An Introduction to Petri nets
and how to analyse them...

G. Geeraerts

Groupe de Verification - Departement d’Informatique
Universite Libre de Bruxelles

Introduction

Introduction

® Concurrency: property of a“system” in which
many “entities’” act at the same time and
Interact.

® Often found in many application:
e Computer science (e.g.: parallel computing)
® Workflow

® Manufacturing systems

Introduction
Concurrency

Introduction
Concurrency

Work in parallel

Introduction
Concurrency

‘._. v 3
b) s
i L
o - l =
mel. -

- 3
: §
ITEAHEES 7
i 3
=~ (-
— o " ./')

&?-M Must wait for the
two other machines

Work in parallel

Introduction
Concurrency

-ﬁ

D!‘

\ / Can write or
Can write or read on the DB
read on the DB H

Introduction
Concurrency

Introduction
Concurrency

Introduction
Concurrency

Employees: work in parallel

Introduction
Concurrency

gives work

Employees: work in parallel

Introduction
Concurrency

Employees: work in parallel

Introduction
Concurrency

Employees: work in parallel

Introduction
Concurrency

receives credit
for the results

Employees: work in parallel

Introduction

® Petri nets are a tool to model
concurrent systems and
reason about them.

® |nvented in 1962 by C.A.
Petri.

The aim of the talk

® |ntroduce you to Petri nets (and some of
their extensions)

® Explain several analysis methods for PN
® i.e.,, what can you ‘ask’ about a PN ?

® Give a rough idea of the research in the
verification group at ULB...

® ...and foster new collaborations ?

How | use Petri nets

template <typename T> T Max(T a,
Tb)

{
returna<b ?b: a;

}

abstraction

#include <string>
int main() // fonction main
{
int i = Max(3, 5);
char ¢ = Max('e', 'b');
std::string s = Max(std::string
("hello"), std::string("world"));
float f = Max<float>(1, 2.2f);

Analysis method

of PN

How you might use PN

Your favorite .
. abstraction
application

Analysis method
of PN

10

Places

Transitions

Tokens

Ingredients

A Petri net is made up of...

Q = some type of resource

consume and produce
resources

= one unity of a
certain resource

Tokens ‘live’ in the places

12

Transitions

Output places
Input places

Firing a transition

Transitions consume tokens from the input places
and produce tokens in the output places

e

2

+ O
o =

14

Firing a transition

Transitions consume tokens from the input places
and produce tokens in the output places

Now, the transition @

cannot be fired anymore

15

Example |

\ / Can write or
Can write or read on the DB

read on the DB

The two machines cannot write at the

same time

16

= Example |
\J

w0 Oy

rrrrrr

'3/

The token tells us the state of the process

= Example |
\J

0 Gy

rrrrrr

'3/

The token tells us the state of the process

= Example |
\J

0 G .

rrrrrr

'3/

The token tells us the state of the process

= Example |
\J

0 Gy

rrrrrr

'3/

The token tells us the state of the process

= Example |
\J

0 Oy

rrrrrr

'3/

The token tells us the state of the process

Example |

Add a lock to ensure mutual exclusion

idle

22

Example |

Example 2

mutex M ; t1

Process P {
repeat {
take M ;
critical ;
release M ;

Example 2

mutex M ; t1

Process P {
repeat {
take M ;
critical ;
release M ;

Here, we have applied a counting abstraction

24

Plan of the talk

® Preliminaries

® TJools for the analysis of PN

® reachability tree and reachability graph
® place invariants
e Karp & Miller and the coverability set
® The coverability problem
® More on PN: extensions...

® Conclusion

25

Plan of the talk

® Preliminaries

® Jools for the analysis of PN
® reachability tree and reachability graph
® place invariants
e Karp & Miller and the coverability set
® The coverability problem

® More on PN: extensions...

Q
00
(4]
LG
Q
>
@)
@)
o
9
(g}
i)
()
A
DN
()
P
L G
)
(Vo)

® Conclusion

25

Preliminaries

26

Formal definition

e A Petrinetisatuple <{PT) where:

® P is the (finite) set of places

® | is the (finite) set of transitions. Each
transition t is a tuple <I, O) where:

® [:is a function s.t. t consumes |(p) tokens
in each place p

® O is a function s.t. t produces O(p)
tokens in each place p

27

Example

(p)=2 I(p2)=1 I(p3)=0 I(ps)=0 I(ps)=0
(P1)=0 O(p2)=0 O(pz)=I O(ps)=3 O(ps)=|

Markings

® The distribution of the tokens in the places
is formalised by the notion of marking, which
can be seen:

® cither as a function m, s.t. m(p) is the
number of tokens in place p

® or asa vector m= {mj, ma,...mn> where
mi; is the number of tokens in place p

29

Example

m= <l,1,1,2,0)
m = < pi, p2, p3, 2p4)
m(p)=1, m(p2)=1, m(p3)=1, m(p4)=2, m(ps)=0

Firing a transition

A transition t = <1,0) can be fired from m
iff for any place p:

m(p) 2 |(p)

The firing transforms the marking m into a
marking m’ s.t. for any place p:

(P) = m(p) - I(p) + O(p)

Notation: m—

Notation: Post(m) = {m’ | m—m’}

31

Example

Example

Post(<I,1,0))= P
{ 2,1,0) , <0,0,1, } £ A} t

Example

Post(<I,1,0))= P
{ 2,1,0) , <0,0,1, } £ A} t

Example

Post(<I,1,0))= P
{ 2,1,0) , <0,0,1, } £ A} t

Example

Post(<I,1,0))= P
{ 2,1,0) , <0,0,1, } £ A} t

Example

Post(<I,1,0))= P
{ 2,1,0) , <0,0,1, } £ A} t

Initial marking
Reachable markings

® All PN are equipped with an initial marking mo
® |[f two markings m and m’ are s.t.
m—=m;—=>my—> -
Then m’ is reachable from m
® | et N be a PN with initial marking mo:
Reach(N) = {m reachable from mo}

is the set of reachable markings of N.

33

Example

Example

Example

This set allows us to
prove that the mutual

exclusion is indeed
enforced

34

Ordering on markings

® Markings can be compared thanks to <:
m=<m’ iff for any place p: m(p)<m’(p)

m=<m’ iff m<m’ and m#

® Examples:

o (1,0,0) < <I,1,0) < <I,1,0) < ¢5,7,2)

e <1,0,0) isnotcomparableto <0,]1,0)

35

Questions on PN

® Meaningful questions about PN include:

® Boundedness:is the number of reachable
markings bounded ?

® Place boundedness:is there a bound on
the maximal number of tokens that can be
created in a given place !

® Semi-liveness: is there a reachable marking
from which a given transition can fire ?

