An Introduction to Petri nets
and how to analyse them...

G. Geeraerts

Groupe de Verification - Departement d’Informatique
Universite Libre de Bruxelles



Introduction



Introduction

® Concurrency: property of a“system” in which
many “entities’” act at the same time and
Interact.

® Often found in many application:
e Computer science (e.g.: parallel computing)
® Workflow

® Manufacturing systems
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Introduction

® Petri nets are a tool to model
concurrent systems and
reason about them.

® |nvented in 1962 by C.A.
Petri.




The aim of the talk

® |ntroduce you to Petri nets (and some of
their extensions)

® Explain several analysis methods for PN
® i.e.,, what can you ‘ask’ about a PN ?

® Give a rough idea of the research in the
verification group at ULB...

® ...and foster new collaborations ?



How | use Petri nets

template <typename T> T Max(T a,
Tb)

{
returna<b ?b: a;

}

abstraction

#include <string>
int main() // fonction main
{
int i = Max(3, 5);
char ¢ = Max('e', 'b');
std::string s = Max(std::string
("hello"), std::string("world"));
float f = Max<float>(1, 2.2f);

Analysis method

of PN




How you might use PN

Your favorite .
. abstraction
application

Analysis method
of PN
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Places

Transitions

Tokens

Ingredients

A Petri net is made up of...

Q = some type of resource

consume and produce
resources

= one unity of a
certain resource

Tokens ‘live’ in the places
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Transitions

Output places
Input places




Firing a transition

Transitions consume tokens from the input places
and produce tokens in the output places
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Firing a transition

Transitions consume tokens from the input places
and produce tokens in the output places

Now, the transition @

cannot be fired anymore
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Example |

\ / Can write or
Can write or read on the DB

read on the DB

The two machines cannot write at the

same time
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Example |

Add a lock to ensure mutual exclusion

idle

22



Example |




Example 2

mutex M ; t1

Process P {
repeat {
take M ;
critical ;
release M ;




Example 2

mutex M ; t1

Process P {
repeat {
take M ;
critical ;
release M ;

Here, we have applied a counting abstraction

24



Plan of the talk

® Preliminaries

® TJools for the analysis of PN

® reachability tree and reachability graph
® place invariants
e Karp & Miller and the coverability set
® The coverability problem
® More on PN: extensions...

® Conclusion

25
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® place invariants
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Preliminaries
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Formal definition

e A Petrinetisatuple <{PT) where:

® P is the (finite) set of places

® | is the (finite) set of transitions. Each
transition t is a tuple <I, O) where:

® [:is a function s.t. t consumes |(p) tokens
in each place p

® O is a function s.t. t produces O(p)
tokens in each place p

27



Example

(p)=2 I(p2)=1 I(p3)=0 I(ps)=0 I(ps)=0
(P1)=0 O(p2)=0 O(pz)=I O(ps)=3 O(ps)=|




Markings

® The distribution of the tokens in the places
is formalised by the notion of marking, which
can be seen:

® cither as a function m, s.t. m(p) is the
number of tokens in place p

® or asa vector m= {mj, ma,...mn> where
mi; is the number of tokens in place p

29



Example

m= <l,1,1,2,0)
m = < pi, p2, p3, 2p4)
m(p)=1, m(p2)=1, m(p3)=1, m(p4)=2, m(ps)=0




Firing a transition

A transition t = <1,0) can be fired from m
iff for any place p:

m(p) 2 |(p)

The firing transforms the marking m into a
marking m’ s.t. for any place p:

(P) = m(p) - I(p) + O(p)

Notation: m—

Notation: Post(m) = {m’ | m—m’}

31
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Example

Post( <I,1,0) )= P
{ 2,1,0) , <0,0,1, } £ A} t
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Initial marking
Reachable markings

® All PN are equipped with an initial marking mo
® |[f two markings m and m’ are s.t.
m—=m;—=>my—> -
Then m’ is reachable from m
® | et N be a PN with initial marking mo:
Reach(N) = {m reachable from mo}

is the set of reachable markings of N.
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Example

This set allows us to
prove that the mutual

exclusion is indeed
enforced
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Ordering on markings

® Markings can be compared thanks to <:
m=<m’ iff for any place p: m(p)<m’(p)

m=<m’ iff m<m’ and m#

® Examples:

o (1,0,0) < <I,1,0) < <I,1,0) < ¢5,7,2)

e <1,0,0) isnotcomparableto <0,]1,0)
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Questions on PN

® Meaningful questions about PN include:

® Boundedness:is the number of reachable
markings bounded ?

