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Digest
We often interact with machines that react in real time to our actions (robots, websites etc).
They are modelled as reactive systems, that continuously interact with their environment.
The goal of reactive synthesis is to automatically generate a system from the specification
of its behaviour so as to replace the error-prone low-level development phase by a
high-level specification design.

In the classical setting, the set of signals available to the machine is assumed to be finite.
However, this assumption is not realistic to model systems which process data from a
possibly infinite set (e.g. a client id, a sensor value, etc.). The goal of this thesis is to
extend reactive synthesis to the case of data words. We study a model that is well-suited
for this more general setting, and examine the feasibility of its synthesis problem(s). We
also explore the case of non-reactive systems, where the machine does not have to react
immediately to its inputs.

Keywords: Register Automata · Register Transducers · Reactive Synthesis · Church
Problem · Data Words · Data Domains · Asynchronous Transducers · Computability ·
Continuity

Propos
Nous interagissons régulièrement avec des machines qui réagissent en temps réel à
nos actions (robots, sites web etc). Celles-ci sont modélisées par des systèmes réactifs,
caractérisés par une interaction constante avec leur environnement. L’objectif de la
synthèse réactive est de générer automatiquement un tel système à partir de la description
de son comportement afin de remplacer la phase de développement bas-niveau, sujette
aux erreurs, par l’élaboration d’une spécification haut-niveau.

Classiquement, on suppose que les signaux d’entrée de la machine sont en nombre
fini. Un tel cadre échoue à modéliser les systèmes qui traitent des données issues d’un
ensemble infini (un identifiant unique, la valeur d’un capteur, etc). Cette thèse se propose
d’étendre la synthèse réactive au cas des mots de données. Nous étudions un modèle
adapté à ce cadre plus général, et examinons la faisabilité des problèmes de synthèse
associés. Nous explorons également les systèmes non réactifs, où l’on n’impose pas à la
machine de réagir en temps réel.

MotsClés :Automates à registres · Transducteurs à registres · Synthèse réactive · Problème
de Church · Mots de données · Domaines de données · Transducteurs asynchrones ·
Calculabilité · Continuité



Abstract

A reactive system is a system that continuously interacts with its environment. The
environment provides an input signal, to which the system reacts with an output signal,
and so on ad infinitum. In reactive synthesis, the goal is to automatically generate an
implementation from a specification of the reactive and non-terminating input/output
behaviours of a system. In the classical setting, the set of signals is assumed to be finite.
However, this assumption is not realistic to model systems which process sequences of
signals accompanied with data from a possibly infinite set (e.g. a client id, a sensor value,
etc.), which need to be stored in memory and compared against each other.

The goal of this thesis is to lift the theory of reactive system synthesis over words on a
finite alphabet to data words. The data domain consists in an infinite set whose structure
is given by predicates and constants enriched with labels from a finite alphabet. In
this context, specifications and implementations are respectively given as automata and
transducers extended with a finite set of registers that they use to store data values. To
determine the transition to take, they compare the input data with the content of the
registers using the predicates of the domain.

In a first part, we consider both the register-bounded and unbounded synthesis problem;
the former additionally asks for a bound on the number of registers of the implementation,
along with the specification. We do so for different instances, depending on whether the
specification is a nondeterministic, universal (a.k.a. co-non-deterministic) or deterministic
automaton, for various domains. While the register-bounded synthesis problem is
undecidable for non-deterministic specifications,weprovide a generic approach consisting
in a reduction to the finite alphabet case, that is done through automata-theoretic
constructions. This allows to reprove decidability of register-bounded synthesis for
universal specifications over (N,�), and to obtain new ones, such as the case of a dense
order, or the ability of data guessing, all with a 2-ExpTime complexity. We then move
to the unbounded synthesis problem, which is undecidable for specifications given
by non-deterministic and universal automata, but decidable and ExpTime-complete for
deterministic ones over (N,�) and (Q, <). We also exhibit a decidable subclass in the case
of (N, <), namely one-sided specifications.

In a second part, we lift the reactivity assumption, considering the richer class of
implementations that are allowed to wait for additional input before reacting, again over
data words. Specifications are modelled as non-deterministic asynchronous transducers,
that output a (possibly empty) word when they read an input data. Already in the finite
alphabet case, their synthesis problem is undecidable.



A way to circumvent the difficulty is to focus on functional specifications, for which
any input sequence admits at most one acceptable output. Targeting programs com-
puted by input-deterministic transducers is again undecidable, so we shift the focus to
deciding whether a specification is computable, in the sense of the classical extension
of Turing-computability to infinite inputs. We relate this notion with that of continuity
for the Cantor distance, which yields a decidable characterisation of computability for
functional specifications given by asynchronous register transducers over (N,�) and
for the superseding class of oligomorphic data domains, that also encompasses (Q, <).
The study concludes with the case of (N, <), that is again decidable. Overall, we get
PSpace-completeness for the problems of deciding computability and refined notions, as
well as functionality.



Résumé

Les systèmes réactifs sont caractérisés par une interaction constante avec leur environ-
nement : celui-ci fournit un signal d’entrée, auquel le système répond par un signal
de sortie, et ainsi de suite à l’infini. L’objectif de la synthèse réactive est de générer
automatiquement l’implémentation d’un tel système à partir de la spécification de son
comportement. Classiquement, l’ensemble des signaux est supposé fini. Cependant, ce
cadre échoue à modéliser des systèmes qui traitent des signaux accompagnés de données
issues d’un ensemble potentiellement infini (un identifiant unique, la valeur d’un capteur,
etc.), qui doivent être stockées et comparées entre elles.

L’objectif de cette thèse est d’étendre la théorie de la synthèse réactive sur les mots
à alphabet fini au cas des mots de données. Le domaine de données consiste en un
ensemble infini, dont la structure est définie par des prédicats et des constantes, enrichi
par un ensemble fini de signaux. Les spécifications et les implémentations sont alors
respectivement représentées par des automates et des transducteurs à registres, qu’ils
utilisent pour stocker les données. Pour déterminer la transition à prendre, ils comparent
la donnée d’entrée au contenu de leurs registres à l’aide des prédicats du domaine.

Dans une première partie, nous considérons les problèmes de la synthèse à registres
bornés et non-bornée. Dans le premier cas, l’algorithme prend en entrée une borne sur
le nombre de registres de l’implémentation, en plus de la spécification à implémenter.
Nous considérons plusieurs instances, selon que la spécification est un automate non-
déterministe, universel (ou co-non-déterministe), ou encore déterministe, pour plusieurs
domaines de données. Tandis que le problème de la synthèse à registres bornés est indéci-
dable pour les spécifications non-déterministes, nous élaborons une approche générique
qui permet de le réduire au cas d’un alphabet fini. Celle-ci permet de redémontrer la
décidabilité de la synthèse à registres bornés à partir d’automates universels sur (N,�) et
d’étendre le résultat à (Q, <), y compris en autorisant l’automate à deviner des données,
tout cela en 2-ExpTime.

Quant à la synthèse non-bornée, elle est indécidable pour les spécifications données
par des automates non-déterministes ou universels, mais décidable et ExpTime-complète
pour les automates déterministes sur (N,�) et (Q, <). Nous exhibons également une
sous-classe décidable dans le cas de (N, <), à savoir les spécifications unilatérales.

Dans une seconde partie, nous examinons comment étendre au cas non-réactif, où l’im-
plémentation est autorisée à attendre d’obtenir plus d’information avant de sélectionner
son signal de sortie, toujours dans le cadre des mots de données. Les spécifications sont
modélisées par des transducteurs non-déterministes asynchrones, qui produisent un mot



(possiblement vide) à chaque fois qu’ils lisent une entrée. Déjà dans le cas fini, un tel
problème est indécidable pour cette classe de spécifications.

Unemanière de contourner la difficulté est de traiter le cas des spécifications fonctionnelles,
pour lesquelles chaque suite infinie d’entrées admet au plus une suite de sorties. Pour les
implémentations données par des transducteurs déterministes sur l’entrée, le problème
est indécidable, aussi nous intéressons-nous au problème de la calculabilité au sens
de Turing, classiquement étendue au cas des mots infinis. Nous lions cette notion à
celle de continuité pour la distance de Cantor, ce qui nous fournit une caractérisation
de la calculabilité qui est décidable pour les fonctions définies par des transducteurs
non-déterministes asynchrones sur (N,�) et pour la classe des domaines oligomorphes,
qui englobe (N,�) et (Q, <). L’étude se conclut par le cas de (N, <), également décidable.
Pour ces trois domaines, les problème de calculabilité et ses déclinaisons, ainsi que la
fonctionnalité, sont décidables en espace polynomial (PSpace).
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This introduction is in French. The English
version can be found in Chapter 2.

Nous décrivons le tri par insertion. Tech-
niquement, il n’est pas optimal, mais pré-
sente l’avantage de correspondre à la pra-
tique quotidienne.

Nous attirons l’attention du lecteur ou de
la lectrice sur le fait que la synthèse est
une notion d’ordre supérieur, au sens où
un algorithme de synthèse est un algo-
rithme auquel l’on demande d’écrire des
programmes. C’est pour clarifier cet état
de fait que nous distinguons les termes
d’« algorithme » et de « programme ».

Dans le corps du document, nous privilé-
gions le terme « réaliser » (to realise) à celui
de « satisfaire », du fait de ses accointances
avec la logique formelle.

À nouveau, soyons prudents ici quant à
l’ordre dans lequel on se situe : les en-
sembles In etOut concernent le programme
que l’on veut générer ; l’algorithme de syn-
thèse, quant à lui, prend en entrée une
spécification de Set produit en sortie une
implémentation de I.

En d’autres termes, la quête d’un algo-
rithme de synthèse pour les langages géné-
ralistes se ramène à celle d’un algorithme
qui serait un informaticien parfait, capable
de déterminer si un problème donné est
faisable et, le cas échéant, d’en produire
une solution. Formellement, on peut dé-
montrer l’impossibilité de cette entreprise
en la réduisant au problèmede l’arrêt pour
les machines de Turing, ou bien au Ent-
scheidungsproblem : dès lors que l’on peut
spécificier des réquisits arithmétiques, ré-
soudre le problème de la synthèse im-
plique en particulier de décider si une
formule arithmétique donnée est vraie, ce
que l’on sait impossible depuis Turing et
Church.
[1]: Turing (1936), « On Computable Num-
bers, with an Application to the Entschei-
dungsproblem »

Introduction 1.
1.1. Synthèse de programmes

La programmation consiste en l’automatisation de tâches. S’agissant
elle-même d’une tâche, il est naturel de se demander s’il est possible de
l’automatiser ; tel est l’objectif de la synthèsedeprogrammes.Considérons
par exemple le tri d’une liste de nombres : plutôt que de spécifier comment

le programme devrait procéder (construire la liste en insérant chaque
valeur une à une, comme lorsque l’on trie des cartes à jouer), il serait
préférable de spécifier ce qu’il devrait faire (prendre en entrée une liste
de nombres et produire une liste triée qui contient les mêmes éléments).
Autrement dit : étant donné la spécification du comportement attendu
du programme (quoi), un algorithme de synthèse devrait produire un
programmequi présente ce comportement (comment) si un tel programme
existe, et Non si ce qui est demandé est impossible. Un tel programme
est appelé une implémentation de la spécification donnée en entrée ; nous
disons qu’il satisfait la spécification.

Disons les choses formellement. Dans sa forme la plus générale, un
problème de synthèse a deux paramètres : un ensemble In d’entrées et un
ensemble Out de sorties pour les programmes que l’on souhaite synthéti-
ser. Il lie une classe Sde spécifications à une classe Id’implémentations.
Une spécification S ∈ S est une relation binaire S ⊆ In × Out qui est
interprétée de la manière suivante : pour chaque x ∈ In et chaque y ∈ Out,
(x , y) ∈ S si et seulement si y est une sortie acceptable pour l’entrée
x. Une implémentation est une fonction I : In→ Out qui, pour chaque
entrée x ∈ In, choisit une sortie acceptable y ∈ Out. Ainsi, I satisfait S
lorsque pour tout x ∈ In, (x , I(x)) ∈ S. Le problème de synthèse pourSet
Iest alors défini de lamanière suivante : étant donné une (représentation
finie de) S ∈ S, existe-t-il I ∈ I telle que I satisfait S ? Et, le cas échéant,
l’algorithme de synthèse doit produire un programme qui exécute I.

Il s’agit évidemment d’un objectif ambitieux, et nous savons depuis bien
longtemps qu’il est hors de portée pour les langages de programmation
généralistes. En effet, résoudre le problème de la synthèse revient alors à
trouver un algorithme qui, étant donné la spécification d’un problème
(de décision ou d’optimisation), lui trouve une solution procédurale si
elle existe, et produit un témoin d’indécidabilité sinon. D’une certaine
manière, cette impossibilité est rassurante, car elle montre que l’infor-
matique a de beaux jours devant elle. Elle a pu avoir dans un premier
temps un effet dissuasif sur les recherches effectuées dans le domaine
de la synthèse. Pour autant, de la même manière que l’indécidabilité du
problème de l’arrêt [1] à déclenché des investigations dans le domaine
de l’analyse de programmes, ce résultat d’impossibilité à ouvert la voie
à la recherche de restrictions du problème qui seraient décidables. ∗
Il y a essentiellement deux manières de récupérer la décidabilité. Pre-
mièrement, il est possible de « guider » la synthèse en fournissant de

∗ À cet égard, l’histoire de toute l’informatique jusqu’à nos jours n’a été que l’histoire de
luttes de classes de complexité.
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[2]: Alur et al. (2013), « Syntax-guided
synthesis »

[3]: Finkbeiner et Schewe (2013), « Boun-
ded synthesis »

Les deux approches ne sont pas mutuelle-
ment exclusives.

Le lecteur connaisseur, qui sait déjà ce
qu’est un automate, peut se rendre à la
Section 1.2.2

Notez que dans la définition d’un auto-
mate non-déterministe, il n’est pas requis
qu’il ait plusieurs transitions possibles
parmi lesquelles choisir, au sens où la
notion d’automate non-déterministe géné-
ralise celle d’automate déterministe. C’est
pourquoi, bien que cela semble contre-
intuitif, un automate déterministe est, en
particulier, non-déterministe.

l’information additionnelle à l’algorithme de synthèse. C’est l’idée qui
sous-tend la syntèse guidée par la syntaxe (syntax-guided synthesis [2]),
qui prend en entrée un squelette du programme à générer, et l’étoffe
afin d’obtenir un programme complet qui satisfait la spécification. La
précision du squelette donné en entrée permet d’ajuster la difficulté du
problème. L’approche de la synthèse bornée (bounded synthesis [3]) repose
sur une idée similaire : en fixant une borne sur la taille du programme
cible, nous bornons l’espace des programmes à explorer, ce qui garantit
que la procédure termine. L’autre manière d’obtenir la décidabilité est de
restreindre la classe des spécifications ou des implémentations.

1.2. Les systèmes réactifs

1.2.1. Les automates

À ce titre, les programmes représentables par des machines à états finis,
ou automates, constituent une classe de choix. Comme leur nom l’indique,
de telles machines sont dotées d’un ensemble fini d’états. Elle traitent
leur entrée lettre par lettre de gauche à droite, en utilisant leurs états
pour stocker l’information. Elles sont notamment utiliées pour modéliser
les systèmes embarqués ou les circuits électroniques. Dans leur forme
la plus pure, ils consistent en des accepteurs pour un langage qui, étant
donné une séquence de lettres, ou mot, répondent Oui ou Non selon
que le mot appartient au langage ou non. Pour prendre un exemple
simple, considérons le langage des mots qui contiennent un nombre
impair de a. Pour déterminer si un mot donné appartient au langage,
un programme n’a pas besoin de compter le nombre de a, seulement
de garder en mémoire la parité de ce nombre. La Figure 2.1 représente
un automate qui reconnaît ce langage. Dans cet exemple, lorsqu’il est

pair impair

a

a

pas a pas a

Figure 1.1. : Un automate avec deux états mémoire qui détermine si son entrée contient un nombre impair de a. Les états sont représentés
par des cercles, et les transitions par des flèches. Par exemple, quand l’automate est dans l’état « pair » et lit un a, il transitionne vers l’état
« impair ». Comme indiqué par la flèche entrante, il commence dans l’état « pair ». La machine répond Oui si et seulement si son exécution
termine dans un état final, distingué par un double cercle (ici, seul l’état « impair » est acceptant). Pour illustrer notre propos, nous invitons
le lecteur ou la lectrice à méditer sur le comportement de l’automate lorsqu’il lit le mot baa. Tout d’abord, il commence dans son état initial
« pair », puisque avant de lire le mot, il a lu 0 occurrences de la lettre a, et 0 est pair. Lorsqu’il lit la lettre b, il suit la boucle sur l’état « pair »
et reste dans cet état (puisque b n’est pas a). Ensuite, il lit a et va dans l’état « impair ». Enfin, il lit a de nouveau, et retourne dans l’état
« impair ». Il répond alors Non, puisque « pair » n’est pas un état acceptant. Il est aisé de vérifier que lors d’une exécution quelconque,
l’automate est dans l’état « pair » précisément lorsqu’il a vu un nombre pair de a (et inversement pour « impair »).

dans un état donné et lit une lettre, l’automate a une seule transition
possible ; on dit alors qu’il est « déterministe ». En général, il est pratique
de doter ces machines de la possibilité de « deviner » la transition à
prendre parmi plusieurs possibles ; de telles machines sont appelées
« non-déterministes ». Examinons par exemple le langage des mots dont
l’antépénultième lettre est un a. Puisque l’automate lit son entrée de
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gauche à droite, il ne peut pas savoir à l’avance combien de lettres il
lui reste à lire avant la fin. La Figure 1.2 représente un automate non-
déterministe qui reconnaît ce langage. Dans la pratique, un programme

attendre 2 1 0

une lettre

a une lettre une lettre

Figure 1.2. : Un automate non-déterministe qui vérifie que l’antépénultième lettre est un a. Il commence dans l’état « attendre ». Lorsqu’il lit
une lettre qui n’est pas un a, il reste dans cet état. Lorsqu’il lit un a, il doit faire un choix : ou bien rester dans l’état « attendre » en prenant la
boucle, ou bien transitionner vers l’état 2. Pour faire un tel choix, il devine si le a qu’il lit est deux lettres avant la fin du mot. Si c’est le cas, il
va dans l’état 2, et vérifie qu’il a deviné correctement en lisant les deux lettres suivantes. Si le mot se termine à ce moment-là, il répond Oui,
puisqu’il est alors dans l’état 0, qui est acceptant. S’il y a encore des lettres à lire, l’exécution échoue puisqu’il n’y a pas de transition à
prendre depuis l’état 0. Par définition, un automate non-déterministe répond Oui si et seulement si au moins une de ses exécutions termine
dans un état acceptant. Par exemple, sur l’entrée ababb, lorsqu’il lit le premier a, l’automate peut soit aller dans l’état 2, soit rester dans
l’état « attendre ». S’il opte pour la première possibilité, lorsqu’il a lu aba, il est dans l’état 0 et a encore deux lettres à lire, et l’exécution
échoue. Dans le second cas, il doit à nouveau faire ce choix en lisant le second a. S’il reste dans l’état « attendre », il y reste jusqu’à la fin de
l’exécution puisqu’il n’y a plus de a à lire, et l’exécution n’est pas acceptante puisqu’elle termine dans un état non-acceptant. Cependant, s’il
transitionne vers 2, l’exécution termine dans l’état 0 et l’automate accepte. Ainsi, il existe une exécution acceptante, ce qui signifie que ababb
est accepté par l’automate, qui répond Oui.

n’est pas capable de « deviner » la bonne exécution, sauf en éxécutant
tous les calculs en parallèle et en vérifiant qu’il en existe au moins un
qui est acceptant. Par conséquent, le non-déterminisme devrait être
interprété comme une manière compacte de représenter un ensemble
de comportements possibles. Il est bien connu que les automates non-
déterministes admettent toujours un équivalent déterministe, qui peut
cependant être exponentiellement plus grand (en termes de nombre
d’états).

Pour représenter des spécifications, nous aurons également recours
aux automates universels, ou « co-non-déterministes ». Plutôt que de
demander qu’au moins une exécution est acceptante, nous demandons à
ce qu’elles le soient toutes. Si nous revenons à l’automate de la Figure 1.2,
vu comme un automate universel et en intervertissant les états acceptants
et rejetants, il accepte précisément les mots dont l’antépénultième lettre
n’est pas un a. Plus généralement, les sémantiques non-déterministes et
universelles sont duales : en interprétant un automate non-déterministe
comme un automate universel, et en intervertissant les états acceptants
et rejetants, nous obtenons un automate qui reconnaît le complément du
langage.

1.2.2. Les transducteurs

Souvent, nous attendons d’un programme qu’il fournisse plus d’informa-
tion que le seul fait d’accepter ou de rejeter un mot. Par exemple, si nous
revenons à l’automate de la Figure 1.1, nous pourrions lui demander de
signaler tout au long du calcul si le nombre de a qu’il a vus est impair.
Sur l’entrée aba, il produirait alors la séquence impair · impair · pair
(si l’on suppose qu’il lit d’abord une lettre avant de produire une sortie).
Dans ce cas particulier, il suffit de demander à l’automate d’afficher son
état courant le long de son exécution. Cependant, en général, il est plus
pratique de distinguer les états internes de la machine et ses interactions
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avec son environnement. Pour ce faire, nous enrichissons plutôt les transi-
tions avec des lettres de sortie : à chaque fois qu’elle lit une lettre d’entrée,
la machine transitionne vers un état, et, ce faisant, produit une lettre
de sortie. Cela permet de représenter des programmes qui effectuent
des transformations de leur entrée, par exemple remplacer a par b, b
par c et c par a lorsqu’un nombre pair de a a été lu, et inversement
a → c → b → a lorsque ce nombre est impair (cf Figure 1.3).

pair impair

a | b

a | c

b | c
c | a

b | a
c | b

Figure 1.3. : Un transducteur séquentiel qui permute son entrée, dans un sens ou dans l’autre selon qu’il a lu un nombre pair de a. Pour
simplifier, nous supposons qu’il lit seulement des mots dont les lettres sont issues de l’alphabet {a , b , c}. Les entrées sont colorées en
rouge, les sorties en vert, et une transition « pair

a |b
−−→ impair » se lit « lorsque l’on est dans l’état “pair” et que l’on lit un a, on produit b et

transitionne vers l’état “impair” ». Par exemple, sur l’entrée abbac, le transducteur produit la sortie baaca. Et, sur l’entrée acab (acronyme
bien connu de « all cats are beautiful »), la machine produit bbcc. À l’instar des automates, les transducteurs bénéficient d’un mécanisme
d’acceptance : on peut demander à ce que la machine n’accepte que les mots contenant un nombre impair de a en considérant l’état « impair »
comme le seul état acceptant.

ω-Transducteurs

Dans notre cadre d’analyse, nous sommes principalement intéressés par
l’interaction entre le programme et son environnement, c’est-à-dire la
relation entre ses entrées et ses sorties, plus que par sa terminaison. Ainsi,
nous considérons le cas d’un système en interaction constante avec son
environnement. Ce dernier fournit un signal d’entrée, modélisé comme
l’élément (lettre) d’un ensemble fini (alphabet). Ensuite, le système réagit
par une lettre de sortie, et ceci indéfiniment. Leur interaction donne lieu
à une suite infinie de signaux d’entrée et de sortie entrelacés. Nous sup-
posons que l’interaction ne termine jamais, puisque l’étude est focalisée
sur le contrôle du système, plutôt que sur son aspect calculatoire. Un tel
système est appelé « réactif ». Précisons en passant qu’il y a un procédé
d’abstraction à l’œuvre ici, intrinsèque à la démarche de modélisation :
nous avons besoin d’objets qui soient manipulables algorithmiquement,
que nous construisons à partir du système réellement existant. Ainsi,
nous travaillons toujours sous l’hypothèse que le modèle mathématique
est en adéquation avec le système considéré.

Un exemple paradigmatique de système réactif est celui d’un serveur
en interaction avec ses clients : ces derniers adressent des requêtes au
serveur, qu’il doit satisfaire en temps voulu. Ici, nous présentons une
variation sur le même thème, qui présente essentiellement les mêmes
caractéristiques, à savoir le cas d’une machine à café, modélisée comme le
système, qui intéragit avec ses utilisateurs qui constituent collectivement
son environnement. Les utilisateurs fournissent les signaux d’entrée via
les boutons de la machine, qui réagit avec des signaux de sortie consistant
à effectuer des actions (démarrer, verser le café, afficher des informations
sur l’écran, s’éteindre, etc). Typiquement, une interaction consiste en un
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Par convention, les entrées sont colorées
en rouge, et les sorties en vert. Le symbole
· dénote la concaténation.

utilisateur qui allume la machine, commande un café, le reçoit et éteint
la machine. Si personne n’utilise la machine jusqu’à la fin des temps, elle
reste inactive indéfiniment. Une telle interaction peut être modélisée par
le mot infini suivant :

appuyer_sur_on ·demarrer ·commander_cafe ·verser_cafe ·appuyer_sur_off ·eteindre ·(inactif ·inactif)ω

où l’exposant ω dans (inactif · inactif)ω signifie que la séquence
inactif · inactif est répétée à l’infini. L’alphabet d’entrée est défini
comme {appuyer_sur_on, commander_cafe, appuyer_sur_off, inactif}
et l’alphabet de sortie est {demarrer, verser_cafe, eteindre, inactif}.
Ici, la notion d’alphabet est entendue comme celle d’un ensemble fini :
les éléments des alphabets précités sont des mots, mais pourraient tout
aussi bien être remplacés par des symboles (A pour appuyer_sur_on, V
pour verser_cafe, etc).

La machine est guidée par un contrôleur qui réagit en temps réel aux
signaux d’entrée. S’il est encodé dans unpuce éléctronique, il a un nombre
d’états fini, et peut donc être modélisé par un transducteur déterministe
qui opère sur des mots infinis ; nous les appelons ω-transducteurs. Nous
pourrions alors modéliser notre machine à café par l’ω-transducteur de la
Figure 1.4. En général, nous supposons que de tels programmes acceptent
toutes les séquences d’entrées possibles, aussi tous leurs états sont-ils
implicitement acceptants. Insistons sur le fait que l’interaction doit être

éteinte allumée

appuyer_sur_on | demarrer

appuyer_sur_off | eteindre

inactif | inactif
commander_cafe | verser_cafeinactif | inactif

commander_cafe | inactif

Figure 1.4. : Un ω-transducteur qui modélise une machine à café. Elle est initialement éteinte, et peut être allumée en appuyant sur « on ».
Lorsqu’elle est éteinte, les autres commandes n’ont aucun effet. Lorsqu’elle est allumée, il est possible de commander un café, auquel cas la
machine s’exécute diligemment.

imaginée sur l’ensemble du cycle de vie de la machine. Par exemple,
lorsqu’elle s’éteint, l’interaction n’est pas terminée, puisqu’elle peut être
rallumée par la suite. Le cycle de vie global est lui-même fini, puisque la
machine cessera un jour de fonctionner en dépit de tous les efforts pour
la maintenir en vie, ne serait-ce qu’au moment de l’effondrement du
système solaire qui adviendra dans un temps long mais fini. Cependant,
focaliser l’étude sur l’interaction peremt d’exprimer plus aisément des
réquisits qui concernent une fin prématurée de l’exécution, par exemple
lorsque la machine s’éteint sans crier gare. C’est le cas par exemple
de la séquence fautive appuyer_sur_on · demarrer · commander_cafe ·
eteindre · (inactif · inactif)ω, où la machine s’éteint avant d’avoir
servir un café commandé. Ainsi, une spécification typique pourrait
requérir que chaque occurrence de commander_cafe est immédiatement
suivie de verser_cafe. Une telle exigence pourrait être trop élevée.
Premièrement, on ne peut pas attendre d’une machine qu’elle serve un
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[5]: Thomas (2009), « Facets of Synthesis :
Revisiting Church’s Problem »

[4]: Church (1957), « Applications of recur-
sive arithmetic to the problem of circuit
synthesis »

café en étant éteinte†, aussi cette condition devrait-elle être limitée aux
périodes ouvertes paruneoccurrencededemarrer, qui ne contiennent pas
eteindre. Cependant, une telle spécification est trivialement satisfaite par
une machine qui ne s’allume jamais, aussi faudrait-il également spécifier
de quelle manière la machine démarre. Par ailleurs, il est possible que
la machine prenne du temps pour servir un café, par exemple si elle
doit effectuer des oéprations internes à cette fin, comme moudre le café,
chauffer l’eau, etc. Par conséquent, elle n’est peut-être pas capable de
réagit immédiatement, auquel cas nous pouvons relâcher la spécification
et demander à ce que le café soit servi dans les k unités de temps suivantes
pour un certain k fixé, voire simplement que la machine finisse par servir
un café (sans borne de temps).

1.2.3. La synthèse réactive et le problème de Church

En définitive, une spécification met en relation des suites infinies de si-
gnaux d’entrée avec les suites infinies de signaux de sortie qui constituent
des comportements acceptables pour le système. Puisque nous nous
intéressons aux systèmes réactifs qui sont en interaction constante avec
leur environnement, il est souvent plus pratique de voir la spécification
de manière entrelacée, c’est-à-dire comme les mots qui consistent en l’en-
trelacement d’une suite infinie d’entrées et d’une suite correspondante
de sorties acceptable. Par exemple, si l’on demande que verser_cafe
advienne au bout d’un moment, et ce après chaque occurrence de
commander_cafe, cela correspond à la spécification qui contient tous les
mots satisfaisant cette propriété.

Le problème de la synthèse réactive consiste alors, étant donné une
spécification (représentée de manière finie), à générer un programme
réactif qui satisfait la spécification si un tel programme existe, et de
fournir un témoin d’infaisabilité dans le cas contraire. Ce problème fut
posé par Church en 1957 qui demanda ce qui est désormais connu comme
le problème de Church [5] :

Étant donné une exigence à laquelle un circuit doit satisfaire, nous

pouvons supposer qu’un tel réquisit est exprimé dans un formalisme

adapté qui est une extension de l’arithmétique limitée [c’est-à-dire la

théorie du second ordre des entiers naturels, restreinte à l’addition].

Le problème de la synthèse consiste alors à trouver une fonction

calculable qui représente un circuit satisfaisant à cette exigence (ou,

alternativement, de déterminer qu’un tel circuit n’existe pas). ([4],
notre traduction)

Les systèmes réactifs sont notoirement difficiles à concevoir correctement,
et l’objectif de la synthèse est de générer automatiquement des systèmes
qui sont corrects par construction. Dans le cadre défini par Church, la classe
des implémentations consiste en les programmes réactifs qui peuvent
être exécutés par des circuits booléens, c’est-à-dire utilisant une quantité
finie de mémoire. Autrement dit, des ω-transducteurs.

† Pas plus qu’on ne peut demander du lait à un bouc.
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au plus 2
k fois

2.
. .

2n

. À l’inverse, la fonc-
tion Tower, définie, pour n ∈ N, par

2
n fois

2.
. .

2n

, n’est pas élémentaire.

La logique monadique du second ordre (MSO)

Concernant le formalisme de spécification, Church a principalement
considéré la logique monadique du second ordre (MSO) sur les mots
infinis avec le prédicat +1 (ou, de manière équivalente, ≤), et des pré-
dicats pour les lettres de l’alphabet d’entrée et de sortie. Cette logique
est capable d’exprimer les différentes spécifications que nous avons
ébauchées précédemment. Par exemple, l’on peut demander à ce que
verser_cafe advienne après commander_cafe (sans borne de temps) de
la manière suivante :

∀x , commander_cafe(x) ⇒ ∃y , y ≥ x ∧ verser_cafe(y)

La synthèse vue comme un jeu

Dans un rapport technique non publié [6], McNaughton remarqua que
le problème de la synthèse peut être vu comme un jeu à deux joueurs à
durée infini [7], que nous appelons le jeu de Church. Un joueur modélise
le système, l’autre, son environnement. L’objectif du système est de
satisfaire la spécification ; l’environnement est antagoniste et cherche à
ce qu’elle soit enfreinte‡. Dans cette perspective, une stratégie gagnante
pour le système correspond à une implémentation de la spécification,
tandis qu’une stratégie gagnante pour l’environnement témoigne de
l’infaisabilité de la spécification. En 1969, Büchi et Landweber ont résolu
le problème pour les spécifications MSO à l’aide de méthodes issues
de la théorie des jeux [8]. L’idée est de convertir la formule logique qui
exprime la spécification en une machine à états finis qui reconnaît les
interactions valides (plus précisément un ω-automate, c’est-à-dire un
automates à états finis qui reconnaît des mots infinis), autrement dit les
entrelacements d’entrées avec leurs sorties acceptables. Cette machine
constitue alors un « observateur » pour le jeu, et définit sa condition de
victoire. Reste alors à résoudre le jeu pour en déterminer le vainqueur, ce
qui peut être fait par un calcul de points fixes — ou attracteurs — dans le
cas des jeux de parité (voir par exemple [9]). Par la suite, Rabin a élaboré
une solution qui repose sur les automates d’arbres [10] : une stratégie
peut être modélisée par un arbre infini, et il est possible de construire
un automate qui reconnaît exactement les stratégies gagnantes dans le
cas des jeux ω-réguliers (i.e. dont la condition de gain est reconnaissable
par une formule MSO ou, équivalemment, un automate). Dans cette
thèse, nous adoptons la présentation « ludique », qui permet de tirer parti
de résultats connus sur les jeux de parité, et qui fournit un formalisme
élégant pour décrire les implémentations. Nous suivons globalement
l’approche proposée par Thomas dans [5] concernant le problème de
Church.

La logique temporelle linéaire (LTL)

Lorsque la spécification est exprimée par une formule MSO, le problème
de Church hérite de la borne inférieure de complexité du problème de
la satisfaisabilité de ces formules, qui est non-élémentaire [11]. Cette

‡ La modélisation informatique aboutit ainsi à la situation cocasse d’une machine à café en
lutte contre ses utilisateurs.
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complexité inouïe a longtemps empêché l’application concrète des algo-
rithmes de synthèse. L’introduction de la Logique Temporelle Linéaire
(LTL) [12] constitua une première tentative pour l’apprivoiser, dans le
contexte voisin de la vérification formelle. Ce problème est le jumeau
(plus sympathique) du problème de la synthèse : étant donné une spécifi-
cation et un système, ce dernier satisfait-il la spécification? A contrario, la
synthèse consiste à construire le système à partir de la spécification. Pnueli
montra qu’un tel problème est PSpace-complet, puis que le problème
de la synthèse est 2-ExpTime-complet [13]. Ce fossé entre la complexité
des deux problèmes est l’une des raisons pour lesquelles la vérification
formelle est aujourd’hui appliquée plus largement que la synthèse [14].
Cependant, au cours de la décennie écoulée, l’apparition de méthodes
efficaces pour la synthèse a déclenché un renouveau d’intérêt pour le
domaine [3, 15, 16], désormais très actif [9, 17–20].

