boundedness: is the number of reachable 
markings bounded ?

• Place boundedness: is there a bound on 
the maximal number of tokens that can be 
created in a given  place ?

• Semi-liveness: is there a reachable marking 
from which a given transition can fire ?

• Coverability
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Example
read

write

idle

write

read

idle

Bounded PN All the places are bounded

All the transitions are semi-live
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• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

• Unbounded PN

• p2 and p3 are bounded

• p1 is unbounded

• All the transitions are 
semi-live
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Some tools for the
analysis of PN
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Reachability tree 
and 

reachability graph
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Reachability Tree

• Idea: 

• the root is labeled by m0

• for each node labeled by m, create one 
child for each marking of Post(m)
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Reachability Tree

Reachability trees can 
be infinite
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Reachability graph

• Idea: build a node for each reachable 
marking and add an edge from m to m’ if 
some transition transforms m into m’

• remark: now, if we meet the same marking 
twice, we do not create a new node, but 
re-use the previously created node.
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Reachability graph
I1

R1

W1

W2
R2

I2

M 〈M, I1, I2〉

〈W1, I2〉〈I1, W2〉

〈W1, R2〉〈R1, W2〉

〈M, R1, I2〉 〈M, I1, R2〉

〈M, R1, R2〉

The reachability graph 
allows us to prove that 
the mutual exclusion is 

indeed enforced

44



Reachability graph

• The reachability graph of a PN contains all 
the necessary information to decide:

• boundedness

• place boundedness

• semi-liveness

• ...
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Reachability graph

• Unfortunately...
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p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

〈p2〉
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Reachability graph

• Unfortunately...
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Figure 2.1: The SMPN Nµ.
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Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

〈p2〉

〈p1,p2〉
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Reachability graph

• Unfortunately...
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Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

〈p2〉

〈p1,p2〉

〈2p1,p2〉 〈p3〉
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Reachability graph

• Unfortunately...
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• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

〈p2〉

〈p1,p2〉

〈2p1,p2〉 〈p3〉

〈3p1,p2〉 〈p1,p3〉
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Reachability graph

• Unfortunately...
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• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

〈p2〉

〈p1,p2〉

〈2p1,p2〉 〈p3〉

〈3p1,p2〉 〈p1,p3〉
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Reachability graph

• Unfortunately...
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Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

〈p2〉

〈p1,p2〉

〈2p1,p2〉 〈p3〉

〈3p1,p2〉 〈p1,p3〉

Reachability graphs can 
be infinite
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The hard stuff...

• The main difficulty in analysing Petri nets is 
due to the possibly infinite number of 
reachable markings.

• We have to find techniques to deal with 
this infinite set.
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The hard stuff...

• Remark: finite doesn’t mean easy

• The set of reachable markings of a 
bounded net can be huge !

• Efficient techniques to deal with bounded 
nets have been developped.

• e.g.: net unfoldings
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Place invariants
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Place Invariants
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Place Invariants
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Place Invariants
read

write

idle

write

read

idle

R1 R2

I2

m(R1) + m(R2) + m(I2) = 0

The total number of 
tokens in these places 

is not constant
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Place Invariants
read

write
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write

read
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R1
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m(R1) + m(W1) + m(I1) = 1

W1

The total number of 
tokens in these places 
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Place Invariants
read

write

idle

write

read

idle

R1

I1

m(R1) + m(W1) + m(I1) = 1

W1

The total number of 
tokens in these places 

is constant

This provides 
meaningful information 

about the system: a 
process is either idle, 
or reading or writing
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Place Invariants

m(p1) + m(p2) + m(p3) + m(p4) = 1
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Place Invariants

m(p1) + m(p2) + m(p3) + m(p4) = 3
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Place Invariants

m(p1) + m(p2) + m(p3) + m(p4) = 1

The total number of 
tokens in these places 

is not constant
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Place Invariants

m(p1) + m(p2) + m(p3) + m(p4) = 1

The total number of 
tokens in these places 

is not constant

In some sense, tokens 
in p1 are heavier than 

those in p2
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Place Invariants

m(p1) + m(p2) + m(p3) + m(p4) = 1

The total number of 
tokens in these places 

is not constant

In some sense, tokens 
in p1 are heavier than 

those in p2

Let’s add weights to 
the places !
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Place Invariants