® Coverability

36

Example

idle

Bounded PN All the places are bounded

All the transitions are semi-live

37

Example

Unbounded PN
p2 and p3 are bounded 5
p1 is unbounded £ ' <> s
All the transitions are \6)
semi-live

38

Some tools for the
analysis of PN

Reachability tree
and
reachability graph

Reachability Tree

® |dea:
® the root is labeled by mo

® for each node labeled by m, create one
child for each marking of Post(m)

41

Reachability Tree

o

2 R2

)

Reachability Tree

e

2 R2

M, 1y, 12

)

Reachability Tree

M, 1y, 12

Reachability Tree

M, 1y, 12

Reachability Tree

M, 1y, 12

o mm I, R2)

L <L, W)XW, 1) KM, R, 1)

Reachability Tree

M, 1y, 12
URAZY; ¢\<M‘, l, R
Wiy MRy,
M
R2 (R, W2>w\/l’ R,
(M, || Ly M,

o mm I, R2)

L <L, W)XW, 1) KM, R, 1)

Reachability Tree

|
| M, 11, 1)
URA%Y; J (M, I,
Wil MRl ™
M \
< W2> <W|,’ > '
(M, ||) <M I| I2> :
(o m (M, 1, : 5. 34
L, <l W2><W| |2> (M, ;,|2
' y : ‘#

Reachability Tree

M, 1y, 1

v :
\ 4

Reachability trees can |
be infinite

\ .
(o) mm, I, Ro)™y

< WaXWi, 1) M, Ry, 1%

¢ s N

42

Reachability graph

® |dea:build a node for each reachable
marking and add an edge from m to m’ if
some transition transforms m into m’

® remark: now, if we meet the same marking
twice, we do not create a new node, but
re-use the previously created node.

43

Reachability graph

Reachability graph

M, 1y, 1

Reachability graph
o

C L @
M
M, Iy, Iy
2 R2 /\

M, R, 1 M, 11, R

)

Reachability graph

¥
O
C L @
M
M, 11, 1)
2 R2 /\
(M, R, 1 M, 11, Ro)
O Y<\M,ART,R/2>Y

)

Reachability graph

¥

O
| URALDY; Wi, Iy
O, Q04
‘ R2 M, 1y, 1)
5 / \

M, R, 1) M, 11, R
(&) Y<\M,ART,R/2>Y

)

Reachability graph

¥

4 CRI,W2) (Wi, Ry
' < 1) < 1)
1, V> Wi, |

e 0

‘ R2 M, 1y, 1)

5 /\
M, R, 1) M, 11, Ro)

(&) Y<\M,ART,R/2>Y

)

Reachability graph

CRI,W2) (Wi, Ry

| |

URALDY; Wi, Iy

~ .

M, 1y, 1)

—

M, Ry, 12 M, 11, R

ST

(M, R}, Ry

Reachability graph

The reachability graph
allows us to prove that

the mutual exclusion is
indeed enforced

(R1,W2) (Wi, Ry

| |

URALDY; Wi, Iy

Reachability graph

® The reachability graph of a PN contains all
the necessary information to decide:

® boundedness

® place boundedness

® semi-liveness

Reachability graph

® Unfortunately...
{p2) 2

Reachability graph

® Unfortunately...
e “
{p1,p2) 0
o (o
P2
D3

Reachability graph

® Unfortunately...
{p2)

-~

{p1,p2)

oo ™ (oo

Reachability graph

® Unfortunately...
{p2)

-~

{p1,p2)

oo ™ (oo

o
3pi,p {p1,p3,

Reachability graph

® Unfortunately...
{p2)

-~

{p1,p2)

<zpi,Q o
<3pi,p2> <P|ip3>

Reachability graph

e Unfortunately...

/ Reachability graphs can
be infinite
{p1,p2)

Gored ™ (o)

o —
3p1,p2) {p1,p3)

' '

The hard stuff...

® The main difficulty in analysing Petri nets is
due to the possibly infinite number of
reachable markings.

® We have to find techniques to deal with
this infinite set.

47

The hard stuff...

® Remark: finite doesn’t mean easy

® The set of reachable markings of a
bounded net can be huge !

® Efficient techniques to deal with bounded
nets have been developped.

® e.g.:net unfoldings

48

Place Invariants

read R | read R2
m |2

write

m(R) + m(R2) + m(l2) =1

Place Invariants

read R | read R2
m |2

write

m(R) + m(R2) + m(l2) =1

Place Invariants

read R | read R2
m |2

write

m(R) + m(R2) + m(l2) =2

Place Invariants

read R | read R2
m |2

write

m(R)) + m(R2) + m(l2) =0

Place Invariants

read Rl read Rz

idle I2

° The total number of ‘ e
tokens in these places

IS hot constant

2)\&

m(R) + m(R2) + m(l2) =0

53

read R | read

Place Invariants

write

m(R)) + m(Wi) + m(l)) = |

‘ idle

read R | read

Place Invariants

write

m(R)) + m(Wi) + m(l)) = |

‘ idle

read R | read

Place Invariants

write

m(R)) + m(Wi) + m(l)) = |

‘ idle

Place Invariants

1 The total number of
tokens in these places
IS constant

m(R)) + m(Wi) + m(l)) = |

Place Invariants

1 The total number of
tokens in these places
IS constant

This provides
o meaningful information
about the system: a
process is either idle,
or reading or writing

m(R)) + m(Wi) + m(l)) = |

56

Pl
ace |lnvariants

oR ROl

m(p1) + m(p2) + m(p3) + m(p4)
4) = |

p3

Pl
ace |lnvariants

O ROl

m(p1) + m(p2) + m(p3) + m(p4)
4) =3

p3

Pl
ace |lnvariants

R RON

m(p1) + m(p2) + m(p3) + m(p4)
4) =2

p3

Pl
ace |lnvariants

oR ROl

m(p1) + m(p2) + m(p3) + m(p4)
4) = |

p3

Place Invariants

The total number of

tokens in these places
IS hot constant

+ m(p3) + m(p4) = |

60

Place Invariants

The total number of
tokens in these places
IS hot constant

In some sense, tokens
in p| are heavier than
those in p2

60

Place Invariants

The total number of
tokens in these places
IS not constant

p3

Let’s add weights to
the places !

In some sense, tokens
in p| are heavier than
those in p2

60

Pl
ace |lnvariants

oR ROl

3 m(p
(1) + m(p2) + m(p3) + 2 m(p4)
p4) = 3

p3

Pl
ace |lnvariants

OR ROl

3 m(p
(1) + m(p2) + m(p3) + 2 m(p4)
p4) = 3

p3

Pl
ace |lnvariants

R RON

3 m(p
(1) + m(p2) + m(p3) + 2 m(p4)
p4) = 3

p3

Place invariant:
Definition

® Definition: a place-invariant (or p-semiflow)
is a vector i of natural numbers s.t. for any
reachable marking m:

Y i(p) xm(p) =) i(p)xmo(p)

peP peP

remark: there exists a trivial invarianti = <0,0, ..,0)

64

Example: other
Invariants

o8 RO

m(p1) + m(p3) = |
2 m(pi) + m(p2) + 2 m(ps) = 2

p3

Invariants as over-
approximations

® A place-invariant expresses a constraint on
the reachable markings.