Pour donner une idée du fonctionnement de LTL, signalons que la spécifi-
cation « verser_cafe apparaît après chaqueoccurrencedecommander_cafe »
(sans borne de temps) peut être exprimée comme G(commander_cafe⇒
Fverser_cafe), où G (pour « globally ») signifie que la propriété est vraie
tout au long de l’exécution, et F (pour « finally ») qu’elle sera vraie à un
certain moment dans le futur. Ainsi, la formule ci-dessus se lit « Tout au
long de l’exécution, il doit être vrai que si l’on rencontre commander_cafe,
alors on rencontre verser_cafe par la suite ».

1.2.4. Les ω-automates

Il est également possible de représenter directement les spécifications
comme des ω-automates. En effet, toute spécifications MSO et, a fortiori,
LTL, peut être convertie en un ω-automate qui reconnaît les interactions
acceptables correspondantes. Dans le cas des mots infinis, on ne peut
plus définir l’acceptance par le fait qu’une exécution termine dans un état
acceptant, puisque les exécutions sont infinies et ne terminent donc pas.
À la place, nous pouvons demander à ce que l’exécution visite un état
acceptant infiniment souvent (condition dite « de Büchi »), ou, dualement,
que tout état rejetant n’est visité qu’un nombre fini de fois (« co-Büchi »).
Des conditions plus générales existent, telles la condition de parité ou de
Muller, mais les deux conditions ci-dessus suffisent pour notre propos.

Il est souvent plus aisé de concevoir un automate non-déterministe qui
reconnaît les violations de la spécification puis de le complémenter (en
un automate universel), plutôt que d’élaborer directement un automate
pour la spécification. Par exemple, l’automate non-déterministe de la
Figure 1.5 vérifie qu’il existe une occurrence de commander_cafe qui
n’est jamais suivie de verser_cafe. En le dualisant, nous obtenons un
automate universel qui vérifie que toute occurrence de commander_cafe
est ultérieurement suivie d’une occurrence de verser_cafe.

Le Chapitre 3 présente la synthèse réactive et les définitions associées,
ainsi que les résultats connus du domaine dont nous aurons besoin pour
notre étude.
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inactif

inactif

en attente

en attente

satisfaite
commander_cafe

une entrée
quelconque

inactif
une entrée
quelconqueune sortie

quelconque

verser_cafe

Figure 1.5. : Un automate non-déterministe avec une condition de Büchi qui vérifie qu’une certaine occurrence de commander_cafe n’est
jamais suivie de verser_cafe : lorsqu’il est dans l’état « inactif », il devine à un moment donné que l’occurrence de commander_cafe qu’il lit
n’est jamais suivie de verser_cafe et transitionne vers l’état « en attente ». L’exécution accepte si et seulement si elle boucle infiniment dans
cet état, ce qui est le cas lorsqu’il n’y a plus aucune occurrence de verser_cafe. En le dualisant, on obtient un automate qui vérifie que
commander_cafe est ultérieurement suivi de verser_cafe : « en attente » est désormais le seul état rejetant, et il est visité infiniment souvent
par au moins une exécution si et seulement si une demande de café n’est jamais satisfaite.

1.3. « Vers l’infini et au-delà ! » : le passage aux
alphabets infinis

1.3.1. Les mots de données

Le renouveau d’intérêt qu’a connu la synthèse réactive a ouvert la voie à
l’extension de techniques existantes à des cadres plus généraux. Ainsi,
si l’on revient à notre exemple de la machine à café (ou, de manière
équivalente, à un serveur chargé de satisfaire des requêtes), il n’est pas
toujours possible d’amalgamer indistinctement les requêtes de tous les
utilisateurs : chaque utilisateur pourrait avoir une attente spécifique
(avoir son nom sur la tasse, avoir son dosage personnalisé, etc), ce qui
ne peut pas être modélisé par un alphabet fini. Dans cette thèse, nous
proposons de généraliser l’étude aux mots de données, dont les lettres
prennent leurs valeurs dans un ensemble infini D de valeurs, que l’on
appelle un domaine de données (par conséquent, on ne parle plus de
« lettres », mais de « données »). Pour faciliter la modélisation, il est
pratique d’étiqueter ces données avc des lettres issues d’un alphabet fini
Σ, même s’il est techniquement possible de les encoder dans le domaine
de données (on parle alors de données étiquetées). Par exemple, nous
pouvons modéliser le fait qu’un utilisateur donné a commandé un café
par la paire (commander_cafe, id), où id est une donnée qui correspond
à un identifiant unique (par exemple, un entier naturel). Nous pouvons
doter les domaines de données de différentes structures, en fonction de ce
que l’on souhaite modéliser. La structure est donnée par un ensemble de
prédicats et de constantes, qui sont interprétés dans le domaine associé.
La structure la plus élémentaire consiste en un domaine de données doté
du seul prédicat d’égalité (« � »), qui permet par exemple de spécifier
que l’utilisateur no i reçoit la tasse no i. Nous pouvons aussi considérer
le cas d’un ensemble linéairement ordonné, pour modéliser le fait que
certains utilisateurs sont plus égaux que d’autres et ont par conséquent la
priorité sur les autres. La généralité du concept de domaine de données
permet également d’envisager le cas où l’on peut effectuer des opérations
sur les données, ce qui est le cas si la machine à café reçoit de la monnaie
et doit vérifier que la somme dûe a été payée, auquel cas le modèle doit
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pouvoir effectuer des additions, en plus des tests d’égalité. Cependant,
nous naviguons désormais en eaux troubles, et le lecteur aguerri pressent
probablement que ce type de structure est trop expressif pour préserver
la décidabilité (voir la Section 4.9).

1.3.2. Les automates à registres

Il s’agit désormais d’étendre les modèles de systèmes réactifs au cas des
mots de données, afin qu’ils soient capables de manipuler des données.
Les automates à registres constituent l’une des principales extensions des
automates aux langages de données [21, 22]. Un automate à registres
consiste, comme son nom l’indique, en un automate (tel que défini
précédemment), equipé d’un ensemble fini de registres, qu’il utilise pour
stocker certaines données lues, et pour les comparer entre elles à l’aide
des prédicats du domaine. Précisions qu’un registre ne peut contenir
qu’une seule donnée à la fois, c’est-à-dire que lorsqu’une donnée est
stockée dans un registre, son contenu antérieur est « écrasé ». Ce modèle

i p q↓ r

? , r

? � r

Figure 1.6. : Un automate à registres déterministes avec un seul registre r, opérant sur le domaine de données (N,�). Il vérifie que la
première donnée apparaît à nouveau ultérieurement dans le mot d’entrée. Il commence donc par stocker la première donnée dans r (↓ r),
puis attend dans l’état p de rencontrer à nouveau cette donnée (le test? � r est vérifié lorsque la donnée lue en entrée est égale au contenu
de r). Si cela advient, il transitionne vers l’état q, dans lequel il boucle inconditionnellement et accepte.

fut initialement introduit pour les domaines de données avec le seul
prédicat d’égalité, puis généralisé aux ordres linéaires [23, 24]. Nous
proposons de l’étendre à des domaines arbitraires, dans l’esprit des
G-automates [25, Section 3] et de [26, Chapitre 1].

De même que les automates finis, les automates à registres peuvent
être dotés de deux sémantiques duales, selon que l’on les interprète
comme non-déterministes ou universels. Un automate à registres non-
déterministe accepte son entrée si au moins l’une de ses exécutions est
acceptante, c’est-à-dire s’il est capable de deviner une exécution correcte.
À l’inverse, un automate universel accepte si toutes ses exécutions sont
acceptantes. Contrairement au cas des alphabets finis, les deuxmodèles ne
sont pas équivalents, et reconnaissent des classes duales de langages [21,
Proposition5]. Il est égalementpossiblede combiner lesdeux sémantiques
via la notion d’alternance [27]. Cependant, le modèle résultant est trop
expressif pour l’objectif visé, car il est impossible de décider si un
automate alternant donné n’accepte aucun mot (problème du vide) [28,
Theorem 4.2], pas plus qu’il n’est possible de décider s’il accepte tous les
mots (problème de l’universalité), puisque ce modèle est trivialement
clos par complément (par dualité). Ceci douche tout espoir d’obtenir
la décidabilité pour le problème plus difficile de la synthèse pour les
spécifications exprimées par des automates alternants.
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Rappelons queΣ est un alphabet fini d’éti-
quettes, et D un ensemble infini de don-
nées.

1.3.3. Les transducteurs à registres

L’approche par automates des problèmes de vérification et de synthèse
peut être étendue aux mots de données à l’aide de modèles d’automates
et de transducteurs qui opèrent sur les données. Dans cette perspective,
nous pouvons étendre les transducteurs aux transducteurs à registres, qui
permettent de modéliser un système réactif manipulant des données.
De manière analogue à la généralisation des automates aux automates à
registres, un transducteur à registres consiste en un transducteur équipé
d’un ensemble fini de registres§. Lorsqu’il lit une donnée étiquetée
(σ, d) ∈ Σ×D en entrée, il compare d au contenu de ses registres à l’aide
des prédicats du domaine et, en fonction du résultat du test, décide
de manière déterministe de stocker d dans certains de ses registres (ou
aucun) et produit le contenu d’un de ses registres, accompagné d’une
étiquette γ ∈ Γ (voir l’exemple de la Figure 1.7). Les exécutions d’un

éteint allumé

appuyer_sur_on | demarrer

appuyer_sur_off | eteindre

inactif | inactif
commander_cafe | ↓ r , verser_cafe, ↑ r

inactif | inactif
commander_cafe | inactif

Figure 1.7. : Un transducteur à registres séquentiel et synchrone modélisant une machine à café qui sert chaque utilisateur ayant commandé
de manière spécifique (e.g., en indiquant son nom).

tel modèle correspondent alors à des mots de données alternant entre
une donnée étiquetée d’entrée et une donnée étiquetée de sortie. De
même que les spécifications dites « automatiques » sont décrites par des
ω-automates qui reconnaissent des suite infinies alterant entre signaux
d’entrées et de sorties, l’on peut utiliser les automates à registres pour
représenter des spécifications par des langages de données (voir Figure
1.8).

inactif

inactif

en attente

en attente

satisfaite

une entrée
quelconque

une sortie
quelconque

commander_cafe, ↓ r

idle ou
verser_cafe, ? , r

une entrée
quelconque

verser_cafe, ? � r

Figure 1.8. : Un automate à registres universel de co-Büchi qui vérifie que chaque requête commander_cafe de chaque client id finit par être
satisfaite par (verser_cafe, id).

§ Étonnant, n’est-ce pas?
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(n
k
)
compte le nombre de choix possibles

de k valeurs parmi n valeurs, et croît ex-
ponentiellement en fonction de n.

1.3.4. Automates et logiques sur les mots de données

Contrairement au cas des alphabets finis, nous ne connaissons pas à
ce jour de correspondance entre automates et logique qui puisse être
exploitée pour résoudre le problème de la synthèse pour les spécifications
exprimées dans un formalisme logique. Nous ne pouvons donc pas
adapter l’approche du problème de Church dans le cas des spécifications
MSO, qui consiste à convertir la spécification en un automate, et à
résoudre un jeu sur cet automate [30]. Dans [28], les auteurs font le
lien entre la logique LTL étendue avec le quantificateur « freeze » [31],
qui permet de stocker une valeur apparaissant dans la formule, et les
automates à registres. Ils démontrent que les langages reconnus par les
formules de cette logique peuvent être reconnus par des automates à
registres alternants et bi-directionnels (c’est-à-dire que leur tête de lecture
peut se déplacer non seulement de gauche à droite, mais aussi de droite
à gauche), dont le nombre de registres est égal au nombre de variables
qui peuvent être « congelées » (frozen) [28, Theorem 4.1]. Cependant, le
vide d’un tel modèle est indécidable, déjà avec un seul registre lorsque
l’on considère les mots infinis [28, Theorem 5.2]. Par la suite, Demri,
D’Souza et Gascon ont étudié la Logique des Valeurs Récurrentes (Logic of
Repeating Values, LRV) qui limite l’usage du quantificateur « freeze » afin
d’obtenir une logique qui soit à la fois décidable et close par négation [32].
Cependant, les jeux dont la condition de victoire est donnée par une
formule LRV sont indécidables, comme établi dans [33, Theorem 4.1].
Le cas des spécifications unilatérales (single-sided) est décidable, et a
inspiré notre étude du problème de la synthèse pour les spécifications
données par des automates à registres déterministes, en particulier
l’adaptation de la notion d’unilatéralité à ce modèle. Au vu de ces
résultats d’indécidabilité, et faute d’une logique pour les spécifications
qui soit suffisamment expressive et permette à la fois au système et à
l’environnement de manipuler des données tout en restant décidable,
nous proposons d’étudier le cas des spécifications données directement
pardes automates à registres, quenous appelons spécifications automatiques

avec données.

1.3.5. Contrôle du système et traitement des données

Doter les automates de registres permet de séparer deux aspects du
comportement du système, à savoir le contrôle des états du système et la
manière dont il traite les données, ce qui montre la pertinence du modèle
y compris dans le cas des alphabets finis. En effet, les algorithmes de
synthèse existants ont des difficultés à passer à l’échelle lorsque la taille
de l’alphabet augmente. Revenons à notre exemple favori, et supposons
que la machine est capable de servir différents types de brevages. Il y
en a un nombre fini, pour autant ce qui importe n’est pas tant la nature
précise de tel ou tel brevage, que le fait que si un utilisateur demande le
brevage x, il reçoit le brevage x. Ce caractère « paramétrique » ne peut
pas être modélisé par un alphabet fini sans structure additionnelle. Nous
pouvons l’illustrer de la manière suivante : supposons que les utilisateurs
choisissent parmi un ensemble B, et que k d’entre eux commandent en
même temps. Dans ce cas, la machine doit garder en mémoire l’ensemble
des brevages commandés. N’importe quel sous-ensemble de taille k est
possible, ce qui signifie que la mémoire requise est de taille aumoins

( |B |
k

)
.
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À l’inverse, nous pouvons représenter ce cas de figure par un automate
à k registres, qui stocke la commande de chaque client dans le registre
correspondant, et vérifie par la suite que la commande a été correctement
servie. On retrouve ce phénomène du côté de l’implémentation : sans
registres, un transducteur a besoin d’une mémoire

( |B |
k

)
, tandis qu’un

transducteur à registres a seulement besoin de k registres (et de k états
mémoire).

Cette direction de recherche a été spécifiquement explorée dans le cas des
spécifications exprimées dans des fragments de la logique du premier
ordre sur les mots de données, sous le nom de « synthèse paramétrée »
(parameterised synthesis). Ce cadre repose sur l’hypothèse que le système
interagit avec un nombre fixé, mais arbitraire, d’éléments distincts [34].

1.3.6. Contributions

Les contributions suivantes sont détaillées dans la première partie du
manuscrit. Le Chapitre 4 présente le modèle des automates à registres,
qui est au cœur de notre étude, en ce qu’il constitue le formalisme de
spécification. Y sont décrites les propriétés utiles pour notre étude, tirées
de la littérature existante et généralisées aux domaines de données arbi-
traires lorsque c’est possible. Nous proposons ensuite une déclinaison
du problème de la synthèse de Church aux spécifications sur les mots de
données, qui cible des implémentations représentées par des transduc-
teurs à registres, en tant qu’homologue des transducteurs dans le cas des
mots de données (Chapitre 5).

La synthèse à registres bornés

Dans notre première contribution (Chapitre 6), nous considérons la
synthèse à registres bornés (register-bounded synthesis [35]), qui consiste à
cibler une implémentation définie par un transducteur à registres dont
le nombre de registres est donné en entrée. Nous commençons par les
spécifications données par des automates à registres universels. Comme
expliqué précédemment, la sémantique universelle est particulièrement
adaptée pour exprimer des spécifications : elle est naturellement close
par intersection, et permet de spécifier une violation de la spécification
à l’aide d’un automate non-déterministe, puis de complémenter en un
automate universel. Par exemple, demander à ce qu’un utilisateur finisse
par recevoir le café qu’il a demandé (ou, dans le cadre client/serveur, que
toute requête finisse par être satisfaite), peut être exprimépar un automate
universel qui vérifie qu’aucune commande ne se retrouve insatisfaite
(Figure 1.8). Le fait qu’une commande reste insatisfaite s’exprimeaisément
par un automate non-déterministe, puisqu’il suffit de deviner ladite
commande ; la spécification s’obtient alors en dualisant l’automate pour
obtenir la négation. Notons d’ailleurs que dans le cas d’un alphabet
infini, une telle spécification n’est pas exprimable par un automate
non-déterministe, seulement par un universel.

Nous montrons que la synthèse à registres bornés est décidable pour les
spécifications données par des automates à registres universels sur les
domaines de données (D,�) (Théorème 6.14) et (Q, <) (Théorème 6.16).
Plus précisément, ces problèmes sont dans 2-ExpTime. Le premier résultat
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est connu [36, Corollary 3] ; nous l’avons prouvé indépendamment
dans [37, Theorem 12]. La modularité de notre preuve permet d’étendre
le résultat au cas de (Q, <) avec peu de travail supplémentaire, tout en
autorisant les automates de spécification à stocker dans leurs registres des
données choisies arbitrairement, et de lancer une exécution pour chaque
choix possible (guessing). Il s’agit du mécanisme dual à la « réassignation
non-déterministe » (non-deterministic reassignment) introduite dans [38].
Le cas de (N, <) est plus complexe, car la structure de (N, <) induit des
comportements que l’on ne peut abstraire de manière régulière (c’est-
à-dire avec des ω-automates). En effet, les exécutions des automates
à registres opérant sur ce domaine correspondent aux langages ωB-
réguliers [39, Theorem 17], qui étendent les langages ω-réguliers. La
synthèse bornée pour ce domaine fait présentement l’objet de recherches,
qui ne sont pas décrites dans ce manuscrit car elles exigent un temps de
maturation supplémentaire.

Nos algorithmes reposent sur une méthode générique qui consiste en
une réduction à la synthèse réactive sur les alphabets infinis. Elle permet
d’obtenir la décidabilité lorsque le formalisme de spécification présente
certaines propriétés de clôture, et permet certaines opérations sur les
langages. Le théorème de transfert (Théorème 6.8) en compose la clé de
voûte : il établit qu’une spécification de mots de données est réalisable si
et seulement si son homologue sur les alphabets finis l’est, cette dernière
étant définie à partir de la notion de suite d’actions, qui représente les
exécutions de transducteurs à registres vues de manière syntaxique. La
notion de mots de données compatibles permet alors de faire le pont avec
la sémantique.

Les spécifications données par des automates non-déterministes ne se
laissent pas si aisément domestiquer : déjà avec un seul registre pour
l’implémentation, le problème est indécidable (6.19). Pour cette raison,
nous étudions le cas des spécifications sans tests, où les transitions des
automates de spécification ne peuvent pas dépendre de tests effectués
sur l’entrée. Ces machines restent capables de dupliquer, effacer et
déplacer des valeurs de données. La méthode générique décrite ci-dessus
permet d’établir que la synthèse à registres bornés est décidable et dans
2-ExpTime pour cette classe de spécifications. La preuve repose sur la
notion d’origine, telle qu’introduite dans [40].

Une version préliminaire de ce travail est parue dans [37], puis étendue
dans [41]. Le Chapitre 6 traite de plus de (Q, <) et de l’extension au cas du
guessing. Les preuves ont également été reformulées dans le cadre plus
général de la synthèse à partir de templates (template-guided synthesis).

Les Tables 1.1 (pour (D,�)) et 1.2 (pour (Q, <)) récapitulent les résultats
obtenus, de même que ceux de la contribution suivante.

La synthèse non-bornée

LeChapitre 7 est dédié auproblèmede la synthèsedans toute sa généralité,
que nous appelons « non-bornée » pour marquer la distinction avec la
synthèse à registres bornés. L’implémentation cible peut être n’importe
quel transducteur à registres, c’est-à-dire qu’il n’y a pas de bornes sur
son nombre de registres. Nous montrons que le problème est indécidable
pour les spécifications exprimées par des automates non-déterministes
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et universels, déjà dans le cas de (D,�) (Théorèmes 6.20 et 7.1), ce qui
motive rétrospectivement l’étude de la synthèse à registres bornés. Le cas
des automates universels était posé comme un problème ouvert dans [36].
Pour récupérer la décidabilité, nous examinons le cas des spécifications
données par des automates à registres déterministes, où la notion de
déterminisme est entendue une fois l’entrée et la sortie données (par
opposition au déterminisme des transducteurs dits séquentiels, qui se
comportent de manière déterministe à partir de leur seule entrée). Nous
montrons que si la spécification est donnée par un automate localement

concrétisable (c’est-à-dire que depuis n’importe quelle configuration, toute
transitionpeut être prise, autrement dit il est toujours possible d’instancier
les tests avec une donnée, indépendamment de la configuration concrète),
alors il suffit de résoudre un jeu sur l’automate, comme dans le cas des
alphabets finis. Ce résultat permet d’établir la décidabilité du problème
de la synthèse réactive et du problème de la synthèse de Church dans le
cas de (D,�) (Théorème 7.15) et de (Q, <) (Théorèmes 7.16 et 7.17). Dans
le cas de (D,�), nous montrons de plus que les deux problèmes (synthèse
réactive et synthèse de Church) sont équivalents, un résultat analogue
au cas des alphabets finis. Autrement dit, si une spécification admet
une implémentation, elle admet une implémentation représentable par
un transducteur à registres. Notons que ce n’est pas le cas dans (Q, <)
(Propriété 7.18).

De ce fait, nous étudions également le cas unilatéral, analogue à la res-
triction single-sided introduite pour les jeux LRV qui permet de récupérer
la décidabilité dans [33]. Ainsi, les transitions de sortie des automates
de spécification sont restreintes aux valeurs de données déjà présentes
dans les registres. De manière équivalente, il s’agit de restreindre à un
ensemble fini de données, puisque choisir un registre dont le contenu
doit être produit en sortie est équivalent à choisir une lettre qui désigne
ledit registre. En d’autres termes, de telles spécifications ont un com-
portement similaire à des transducteurs (non séquentiels), et résoudre
le problème de la synthèse se ramène à choisir des transitions le long
d’une exécution. Formulé dans le cadre de la théorie algorithmique des
jeux, cela revient à demander à ce que le joueur « Système » choisisse ses
actions dans un ensemble booléen. Pour cette sous-classe, nous obtenons
à nouveau l’équivalence entre synthèse réactive et synthèse de Church,
c’est-à-dire qu’il suffit de cibler des implémentations représentables par
des transducteurs à registres, y compris dans le cas de (Q, <). Enfin,
nous montrons que cette restriction marque la frontière entre décidabi-
lité et indécidabilité dans le cas des entiers naturels avec l’ordre (N, <)
(Théorème 7.28 versus 7.19). La décidabilité dans le cas des spécifications
unilatérales sur (N, <) est obtenue en montrant qu’il suffit de considérer
une approximation ω-régulière du jeu sur l’automate (rappelons que les
comportements des automates à registres sur (N, <) ne sont en général
pas ω-réguliers). L’indécidabilité provient du fait que l’alternance et
l’antagonisme entre les deux joueurs permet de simuler des machines
à compteurs : un joueur propose les valeurs successives du compteur,
tandis que l’autre vérifie qu’il ne triche pas.

Ces travaux ont également été présentés dans [37] et [41]. Dans ce
manuscrit, l’argumentaire est présenté de manière plus modulaire, à
l’aide de la notion d’automate de spécification « prêt pour les jeux »
(game-ready, à ne pas confondre avec « bon pour les jeux », good-for-games).
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Par ailleurs, nous étendons l’étude au cas de (Q, <).

Le cas de (N, <) a été traité séparément dans [42], car il requiert l’intro-
duction de techniques de preuves supplémentaires.

Table 1.1. : Décidabilité et complexité des problèmes étudiés dans le cas de (D,�,C). {D ,N,U}RA est une abréviation pour « automates
à registres déterministes » (respectivement, « non-déterministes », « universels ») ; la mention « tf » signifie « sans tests ». La « synthèse
bornée » désigne la synthèse à registres bornés. Comme remarqué dans le Corollaire 7.13, la synthèse à registres bornés pour les automates
à registres déterministes est dans ExpTime dès que le nombre de registres cible dépasse le nombre de registres de la spécification, car le
problème se ramène alors à la synthèse non-bornée.

DRA NRA URA NRA tf

Synthèse 2ExpTime Indécidable (k ≥ 1) 2ExpTime 2ExpTime
bornée (Thm. 6.14) (Thm. 6.19) ([36] et Thm. 6.14) (Thm. 6.25)
Synthèse ExpTime-complet Indécidable Indécidable Ouvertnon-bornée (Thm. 7.15) (Thm. 6.20) (Thm. 7.1)

Table 1.2. : Décidabilité et complexité des problèmes étudiés dans le cas de (Q, <, 0). Le paysage est très similaire au cas de (D,�,C), il
s’agit surtout de pointer vers les théorèmes correspondants. Nous omettons les spécifications « sans tests », car elles ne dépendent pas du
domaine de données choisi.

DRA NRA URA
Synthèse 2ExpTime Indécidable (k ≥ 1) 2ExpTime
bornée (Thm. 6.16) (Thm. 6.19) (Thm. 6.16)
Synthèse ExpTime-complet Indécidable Indécidable

non-bornée (Thm. 7.16) (Thm. 6.20) (Thm. 7.1)

1.3.7. Travaux connexes

Comme mentionné précédemment, la synthèse à registers bornés a
d’abord été étudiée dans [36], qui établit la décidabilité dans le cas
des automates à registres universels. Nous avons prouvé le résultat
principal [36, Corollary 3] demanière indépendante. L’étude duproblème
est approfondies dans [35], qui contient des preuves plus simples et
une analyse de complexité plus fine, ainsi que l’étude d’un cadre où
l’environnement est modélisé comme un transducteur avec un nombre
borné de registres. Les auteurs démontrent que ce cas est décidable, bien
que le jeu correspondant ne soit pas déterminé.

Dans [43], Faran et Kupferman étudient le problème de la synthèse
pour les automates avec arithmétique (word automata with arithmetic).
Ces automates sont dotés d’un nombre fini de variables sur lesquelles
ils peuvent (comme le nom l’indique) effecuter des opérations arithmé-
tiques et des tests. La notion de variable est analogue à notre notion
de registres ; la différence majeure est que la valuation des variables est
fixée pour l’entièreté de l’exécution, tandis que les registres peuvent
être mis à jour en remplaçant leur contenu par la donnée lue en entrée.
Les autrices établissent la décidabilité du problème de la synthèse pour
les automates avec arithmétique non-déterministes qui sont « sémanti-
quement déterministes » (semantically deterministic), c’est-à-dire dont le
non-déterminisme peut-être résolu une fois la valuation des variables
connue. Plus précisément, elles fournissent un algorithme polynomial en
la taille de l’automate et exponentiel en le nombre de variables [43, Theo-
rem 5]. Elles démontrent également que les automates sémantiquement
déterministes se situent strictement entre les automates déterministes et
non-déterministes (avec arithmétique) [43, Theorem 2 et Theorem 3].
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La notion de répétition distante (remote

repetition) est similaire à l’opérateur F de
LTL : il est demandé qu’une répétition
advienne au bout d’unmoment, mais sans
borne de temps, à la différence de X j , qui
demande à ce qu’un événement advienne
dans exactement (ou au plus) j unités de
temps, pour un j fixé.

Le problème de la synthèse dans le cas des alphabets infinis est égale-
ment considéré dans [44]. Les données représentent alors des identifiants
uniques, et les spécifications sont exprimées dans un formalisme équi-
valent aux automates à registres universels avec le prédicat d’égalité. Le
formalisme d’implémentation est, quant à lui, beaucoup plus expressif,
puisqu’il autorise une mémoire infinie : les données sont stockées dans
une file (queue). Les auteurs démontrent que le problème de la synthèse
est indécidable, y compris pour les spécifications exprimées par des
automates semi 1-faibles (semi one-weak). Ils fournissent un algorithme
correctmais incomplet, et en démontrent l’utilité à travers une application
à un robot serveur dans un restaurant.

La classe des automates non-déterministes sans tests, qui permet d’obtenir
la décidabilité de la synthèse à registres bornés pour une classe d’au-
tomates non-déterministes, correspond à la version uni-directionnelle
et non-déterministe du modèle de transducteurs défini par [45]. Le
problème de la synthèse n’est pas considéré dans cet article.

Dans [46], les auteurs présentent une approche de « perfectionnement
d’abstraction guidé par contre-exemples » (Counter-Example Guided Abs-

traction Refinement, CEGAR) pour les spécifications exprimées dans la
logique temporelle des flux (Temporal Stream Logic, TSL), qui permet de
définir des spécifications via des fonctions non-interprétées. L’algorithme
essaie de générer une implémentation en autorisant un usage incohérent
des fonctions. S’il échoue, il calcule un contre-exemple. Si ce dernier est
erroné (c’est-à-dire incohérent du point de vue de l’usage des fonctions),
il raffine son abstraction et itère le processus. À l’inverse, si le contre-
exemple est cohérent, l’algorithme s’arrête et renvoie ce contre-exemple,
qui témoigne de l’infaisabilité de la spécification. Cela fournit un semi-
algorithme pour la synthèse à partir de spécifications TSL; les auteurs
montrent par ailleurs que ce problème est indécidable [46, Theorem 2].
L’article se conclut par une application à la synthèse d’un lecteur audio
fonctionnant sous Android.

La synthèse guidée par la syntaxe (syntax-guided synthesis) pour des
programmes manipulant des données a été étudiée dans [47]. L’algo-
rithme de synthèse prend en entrée un squelette du programme à
synthétiser, qu’il doit compléter. Comme précédemment, les fonctions
sont non-interprétées, c’est-à-dire que le programme doit être correct
indépendamment de l’interprétation choisie. Les auteurs démontrent
que le problème est 2-ExpTime-complet [47, Theorem 9] pour la classe
des programmes non-interprétés cohérents (une restriction connue pour
permette de rétablir la décidabilité dans le cas de la vérification formelle),
tandis que le problème général est indécidable [47, Theorem 1].

Enfin, nous avons déjà mentionné que les jeux avec données ont été
étudiés dans [33]. La condition de victoire est donnée par une formule
de la logique des valeurs récurrentes (Logic of Repeating Values, LRV),
qui consiste en une restriction de la logique LTL avec le quantificateur
« freeze ». Les auteurs démontrent que de tels jeux sont indécidables, mais
que, lorsque la condition de gain est unilatérale (single-sided), décider
le vainqueur est dans 4-ExpTime, lorsque les répétitions distantes ne
peuvent être testées que vis-à-vis du passé, et non du futur. Les deux
restrictions sont simultanément nécessaires pour conjurer l’indécidabi-
lité. Dans une perspective de synthèse, ce résultat peut être reformulé
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comme la décidabilité de la synthèse réactive pour les spécifications LRV
unilatérales. La synthèse de Church reste une question ouverte, puisque
la structure de la mémoire des stratégies obtenues n’est pas examinée.

1.4. « Tout vient à point à qui sait attendre » :
abandonner le réquisit de synchronicité

1.4.1. Implémentations ω-calculables

Dans certains cas de figure, nous ne pouvons pas faire l’hypothèse que
le système réagit de manière synchrone à ses signaux d’entrée, car cela
serait trop restrictif pour les implémentations. Revenons une fois de
plus à notre chère machine à café, et considérons une machine qui peut
préparer et servir deux cafés à la fois. Ainsi, lorsqu’unemachine reçoit une
commande, il est potentiellementpréférabled’attendre quelquesunités de
temps (disons t) l’arrivée d’une seconde commande avant de commencer
l’opération. En conséquence, les spécifications et les implémentations
sont modélisées par des machines asynchrones. Plus précisément, la
spécification est désormais donnée par un transducteur non-déterministe
asynchrone, qui est autorisé à produire un mot (possiblement vide) à
chaque lettre lue, et les implémentations consistent en des transducteurs
séquentiels asynchrones, c’est-à-dire des transducteurs qui se comportent
de manière déterministe au regard de leur mot d’entrée. Déjà dans le
cas d’un alphabet fini, le problème de la synthèse devient indécidable
pour un tel attelage de spécifications et d’implémentations [48, Theorem
17]. Dans le cas des alphabets infinis, nous avons établi dans notre étude
de la synthèse réactive qu’un tel problème est indécidable dans le cas
synchrone (Theorem 6.20), il l’est donc a fortiori dans le cas asynchrone.

En lieu et place des transducteurs, nous étendons la classe des implémen-
tations à toutes les fonctions ω-calculables, c’est-à-dire des fonctions f
calculables par une machine de Turing déterministe qui prend en entrée
un mot infini x ∈ dom( f ), et doit produire des préfixes de plus en plus
longs de la sortie f (x) lorsqu’elle lit des préfixes de plus en plus longs
de l’entrée x. Ainsi, une telle machine produit asymptotiquement f (x).
Dans l’exemple ci-dessus, la spécification est ω-calculable, puisqu’il suffit
d’attendre t unités de temps pour décider s’il faut commencer à préparer
un seul café ou deux à la fois. Cependant, examinons la situation ou la
machine doit plutôt décider automatiquement si elle doit s’éteindre ou
non, et n’est autorisée à le faire que si aucune commande n’advient dans
le futur. Une telle spécification n’est pas ω-calculable, puisque la décision
de s’éteindre ou non dépend de l’entièreté du suffixe infini des actions
restantes. Enfin, pour distinguer les implémentations ω-calculables de
celles qui ont une mémoire finie, examinons le cas où une machine
accumule des commandes, et ne les satisfait qu’une fois que l’on appuie
sur le bouton « envoyer ». Cette spécification est ω-calculable par une
machine qui accumule les commandes en mémoire, mais pas par un
transducteur séquentiel, puisqu’une telle machine a nécessairement une
quantité bornée de mémoire.
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1.4.2. Restriction aux spécifications fonctionnelles

Cependant, déjà dans le cas d’un alphabet fini, nous ne savons pas s’il
est possible de décider si une spécification donnée par un transducteur
non-déterministe synchrone est réalisable par une fonction ω-calculable.
Notons que lorsque l’on évacue la question du domaine, c’est-à-dire que
l’on cible des implémentations qui acceptent n’importe quelle entrée,
il a été établi que le problème est décidable [49, Corollary 15]. Dans le
cas asynchrone, il est aisé d’adapter la preuve d’indécidabilité de [48,
Theorem 17] pour démontrer l’impossibilité de décider la réalisabilité
de spécifications données par des transducteurs non-déterministes asyn-
chrones par des fonctions ω-calculables.