® Place boundedness:is there a bound on
the maximal number of tokens that can be
created in a given place !

® Semi-liveness: is there a reachable marking
from which a given transition can fire ?

® Coverability

36



Example

idle

Bounded PN All the places are bounded

All the transitions are semi-live
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Example

Unbounded PN
p2 and p3 are bounded 5
p1 is unbounded £ ' <> s
All the transitions are \6)
semi-live

38



Some tools for the
analysis of PN



Reachability tree
and
reachability graph



Reachability Tree

® |dea:
® the root is labeled by mo

® for each node labeled by m, create one
child for each marking of Post(m)

41



Reachability Tree
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Reachability Tree
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Reachability Tree

M, 1y, 1

v :
\ 4

Reachability trees can |
be infinite

\ .
(o) mm, I, Ro)™y

< WaXWi, 1) M, Ry, 1%

¢ s N
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Reachability graph

® |dea:build a node for each reachable
marking and add an edge from m to m’ if
some transition transforms m into m’

® remark: now, if we meet the same marking
twice, we do not create a new node, but
re-use the previously created node.
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Reachability graph
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Reachability graph
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Reachability graph

The reachability graph
allows us to prove that

the mutual exclusion is
indeed enforced

(R1,W2) (Wi, Ry

| |

URALDY; Wi, Iy



Reachability graph

® The reachability graph of a PN contains all
the necessary information to decide:

® boundedness

® place boundedness

® semi-liveness



Reachability graph

® Unfortunately...
{p2) 2
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Reachability graph

® Unfortunately...
{p2)

-~

{p1,p2)

<zpi,Q o
<3pi,p2> <P|ip3>




Reachability graph

e Unfortunately...

/ Reachability graphs can
be infinite
{p1,p2)

Gored ™ (o)

o —
3p1,p2) {p1,p3)

' '




The hard stuff...

® The main difficulty in analysing Petri nets is
due to the possibly infinite number of
reachable markings.

® We have to find techniques to deal with
this infinite set.
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The hard stuff...

® Remark: finite doesn’t mean easy

® The set of reachable markings of a
bounded net can be huge !

® Efficient techniques to deal with bounded
nets have been developped.

® e.g.:net unfoldings

48






Place Invariants

read R | read R2
m |2

write
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Place Invariants

read R | read R2
m |2

write

m(R)) + m(R2) + m(l2) =0



Place Invariants

read Rl read Rz

idle I2

° The total number of ‘ e
tokens in these places

IS hot constant

2 )\&

m(R) + m(R2) + m(l2) =0
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Place Invariants

1 The total number of
tokens in these places
IS constant

m(R)) + m(Wi) + m(l)) = |



Place Invariants

1 The total number of
tokens in these places
IS constant

This provides
o meaningful information
about the system: a
process is either idle,
or reading or writing

m(R)) + m(Wi) + m(l)) = |
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Place Invariants

The total number of

tokens in these places
IS hot constant

+ m(p3) + m(p4) = |
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Place Invariants

The total number of
tokens in these places
IS hot constant

In some sense, tokens
in p| are heavier than
those in p2
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Place Invariants

The total number of
tokens in these places
IS not constant

p3

Let’s add weights to
the places !

In some sense, tokens
in p| are heavier than
those in p2
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oR ROl

3 m(p
(1) + m(p2) + m(p3) + 2 m(p4)
p4) = 3

p3
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Place invariant:
Definition

® Definition: a place-invariant (or p-semiflow)
is a vector i of natural numbers s.t. for any
reachable marking m:

Y i(p) xm(p) =) i(p)xmo(p)

peP peP

remark: there exists a trivial invarianti = <0,0, ..,0)

64



Example: other
Invariants

o8 RO

m(p1) + m(p3) = |
2 m(pi) + m(p2) + 2 m(ps) = 2

p3




Invariants as over-
approximations

® A place-invariant expresses a constraint on
the reachable markings.