® |f mis reachable and i is an invariant, then:

Y i(p) xm(p) =Y i(p) xmo(p)

peP peP

® The reverse is not true !

66

Example

o8 RO

m(p1) + m(p3) = |
IS an invariant

but {I,25,0,234) is not reachable

p3

Invariants as over-
approximations

® [heorem: For any Petri net \:

Reach(/V)

C

{m | m respects some invariant of \}

Invariants as over-
approximations

® [heorem: For any Petri net \:

Reach(I\)

C

{m | m respects some invariant of \'}

This set

overapproximates the
reachable markings

68

Invariants as over-
approximations

® [heorem: For any Petri net \:

Reach(I\)

C

{m | m respects some invariant of \'}

Place invariants are
thus useful to finitely
approximate the set of
reachable markings

This set

overapproximates the
reachable markings

68

Place invariant and
boundedness

® [heorem:If there exists a place invariant i
and a place p s.t.i(p)>0 then p is bounded.

® Remark: the reverse is not true.

® One can find a bounded net that doesn’t
have a place invariant i with i(p)>0 for
each place.

69

Place invariant

® Question: how do we compute them ?

Matrix characterisation

® The negative effect (consumption) of all
the transitions on all the places can be
summarised in one matrix:

1(pa) B(pn) -~ Ie(pa)

where, for any i: ti = <I,O

71

Matrix characterisation

® The same can be done with the positive
effects:

O1(p1) O2(p1) -+ Ok(p1)
wi — | O1(p2) O2(p2) -+ Ok(p2)

O1(pn) O2(pn) -+ Or(pn)

where, for any i: ti = <I,O

Incidence Matrix

® The global effect of every transition can be
summarised as a single matrix:

W=W"—W"

WV is called the incidence matrix of the net

73

Example

101 010
wtr=1001]| w— =010 h
010 001

Example

101 010
wtr=1001]| w— =010 h
010 001

Example

101 010
wtr=1001| w—=1010 h
010 00 1

Computing place
Invariants

Intuitively, if i is a place invariant it should
assign weights to the places such that the
positive and negative effects of every
transition are balanced

Thus, for any transition t = <I,O) we
should have:

Y I(p)xi(p)=) O(p)xi(p)

peP peP

75

Computing place
Invariants

® |ntuitively, if i is a place invariant it should
assign weights to the places such that the
and negative effects of every

transition are balanced

e Thus, for any transition t = €I, 0) we
should have:

Y I(p)xi(p)=) O(p)xi(p)

peP peP

oF NG

75

Computing place
Invariants

® |ntuitively, if i is a place invariant it should
assign weights to the places such that the
and negative effects of every

transition are balanced

e Thus, for any transition t = €I, 0) we
should have:

Y I(p)xi(p)=) O(p)xi(p)

peP peP

OF RO

75

Computing place
Invariants

® |ntuitively, if i is a place invariant it should
assign weights to the places such that the
and negative effects of every

transition are balanced

e Thus, for any transition t = €I, 0) we
should have:

Y I(p)xi(p)=) O(p)xi(p)

peP peP

oF NG

75

Computing place
Invariants

® |ntuitively, if i is a place invariant it should
assign weights to the places such that the
and negative effects of every

transition are balanced

e Thus, for any transition t = €I, 0) we
should have:

Y I(p)xi(p)=) O(p)xi(p)

peP peP

oF RO

75

Computing place

Invariants
Z;,Jl(p) < i(p) = ZPO(p) % i(p)

Mmeans

Y (0(p)—1(p)) xi(p) =0

peP

Computing place

Invariants
Z;,Jl(p) < i(p) = ZPO(p) % i(p)

Mmeans

Y (0(p)—1(p)) xi(p) =0

peP

= <, 0)

Computing place

Invariants
Z;Jl(p) X i(p) = Z;)O(p) X i(p)

Computing place

Invariants
Z;,Jl(p) xi(p) = Z;) (p) xi(p)

Computing place
Invariants
Y (0(p)—1(p)) xi(p) =0

peP

is thus the scalar product of i and the column
of W that corresponds to transition

Computing place
Invariants
Y (0(p)—1(p)) xi(p) =0

peP

is thus the scalar product of i and the column

of W that corres

Since this must ho

bonds to transition

d for any t, we obtain:

77

Computing place
Invariants
Y (0(p)—1(p)) xi(p) =0

peP

is thus the scalar product of i and the column

of W that corres

Since this must ho

bonds to transition

d for any t, we obtain:

Theorem: any solution i to the following system of
equations is a place-invariant:

77

Computing place
Invariants
Y (0(p)—1(p)) xi(p) =0

peP

is thus the scalar product of i and the column

of W that corres

Since this must ho

bonds to transition

d for any t, we obtain:

Theorem: any solution i to the following system of
equations is a place-invariant:

I X W =0

77

Example

W =

Example

D1 W =
ta ﬁ@—) t

11—ir+i3 =0
11+i,—i3 =0

SO =

W

W W

(W W

78

Example

1 —1 1

P1 W=10-1 1
' ﬁ(%’) ' 01 —1

p3
<i1,i2,i3> XxW =20
I =0 I =0
I1—ir+i3 =0 —ir+i3 =0

[1+ir—i3 =0 +ip—iz =0

78

Example

Any vector of the form
€0,i, i)

is a place invariant

1 = 1 =
I1—Ih+i3 = —ir+i3 =0
I1+ir—i3 =0 +ir—iz =0

78

Proving properties

Let us choose <0, 1, 1)
as place-invariant

Proving properties

Let us choose <0, 1, 1)
as place-invariant

This means that p2 and p3 are
bounded !

79

Proving properties

Let us choose (0,1, 1)

P1 : :
as place-invariant

This means that p2 and p3 are
bounded !

For any reachable marking m:
0 m(pr) +1 m(p2) + I m(p3) = 0 mo(p1) + | mo(p2) + | mo(p3)

m(p2) + m(p3) = |

79

Proving properties

Let us choose <0, 1, 1)

p]_ ° °
as place-invariant
3 (: —- 1 P

This means that p2 and p3 are
bounded !

For any reachable marking m:
0 m(pr) +1 m(p2) + I m(p3) = 0 mo(p1) + | mo(p2) + | mo(p3)

m(p2) + m(p3) = |

Hence, mutual exclusion is enforced !

79

Proving properties

i(M) =i(W)) =i(W2) = | and i(p) = 0 otherwise
is a place invariant

Proving properties

i(M) =i(W)) =i(W2) = | and i(p) = 0 otherwise
is a place invariant

Hence, mutual exclusion is enforced !