En toute généralité, une spécification est une relation entre des entrées
et des sorties. Lorsqu’il s’agit d’une fonction (c’est-à-dire lorsque toute
entrée est en relation avec au plus une sortie), nous disons que la spécifica-
tion est fonctionnelle. Au vu des résultats négatifs mentionnés ci-dessus à
propos de la synthèse de fonctions ω-calculables à partir de spécifications
non-fonctionnelles, nous concentrons notre attention sur le cas des spéci-
fications fonctionnelles et traitons la question suivante : étant donnée la
spécification d’une fonction de mots de données infinis, cette fonction
est elle « implémentable », où nous entendons par implémentable le fait
d’être ω-calculable par une machine de Turing. De plus, dans le cas où la
fonction est implémentable, nous aimerions disposer d’un algorithme qui
construit une implémentation. Cela soulève une question d’importance :
est-il possible de décider si une spécification donnée est fonctionnelle?
Nous étudions ces questions dans le cas des spécifications données par
des transducteurs à registres non-déterministes asynchrones, que nous
appelerons simplement transducteurs à registres par la suite. L’asynchro-
nicité accroît considérablement le pouvoir expressif, mais induit dans le
même temps des difficultés techniques supplémentaires.

1.4.3. Contributions

De même que dans le cas les automates à registres, les transducteurs
à registres sont paramétrés par le domaine de données utilisé pour
construire leurs mots d’entrée, et par les prédicats utilisés pour tester les
données. Nous exhibons une vaste classe de domaines de données pour
laquelle nous établissons la décidabilité des problèmes étudiés (rappelés
plus bas), à savoir les domaines de données oligomorphes [26, Section 3.2].
En quelques mots, un domaine de données (D,R,C) est oligomorphe
lorsque pour tout entier naturel n ∈ N, Dn peut être partitionné en un
nombre fini de classes d’équivalences, où deux n-uplets sont équivalents
s’ils sont l’image l’un de l’autre par un automorphisme du domaine
(c’est-à-dire une bĳection qui préserve les prédicats R et les constantes
C).

Par exemple, tout ensemble avec le seul prédicat d’égalité est oligomorphe,
à l’image de (N,�). En effet, un n-uplet est caractérisé par l’égalité ou
la différence de ses composantes. Ainsi, (1, 2) est équivalent à (3, 5), car
1 , 2 et 3 , 5, et l’on peut par conséquent construire un morphisme
µ qui envoie l’un sur l’autre, en permutant d’une part 1 et 3 et d’autre
part 2 et 5 : µ(1) � 3, µ(3) � 1, µ(2) � 5, µ(5) � 2 et µ(n) � n pour tout
n , 1, 2, 3, 5. De même, (1, 2) est équivalent à (2, 1) ; à l’inverse, il est
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Dans le corps du document, nous définis-
sons cette distance par d(u , v) � 0 si u � v
et d(u , v) � 2−|u∧v | ; les deux définitions
induisent la même topologie et la même
notion de continuité.
La notation w�u signifie « w est unpréfixe
de u », c’est-à-dire u � w · x pour un
certain mot x.

[26]: Bojańczyk (2019), Atom Book

Un domaine oligomorphe est polynomia-

lement décidable si la satisfaisabilité de la
logique du premier ordre sur sa struc-
ture est décidable en utilisant un espace
polynomial (et donc un temps au plus
exponentiel).

distinct de (1, 1) ou de (0, 0), qui sont caractérisés par l’égalité de leurs
deux composantes. Un autre exemple d’importance est celui de (Q, <),
qui est également oligomorphe. Les automorphismes de (Q, <) sont
précisément les bĳections croissantes, et les n-uplets sont caractérisés
par l’ordre relatif de leurs composantes. Ainsi, dans (Q, <), on a toujours
que (1, 2) est équivalent à (3, 5) (puisque 1 < 2 et 3 < 5), mais il n’est
plus équivalent à (2, 1) (puisque 1 < 2 mais 2 ≮ 1). Crucialement, (N, <)
n’est pas oligomorphe. En effet, la seule bĳection de N qui préserve <
est l’identité, et tous les tuples sont distincts. De même, (Z, <) n’est pas
oligomorphe, car ses automorphismes sont les translations n 7→ n + k
pour un k ∈ Z fixé. Les tuples sont alors caractarisés par les distances
entre leurs composantes. Nos contributions sont les suivantes :

1. Nous commençons par établir l’équivalence entre ω-calculabilité
et continuité (au sens usuel du terme) pour la distance de Cantor,
pour les fonctions sur les mots infinis de données. Rappelons que la
distance deCantor entre deuxmots est inversement proportionnelle
au plus long préfixe commun de ces mots. Formellement, d(u , v) �
0 si u � v et d(u , v) � 1

|u∧v | , où u ∧ v est le plus long mot w tel que
w�u et w�v et |w | désigne la longueur de w. Cette équivalence est
vérifiée à condition que le problème de la prochaine lettre soit décidable.
Ceproblème consiste à déterminer (si elle existe) la prochaine valeur
de donnée qui peut être produite indépendamment de la suite du
calcul, c’est-à-dire en ne connaissant qu’un préfixe fini fixé du mot
d’entrée. Nous établissons également des équivalences analogues
pour des notions plus fortes d’ω-calculabilité et de continuité, à
savoir la continuité de Cauchy, la continuité uniforme et la m-
continuité, qui admettent chacune un équivalent naturel en termes
d’ω-calculabilité. Dans chaque cas, la construction est effective,
c’est-à-dire qu’il est algorithmiquement possible de construire une
machine de Turing qui ω-calcule la fonction.

2. Nous définissons une condition générique de calculabilité pour les
domaines de données oligomorphes, à savoir la décidabilité du
problème de satisfaisabilité de la logique du premier ordre sur le
domaine en question [26]. De tels domaines sont appelés décidables.
Nous montrons alors que le problème de la prochaine lettre est
décidable (et la prochaine lettre calculable) pour les fonctions
définies par des transducteurs à registres non-déterministes sur les
domaines de données oligomorphes et décidables, ainsi que sur
(N, <). Par conséquent (Théorèmes 12.39 et 12.66), nous obtenons
que de telles fonctions sont ω-calculables si et seulement elles sont
continues, et de même pour les notions dérivées (continuité de
Cauchy, continuité uniforme et m-continuité). Cette caractérisation
de l’ω-calculabilité nous permet d’établir le résultat principal de
notre étude, à savoir la décidabilité de ces notions (cf infra).

3. Comme expliqué précédemment, un transducteur à registres ne
définit pas nécessairement une fonction, mais une relation, du fait
du non-déterminisme. La fonctionnalité est une notion sémantique,
et non syntaxique. Pour autant, nous démontrons que le problème
de la fonctionnalité est décidable pour les domaines oligomorphes
et décidables (Théorème 12.40 ; il est de plus PSpace-complet pour
les domaines polynomialement décidables), ainsi que pour (N, <) (et
à nouveau, PSpace-complet, Théorème 12.64). Un tel problème
constitue un pré-requis pour notre étude, puisque nous supposons
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Une fonction est rationelle si elle est re-
présentable par un transducteur non-
déterministe uni-directionnel.
[50]: Prieur (2002), « How to decide conti-
nuity of rational functions on infinite
words »

[51]: Dave et al. (2020), « Synthesis of
Computable Regular Functions of Infinite
Words »

que les spécifications étudiées sont fonctionnelles.
4. Enfin, nons démontrons (Théorème 12.41) que la continuité de fonc-

tions définies par un transducteur à registres non-déterministe sur
un domaine oligomorphe décidable (respectivement, polynomiale-
ment décidable) est décidable (respectivement, PSpace-complète).
Nous obtenons également la complétude pour PSpace dans le cas
de (N, <), qui n’est pas oligomorphe, y compris en présence de
guessing, bien que cela soulève des difficultés supplémentaires
(Théorème 12.72). Ces résultats restent vrais pour la notion plus
forte de continuité uniforme (Théorème 12.68). Puisque la conti-
nuité est équivalente à l’ω-calculabilité pour ces fonctions, il en
résulte que l’ω-calculabilité est décidable pour les fonctions défi-
nies par des transducteurs non-déterministes à registres opérant
sur des domaines de données oligomorphes décidables, et PSpace-
complet lorsqu’ils sont de plus polynomialement décidables. De
tels résultats sont également vrais pour la continuité uniforme,
et pour (N, <). Ils constituent notre contribution principale dans
cette partie de la thèse, et forment une réponse positive à notre
motivation initiale, à savoir la synthèse de programmes.

1.4.4. Travaux connexes

Nous avons mentionné précédemment les travaux liés au problème de
la synthèse. La notion de continuité pour la distance de Cantor n’est
pas nouvelle, et sa décidabilité était déjà connue pour les fonctions
rationnelles sur les alphabets finis [50, Proposition 4]. L’approche de
Prieur consiste à réduire la continuité à la fonctionnalité en définissant,
à partir d’un transducteur T, un transducteur qui reconnaît sa clôture
topologique. Ce dernier est fonctionnel si et seulement si le transducteur
initial est continu [50, Lemma 5.1]. Nous avons réussi à étendre cette
approche àpresque tous les cas considérés, à l’exceptiondes transducteurs
sur (N, <) en la présence de guessing. Pour cette raison, nous avons
adopté une stratégie de preuve différente. Le lien entre continuité et
ω-calculabilité pour les fonctions de mots infinis sur des alphabets finis a
récemment été étudié dans [51] pour les transducteurs uni-directionnels
et bi-directionnels. Nos résultent généralisent le cas des transducteurs uni-
directionnels de [51, Theorems 6 and 12] au cas des mots de données.

1.5. Plan

Les contributions présentées dans cemanuscrit sont doubles. La première
partie est dédiée aux problèmes de synthèse (synthèse de Church et
synthèse réactive). Le premier chapitre présente l’état des connaissances
actuelles sur le cas des alphabets finis. Le Chapitre 4 est consacré aux
automates à registres. Le Chapitre 5 définit la notion de spécifications
automatiques avec données, ainsi que les transducteurs à registres sé-
quentiels synchrones et présente notre proposition de généralisation
du problème de Church au cas des mots de données, de même que
le jeu de Church correspondant. Le Chapitre 6 établit les résultats qui
concernent la synthèse à registres bornés pour les spécifications définies
par des automates à registres universels (Section 6.2) et non-déterministes
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Par contraposition, cette phrase signifie
également que les théorèmes qui ne men-
tionnent pas de publication existante sont
inédits.

[52]: Marotta (2020), Example and docu-

mentation of the kaobook class

(Section 6.3) sur les domaines de données (D,�) et (Q, <), ainsi que dans
le cas des automates non-déterministes sans tests (Section 6.3.2). Le
chapitre suivant est dédié à la synthèse non-bornée. Il s’ouvre par la
présentation des résultats d’indécidabilité qui motivent l’étude de la
synthèse à registres bornés (Théorèmes 6.20 et 7.1), puis continue avec
les résultats de décidabilité qui concernent les automates à registres
déterministes (Section 7.3). La partie se conclut par une discussion sur la
question du domaine de l’implémentation (total ou partiel), qui marque
la frontière entre décidabilité et indécidabilité dans le cas des alphabets
infinis (Chapitre 8).

La seconde partie est consacrée à l’étude de l’ω-calculabilité et de la conti-
nuité pour les fonctions représentées par des transducteurs à registres
non-déterministes asynchrones. Le modèle est présenté au Chapitre 10,
qui établit également la clôture par composition pour cette classe de
fonctions. Dans le Chapitre 11, nous présentons la notion d’ω-calculabilité,
et montrons que pour les fonctions que nous étudions elle est équivalente
à la continuité pour la distance de Cantor, de même pour les notions
dérivées. Le reste de la partie est dédié à l’étude de différents domaines
de données, où nous déterminons la décidabilité et la complexité de la
décision des notions de fonctionnalité, ω-calculabilité et continuité, ainsi
que leurs notions dérivées (Chapitre 12). La Section 12.1 se concentre sur
le cas des domaines avec le seul prédicat d’égalité. La section suivante
généralise l’étude à (Q, <) et aux domaines de données oligomorphes.
Enfin, la Section 12.3 traite du cas de (N, <). La partie se conclut par une
discussion sur les possibilités d’extensions de nos résultats.

Enfin, le document se termine par une conclusion générale (Chapitre 14)
qui fait le lien entre les deux parties et ouvre des perspectives pour les
recherches à venir.

1.6. Comment lire cette thèse?

Conventions de numérotation Les environnements qui correspondent
à des hypothèses, c’est-à-dire les définitions, les notations et les conven-
tions, sont numérotés ensemble. De même concernant ceux qui corres-
pondent à des conclusions, à savoir les théorèmes, les propositions, les
corollaires, les lemmes, les propriétés et les observations. En outre, la
numérotation se fait par chapitres.

Lien avec les résultats publiés Une partie des résultats présentés dans
ce manuscrit ont été publiés dans des conférences ou des journaux.
Lorsque c’est le cas, les théorèmes font le lien avec l’article correspondant ;
la citation apparaît alors en gras.

Kaobook Cette thèse a été rédigée à l’aide de la classe LATEX kaobook.
Elle est dotée d’une marge étendue qui contient des notes, des références
bibliographiques [52], les légendes des figures, et parfoismême les figures
elles-mêmes. Les notes de marge ne sont pas numérotées afin de ne pas
perturber la lecture, mais sont alignées avec le contenu avec lequel elles
sont en rapport. L’idée qui sous-tend cette classe est que ce document
est probablement lu sur un ordinateur ou une machine analogue, sur
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Le document comporte également une
section dédiée aux références bibliogra-
phiques, située à la fin. Les liens présents
dans le corps du texte renvoient à cette
section.

La plupart des figures ont été dessinées à
l’aide du merveilleux paquet TikZ.

Les couleurs ne sont pas utilisées dans le
corps du texte, sauf pour les liens, afin que
le document ne ressemble pas à Elmer.

Le lecteur ou la lectrice est bien sûr invitée
à élaborer sa propre feuille de route.

lequel il est malaisé d’aller au bas de la page pour trouver l’information
requise (pour les notes de bas de page¶), ou à la fin du document (pour
les références bibliographiques).

Définitions et Notations Une autre caractéristique de ce travail est
l’usage du paquet knowledge, qui lie chaque occurrence d’une notion
au lieu où elle est définie. Cette caractéristique peut sembler contradic-
toire avec la précédente, qui insiste sur la localité de l’information. La
contradiction peut être dépassée en utilisant un lecteur de PDF récent,
qui affiche une prévisualisation du lien ciblé, et par conséquent de la dé-
finition recherchée. La thèse comporte également un index des notations
à la fin du document.

Conventions graphiques Une image vaut parfois mille mots‖, et de
nombreuses notions sont illustrées par des exemples. C’est également
le cas de certaines idées de preuve. Pour des raisons de lisibilité, ce
document est doté de conventions graphiques présentées au fil de la
lecture, et groupées dans le Chapitre A en annexe. En particulier, les
couleurs sont souvent utilisées dans les figures pour transmettre de
l’information.

Feuilles de route La lecture est une affaire de goût (et de temps dis-
ponible), aussi ce document a-t-il été conçu pour permettre une lecture
modulaire, en fonction des connaissances et des attentes du lecteur. En
plus de la lecture linéaire classique, voici quelques parcours possibles :

En quête d’égalité Les investigations présentées ici ont démarré par
l’étude du cas des domaines de données avec le seul prédicat
d’égalité. Les automates à registres se comportent plutôt bien
sur de tels domaines, ce qui donne lieu à des constructions et à
des preuves plus simples. Le lecteur qui s’intéresse seulement à
ce cas peut se dispenser des développements liés aux structures
plus riches (les ordres denses et discrets, ainsi que les domaines
oligomorphes). Les sauts correspondants sont mentionnés dans la
marge au fil du document.

Tout sur les registres Le Chapitre 4 est conçu comme une introduction
aux automates à registres. Il a été écrit avec en tête ses applications
à la synthèse, mais présente la plupart des propriétés standard du
modèle, et comporte des pointeurs vers la littérature sur le sujet.

Les deux faces de la synthèse réactive Les Chapitres 6 et 7 peuvent être
lus indépendamment. Ils ont chacunpour pré-requis les Chapitres 3
à 5.

Rien ne sert de courir. . . La Partie II est consacrée aux transducteurs
à registres asynchrones, et peut, pour l’essentiel, être lue de ma-
nière indépendante. Elle suppose néanmoins une connaissance
élémentaire des automates à registres, qui est disponible dans le
Chapitre 4.

¶ Quelques notes de bas de page ont survécu, pour le matériau auxiliairement auxiliaire
comme les jeux de mots.

‖ Littéralement, dans le cas des articles de conférence.



We present the insertion sort, which is
technically not optimal, as it is easier to
describe and closer to everyday human
practice.

Be careful as there is some higher-order
stuff going on here: synthesis is about
designing algorithms that write programs.

In our development, we use the term ‘re-
alises’ instead of ‘fulfils’ due to its link
with formal logic.

In other words, this consists in finding a
perfect computer scientist that is able to
decide whether a given problem can be
solved or not, and, if yes, provide a solu-
tion. Formally, this impossibility is proven
by reducing from the halting problem or
the Entscheidungsproblem: as soon as one
can specify arithmetic requirements, be-
ing able to solve the program synthesis
problem implies in particular to be able to
decidewhether a given arithmetic formula
holds.
[1]: Turing (1936), ‘On Computable Num-
bers, with an Application to the Entschei-
dungsproblem’

[2]: Alur et al. (2013), ‘Syntax-guided syn-
thesis’
[3]: Finkbeiner and Schewe (2013),
‘Bounded synthesis’

Those approaches are of course not mutu-
ally exclusive.

Introduction 2.
2.1. Program Synthesis

Programming consists in automating tasks. Being itself a task, one can
wonder whether it can be automated, and this is the goal of program
synthesis. For instance, consider the problem of sorting a list of numbers.
Instead of specifying how the program should proceed (e.g. construct
the sorted list by iteratively inserting each value at its right place, as
is done when sorting playing cards), one would prefer to be content
with specifying what it should do (take an input list and output a sorted
list that contains the same elements). Thus, given a specification of the
expected behaviour of the program (what), a program synthesis algorithm
should output a program that exhibits this behaviour (how) if it exists, or
No otherwise. Such a program is called an implementation of the input
specification, and we say that it fulfils the specification.

To put things formally, in its most general form, a synthesis problem has
two parameters, a set of inputs In and a set of outputs Out, and relates
two classes Sand Iof specifications and implementations respectively.
A specification S ∈ S is a relation S ⊆ In × Out and an implementation
I ∈ I is a function I : In → Out. The (S,I)-synthesis problem asks,
given a (finite representation of a) specification S ∈ S, whether there
exists I ∈ I such that for all u ∈ In, (u , I(u)) ∈ S. If such an I exists, then
the procedure must return a program computing I.

This is of course an ambitious objective, and it has long been known that it
is not reachable for general-purpose programming languages. This does
not come as a surprise, since solving theprogramsynthesis problem in full
generality amounts to finding a programwhich, given the specification of
an algorithmic problem, finds an algorithmic solution to it if it exists. In
a way, this impossibility is reassuring as it means that computer science
will continue to thrive. It may have deterred efforts in this direction for a
time, but in the same way the undecidability of the halting problem [1]
trigerred research efforts in program analysis, the impossibility of general
synthesis set off investigations in decidable restrictions of the problem. ∗
There are broadly two ways to recover decidability. First, one can guide
synthesis by providing additional information to the synthesis algorithm.
This is the rationale behind syntax-guided synthesis [2], that takes as
input a template of the target program, and fills the gaps so as to satisfy
the specified behaviour. The granularity of the template allows to act
on the hardness of the problem. The approach of bounded synthesis [3]
is based on a similar idea: by setting a bound on the size of the target
program,we bound the exploration space, so the procedure is guaranteed
to terminate. Second, one can restrict the classes of specifications and/or
of implementations.

∗ In that sense, the history of hitherto existing computer science is the history of complexity
classes struggle, between hardness results and ways to overcome them.
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The knowledgeable reader who already
knowswhat a finite-state automaton is can
jump to the next Section 2.2.2.

Note that it is not required that a non-
deterministic automaton actually has the
possibility to choose between different
transitions. In other words, the notion of
non-deterministic automaton generalises
that of a deterministic automaton. In par-
ticular, a deterministic automaton is also
a non-deterministic automaton, counter-
intuitive as it seems.

2.2. Reactive Systems

2.2.1. Automata

A class of choice is that of programs computed by finite-state machines,
also known as automata. As the name suggests, those machines have
a finite number of memory states. They process their input bit by bit
from left to right, using their memory state to store information, and
are typically used to model embedded systems or hardware circuits. In
their simplest form, they consist in acceptors for a language, i.e. they
take as input a sequence of letters (called a word) and answer Yes or No,
depending on whether it belongs to the language or not. As a simple
example, consider the language of words that contain an odd number of
a. To decide whether a given word belongs to this language, a program
does not need to count the number of as, only to keep in memory the
parity of this number. Figure 2.1 depicts an automaton that accepts this
language. In this example, when it is in a given state and reads an input

even odd

a

a

not a not a

Figure 2.1.: An automaton with two memory states that checks whether its input contains an odd number of a. States are depicted as circles,
and transitions as arrows. For instance, when the automaton is in state ‘even’ and reads an a, it transitions to state ‘odd’. Initially, it starts in
state ‘even’, as indicated by the incoming arrow. The machine answers Yes if and only if its computation ends in an accepting state, marked
by a double circle (here, only the state ‘odd’ is accepting). To illustrate our point, ponder about what happens when the automaton reads
input baa. First, it starts in its initial state ‘even’. When it reads the first letter b, it takes the loop over ‘even’ and stays in this state. Then, it
reads a and goes to state ‘odd’. Finally, when it reads a again, it goes back to state ‘even’ and answers No, since it is in a state that is not
accepting. One can check that along any computation, the automaton is in state ‘even’ whenever the input read so far contains an even
number of a (analogously for state ‘odd’).

letter, the automaton has a unique possible transition; we say that it is
deterministic. In general, it is convenient to equip thesemachineswith the
possibility to guess a transition to take among multiple ones, we call them
non-deterministic. Consider for instance the language of words whose
second letter before the end is an a. Since the program reads its input from
left to right, it cannot know how many letters there are before the end.
Figure 2.2 on the next page depicts a non-deterministic automaton that
recognises this language. Note that an actual program cannot ‘guess’ the
right computation, except by executing them all in parallel and checking
that at least one is accepting. Thus, non-determinism should be seen as
a way to compactly represent a set of behaviours. It is well-known that
non-deterministic automata always admit an equivalent deterministic
automaton, but can be exponentially more succinct.

When representing specifications we will also be interested in universal
automata, also known as co-non-deterministic. Instead of asking that at
least a computation is accepting, we ask that all of them are accepting.
For instance, the automaton of Figure 2.2, seen as a universal one and
interverting accepting and non-accepting states, accepts exactly words
whose second letter before the end is not an a. This is a more general
phenomenon, as both semantics are dual to each other: switching from
non-deterministic to universal semantics and complementing the set of
accepting states allows to recognise the complement language.
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wait 2 1 0

any letter

a any letter any letter

Figure 2.2.: An automaton that checks whether the second letter before the end is an a. It starts in state ‘wait’. When it reads an input letter
distinct from a, it stays in this state. When it reads an a, it has to make a choice: either stay in ‘wait’, taking the self-loop, or transition to
state 2. To make this choice, it guesses whether this a is two letters away from the end of the word. If this is the case, it goes to state 2,
and then checks that its guess is correct by reading the next two letters. If its input ends at this moment, it answers Yes, since it is in state
0, which is accepting. If there is still some input to read, the computation fails as there is no outgoing transition from 0. By definition, a
non-deterministic finite-state automaton answers Yes if and only if there exists a computation that ends in an accepting state. For instance, on
input ababb, on reading the first a, the automaton can either go to 2 or stay in ‘wait’. If it does the former, after having read aba, it is in state
0 and still has two letters to read, so the computation fails. In the latter case, it is again presented with this choice when reading the second
a. If it stays in ‘wait’, it will stay in this state until the end since there are no more as to read, and will not accept. However, if it transitions to
2 at this point, it will end in state 0 and accept. Thus, there exists an accepting computation, which means that ababb is accepted by the
automaton, which answers Yes.

2.2.2. Transducers

Often, we want a program to provide more information than simply
whether it accepts or rejects its input. For instance, if you come back to the
automaton of Figure 2.1, we might ask it to report along the computation
whether the number of a it has read so far is odd. E.g., on input aba,
it would output odd · odd · even (assuming it first reads a letter before
outputting something). In this particular case, this can be achieved by
making the automaton print its current state along the run. However, in
general, it is convenient to separate the internal states of themachine from
its interactions with its environment. To that end, we instead enrich the
transitions with output letters: everytime it reads an input, the machine
transitions to some state and additionally output a letter. This allows
to represent programs that conduct transformations on their input, e.g.
replace every a with b, b with c and c with a when it read an even number
of a, and conversely a → c → b → a otherwise (see Figure 2.3).

even odd

a | b

a | c

b | c
c | a

b | a
c | b

Figure 2.3.:A transducer that shifts its input in one direction or the other, depending whether it contains an even number of a. For simplicity,

we consider that it only reads words over the alphabet {a , b , c}. Inputs are colored in red, outputs in green, and the transition ‘even
a |b
−−→ odd’

reads ‘when in state “even”, on reading a, output b and transition to state “odd”’. For instance, on input abbac, the transducer outputs
baaca. We can also ask e.g. that it only accepts inputs with an odd number of a, making only the state ‘odd’ accepting.

ω-Transducers

In our setting, we are more interested in the interaction between the
program and its environment, i.e. the relation between its input and
its output, rather than on its termination: consider a setting in which a
system continuously interacts with its environment. The environment
provides an input signal, modelled as an element from a finite set that we
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By convention, inputs are coloured in red,
andoutputs in green. The symbol ·denotes
concatenation.

usually call a letter, and the corresponding set is called an alphabet. Then,
the system reacts with an output letter, and this goes on ad infinitum. Their
interaction yields an infinite sequence of interleaved input and output
letters. We assume that the interaction does not terminate, as the focus
is set on the control aspect on the system rather than its computational
behaviour. Note that there is an abstraction operation going on here,
that is intrinsic to the process of modelling: we need objects that can
be algorithmically analysed, that are derived from the concrete system.
Thus, we work under the assumption that the mathematical model is
a safe abstraction of the system we consider. A paradigmatic example
of a reactive system is that of a server that interacts with its clients: the
latter address requests that the server has to grant in due time. Here,
we present a variation on the theme, that essentially exhibits the same
features: consider a coffee machine modelled as the system, that interacts
with its users who together form the environment. Users provide inputs
by pressing the buttons of the machine, to which the machine reacts
with outputs that consist in conducting various actions (booting, pouring
coffee, displaying information on its screen, shutting down, etc). Then,
a typical interaction could consist in a user that turns the machine on,
orders a coffee, receives it and turns it off. If no-one uses the machine
ever again, it stays idle indefinitely. This can be modelled as the infinite
word

press_on · boot · order_coffee · pour_coffee · press_off · shut_down · (idle · idle)ω

where the ω exponent in (idle · idle)ω means that the sequence
idle · idle is repeated infinitely many times. The input alphabet is
{press_on, order_coffee, press_off, idle} and the output alphabet is
{boot, pour_coffee, shut_down, idle}. Here, the notion of alphabet is
to be understood as a finite set: elements of those example alphabets
consist in words, but they might as well be replaced with symbols (e.g.
O for press_on, P for pour_coffee, etc).

The machine is operated by a controller that responds in a timely manner
to its input. If the controller is encoded on a chip, it has finitely many
memory states, and can thus be modelled as a deterministic transducer
that operates over infinite words; we call them ω-transducers. A typical
coffee machine could be modelled as the ω-transducer of Figure 2.4. In
general, we assume that those programs can accept any sequence of input,
so all their states are implicitly accepting. Let us insist on the fact that

off on
press_on | boot

press_off | shut_down

idle | idle
order_coffee | pour_coffee

idle | idle
order_coffee | idle

Figure 2.4.: An ω-transducer modelling a coffee machine. It is initially off, and can be turned on by pressing ‘on’. When off, any other
command has no effect. When on, one can order coffee, and the machine diligently pours it.

the interaction is to be conceived over the entire lifetime of the machine.
For instance, when it shuts down, the interaction is not over, as it might
be turned on again in the future. The overall timeline is finite, since the
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machine will eventually stop working, in spite of all the efforts to keep it
afloat. However, focusing on the interaction allows to specify more easily
requirements regarding untimely termination, e.g. when the machine
unexpectedly halts. This would be the case for instance in the faulty
sequence press_on · boot · order_coffee · shut_down · (idle · idle)ω,
where the machine shuts down before serving coffee. Thus, a typical
specification could ask that everytime an occurrence of order_coffee
is met, an occurrence of pour_coffee is met on the next step. This
requirement might however be too strong. First, one cannot expect the
machine to serve a coffee if it is off, so this requirement should be limited
to periods where a boot has occurred with no shut_down afterwards.
However, this specification is trivially satsfied by a machine that never
boots, so one should also specify how it should boot. Besides, it might
take some time for the machine to serve a coffee, e.g. if it has to conduct
internal operations like grinding the coffee, warming the water etc, so it
might not be able to react on the next time step, and one may instead ask
that it occurs within the next k steps for some number k, or even simply
that it eventually occurs.

2.3. Reactive Synthesis and the Church
Problem

Overall, a specification relates infinite sequences of inputs to a set of
infinite sequences of outputs that form acceptable behaviours. Since we
are interested in reactive systems that are in constant interaction with
their environment, it is often more convenient to see a specification as
the set of words that consists in the interleaving of an infinite sequence
of input with a corresponding acceptable behaviour. For instance, in
the above example, if one asks that pour_coffee eventually happens
after order_coffee is met, the corresponding specification consists in
interleavings of an input sequence with any output sequence that satisfy
this property.

Then, the reactive synthesis problem asks, given a finitely represented
specification, to generate a reactive program that satisfies the specification
if it exists, and toprovide awitness that the specification cannot be fulfilled
otherwise. The problem was first posed in 1957 by Church, who asked
what is now known as the Church problem [5]:

Given a requirement which a circuit is to satisfy, we may suppose

the requirement expressed in some suitable logistic system which is

an extension of restricted arithmetic. The synthesis problem is then

to find recursion equivalences representing a circuit that satisfies

the given requirement (or alternatively, to determine that there is

no such circuit). ([4])

Reactive systems are notoriously difficult to design correctly, and themain
appealing idea of synthesis is to automatically generate systems that are
correct by construction. In Church’s setting, the class of implementations
consists in reactive programs that can be executed by boolean circuits,
i.e. that use a fixed finite amount of memory, which can be modelled by
ω-transducers.
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2.3.1. Monadic Second-Order Logic

Regarding the specification formalism,Churchmainly consideredMonadic
Second Order logic (MSO) over infinite words with the predicate +1 (or,
equivalently, ≤) and predicates for letters of the alphabet. This logic is
able to express the various specifications that we described above. For
instance, asking that pour_coffee eventually occurs after order_coffee
can be written as follows:

∀x , order_coffee(x) ⇒ ∃y , y ≥ x ∧ pour_coffee(y)

2.3.2. Synthesis as a Game

In an unpublished technical report [6], McNaughton pointed out that
the problem can be seen as an infinite duration game between two
players [7] that we call the Church game. One player models the system,
and the other the environment. The goal of the system is to satisfy the
specification and is antagonist to that of the environment, which aims
at violating it†. Then, a winning strategy for the system corresponds to
an implementation of the specification, and a winning strategy for the
environment witnesses that no such implementation exists. In 1969, J.R.
Büchi and L.H. Landweber solved the problem for MSO specifications
with game-theoretic techniques [8]. The method relies on converting the
specification to a finite-state machine (more precisely an ω-automaton,
i.e. a finite-state automaton over ω-words) that accepts the interactions
which satisfy the specification. Then, such a machine is used as an
observer for the game, and defines its winning condition. Later on, Rabin
elaborated a solution that relies on tree automata [10]. In this thesis, we
adopt the game-theoretic presentation, which allows to leverage known
results about parity games, and provides an elegant formalism to describe
implementations. We broadly follow the approach of [5] to the Church
problem.

2.3.3. Linear Temporal Logic

For MSO specifications, Church’s problem inherits the non-elementary
lower boundon the satisfiability ofMonadic Second-Order Logic [11]. This
skyrocketing complexity has long prevented any practical applications
of synthesis algorithms. A first attempt to tame it was made with the
introduction of Linear Temporal Logic (LTL) [12] in the context of model-
checking for formal verification. The latter problem is the (better behaved)
twin of the synthesis problem which, given a specification and a system,
asks to determine whether the system satisfies the specification (in
contrast, synthesis is about building the system from the specification).
The authors showed that such a problem is PSpace-complete, and later on
established that the reactive synthesis problem is 2-ExpTime-complete [13].
This complexity gap between the two problems is the reason why,
as of today, formal verification has reached a wider level of practical
applicability than its synthesis counterpart [14]. However, in the last
decade, efficient methods and implementations have triggered a renewed

† Computer science modelling thus yields the unexpected situation of a coffee machine
that is pitted against its users.
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interest for this field [3, 15, 16], and it is now a very active area of
reasearch [9, 17–20]. To get an idea of this formalism, let us point out that
asking that pour_coffee eventually occurs after order_coffee can be
written as G(order_coffee⇒ Fpour_coffee), where G means that the
property holds along the whole interaction, and F that it holds at some
point in the future. Thus, this reads as ‘Along the entire run, it should be
the case that if order_coffee is met, pour_coffee should be met in the
future’.

2.3.4. ω-Automata

One can also represent specifications directly as ω-automata. Indeed,
both MSO and LTL specifications can be turned into ω-automata that
recognise acceptable sequences. Over infinite words, acceptance cannot
be defined by asking that a computation ends in an accepting state, since
it goes on indefinitely. Instead, we can ask that an accepting state is
visited infinitely often (the so-called Büchi condition), or that all rejecting
state are visited only finitely often (co-Büchi). More general conditions
exist, but this is sufficient for our purpose here.

It is often easier to design a non-deterministic automaton that recognises
violations of the specification and complement it as a universal one. For
instance, the non-deterministic automaton of Figure 2.5 checks that some
order_coffee is never followed by an pour_coffee. Dualising it yields
a universal automaton that checks that any order_coffee is eventually
followed by pour_coffee.

wait

wait

pend

pend

sat
order_coffee

any input idle any inputany output

pour_coffee

Figure 2.5.: A non-deterministic automaton that checks that some order_coffee is never followed by an pour_coffee: when in ‘wait’, it
guesses at some point that this occurrence of order_coffee is never followed by pour_coffee and transitions to ‘pend’(ing order). The
computation accepts if it loops infinitely in ‘pend’, which is the only accepting state. Dualising it yields a universal automaton that checks
that any order_coffee is eventually followed by pour_coffee: ‘pend’ is now the sole pair of rejecting states, and it is visited infinitely often
for at least one computation if and only if some order is never satisfied.