® |f mis reachable and i is an invariant, then:

Y i(p) xm(p) =Y i(p) xmo(p)

peP peP

® The reverse is not true !

66



Example

o8 RO

m(p1) + m(p3) = |
IS an invariant

but {I,25,0,234) is not reachable

p3
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approximations

® [heorem: For any Petri net \:

Reach(I\)

C

{m | m respects some invariant of \'}

This set

overapproximates the
reachable markings
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Invariants as over-
approximations

® [heorem: For any Petri net \:

Reach(I\)

C

{m | m respects some invariant of \'}

Place invariants are
thus useful to finitely
approximate the set of
reachable markings

This set

overapproximates the
reachable markings

68



Place invariant and
boundedness

® [heorem:If there exists a place invariant i
and a place p s.t.i(p)>0 then p is bounded.

® Remark: the reverse is not true.

® One can find a bounded net that doesn’t
have a place invariant i with i(p)>0 for
each place.

69



Place invariant

® Question: how do we compute them ?



Matrix characterisation

® The negative effect (consumption) of all
the transitions on all the places can be
summarised in one matrix:

1(pa) B(pn) -~ Ie(pa)

where, for any i: ti = <I,O

71



Matrix characterisation

® The same can be done with the positive
effects:

O1(p1) O2(p1) -+ Ok(p1)
wi — | O1(p2) O2(p2) -+ Ok(p2)

O1(pn) O2(pn) -+ Or(pn)

where, for any i: ti = <I,O



Incidence Matrix

® The global effect of every transition can be
summarised as a single matrix:

W=W"—W"

WV is called the incidence matrix of the net

73
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101 010
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Example

101 010
wtr=1001| w—=1010 h
010 00 1




Computing place
Invariants

Intuitively, if i is a place invariant it should
assign weights to the places such that the
positive and negative effects of every
transition are balanced

Thus, for any transition t = <I,O) we
should have:

Y I(p)xi(p)=) O(p)xi(p)

peP peP
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Computing place
Invariants

® |ntuitively, if i is a place invariant it should
assign weights to the places such that the
and negative effects of every

transition are balanced

e Thus, for any transition t = €I, 0) we
should have:

Y I(p)xi(p)=) O(p)xi(p)

peP peP

oF NG
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Invariants
Z;,Jl(p) < i(p) = ZPO(p) % i(p)

Mmeans
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Z;,Jl(p) < i(p) = ZPO(p) % i(p)

Mmeans

Y (0(p)—1(p)) xi(p) =0

peP

= <, 0)



Computing place

Invariants
Z;Jl(p) X i(p) = Z;)O(p) X i(p)



Computing place

Invariants
Z;,Jl(p) xi(p) = Z;) (p) xi(p)



Computing place
Invariants
Y (0(p)—1(p)) xi(p) =0

peP

is thus the scalar product of i and the column
of W that corresponds to transition



Computing place
Invariants
Y (0(p)—1(p)) xi(p) =0

peP

is thus the scalar product of i and the column

of W that corres

Since this must ho

bonds to transition

d for any t, we obtain:
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Y (0(p)—1(p)) xi(p) =0

peP

is thus the scalar product of i and the column

of W that corres

Since this must ho

bonds to transition

d for any t, we obtain:

Theorem: any solution i to the following system of
equations is a place-invariant:
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Computing place
Invariants
Y (0(p)—1(p)) xi(p) =0

peP

is thus the scalar product of i and the column

of W that corres

Since this must ho

bonds to transition

d for any t, we obtain:

Theorem: any solution i to the following system of
equations is a place-invariant:

I X W =0

77






Example

W =




Example

D1 W =
ta ﬁ@—) t

11—ir+i3 =0
11+i,—i3 =0

SO =

W

W W

(W W
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Example

1 —1 1

P1 W=10-1 1
' ﬁ(%’) ' 01 —1

p3
<i1,i2,i3> XxW =20
I =0 I =0
I1—ir+i3 =0 —ir+i3 =0

[1+ir—i3 =0 +ip—iz =0

78



Example

Any vector of the form
€0,i, i)

is a place invariant

1 = 1 =
I1—Ih+i3 = —ir+i3 =0
I1+ir—i3 =0 +ir—iz =0

78



Proving properties

Let us choose <0, 1, 1)
as place-invariant
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Let us choose <0, 1, 1)
as place-invariant

This means that p2 and p3 are
bounded !
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Proving properties

Let us choose (0,1, 1)

P1 : :
as place-invariant

This means that p2 and p3 are
bounded !