80

Karp & Miller

and
the coverability set

The reachability tree

revisited

® Reminder: reachability trees can be infinite

Opl,p2)
}
{Ip1,p2
<2p1 Rpﬁ
<3P|5’P2> <P|;p3>

\/

\/

t

o
o

P3

The reachability tree

revisited

® Reminder: reachability trees can be infinite

Opl,p2)
}
{Ip1,p2
<2p1 Rpﬁ
<3P|5’P2> <P|;p3>

\/

\/

t

o
o

P3

The reachability tree
revisited

® Reminder: reachability trees can be infinite

<0Pi,P2> 2!
Increasing sequences

IpI, 8 S€(q

< Pl P2> of markings appear

<2P| P2> on unbounded
¢’ places

<3p|;,P2>

The reachability tree
revisited

® | et us summarise this infinite sequence

Opl,p2)

4 P+,P2>

v
<2pi,P2>
<3p|;,P2>

\/

The reachability tree
revisited

® | et us summarise this infinite sequence

Opl,p2)
!

{Ip1,p2 >
| limit

2p1,p2)
v

<3P|5’P2>

\/

The reachability tree
revisited

® | et us summarise this infinite sequence

Opl,p2)
!

{Ip1,p2
P¢P limit > Cwpl,p
2p1,p2)

v
<3p|;,P2>

\/

The reachability tree
revisited

® | et us summarise this infinite sequence

{Opl,pyy W must be regarded as:
Pi’P “any number of tokens”
{Ip1,p2)
2p1,p2)
\
<3P|;,P2>

\/

The reachability tree
revisited

® | et us summarise this infinite sequence

W must be regarded as:
Opl,p2) 5
i’ “any number of tokens”
{Ip1,p2
! limit Cwpl,p
2p1,p2)
v

<3P|5’P2> Main idea of the Karp and

Miller algorithm

\/

Karp & Miller

® Propose in 1969 a solution to detect
unbounded places of a Petri net

84

Monotonicity

® Petri nets induce (strongly) monotonic
transition systems:

ms3

Yr
nq > /1)

® |n particular:

if

85

Monotonicity

® Petri nets induce (strongly) monotonic
transition systems:

ns3 ny
v [
nq > /1)

® |n particular:

if

85

Monotonicity

® Petri nets induce (strongly) monotonic
transition systems:

ms ! » 1114

Yr / Yr
nq > /1)

® |n particular:

if

85

Monotonicity

® Petri nets induce (strongly) monotonic
transition systems:

ms ! » 1114

Y .Y

nq > /1)

® |n particular:

if

85

Monotonicity

® Petri nets induce (strongly) monotonic
transition systems:

ms ! » 1114

Y .Y

nq > /1)

® |n particular:

i1, i, i
£ <123>

85

Monotonicity

® Petri nets induce (strongly) monotonic
transition systems:

ms ! » 1114

Y ., Y
nq > /1)
® |n particular:
(i1,12,13) (11,15, 13)

if

85

Monotonicity

® Petri nets induce (strongly) monotonic
transition systems:

ms ! » 1114

Y ., Y
nq > /1)
® |n particular:
(i1,12,13) > (i],1,13)

if

85

Monotonicity

® Petri nets induce (strongly) monotonic
transition systems:

ms ! » 1114

Y .Y

nq > /1)

® |n particular:

£ <i17i27i3> < > <i/17i/27i/3>

85

Monotonicity

® Petri nets induce (strongly) monotonic
transition systems:

ms ! » 1114

Y .Y

nq > /1)

® |n particular:

£ <i17i2'7i3> < > <i/17i/27i/3>

<

85

Monotonicity

® Petri nets induce (strongly) monotonic
transition systems:

ms ! » 1114

Y .Y

nq > /1)

® |n particular:

| (i1,12,13) > (i},05,13)
f ' < then p2 is
unbounded

<

85

Example

<1,0,0,0)

Example

.
IS
.
.
IS
.
.
IS
IS
.
IS
e
IS

Example

.
IS
.
.
IS
.
.
IS
L 2
.
IS
e
IS

‘N
N
L 4
L 4
.
N
N
N
..
L2

Example

.
IS
.
.
IS
.
.
IS
L 2
.
IS
e
IS

‘N
.
IS
s
.
.
.
.
S
IS

86

Example

.
IS
.
.
IS
.
.
IS
L 2
.
IS
e
IS

‘N
N
L 4
L 4
.
N
N
N
..
L2

86

Example

86

Example

<1,0,0,0)

IS
.
.
IS
IS
.
IS
e
IS

Example

<1,0,0,0)

IS
.
.
IS
IS
.
IS
e
IS

PI, p3 and p4 are

unbounded !

86

Example

<1,0,0,0)

IS
.
.
IS
IS
.
IS
e
IS

PI, p3 and p4 are

unbounded !

86

Example

{l,0,0,0) W must be regarded as:
2! “any number of tokens”

IS
.
.
IS
IS
.
IS
e
IS

PI, p3 and p4 are

unbounded !

86

Karp & Miller
Acceleration

This is how we compute the
successors of a node n:

foreach Successor m’ of m do

my, < m';

foreach ancestor n; s.t. m; < m' do
foreach place p s.t. m;(p) < m'(p) do

| my(p) — w;
. Add m,, as child of n;

&
@’
"

87

Karp & Miller
Acceleration

This is how we compute the
successors of a node n:

foreach Successor m’ of m do

my, < m';

foreach ancestor n; s.t. m; < m' do
foreach place p s.t. m;(p) < m'(p) do

| my(p) — w;
. Add m,, as child of n;

()"
\
\
@nz
\
; n
m’

87

Karp & Miller
Acceleration

ni
This is how we compute the @
successors of a node n: .
N2
foreach Successor m’ of m do @
My <— m/;

foreach ancestor n; s.t. m; < m' do

. n
foreach place p s.t. m;(p) < m'(p) do
| mw(p) «— w;)_
N 9
m

. Add m,, as child of n;

87

Karp & Miller
Acceleration

ni
This is how we compute the @
successors of a node n: .
N2
foreach Successor m’ of m do @
My <— m/;

\
foreach ancestor n; s.t. m; < m' do \

foreach place p s.t. m;(p) < m'(p) do Y,
| mw(p) «— w;)_
N 9
m

. Add m,, as child of n;

n

87

Karp & Miller
Acceleration

This is how we compute the
successors of a node n:

foreach Successor m’ of m do

my, < m';

foreach ancestor n; s.t. m; < m' do
foreach place p s.t. m;(p) < m'(p) do

| my(p) — w;
. Add m,, as child of n;

RN
\

1/(@
M

n
m

87

Karp & Miller
Acceleration

ni
This is how we compute the @
successors of a node n: .
n2
foreach Successor m’ of m do @
my, < m'; '\
foreach ancestor n; s.t. m; < m' do ‘N
foreach place p s.t. m;(p) < m'(p) do L/
| mu(p) — w;)_
| Add my, as child of n; S m’