Reactive synthesis and related definitions are presented in Chapter 3,
which summarises known results that are needed for our subsequent
study.
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2.4. To Infinity and Beyond: the Shift to an
Infinite Alphabet

2.4.1. Data Words

The renewal of interest for synthesis also opened the way to possible
extensions of existing techniques to more general settings. If you come
back to the coffee machine example (or, equivalently, to a server that has
to grant requests), it is not always the case that the orders of all users
can be amalgamated into a fixed finite number of requests. For instance,
each user might have a particular request (e.g. having their name on the
cup) that cannot be modelled as a finite alphabet. This is captured by the
notion of data words, whose elements take their value in an infinite set
of data values D, that is called a data domain. For modelling purposes,
it is often convenient to be able to label data values with letters from
a finite alphabet Σ, even though it can be encoded in the data domain.
For instance, the fact that a given user ordered a coffee is modeled
as the pair (order_coffee, id), where id is a data value (e.g. a natural
number) that represents the user. Data domains can be equipped with
various structures, given by relational predicates and constants that are
interpreted over the domain. The simplest one consists in a data domain
with the equality predicate, with which one can specify that user no i
receives cup no i. Then, one can consider the case of a linear ordering on
users, to model the property that some users might be more equal than
others, and consequently have precedence over others. This framework
also allows to consider domains where operations can be conducted
on data values: if the machine receives money and has to check that
the right amount has been paid, it has to be able to conduct additions
and comparisons for equality. However, we enter murky waters here: as
the seasoned reader might feel already, this kind of structure allows to
express arithmetic operations that are sufficient to get undecidability
(see Section 4.9).

2.4.2. Register Automata

Models of reactive systems have to be correspondingly extended, so as
to be able to manipulate data values. Among others, register automata are
one of the main extensions of automata recognising languages of data
words [21, 22]. They consist in finite-state automata that are equipped
with a finite set of registers in which to store data values that are read,
and to compare the current data with the content of some of the registers
with regards to the predicates of the data domain. Note that a given
register can only contain a single data value at a time, which means
that when a data value is stored in some register, its previous content is
overwritten. They were initially introduced for data domains with the
equality predicate only, then generalised to linear orders [23, 24]. We
further extend them to arbitrary domains, in the spirit of the G-automata
of [25, Section 3], and of [26, Chapitre 1].

As for finite-state automata, those automata can be equipped with
two dual semantics, whether they are considered non-deterministic or
universal. A non-deterministic register automaton accepts its input if at
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i p q↓ r

? , r

? � r

Figure 2.6.: A deterministic register automaton with one register r over data domain (N,�) that checks that the first data value appears
again in the input. It initially stores it (↓ r), and then waits in p until it sees it again (? � r holds whenever it reads an input data value that is
equal to the content of r), then transitions to q, in which it loops indefinitely.
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least one of its executions is accepting, i.e. if it can guess a correct run over
its input. In contrast, a universal register automaton accepts its input if
all its executions are accepting. Contrary to the finite alphabet case, both
models are not equivalent, and recognise dual classes of languages [21,
Proposition 5]. One can also consider a semantics that combines the two,
namely alternation [27]. However, it yields a model that is too expressive
for our purpose, since the emptiness and universality problems are
undecidable [28, Theorems 4.1 and 4.2], which dampens any hope for the
harder problem of synthesis from specifications expressed as alternating
register automata.

2.4.3. Register Transducers

The automata-theoretic approach of verification and synthesis can be
extended to data words through automata and transducers that operate
with data values. In this perspective, transducers can be extended to
register transducers as a model of reactive systems over data words: a
register transducer is equipped with a finite set of registers, and when
reading an input labelled data (σ, d) ∈ Σ × D, it can compare d with
the content of some of its registers, and depending on the result of
this test, deterministically store d in some of its registers and output a
label γ along with the content of one of its registers (see the example of
Figure 2.7). Its executions are then data words alternating between input

off on
press_on | boot

press_off | shut_down

idle | idle
order_coffee | ↓ r , pour_coffee, ↑ r

idle | idle
order_coffee | idle

Figure 2.7.: A register transducer modelling a coffee machine that specifically serves the client that ordered.

and output labelled data. In the same way as automatic specifications are
described by an ω-automaton that reads infinite sequences of alternating
input and output signals, register automata can thus be used to represent
specifications as data languages (cf Figure 2.8 on the following page).

2.4.4. Automata and Logics over Data Words

Contrary to the finite alphabet case, there is no known correspondence
between automata and logics that can be exploited to solve the synthesis
problem for specifications expressed in a logical formalism following a
path similar to the Church problem for MSO specifications, that consists
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wait

wait

pend

pend

sat

any input any output

order_coffee, ↓ r

idle or
pour_coffee, ? , r

any input

pour_coffee, ? � r

Figure 2.8.: A universal co-Büchi register automaton checking that every order_coffee of any client id is eventually followed by
(pour_coffee, id).
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in representing the winning condition of the Church game with an
automaton. In [28], the authors relate LTL with the freeze quantifier [31],
that allows to ‘store’ a data value that appears in the formula, and
register automata. They demonstrate that LTL with freeze formulas can
be recognised by two-way alternating register automata, with a number
of registers that is the same as the number of data variables that can
be frozen [28, Theorem 4.1]. However, the emptiness problem of such
a model is undecidable, already with one register when considering
infinite words [28, Theorem 5.2]. Later on, Demri, D’Souza, and Gascon
considered the Logic of Repeated Values, which limits the use of the
freeze quantifier so as to get a logic that is both decidable and closed
under negation [32]. However, it was shown in [33, Theorem 4.1] that
gameswith objectives given as LRV formulas are undecidable. The case of
single-sided specifications is decidable, and inspired our treatment of the
synthesis problem for specifications expressed as deterministic register
automata, triggering the introduction of the one-sided restriction. Yet,
for lack of a suitable logic for expressing specifications that is expressive
enough and allows both the system and the environment to manipulate
data values, as a first step, we study the case of specifications expressed
by register automata, that we call data automatic.

2.4.5. Control and Data Processing

Equipping finite-state automata with registers also allows to separate
two aspects of the behaviour of the system, namely control and data
processing,which demonstrates the relevance of themodel alreadywith a
finite set of data values. Indeed, existing synthesis algorithms do not scale
well when the size of the alphabet increases. For instance, if you come
back to our running example, consider the setting where the machine
can serve various types of beverages. There are finitely many, yet what
matters is not so much the precise nature of the beverage as the fact that
if a client orders x, they receive x. This parametricity cannot be captured
by a finite alphabet with no further structure. This is illustrated by the
following setting: assume the users make their choice in a set B, and that
k clients can order at the same time. Then, the machine has to keep in
memory the set of beverages that has been ordered. Any subset of size k
of B is possible, which means that the smallest automaton that represents
the specification needs memory

( |B |
k

)
. In contrast, it can be represented

with a register automaton with k registers, that stores the order of each
client in the corresponding register, and later on checks that each order
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has been correctly served. This is reflected on the implementation side:
with no registers, the implementation again needs memory

( |B |
k

)
, while a

machine with registers can store the orders in memory and serve them
back in order using k states and k registers.

This direction of reasearch has been more specifically explored for
specifications expressed in (fragments of) first-order logic over data
words under the name of parameterised synthesis, that operate under the
assumption that there is a fixed but arbitrary number of distinct elements
that interact with the system [34].

2.4.6. Contributions

The following contributions are detailed in the first part of themanuscript.
Chapter 4 contains a presentation of the model of register automata, that
is at the core of our study since we use it to express specifications. It
describes its useful properties, that are extracted from the literature and
established for arbitrary data domains when possible. We then propose a
generalisation of the Church synthesis problem to specifications over data
words, that targets register transducers, as a counterpart of transducers
over data words (Chapter 5).

Register-Bounded Synthesis

In our first contribution (Chapter 6), we examine the register-bounded
synthesis problem [35], that consists in targeting implementation defined
by register transducers with a number of registers that is given as input.
We start with specifications expressed as universal register automata:
the universal semantics is well-suited to express specifications, since it
is naturally closed under intersection. Moreover, it often convenient to
specify a violation of the specification. For instance, the requirement that
every user eventually receives their coffee (or, in a client/server setting,
that any request is eventually granted) can be expressed by a universal
automaton that checks that no order is never satisfied (Figure 2.8 on
page 33). The fact that an order is left unsatisfied is easily expressed using
a non-deterministic automaton, as it suffices to guess a faulty one; the
specification is then obtained by dualising the automaton to get negation.
To the contrary, in the infinite alphabet case, it cannot be specified using
a non-deterministic register automaton.

We show that the register-bounded synthesis problem is decidable
for specifications recognised by universal register automata over data
domains (D,�) (Theorem 6.14) and (Q, <) (Theorem 6.16). The problems
more precisely lie in 2-ExpTime. The first result was known from [36,
Corollary 3], and independently proved by us in [37, Theorem 12]. The
compositionality of our proof allows to extend it to (Q, <) with little
additional work, and to further equip universal register automata with a
guessing mechanism, as was introduced for non-deterministic register
automata [38]. The case of (N, <) is more involved, since the structure of
(N, <) induces behaviours that cannot be captured regularly, as witnessed
by the fact that runs of those register automata correspond to ωB-regular
languages [39, Theorem 17]. This is the topic of ongoing research that is
not described in this manuscript as it deserves to mature a bit more.
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To elaborate our decision procedures, we develop a generic method that
relies on a reduction to reactive synthesis over finite alphabets, and yields
decidabilitywhen the class of specification enjoys some closure properties
and language operations. It is based on a transfer theorem (Theorem 6.8)
that expresses equi-realisability of a data word specification and its finite
alphabet counterpart, whose definition is based on the notion of action
sequences which essentially represent syntactical executions of register
transducers.

Non-deterministic register automata specification are not so easily tamed,
since theproblem is alreadyundecidablewhen targeting implementations
with a single register (Theorem 6.19). We consider the subclass of test-free
specifications, where the input transitions of the specification automaton
cannot depend on tests over the input data values. Still, those machines
are able to duplicate, erase andmove the data values. Our generic method
allows to show that the register-bounded synthesis problem for this class
of specifications is decidable in 2-ExpTime, by making the link with the
notion of origin, as introduced in [40].

A preliminary version of this work appeared as [37], that was later on
extended to [41]. This chapter additionally features the extension to the
case of (Q, <) and the handling of the guessing mechanism. The proofs
have also been reformulated in the slightly more general context of
template-guided synthesis.

The results are summarised in Tables 2.1 (for (D,�)) and 2.2 (for (Q, <)),
which also present the results from the next contribution.

Unbounded Synthesis

The next chapter is dedicated to the study of the unbounded synthesis
problem, where the target implementation can be any register transducer,
i.e. there is no given bound on its number of registers. We show that the
problem is undecidable for specifications expressed as non-deterministic
and universal register automata over (D,�) (Theorems 6.20 and 7.1),
which also motivates the register-bounded synthesis approach. The latter
problem was posed as an open problem in [36]. To recover decidability,
we consider the case of specifications expressed by deterministic register
automata, where determinism is to be understood over joint inputs
and outputs. We show that if the specification consists in a locally
concretisable automaton, i.e. such that for any state, a transition can be
taken independently of the valuation of the registers, then it essentially
suffices to play on the specification as if it were a game arena, as is done in
the finite alphabet case. This yields decidability of the reactive synthesis
and Church problem for the case of (D,�) (Theorem 7.15) and of (Q, <)
(Theorems 7.16 and 7.17). In the case of (D,�), we additionally show that,
as in the finite alphabet case, the reactive synthesis problem is equivalent
to the Church problem. In other words, if the specification admits an
implementation, it admits one that is computed by a register transducer.
This is not the case anymore for (Q, <) (Property 7.18).

Thus, we also study the one-sided restriction, that is analogous to the
single-sided restriction for LRV games that allows to recover decidability
in [33]. The output transitions of the specification automaton are restricted
to data values that are present in the registers. This is equivalent to the
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case where they would only depend on the labels of the data values,
since choosing a register to output can be simulated by picking a letter
that denotes the corresponding register. In other words, they essentially
behave like transducers, so solving the synthesis problem amounts to
picking output transitions along the run. In game-theoretic terms, this
means asking that the system player picks her actions in a Boolean
set. For this subclass, we again have that it suffices to target register
transducers for specifications recognised by one-sided register automata
over (Q, <). Finally, we show that this restriction marks the decidability
boundary over (N, <) (Theorems 7.19 and 7.28). Decidability for one-
sided specifications over (N, <) is obtained by showing that it suffices
to consider an ω-regular approximation of the synthesis game (recall
that the behaviours of register automata over (N, <) are not ω-regular
in general). Undecidability stems from the fact that alternation and
antagonism between the system and its environment can be exploited
to simulate counter machines: one player suggests successive values of
the counter, while the other is in charge of checking that she does not
cheat.

This second line of work was also presented in [37] and [41]. In this
manuscript, the argument is presented in a more modular way, using
the concept of game-ready specification automaton. It also extends the
study to the case of (Q, <).

The case of (N, <) has been treated in [42], as it requires the introduction
of more elaborate proof techniques.

Table 2.1.: Decidability status of the problems studied over (D,�,C). {D ,N,U}RA stands for deterministic (respectively non-deterministic,
universal) register automata. The mention ‘tf’ means ‘test-free’. ‘Bounded synthesis’ is a short for ‘register-bounded synthesis’. As observed
in Corollary 7.13, the register-bounded synthesis problem for deterministic register automata is in ExpTime if the target number of registers
is larger than or equal to the number of registers of the specification, since it then reduces to the unbounded synthesis problem.

DRA NRA URA NRA tf

Bounded 2ExpTime Undecidable (k ≥ 1) 2ExpTime 2ExpTime
Synthesis (Thm. 6.14) (Thm. 6.19) ([36] and Thm. 6.14) (Thm. 6.25)

Unbounded ExpTime-complete Undecidable Undecidable OpenSynthesis (Thm. 7.15) (Thm. 6.20) (Thm. 7.1)

Table 2.2.: Decidability status of the problems studied over (Q, <, 0). The landscape is essentially the same, the objective is to list the
corresponding theorems. Test-free specifications are omitted as they do not depend on the data domain.

DRA NRA URA
Bounded 2ExpTime Undecidable (k ≥ 1) 2ExpTime
Synthesis (Thm. 6.16) (Thm. 6.19) (Thm. 6.16)

Unbounded ExpTime-complete Undecidable Undecidable
Synthesis (Thm. 7.16) (Thm. 6.20) (Thm. 7.1)

2.4.7. Related Works

As alreadymentioned, register-bounded synthesis of register transducers
is considered in [36]where it is shown tobedecidable foruniversal register
automata. We proved the main result [36, Corollary 3] independently.
The problem was further studied in [35], which features a simplified
proof and amore precise complexity analysis. They also consider a setting
where the environment is also modelled as a register transducer, whose
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number of registers is bounded, and show that it is decidable, although
the corresponding game is not determined.

In [43], Faran and Kupferman consider the synthesis problem for word
automata with arithmetic. These automata are equipped with a finite
number of variables on which (as the name suggests) it can perform
arithmetic operations and tests. Variables form the analogous of registers
in our context; however, their valuation is fixed for the entire run, contrary
to registers which can be updated by overwriting their content with
the input data value, or by guessing a data value (when equipped with
the guessing ability of [38]). Their main result is the decidability of the
synthesis problem for non-deterministic word automata with arithmetic
that are semantically deterministic, i.e. whose non-determinism can be
solved once the valuation of the variables is known. More precisely, it can
be solved in timepolynomial in the size of the automaton, and exponential
in the number of variables [43, Theorem 5]. As they show, this class of
automata lies strictly between deterministic and non-deterministic word
automata with arithmetic [43, Theorem 2 and 3]).

The synthesis problem over infinite alphabets is also considered in [44],
in which data values represent identifiers and specifications are express
in a formalism that is equivalent to universal register automata over
data domains with equality. However, the class of implementations is
very expressive: it allows for unbounded memory through a queue data
structure. The synthesis problem is shown to be undecidable, already
for the semi one-weak restriction. A sound but incomplete algorithm is
given with an application to a robot waiter in a restaurant.

The class of test-free non-deterministic register automata, that allows
to get decidability for register-bounded synthesis for a class of non-
deterministic machines, corresponds to the one-way, nondeterministic
version of the expressive transducer model of [45], which however does
not consider the synthesis problem.

In [46], the authors develop a Counter-Example Guided Abstraction
Refinement (CEGAR) procedure for specifications expressed in Temporal
StreamLogic (TSL), that allows to define specifications over uninterpreted
functions. The algorithm tries to generate an implementation that satisfies
the specification for any possible interpretation of the functions. If it
fails, it computes a counter-example, examines whether it is spurious
(i.e. based on an inconsistent use of the uninterpreted functions) and
accordingly refines its abstraction. This yields a semi-decision procedure
for TSL, whose realisability problem is shown undecidable [46, Theorem
2]. The paper describes an application to the synthesis of a music player
Android app.

Syntax-guided synthesis for programs over data domains has been
studied in [47]: the synthesis algorithm takes as input a skeleton of the
program to synthesise, and has to fill the gaps. As above, functions
are uninterpreted, so the program should be correct for all possible
interpretations. They show that the problem is 2-ExpTime-complete [47,
Theorem 9] for the class of uninterpreted coherent programs (a restriction
that was already known to yield decidable verification), while the general
problem is undecidable [47, Theorem 1].
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We use the terminology of ω-
computability to avoid the confusion the
usual notion of computability, which we
also use in our study.

Finally, as mentioned earlier, games with data values has been considered
in [33]. The objective is given as a formula of the Logic of Repeating
Values, which is a restriction of LTL with the freeze quantifier. The
authors show that such games are undecidable, but that their single-
sided version is decidable in 4ExpTime, when the logic is restricted
to test remote repetitions in the past. Both restrictions are necessary,
otherwise undecidability resurfaces. In a synthesis perspective, this can
be expressed as decidability of the reactive synthesis problem for single-
sided specifications expressed by LRV formulas. The Church synthesis
problem is left open, as the memory structure of winning strategies is
not examined.

2.5. Good Things Come to Those Who Wait:
Lifting the Synchronicity Requirement

2.5.1. ω-Computable Implementations

In some settings, it is not realistic to assume that the system reacts to
its inputs in a synchronous way, as this might be too restrictive for
implementations. Come back once more to our running example, and
consider a machine that can brew and serve two coffees at a time. In this
setting, when the machine receives an order, it might be more efficient to
wait for a possible second order for a few time units (say k) before starting
the operation. Correspondingly, specifications and implementations are
modelled by asynchronous machines. More precisely, the specification
is now given as a non-deterministic asynchronous transducer, which is
allowed to output a (possibly empty) word everytime it reads a letter, and
implementations consist in asynchronous sequential transducers, which
consists in transducers that behave deterministically with regard to their
input. Already in the finite alphabet case, this setting is undecidable [48,
Theorem 17]. In the infinite alphabet case, as we demonstrate in this
thesis it is already undecidable for synchronous specifications (Theorem
6.20).

We instead consider ω-computable implementations. They consist in
functions that are computable by some Turing machine M that has an
infinite input x ∈ dom( f ), and must produce longer and longer prefixes
of the output f (x) as it reads longer and longer prefixes of the input x.
Therefore, such a machine produces the output f (x) in the limit. In the
above example, the specification is ω-computable, as it suffices to wait
for k times unit for deciding whether to start brewing a single coffee or
two at a time. However, consider the case where the machine instead
has to decide whether to enter sleep mode or not, and can only do so if
no orders are made in the future (with no bound). Such a specification
is not ω-computable, as this information depends on the infinite suffix
of actions. Finally, to distinguish ω-computable implementations from
finite-memory ones, consider the case where the machine accumulates
orders, and only delivers themwhen some button ‘deliver’ is pushed. This
specification is ω-computable by a machine that simply stores the orders
in memory, but not by any deterministic transducer, since it necessarily
has a bounded amount of memory.
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2.5.2. Restricting to Functional Specifications

However, already in the finite alphabet setting, the problem of deciding
if a specification given as some non-deterministic synchronous transducer
is realisable by some ω-computable function is open. The particular
case of realisability by ω-computable functions of universal domain (the
set of all ω-words) is known to be decidable [49, Corollary 15]. In the
asynchronous setting, the undecidability proof of [48, Theorem 17] can be
easily adapted to show the undecidability of realisability of specifications
given by non-deterministic (asynchronous) transducers by ω-computable
functions.

In general, a specification is a relation from inputs to outputs. If this
relation is a function, we call it functional. Due to the negative results
just mentioned about the synthesis of ω-computable functions from non-
functional specifications, we instead here focus on the case of functional
specifications and address the following general question: given the spec-
ification of a function of data ω-words, is this function ‘implementable’,
where we define implementable as being ω-computable by some Turing
machine. Moreover, if it is implementable, then we want a procedure to
automatically generate an algorithm that computes it. This raises another
important question: how to decide whether a specification is functional?
We investigate these questions for asynchronous register transducers,
here called register transducers. This asynchrony allows for much more
expressive power, but is a source of technical challenge.

2.5.3. Contributions

As for register automata, register transducers are parameterised by
the data domain from which the data ω-words are built, along with
the set of predicates which can be used to test those data values. We
distinguish a large class of data domain for which we obtain decidability
results for the later problem, namely the class of oligomorphic data
domains [26, Section 3.2]. Briefly, they consist in a countable set D
equippedwith afinite set of predicateswhich satisfies that for all n,Dn can
be partitioned into finitelymany equivalence classes by identifying tuples
which are equal up to automorphisms (predicate-preserving bĳections).
For example, any set equipped with equality is oligomorphic, such as
(N,�). Importantly, (Q, <) is oligomorphic while (N, <) is not. However
(N, <) is an interesting data set in and of itself. We also investigate non-
deterministic register transducers over such data domain, using the fact
that it is a substructure of (Q, <)which is oligormorphic. Our detailed
contributions are the following:

1. Wefirst establish ageneral correspondencebetweenω-computability
and the classical mathematical notion of continuity (for the Cantor
distance) for functions of data ω-words (Theorems 11.2 and 11.3).
This correspondence holds under a general assumption, namely
the decidability of what we called the next-letter problem, which
consists in finding the next data value which can be safely output
knowing only a finite prefix of the input data ω-word, if it exists.
We also show similar correspondences for more constrained ω-
computability and continuity notions, namely Cauchy, uniform and
m-uniform computability and continuity. In these correspondences,
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the construction of a Turing machine ω-computing the function is
effective.

2. We consider a general computability assumption for oligomor-
phic data domains, namely that they have decidable first-order
satisfiability problem [26]. We call such data domains decidable.
We then show that functions defined by non-deterministic regis-
ter transducers over decidable oligomorphic data domains and
over (N, <), have decidable next-letter problem. As a consequence
(Theorems 12.39 and 12.66), we obtain that a function of data
ω-words over a decidable oligomorphic data domains or over
(N, <) that is definable by a non-deterministic register transducer
is ω-computable if and only if it is continuous (and likewise for all
ω-computability and continuity notions we introduce). This is a
useful mathematical characterisation of ω-computability, which
we use to obtain our main result.

3. As explained before, a register transducermay not define a function
in general but a relation, due to non-determinism. Functionality
is a semantical, and not syntactical, notion. We nevertheless show
that checking whether a non-deterministic register transducer
defines a function is decidable for decidable oligomorphic data
domains. This problem is called the functionality problem and is
a prerequisite to our study of ω-computability, as we assume
specifications to be functional. We establish PSpace-completeness
of the functionality problem for register transducers over (N, <)
(Theorem 12.64) and for oligomorphic data domains (Theorem
12.40) under some additional assumptions on the data domain that
we call polynomial decidability. In short, it is required that the data
domain has PSpace-decidable first-order satisfiability problem.

4. Finally, we show (Theorem 12.41) that continuity of functions
defined by register transducers over decidable (resp. polynomially
decidable) oligomorphic data domains is decidable (resp. PSpace-c).
We also obtain PSpace-completeness in the non-oligomorphic case
(N, <) (Theorem 12.72). These results again hold for the stronger
notion of uniform continuity (see also Theorem 12.68). As a result
of the correspondence between ω-computability and continuity,
we also obtain that ω-computability and uniform computability
are decidable for functions defined by non-deterministic register
transducers over decidable oligomorphic data domains, andPSpace-
complete for polynomially decidable oligomorphic data domains
as well as (N, <). This is our main result and it answers positively
our initial synthesis motivation.

2.5.4. Related Works

We have already mentioned works related to the synthesis problem.
We now give references to results on ω-computability and continuity.
The notion of continuity with regards to the Cantor distance is not new,
and for rational functions over finite alphabets, it was already known
to be decidable [50, Proposition 4]. The approach of Prieur is to reduce
continuity to functionality by defining, from a transducer T a transducer
realising its topological closure. The latter is functional if and only if
the former is continuous [50, Lemma 5.1]. We were able to extend this
approach to almost all the cases we considered, except for transducers
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over (N, <) in the presence of guessing, so we chose a different proof
strategy. The connection between continuity and ω-computability for
functions of ω-words over a finite alphabet has recently been investigated
in [51] for one-way and two-way non-deterministic transducers. Our
results lift the case of one-way transducers from [51, Theorems 6 and 12]
to data ω-words.

2.6. Outline

The contributions detailed in this manuscript are twofold. The first part
is dedicated to the reactive and Church synthesis problems. Its first
chapter exposes the landscape of what is known for the finite alphabet
case. Chapter 4 focuses on register automata. Chapter 5 defines data
automatic specifications, register transducers and the Church problem
over data words, as well as the corresponding Church game. Chapter 6
tackles the register-bounded synthesis problem for universal (Section
6.2) and non-deterministic (Section 6.3) specifications over data domains
(D,�) and (Q, <), as well as the test-free restriction (Section 6.3.2). The
next chapter is dedicated to unbounded synthesis. It first presents the
undecidability results that motivate the introduction of register-bounded
synthesis (Theorems 6.20 and 7.1), followed by positive results in the case
of a specification given by a derministic automaton (Section 7.3). The
part concludes with a discussion on the question of the domain of the
implementation (total versus partial), that marks the decidability border
in the infinite alphabet case (Chapter 8).

The second part is dedicated to the study of ω-computability and continu-
ity for functions represented by non-deterministic asynchronous register
transducers. The model is introduced in Chapter 10, which also estab-
lishes closure under composition for this class of functions. In Chapter 11
we expose the notion of ω-computability, and show that for transducers
it is equivalent with continuity for the Cantor distance, and similarly for
refined notions. The rest of the part is dedicated to the study of various
data domains, where we settle the decidability status of functionality, ω-
computability, continuity and their refined notions (Chapter 12). Section
12.1 is focused on data domains with the equality predicate. The next
section generalises the study to (Q, <) and oligomorphic data domains.
Finally, Section 12.3 tackles the case of (N, <), which is more involved
as register transducers over this data domain do not exhibit a regular
behaviour. The part concludes with a discussion on further extensions.

This part is followed by a general conclusion that links the two parts and
draws perspectives for future research.

2.7. How to Read this Thesis?

Numbering Conventions Environment that correspond to hypotheses,
i.e. definitions, notations and conventions are numbered together. Idem
for those regarding conclusions, namely theorems, propositions, corol-
laries, lemmas, properties and observations. Besides, the numbering is
according to chapters.
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tation of the kaobook class

There is also a bibliographic section at the
end of the document, to which the links
to references in the body refer.

Links are coloured in the default version of
the document, but the author can provide
a version with links hidden to the reader
which finds it more suitable for their use.

Most figures are drawn using the wonder-
ful TikZ package.

Colours are not used in the text, except for
links, so that the document does not look
like Elmer.

The reader is of course encouraged to in-
vent their own.

Linkwith Publications Part of thework that is presented here has been
published in conference or journal papers.When this is the case, theorems
are linked with the corresponding paper; the citation is highlighted in
bold.

Kaobook This thesis has been written using the kaobook class. It fea-
tures a wide margin, which contains notes, bibliographic references [52],
captions of figures and sometimes the figures themselves. Side notes are
not numbered so as not to impede reading, but they are aligned with the
content they refer to. The rationale behind this class is that this document
is probably read on a computer or a similar device, on which looking for
the information at the bottom of the page (for footnotes‡) or at the end
of the document (for references) is tedious.

Definitions and Notations Another feature of this work is the use of
the knowledge package, which links any occurrence of a notion to the
place where it is defined. This might appear contradictory with the
previous one, which focuses on locality of information. The contradiction
can however be overcome through the use of modern PDF readers, which
display a preview of the targeted link, and hence of the definition of the
notion. The thesis also contains an index of notations at 334.

Graphical Conventions An image is sometimes worth a thousand
words§, and many notions are illustrated through examples. Some proof
ideas are also conveyed through figures. For readability, this document
features a set of graphical conventions, which are introduced along the
way and listed in Chapter A in the appendix. In particular, colours are
used in figures as a way to convey information.

Roadmaps Reading order is a matter of taste (and of available time),
so some efforts have been devoted to allowing a modular reading of
the document, depending on the background and expectations of the
reader. Besides the classical linear reading, here are various possible
roadmaps:

The Quest for Equality This work started with the study of data do-
mains with the equality predicate only. Register automata over
these domains are pretty well behaved, which yields simpler con-
structions and proofs. The reader who is only interested in this
case can skip the developments about richer structures (dense and
discrete orders, as well as oligomorphic domains). Jumps to that
effect are mentioned along the document.

All About Registers Chapter 4 is meant to be a primer on register
automata. It was written with synthesis applications in mind, but
contains the standard properties of the model and pointers to the
existing literature.

The Two Facets of Synthesis Chapters 6 (Register-Bounded Synthesis
of Register Transducers) and 7 (Unbounded Synthesis of Register
Transducers) can be read independently. Each build on Chapters 3
to 5.

‡ One or two footnotes survived, for ancillary ancillary material like puns.
§ This can be taken literally. Authors of conference-format articles might relate.

https://ctan.org/pkg/pgf
https://en.wikipedia.org/wiki/Elmer_the_Patchwork_Elephant
https://github.com/fmarotta/kaobook/
https://www.irif.fr/~colcombe/knowledge_en.html
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Patience is a Virtue Part II is dedicated to asynchronous transducers,
and can mostly be read independently. It only assumes basic
knowledge about register automata, which can be found in Chapter
4.
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[5]: Thomas (2009), ‘Facets of Synthesis:
Revisiting Church’s Problem’

Reactive Synthesis
over Finite Alphabets 3.

This chapter introduces the reactive synthesis problem and presents
existing results which hold in the finite alphabet case and that prove
useful for our study of the generalisation to infinite alphabets in the next
chapters. Reactive synthesis is first presented as a specialisation of the
more general uniformisation problem, following the spirit of [5], so as
to ease the exposition of the asynchronous case (cf Part II). The Church
synthesis problem is then formulated in an independent way (Section
3.4) to allow for a modular reading of the document. The reader who
is more familiar with the game-theoretic point of view can start with
Section 3.5.3.

Summary
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When we consider k-ary relations, we ex-
plicitly state it, so that no ambiguity arises.

Remark 3.1 The uniformisation property
is a weak form of the axiom of choice.

3.5.2. Games and Automata . . . . . . . . . . . . . . . . 68
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3.5.3. The Church Game . . . . . . . . . . . . . . . . . . 70

3.1. Relations and Functions

Let X and Y be two sets. A binary relation, or relation, for short over X
and Y is a subset R ⊆ X × Y. Its domain is dom(R) � {x ∈ X | ∃y ∈
Y, (x , y) ∈ R}. We say that R has total domain if dom(R) � X. For a set
A ⊆ X, the image of A by R is R(A) � {y ∈ Y | ∃a ∈ A, (a , y) ∈ R}. We
say that Im(R) � R(X) is the image of R.

A relation R is functional if for all x ∈ dom(R), R({x}) is a singleton. A
partial function from X to Y, denoted f : X → Y, is a functional relation.
For x ∈ dom( f ), we then denote f (x) the unique element of f ({x}). We
say that f is total if it has total domain, i.e. dom( f ) � X. The set of total
functions from X to Y is denoted YX . As usual, functions are by default
total.

3.2. Uniformisation and Program Synthesis

3.2.1. Uniformisation

Definition 3.1 (Uniformisation) Let R ⊆ A × B be a relation, where A
and B are two sets, and let f : A→ B be a partial function. We say that f
uniformises R, or that f is a uniformiser for R, when (see also Figure 3.1):

(i) dom( f ) � dom(R)
(ii) f ⊆ R, i.e. for all x ∈ dom( f ), (x , f (x)) ∈ R

A

B

f

R

Figure 3.1.: A function f : A→ B which
uniformises the relation R ⊆ A × B.
By convention, input is coloured red, out-
put and functions are in green, and rela-
tions in blue.

We then say that a class R of relations admits the uniformisation property

if every relation R ∈ R admits a uniformiser f ∈ R, i.e. a functional
relation in the same class that uniformises it. More generally, the field of
uniformisation theory is concerned with the following problem: given a
class R of relations and a class Fof functions, does any relation R ∈ R
admit a uniformisation f ∈ F? Here, we introduce the decision variant of
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A program is a deterministic Turing ma-
chine. It takes as input an i ∈ In, encoded
as enc(i) ∈ {0, 1}∗ (Turing machines, like
computers, only operate over sequences
of bits). We say that it outputs o ∈ Out
if it halts and the content of its tape at
this moment is enc(o) ∈ {0, 1}∗ (note that
we assume that the encoding enc is injec-
tive). It computes the function fP which, to
each input i ∈ In such that the machine
halts, associates the corresponding output
o ∈ Out.

x and y are incomparable for a partial order
relation P whenever neither (x , y) ∈ P nor
(y , x) ∈ P.

Given a set A, a sequence T is a scheduling

of a set A if it is a permutation of A.

A list b � [b0 , . . . , bm] is a permutation of a
list a � [a0 , . . . , an] if they have the same
length (m � n) and there exists a bĳection
π : {0, . . . , n} → {0, . . . , n} such for all
0 ≤ i ≤ m � n, bi � aπ(i).

A list a � [a0 , . . . , an] is increasing if its
elements are in increasing order, i.e. for all
0 ≤ i < j ≤ n, ai ≤ a j .

the problem, namely the uniformisation problem, which provides a general
setting in which to express synthesis problems:

Problem 3.1: Uniformisation problem

Input: A relation R ∈ R
Output: A finitely represented function f ∈ Fwhich uniformises R

if it exists
No otherwise

Remark 3.2When R is a class of relations that are functional, the
uniformisation problem is actually a membership problem.