For any reachable marking m:
0 m(pr) +1 m(p2) + I m(p3) = 0 mo(p1) + | mo(p2) + | mo(p3)

m(p2) + m(p3) = |
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Proving properties

Let us choose <0, 1, 1)

p]_ ° °
as place-invariant
3 ( : —- 1 P

This means that p2 and p3 are
bounded !

For any reachable marking m:
0 m(pr) +1 m(p2) + I m(p3) = 0 mo(p1) + | mo(p2) + | mo(p3)

m(p2) + m(p3) = |

Hence, mutual exclusion is enforced !
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Proving properties

i(M) =i(W)) =i(W2) = | and i(p) = 0 otherwise
is a place invariant



Proving properties

i(M) =i(W)) =i(W2) = | and i(p) = 0 otherwise
is a place invariant

Hence, mutual exclusion is enforced !

80



Karp & Miller

and
the coverability set



The reachability tree

revisited

® Reminder: reachability trees can be infinite

Opl,p2)
}
{Ip1,p2
<2p1 Rpﬁ
<3P|5’P2> <P|;p3>

\/

\/

t

o
o

P3




The reachability tree

revisited

® Reminder: reachability trees can be infinite

Opl,p2)
}
{Ip1,p2
<2p1 Rpﬁ
<3P|5’P2> <P|;p3>

\/

\/

t

o
o

P3




The reachability tree
revisited

® Reminder: reachability trees can be infinite

<0Pi,P2> 2!
Increasing sequences

IpI, 8 S€(q

< Pl P2> of markings appear

<2P| P2> on unbounded
¢’ places

<3p|;,P2>




The reachability tree
revisited

® | et us summarise this infinite sequence

Opl,p2)
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The reachability tree
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The reachability tree
revisited

® | et us summarise this infinite sequence

Opl,p2)
!

{Ip1,p2
P¢P limit > Cwpl,p
2p1,p2)

v
<3p|;,P2>
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The reachability tree
revisited

® | et us summarise this infinite sequence

{Opl,pyy W must be regarded as:
Pi’P “any number of tokens”
{Ip1,p2)
2p1,p2)
\
<3P|;,P2>
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The reachability tree
revisited

® | et us summarise this infinite sequence

W must be regarded as:
Opl,p2) 5
i’ “any number of tokens”
{Ip1,p2
! limit Cwpl,p
2p1,p2)
v

<3P|5’P2> Main idea of the Karp and

Miller algorithm

\/




Karp & Miller

® Propose in 1969 a solution to detect
unbounded places of a Petri net

84



Monotonicity

® Petri nets induce (strongly) monotonic
transition systems:

ms3

Yr
nq > /1)

® |n particular:

if

85



Monotonicity

® Petri nets induce (strongly) monotonic
transition systems:

ns3 ny
v [
nq > /1)

® |n particular:

if

85



Monotonicity

® Petri nets induce (strongly) monotonic
transition systems:

ms ! » 1114

Yr / Yr
nq > /1)

® |n particular:

if

85



Monotonicity

® Petri nets induce (strongly) monotonic
transition systems:
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Monotonicity

® Petri nets induce (strongly) monotonic
transition systems:

ms ! » 1114

Y .Y

nq > /1)

® |n particular:

i1, i, i
£ <123>
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Monotonicity
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Monotonicity

® Petri nets induce (strongly) monotonic
transition systems:

ms ! » 1114

Y .Y

nq > /1)

® |n particular:

| (i1,12,13) > (i},05,13)
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{l,0,0,0) W must be regarded as:
2! “any number of tokens”
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Karp & Miller
Acceleration

This is how we compute the
successors of a node n:

foreach Successor m’ of m do

my, < m';

foreach ancestor n; s.t. m; < m' do
foreach place p s.t. m;(p) < m'(p) do

| my(p) — w;
. Add m,, as child of n;

&
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Karp & Miller
Stopping a branch
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This node doesn’t have to be developed
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Example of K&M tree

0, 1,0)
¢
(Ww,1,0)
SN
{w, 1,00 <{w,0,1

N

(w,0,1>  {w,1,0)

(0,1,00— (1,1,0) > (0,1,0)
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Properties

® [heorem:the K&M tree is always finite.