87

Karp & Miller
Acceleration

ni
This is how we compute the @
successors of a node n: .
n2
foreach Successor m’ of m do @
my, < m'; '\
foreach ancestor n; s.t. m; < m' do ‘N
foreach place p s.t. m;(p) < m'(p) do ‘/@
| mu(p) — w;)_
- : N
. Add my, as child of n;

87

Karp & Miller
Acceleration

ni
This is how we compute the @
successors of a node n:
N2
foreach Successor m’ of m do @
My <— m/;

[N
foreach ancestor n; s.t. m; < m' do ‘N

\

\
foreach place p s.t. m;(p) < m/(p) do 1/@
L My (p) «— w;)_

| Add my, as child of n: h

87

Karp & Miller
Acceleration

ni
This is how we compute the @
successors of a node n: .
n2
foreach Successor m’ of m do @
my, < m'; .
foreach ancestor n; s.t. m; < m' do ‘N
foreach place p s.t. m;(p) < m'(p) do /@
| mu(p) — w;)_
- : N
. Add my, as child of n;

87

Karp & Miller
Acceleration

This is how we compute the
successors of a node n:

foreach Successor m’ of m do

my, < m';

foreach ancestor n; s.t. m; < m' do
foreach place p s.t. m;(p) < m'(p) do

| my(p) — w;
. Add m,, as child of n;

ni

L

@n
.

\
\
AN

87

Karp & Miller
Acceleration

This is how we compute the
successors of a node n:

foreach Successor m’ of m do

my, < m';

foreach ancestor n; s.t. m; < m' do
foreach place p s.t. m;(p) < m'(p) do

| my(p) — w;
. Add m,, as child of n;

&
@’
"

87

Karp & Miller
Acceleration

N
This is how we compute the @
successors of a node n: \

\

n2
foreach Successor m’ of m do @

my < m/; .
foreach ancestor n; s.t. m; < m’ do ‘' 'n
foreach place p s.t. m;(p) < m'(p) do

| mu(p) «— w;
. Add my, as child of n;

87

Karp & Miller
Stopping a branch

e

O\
/é

This node doesn’t have to be developed

Exa
m
ple of K&M
tree

<0, 1,07
™

Fa e
%

Example of K&M tree

0, 1, 0)
T

R

(0,1,00— (1,1,0) > (0,1,0)

Example of K&M tree

0, 1,0)

<w,‘|fc'>> 1

R

(0,1,00— (1,1,0) > (0,1,0)

Example of K&M tree

0, 1,0)

] t1
<w,‘l 0) T
bl Opl N\
<(D, | ,0> i3 ﬁ:®—> to
X P2)
pP3

(0,1,00— (1,1,0) > (0,1,0)

Example of K&M tree

0, 1,0)

B
(w, 1,0,

N

{w, 1,00 <{w,0,1

(0,1,00— (1,1,0) > (0,1,0)

™

R

Example of K&M tree

<0, 1,0)

ti te
<w,‘l,0> T
N\ 9\
(w,1,00 <w,0,1» e ﬁ:@, t2
X Pz)
P3

t|/

(w,0,1)

(0,1,00— (1,1,0) > (0,1,0)

Example of K&M tree

0, 1,0)
¢
(Ww,1,0)
SN
{w, 1,00 <{w,0,1

N

(w,0,1> {w,1,0)

(0,1,00— (1,1,0) > (0,1,0)

™

R

Properties

® [heorem:the K&M tree is always finite.

® |dea of the proof:

® if the net is not bounded, it is because of
some infinite increasing sequence of
markings.

® such sequences are detected in a finite

amount of time by adding W in the
unbounded places.

90

Properties

® [heorem:a netis bounded iff there is no
node containing an W in its K&M tree.

® [heorem:place p is unbounded iff there
exists a node labeled by m in the K&M tree

s.t. m(p) = W.

® | heorem:transition t is semi-live iff there
exists a node labeled by m in the K&M tree
s.t. t can fire in m.

91

<0, 1,0,

B
(w, 1,0,

N

Example

(w,1,00 {w,0,1)

t|/

(w,0,1,

\t3

(W, 1,0)

<0, 1,0,

B
(w, 1,0,

N

Example

(w,1,00 {w,0,1)

t|/

(w,0,1,

ty is semi-live

\t3

(W, 1,0)

Example

0, 1,0)
B
(W, 1,0,

2N\
(w,1,00 {w,0,1)

N

(w,0,1> w,1,0)

ty is semi-live

p2 and p3 are bounded

Example

0, 1,0)
B
(W, 1,0,

2N\
{w, 1,00 <{w,0,1

N

(w,0,1> {w,1,0)

ty is semi-live

p2 and p3 are bounded

t

P1

t3 2
R P2
P3

p1 is unbounded

Example

<0, 1,0,

N

(w, 1,0 o

V \t2 t3 t2
{w,1,00 (w0, N D2
p3

t

N

(w,0,1> {w,1,0)

t2 is semi-live pi is unbounded

p2 and p3 are bounded The net is unbounded

® Question: what is the relationship between:

® t

® t

Coverability set

ne set of reac

nable markings and

ne set of labe

tree ?

s of the nodes of t

ne K&M

93

Coverability set

might be

infinite
® (Question: what is the relationshipfetween:

® the set of reachable markings anc

® the set of labels of the nodes of the K&M
tree !

® (Question: what is the relationshipfetween:

® t

® t

Coverability set

ne set of reac

might be

infinite

nable markings anc

ne set of labe

tree !

s of the nodes of t

ne K&M

always finite

93

E
Xample

=

E
Xample

=

E
Xample

=

E
Xample

=

Example

® Set of reachable markings:
{ <1,0,3.i) , €0, 1,3.i) |i=0}

® Set of nodes of the K&M tree: 3—>®
{ <1,0,0) <I,0,w, , <0, 1,w) } :

® This set “represents’:

{ <1,0,ip , €0, 1,iy |i=0}

98

Example

® Set of reachable markings:
{ <1,0,3.i) , €0, 1,3.i) |i=0}

® Set of nodes of the K&M tree: 3—>®
{ <1,0,0) <I,0,w, , <0, 1,w) } :

® This set “represents’:

{ <1,0,ip , €0, 1,iy |i=0}
Clearly: 7=

98

Example

{ {1,0,3.) , €0, 1,3.i) |i=0} vs { <1,0,ip , €0, 1,iy |i=0}
® Clearly, the contains more markings
than the
-

® However, for every marking m in the
, there exists a S.t.:

—

99

Example

{ {1,0,3.) , €0, 1,3.i) |i=0} vs { <1,0,ip , €0, 1,iy |i=0}
® Clearly, the contains more markings
than the
-

® However, for every marking m in the
, there exists a S.t.:

—

+ {m| there is m’ in with m’ = m}

S

99

Downward-closure

® | et us assume that any natural number i is s.t.
i< w

® | et m be a marking (possibly with W), then its
downward-closure is the set:

Lm={m"| m’xm}

® Let S={m|, my,... m\} be a set of markings, then:

IS=1lm U Ilm U._ Ul m

100

Examples in 2 dim.