3.2.2. Program Synthesis

Let In and Out be (possibly infinite) sets of inputs and outputs. Program
synthesis asks, given a specification S ⊆ In × Out which relates inputs in In
with admissible outputs in Out, to generate, if it exists, a program P which
computes a function fP : dom(S) → Outwhich for each input i ∈ dom(S),
selects an admissible output fP(i) ∈ Out such that (i , fP(i)) ∈ S. We then
say that P is an implementation of S (cf Figure 3.2).

Given Specification
S ⊆ In × Out

i ∈ In

o1 ∈ Out

o2 ∈ Out

o3 ∈ Out

Does there exist Implementation
fP : In→ Out

i ∈ In

o1 ∈ Out

o2 ∈ Out

o3 ∈ Out

Such that ∀i ∈ In, (i , fP(i)) ∈ S

Figure 3.2.: The program synthesis prob-
lem. S is a relation. fP is a function com-
puted by a program P.

Such problem can be reformulated as a uniformisation problem from S

the class of relations over In × Out to I the class of computable functions
from In to Out.

Example 3.1 (Scheduler) Consider a set J of jobs. A precedence relation

P ⊆ J × J over J is a partial order. A sequence t1 . . . tn ∈ J∗ is consistent
with P whenever for all 0 ≤ k < l ≤ n, (tk , tl) ∈ P or tk and tl are
incomparable.

Now, one can define a specification Ssch such that for any subset J′ ⊆ J of
jobs and any precedence relation P over J, and for any sequence T of jobs,
((J′, P), T) ∈ Ssch whenever T is a scheduling of J′ which is consistent
with P.

Then, implementations of Ssch are exactly schedulers for the set of jobs J.

Example 3.2 (Sorting) Note that the program synthesis problem is already
interesting in the case where the specification is functional.

Consider for instance the following specification Ssort ⊆ N∗ × N∗:
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The notion of computability and ω-
computability are formally defined and
studied over infinite alphabets in Part II
(Section 11.1). In this part, we only consider
computability by synchronous programs.

[5]: Thomas (2009), ‘Facets of Synthesis:
Revisiting Church’s Problem’

The notion of synchronous program is
defined in Section 3.3.2.

[53]: Grädel, Thomas, and Wilke (2002),
Automata, Logics, and Infinite Games: A

Guide to Current Research [outcome of a

Dagstuhl seminar, February 2001]

In this document, we often confuse letters
with words of length 1.

La f , its complement La∞, as well as LaB
and Lhalt are all ω-languages. However,
as we will see, they have quite different
structures: the first two are ω-regular, i.e.
they can be recognised by a finite-state
machine called an ω-automaton (cf Def-
inition 3.5 and Example 3.15), while LaB
cannot. The last one is even more complex,
and it is actually outside the Chomsky hi-
erarchy. Indeed, it is not even recursively
enumerable, since the halting problem is
undecidable.

Ssort �


(
[a0 , . . . , an],
[b0 , . . . , bn]

) ������ [b0 , . . . , bn] is a permutation of
[a0 , . . . , an] and
[b0 , . . . , bn] is increasing


Implementations of S are exactly sorting algorithms over N.

Remark 3.3 (ω-computability) Note that for input and output sets whose
elements cannot be finitely represented, and in particular for infinite
words, the notion of computability needs to be extended to what we call
ω-computability. Informally, a function is ω-computable if there exists
a Turing machine which, on reading longer and longer prefixes of the
input, outputs longer and longer prefixes of the output.

With no further restrictions to the class Sof specification and to the class
I of implementations, the program synthesis problem is too general
to be decidable [5]. However, there are classes of specifications and
implementations for which it is both interesting and decidable. One of
them is the setting of reactive synthesis. The specification is an ω-regular
language describing the behaviour of a non-terminating program, given
for instance as anMSO formula. Target implementations are synchronous
programs, i.e. programs which process their input bit by bit and produce
the corresponding output in an on-line mode. We are more specifically
interested in the Church synthesis problem (Section 3.4), which further
restricts to programs that only use a finite amount ofmemory. In short, the
target class of implementations is the class of synchronous transducers.

We now introduce the necessary notions to formalise reactive synthesis
and the Church synthesis problem. We refer to the book [53] for a more
thorough introduction to those concepts.

3.3. Words, Languages and the Reactive
Synthesis Problem

In this work, we are concerned with programs which process their input
bit by bit, and produce their output in a reactive way. The input is
thus modelled as a word, more precisely an infinite word since reactive
programs are non-terminating.

3.3.1. Finite and Infinite Words

Words over a Finite Alphabet An alphabet is a finite set Σ. Elements
of Σ are called letters. A finite word is a finite sequence of letters u �

a0 . . . an−1 ∈ Σ∗ for some integer n ≥ 0. Its length is then |u | � n. The
empty word, of length 0, is denoted ε. An infinite word, or ω-word, is
an infinite sequence of letters x � a0a1 · · · ∈ Σω. By convention, its
length is |x | � ∞. We let Σ∞ � Σ∗ ∪ Σω. For a word w ∈ Σ∞ and for
0 ≤ i < |w |, we denote its i-th letter by u[i] � ai . For 0 ≤ i ≤ j < |w |, we
let w[i: j] � ai . . . a j . Finally, given a word w ∈ Σ∗ and a letter a ∈ Σ, we
let |w |a � |{i ∈ {0, . . . , |w | − 1} | wi � a}| be the number of occurrences
of the letter a in w.

A language over alphabet Σ is a subset L ⊆ Σ∗. An ω-language is a subset
L ⊆ Σω.
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By convention, two ω-words have the
same length∞

Most of our results also apply to the fi-
nite word setting, as one can specify that
at some point, the environment ceases to
provide input and only inputs meaning-
less data, modelled as $. However, the
reactive synthesis setting only provides
coarse-grained tools to express the relation
between inputs and outputs, and focuses
on the behaviour of the system rather than
on its computational aspect.

Example 3.3 The following sets are ω-languages over the alphabet Σ �

{a , b}:

I La f � {w ∈ Σω | w contains finitely many a}
I La∞ � {w ∈ Σω | w contains infinitely many a} � La f

c

I Lpar consists in sequences of bits separated by $ where the last bit of
each sequence indicates whether the number of 1 in the sequence
is odd. Formally, Lpar � {w0b0$w1b1$ · · · ∈ ({0, 1}∗$)ω | for all i ∈
N, bi � |wi |1 mod 2}.

I LaB � {bak0 bak1 . . . baki b · · · | ∃B ∈ N, ∀i ∈ N, ki ≤ B}
I Let an encoding of Turing machines which, to each machine M

uniquely associates a finite word wM ∈ Σ∗ (such an encoding exists
as Turing machines form a countable set). Then, Lhalt � {wM$ω |
M halts} is also an ω-language.

Product and Pointwise Application Given two alphabets Σ and Γ and
two words u ∈ Σ∞ and v ∈ Γ∞ such that |u | � |v |, we define their
product u ⊗ v as, for all 0 ≤ i < |u |, (u ⊗ v)[i] � (u[i], v[i]).

Functions f : Σ→ A (for some set A) can be naturally extended pointwise

to (ω-)words over Σ: for an ω-word w ∈ Σω, we let f (w) ∈ Aω be the
ω-word such that for all i ∈ N, f (w)[i] � f (w[i]). The notion is defined
analogously for finite words.

Concatenation and Prefix Order The concatenation of a finite word u
with a word v is the word w � u · v of length |u | + |v | (or ∞ if v is
infinite) where for all 0 ≤ i < |u |, w[i] � u[i] and for all 0 ≤ j < |v |,
w[|u | + j] � v[ j]. For two words u and v, we say that u is a prefix of v,
written u � v, if there exists a word w ∈ Σ∞ such that u · w � v. If w , ε,
we say that u is a strict prefix of v, written u ≺ v. Note that the prefix
relation induces a partial order over words.

Encoding of Relations by Languages Over infinite words, relations
can be encoded by languages in the following way: given a pair (x , y) ∈
Iω × Oω of ω-word over respective alphabets I and O, we define their
interleaving

〈
x , y

〉
∈ (IO)ω by

〈
x , y

〉
� x[0]y[0]x[1]y[1] . . . . Given a

relation R ⊆ Iω ×Oω , we denote 〈R〉 ⊆ (IO)ω �
{〈

x , y
〉
| (x , y) ∈ R

}
its

interleaving. Conversely, any infinite word w ∈ (IO)ω uniquely encodes
the pair (x , y) ∈ Iω×Oω , where x � w[0]w[2] . . . is the concatenation of
even letters and y � w[1]w[3] . . . , of odd letters. We denote 〉w〈 � (x , y),
and extend the notation to languages L ⊆ (IO)ω , which encode relations
〉L〈 ⊆ Iω × Oω.

3.3.2. Reactive Synthesis

Consider a setting in which a system continuously interacts with an
environment (cf Figure 3.3). The environment, which can for instance
model the user of the system, provides an input letter from an input
alphabet I, to which the system responds with an output letter from some
output alphabet O, and so on ad infinitum. The input set is thus In � Iω;
correspondingly, the output set is Out � Oω. Note that we assume that
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Depending on the level of details of the
modelling, delivering an espresso can be
directly expressed by an event deliver_-
espresso, or decomposed in put_cup

pour_espresso display_coffee_ready,
and each of those events might even be
decomposed further.

[12]: Pnueli (1977), ‘The Temporal Logic of
Programs’

In practice, this amount is however
bounded, if only by the capacity of the
money receiver.

[12]: Pnueli (1977), ‘The Temporal Logic of
Programs’

See also Section 3.4.1 (Linear Temporal
Logic).

[54]: Büchi (1962), ‘On a decision method
in restricted second order arithmetic’
cf Section 3.4.1 (Monadic Second-Order
Logic).

[55]: Bouyer et al. (2017), ‘Timed Temporal
Logics’

Here, the coffee machine plays the role
of the server, and the clients are coffee
drinkers.

their interaction never terminates: the reactive setting shifts the focus
from terminating computation to interaction.

Environment System

Input

i ∈ I

Output

o ∈ O

Figure 3.3.:A reactive system in interaction

with an environment. Their interaction
yields the infinite word:

i0o0 i1o1 · · · ∈ (IO)ω

or, equivalently, a pair:

(i0 i1 . . . , o0o1 . . . ) ∈ Iω × Oω

Now, the behaviour of the system is stated using a specification

S ⊆ Iω × Oω

Example 3.4 Consider a safety-critical system, namely a coffeemachine. It
interacts with one or more coffee drinkers, modelled as the environment.
The environment provides input by pressing buttons, and the machine
reacts by conducting operations such as pouring coffee, milk, sugar, etc.

A typical specification is that each button corresponds to the right
command, e.g. produces an espresso when an espresso is ordered, which
would correspond to a property like ‘If ask_espresso is input, then the
sequence of events which compose the action of delivering an espresso
should appear later in the output’. This property can be expressed in a
logical formalism (cf Section 3.4.1), e.g. a temporal logic [12], or using a
finite-state machine that recognises it, called an ω-automaton.

If money has to be input, one can also specify that it only delivers
the brewage when the correct amount has been put. If the amount of
money that one can input is not bounded, such specification requires
an expressive specification language to be expressed, as properties that
involve counting cannot be recognised by finite-state machines (in other
words, they are not ω-regular).

Finally, one might need to express properties about the delay between the
input and the corresponding coffee output. This can be done in a coarse-
grained manner, by modelling time through the number of operations
between the input and the output: ‘there are at most k operations between
ask_espresso and deliver_espresso’. This kind of specification can be
expressed in a logic like LTL [12] or MSO [54]. To get a finer-grained
modelling, one can resort to expressive formalisms like timed temporal
logics [55], which allow to directly reason about time, and express
‘there are at most t time units between event a and event b’. As always,
expressiveness however comes at a price, and problems that are decidable
for well-behaved models like ω-automata (cf Definition 3.5) might be
undecidable for more expressive ones.

Example 3.5 (Request-Grant) We now focus more precisely on the first
aspect of the above example, i.e. the specification that every time a coffee
is ordered, it is eventually delivered. This corresponds to the inescapable
‘request-grant’ example, traditionally introduced in the setting of a server

receiving requests (req) from clients, that it may grant (grt). It is then
required that every request it receives must eventually be granted. Now,
the specification can be formalised as follows, where I � {req, idle} and
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The ω-behaviour ΩP of P can thus
be defined as the following algorithm:

Algorithm 1: ΩP

Input: w ∈ Iω

for i � 0 to +∞ do
output P(w[:i]);

In other words, Q � ΩP , where equality
is intentional, i.e. we really ask that they
are the same object, and not simply that
they behave the same (the latter is known
as extensional equality).

[5]: Thomas (2009), ‘Facets of Synthesis:
Revisiting Church’s Problem’
[8]: J.R. Büchi and L.H. Landweber (1969),
‘Solving sequential conditions finite-state
strategies’

Formally, g is causal if there exists a func-
tion f : I∗ → O such that for all input
words x ∈ Iω and for all positions k ∈ N,
f (x)[k] � g(x[0 : k]).

O � {grt, idle}:

Srg �

{
(i , o) ∈ Iω × Oω

���� for all j ∈ N, if i[ j] � req
then there exists k ≥ j, o[k] � grt

}
In our setting, it is easier to manipulate specifications encoded as ω-
languages (cf Section 3.3.1). Srg is encoded as:

Lrg �

{
w ∈ (IO)ω

���� for all j ∈ N, if w[ j] � req
then there exists k > j, w[k] � grt

}
The target implementations are then synchronous (also knownas reactive)
programs. Such programs produce their outputs in an on-line mode: the
k-th letter of output is produced immediately after the k-th letter of input
has been read.

More precisely, consider a program P which takes as input the finite
sequence of input letters which have been read so far and reacts by
producing an output letter, computing a partial function f : I∗ → O. We
define its ω-behaviour as the (non-terminating) program ΩP which, on
reading an infiniteword x � x0x1 · · · ∈ Iω , produces the infinite sequence
of outputs Ω f (x) � f (x0) f (x0x1) · · · ∈ Oω, processing its input bit by
bit.

The notion of synchronous program is then the dual notion: a non-
terminating program Q is synchronous if there exists a (terminating)
program P such that Q is the ω-behaviour of P.

Remark 3.4 This notion is to be related with the notion of causal func-
tion [5, 8]. A function g : Iω → Oω is causal if for all k ∈ N, the k-th
output bit only depends on the first k input bits. If g is ω-computable
(by some non-terminating program), then g is causal if and only if it can
be computed by a synchronous program Q.

Example 3.6 Consider again the request-grant example (Example 3.5).
Without further requirements, the specification Srg is satisfied by the
synchronous program which ignores its input and produces a grant at
every step. It can be defined directly, or as the ω-behaviour of a program
which ignores its input and outputs grt, implementing the constant
function fgrt : i ∈ I∗ 7→ grt.

If one additionally specifies that there are no spurious grants∗ through a
specification Snsg, then the overall specification Srg ∩ Snsg can be imple-
mented by a synchronous program which immediately grants a request,
and otherwise does not grant. It is the ω-behaviour of any program P

computing frg :
{

ireq 7→ grt
iidle 7→ idle (where i ∈ I∗).

Formally, the reactive synthesis problem is then defined as the uniformi-
sation problem from the class of relations over Iω × Oω to the class
of functions computed by synchronous programs i.e. of ω-computable
causal functions. Thus, it can be stated as follows:

Problem 3.2: Reactive synthesis problem

∗ Otherwise, what you get is better described as a coffee fountain.
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In this document, we write A t B for the
union of A and B when they are disjoint,
to highlight this fact.

[4]: Church (1957), ‘Applications of recur-
sive arithmetic to the problem of circuit
synthesis’

MSO(N,+1) is also known as S1S for
‘second-order theory with one successor’.

Synchronous sequential transducers are
an extension of Mealy machines to the
setting of infinite words.

Input: A specification S ⊆ Iω × Oω

Output: A synchronous program Q which uniformises S
(i.e. fQ ⊆ S) if it exists
No otherwise

In the field of synthesis, when R is uniformised by a function f which
can be computed, we also say that f realises R. Subsequently, R is said to
be realisable if such f exists. In the following, we favour this terminology
as the focus is set on synthesis problems.

Remark 3.5 In general, we moreover assume that the system must be
able to react to any input, i.e. we target implementations with total
domain(dom( fQ) � Iω). This assumption implies that if dom(S) ( Iω,
S is not realisable. It is benign in the finite alphabet case for the classes
of specification that we consider since it is always possible to complete
the specification by allowing any behaviour on the complement of the
domain. More precisely, given a specification S ⊆ Iω × Oω, one instead
considers the specification S′ � S t (dom(S)c × Oω), which can be
expressed in the usual formalisms as they enjoy the adequate closure
properties.

This is not the case anymore in our setting since the formalism we
consider, namely register automata, is not closed under complement
(Property 4.18). Allowing implementations to have a domain which is not
total implies going beyond the decidability border (Theorem 8.4) since
it is undecidable whether the domain of a specification recognised by a
deterministic register automaton is total (Theorem 8.1). See Chapter 8 for
a discussion on this matter.

The field of reactive synthesis then aims at studying such problem for
various classes of specifications. In 1957, Church laid the foundations
of the field by introducing what is now known as the Church synthesis
problem, in which he targets implementations computable by finite-state
machines.

3.4. The Church Synthesis Problem

In his seminal paper [4], Church considers, among others, the setting
where the specification S ⊆ {0, 1}ω × {0, 1}ω is given as a monadic
second-order formula over the integers with the successor relation,
MSO(N,+1).

Regarding the target implementation, he asks that it is not only syn-
chronous, but that it can be computed by a circuit, i.e. a finite-state
machine. A minimal-concept definition is that there is a finite-state
automaton A which, given an input w ∈ I∗, decides whether the next
output bit is 1 or 0, depending on whether w ∈ L(A) or w < L(A). The
reader who is familiar with transducer theory can conceive it in terms
of synchronous sequential transducers, and we formulate it as such in
Section 3.4.5. A game-theoretic statement of the problem is also available
in Section 3.5.3.

The motivation behind restricting to circuits is they can be directly
implemented on a chip, without requiring the full power of a computer.
Indeed, the main application of reactive synthesis is embedded systems.
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We use parentheses in our examples for
clarity, but this is only syntactic sugar.

[53]: Grädel, Thomas, and Wilke (2002),
Automata, Logics, and Infinite Games: A

Guide to Current Research [outcome of a

Dagstuhl seminar, February 2001]

[56]: Stockmeyer (1974), ‘The Complexity
of Decision Problems in Automata Theory
and Logic’

Formulas x � y and x < y can be derived
from x � y + 1 (see Example 3.7).

In Church’s setting, an ω-word w ∈
{0, 1}ω is encoded by the set of positions
whose bit is equal to 1. Larger alphabets
can then be simulated through binary en-
coding. See [5]: Thomas (2009), ‘Facets of
Synthesis: Revisiting Church’s Problem’
for more details.

We now introduce the notions necessary for a precise statement of the
problem.

3.4.1. Logics for Specifications

First-Order Logic

As awarmup,we present first-order logic, although the focus ismainly set
on monadic second-order logic (cf the next section). First-order formulas
(FO for short) consist in logical formulas ϕ(x , y , . . . ) with first-order

variables x , y , . . . which stand for elements of the domain. We consider
the first-order theory with order FO(N, <). Thus, atomic formulas are of
the form x � y and x < y.

Formulas are then built with disjunction (∨) and negation (¬), as well as
existential (∃) quantification over first-order variables.

FO formulas are generated by the following grammar:

ϕ F x � y + 1 | ∀x.ϕ | ϕ ∨ ϕ | ¬ϕ

where x and y are first-order variables.

Satisfaction of a sentence ϕ by an ω-word, written w � ϕ is defined in
the expected way (see, e.g. [53, Part VI], which describes the semantics
of the more expressive MSO logic).

Note that conjunction ϕ ∧ ϕ can be derived with De Morgan’s laws,
∃x.ϕ B ¬(∀x · ¬ϕ), and x � y can be derived as ¬(x < y) ∧ ¬(y < x).
Then x � y + 1 is expressed as y < x ∧ ¬(∃z · y < z ∧ z < x).

OverNwith the order predicate, we known that satisfiability is decidable
(cf Theorem 3.2 for the more general case of MSO).

Theorem 3.1 The satisfiability problem of FO(N, <) is decidable.

First-order logic however has a very high complexity: its satisfiability
problem over finite and infinite words has a non-elementary lower
bound [56, Theorem 5.2].

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO for short) consists in an extension of
First-Order logic with set predicates. MSO formulas consist in logical
formulas ϕ(x , y , . . . ,X,Y, . . . ) with first-order variables x , y , . . . which
stand for elements of the domain, and second-order variables X,Y, . . .
ranging over sets of elements. We consider the second-order theory with
one successor MSO(N,+1). Thus, atomic formulas are of the form x � y,
x � y + 1, x < y and x ∈ X. Here, we operate over words, so we chose to
explicitly add unary predicates σ(x) for all σ ∈ Σ, where σ(x)means that
the letter at position x ∈ N is σ. Note that this is not the case in Church’s
setting, where both the input and output alphabet are I � O � {0, 1}
and letters are encoded.

Formulas are again built with disjunction (∨) and negation (¬), as well
as universal quantification (∀) over first-order variables and second-order
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∃X.ϕ can be derived as ¬∀X.¬ϕ.

Again, we do not define MSO satisfaction
formally, as we do not use it in our study.
See Part VI of [53], and in particular the
chapter [57]: Weyer (2001), ‘Decidability of
S1S and S2S’ for amore thorough introduc-
tion to MSO. Another good presentation
can be found in [58]: Comon et al. (2007),
Tree Automata Techniques and Applications.

ϕ ∧ ψ is a short for ¬(¬ϕ ∨ ¬ψ), ϕ⇒ ψ
abbreviates (¬ϕ) ∨ ψ, and z + 1 ∈ X is
meant to be understood as ∀t .t � z + 1⇒
t ∈ X.
As formulas can contain the ‘�’ symbol,we
use the ‘B’ symbol when we define them,
for readability. Its intended semantics is
of course equality.

[59]: Bojańczyk and Colcombet (2006),
‘Bounds in ω-Regularity’

LaB is indeed not ω-regular (cf Theorem
3.6).
ϕ⇔ ψ is a short for ϕ⇒ ψ ∧ ψ⇒ ϕ.

As witnessed by Example 3.9, one can ex-
press in MSO that words belong to (IO)ω .

variables (respectively lowercase and uppercase letters). Conjunction (∧)
and existential quantification (∃) are derived.
Correspondingly, MSO formulas are generated by the following gram-
mar:

ϕ F x � y + 1 | x ∈ X | σ(x) | ∀x.ϕ | ∀X.ϕ | ϕ ∨ ϕ | ¬ϕ

where x , y are first-order variables, X is a second-order variable and
σ ∈ Σ.

Satisfaction of a sentence ϕ by an ω-word, written w � ϕ is defined in
the expected way.

Example 3.7 (Order) The formula

ϕ≤(x , y) B ∀X.
(
x ∈ X ∧ (∀z.(z ∈ X) ⇒ (z + 1 ∈ X)

)
⇒ y ∈ X

states that any set X which contains x and that is closed under taking
the successor contains y. In other words, it means that x ≤ y.

A formula with no free variables is called a sentence. Then, a sentence ϕ
defines the ω-language Lϕ � {w ∈ Σω | w � ϕ}.
Example 3.8 Consider again the ω-languages of Example 4.7.2:

I La f � {w ∈ Σω | w contains finitely many a} can be defined by
ϕa f B ∃x.∀y.y > x ⇒ ¬a(y).

I La∞ � {w ∈ Σω | w contains infinitely many a} can be defined by
ϕa∞ B ¬ϕa f .

I Lpar � {w0b0$w1b1$ · · · ∈ ({0, 1}∗$)ω | for all i ∈ N, bi � |wi |1
mod 2} is also recognisable by an MSO formula. The easiest way
to prove this is to show that Lpar is ω-regular by exhibiting an ω-
automatonwhich recognises it (cf Example 3.15), asMSO recognises
ω-regular languages (Theorem 3.6).
But let us not get ahead of ourselves: we now establish the result
in a direct way. We only give an intuition; details can be found
in Example B.1 in Section B.1.1. One first defines a formula ϕ$(X)
which holds whenever the set X is a set of positions between two
$. Then, ϕ$ can be refined so as to characterise sets of positions
between two $ which are labelled 1. Testing whether a set contains
an even number of elements can be expressed in MSO. Finally, one
can state that a position is the last of a sequence by asking that
the next position is labelled $. Putting it together, one obtains the
sought formula.

I LaB � {bak0 bak1 . . . baki b · · · | ∃B ∈ N, ∀i ∈ N, ki ≤ B} cannot be
defined by an MSO formula [59].

I Lhalt � {wM$ω | M halts} is not recognisable by an MSO formula
either, as its membership problem is undecidable.

Example 3.9 (Interleaved alphabets) Over alphabet Σ � I ∪ O, consider

ϕIO B ∀x. (I(x) ⇔ O(x + 1)) ∧ (first(x) ⇒ I(x))

where I(x) is a short for
∨

i∈X i(x) (similarly for O(x)), and first(x) B
¬∃y.x � y + 1 means that x is the first position. Then, LϕIO � (IO)ω.

As we can encode relations over ω-words by ω-languages, an MSO
sentence ϕ over alphabet Σ � I ∪O defining a language Lϕ ⊆ (IO)ω can
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With I � {req, idle} and O � {grt, idle}.

[8]: J.R. Büchi and L.H. Landweber (1969),
‘Solving sequential conditions finite-state
strategies’

[5]: Thomas (2009), ‘Facets of Synthesis:
Revisiting Church’s Problem’

[11]: Meyer (1975), ‘Weak monadic second
order theory of succesor is not elementary-
recursive’

[12]: Pnueli (1977), ‘The Temporal Logic of
Programs’

[60]: Kamp (1968), ‘Tense Logic and the
Theory of Linear Order’
[61]: Gabbay et al. (1980), ‘On the Temporal
Basis of Fairness’
[62]: Diekert and Gastin (2008), ‘First-
order definable languages’

Equivalence between FO[<] and LTL is
due to [60, 61], and a self-contained proof
can be found in the survey [62, Theorem
1.1].
Again, we do not define satisfaction for-
mally, as we do not use it in our study. See
[63]: Piterman and Pnueli (2018), ‘Tempo-
ral Logic and Fair Discrete Systems’ for a
more thorough introduction to LTL.

One can also define ‘Weak until’, which is
the same as Until, except that it does not
require ψ to eventually occur.

Recall that LTL is equivalent to FO, which
is a fragment of MSO.

be seen as defining the relation:

Rϕ �
〉
Lϕ

〈
�

{
(i0i1 . . . , o0o1 . . . ) ∈ Iω × Oω

�� i0o0i1o1 · · · � ϕ
}

Example 3.10 The request-grant specification can be defined by:

ϕrg B ∀ j.
(
req( j) ⇒ (∃k.ϕ≤( j, k) ∧ grt(k))

)
Büchi showed that the language of a formula is recognised by an ω-
automaton (see Section 3.4.3 and Theorem 3.6). Along with the decid-
ability of the emptiness problem for these automata (Theorem 3.5), this
yields:

Theorem 3.2 The satisfiability problem of MSO(N,+1) is decidable.

This translation allows to show that the Church synthesis problem is
decidable [8] (Theorem 3.17). See [5] and Section 3.5.3 for a game-theoretic
proof of this result.

As FO(N, <), MSO(N,+1) however has a very high complexity, and its
satisfiability problem over finite and infinite words again has a non-
elementary lower bound, inherited from that of FO (see also [11]).

Linear Temporal Logic

The high complexity of MSO lead to the introduction of Linear Temporal

Logic (LTL for short) by Pnueli [12], which is expressively equivalent to
first-order logic (FO[<]) [60–62].

Given a set AP of atomic propositions, LTL formulas are built from temporal

operators X (‘neXt’) and U (‘Until’), as well as disjunction, conjunction
(omitted here as it can be derived) and negation:

φ F p | Xφ | φUφ | φ ∨ φ | ¬φ

where p ∈ AP. Intuitively, p means that p holds at the given time. Xφ
means that φ holds one unit later. φUψ means that φ holds until ψ is
true. This requires in particular that ψ occurs at some point. On top of
derived logical operators like > and ⊥, one can then derive temporal
operators like Finally Fφ B >Uφ, meaning that φwill hold at some point
in the future and Globally Gφ B ¬(F(¬φ))meaning that φ holds along
the entire ω-word.

Example 3.11 Let w � (ab)ω. w satisfies φ1 � a, as w[0] � a, but not
φ2 � b (as w[0] , b), nor φ3 � X(a) (as w[1] , a). It satisfies φ4 B aUb,
but not φ5 B bUa. Besides, it satisfies φ6 � G(Fa) since for all i ∈ N,
one can find a j ≥ i in the future such that w[i] � a. Finally, w does not
satisfy φ7 � F(Ga) since for all i ∈ N, there exists a position j ≥ i such
that w[ j] , a.

Example 3.12 Consider once more the ω-languages of Example 4.7.2:

I La f can be defined by φa f B F(G(¬a)).
I La∞ can be defined by φa∞ B G(Fa) ≡ ¬φa f
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[62]: Diekert and Gastin (2008), ‘First-
order definable languages’

Where I is an atomic proposition recognis-
ing letters of I, similarly for O. Here, we
assume that I andO partition the alphabet,
i.e. Σ � I t O.

[13]: Pnueli and Rosner (1989), ‘On the
Synthesis of a Reactive Module’

Infinite sequences of input are also known
as streams.

We use the term configuration to highlight
the fact that there can be infinitely many.
The term state is reserved for systems with
finitely many configurations.

Labelled transition systems are also
known as semi-automata. We favour the
first terminology as we also use the con-
cept in the context of games.

Labels are sometimes called inputs.

We omit Tand/or t when they are clear
from the context.

Some say executable for complete.

I Lpar cannot be defined by any LTL formula, as it is not first-order
definable. This can be shown by establishing that Lpar is not aperi-
odic [62, Theorem 1.1] (cf Example B.1 for details).

I LaB cannot be defined by any LTL formula, as it is already not
MSO-definable.

I Lhalt cannot either, for the same reason.

Example 3.13 Alternation between alphabets I and O can also be defined
in LTL:

φIO B I ∧ G(I ⇔ XO)

Example 3.14 The request-grant specification is defined by φIO ∧ φrg,
where:

φrg B G(req⇒ F(grt))

As LTL is a fragment ofMSO, we know that its reactive synthesis problem
is decidable. Pnueli and Rosner further showed:

Theorem 3.3 ([13]) The reactive synthesis problem for LTL formulas is 2-
ExpTime-complete.

3.4.2. Discrete Systems

As we have seen, specifications can be expressed as logical formulas.
Satisfiability and synthesis are often obtained through translations to
automata models. As such discrete systems are at the core of our study,
we now introduce a formalism to describe the behaviour of programs
which process finite or infinite sequences of input, modelled as words,
and later on formally introduce ω-automata.

Discrete systems have a (possibly infinite) set of configurations, and, on
reading an input, they transition to some configuration depending on the
current configuration and on the input; they are also allowed to perform
an action such as outputting a letter in the process.

A central notion is that of a labelled transition system.

Definition 3.2 (Labelled Transition System) A labelled transition system is
a tuple T� (C, I ,Λ,∆), where:

I C is a (possibly infinite) set of elements called configurations

I I ⊆ C is a set of initial configurations
I Λ is a (possibly infinite) set of labels
I ∆ ⊆ C × Λ × C is the transition relation; we write p

a−→
T t

q for

t � (p , a , q) ∈ ∆.

T is deterministic if I � {c ι} is a singleton and for all p ∈ C and all a ∈ Λ,
there exists at most one q ∈ C such that p

a−→
T

q. It is complete if for all

p ∈ C and all a ∈ Λ, there exists at least one q ∈ C such that p
a−→
T

q.

Definition 3.3 (Path) An infinite path in Tover an infinite word x ∈ Λω
is an infinite sequence ρ � q0t0q1t1 · · · ∈ (C∆)ω such that for all i ∈ N,
qi

w[i]
−−−→
T ti

qi+1. We also write ρ � q0
w[0]
−−−→
T t0

q1
w[1]
−−−→
T t1

. . . . We then let

configs(ρ) � q0q1 . . . and trans(ρ) � t0t1 . . . , and write p
x−→
T

when there
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Note that if Tis not complete, a finite path
is not necessarily the prefix of an infinite
path.

It is then straightforward that for all
(w , w′) ∈ Λ × Λ′ such that |w | � |w′ |
there is a finite path (p , p′)

(w ,w′)
−−−−−→
T⊗T′

(q , q′)

iff p
w−→
T

q p′
w′−−→
T

q′ and similarly for

infinite paths.

[54]: Büchi (1962), ‘On a decision method
in restricted second order arithmetic’
[64]: Muller (1963), ‘Infinite sequences and
finite machines’
[65]:McNaughton (1966), ‘Testing and gen-
erating infinite sequences by a finite au-
tomaton’
The notion of initial state can be encoded
in the acceptance condition, but we keep it
explicit to keep closer to the usual setting.
It alsomakes thedefinition of determinism
more natural.
Recall that an alphabet is a finite set.

We omit A and t when they are clear from
the context.

Other acceptance conditions exist in the
literature, e.g. Streett and Rabin. We do
not define them here as they will not be
used in this work.

is an infinite path in Tover x which starts in state p. It is initial if q0 ∈ I.
An initial path is also called a run.

The notion of finite path in T over a finite word w ∈ Λ∗ is defined
analogously. configs(ρ) and trans(ρ) are extended in a straightforward
way, and, as no ambiguity arises due to typing considerations,we overload
the notation→ and write, for all p , q ∈ C and all u ∈ Λ∗, p

w−→
T

q when
there exists a finite path in Tover w.

A configuration q is reachable if there exists an initial finite path which
ends in it, i.e. q ι

w−→
T

q for some initial configuration q ι ∈ I and some finite
word w ∈ Λ∗.
Definition 3.4 (Product) Given two labelled transition systems T �

(C, I ,Λ,∆) and T′ � (C′, I′,Λ′,∆′), we can define their synchronised

product T⊗ T′ � (C × C′, I × I′,Λ ×Λ′,∆′′), where (p , p′)
(a ,a′)
−−−−→
T⊗T′

(q , q′)

whenever p
a−→
T

q and p′
a′−→
T

q′.

3.4.3. Automata

To decide satisfiability and synthesis from logical formulas, a common
technique is to first convert them to an operational model, i.e. a machine
which recognises the models of a formula (cf Theorem 3.6). In the
case of MSO and LTL, this model consists in ω-automata, i.e. finite-
state automata recognising infinite words. We introduce them here and
describe how relations can be encoded asω-languages, to be able tomodel
specifications directly as automata. Indeed, one of the main contributions
of this thesis is to study synthesis problems for specifications given as
register automata, which are an extension of finite-state automata to
words over infinite alphabets. We also recall the link between ω-automata
and MSO(N,+1).