3 m(p1) + m(p2) + m(p3) + 2 m(p4) = 3
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Place Invariants

3 m(p1) + m(p2) + m(p3) + 2 m(p4) = 3
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Place Invariants

3 m(p1) + m(p2) + m(p3) + 2 m(p4) = 3
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Place invariant:
Definition

• Definition: a place-invariant (or p-semiflow) 
is a vector i of natural numbers s.t. for any 
reachable marking m:

               ∑
p∈P

i(p)×m(p) = ∑
p∈P

i(p)×m0(p)

remark: there exists a trivial invariant i  = 〈0, 0, .., 0〉
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2

2

Example: other 
invariants

m(p1) + m(p3)  = 1

2 m(p1) + m(p2) + 2 m(p4) = 2
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Invariants as over-
approximations

• A place-invariant expresses a constraint on 
the reachable markings.

• If m is reachable and i is an invariant, then:

• The reverse is not true !

∑
p∈P

i(p)×m(p) = ∑
p∈P

i(p)×m0(p)
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Example

m(p1) + m(p3)  = 1
is an invariant

but〈1, 25, 0, 234〉 is not reachable
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• Theorem: For any Petri net N:

                         Reach(N) 

                           ⊆ 

        {m | m respects some invariant of N}

Invariants as over-
approximations
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reachable markings
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• Theorem: For any Petri net N:

                         Reach(N) 

                           ⊆ 

        {m | m respects some invariant of N}

Invariants as over-
approximations

This set 
overapproximates the 

reachable markings

Place invariants are 
thus useful to finitely 

approximate the set of 
reachable markings

68



Place invariant and 
boundedness

• Theorem: If there exists a place invariant i 
and a place p s.t. i(p)>0 then p is bounded.

• Remark: the reverse is not true. 

• One can find a bounded net that doesn’t 
have a place invariant i with i(p)>0 for 
each place.
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Place invariant

• Question: how do we compute them ?
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Matrix characterisation

• The negative effect (consumption) of all 
the transitions on all the places can be 
summarised in one matrix:

where, for any i: ti  =〈Ii,Oi〉

W− =





I1(p1) I2(p1) · · · Ik(p1)
I1(p2) I2(p2) · · · Ik(p2)

... ... . . . ...
I1(pn) I2(pn) · · · Ik(pn)





neg. eff. on p1

neg. eff. on p2
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• The same can be done with the positive 
effects:

where, for any i: ti  =〈Ii,Oi〉

W + =





O1(p1) O2(p1) · · · Ok(p1)
O1(p2) O2(p2) · · · Ok(p2)

... ... . . . ...
O1(pn) O2(pn) · · · Ok(pn)





pos. eff. on p1

pos. eff. on p2

Matrix characterisation
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Incidence Matrix

• The global effect of every transition can be  
summarised as a single matrix:

W = W +−W−

W is called the incidence matrix of the net
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Example

W + =




1 0 1
0 0 1
0 1 0



 W− =




0 1 0
0 1 0
0 0 1





W =




1 −1 1
0 −1 1
0 1 −1
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p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such
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Computing place 
invariants

• Intuitively, if i is a place invariant it should 
assign weights to the places such that the 
positive and negative effects of every 
transition are balanced

• Thus, for any transition t =〈I, O〉we 
should have:

        ∑
p∈P

I(p)× i(p) = ∑
p∈P

O(p)× i(p)
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Computing place 
invariants

∑
p∈P

I(p)× i(p) = ∑
p∈P

O(p)× i(p)

∑
p∈P

(
O(p)− I(p)

)
× i(p) = 0

means
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Computing place 
invariants

∑
p∈P

I(p)× i(p) = ∑
p∈P

O(p)× i(p)

∑
p∈P

(
O(p)− I(p)

)
× i(p) = 0

means

t =〈I, O〉
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Computing place 
invariants

∑
p∈P

I(p)× i(p) = ∑
p∈P

O(p)× i(p)

∑
p∈P

(
O(p)− I(p)

)
× i(p) = 0

means

t =〈I, O〉 W =





· · · O(p1)− I(p1) · · ·
· · · O(p2)− I(p2) · · ·
... ... ...