{ <1,2), C 33,1)

pzA {<1L,2), , (w, 1)}
4-
3-
, -
-
I I [ﬁ
| 2 3 w Pl

101

Examples in 2 dim.

] {2, 3,1)
4-
3-
)+ o
| - o
I I I >

pzA {<1L,2), , (w, 1)}
4-
3-
, -
-
I I [ﬁ
| 2 3 w Pl

101

Examples in 2 dim.

{ <L,

}

A

p2| { <12, : }
4-
3-
, -
| -
I I [ﬁ
| 2 3 w P

101

Examples in 2 dim.

{ LY, 24, 31D}

A

P2

3-
5 -

[<1,2), 2,4, (w, 1)}

101

Examples in 2 dim.

A

p2] (<L, @4, G} p] (L2, 24, Cw)}

>

4 4 -
3 37
2 27
I | 7
> —_ . —

101

Examples in 2 dim.

A

p2] (<L, @4, G} p] (L2, 24, Cw)}

>

4 4- o

3 37

2 271 ©

| | - o
> . e —— e —>

101

Examples in 2 dim.

>

ool (LD, 24, G} p

- N W A

A

[<1,2), 2,4, (w, 1)}

101

Examples in 2 dim.

A

p2] (<L, @4, G} p] (L2, 24, Cw)}

>

4 4

3 3

2 2

| | o
)I_)
PI 3 w Pl

101

Examples in 2 dim.

A

p2] (<L, @4, G} p] (L2, 24, Cw)}

>

— N W A
- NN W A

101

Properties of the K&M
tree

® The set of all the markings that appear in a
K&M tree is called a coverability set of the
net.

® Notation: Cover(N)
® Theorem: | Cover(N) =]

® Theorem: C | Cover(N)

® Hence, | Cover(N) is a finite over-
approximation of

102

Example

Reach(N)

{ €, 1,0) , 5,0,|> 1i>0}

P1
Cover(N) £ A} t
= P2

I 1,00, (w,0,1> } \Q

Reach(N) U { <0,0,00 }

103

| Adve rtisementy L=

v

® Recently, we have defined a new algorithm
to compute the coverability set of a Petri
net.

® |t is several order of magnitudes more
efficient than K&M

mesh2x2 ||32]|32| 256

Example KM CovProc
Name P| T |MCS|Tp Nodes| Time||Max P.| Tot. P.| Time
CSM 14{13| 16 |U|[>2.40-10° X 178 248| 0.34
FMS 22(20| 24 |U ||>6.26-10° X 477) 866| 2.10
PNCSA [[31{36] 80 |U [[>1.02-10° x|| 2,617/13,408({113.79
multipoll |[18[21] 220 | U ||>1.16-10° x [[14,034]14,113(365.90
U X

>8.03-10° 10,483|12,735(330.95

104

The coverability problem

Reachability: a natural
question

® The reachability problem: given a marking m
is it reachable from mgq ?

Reachability: a natural
question

® The reachability problem: given a marking m
is it reachable from mgq ?

/

Reachability: a natural
question

® The reachability problem: given a marking m
is it reachable from mgq ?

~

Reachability: a natural
question

® The reachability problem: given a marking m
is it reachable from mgq ?

Reachability: a natural
question

® The reachability problem: given a marking m
is it reachable from mgq ?

Reachability: a natural
question

® The reachability problem: given a marking m
is it reachable from mgq ?

Reachability: a natural
question ??

® |n the case of Petri nets, asking whether a
given marking is reachable does not always
make sense...

® ...because Petri nets are monotonic

107

Question
is <0,0,2,0)

reachable ?

108

Better question
is 2 marking with at
least 2 tokens in p3
reachable !

108

BettAerAunestAiAon “
is a marking
m = <0,0,2,0)

reachable ?

108

The coverability
problem

Does there exist a reachable marking which
is larger than some marking b !

109

The coverability
problem

Does there exist a reachable marking which
is larger than some marking b !

e b

The coverability
problem

Does there exist a reachable marking which
is larger than some marking b !

~~ b

The coverability
problem

Does there exist a reachable marking which
is larger than some marking b !

The coverability
problem

Does there exist a reachable marking which
is larger than some marking b !

The coverability
problem

Does there exist a reachable marking which
is larger than some marking b !

109

The coverability
problem

Does there exist a reachable marking which
is larger than some marking b !

’

m

Y
b

The coverability
problem

The coverability
problem

.

The coverability
problem

The coverability
problem

The coverability
problem

=

The coverability
problem

=

The coverability
problem

The coverability
problem

The coverability
problem

The coverability
problem

® Two alternative definitions:

® |s there a reachable marking m s.t. m>=b ?

® Does Reach(N) N {m | m=b} #] ?

111

Coverability: a natural
question (indeed)

® Coverability might be regarded as the most
natural reachability question in the
framework of Petri nets

® Besides, coverability is much more easily
solved than reachability

112

Safety Properties

Safety Properties

i1
P1
t3 2
X P2
P3

A marking m is unsafe whenm = (0,0, 2, 0)

Safety Properties

t1

D1
No more than one token ta ﬁ:®_, "
at a time in this place !! \%

p3

A marking m is unsafe whenm = (0,0, 2, 0)

113

First idea

® Use the coverability set !

® Remember:the coverability set over-
approximates the reachable states:

Reach(N) &

114

First idea

® Use the coverability set !

® Remember:the coverability set over-
approximates the reachable states:

Reach(N) € | Cover(N)

114

First idea

® Use the coverability set !

® Remember:the coverability set over-
approximates the reachable states:

Reach(N) € | Cover(N)

| Cover(N)

114

First idea

® Use the coverability set !

® Remember:the coverability set over-
approximates the reachable states:

Reach(N) € | Cover(N)

114

First idea

First idea

First idea

First idea

First idea

| Cover(N) N U=
implies
Reach(N) N U= O

What if ?

| Cover(N) Y

There is m in N U

Hence, there is m’ = m which is in Reach(N)

However,any m’ = m is also in U

Thus, there is m’ both in Reach(N) and U

116

What if ?

| Cover(N) Y

There is m in N U

Hence, there is m’ = m which is in Reach(N)

However,any m’ = m is also in U

Thus, there is m’ both in Reach(N) and U

116

What if ?

| Cover(N) oV

There is m in N U

Hence, there is m’ = m which is in Reach(N)

However,any m’ = m is also in U

Thus, there is m’ both in Reach(N) and U

116

What if ?

| Cover(N)

Thereismin | Cover(N) N U

Hence, there is m’ = m which is in Reach(N)

However,any m’ >= m is also in U

Thus, there is m’ both in Reach(N) and U

116

What if ?