The interactions of reactive systems are modelled as infinite words. We
correspondingly introduce ω-automata [54, 64, 65], which are a classical
extension of finite-state automata to ω-words.

Definition3.5 (ω-Automaton) Anω-automaton is a tupleA � (Q , I ,Σ,∆,Ω):

I Q is a finite set of states
I I ⊆ Q is the set of initial states
I Σ is the alphabet of the automaton
I ∆ ⊆ Q × Σ ×Q is the transition relation

I (Q , I ,Σ,∆) forms a labelled transition system, called the underlying
transition system; we write p

a−→
A t

q when t � (p , a , q) ∈ ∆
I Ω ⊆ Qω is the acceptance condition

Acceptance conditions Over infinite words, acceptance is defined
through some set that is visited infinitely often. We thus denote, for
any set X and for an infinite sequence w ∈ Xω, the set Inf(w) � {a ∈ X |
w[i] � a for infinitely many i ∈ N}.
Definition 3.6 (Acceptance Condition) Then, an acceptance condition is a
subsetΩ ⊆ Qω which is of one of the following forms:
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Note that coBuchi(F) � Buchi(F)c .

Recall that the pointwise application of
c to χ is the ω-word c(χ) ∈ {1, . . . , d}ω
such that for all i ∈ N, c(χ)[i] � c(χ[i]).

Note that the notions of initial and transi-
tions are inherited from labelled transition
systems.

In other words, the automaton checks that
no run is rejecting. In particular, in the
universal semantics, if w ∈ Σω does not
admit any run, it is accepted.

A final state is either an accepting state
for the Büchi acceptance condition, or a
rejecting state for the co-Büchi one.

Büchi A has a distinguished set F ⊆ Q of accepting states, and a run
is accepting if some accepting state is visited infinitely often, i.e.
Buchi(F) � {χ ∈ Qω | Inf(χ) ∩ F , ∅}.

co-Büchi It is the dual condition: A has a distinguished set F ⊆ Q of
rejecting states, and a run is accepting if no rejecting state is visited
infinitely often, i.e. coBuchi(F) � {χ ∈ Qω | Inf(χ) ∩ F � ∅}.

Muller A has a familyF⊆ 2Q of accepting sets of states. A run is accepting
if the set of states that are visited infinitely often belongs to F:
Muller(F) � {χ ∈ Qω | Inf(χ) ∈ F}.

Parity A is equipped with a parity function c : Q → {1, . . . , d} for
some d ∈ N, which associates a colour to each state. A run is
accepting if the maximal colour seen infinitely often is even, i.e.
parity(c) � {χ ∈ Qω | max Inf(c(χ)) is even}, where c(χ) is the
pointwise application of c to χ.

Remark 3.6 (Relations between acceptance conditions) As noted above,
the Büchi and co-Büchi conditions are dual to each other. The Muller
condition is closed under complement, by taking Fc � 2Q \F, and can
naturally encode Büchi (and thus co-Büchi): F � {Q ⊆ F | Q , ∅}.
It can also encode parity: F� {Q ⊆ F | max c(Q) is even}. The parity
condition is also closed under complement: take c′ : q 7→ c(q) + 1. It can
easily encode Büchi (respectively co-Büchi) conditions, by setting the
colour of accepting states to 2, and 1 for the others; respectively by letting
c(F) � 1 and c(Fc) � 0.

We say that A is a Büchi (respectively co-Büchi, Muller, Parity) automaton
when its acceptance condition is.

Executions of the model Now, a run over input x ∈ Σω is an infinite
path in (Q , I ,Σ,∆), i.e. an infinite sequence ρ � q0t0q1t1 · · · ∈ (Q∆)ω

such that for all i ∈ N, qi
x[i]
−−→

A ti

qi+1. It is initial if q0 ∈ I. It is accepting if

moreover states(ρ) ∈ Ω, where states(ρ) � q0q1 · · · ∈ Qω . We also define
trans(ρ) � t0t1 · · · ∈ ∆ω. A partial run r � q0t0 . . . tn−1qn ∈ (Q∆)∗Q is a
finite path q0

w0−−→
A t0

q1 . . . qn−1
wn−1−−−→

A tn−1

qn in (Q , I ,Σ,∆) ending in some

state qn ∈ Q, and has as input the finite word w0 . . .wn−1.

Non-determinism and universality Automata can be equipped with
two dual semantics. If A is a non-deterministic automaton, it recognises the
following ω-language:

LN (A) �
{

w ∈ Σω
�� there exists an accepting run ρ on w

}
Dually, if A is a universal automaton, it recognises the ω-language:

LU(A) �
{

w ∈ Σω
�� all runs ρ on w are accepting

}
Given a non-deterministic automaton A, we can define a universal
automaton Ac which is a copy of A with acceptance condition Ωc �

Qω \ Ω; we then have LU (Ac) � Σω \ LN (A). If the semantics is clear
from context, we simply write L(A).
Example 3.15 Consider once more the ω-languages of Example 4.7.2.
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Graphical conventions are summarised in
Chapter A.

[27]: Chandra, Kozen, and Stockmeyer
(1981), ‘Alternation’
A run is then a tree such that each non-
deterministic state has one child, and each
universal state has as children all states
to which it has a transition. It is accepting
whenever all its paths are accepting. Alter-
nation is more easily defined as a game,
see Section 3.5.2.
[66]: Miyano and Hayashi (1984), ‘Alter-
nating Finite Automata on omega-Words’

[27]: Chandra, Kozen, and Stockmeyer
(1981), ‘Alternation’ (Theorem 5.3). The
result is for the finite alphabet case, but
can easily be adapted.

Here are two ω-automata which recognise La f and La∞ in the non-
deterministic Büchi semantics, and conversely as universal co-Büchi.
States are depicted as circles, initial states have an incoming arrow, final
states are doubly circled, and transitions are labelled arrows.

i f

a,b

b

b

Figure 3.4.: An ω-automaton A1.
With the non-deterministic Büchi
acceptance condition, it recognises
the ω-language La f � {w ∈ {a , b}ω |
w contains finitely many a}. With the
dual condition, namely the universal
co-Büchi one, it recognises the comple-
ment La∞ � La f

c
� {w ∈ {a , b}ω |

w contains infinitely many a}.

A1 (Figure 3.4) loops in i until it non-deterministically guesses that
the input does not contain a anymore and transitions to f , in which it
checks that its guess was correct. In the universal co-Büchi semantics,
the automaton universally checks that it sees another a. If it does not, it
loops infinitely often in f , which yields a rejecting run.

i f

a
b

b

a
Figure 3.5.: A deterministic ω-automaton
A2. With the Büchi acceptance condition,
it recognises La∞. Again, with the dual,
co-Büchi condition, it recognises the com-
plement, La f .

In A2 (Figure 3.5), the state f is visited whenever an a is read. Thus, a run
visits f infinitely often if and only if the input contains infinitely many a.

Languages LaB and Lhalt are not ω-regular.

Example 3.16 The followingdeterministicω-automaton recognises LIO �

(IO)ω. It has a trivial acceptance condition, i.e. all runs are accepting.

i ∈ I

o ∈ O

Figure 3.6.: An ω-automaton AIO recog-
nising LIO � (IO)ω .

p
i∈I−−→ q is a short for

{
p

i−→ q
}

i∈I
, simi-

larly for O.

Example 3.17 Recall the request-grant specification (Example 3.5). It is
recognised by the product of AIO (Figure 3.6) with the universal co-Büchi
automaton of Figure 3.7.

The automaton waits in w. When it sees a req, it universally branches to
p, where a request is pending. When reading a grt, it transitions to state s,
in which the run dies out in the next step, which favours acceptance in
the universal semantics.

Then, a run of this ω-automaton is rejecting whenever it loops infinitely
often in p, which is the case whenever there is some req which is never
followed by a grt.

Remark 3.7 (Alternation) Both semantics can be generalised through alter-

nation [27], where states can either be non-deterministic or universal. Alter-
nating ω-automata are expressively equivalent to non-deterministic and
universal automata [66], but they can be exponentially more succinct [27].
We do not define them formally as we mainly study non-deterministic,
universal and deterministic automata.
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w p s
req

∗ idle

grt

Figure 3.7.: A universal co-Büchi automa-
ton checking that every request is eventu-
ally granted.
The red star (∗) is a short for any input
letter, i.e. for {req, idle}.

We say that two automata A and A′ are
equivalent whenever L(A) � L(A′).
[65]:McNaughton (1966), ‘Testing and gen-
erating infinite sequences by a finite au-
tomaton’
[67]: Safra (1988), ‘On the Complexity of
ω-Automata’

An automaton class admits determinisa-

tion when for all automata in this class,
there exists a deterministic automaton in
the same class which recognises the same
language.

[68]: Landweber (1969), ‘Decision Prob-
lems for omega-Automata’. See also [69]:
Kupferman and Sickert (2021), ‘Certifying
Inexpressibility’ for a general approach on
how to determine whether an ω-language
can be expressed by a given class of au-
tomata.

[70]: Boker (2020), Word-Automata Transla-

tions

A is called deterministic if (Q , I ,Σ,∆) is deterministic, i.e. I � {q ι} is a
singleton and for all p ∈ Q and all a ∈ Σ, there exists at most one q ∈ Q
such that p

a−→ q. We then write ∆ as a function δ : Q × Σ→ Q.

Example 3.18 In Example 3.15, A2 is deterministic, but A1 is not.

Languages recognised by ω-automata are called ω-regular languages, as
they generalise the notion of regular language to ω-words.

Relations between classes of ω-automata

Fact 3.1 Any non-deterministic ω-automaton is equivalent to a determin-
istic parity automaton [65, 67]. The construction is more involved than
the subset construction that is used in the finite word case, as one needs
to maintain additional information. It is exponential in general, more
precisely 2Θ(n log n) (where n is the size of the automaton) when one starts
from a non-deterministic Büchi or parity automaton.

Conversely, any deterministic parity automaton can be simulated by a
non-deterministic Büchi automaton: the ω-automaton initially guesses
the maximal parity. It checks that it is even and that no greater parity
occurs infinitely often along the run. The latter can be done by guessing
that at some point, greater parities stop occurring; the automaton can
check that this is the case by rejecting as soon as it sees one.

Since the parity condition is closed under complement, the above again
holds for the universal semantics, by replacing ‘non-deterministic Büchi’
with its dual ‘universal co-Büchi’.

However, not all classes admit determinisation. In particular, the class
of non-deterministic Büchi automata does not, i.e. such an automaton
does not always admit an equivalent deterministic Büchi automaton. For
instance, one can establish that the ω-language La f (see Example 3.15)
of words that contain only finitely many a is not recognisable by any
deterministic Büchi automaton, using a pumping argument [68, Lemma
3.1].

Finally, note that the non-deterministic co-Büchi condition is strictly
weaker. For instance, it cannot recognise the language La∞ of ω-words
than contain infinitelymany a. In this work, we only use it in the universal
semantics. It is then dual to non-deterministic Büchi.

Overall, in the following,we aremostly concernedwith non-deterministic
Büchi, universal co-Büchi, and non-deterministic and deterministic parity
automata.

We refer to [70] for an exhaustive comparison of ω-automata classes,
along with the complexity of the translation between them.
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[71]: Sakarovitch (2009), Elements of Au-

tomata Theory

It is easy to see that NLogSpace ⊆ PTime,
since one can iteratively explore all the
runs of a Turing machine in a time that
is exponential in the space used by the
machine.

[70]: Boker (2020), Word-Automata Transla-

tions

[72]: Büchi (1960), ‘Weak Second-Order
Arithmetic and Finite Automata’
[73]: Elgot (1961), ‘Decision problems of
finite automata design and related arith-
metics’
[74]: Trakhtenbrot (1961), ‘Finite automata
and logic of monadic predicates’, in Rus-
sian.
[54]: Büchi (1962), ‘On a decision method
in restricted second order arithmetic’
[65]:McNaughton (1966), ‘Testing and gen-
erating infinite sequences by a finite au-
tomaton’

The case of finite words

Definition 3.7 (Finite-State Automaton) Finite-state automata are defined
analogously, by replacing the acceptance condition with a finite set of
accepting states. A run is then a finite sequence of transitions, and it
is accepting whenever it is initial and ends in an accepting state. The
notions of non-deterministic, universal and deterministic automata are easily
adapted. All semantics are again equivalent, and languages recognised
by finite automata are called regular languages.

We do not define them formally as they are only used as a tool in our
study. We refer to [71] for a comprehensive introduction.

Emptiness Problem

An elementary problem in automata theory is to decide whether a given
automaton accepts at least a word. It is formalised as the emptiness problem.

Problem 3.3: Emptiness problem for ω-automata

Input: An ω-automaton A
Output: Yes if L(A) � ∅

No otherwise

It is well-known that the above problem can be solved in polynomial time
for finite-state automata. More precisely, it belongs to NLogSpace , i.e. it
can be solved by a non-deterministic algorithm that runs in logarithmic
space. This is the case as well for non-deterministic Büchi automata; the
algorithm is essentially the same.

Theorem 3.4 The emptiness problem for non-deterministic Büchi automata is

in NLogSpace.

This will prove useful for our study, especially in Part II, as we reduce
most decision problems to checking emptiness of some well-chosen
ω-automaton. The reader can find a more detailed presentation of these
complexity considerations in Section B.2.

Since a non-deterministic parity automaton (respectively Muller au-
tomaton) can be translated into an equivalent non-deterministic Büchi
automaton in quadratic (resp., cubic) time [70, Sections 7.8 and 7.16], we
get:

Theorem 3.5 The emptiness problem for non-deterministic ω-automata is in

PTime.

Equivalence with MSO

It has been shown by Büchi [72], and independently by Elgot [73] and
Trakhtenbrot , that MSO formulas over finite words can be translated into
finite-state automata and conversely. It has been generalised to infinite
words by Büchi [54] to show decidability of the satisfiability problem for
MSO (cf Theorem 3.2) and McNaughton [65]:

Theorem 3.6 ([54, 65]) Let L ⊆ Σω be a language of infinite words. The

following are equivalent:
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In other words, in ∀X.ϕ and ∃X.ϕ, X is
finite.

[54]: Büchi (1962), ‘On a decision method
in restricted second order arithmetic’
[57]:Weyer (2001), ‘Decidability of S1S and
S2S’

[11]: Meyer (1975), ‘Weak monadic second
order theory of succesor is not elementary-
recursive’

Recall that an ω-word w � i0o0 i1o1 . . .
encodes a pair 〉w〈 � (i0 i1 . . . , o0o1 . . . ).

When they are deterministic, such au-
tomata naturally induce a game which
corresponds to the synthesis game for the
specification they encode. Indeed, their
underlying transition system is an arena,
and their acceptance condition defines a
winning condition (cf Section 3.5.2).

For σ ∈ {i,o}, we set i � o and o � i.

[75]: Khoussainov and Nerode (1994), ‘Au-
tomatic Presentations of Structures’
[76]: Blumensath and Grädel (2000), ‘Au-
tomatic Structures’
See also [48]: Carayol and Löding (2015),
‘ Uniformization in Automata Theory’ for
a study of uniformisation and synthesis
problems on those structures.

(i) L is recognised by an ω-automaton, i.e. L � L(A) for some ω-automaton

A.

(ii) L is recognised by anMSO formula, i.e. L � L(ϕ) for someMSO formula

ϕ.

Moreover, both translations are effective.

Remark 3.8 This equivalence also holds for weak MSO, i.e. monadic
second-order logic where quantification is restricted to finite subsets of
N [54, 57].

Note that the translation from MSO formulas to ω-automata is however
non-elementary in general, and this is intrinsic since the satisfiability
problem of MSO has a non-elementary lower bound [11].

The result holds in particular for specifications expressed in MSO. Along
with game-theoretic results, this yields decidability of the Church synthe-
sis problem for MSO specifications (cf Theorem 3.17 in Section 3.5.3).

Automatic Specifications

As we have seen earlier, relations over ω-words can be encoded as
ω-languages (cf Section 3.3.1). Thus, an ω-automaton A recognising
some ω-regular language L ⊆ (IO)ω can also be seen as recognising the
relation 〉L〈 ⊆ Iω × Oω. Note that such automaton can be put in a form
where states are partitioned into input (Qi) and output (Qo) states, and
the transition relation alternates between the two sets. More precisely,
we can assume A � (Q , I ,Σ,∆,Ω), where:

I Q � Qi tQo

I I ⊆ Qi

I Σ � Σi ∪ Σo
I ∆ � ∆i t ∆o, with ∆σ ⊆ Qσ × Σσ ×Qσ

I Ω ⊆ (QiQo)ω

We call automata in this form specification automata, and denote JAK �
〉L(A)〈 the relation they encode. Relations recognised by specification au-
tomata are called automatic relations [75, 76]. When considering synthesis
problems, we also use the term automatic specifications.

Example 3.19 Consider again Example 3.17. The universal co-Büchi au-
tomaton of Figure 3.8 recognises the specification Srg of Example 3.5:

wi

wo

po

pi

si
req

∗ idle ∗∗

grt

Figure 3.8.: A universal co-Büchi automa-
ton recognising Srg.
Input states are red squares with index i.
Output states are green circles with index
o. The red (respectively green) star (∗, ∗)
denotes any input (respectively output)
letter.

The automaton waits in w, looping between wi and wo. When it sees a
req, it universally branches to po, where the request is pending. When
reading a grt, it transitions to state si, in which the run dies out in the
next step, which favours acceptance in the universal semantics.
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[77]: Moore (1956), ‘Gedanken-
Experiments on Sequential Machines’

[78]: Mealy (1955), ‘A method for synthe-
sizing sequential circuits’

“Sequential” is to be understood as “de-
terministic”. The former is however more
commonly used in the field of transduc-
ers, to avoid the confusion with another
notion of determinism, namely that the
transducer is deterministic when consid-
ered as an automaton which alternately
reads inputs and outputs. Some also use
the term input-deterministic.

3.4.4. Programs Computable by Finite-State Machines

Regarding the target implementation, Church requires that it is not only
synchronous, but further computed by a circuit, i.e. a finite-state machine.
In this section, we formalise what is meant with this notion through
the model of synchronous transducer. We start by giving a definition
of finite-state computability for terminating programs, both to give a
flavour of the definitions for non-terminating ones and since it allows
us to define what is a finite-memory strategy in the context of games (cf
Definition 3.14).

Definition 3.8 (Finite-State Computability) Let A � (Q , I ,Σ, δ, F) be a
deterministic finite-state automaton. We equip A with an output function

o : F → Γ. (A, o) then computes the function f : L(A) → Γ defined, for
all w ∈ L(A), by o(q f ), where q f is the state in which the run of A over
w ends.

Then, f : Σ∗ → Γ is finite-state computable if it can be computed by some
finite-state machine (A, o).
Remark 3.9Many models have been elaborated to define finite-state
computability. The above definition can be generalised to functions over
finite words f : Σ∗ → Γ∗ through the notion of a Moore machine [77],
which consists in a deterministic finite-state automaton which outputs a
letter everytime it visits a state.

A closely related notion is that of a Mealy machine [78], which again
consists in a deterministic finite-state automaton, but which outputs
a letter on each transition. Both models are expressively equivalent,
although Mealy machines usually have fewer states. For this reason, we
define transducers over infinite words as a generalisation of the latter
model.

Example 3.20 Consider again the functions fgrt : i ∈ I∗ 7→ grt and

frg :
{

i · req 7→ grt
i · idle 7→ idle of Example 3.6. Both are finite-state computable

(Figure 3.9).

grt

∗

(a)A finite-state machine Agrt computing
fgrt.

idle grt

idle
req

req

idle
(b) A finite-state machine Arg computing
frg.

Figure 3.9.: Two finite-state machines re-
spectively computing fgrt and frg of Exam-
ple 3.6.
The output of a state is written in place of
its name, which is irrelevant here.

Now, a function g : Σω → Γω is synchronously ω-computable by a finite-
state machine if it is the ω-behaviour of some finite-state computable
function f : Σ∗ → Γ or, equivalently, if it is computable by some
synchronous sequential transducer.

A synchronous transducer has a finite set of states. It starts its computation
in its unique initial state, and then processes its stream of input letter by
letter as follows: on reading an input letter, it deterministically produces
an output letter and transitions to the next state. Given an infinite input
word, it thus produces an infinite output word, in a synchronous way.
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As for automata, T and t can be omitted
when clear from the context.

Recall that ρ is initial means that q0 � q ι .

Recall that a specification is automatic if it
is recognised by a specification automaton.

We now formally introduce the model, as it will be used thoroughly in
our study.

Definition 3.9 (Synchronous Sequential Transducer) A synchronous se-

quential transducer is a tuple T � (Q ,Σ, Γ, q ι , δ), where:

I Q is a finite set of states
I Σ (respectively Γ) is the input (resp., output) alphabet
I q ι ∈ Q is the initial state

I δ : Q × Σ → Γ × Q is the transition function. We write p
a |b
−−→

T t
q

whenever δ(p , a) � (b , q).

In this chapter, we simply write transducer to denote synchronous sequen-
tial transducers, as no ambiguity arises. A more general notion, that of
asynchronous transducers, is studied in Part II.

We now define the semantics of the model: a transducer T naturally
induces a labelled transition system TT � (Q , {q ι},Σ × Γ,→), where

p
(a ,b)
−−−→
TT

q whenever δ(p , a) � (b , q). Then, given an input word u ∈ Σω,
the run over u is the unique initial path ρ � q0t0q1t1 . . . in TT over a pair
(u , v) for some v ∈ Γω. We say that ρ produces output v. Note that this
run indeed exists and is unique since δ is a (total) function. As usual, we
define states(ρ) � q0q1 . . . and trans(ρ) � t0t1 . . . Then, T computes the
function fT : Σω → Γω which, to every u ∈ Σω, associates the output
v ∈ Γω of its unique run ρ.

Note that here, transducers are assumed to accept any input (cf Remark
3.5), the focus being set on the output they produce.

Example 3.21 Consider again Example 3.20. The ω-behaviour of Agrt and
Arg are respectively modelled by the transducers of Figure 3.10.

∗ | grt

(a) A transducer computing the function
ggrt : i ∈ Iω 7→ (grt)ω .

req | grt

idle | idle
(b) A transducer computing the function
grg which, to each i ∈ Iω , associates the
output o ∈ Oω such that for all j ∈ N,
i[ j] � req⇔ o[ j] � grt.

Figure 3.10.: Two synchronous sequential
transducers, respectively computing the
ω-behaviour of fgrt and frg of Example
3.20.
Accepting states are not depicted, as all
states are accepting.

3.4.5. Statement of the Church Synthesis Problem

The Church synthesis problem for automatic specifications can now be
precisely formulated as follows:

Problem 3.4: Church synthesis problem

Input: An automatic specification S ⊆ Iω × Oω,
given for instance as an MSO formula ϕS

Output: A transducer T computing a function fT : Iω → Oω

which realises Sϕ (i.e. fT ⊆ Sϕ) if it exists
No otherwise
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Eve is also known as the Protagonist, the
Existential player, or the System or Output

player in our synthesis setting†.

Adam is also known as the Adversary, the
Universal player or the Environment or the
Input player

?.

Recall that a labelled transition system is a
(possibly infinite) labelled graph with an
initial vertex.

Remark 3.10 Arenas can also be defined
without labels, i.e. as a non-labelled graph
with a distinguished initial vertex, and
one can switch to this latter formalism by
taking as vertices V′ � V ×M. Conversely,
vertices can be omitted and encoded into
actions; such games are known as Gale-
Stewart games. We keep both as they al-
low for a more intuitive construction of
games and strategies that correspond to
automata, as vertices then correspond to
states and actions with transitions.

In our study,we consider generalisations of the Church synthesis problem
over infinite alphabets for different formalisms of specifications (Chapter
5). The notion of synchronous sequential transducer is correspondingly
extended (Section 5.3).

3.5. Games for Reactive Synthesis

Reactive synthesis problems are conveniently presented as games, as
they capture the core notion of interaction. This section introduces
the necessary definitions and results, and presents a game-theoretic
formulation of the Church synthesis problem.

3.5.1. Games

As the name suggests, one can think of a game as an everyday game
like checkers or chess (cf Example 3.22), except that the interaction lasts
forever. More precisely, in a two-player turn-based zero-sum game, two
players interact, who despite the biblical connotation we choose to call
Adam and Eve. They alternately move some token over a graph, called an
arena, starting from a distinguished initial vertex which belongs to Adam.
The sequence of actions they choose forms a play. The goal of Eve is that
such play is winning, i.e. belongs to the winning condition of the game.
Antagonistically, the goal of Adam is to make Eve lose, i.e. that the play
does not belong to the winning condition. Each player plays according to
some strategy, which specifies the next action to take, given the history
of the play, i.e. the sequence of actions which have been played to far. A
strategy is winning if all plays that are consistent are winning.

Notation 3.10We use ∀ to denote Adam and ∃ for Eve. Given a player
σ ∈ {∀, ∃}, we denote σ its antagonist. Thus, ∀ � ∃ and ∃ � ∀.
Let us now formalise the above notions:

Definition 3.11 (Arena) A two-player arena is a deterministic labelled
transition system A � (V, {v ι},M, α)which is partitioned between the
two players:

I V is a (possibly infinite) set of vertices, partitioned intoV � V∀tV∃,
where V∀ are vertices belonging to Adam and V∃ belong to Eve

I v ι ∈ V∀ is the initial vertex, which belongs to Adam.
I M is a set of moves, which are also partitioned into M � M∀ tM∃
I Its edges are α � α∀ t α∃, where ασ : Vσ ×Mσ → Vσ. Note that

we require players to alternate.

Definition 3.12 (Plays, histories and winning condition) A play is an
infinite sequence v0m0v1m1 · · · ∈ (VM)ω such that v0 � v ι and for all
j ≥ 0, v j+1 � α(vi ,mi). An history h � v0m0 . . .mn−1vn ∈ (VA)∗V is
a finite prefix of a play which ends in some vertex vn . If vn ∈ V∀, we
say that it belongs to Adam, otherwise to Eve. We respectively denote
by Plays(A) and Hist(A) the set of plays and histories of an arena, and
†: You might also encounter her under the name of Eloise (and occasionally as the First of
Her Name, The Unburnt, Queen of the Andals, the Rhoynar and the First Men, Queen
of Meereen, Khaleesi of the Great Grass Sea, Protector of the Realm, Lady Regent of the
Seven Kingdoms, Breaker of Chains and Mother of Dragons).
?: Or Abelardwhen he plays with Eloise.
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No ambiguity arises due to typing consid-
erations.

Again, ambiguity is resolved with typing.

Thus, λσ is finite-memory if there exists a
finite memory set Q, an initial memory q ι ∈
Q a memory update function δ : Q ×Mσ →
Q and a move selection function o : Vσ ×
Q → Mσ such that λσ can be computed as
follows: initially, the memory is q ι . When
the play is in vertex vσ and the player’s
memory state is q, s/he plays o(vσ , q).
When its antagonist plays aσ , player σ
updates its memory to δ(q , aσ).

Figure 3.11.: Adam and Eve in the Gar-
den of Eden, devising over whether they
should eat the forbidden fruit. Eve’s objec-
tive (as convinced by the serpent, but this
is not modelled here) is that they do, and
Adam is that they do not (as instructed by
God, again not modelled). Fortunately for
Science, less so for eternal bliss, Eve wins
the play. It is open whether she had a win-
ning strategy, as it amounts to deciding
whether the Fall was inevitable.

further let Hist(A) � Hist∀(A) t Hist∃(A), where Hist∀(A) (respectively
Hist∃(A)) is the set of histories belonging to Adam (respectively to Eve).

A winning condition is a subset W ⊆ (VA)ω.

We extend the edge function ασ from vertices to histories as follows:
given a history hσ whose last vertex is vσ , we let, for all moves mσ ∈ Mσ ,
ασ(hσmσ) B ασ(vσ ,mσ)
Definition 3.13 (Game) A game is then a tuple G � (A,W∃), where:

I A is the arena
I W∃ ⊆ Plays(A) is the winning condition for Eve.

The games we study are zero-sum, which means that Eve wins if
and only if Adam loses. Thus, the winning condition of Adam is the
complement W∀ � Plays(A) \W∃.

Definition 3.14 (Strategy) A strategy for player σ is a total function
λσ : Histσ(A) → Mσ. We say that a play ρ is consistent with λσ if for
all finite prefixes hm ≺ ρ where h ∈ Histσ(A) and m ∈ mσ, we have
m � λσ(h). We denote again Plays(λσ) the set of plays consistent with
λσ.

A strategy λσ is winning for player σ if all plays consistent with it belong
to Wσ, i.e. Plays(λσ) ⊆ Wσ.

Remark 3.11 Weassume that a strategy is a total function λσ : Histσ(A) →
Mσ . Actually, it suffices to define it over histories that are consistent with
it. Thus, a strategy λσ can be given as a set of histories Hλσ which:

I Contains the history consisting in the initial vertex: νι ∈ Hλσ
I Is universally closed for histories belonging to σ: for all hσ ∈ Hλσ ∩

Histσ(A), for all moves mσ ∈ Mσ, by letting vσ � ασ(hσmσ), we
have hσmσvσ ∈ Hλσ .

I Is existentially closed for histories belonging to σ: for all hσ ∈ Hλσ ∩
Histσ(A), there exists a unique move mσ ∈ Mσ , such that, by letting
vσ � ασ(hσmσ), we have hσmσvσ ∈ Hλσ .

The limit of such set is the set of plays that are consistent with λσ.

To build strategies, we often build this set by induction.

A strategy λσ is finite-memory if it is finite-state computable.

It is positional if, moreover, it only depends on the current state, i.e.
its memory set is a singleton. In other words, there exists a function
µ : Vσ → Mσ such that for all histories hv ∈ Histσ(A), λσ(hv) � µ(v).
Definition 3.15 (Determinacy) Let G be a game. We say that G is deter-
mined if either Adam has a winning strategy in G, or Eve has one.

In some cases, not only is the game determined, but one can also restrict
to subclasses of strategies, typically finite-memory or positional ones. We
say that G is finite-memory determined for Eve (respectively for Adam) if G is
determined and whenever Eve (resp. Adam) has a winning strategy, she
(resp. he) has a finite-memory one. When G is finite-memory determined
for both players, we simply say that G is finite-memory determined.

Similarly, one can define positional determinacy (again for Eve, for Adam
and for both) by replacing ‘finite-memory’ with ‘positional’.

Determinacy holds for a large class of games:
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[80]: Gurevich and Harrington (1982),
‘Trees, Automata, and Games’
[81]: Büchi (1983), ‘State-Strategies for
Games in Fσδ ∩ Gδσ ’

[82]: Hsu, Campbell, and Jr. (1995), ‘Deep
Blue System Overview’

[83]: Silver et al. (2018), ‘A general rein-
forcement learning algorithm that masters
chess, shogi, and Go through self-play’

[84]: Doyen and Raskin (2011), ‘Games
with imperfect information: theory and
algorithms’

[85]: Mostowski (1985), ‘Regular expres-
sions for infinite trees and a standard form
of automata’

This is of course reminiscent of the parity
acceptance condition for automata.

Theorem 3.7 ([79]) Let G � (A,W) be a game. If A and W are Borel sets, then

G is determined.

Definition 3.16 (ω-regular game) A game G � (A,W) is ω-regular when
A is finite and W is ω-regular.

Theorem 3.8 ([80, 81]) ω-regular games are finite-memory determined.

Corollary 3.9 Let G be an ω-regular game. If Eve (respectively Adam) has a

winning strategy in G, then she (respectively he) has a finite-memory winning

strategy in G.

Example 3.22 Everyday games, somewhat unsurprisingly, fit the frame-
work of games, although not all of them are two-player turn-based
zero-sum games:

I Chess and checkers fit this setting, up to the fact that one must
arbitrarily choose whether draws are winning for white (Adam, as
white starts) or black (Eve). Go can also be modelled. The arena
consists in all possible states of the board, and moves correspond
to moving pieces on the board. Note that in those games (and
most everyday games), termination of every play is enforced by the
rules. This is modelled by adding two extra sink vertices, which are
respectively winning for Adam and Eve, and which are reached
after the corresponding player won. The goal of each player is thus
to reach his/herwinning vertex. Gameswith suchwinning condition
are called reachability games. Note that reachability games are ω-
regular games. This implies that chess is finite-memory determined
(Theorem 3.8; reachability games are even positionally determined).
However, the combinatorics are too high for a winning strategy to
be computed in an exact way. Yet, the brute computational power
of modern computers, along with well-designed search algorithms,
yield approximations that are good enough to win against world
champions [82]. Statistical methods for machine-learning furthers
this advantage [83].

I Multi-player games, like most card games, obviously do not fit the
two-player setting.

I Games where a player hides his/her hand to the others require to
add imperfect information. Under certain conditions, these games
can be reduced to games with perfect information (see e.g. [84]).

I Concurrent games, like rock-paper-scissors, are not turn-based.
I Finally, cooperative games are not zero-sum, as when one player wins,

the other does not necessarily lose.

Parity Games

Parity games form a class of ω-regular games. They were introduced
in [85], and provide a core tool for the study of problems involving
ω-regularity, and in particular synthesis problems. As we use them
extensively in this study, we define them formally and describe some of
their properties.

Definition 3.17 (Parity Game) A parity game is a game G � (A,W), where
A � (V, {v ι},M, α) and W is defined through a function c : V →
{1, . . . , d} called the parity function, where d ∈ N is the parity index of G.
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[86]: Emerson and Jutla (1988), ‘The Com-
plexity of Tree Automata and Logics of
Programs (Extended Abstract)’

[87]: Mostowski (1991), Games with Forbid-

den Positions

[88]: Zielonka (1998), ‘Infinite Games on
Finitely Coloured Graphs with Applica-
tions to Automata on Infinite Trees’

[89]: Calude et al. (2017), ‘Deciding parity
games in quasipolynomial time’

[90]: Jurdzinski and Lazic (2017), ‘Suc-
cinct progress measures for solving parity
games’
[91]: Fearnley et al. (2017), ‘An ordered ap-
proach to solving parity games in quasi
polynomial time and quasi linear space’
[92]: Lehtinen (2018), ‘A modal µ perspec-
tive on solving parity games in quasi-
polynomial time’

[93]: Parys (2019), ‘Parity Games:
Zielonka’s Algorithm in Quasi-
Polynomial Time’

A one-player game is a two-player game
where one player only has a trivial move.

[27]: Chandra, Kozen, and Stockmeyer
(1981), ‘Alternation’

While all semantics are expressively equiv-
alent in the finite alphabet case (cf Remark
3.7), this is not the case anymore in the
infinite alphabet case, as we will see in
Section 4.3.