® |dea of the proof:

® if the net is not bounded, it is because of
some infinite increasing sequence of
markings.

® such sequences are detected in a finite

amount of time by adding W in the
unbounded places.
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Properties

® [ heorem:a netis bounded iff there is no
node containing an W in its K&M tree.

® [heorem:place p is unbounded iff there
exists a node labeled by m in the K&M tree

s.t. m(p) = W.

® | heorem:transition t is semi-live iff there
exists a node labeled by m in the K&M tree
s.t. t can fire in m.
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® Question: what is the relationship between:

® t

® t

Coverability set

ne set of reac

nable markings and

ne set of labe

tree ?

s of the nodes of t

ne K&M
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® the set of labels of the nodes of the K&M
tree !
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Example

® Set of reachable markings:
{ <1,0,3.i) , €0, 1,3.i) |i=0}

® Set of nodes of the K&M tree: 3—>®
{ <1,0,0) <I,0,w, , <0, 1,w) } :

® This set “represents’:

{ <1,0,ip , €0, 1,iy |i=0}

98



Example

® Set of reachable markings:
{ <1,0,3.i) , €0, 1,3.i) |i=0}

® Set of nodes of the K&M tree: 3—>®
{ <1,0,0) <I,0,w, , <0, 1,w) } :

® This set “represents’:

{ <1,0,ip , €0, 1,iy |i=0}
Clearly: 7=
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Example

{ {1,0,3.) , €0, 1,3.i) |i=0} vs { <1,0,ip , €0, 1,iy |i=0}
® Clearly, the contains more markings
than the
-

® However, for every marking m in the
, there exists a S.t.:

—
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Example

{ {1,0,3.) , €0, 1,3.i) |i=0} vs { <1,0,ip , €0, 1,iy |i=0}
® Clearly, the contains more markings
than the
-

® However, for every marking m in the
, there exists a S.t.:

—

+ {m| there is m’ in with m’ = m}

S
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Downward-closure

® | et us assume that any natural number i is s.t.
i< w

® | et m be a marking (possibly with W), then its
downward-closure is the set:

Lm={m"| m’xm}

® Let S={m|, my,... m\} be a set of markings, then:

IS=1lm U Ilm U._ Ul m
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Examples in 2 dim.
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Examples in 2 dim.
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Examples in 2 dim.
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Examples in 2 dim.
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Properties of the K&M
tree

® The set of all the markings that appear in a
K&M tree is called a coverability set of the
net.

® Notation: Cover(N)
® Theorem: | Cover(N) = ]

® Theorem: C | Cover(N)

® Hence, | Cover(N) is a finite over-
approximation of

102



Example

Reach(N)

{ €, 1,0) , 5,0,|> 1i>0}

P1
Cover(N) £ A} t
= P2

I 1,00, (w,0,1> } \Q

Reach(N) U { <0,0,00 }
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| Adve rtisementy L=

v

® Recently, we have defined a new algorithm
to compute the coverability set of a Petri
net.

® |t is several order of magnitudes more
efficient than K&M

mesh2x2 ||32]|32| 256

Example KM CovProc
Name P| T |MCS|Tp Nodes| Time||Max P.| Tot. P.| Time
CSM 14{13| 16 |U|[>2.40-10° X 178 248| 0.34
FMS 22(20| 24 |U ||>6.26-10° X 477)  866| 2.10
PNCSA [[31{36] 80 |U [[>1.02-10° x|| 2,617/13,408({113.79
multipoll |[18[21] 220 | U ||>1.16-10° x [[14,034]14,113(365.90
U X

>8.03-10° 10,483|12,735(330.95
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The coverability problem



Reachability: a natural
question

® The reachability problem: given a marking m
is it reachable from mgq ?
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Reachability: a natural
question

® The reachability problem: given a marking m
is it reachable from mgq ?