· · · O(pn)− I(pn) · · ·
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Computing place 
invariants

∑
p∈P

(
O(p)− I(p)

)
× i(p) = 0

is thus the scalar product of i and the column 
of W that corresponds to transition t
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Computing place 
invariants

∑
p∈P

(
O(p)− I(p)

)
× i(p) = 0

is thus the scalar product of i and the column 
of W that corresponds to transition t

Since this must hold for any t, we obtain:
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∑
p∈P

(
O(p)− I(p)

)
× i(p) = 0

is thus the scalar product of i and the column 
of W that corresponds to transition t

Since this must hold for any t, we obtain:

Theorem: any solution i to the following system of 
equations is a place-invariant:
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invariants
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p∈P

(
O(p)− I(p)

)
× i(p) = 0

is thus the scalar product of i and the column 
of W that corresponds to transition t

Since this must hold for any t, we obtain:

i×W = 0

Theorem: any solution i to the following system of 
equations is a place-invariant:
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p1
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Figure 2.1: The SMPN Nµ.
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t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

W =




1 −1 1
0 −1 1
0 1 −1
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i1 = 0
−i1−i2+i3 = 0

i1+i2−i3 = 0

〈i1, i2, i3〉×W = 0

W =




1 −1 1
0 −1 1
0 1 −1
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i1 = 0
−i2+i3 = 0
+i2−i3 = 0

Any vector of the form 
〈0, i, i〉

is a place invariant
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Karp & Miller

• Propose in 1969 a solution to detect 
unbounded places of a Petri net
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E-mail address: gigeerae@ulb.ac.be

E-mail address: jraskin@ulb.ac.be

E-mail address: lvbegin@ulb.ac.be

This work is licensed under the Creative Commons Attribution-NoDerivs License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

1

n1

n2

87



Karp & Miller
Acceleration

This is how we compute the
successors of a node n:

m

m2

m1

n

m’

≺

Logical Methods in Computer Science
Volume 00, Number 0, Pages 000–000
S 0000-0000(XX)0000-0

FIXING THE CONSTRUCTION OF THE MINIMAL COVERABILITY
SET FOR PETRI NETS

G. GEERAERTS, J.-F. RASKIN, AND L. VAN BEGIN
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Example of K&M tree
16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

〈0, 1, 0〉
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Properties

• Theorem: the K&M tree is always finite.

• Idea of the proof: 

• if the net is not bounded, it is because of 
some infinite increasing sequence of 
markings.

• such sequences are detected in a finite 
amount of time by adding ω in the 
unbounded places.
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Properties

• Theorem: a net is bounded iff there is no 
node containing an ω in its K&M tree. 

• Theorem: place p is unbounded iff there 
exists a node labeled by m in the K&M tree 
s.t. m(p) =  ω.

• Theorem: transition t is semi-live iff there 
exists a node labeled by m in the K&M tree 
s.t. t can fire in m.
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a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such
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• Question: what is the relationship between:

• the set of reachable markings and

• the set of labels of the nodes of the K&M 
tree ?

Coverability set
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Example

3

• Set of reachable markings:

{〈1, 0, 3.i〉,〈0, 1, 3.i〉| i>0 }

• Set of nodes of the K&M tree:

{〈1, 0, 0〉〈1, 0, ω〉,〈0, 1, ω〉}

• This set “represents”:

{〈1, 0, i〉,〈0, 1, i〉| i>0 }
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Example

• Clearly, the K&M set contains more markings 
than the set of reachable markings:

• However, for every marking m in the K&M 
set, there exists a reachable marking m’ s.t.:

                             m’ < m

{〈1, 0, i〉,〈0, 1, i〉| i>0 }{〈1, 0, 3.i〉,〈0, 1, 3.i〉| i>0 } vs

Reach K&M

⊆
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• However, for every marking m in the K&M 
set, there exists a reachable marking m’ s.t.:

                             m’ < m

{〈1, 0, i〉,〈0, 1, i〉| i>0 }{〈1, 0, 3.i〉,〈0, 1, 3.i〉| i>0 } vs

Reach K&M

⊆

= + {m| there is m’ in       with m’ < m} 
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Downward-closure

• Let us assume that any natural number i is s.t.