What if ?

| Cover(N)

Reach(N) N U=
implies
| Cover(N) N U=

Coverability set and
coverability problem

Coverability set and
coverability problem

® [heorem:

Reach(N) N U = O iff NU=0

Coverability set and
coverability problem

® Theorem:
Reach(N) N U = O iff NU=0O0

® Nice,...

Coverability set and
coverability problem

® Theorem:
Reach(N) N U = O iff NU=0O0
® Nice,...

e _.butU and might both be infinite !

Coverability set and
coverability problem

Theorem:

Reach(N) N U = O iff NU=0O0
Nice,...

...but U and might both be infinite !

How do we test that NnNU=qp??

Coverability set and
coverability problem

p24

— N W M
L1 11

Coverability set and
coverability problem

p24

— N W A
L1 1

1 | Cover(N)

Coverability set and
coverability problem

P24

b

— N W A
L1

1 | Cover(N)

Coverability set and
coverability problem

c>=Db

P24

b

— N W A
L1

1 | Cover(N)

Coverability set and
coverability problem

cr=Db

P24

4-

3" b

;- :

| - | Cover(N) All we need to
. . . > remember is the
2 3 P! (finite) set of minimal

elements Min(U)

Coverability set and
coverability problem

c>=Db

All we need to

remember is the
(finite) set of minimal
elements Min(U)

Coverability set and
coverability problem

c 7 b | Cover(N) N U # O
P24 iff
4- there is c in Cover(IN) and
b in Min(U) s.t.

3- b c>=b

;- :

|{ | Cover(N) All we need to
—— > remember is the
2 3 P (finite) set of minimal

elements Min(U)

Backward approach

Backward approach

Backward approach

All the markings that can reach U in
one step

Backward approach

Backward approach

Backward approach

Backward approach

In the end, we want to obtain all the
markings that can reach U in any number
of steps

120

Backward approach

In the end, we want to obtain all the
markings that can reach U in any number
of steps

120

Backward approach

In the end, we want to obtain all the
markings that can reach U in any number
of steps

120

Backward approach

In the end, we want to obtain all the
markings that can reach U in any number
of steps

120

Backward Approach

® Clearly:
mois in Pre’(U) iff Reach(N) N U # O
® Question: can we compute Pre’(U) ?

® Yes!

Predecessor operator

® Symmetrically to the Post, we define the
predecessor operator:

Pre(m) = {m’ | m is in Post(m’)}
® |et us consider the sequence
U, Pre(U), Pre(Pre(U)), Pre(Pre(Pre(U))),...

® [heorem:After a finite amount of steps, the
sequence stabilises, and we obtain Pre’(U)

122

! _;«- g LY
A ol b i) TR BHORA R £
iy il s VAR (b3

e Efficient datastuctures to implement this
algorithm have been defined by researchers
of the verification group at ULB.

123

More on Petri nets

124

Marking dependent effects

Marking-dependent
effect

® The effect of a transition is not constant
anymore, but depends on the current
marking.

P3

Marking-dependent
effect

® The effect of a transition is not constant
anymore, but depends on the current
marking.

P3

Marking-dependent
effect - resets

® |n particular, we can define resets.

m(p2)

reset of pz

Marking-dependent
effect - resets

® |n particular, we can define resets.

m(p2)

reset of pz

Marking-dependent
effect - resets

® |n particular, we can define resets.

PI P3

m(p2)
P2

reset of pz

Reset nets

® When we have only classical PN transitions
+ resets:

® Coverability is decidable

® Boundedness is decidable
® Place boundedness is undecidable

® The coverability set is not computable

131

Marking-dependent
effect - transfers

® |n particular, we can define transfers.

transfer from p2 to p3

Marking-dependent
effect - transfers

® |n particular, we can define transfers.

PI P3

P2

transfer from p2 to p3

Usefulness of transfers

® Modelisation of broadcasts :
® A single message is sent to every process

® Fach process that receives the message
moves to another state.

> ®'\
notifyall
(waiting)
waiting

P2

(waiting)

Q received

134

Transfer nets

® When we have only classical PN transitions
+ transfers:

® Coverability is decidable

® Boundedness is decidable
® Place boundedness is undecidable

® The coverability set is not computable

135

Marking-dependent
effect - zero-test

® |n particular, we can define test for zero.

PI P3

P2

enabled only if p2 is empty

Marking-dependent
effect - zero-test

® |n particular, we can define test for zero.

PI P3

P2

enabled only if p2 is empty

Marking-dependent
effect - zero-test

® |n particular, we can define test for zero.

PI P3

P2

enabled only if p2 is empty

Test for zero

® Once we have test-for-zero everything
becomes undecidable.

139

Coloured Petri nets

® Popular extension of the
basic model.

® |[ntroduced by the
team of Kurt Jensen, in
the ‘80s

® used in many
applications

141

Coloured Petri nets

® |dea: add colours to the tokens

® Allow to distinguish between different
types of tokens

® The colours can model data carried by
the processes

® Transitions are aware of the colours

142

Phone example

® VWe have a set of customers:
® Each customer is represented by a token.
® Color of the token = Phone number.

® A customer is either inactive or
connected.

connected

& O

inactive

143

Phone example

® A pair of inactive customers can establish a
connection.

® We want to distinguish between sender
and receiver.

connect connected

X ~a X ~a
y ¥ y
inactive
(x,y)

The transition v Connections are
consumes -« recorded here as
a sender x and a tokens whose color

receivery is a pair (snd, rcv)

connections
144

Phone example

® A pair of inactive customers can establish a
connection.

® We want to distinguish between sender
and receiver.

connect connected

X ~a X ~a
y ¥ y
inactive
(x,y)

The transition v Connections are
consumes -« recorded here as
a sender x and a tokens whose color

receivery is a pair (snd, rcv)

connections
145

Phone example

® The connection can be closed either by the

sender or by the receiver.

iInactive

X

y

connect connected

X ~a X ~a
y y X
y/V

(X,y)

(x,y>

rcv breaks

146

Phone example

® The connection can be closed either by the
sender or by the receiver.