Reachability: a natural
question ??

® |n the case of Petri nets, asking whether a
given marking is reachable does not always
make sense...

® ...because Petri nets are monotonic

107









Question
is <0,0,2,0)

reachable ?
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Better question
is 2 marking with at
least 2 tokens in p3
reachable !
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BettAerAunestAiAon “
is a marking
m = <0,0,2,0)

reachable ?
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The coverability
problem

Does there exist a reachable marking which
is larger than some marking b !
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The coverability
problem

Does there exist a reachable marking which
is larger than some marking b !
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The coverability
problem

® Two alternative definitions:

® |s there a reachable marking m s.t. m>=b ?

® Does Reach(N) N {m | m=b} # ] ?
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Coverability: a natural
question (indeed)

® Coverability might be regarded as the most
natural reachability question in the
framework of Petri nets

® Besides, coverability is much more easily
solved than reachability
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Safety Properties

i1
P1
t3 2
X P2
P3

A marking m is unsafe whenm = (0,0, 2, 0)



Safety Properties

t1

D1
No more than one token ta ﬁ:®_, "
at a time in this place !! \%

p3

A marking m is unsafe whenm = (0,0, 2, 0)
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First idea

® Use the coverability set !

® Remember:the coverability set over-
approximates the reachable states:

Reach(N) &
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First idea

| Cover(N) N U=
implies
Reach(N) N U= O




What if ?

| Cover(N) Y

There is m in N U

Hence, there is m’ = m which is in Reach(N)

However,any m’ = m is also in U

Thus, there is m’ both in Reach(N) and U
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What if ?

| Cover(N)

Thereismin | Cover(N) N U

Hence, there is m’ = m which is in Reach(N)

However,any m’ >= m is also in U

Thus, there is m’ both in Reach(N) and U
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What if ?

| Cover(N)

Reach(N) N U=
implies
| Cover(N) N U=



Coverability set and
coverability problem



Coverability set and
coverability problem

® [heorem:

Reach(N) N U = O iff NU=0



Coverability set and
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Reach(N) N U = O iff NU=0O0

® Nice,...
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Coverability set and
coverability problem

Theorem:

Reach(N) N U = O iff NU=0O0
Nice,...

...but U and might both be infinite !

How do we test that NnNU=qp??



Coverability set and
coverability problem
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Coverability set and
coverability problem

p24

— N W A
L1 1

1 | Cover(N)




Coverability set and
coverability problem

P24

b

— N W A
L1

1 | Cover(N)




Coverability set and
coverability problem

c>=Db

P24

b

— N W A
L1

1 | Cover(N)




Coverability set and
coverability problem

cr=Db

P24

4-

3" b

;- :

| - | Cover(N) All we need to
. . . > remember is the
2 3 P! (finite) set of minimal

elements Min(U)




Coverability set and
coverability problem

c>=Db

All we need to

remember is the
(finite) set of minimal
elements Min(U)




Coverability set and
coverability problem

c 7 b | Cover(N) N U # O
P24 iff
4- there is c in Cover(IN) and
b in Min(U) s.t.

3- b c>=b

;- :

|{ | Cover(N) All we need to
—— > remember is the
2 3 P (finite) set of minimal

elements Min(U)
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Backward approach

All the markings that can reach U in
one step




Backward approach




Backward approach




Backward approach




Backward approach

In the end, we want to obtain all the
markings that can reach U in any number
of steps
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markings that can reach U in any number
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Backward Approach

® Clearly:
mois in Pre’(U) iff Reach(N) N U # O
® Question: can we compute Pre’(U) ?

® Yes!



Predecessor operator

® Symmetrically to the Post, we define the
predecessor operator:

Pre(m) = {m’ | m is in Post(m’)}
® |et us consider the sequence
U, Pre(U), Pre(Pre(U)), Pre(Pre(Pre(U))),...

® [heorem:After a finite amount of steps, the
sequence stabilises, and we obtain Pre’(U)
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e Efficient datastuctures to implement this
algorithm have been defined by researchers
of the verification group at ULB.
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More on Petri nets
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Marking dependent effects



Marking-dependent
effect

® The effect of a transition is not constant
anymore, but depends on the current
marking.