                          i < ω

• Let m be a marking (possibly with ω), then its 
downward-closure is the set:

                ↓m = {m’ | m’4m}

• Let S={m1, m2,... mk} be a set of markings, then:

           ↓S = ↓m1  ∪ ↓m2  ∪...∪↓mk
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Examples in 2 dim.

ω1 2 3

1
2

3

4

1
2

3

4

1 2 3p1

p2 p2

p1

{〈1, 2〉,〈2, 4〉,〈3, 1〉} {〈1, 2〉,〈2, 4〉,〈 ω, 1〉}
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Properties of the K&M 
tree

• The set of all the markings that appear in a 
K&M tree is called a coverability set of the 
net. 

• Notation: Cover(N)

• Theorem: ↓Cover(N) = ↓Reach(N)

• Theorem:  Reach(N) ⊆ ↓Cover(N)

• Hence, ↓Cover(N) is a finite over-
approximation of Reach(N)

102



Example
16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.
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t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

Cover(N) 
=

 ↓{ 〈ω, 1, 0〉,〈ω, 0, 1〉 }
=

Reach(N) ∪  { 〈0, 0, 0〉 }

Reach(N) 
=

 { 〈i, 1, 0〉,〈i, 0, 1〉| i ≥ 0 }
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Advertisement

• Recently, we have defined a new algorithm 
to compute the coverability set of a Petri 
net.

• It is several order of magnitudes more 
efficient than K&M

On the efficient computation of the minimal coverability set for Petri nets 15

Table 1. Empirical evaluation of the covering sequence. Experiments on an INTEL XEON 3GHZ.

Times in seconds (× = no result within 20 minutes). P = number of places; T = number of

transitions; MCS = size of the minimal coverability set ; Tp = Bounded or Unbounded PN; Max

P. =max{|Vi∪Oi∪Fi|, i ≥ 1} ; Tot. P. = total number of pairs created along the whole execution

Example KM Cov. Seq. w/o Oracle CovProc

Name P T MCS Tp Nodes Time Max P. Tot. P. Time Max P. Tot. P. Time

RTP 9 12 9 B 16 0.18 47 47 0.10 47 47 0.13

lamport 11 9 14 B 83 0.18 115 115 0.17 115 115 0.17

peterson 14 12 20 B 609 2.19 170 170 0.21 170 170 0.25

dekker 16 14 40 B 7,936 258.95 765 765 1.13 765 765 1.03

readwrite 13 9 41 B 11,139 529.91 1,103 1,103 1.43 1,103 1,103 1.75

manuf. 13 6 1 U 32 0.19 9 101 0.18 2 47 0.14

kanban 16 16 1 U 9,839 1221.96 593 9,855 95.05 4 110 0.19

basicME 5 4 3 U 5 0.10 5 5 0.12 5 5 0.12

CSM 14 13 16 U >2.40·106 × 371 3,324 14.38 178 248 0.34

FMS 22 20 24 U >6.26·105 × >4,460 × × 477 866 2.10

PNCSA 31 36 80 U >1.02·106 × >5,896 × × 2,617 13,408 113.79

multipoll 18 21 220 U >1.16·106 × >7,396 × × 14,034 14,113 365.90

mesh2x2 32 32 256 U >8.03·105 × >6,369 × × 10,483 12,735 330.95

consumption) and outperforms the covering sequence with trivial oracle. Finally, the

execution times of CovProc are several order of magnitudes smaller than those of the

KM procedure, showing the interest of our new algorithm.
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PNCSA 31 36 80 U >1.02·106 × >5,896 × × 2,617 13,408 113.79

multipoll 18 21 220 U >1.16·106 × >7,396 × × 14,034 14,113 365.90

mesh2x2 32 32 256 U >8.03·105 × >6,369 × × 10,483 12,735 330.95

consumption) and outperforms the covering sequence with trivial oracle. Finally, the

execution times of CovProc are several order of magnitudes smaller than those of the

KM procedure, showing the interest of our new algorithm.
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Reachability: a natural 
question ??