X
y

connect connected

X ~a X ~a
y y X
y/V

inactive
(X,Y)

®/ (x.y)

rcv breaks

147

Phone example

snd breaks

|nact|ve rcv breaks

connections

148

Coloured Petri nets

® Several analysis methods have been
developped for this model (finite number of
colours)

® e.g..invariants

® Some results can be achieved when the
colors have good properties

149

Practical Tools: Pep

file Frame Poge Settngs
DFE ™/ " "-‘|-EEEH}EhEI B

- S0L-Treo DL Viow- Amea

ﬂm
[ELIETE
HatonResp

LTI'_F Alimy| of o

151

Practical Tools: Pep

® = |anguage to describe PN + a suite of tools
to analyse them:

® simulation
® verification (SPIN, SMV)
® translation from/to different formalisms

® Everything can be accessed through a single
graphical interface (Tcl/Tk)

http://theoretica.informatik.uni-oldenburg.de/~pep/

152

http://theoretica.informatik.uni-oldenburg.de/~pep/
http://theoretica.informatik.uni-oldenburg.de/~pep/

- Simul

«

Practical Tools:

ation

ol M

>

. dlf

CPNTools

Binder 0

" Phaone

BreakSen BreakRec

' Cleate

OIX | & |

7= Clones an element.

X|ETCT=T

=

[EakZEN] .

[EreakRer)

U.allg
a0
“H.';E-y:'
<
o <l
T i

153

Practical Tools:
CPNTools

® Specialised in Coloured Petri nets
® Features similar to Pep:

® modelisation

® simulation

® state space analysis

http://wiki.daimi.au.dk/cpntools/cpntools.wiki

154

http://wiki.daimi.au.dk/cpntools/cpntools.wiki
http://wiki.daimi.au.dk/cpntools/cpntools.wiki

Conclusion

155

To conclude

® Petri nets (and their extensions) are a nice
tool to reason about concurrent systems:

® very popular

® non-trivial decision problems are
decidable

® appealing graphical representation

® tool supported

156

To conclude

® There is still a lot to explore:
® other extensions:
® Time Petri nets
® Timed Petri nets

® Stochastic Petri nets,...

157

To conclude

® There is still a lot to explore:
® Subclasses of Petri nets:
® |-safe
® marked graphs
® free-choice
® conflict free

® Some problems are easier to decide on
these subclasses.

158

To conclude

® T[here is stil

ot

ner pro

iveness

a lot to explore:

blems:

® deadlock freedom

® semi-linearity

® non-termination

159

To conclude

® Very active field of research !

® Several conference and journals entirely
dedicated to Petri nets

® .. just hopinand join us!

http://www.informatik.uni-hamburg.de/TGl/PetriNets/

160

http://www.informatik.uni-hamburg.de/TGI/PetriNets/
http://www.informatik.uni-hamburg.de/TGI/PetriNets/

Some references

® On Petri nets:

Reisig, W., Petri Nets: An introduction. Springer-Verlag, 1985.
Peterson, JL, Petri nets theory and modeling of systems, Prentice
Hall, 1981

Girault, C. and Valk, R., Petri Nets for Systems Engineering - A Guide
to Modeling, Verification, and Applications. Springer-Verlag, Berlin,
Heidelberg, New York, 2003.

Javier Esparza, Mogens Nielsen, Decidability Issues for Petri Nets: a
survey, Bulletin of the EATCS, 52:245--262, February 1994.

® On Petri nets with marking dependent effects:

Valk, R.: Self-Modifying Nets, a Natural Extension of Petri Nets.
ICALP 1978: 464-476

G. Ciardo. Petri nets with marking-dependent arc multiplicity:
properties and analysis. In R. Valette, editor, Application and Theory
of Petri Nets 1994, Lecture Notes in Computer Science 815 (Proc.
15th Int. Conf. on Applications and Theory of Petri Nets, Zaragoza,
Spain), pages 179-198. Springer-Verlag, June 1994,

161

Some references

® On the coverability problem:

Richard M. Karp, Raymond E. Miller: Parallel Program Schemata. J.
Comput. Syst. Sci. 3(2): 147-195 (1969)

Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Tsay Yih-
Kuen. General Decidability Theorems for Infinite-State Systems.
Proc. LICS'96, 11th IEEE Int. Symp. on Logic in Computer Science,
New Brunswick, New Jersey, USA, 1996.

Finkel, A. and Schnoebelen, P. 2001. Well-structured transition
systems everywherel. Theor. Comput. Sci. 256, 1-2 (Apr. 2001),
63-92. DOI= http://dx.doi.org/10.1016/S0304-3975(00)00102-X
Geeraerts, Raskin, Van Begin, Expand, Enlarge and Check: new
algorithms for the coverability problem of WSTS. Journal of Computer
and System Sciences, volume 72(1), pp 180-203, Elsevier, 2005.
Giorgio Delzanno, Jean-Francois Raskin, Laurent Van Begin:
Covering sharing trees: a compact data structure for parameterized
verification. STTT 5(2-3): 268-297 (2004).

Geeraerts, Raskin, Van Begin. On the efficient Computation of the
Minimal Coverability set of Petri nets. In Proceedings ATVAQ7,
Lecture Notes in Computer Science, volume 4762, pages 98--113,
Springer Verlag.

162

Some references

® On Coloured Petri nets:

K. Jensen: A Brief Introduction to Coloured Petri Nets. In: E. Brinksma
(ed.): Tools and Algorithms for the Construction and Analysis of
Systems. Proceeding of the TACAS'97 Workshop, Enschede, The
Netherlands 1997, Lecture Notes in Computer Science Vol. 1217,
Springer-Verlag 1997, 203-208.

K. Jensen: An Introduction to the Theoretical Aspects of Coloured
Petri Nets. In: J.W. de Bakker, W.-P. de Roever, G. Rozenberg (eds.):
A Decade of Concurrency, Lecture Notes in Computer Science vol.
803, Springer-Verlag 1994, 230-272.

Jensen, K, Rozenberg, G. High-level petri nets : theory and
application, Springer, 1991

163

Some references

® On other extensions of Petri nets:

M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli and G.
Franceschinis Modelling with Generalized Stochastic Petri Nets,
Wiley Series in Parallel Computing, John Wiley and Sons

F. Bause, P. Kritzinger, Stochastic Petri Nets -- An Introduction to the
Theory (2nd edition), Vieweg Verlag, Germany, 2002.

J. Wang, Timed Petri Nets, Theory and Application, Kluwer Academic
Publishers 1998, ISBN: 0-7923-8270-6.

Louchka Popova. On time petri nets. Journal Information Processing
and Cybernetics, EIK, 27(4):227-244, 1991.

e On net unfoldings:

J. Esparza, S. Romer, and W. Vogler. An improvement of mcmillan's
unfolding algorithm. In Proc. TACAS '96, volume 1055 of Lecture
Notes in Computer Science, pages 87-106. Springer-Verlag, 1997.

P. A. Abdulla, S. P. lyer, and A. Nylen. Unfoldings of Unbounded Petri
Nets. In Proc. of CAV '00, volume 1855 of Lecture Notes in Computer
Science, pages 495-507. Springer-Verlag, 2000.

More at:

http://www.informatik.uni-hamburg.de/TGl/PetriNets/introductions/

164

http://www.informatik.uni-hamburg.de/TGI/PetriNets/introductions/
http://www.informatik.uni-hamburg.de/TGI/PetriNets/introductions/

Questions ?