P3
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® The effect of a transition is not constant
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marking.

P3




Marking-dependent
effect - resets

® |n particular, we can define resets.

m(p2)

reset of pz
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Marking-dependent
effect - resets

® |n particular, we can define resets.

PI P3

m(p2)
P2

reset of pz



Reset nets

® When we have only classical PN transitions
+ resets:

® Coverability is decidable

® Boundedness is decidable
® Place boundedness is undecidable

® The coverability set is not computable
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Marking-dependent
effect - transfers

® |n particular, we can define transfers.

transfer from p2 to p3



Marking-dependent
effect - transfers

® |n particular, we can define transfers.

PI P3

P2

transfer from p2 to p3



Usefulness of transfers

® Modelisation of broadcasts :
® A single message is sent to every process

® Fach process that receives the message
moves to another state.

> ®'\
notifyall
(waiting)
waiting

P2

(waiting)

Q received
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Transfer nets

® When we have only classical PN transitions
+ transfers:

® Coverability is decidable

® Boundedness is decidable
® Place boundedness is undecidable

® The coverability set is not computable

135



Marking-dependent
effect - zero-test

® |n particular, we can define test for zero.

PI P3

P2

enabled only if p2 is empty
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Test for zero

® Once we have test-for-zero everything
becomes undecidable.
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Coloured Petri nets

® Popular extension of the
basic model.

® |[ntroduced by the
team of Kurt Jensen, in
the ‘80s

® used in many
applications
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Coloured Petri nets

® |dea: add colours to the tokens

® Allow to distinguish between different
types of tokens

® The colours can model data carried by
the processes

® Transitions are aware of the colours
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Phone example

® VWe have a set of customers:
® Each customer is represented by a token.
® Color of the token = Phone number.

® A customer is either inactive or
connected.

connected

& O

inactive
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Phone example

® A pair of inactive customers can establish a
connection.

® We want to distinguish between sender
and receiver.

connect connected

X ~a X ~a
y ¥ y
inactive
(x,y)

The transition v Connections are
consumes -« recorded here as
a sender x and a tokens whose color

receivery is a pair (snd, rcv)

connections
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Phone example
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Phone example

® The connection can be closed either by the

sender or by the receiver.

iInactive

X

y

connect connected

X ~a X ~a
y y X
y/V

(X,y)

(x,y>

rcv breaks
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Phone example

® The connection can be closed either by the
sender or by the receiver.

X
y

connect connected

X ~a X ~a
y y X
y/V

inactive
(X,Y)

®/ (x.y)

rcv breaks
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Phone example

snd breaks

|nact|ve rcv breaks

connections
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Coloured Petri nets

® Several analysis methods have been
developped for this model (finite number of
colours)

® e.g..invariants

® Some results can be achieved when the
colors have good properties
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Practical Tools: Pep

® = |anguage to describe PN + a suite of tools
to analyse them:

® simulation
® verification (SPIN, SMV)
® translation from/to different formalisms

® Everything can be accessed through a single
graphical interface (Tcl/Tk)

http://theoretica.informatik.uni-oldenburg.de/~pep/
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Practical Tools:
CPNTools

® Specialised in Coloured Petri nets
® Features similar to Pep:

® modelisation

® simulation

® state space analysis

http://wiki.daimi.au.dk/cpntools/cpntools.wiki
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Conclusion
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To conclude

® Petri nets (and their extensions) are a nice
tool to reason about concurrent systems:

® very popular

® non-trivial decision problems are
decidable

® appealing graphical representation

® tool supported
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To conclude

® There is still a lot to explore:
® other extensions:
® Time Petri nets
® Timed Petri nets

® Stochastic Petri nets,...
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To conclude

® There is still a lot to explore:
® Subclasses of Petri nets:
® |-safe
® marked graphs
® free-choice
® conflict free

® Some problems are easier to decide on
these subclasses.
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To conclude

® T[here is stil

ot

ner pro

iveness

a lot to explore:

blems:

® deadlock freedom

® semi-linearity

® non-termination

159



To conclude

® Very active field of research !

® Several conference and journals entirely
dedicated to Petri nets

® .. just hopinand join us!

http://www.informatik.uni-hamburg.de/TGl/PetriNets/
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Questions ?