A play is then winning if the maximal colour seen infinitely often is even,
i.e. W � {ρ ∈ Plays(A) | max Inf

(
c(vertices(ρ))

)
is even}.

Note that W can be defined by a parity automaton. More generally, all
acceptance conditions defined for ω-automata (Definition 3.6) induce
a corresponding winning condition and a class of ω-regular games.
Section 3.5.2 explores the relations between games and automata in more
detail.

One of the main properties of parity games is positional determinacy:
not only are they finite-memory determined (since they are ω-regular
games), but the player who has a winning strategy has a positional one.

Theorem 3.10 ([86, 87]) Let G � (A,W) be a parity game. Then, either Adam

has a positional winning strategy, or Eve has one.

Corollary 3.11 Let G be a parity game. If Eve (respectively Adam) has a winning

strategy in G, then she (respectively he) has a positional winning strategy in G.

Remark 3.12 Note that this holds even if A is infinite [88].

Moreover, such games can be solved in exponential time:

Theorem 3.12 ([88]) Let G be a parity game with finite arena A of size |A| � n
and with parity index d. It can be decided in time O(nd) whether Eve has a
winning strategy in G.

The corresponding winning strategy can be obtained with the same complexity.

Remark 3.13 The problem of solving a parity game is inNP∩coNP. It is a
long-standing open problem whether parity games can be solved in poly-
nomial time. In 2017, there was a breakthrough result establishing that
parity games can be solved in quasi-polynomial time O(nlog d) [89], which
was followed by the discovery of three other algorithms of equivalent
complexity [90–92]. It was also established that Zielonka’s algorithm [88]
can be modified to yield the same upper bound [93]. However, the same
paper notes that as of today, Zielonka’s algorithm outperforms the others
in practice. As it does not affect our complexity upper bounds, we use
this algorithm to solve parity games.

3.5.2. Games and Automata

Acceptance as a Game and Alternation

Automata and games are closely related concepts. First, acceptance of
a word w by a non-deterministic automaton A can be defined as a one-
player game GA,w , where Eve is tasked with finding an accepting run,
and has a winning strategy λw if and only if w is accepted. Dually, if
A is instead universal, w is accepted if and only if Adam is not able to
exhibit a rejecting run. It is then natural to generalise those two semantics
through alternation [27], where both non-deterministic and universal
states are allowed, and Eve solves non-determinism while Adam solves
universality.
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Recall that in a specification automaton,
transitions alternate between the two sets,
i.e. ∆σ ⊆ Qσ × Σ ×Qσ .
Recall that the initial state is an input state,
so it belongs to Adam.

To be precise, we must ask that such strat-
egy is moreover a computable object, i.e.
that it can be defined by a Turing machine.

[8]: J.R. Büchi and L.H. Landweber (1969),
‘Solving sequential conditions finite-state
strategies’

[13]: Pnueli and Rosner (1989), ‘On the
Synthesis of a Reactive Module’

The result is originally due to [94]: Safra
(2006), ‘Exponential Determinization for
omega-Automata with a Strong Fairness
Acceptance Condition’. As the construc-
tion is quite involved, we refer to [95] for
a simpler presentation, as well as lower
bounds for the constructions.
[96]: Filiot et al. (2016), ‘On Equivalence
and Uniformisation Problems for Finite
Transducers’

G is equivalent to G′ whenever player σ
has a winning strategy in G iff it has one
in G′. Here, it is moreover easy to convert
such strategy from one game to the other.

Games over Specification Automata

On the other hand, let S � (Q , q ι ,Σ,∆,Ω) be a deterministic specification
automaton. Its states are thus partitioned into input (Qi) and output
(Qo) states. We define the synthesis game GS over S, where Adam (∀)
is in charge of the input (i), and Eve (∃) of the output (o), so we let
V � Qi tQo and M � ∆i t ∆o. Note that q ι ∈ Q∀ Thus, (Q , {q ι},Σ,∆)
is an arena. We then equip such arena A with the winning condition
W �

{
ρ ∈ Plays(A)

�� states(ρ) ∈ Ω}
.

Now, it follows from the definitions that:

Proposition 3.13 Let S be a specification automaton. The following are equiva-

lent:

1. There exists a (finite-state computable) synchronous program which

implements JSK
2. Eve has a (finite-memory) winning strategy in GS

As a consequence, we get the following result:

Theorem 3.14 The reactive synthesis problem for specifications given as non-

deterministic parity automata is ExpTime-complete.

Proof. The upper bound was first established in [8] and [13]. It can be
obtained by computing a deterministic parity automaton D which is
equivalent to the specification automaton S, and solving the resulting
parity game GD . Such algorithm runs in exponential time, as D can
be computed in exponential time and has 2O(n·log n) states and O(n · d)
colours (where n is the number of states of S and d its parity index) [94,
95]. Finally, the winner of GD , along with a positional winning strategy,
can be computed in 2O(n2 ·d·log n) by Theorem 3.12).

Hardness is folklore, but a proof in the particular case of finite words
(easily adapted to the ω-word setting) can be found in [96, Proposition
6].

Moreover, since parity games are positionally determined, we know that
Eve has a winning strategy if and only if she has a positional one. As a
consequence, the reactive synthesis problem is equivalent to the Church
synthesis problem, and we get

Theorem 3.15 The Church synthesis problem for specifications given as non-

deterministic parity automata is ExpTime-complete.

It is often convenient to represent the winning condition as an ω-
automaton, that we call an observer.

Definition 3.18 Let G � (A,W) be game. IfW is defined by an automaton
Ob, we say that Ob is an observer for G.

Bybuilding the synchronisedproduct of the arenaA andof theunderlying
transition system of Ob, we can easily show that:

Proposition 3.16 Let G � (A,W) be a game whose winning condition is

given by an observer Ob with states Q and acceptance condition Ω. If Ob is

deterministic, G is equivalent to a game G ⊗Ob � (A ⊗Ob, πQ
−1(Ω)), where

πQ denotes the projection on the Q component.
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The construction in [54] yields a non-
deterministic Büchi automaton.

Remark 3.14 (Good-for-Games Automata) The above construction ac-
tually works for a larger class of automata, namely good-for-games
automata [97], also known as history-deterministic automata [98]. An au-
tomaton is good-for-games if Eve can resolve non-determinism knowing
only the history. In other words, she has a uniform strategy to win GA,w
for all w ∈ L(A). Such notion proves useful for synthesis applications, as
good-for-games automata can be exponentially more succinct than their
deterministic counterpart for the co-Büchi acceptance condition; for the
Büchi condition, they are only quadratically smaller, and the question is
open for parity automata [99].

3.5.3. The Church Game

In this section, we outline a proof of the decidability of the Church
synthesis problem. The reader can refer to [30, 100] for details. A more
detailed exposition of the links between games and reactive synthesis is
also available in [9].

The Church synthesis problem can be modelled as a game: Eve is the
system, and interacts with Adam, the environment. Thus, Adam provides
an input i ∈ I, to which Eve responds with an output o ∈ O, and so on
ad infinitum. A play thus models an infinite interaction, and it is winning
whenever it satisfies the specification.

Definition 3.19 (Church Game) Formally, to a specification S ⊆ Iω ×Oω ,
we associate the following Gale-Stewart game GS: The game arena

has two vertices V � {v∀ , v∃}. Edges are v∀
i−→ v∃ for all i ∈ I, and

v∃
o−→ v∀ for all o ∈ O. A play v∀i0v∃o0v∀i1v∃o1 . . . is then winning if

actions(ρ) � i0o0i1o1 · · · ∈ 〈S〉, i.e. (i0i1 . . . , o0o1 . . . ) ∈ S.

Now, in a similar way as Proposition 3.13, we can show that S admits
a synchronous implementation if and only if Eve has a computable
winning strategy in GS, and that moreover, one can build a finite-state
computable implementation if and only if Eve has a (computable) finite-
memory winning strategy in GS. Thus, the Church synthesis problem
for a specification S can be reformulated as deciding whether Eve has a
finite-memory winning strategy in GS and, if yes, to compute it.

Our study thus leads us to the following result:

Theorem 3.17 ([8, 13]) The Church synthesis problem is decidable.

Moreover, the specification admits a synchronous implementation if and only if

it admits one which is finite-state computable.

Proof. First, if the specification is given as a MSO formula, convert it
to an ω-automaton Aϕ such that L(Aϕ) � L(ϕ) (Theorem 3.6). Such
automaton can then be converted into a deterministic parity automaton
D. Finally, deciding whether ϕ is realisable amounts to deciding the
winner of the synthesis game associated with D. As it is a parity game,
it is positionally determined (Theorem 3.10), so the procedure yields a
finite-memory strategy (even a positional one), which corresponds to a
finite-state computable implementation if Eve is the winner.
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There is a slight terminology clash here:
the universal semantics, which is to be
understood as co-non-determinism, has
little to do with the universality problem,
that askswhether someautomaton accepts
all words.

Register Automata
over a Data Domain 4.

The goal of this work is to extend the study of the reactive synthesis
problem to the case of infinite alphabets, where both the system and
the environment pick their actions in an infinite domain. To model this
setting, we use the formalism of data words, i.e. words over an infinite
alphabet, called the data domain (cf Section 4.1). This domain consists in
an infinite set along with a finite set of predicates over data, for instance
(N,�) or (Q, <). Although they can be encoded in data values, we also
equip data words with labels taken from a finite alphabet. This is done for
modelling purposes: the setting of infinite alphabets aims at extending
the study of synthesis problems from the control to the data-processing

perspective, i.e. to be able to specify how the incoming data should be
processed by the system.

The finite alphabet component allows to preserve the control aspect. More
precisely, in the classical setting, labels indicate how the internal states
of the system should evolve, what signals it should raise and at which
moment. They also play this role in our setting, and additionally specify
how the system should process the data, itself modelled as elements of an
infinite alphabet. For instance, if we come back to the unmissable request-
grant example (Example 3.5) where a server has to grant requests from
its clients, one can enrich the modelisation by attributing an identifier
to each client, and ask that the request of client i has to be matched by
a grant with data value i. Executions of the system are then modelled
as infinite sequences of pairs (σ, i), where σ ∈ (req, idle, grt) indicates
the role of its associated identifier (the data value associated with idle is
irrelevant).

We express specifications with register automata [21, 22, 101] (defined
in Section 4.3) that alternately read one input and one output element,
as in the finite alphabet case (cf Section 3.4.3). Those machines consist
in an ω-automaton equipped with a finite set of registers. On reading
a data value, the machine compares it with the content of its registers
with regard to the predicates of the domain. Depending on the result of
the test, it then transitions to some state and overwrites the content of
some registers (or none) with the data value it read. As this model is at
the basis of our study, we dedicate this chapter to the study of some of
its properties that prove useful for our applications. We consider two
different semantics, namely non-determinism and its dual, universality,
as well as the deterministic restriction.

Correspondingly, the target implementation is a synchronous sequential
register transducer, i.e. a synchronous sequential transducer equipped
with a finite set of registers. On reading an input data value, it compares
it with the content of its registers and deterministically stores it in some
of them (or none). It then outputs the content of one of its registers,
and transitions to some state. Both the specification and implementation
formalisms are detailed in the next chapter (Chapter 5), respectively in
Sections 5.2 and 5.3.



4. Register Automata over a Data Domain 72

Summary

4.1. Data Words . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1. Labelled Data Words . . . . . . . . . . . . . . . . . 74

4.2. Tests and Valuations . . . . . . . . . . . . . . . . . . . . . 75

4.3. Register Automata . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1. Initialisation of Registers . . . . . . . . . . . . . . 76

4.3.2. Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.3. Operations over Data . . . . . . . . . . . . . . . . . 77

4.3.4. The Model . . . . . . . . . . . . . . . . . . . . . . 78

4.4. General Properties . . . . . . . . . . . . . . . . . . . . . . 83

4.4.1. Link with ω-regular Languages . . . . . . . . . . 83

4.4.2. Projection over Labels . . . . . . . . . . . . . . . . . 84

4.4.3. Union and Intersection . . . . . . . . . . . . . . . . 84

4.4.4. A Normal Form for Tests . . . . . . . . . . . . . . 86

4.4.5. On Assignments . . . . . . . . . . . . . . . . . . . . 87

Reassignments . . . . . . . . . . . . . . . . . . . . . 87

Single-Assignment Register Automata . . . . . . 89

4.4.6. Closure under Automorphisms . . . . . . . . . . 90

4.5. Non-Deterministic Register Automata with Equality . . 92

4.5.1. Constraints . . . . . . . . . . . . . . . . . . . . . . 92

4.5.2. The Renaming Property . . . . . . . . . . . . . . . 95

Projection over Labels . . . . . . . . . . . . . . . . 96

Emptiness Problem . . . . . . . . . . . . . . . . . . 97

Universality Problem . . . . . . . . . . . . . . . . . 97

4.5.3. Local Concretisability . . . . . . . . . . . . . . . . 98

Explicit Tests . . . . . . . . . . . . . . . . . . . . . 99

Update of Constraints . . . . . . . . . . . . . . . . 100

Ensuring Local Conretisability . . . . . . . . . . . 100

4.5.4. Action Sequences . . . . . . . . . . . . . . . . . . 102

Feasible Action Sequences . . . . . . . . . . . . . 102

4.5.5. Constraints and Types . . . . . . . . . . . . . . . . . 104

Types . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6. Non-Deterministic Register Automata with a Dense Order 106

4.7. Register Automata with a Discrete Order . . . . . . . . . 108

4.7.1. Non-Regular Behaviours . . . . . . . . . . . . . . 108



4. Register Automata over a Data Domain 73

Data domains without equality constitute
pathological cases that we want to rule
out.
For simplicity, in the following,we confuse
the symbols with their interpretation.

Note that data words are infinite, other-
wise they are called finite data words.

µ is an automorphism of D if for all
relations P of arity k and for all k-
tuples (d1 , . . . , dk ), (d1 , . . . , dk ) ∈ P ⇔
(µ(d1), . . . , µ(dk )) ∈ P, and µ(c) � c for
all constants. L ⊆ Dω is equivariant when
for all such automorphisms, µ(L) � L.

[21]: Kaminski and Francez (1994), ‘Finite-
Memory Automata’

[25]: Bojańczyk, Klin, and Lasota (2014),
‘Automata theory in nominal sets’

For readability, we write (D,�, #) instead
of (D, {�}, {#}). In the following, we gen-
erally omit the braces when no ambiguity
arises, and we do not explicitly include
�when it can be derived. We might also
omit # when its choice is irrelevant.

4.7.2. Constraint Sequences . . . . . . . . . . . . . . . . 109

Feasibility of Constraint Sequences . . . . . . . . 110

4.8. Universal Register Automata . . . . . . . . . . . . . . . . 118

4.9. Register Automata and Arithmetic . . . . . . . . . . . . . . 121

4.9.1. Register Automata over (N,+1, 0) . . . . . . . . . . 121

4.9.2. Register Automata over (N,×, 2, 3) . . . . . . . . . 121

4.10. Extensions of the Model . . . . . . . . . . . . . . . . . . . 122

4.10.1. Non-Deterministic Reassignment . . . . . . . . . 122

Closure Properties . . . . . . . . . . . . . . . . . . 123

4.10.2. Fresh-Register Automata . . . . . . . . . . . . . . . 127

4.1. Data Words

Definition 4.1 (Data domain, data words) A data domain is a triple D�

(D,R,C)whereD is a countably infinite set of data values, R is a finite set
of interpreted relational symbols, also known as predicates and C a finite
set of interpreted constant symbols, disjoint from R. The setS � R t C is
called the signature of D. We assume that the symbol � is in R, and we
interpret it as the equality relation.

A data ω-word, or simply data word, is an infinite sequence of data
x � d0d1 · · · ∈ Dω. Finite data words are defined analogously.

Assumption 4.2 To be able to initialise registers, we assume that there is
at least one distinguished constant symbol #. This assumption is benign:
given a data domain D � (D,R,C) with no constants, one can instead
consider D# � (D t {#},R, (C t c0)), where c0 is a new constant symbol
interpreted as #, and the equality relation is extended to include (#, #).
Definition 4.3 (Data language) A data word language, or simply data

language, is a set of data words L ⊆ Dω.

Remark 4.1 Actually, we further require that it is closed under predicate-
preserving automorphisms (cf Definition 4.18, recalled in the margin).
This notion is made precise in Part II under the name of equivariance
(Definition 12.2) but the reader does not need to bother with it now, since
this will be the case of all the languages that we manipulate. Indeed, data
languages recognised by register automata are necessarily equivariant,
see [21] and [25]. We give an intuition of the notion in Example 4.1 and
prove the result for our setting in Proposition 4.10.

We consider the following data domains:

I A countably infinite set D with the equality predicate (D,�,C),
with a finite set of constants C ⊂ f D containing # whose choice
is irrelevant. This setting is isomorphic to (N,�, {n1 , . . . , nc}) for
some arbitrary n1 , . . . , nc ∈ N, where c � |C | (in particular, one
can take {1, . . . , c}).

I The set of rational numbers with its usual order: (Q, <, 0). Again,
the choice of # does not matter; we simply choose 0 for simplicity.
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[102]: Minsky (1961), ‘Recursive Unsolv-
ability of Post’s Problem of "Tag" and other
Topics in Theory of Turing Machines’

AMinskymachine is amachinewith finitely
many states, equipped with two counters

which take their values in N, and that it
can increment, decrement and test for 0.

LN
< is not equivariant in (N,�, 0): by taking

the transposition t of 1 and 2 (i.e. t(1) �
2, t(2) � 1 and t(n) � n for all n , 1, 2),
which is an automorphismofNpreserving
� and 0, we have that w � 123 · · · ∈ LN

<
but t(w) � 213 · · · < LN

< . Note that t is not
an automorphism of (N, <) as it does not
preserve <.

As witnessed by LM , register automata
over (N,+1, 0) can recognise accepting
runs of Minsky machines, which implies
that the emptiness problem for determin-
istic register automata over this domain
(and richer ones) is undecidable (see The-
orem 4.52).

I The set of natural numbers with its usual order and 0: (N, <, 0).
Here, being able to access 0 is important, as it is the mimimal
element of Nwith regard to <.

Part II describes a settingwhich encompasses both (D,�,C) and (Q, <, 0),
namely oligomorphic data domains.

Remark 4.2Note that we do not consider additional constants in our
treatment of (Q, <, 0), as it induces considerable notational overhead.
However, the study can be extended to this setting, and we give the
main ideas on how to do this. As distinguishing constants does not
affect oligomorphicity, such an extension also results from our study of
oligomorphic data domains (see Section 12.2.1 and Proposition 12.15). )

Example 4.1 Consider the following sets:

I The first data value appears again:

Lfirst � {d0d1 · · · ∈ Nω | ∃i > 0, di � d0}

I At least two data are equal:

L∃� � {d0d1 · · · ∈ Nω | ∃i , j, di � d j}

I All data are distinct:

L∀, � (L∃�)c � {d0d1 · · · ∈ Nω | ∀i , j, di , d j}

I Data are in increasing order, in N:

LN
< � {d0d1 · · · ∈ Nω | ∀i < j, di < d j}

I Data are in increasing order, in Q:

LQ
< � {d0d1 · · · ∈ Qω | ∀i < j, di < d j}

I Consider a deterministic Minsky machine [102] M. Define the
language of the successive values of its counters:

LM �

{
c0

1c0
2c1

1c1
2 · · · ∈ Nω

���� for i � 1, 2; c0
i c1

i . . . is the sequence
of values taken by counter i

}
According to the above definition, all of them are data languages over
(N,�, 0), except for LQ

< which is defined over Q. However, LN
< intuitively

does not belong to this data domain, as it relies on an ordering of N,
which cannot be expressed in (N,�, 0), and it can indeed be ruled out as
it is not equivariant. It however belongs to the richer domain (N, <, 0).

A similar argument applies to LM , as increment and decrement cannot
be expressed in (N,�, 0). Furthermore, domains which can express those
operations yield a model that is too expressive, due to its equivalence
with Minsky machines (see Property 4.51). Note that testing for 0 also
requires the constant 0 in the domain.

4.1.1. Labelled Data Words

As explained above, we equip data words with labels as it better models
the reactive synthesis setting. Note that this could be done internally, by
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We often write ϕ(X) to explicit the fact
that ϕ is over variables X.

P(t) is called an atomic formula.

instead considering the data domainΣ×D, whereΣ is the finite alphabet
of labels and the signature is extended by adding predicates for labels
while interpreting existing predicates on the data component (cf Remark
10.1).

Definition 4.4 (Labelled Data Word) Let Σ be a finite alphabet of labels,
and Dbe a data domain. A labelled data value over data domain Dwith
labels Σ is a pair (σ, d) ∈ Σ × D. Its label is lab(σ, d) � σ and its data
value is dt(σ, d) � d. A labelled data ω-word is then an infinite sequence
of labelled data, i.e. x � (σ0 , d0)(σ1 , d1) · · · ∈ (Σ × D)ω. lab and dt are
extended pointwise, i.e. lab(x) � σ0σ1 . . . and dt(x) � d0d1 . . .

In the rest of this chapter, we sometimes say data word for labelled data
ω-word, as no ambiguity arises. In Part II, we drop the explicit treatment
of labels, since it induces unnecessary notational complexity.

Convention 4.5 In the following, we fix a finite alphabet Σ of labels and
a data domain D� (D,R,C).

4.2. Quantifier-Free Formulas, Tests and
Valuations

In our setting, tests of the automaton over input data are modelled as
quantifier-free formulas, and the content of the registers is a valuation of
variables. This section defines these concepts taken from logics, as well
as the notion of type that proves useful for abstracting the behaviour of
our model.

Definition 4.6 (Quantifier-free formula over D, Valuation) Let X a finite
set of variables. We consider the set of quantifier-free formulas ϕ in D over
variables X, which is generated by the following grammar:

ϕ F P(t1 , . . . , tk) | > | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ

where P is a relation of R of arity k for some k ∈ N and (t1 , . . . , tk) is a
k-tuple of terms, a term being a constant of C or a variable in X. Note that
to ease the writing of tests, we defined a grammar that is not minimal, as
we included > B ϕ ∨ ¬ϕ (for some formula ϕ not containing > nor ⊥),
⊥ B ¬> and ϕ ∧ ψ B ¬(¬ϕ ∨ ¬ψ).
Definition 4.7 (Valuation) A valuation of variables X over data domain
D is a total function ν : X → D. We denote by ValD(X) � XD the set of
valuations of X over D.

Given a variable a (not necessarily in X) and a data value d ∈ D, we
define the corresponding update of ν with regard to a and d as

ν{a← d} :
{

x , a 7→ ν(x)
a 7→ d

Remark 4.3 Note that if a < X, this operation extends the domain of ν.

When several updates a1 ← d1 , . . . , an ← dn are conducted, we write
ν{a1← d1 , . . . , an← dn} for ν{a1← d1} . . . {an← dn}. Finally, for a set
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As usual, equality is written infix, i.e. r1 �

r2 means � (r1 , r2), and similarly for <.

We will mostly be concerned with data do-
mains where the satisfiability of a formula
can be checked as well.

[21]: Kaminski and Francez (1994), ‘Finite-
Memory Automata’

Depending on the application, it can be
better to assume that # does not belong
to the data domain, and can be though of
as null. This can be simulated (cf Remark
4.5), butwedonot assume it in general as it
induces considerable notational overhead.

See [103]: BjörklundandSchwentick (2010),
‘On notions of regularity for data lan-
guages’ for a studyof the various automata
models over infinite alphabets.

A � {a1 , . . . , an}, ν{A← d} is a shorthand for ν{a1← d , . . . , an← d},
with the convention that ν{∅← d} � ν.

Satisfaction of a formula ϕ(X) by a valuation ν over variables X, written
ν � ϕ, is defined as usual, by induction over ϕ:

I ν � P(t1 , . . . , tk) if P(ν(t1), . . . , ν(tk)) holds in D, where ν is ex-
tended to constants by setting νC(c) � c for all constants c ∈ C.

I ν � >
I ν 6� ⊥
I ν � ϕ ∧ ψ if both ν � ϕ and ν � ψ
I ν � ϕ ∨ ψ if ν � ϕ or ν � ψ
I ν � ¬ϕ if ν 6� ϕ

A formula is satisfiable if there exists a valuation which satisfies it.

Example 4.2 Over data domain (N,�, 0), the valuation ν defined as
ν(r1) � 0, ν(r2) � 1 and ν(r3) � 1 satisfies ϕ1 B ¬(r1 � r2) and
ϕ2 B r2 � r3, but not ϕ3 B r1 � r3. It also satisfies ϕ4 B r1 � 0.

The same valuation seen as belonging to (Q, <, 0) satisfies ϕ5 B r1 < r2
but not ϕ6 B ¬(r1 < r2 ∨ r2 < r1). Note that ϕ6 holds whenever
ν(r1) � ν(r2), meaning that equality can be derived in (Q, <), which can
thus simulate (N,�).
Assumption 4.8 In the following, we assume that the satisfaction of a
formula by a given valuation can be decided.

4.3. Register Automata

Register automata were introduced for finite data words over data do-
main (D,�) by Kaminski and Francez under the name of finite-memory

automaton [21]. The aim was to generalise finite-state automata to the set-
ting of infinite alphabets. This model consists in a finite-state automaton,
which is equipped with a finite set of registers, used to store data. These
registers are initialised with a distinguished value #. On reading an input
data value, the automaton compares it with the content of its registers
(with regard to the predicates of the data domain) by conducting a test. It
then stores it in some (or none) of its registers, conducting an assignment,
and transitions to some state.

Other automata models have been defined for the infinite alphabet
setting [103], but register automata offer an interesting compromise
between expressiveness and decidability, even if they do not enjoy all the
closure properties of finite-state automata. We first present the different
aspects of the model, before defining it.

4.3.1. Initialisation of Registers

As explained above, we need a special value to initialise registers. We
use the distinguished constant #.

Definition 4.9 (Initial valuation) Given a set R of registers, we denote
νιR : R→ D the constant valuation defined, for all r ∈ R, by νιR(r) � #.
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D is omitted when clear from the context.

Recall that we assume that equality can be
expressed.? , # is a short for ¬(? � #).

4.3.2. Tests

Register automata conduct tests over input datawith regard to a valuation
of their registers. A test is a quantifier-free formula over D with a
distinguished variable denoting the input data value.

Remark 4.4 Tests could have been defined as existential first-order for-
mulas without affecting our results. We choose quantifier-free formulas
for simplicity’s sake. It does not make any difference for structures which
admit quantifier elimination such as (N, {�}) or (Q, {<}). Except for
those structures however, allowing the full-fledged power of first-order
logic would be too too strong. For instance, from (N, <, 0), one can define
the successor relation +1 in FO, which yields a model that is equivalent
to Minsky machines (see Property 4.51), that are Turing complete [102,
Theorem I].

Definition 4.10 (Test) Let R be a finite set of variables, that we call
registers, and let ? < R be a variable, denoting the input data value. A
test in D over R is a quantifier-free formula ϕ over variables the R t {?}.

The set of tests in D over R is denoted TestsD(R). It is infinite in general,
but finite up to logical equivalence (see Proposition 4.5).

For a valuation ν : R → D, a data value d ∈ D and a test φ, we often
write ν, d � φ for ν{?← d} � φ.
Remark 4.5 It is sometimes relevant to assume that the initial content of
registers # does not appear in the input. One can restrict to data values
that are distinct from # by considering tests of the form φ∧ (? , #), since
# is a constant of the domain.

Convention 4.11 In the following, we let ? be a distinguished variable,
that we use to denote the input data value. Implicitly, we always assume
? < R.

4.3.3. Operations over Data

We now explain how data is processed, as it eases the formalisation of
the semantics. Initially, registers start with the initial valuation νιR. On
reading a data value, a register automaton first tests it, and then assigns
it to some register.

Definition 4.12 (Assigments, Actions and Data Processing) Given a set
of registers R, an assignment over R is a subset asgn ⊆ R. An action

is a pair (φ, asgn) ∈ TestsD(R) × 2R. The set of actions is denoted
ActionsD(R) � TestsD(R) × 2R.

Data processing is then described through a labelled transition system
TD

R , called the data processing transition system over R. Its configura-
tions are register configurations, i.e. valuations. It is labelled with pairs
(d , (φ, asgn)), where d is a data value and (φ, asgn) is an action. In reg-
ister configuration ν, on reading a data value d ∈ D, when it executes
action (φ, asgn), the machine:

(i) Tests whether d satisfies the test φ from valuation ν (ν, d � φ)
(ii) Assigns d to all registers of asgn (ν{asgn← d})
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When Σ is unary, we omit the mention of
labels.

Assuming ∆ is finite yields a finitely pre-
sented model and is harmless since there
are finitely many non-equivalent tests.

As forω-automata and transducers, A and
t can be omitted when depicting transi-
tions if they are clear from the context.

Recall that for a word w ∈ Xω (for some
set X), Inf(w) is defined as Inf(w) � {a ∈
X | w[i] � a for infinitely many i ∈ N}.

Formally, we define TD
R �

(
ValD(R), νιR ,D × ActionsD(R),→

)
where, for

two valuations ν and λ, we have

ν
d ,(φ,asgn)
−−−−−−−→

TD
R

λ whenever
{
ν{?← d} � φ and
λ � ν{asgn← d}

4.3.4. The Model

As we are mainly concerned with infinite data words, we define register
automata over labelled data ω-words.

Definition 4.13 (Register Automaton) An ω-register automaton, or simply
register automaton, over data domain D is a tuple A � (Q , I ,Σ, R,∆,Ω),
where:

I Q is a finite set of states
I I ⊆ Q is a finite set of initial states
I Σ is a finite alphabet of labels
I R is a finite set of registers
I ∆ ⊂ f Q ×Σ×TestsD(R) × 2R ×Q is a finite set, called the transition

relation. We write p
σ,φ,asgn
−−−−−−→

A t
q for t � (p , σ, φ, asgn, q) ∈ ∆.

I Ω ⊆ Qω is the acceptance condition. As for ω-automaton, it can be
any ω-regular condition. The acceptance conditions we use in this
chapter are:

Büchi Ω � {χ ∈ Qω | Inf(χ) ∩ F , ∅} for F a set of accepting
states.

co-Büchi Ω � {χ ∈ Qω | Inf(χ) ∩ F � ∅} for F a set of rejecting
states.

Parity Ω � {χ ∈ Qω | max Inf(c(χ)) is even}, where c : Q →
{1, . . . , d} is a parity function.

Remark 4.6 On top of this shift to infinitewordswith labels, our definition
departs from the seminal one on the following aspects:

I Registers are initialised with constants from the data domain
I Registers can take duplicate values
I Tests are expressed as formulas
I The model is defined for any data domain

Over (D,�,C), those models are essentially equivalent but this definition
yields flexibility (Remark 4.8) and succinctness (cf Remark 4.14).

Register automata with a Büchi (respectively co-Büchi, parity) condition
are called Büchi (resp. co-Büchi, parity) register automata.

Configurations A configuration of A is a pair C � (q , ν) where q ∈ Q
and ν : R → D. A configuration C′ � (q′, ν′) is a successor of C on
reading the labelled data value (σ, d) ∈ Σ × D following transition

t � q
a ,φ,asgn
−−−−−−→

A
q′, written C

σ,d ,φ,asgn
−−−−−−−→

A t
C′, if:

(i) The labels coincide, i.e. σ � a
(ii) The input data value d satisfies the test φ from configuration (q , ν),

i.e. ν{?← d} � φ
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In particular, if w ∈ (Σ × D)ω does not
admit any run, it is accepted.

(iii) ν is updated to ν′ with regard to asgn and d, i.e. ν′ � ν{asgn← d}
(d is assigned to all registers in asgn).

Note that items (ii) and (iii) can be summarised as ν
d ,φ,asgn
−−−−−−→

TD
R

ν′, where

TD
R is the transition system of Definition 4.12.

We then say that d allows to cross transition t from valuation ν. We denote
Configs(A) � Q × ValD(R) the set of configurations of A.

As usual, A and t can be omitted. We also omit φ and/or asgn when
they are not needed.

Runs A run of A over the labelled data word w � (σ0 , d0)(σ1 , d1) . . . is
an infinite sequence

ρ � C0t0C1t1 · · · ∈ (Configs(A)∆)ω such that for all i ∈ N, Ci
σi ,di−−−→

A ti

Ci+1.

We define:

I trans(ρ) � t0t1 · · · ∈ ∆ω
I configs(ρ) � C0C1 · · · ∈ Configs(A)ω

By writing Ci � (qi , νi) for all i ∈ N, we moreover let

I states(ρ) � q0q1 · · · ∈ Qω and
I valuations(ρ) � ν0ν1 · · · ∈ ValD(R)ω

A run ρ is initial if q0 ∈ I and ν0 � νιR. It is moreover accepting if its
sequence of states belongs to the acceptance condition, i.e. states(ρ) ∈ Ω.

Partial Runs Partial runs are defined analogously, as finite sequences
of configurations and transitions that are consistent with the successor
relation. A configuration C is reachable if there exists a partial run that is
initial and that ends in C.

Syntactical Automaton Note that a register automaton A can be seen
as an ω-automaton Asynt � (Q , I ,Σ × ActionsD(R),∆,Ω) that we call
the syntactical ω-automaton. It recognises the (ω-regular) language LπA ⊆
(Σ × ActionsD(R))ω of paths of the automaton. They do not necessarily
correspond to runs, as there might not exist a data word that is consistent
with the sequence of actions (see Section 4.5.3).

Remark 4.7 A register automaton is an extension of an ω-automaton
which has infinitely many states (Q � Configs(A)), processing inputs
from an infinite alphabet Σ ×D.

Semantics As for ω-automata, register automata can be endowed with
dual semantics. A non-deterministic register automaton A (NRA for short)
recognises the data language:

LN (A) �
{

w ∈ (Σ ×D)ω
�� there exists an accepting run ρ on w

}
Dually, a universal register automaton A (URA for short) recognises the
data language:
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We do not define register automata over
finite data words formally as we only use
them as a tool.

LU(A) �
{

w ∈ (Σ ×D)ω
�� all initial runs ρ on w are accepting

}
Given a non-deterministic register automatonA, we can define a universal
register automaton Ac which is a copy of A with acceptance condition
Ωc � Qω \Ω; we then have LU(Ac) � (Σ×D)ω \ LN (A). If the semantics
is clear from the context, we simply write L(A).

Determinism A is a deterministic register automaton (DRA for short) if
it has a unique initial state and for all reachable configurations (p , ν) ∈
Configs(A) and for all labelled data (σ, d) ∈ Σ × D, there exists at most

one transition t � p
σ,φ,asgn
−−−−−−→

A
q such that p

(σ,d)
−−−→

A t
q. This semantical

property is equivalent to the syntactic condition that tests over the input
data are mutually exclusive, i.e., for any two distinct transitions of the

form q
a ,φ,asgn
−−−−−−→ q′ and q

b ,ψ,asgn′
−−−−−−→ q′′, either a , b or φ ∧ ψ is not

satisfiable. However, contrary to the finite alphabet case, deterministic
register automata are strictly less expressive than non-deterministic ones
(cf Section Subsection 4.3.4 on the following page).