• In the case  of Petri nets, asking whether a 
given marking is reachable does not always 
make sense...

• ... because Petri nets are monotonic
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The coverability 
problem
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Does there exist a reachable marking which 
is larger than some marking b ?
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The coverability 
problem

• Two alternative definitions:

• Is there a reachable marking m s.t. m<b ?

• Does Reach(N) ∩ {m | m<b} ≠ ⏀ ?
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Coverability: a natural 
question (indeed)

• Coverability might be regarded as the most 
natural reachability question in the 
framework of  Petri nets

• Besides, coverability is much more easily 
solved than reachability
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16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

Safety Properties
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A marking m is unsafe when                m ! 〈0, 0, 2, 0〉
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let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

Safety Properties

No more than one token 
at a time in this place !!

A marking m is unsafe when                m ! 〈0, 0, 2, 0〉
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First idea

• Use the coverability set !

• Remember: the coverability set over-
approximates the reachable states:

        Reach(N) ⊆ ↓Cover(N)
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First idea

↓Cover(N)Reach(N)
U

↓Cover(N) ∩ U = ⏀
 implies

Reach(N) ∩ U = ⏀
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What if ?

↓Cover(N) U

• There is m in ↓Cover(N) ∩ U

• Hence, there is m’ < m which is in Reach(N)

• However, any m’ < m is also in U

• Thus, there is m’ both in Reach(N) and U
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Reach(N)

What if ?

↓Cover(N) U
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Reach(N)

What if ?

↓Cover(N) U

Reach(N) ∩ U = ⏀
implies

↓Cover(N) ∩ U = ⏀

117



Coverability set and 
coverability problem
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Coverability set and 
coverability problem

• Theorem: 

Reach(N) ∩ U = ⏀ iff↓Cover(N) ∩ U = ⏀

• Nice,...

• ...but U and ↓Cover(N) might both be infinite !

• How do we test that ↓Cover(N) ∩ U = ⏀??
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Coverability set and 
coverability problem
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↓Cover(N)
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Coverability set and 
coverability problem

1 2 3

1
2

3

4

p1

p2

↓Cover(N) ∩ U ≠ ⏀
iff

there is c in Cover(N) and
b in Min(U) s.t.

c <           b

All we need to 
remember is the 

(finite) set of minimal 
elements Min(U)
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Backward approach
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U = {m|m<b}

120



Backward approach

b

U = {m|m<b}

120



Backward approach

b

U = {m|m<b}

All the markings that can reach U in
one step
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Backward Approach

• Clearly:

m0 is in Pre*(U) iff Reach(N) ∩ U ≠ ⏀

• Question: can we compute Pre*(U) ?

• Yes !

121



Predecessor operator

• Symmetrically to the Post, we define the 
predecessor operator:

        Pre(m) = {m’ | m is in Post(m’)}

• Let us consider the sequence 

U, Pre(U), Pre(Pre(U)), Pre(Pre(Pre(U))),...

• Theorem: After a finite amount of steps, the 
sequence stabilises, and we obtain Pre*(U)
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Advertisement

• Efficient datastuctures to implement this 
algorithm have been defined by researchers 
of the verification group at ULB.
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More on Petri nets
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Marking dependent effects
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Marking-dependent 
effect

• The effect of a transition is not constant  
anymore, but depends on the current 
marking.

p1

p2 p4

p3m(p1)+m(p2)
2

m(p2)
m(p4)
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Marking-dependent 
effect - resets

• In particular, we can define resets.
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p2 p4

p3
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reset of p2
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Reset nets

• When we have only classical PN transitions 
+ resets:

• Coverability is decidable

• Boundedness is decidable

• Place boundedness is undecidable

• The coverability set is not computable
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Marking-dependent 
effect - transfers

• In particular, we can define transfers.
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p2 p4

p3
2

m(p2)
1

transfer from p2 to p3

m(p2)
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• In particular, we can define transfers.
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Usefulness of transfers
• Modelisation of broadcasts :

• A single message is sent to every process

• Each process that receives the message 
moves to another state.

p1

waiting received

p21

m(waiting)

1

m(waiting)

notifyall
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Transfer nets

• When we have only classical PN transitions 
+ transfers:

• Coverability is decidable

• Boundedness is decidable

• Place boundedness is undecidable

• The coverability set is not computable
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Marking-dependent 
effect - zero-test

• In particular, we can define test for zero.
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p2 p4

p3
2

2m(p2)
1

enabled only if p2 is empty

1
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Marking-dependent 
effect - zero-test

• In particular, we can define test for zero.
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p2 p4
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1
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1
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Test for zero

• Once we have test-for-zero everything 
becomes  undecidable.
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Coloured Petri nets
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Coloured Petri nets

• Popular extension of the 
basic model.

• Introduced by the 
team of Kurt Jensen, in 
the ‘80s

• used in many 
applications
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Coloured Petri nets

• Idea: add colours to the tokens

• Allow to distinguish between different 
types of tokens

• The colours can model data carried by 
the processes

• Transitions are aware of the colours
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Phone example

• We have a set of customers: 

• Each customer is represented by a token. 

• Color of the token = Phone number.

• A customer is either inactive or 
connected.

inactive

connected
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Phone example
• A pair of inactive customers can establish a 

connection.

• We want to distinguish between sender 
and receiver.

(x,y)

x

y

x

y

inactive

connections

connectedconnect

The transition 
consumes

a sender x and a 
receiver y

Connections are 
recorded here as 

tokens whose color 
is a pair (snd, rcv)
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Phone example
• The connection can be closed either by the 

sender or by the receiver.

(x,y)

(x,y)

x

y

x

y x

y

x
y

inactive

connectedconnect

rcv breaks
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Phone example
• The connection can be closed either by the 

sender or by the receiver.

(x,y)

(x,y)

x

y

x

y x

y

x
y

inactive

connectedconnect

rcv breaks
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Phone example

(x,y)

(x,y)

(x,y)

x

y

x

y

x

y

x

y

x
y

x
y

inactive

connections

connectedconnect

snd breaks

rcv breaks
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Coloured Petri nets

• Several analysis methods have been 
developped for this model (finite number of 
colours)

• e.g.: invariants

• Some results can be achieved when the 
colors have good properties
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Tools
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Practical Tools: Pep
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Practical Tools: Pep
• = language to describe PN + a suite of tools 

to analyse them:

• simulation

• verification (SPIN, SMV)

• translation from/to different formalisms

• ...

• Everything can be accessed through a single 
graphical interface (Tcl/Tk)

http://theoretica.informatik.uni-oldenburg.de/~pep/
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Practical Tools: 
CPNTools
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Practical Tools: 
CPNTools

• Specialised in Coloured Petri nets

• Features similar to Pep:

• modelisation

• simulation

• state space analysis

• ...

http://wiki.daimi.au.dk/cpntools/cpntools.wiki
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Conclusion

155



To conclude

• Petri nets (and their extensions) are a nice 
tool to reason about concurrent systems:

• very popular

• non-trivial decision problems are 
decidable

• appealing graphical representation

• tool supported
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To conclude

• There is still a lot to explore:

• other extensions: 

• Time Petri nets

• Timed Petri nets

• Stochastic Petri nets,...
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To conclude
• There is still a lot to explore:

• Subclasses of Petri nets: 

• 1-safe

• marked graphs

• free-choice

• conflict free

• ...

• Some problems are easier to decide on 
these subclasses.
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To conclude

• There is still a lot to explore:

• other problems: 

• liveness

• deadlock freedom

• semi-linearity

• non-termination

• ...
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To conclude

• Very active field of research !

• Several conference and journals entirely 
dedicated to Petri nets

• ... just hop in and join us !

http://www.informatik.uni-hamburg.de/TGI/PetriNets/
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Questions ?
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