Completeness A is said to be complete if for all reachable configurations
(p , ν) ∈ Configs(A) and for all (σ, d) ∈ Σ × D, there exists at least one

transition t � p
σ,φ,asgn
−−−−−−→

A
q such that p

σ,d−−→
t

q. Completeness can be
enforced without loss of expressive power by the syntactic condition
that for all p ∈ Q and all σ ∈ Σ, the disjunction of all tests is valid, i.e.∨ {

φ ∈ Tests(R)
���� p

σ,φ,asgn
−−−−−−→ q for some asgn and q

}
is valid.

The class of languages recognised by non-deterministic (respectively,
universal, deterministic) register automata is written NRA (resp., URA,
DRA).

Example 4.3 Consider again the data languages of Example 4.1. They are
recognised by the register automata of Figure 4.1 on the next page.

Definition 4.14 (Register automaton over finite data words) Register
automata can also be defined over finite data words, by replacing the
acceptance condition with a finite set F of accepting states. The notion
of configuration is unchanged, and the notions of run and recognised
language are easily adapted. Unless otherwise stated, the properties that
we exhibit also hold in the finite data word case.

In the remainder of this chapter, we explore in some depth the properties
of register automata that we use in our study, and in particular the
expressiveness and closure properties under the different semantics.
However, let us already make a few remarks, to give a general idea of the
behaviour of the model.

Remark 4.8 (Variations on the Theme) Manymodels of register automata
coexist in the literature, depending on different parameters:

I whether they process finite or infinite data words
I whether labels are explicitly handled
I by restricting the form of tests
I whether registers are allowed to take duplicate values
I whether registers are initialised or not, and
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i p q>, ↓ r

? , r

? � r

>

(a) A deterministic Büchi register automaton with one register
r over data domain (N,�) recognising Lfirst, that checks that
the first data value appears again. It initially stores it, and then
waits in p until it sees it again, then transitions to q.
↓ r graphically denotes asgn � {r}. asgn is omitted when it
is empty. Recall that > is a test which is satisfied by any data
value.

i p q

>

>, ↓ r

? , r

? � r

>

(b) A non-deterministic Büchi register automaton with one
register r over data domain (N,�) recognising L∃�, that checks
that some data value appears twice. It waits in i, until it guesses
that the input data value appears again, stores it in r and goes
to p to check that its guess is correct, which corresponds to
transitioning to q. As a universal co-Büchi register automaton,
it recognises L∀,, i.e. checks that all data are pairwise distinct.

>, ↓ r

? > r, ↓ r

(c)Adeterministic Büchi register automatonwith one register r.
Over data domain (N, <) it recognises LN

< , that checks that data
in N are in increasing order. Over (Q, <), it correspondingly
recognises LQ

< .

incr, ? � c + 1, ↓ c decr, ?+ 1 � c , ↓ c

if0, ? � c ∧ c � 0, ↓ c

(d) A deterministic Büchi register automaton over data domain
(N,+1, 0) with one register c, checking that increments, decre-
ments and zero-tests are correct. Given a Minsky machine M,
one can define from this example a register automaton with
two registers c1 and c2 recognising encodings of its runs.

Figure 4.1.: A series of register automata, recognising the data languages of Example 4.1.
Recall that when it is unary, the labels alphabet is omitted.

[104]: Murawski, Ramsay, and Tzevelekos
(2015), ‘Bisimilarity in Fresh-Register Au-
tomata’

[21]: Kaminski and Francez (1994), ‘Finite-
Memory Automata’

[28]: Demri andLazic (2009), ‘LTLwith the
freeze quantifier and register automata’

See also [29]: Figueira (2010), ‘Reasoning
on words and trees with data. (Raison-
nement sur mots et arbres avec données)’,
PhD thesis.

I whether registers can be erased along the run.

Murawski, Ramsay, and Tzevelekos [104] provide a comparison of the
different models with regard to bisimilarity checking. All those variants
morally have the same expressive power for data domains with equality
only, although allowing duplicate values increases succinctness, and thus
affects the complexity of the emptiness problem (cf Remark 4.14).

Expressivenessunder thedifferent semantics Contrary toω-automata,
the different semantics are not equivalent for all the data domains we
consider. In (D,�), deterministic register automata are strictly less expres-
sive than non-deterministic ones: the data language L∃� � {d0d1 · · · ∈
Nω | ∃i , j, di � d j} recognised by the non-deterministic register au-
tomaton of Figure 4.1b cannot be recognised by a deterministic register
automaton [21, Remark 2]. Moreover, data languages recognised by non-
deterministic register automata are not closed under complement, as
witnessed by (L∃�)c [21, Proposition 5] (see also Property 4.18). As a
consequence, non-deterministic and universal register automata recog-
nise dual classes of data languages. The same example works for data
domains (Q, <) and (N, <).

One can further define alternating register automata, by partitioning states
into non-deterministic and universal states, as was done for ω-automata.
This class of automata strictly contains both classes above. Since its empti-
ness problem over finite words is non-elementary for one register, and
undecidable for infinite words and for more registers [28, Theorems 4.2
and 4.1], we focus on the non-deterministic, universal and deterministic
semantics. Their associated decision problems will be treated in due
course (Section 4.5 and following ones).
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[26]: Bojańczyk (2019), Atom Book

[101]: Neven, Schwentick, and Vianu
(2004), ‘Finite state machines for strings
over infinite alphabets’

[107]: Bojańczyk and Stefanski (2019), ‘Sin-
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[108]: Bojańczyk and Stefanski (2020),
‘Single-Use Automata and Transducers for
Infinite Alphabets’

[109]: Bojanczyk (2011), ‘Data Monoids’

[110]: Colcombet, Ley, and Puppis (2015),
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[103]: Björklund and Schwentick (2010),
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guages’
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In contrast to this strict hierarchy, it was freshly established that over
data domains with equality only, a language of finite data words that
is both recognisable by a non-deterministic and a universal register
automaton is also recognisable by a deterministic register automaton.
In short, NRA ∩ URA � DRA over (D,�) [105, Theorem 1]. The proof is
rather involved, and the property breaks over ordered data domains. It
also breaks when non-deterministic reassignment (cf infra) is allowed.
The result however holds for a large class of data domains when only
one register is allowed.

Two-way Model One can allow register automata to go back and forth
on their input, as was done for two-way finite automata [106, Section 7].
This does not increase expressive power in the finite alphabet case [106,
Theorem 15]. However, in the data words case, two-way register automata
are strictly more expressive [26]. We do not explore this formalism, as its
emptiness and universality problems are both undecidable [101, Theorem
5.3]; this dampens hopes of getting decidability result for synthesis
problems, as those are more complex.

Single-Use Register Automata Recently, Bojańczyk and Stefanski con-
sidered the single-use restriction, that asks that a register is immediately
emptied after it is tested [107, 108]. Emptying a register is not allowed
in our formalism, but this is equivalent to asking that it is reset to the
initial data value. They showed that it yields a model that is robust, in
the sense that it can be presented in different ways: the two-way model
is equivalent with the one-way one, itself equivalent to to orbit-finite
regular list functions [108, Theorem 6] (we refer to the paper for the
definitions). Moreover, the class of recognised data languages can be char-
acterised algebraically, as languages recognised by orbit-finite monoids (a
notion introduced in [109]), that are equivalent to rigidly guarded MSO
logic [110, Theorems 4.2 and 5.1]. This comes at the price of a loss of
expressiveness: for instance, the language Lfirst of data words whose first
data value appears again cannot be recognised by any single-use register
automaton [108, Example 7], while it can be recognised by a deterministic
register automaton (Example 4.3). As pointed out in [103], in the realm of
data words it seems impossible to have one’s cake and eat it too as there is
a fragile balance between expressiveness, closure properties, robustness
and decidability.

Guessing Another relevant extension is non-deterministic reassign-
ment, also known as guessing: on taking a transition, the automaton is
allowed to guess a data value and assign it to some of its registers [38].
This feature strictly increases expressiveness [38, Remark 5] (see also
Example 4.9). This extension is presented in Section 4.10.1, and included
in the model in Part II.

As stated in [26, Section 1.4], most of these variations are inequivalent.
Figure 4.2 on the following page reproduces a figure from this book that
summarises these results.
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Figure 4.2.: Comparison of the different
variations of register automata over (D,�).
The term guessing is to be understood as
non-deterministic reassignment, but the
inclusions also hold when it is disallowed
(except obviously for the strict inclusionbe-
tween one-way alternating without guess-
ing and one-way alternating)
Source: [26, Figure 1.1 p.24].

[21]: Kaminski and Francez (1994), ‘Finite-
Memory Automata’

4.4. General Properties of Register Automata

We now detail elementary properties of the model that we need for our
study, and which hold independently of the data domain we consider.

4.4.1. Link with ω-regular Languages

First, one can notice that a register automaton with no registers corre-
sponds to an ω-automaton over Σ. It is not much harder to check that
when restricted to a finite subset of data values, register automata exactly
recognise ω-regular languages.

Proposition 4.1 ([21, Proposition 1]) Let A be a register automaton over data

domain D. For any finite subset X ⊆ D, L(A) ∩ (Σ × X)ω is ω-regular.

More precisely, L(A) ∩ (Σ × X)ω is recognised by an ω-automaton AX with

n(s + 1)k states, where n is the number of states of A, k its number of registers,

and s � |X | is the size of X. Moreover, if A is deterministic, so is AX .

Proof. Our setting is more general, as we allow richer data domains, but
the proof of [21, Proposition 1] can easily be generalised. The idea is that
there are finitely many possible configurations, as registers take their
values in X, so they can be stored in the states. Assumption 4.8 ensures
that the existence of a transition on input (a , d) ∈ Σ × X can be decided.

Formally, given a register automaton A � (Q , I ,Σ, R,∆,Ω) and a finite
set X, we define an ω-automaton AX with states QX � Q × (X t {#})R.
Its initial states are I×{νιR}, its input alphabet isΣ×X, and its acceptance
condition is (πQ)−1(Ω), i.e. a sequence (q0 , ν0)(q1 , ν1) . . . is accepting



4. Register Automata over a Data Domain 84

[39]: Segoufin and Torunczyk (2011), ‘Au-
tomata based verification over linearly or-
dered data domains’
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whenever q0q1 · · · ∈ Ω. Finally, for all states (p , ν), (q , λ) ∈ QX and all

labelled data (σ, x) ∈ Σ × X, (q , ν)
(σ,x)
−−−→

AX
(q , λ) whenever it is the case in

A (i.e. (q , ν)
(σ,x)
−−−→

A
(q , λ)). As stated above, the existence of a transition in

AX is decidable by Assumption 4.8. The fact that AX accepts the expected
ω-language follows from the definitions.

4.4.2. Projection over Labels

The proof techniques of Chapter 6 rely on projecting a data language over
its labels. Formally, given a language of labelled data words L ⊆ (Σ×D)ω ,
we define its projection over labels as lab(L) � {lab(w) | w ∈ L}.

Contrary to the restriction to a finite set of data values, the projection

over labels of the data language recognised by a register automaton is
not always ω-regular. Already over data domains with equality only,
universal register automata do not have this property, as witnessed by
Property 4.49; actually, it can be any recursively enumerable language
(Theorem 4.50). Non-deterministic register automata are better behaved:
their projection over labels is ω-regular over (D,�) (see Section 4.5 and
Proposition 4.19), as well as over (Q, <) (cf Section 4.6 and Proposition
4.35). This again holds for finite data words over (N, <, 0), since then the
projection over labels is the same over (Q+ , <, 0) and over (N, <, 0), by
multiplying all data values by some common multiple of their denomina-
tors (see Lemma 12.44). However, this does not hold anymore for infinite
data words over (N, <, 0), see Property 4.38. Projections over labels of
such data languages exactly correspond to ωB-regular languages [39,
Theorem 17], as defined in [59]. This makes such machines harder to
abstract, and is at the source of the technical difficulties encountered in
Section 7.3.4, as well as those of Section 12.3 in Part II.

4.4.3. Union and Intersection

The constructions for finite-state automata and ω-automata can be gener-
alised to register automata to get closure under union and intersection.

Proposition 4.2 (Union and Intersection of NRA) Let A1 ,A2 be two non-

deterministic register automata over the same data domain D, with respectively

n1 and n2 states and k1 and k2 registers, and with acceptance conditionΩ1 and

Ω2. Then:

I L(A1) ∪ L(A2) is recognised by a non-deterministic register automaton

with n1 + n2 states and max(k1 , k2) registers, and with acceptance

conditionΩ1 ∪Ω2.

I L(A1) ∩ L(A2) is recognised by a non-deterministic register automaton

with n1 · n2 states and k1 + k2 registers, and with acceptance condition

π−1
1 (Ω1) ∩ π−1

2 (Ω2).

Proof. The proof is adapted from [21, Theorem 3], which establishes
the above properties in the case of (D,�,C). For i � 1, 2, let Ai �

(Qi , Ii ,Σi , Ri ,∆i ,Ωi) be two non-deterministic register automata.
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Recall that for universal automata, the
acceptance condition defines which runs
are rejecting.

Union In our definition, register automata can have multiple initial
states, so L(A1) ∪ L(A2) is recognised by the union of A1 and A2 (we can
assume without loss of generality that their set of states are disjoint). A
naive construction yields an automaton with k1 + k2 registers, but one
can notice that the registers of A1 can be used to simulate those of A2 (or
conversely if |R2 | > |R1 |).

Intersection To recognise the intersection, one generalises the prod-
uct construction of ω-automata, which consists in simulating A1 and
A2 in a synchronised way. Let A1 � (Q1 , I1 ,Σ1 , R1 ,∆1 ,Ω1) and A2 �

(Q2 , I2 ,Σ2 , R2 ,∆2 ,Ω2). Assume without loss of generality that R1 ∩
R2 � ∅, and let Σ � Σ1 ∪ Σ2. We define their product as A1 ⊗ A2 �

(Q1 × Q2 , I1 × I2 ,Σ, R1 ∪ R2 ,∆,Ω), where (p , q)
σ,φ1∧φ2 ,asgn1∪asgn2−−−−−−−−−−−−−−−→

A1⊗A2 t1⊗t2

(p′, q′) whenever p
σ,φ1 ,asgn1−−−−−−−→

A1 t1

p′ and q
σ,φ2 ,asgn2−−−−−−−→

A2 t2

q′. The acceptance

condition is then Ω1,2 � π−1
1 (Ω1) ∩ π−1

2 (Ω2) � {(p0 , q0)(p1 , q1) · · · |
p0p1 · · · ∈ Ω1 and q0q1 · · · ∈ Ω2}. It is routine to show that there ex-
ists a run ((p0 , ν0)(q0 , λ0))(t1

0 ⊗ t2
0)((p1 , ν1)(q1 , λ1)) . . . of A1 ⊗ A2 over

w ∈ (Σ×D)ω if and only if (p0 , ν0)t1
0(p1 , ν1) . . . is a run of A1 over w and

(q0 , λ0)t2
0(q1 , λ1) . . . is a run of A2 over w.

By duality, we obtain:

Proposition 4.3 (Union and Intersection of URA) Let A1 ,A2 be two univer-

sal register automata over the same data domain D, with respectively n1 and n2
states and k1 and k2 registers, and with acceptance conditionΩ1 andΩ2. Then:

I L(A1) ∪ L(A2) is recognised by a universal register automaton with

n1 · n2 states and k1 + k2 registers, and with acceptance condition

π−1
1 (Ω1) ∩ π−1

2 (Ω2).
I L(A1) ∩ L(A2) is recognised by a universal register automaton with

n1 + n2 states and max(k1 , k2) registers, and with acceptance condition

Ω1 ∪Ω2.

Finally, note that the product construction that we use for intersection
of NRA preserves determinism. It can also be applied to recognise the
union, so we get:

Proposition 4.4 (Union and Intersection of DRA) Let A1 ,A2 be two deter-

ministic register automata over the same data domain D, with respectively n1
and n2 states and k1 and k2 registers, and with acceptance condition Ω1 and

Ω2. Then:

I L(A1) ∪ L(A2) is recognised by a deterministic register automaton with

n1 · n2 states and k1 + k2 registers, and with acceptance condition

π−1
1 (Ω1) ∪ π−1

2 (Ω2).
I L(A1) ∩ L(A2) is recognised by a deterministic register automaton with

n1 · n2 states and k1 + k2 registers, and with acceptance condition

π−1
1 (Ω1) ∩ π−1

2 (Ω2).
Remark 4.9 In [21, Theorem 3], the authors demonstrate that register
automata over finite data words in data domain (D,�) are closed under
concatenation and Kleene star. The data domain actually plays no role,
so this property again holds for any data domain. We do not provide a
formal proof, as our study is focused on infinite data words.
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Of course, uniqueness of the DNF is up to
reordering of the conjuctions.

As for ω-automata, two register automata
A and A′ are said equivalent whenever
L(A) � L(A′).

Remark 4.10 Contrary to automata over finite alphabets, register au-
tomata are not closed under complement (cf Property 4.18). This missing
property, shared with many models over infinite alphabets [103], is the
source of many difficulties as illustrated by the undecidability of the uni-
versality problem for non-deterministic register automata [101, Theorem
18] (see also Theorem 4.21).

4.4.4. A Normal Form for Tests

In our definition, we assume that a test can be any quantifier-free for-
mula over variables R t {?}, to give the most flexibility for defining
transitions. However, for computational purposes, it is often easier to
manipulate elements from a finite set, and indeed, register automata are
often introduced using a finite set of tests straight away [21–23].

It is well-known that any quantifier-free formula ϕ admits a unique full
disjunctive normal form DNF(ϕ), i.e. it is equivalent to a disjunction of
maximally consistent conjunctions of literals, where a literal is either P(t)
or ¬P(t), for a relation P ∈ R of arity k ∈ N and t ∈ (X t C)k (where X is
the set of variables of ϕ) (Equation 4.1). Note that the size of DNF(ϕ) is
exponential in the number of relation and constant symbols as well as in

the number of variables. Given a transition t � p
σ,φ,asgn
−−−−−−→ q, we write

φ ≡
∨
i∈I
κi , where, for i ∈ I , κi �

∧
P∈R

P of arity k

∧
(x1 ,...,xk )

∈((Rt{?})tC)k

lP,x1 ,...,xk (4.1)

Thus, each κi is a maximally consistent conjunction of literals. Here, each
lP,x1 ,...,xk ∈ {P(x1 , . . . , xk),¬P(x1 , . . . , xk)}, where k is the arity of P, and
I is chosen so that each κi is satisfiable. Then, t can be replaced with the
set of transitions

{
p

σ,κi ,asgn−−−−−−→ q
}

i∈I
. We denote MCTestsD(R) the set of

tests that consist in maximally consistent conjunctions of literals. Note
that any such test is characterised by the choice of its literals lP,x1 ,...,xk for
all P ∈ R and all x1 , . . . , xk ∈ (R t {?})k , where k is the arity of P. Thus,
there are exponentially many (with regard to the number of registers,
predicates and constants) in general. We thus have the following:

Proposition 4.5 Any register automaton is equivalent with a register automaton

whose tests are maximally consistent conjunctions of literals.

More precisely, let A � (Q , I ,Σ, R,∆,Ω) be a register automaton. There

exists a register automaton A′ � (Q , I ,Σ, R,∆′,Ω), where ∆′ ⊆ Q × Σ ×
MCTestsD(R) × 2R ×Q.

This at a price: the size of MCTestsD(R) is 2
∏

P∈R(r+1+c)ar(P)
, where r � |R |,

c � |C | and ar(P) denotes the arity of P.

A register automaton with maximally consistent tests is sometimes said
to be in explicit form.
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Recall that XY denotes the set of (total)
functions from Y to X.
[21]: Kaminski and Francez (1994), ‘Finite-
Memory Automata’

An M-automaton is a register automaton
that is allowed to assign the input data
value to multiple registers, and to do so
even if the data value is already present
in some of its registers; this corresponds
to our definition of register automaton.
In contrast, finite-memory automaton are
only allowed to assign the input data value
to a single register, and only when it is
locally fresh. This ensures that the content
of the registers is pairwise distinct along
the run. This is detailed in the next section.

4.4.5. On Assignments

Reassignments

First, we can show that allowing register automata to reassign the
content of their registers to other registers along a run does not increase
expressiveness. This gives a bit of flexibility toderive similar constructions,
and in particular the conversion frommulti-assignment register automata
to single-assignment ones in the next section.

Definition 4.15 (Register Automaton with Reassignments) A register

automaton with reassignments is a register automaton that additionally
conducts reassignments on its transitions. A reassignment is modelled
as a function f : R→ R. Intuitively, reasgn(r) � s means that when the
automaton conducts reassignment reasgn, r takes the value of s. If reasgn
is the identity, we are back to the usual definition.

Formally, it is a tuple A � (Q , I ,Σ, R,∆,Ω) where Q , I ,Σ, R,Ω are
defined as for a register automaton without ressignments. The type of ∆

is enriched to Q×Σ×TestsD(R)×2R×RR×Q. Wewrite p
σ,φ,asgn,reasgn
−−−−−−−−−−−→ q

when (p , σ, φ, asgn, reasgnq) ∈ ∆.

We only define how a valuation is updated with regard to a reassignment
and the corresponding successor relation for configurations; the notion
of run and the semantics of the model are then defined as for register
automata.

Given a valuation ν : R → D, a data value d ∈ D and a reassignment
function reasgn : R→ R, the update of ν following reasgn is the valuation
λ � ν ◦ reasgn, i.e. for all r ∈ R, λ(r) � ν(reasgn(r)). Note that reassign-
ments do not chain. For instance, if we have reasgnq : r 7→ s and s 7→ t,
it means that in the new valuation λ, λ(r) � ν(s) and λ(s) � ν(t).

If we have a transition t � p
σ,φ,asgn,reasgn
−−−−−−−−−−−→ q then, for all config-

urations (p , ν) and (q , λ) and all data values d ∈ D, we have that

(p , ν)
σ,d ,φ,asgn,reas gn
−−−−−−−−−−−−−→t (q , λ)whenever:

I ν, d � φ (as in the usual definition)
I λ � µ ◦ reasgnq , where µ � ν{asgn← d} is obtained by assigning

d to asgn.

Proposition 4.6 Reassignments do not increase expressive power.

More precisely, if A � (Q , I ,Σ, R,∆,Ω) is a register automaton with re-

assignments, then there exists a register automaton (without reassignments)

A′ � (Q × RR , I × {idR},Σ, R,∆′, π−1
Q (Ω)) such that L(A) � L(A′).

Proof. The proof is similar to that of [21, Theorem 2], which establishes
that one can convert an M-automaton to a finite-memory automaton.
The idea is to store in the states a function that associates each register
of A with the register of A′ in which its value is stored. In the original
construction, the authors need an additional register as their syntax
disallows to read a locally fresh data value without storing it. It also
simplifies the proof. However, |R | registers are actually sufficient, as we
demonstrate in the next section. But for now, let us focus on the removal
of reassignments.
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Recall that µi is the intermediate valu-
ation (after di has been assigned, but
before reassignment reasgni ), i.e. µi �

νi{asgni← di}.

Let A � (Q , I ,Σ, R,∆,Ω) be some register automaton with reassign-
ments. For clarity, we let R′ be a primed copy of R; the result is
obtained by removing the primes. We define A′ � (Q × (R′)R , I ×
{primeR},Σ, R′,∆′,Ω′), where primeR : r ∈ R 7→ r′ andΩ′ � π−1

1 (Ω), i.e.
(q0 , f0)(q1 , f1) · · · ∈ Ω′ whenever q0q1 · · · ∈ Ω. Then, ∆′ is constructed as

follows: assume there is a transition p
σ,φ,asgn,reasgn
−−−−−−−−−−−→

A t
q. Let f : R→ R′.

There are two cases:

I f is bĳective, i.e. it is a permutation of R. Then, we have that

(p , f )
σ, f (φ), f (asgn)
−−−−−−−−−−→

A′ t′
(q , f ◦reasgn), where f (φ) consists inφwhere

each r ∈ R is replaced with f (r). This case does not appear in the
proof of [21, Theorem 2], since when there is an additional register
in R′, we cannot have that f is bĳective.

I f is not bĳective. Thus, it is not surjective, since |R | � |R′ |. Pick
some r0 < f (R) in a canonical way (e.g. by ordering the registers

and taking theminimal one). Then, we let (p , f )
σ, f (φ),{r0}−−−−−−−−→

A′ t′
(q , f ′),

where, by letting f ′′ :
{

r ∈ asgn 7→ r0
r < asgn 7→ f (r) , we have f ′ � f ′′ ◦

reasgn.

We provide a formal proof of the correctness of the construction, that
essentially consists in pushing symbols. Let w ∈ (Σ × D)ω, and let
ρ � (p0 , ν0) · t0 · (p1 , ν1) · t1 . . . be a run of A over w. Let us show by
induction on i ∈ N that ((p0 , idR), ν0) · t′0 · ((p1 , f1), ν′1) · t′1 . . . is a run of
A′ over w, where for all i ∈ N the t′i are obtained from the ti by the above
construction and the ν′i are such that ν′i ◦ fi � νi .

The initial step is trivial. Now, assume the induction hypothesis holds at
step i ≥ 0. A′ is in configuration ((qi , fi), ν′i), where ν′i ◦ fi � νi . It reads

(σi , di) � w[i]. We know that A takes transition ti � qi
σi ,φi ,asgni ,reasgni−−−−−−−−−−−−−→

qi+1. Valuations evolve as follows: first, di is assigned to asgni , yielding
µi � νi{asgni← di}. Then, A reassigns according to reasgni , which

yields νi+1 � µi ◦ reasgni . Overall, (qi , νi)
σi ,di−−−→

A ti

(qi+1 , νi+1). Since ti is

enabled on reading di , we have that νi , di � φi . Thus, νi ◦ fi � fi(φi),
whichmeans that t′i is enabled from ((qi , fi), ν′i) on reading (σi , di). There
are two cases:

I fi is surjective (hence bĳective). Then, in A′, there is a transition

((qi , fi), ν′i)
σi ,di , fi (φi ), fi (asgni )−−−−−−−−−−−−−−→

A′ t′i
((qi+1 , fi+1), ν′i+1), where fi+1 � fi ◦

reasgni and ν′i+1 � ν′i{ fi(asgni)← di}. Since ν′i ◦ fi � νi , we get
that µi � ν′i+1 ◦ fi . Besides, we know that νi+1 � µi ◦ reasgni . Thus,
νi+1 � µi ◦ reasgni � ν

′
i+1 ◦ fi ◦ reasgni � ν

′
i+1 ◦ fi+1, which means

that the inductive invariant holds at step i + 1.
I fi is not surjective. Then, on reading (σi , di), A′ can take the

transition ((qi , fi), ν′i)
σi ,di , fi (φi ),{ri }−−−−−−−−−−−→

A′ t′i
((qi+1 , fi+1), ν′i+1) for some

canonically chosen ri < fi(R), where fi+1 is defined as f ′′i ◦ reasgni ,

for f ′′i :
{

r ∈ asgni 7→ ri
r < asgni 7→ fi(r)

. Then, we have ν′i+1 � ν′i{ri← di}.
Thus, ν′i+1 ◦ f ′′i � µi . As a consequence, ν′i+1 ◦ fi+1 � νi+1.
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Note that Proposition 4.7 does not hold
for register automata with reassignments.

When we write ‘register automaton’,we
implicitly mean that it does not conduct
reassignments. They are only a technical
tool that we use to ease the constructions.

In both cases, from a run of A, we are able to construct a run of A′.
Similarly, it can be show that any initial run of A′ corresponds to a
run of A. Since the acceptance condition is obtained by projecting away
the additional information contained in the fi , we obtain that for all
w ∈ (Σ ×D)ω, there is an accepting run of A over w if and only if there
is an accepting run of A′ of w.

Single-Assignment Register Automata

In our definition, registers are allowed to take duplicate values. In their
seminal paper, Kaminski and Francez instead enforced that along any
run, register values are always pairwise distinct. This is done by only
assigning a single register, and conducting an assignment only when
the input data value is locally fresh, i.e. it is not already present in the
registers.

Definition 4.16 Formally, a single-assignment register automaton is a register

automaton such that for all transitions p
σ,φ,asgn
−−−−−−→ q, if φ ∧ (? � r) is

satisfiable for some r ∈ R, then asgn � ∅, and otherwise asgn � {r} or
asgn � ∅.

Note that this property also makes sense for register automata with
reassignments, and we extend it in the expected way.

It is routine to show by induction on the length of a partial run that along
any run of a single-assignment register automatonwithout reassignments,
the contents of registers which do not contain # are all pairwise distinct.
Formally:

Proposition 4.7 Let A be a single-assignment register automaton, and let ρ be

a run of A, whose valuations are valuations(ρ) � ν0ν1 . . . . Then, for all i ∈ N,

we have that for all r , s ∈ R, if νi(r) � νi(s) then νi(r) � νi(s) � #.

Notation 4.17 (Locally fresh) In the following, data values that are locally
fresh play a special role. Thus, given a set R of registers, we denote
locFreshR B

∧
r∈R? , r a formula that is satisfied by a data value d if

and only if it is locally fresh with regards to the current valuation.

In their paper, Kaminski and Francez show that the single-assignment
model is equivalent to the multiple-assignment model that we defined,
which they call M-automaton. We can actually generalise this property to
register automata over any data domain. Besides, our construction does
not require an additional register.

Proposition 4.8 ([21, Theorem 2]) Any register automaton is equivalent with

a single-assignment register automaton.

More precisely, let A � (Q , I ,Σ, R,∆,Ω) be a register automaton. There exists

a single-assignment register automaton A′ with set of states Q × RR
such that

L(A) � L(A′).

Proof. We leverage Proposition 4.6, and show how to convert a register
automaton to a single-assignment one, which conducts reassignments.
Observe that the reassignment removal procedure (proof of Proposition
4.6) preserves the syntactical single-assignment property. The general
idea of the construction is the same as that of [21, Theorem 2], with two
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Recall that since we are working with ‘im-
plicit’ tests, a single transitionmight accept
data values that are locally fresh and ones
that are not.

When we say that r0 is canonically chosen,
we mean that we do not add one transi-
tion for each possible r, but instead pick
e.g. r0 � min asgn and add this specific
transition.

In the terminology of nominal sets, closure
under automorphisms is called equivari-
ance. For now, we avoid this terminology
so as not to scare the reader that are not
mathematically inclined. This notion is
however detailed in Part II, which has a
more abstract flavour.
For simplicity, we confuse a symbol of the
signature with its interpretation.

differences. First, as pointed out earlier, we are able to keep the same
number of registers, instead of adding one. Second, in our definition,
register automata operate with tests given as logical formulas, so each
transition has to be replaced with |R | + 1 transitions, depending on
whether? � r for some r ∈ R, or whether it is locally fresh. For instance,
the test > is consistent with all possibilities, but assignment is allowed
only if the data value is locally fresh.

Let A � (Q , I ,Σ, R,∆,Ω) be a register automaton. We define a register
automaton with reassignments A′ � (Q × RR , I ,Σ, R,∆′,Ω). Assume

there is a transition p
σ,φ,asgn
−−−−−−→

A t
q in A. There are two cases:

I If asgn � ∅, then we let p
σ,φ,∅,idR−−−−−−−→

A′ t′
q, where idR is the identity

reassignment, i.e. no reassignment is conducted
I Otherwise, we add the following transitions, where the register

automaton acts differently depending on whether the input data
value is locally fresh or not:

• (the data value is contained in some register) For all r ∈ R,

we let p
σ,φ∧(?�r),∅,asgnBr
−−−−−−−−−−−−−−−→

A′
q, where asgn B r denotes the

reassignment function f :
{

s ∈ asgn 7→ r
s < asgn 7→ s

• (the data value is locally fresh) p
σ,φ∧locFreshR(?),{r0},asgnBr0−−−−−−−−−−−−−−−−−−−−−−→

A′ tf
q

for some canonically chosen r0 ∈ asgn.

Then, by construction, for all (p , ν), (q , λ) ∈ Configs(A), we have:

I for all (σ, d) ∈ Σ × D such that d � ν(r) for some r ∈ R,

(p , ν)
σ,d ,φ,asgn
−−−−−−−→

A t
(q , λ) if and only if (p , ν)

σ,d ,φ∧(?�r),∅,asgnBr
−−−−−−−−−−−−−−−−−→

A′

(q , λ)
I for all (σ, d) ∈ Σ×D such that d < ν(R),wehave that (p , ν)

σ,d ,φ,asgn
−−−−−−−→

A t

(q , λ) if and only if (p , ν)
σ,d ,φ∧locFreshR(?),{r0},asgnBr0−−−−−−−−−−−−−−−−−−−−−−−−→

A′ tf
(q , λ) (for

the canonically chosen r0)

As a consequence, A′ recognises the same data language as A. By
Proposition 4.6, removing the reassignments yields an equivalent single-
assignment register automaton with states Q × RR.

This property proves quite useful, as it allows us to target single-
assignment register transducers as implementations in our study of
the Church synthesis problem over data words (see Chapter 5).

4.4.6. Closure under Automorphisms

Now, another important property of register automata is that the data
languages they recognise are closed under automorphisms.

Definition 4.18 (Automorphism of a data domain) Let D� (D,R,C) be
a data domain. A function µ : D → D is an automorphism of D if it is
bĳective and preserves relations and constants, i.e.:
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Composition of functions is associative,
and it is routine to check that the compo-
sition of two automorphisms again pre-
serves relations and constants. The neutral
element of Aut(D) is the identity function
idD, and the inverse of an automorphisms
is its inverse function.

Recall that TD
R is the transition system of

Definition 4.12. It defines the semantics of
register automata.

µ(ν) is to be understood as function com-
position µ ◦ ν, i.e. for all r ∈ R, we define
µ(ν)(r) � µ(ν(r)).

I for all constants c ∈ C, µ(c) � c
I for all relation P ∈ R of arity k and for all tuples (d1 , . . . , dk) ∈ Dk ,

we have (d1 , . . . , dk) ∈ P if and only if (µ(d1), . . . , µ(dk)) ∈ P.

The set of automorphisms of D is denoted Aut(D). Note that is has a
group structure for the composition operation.

Automorphisms are extended to labelled data in the obvious way:
µ(σ, d) � (σ, µ(d)) for all (σ, d) ∈ Σ ×D.

We now show the following lemma, that allows to conclude that lan-
guages recognised by register automata are closed under automorphisms
(Proposition 4.10):

Lemma 4.9 Let D be a data domain, R a set of registers, and let ν, ν′ : R→ D

be two valuations over R. Finally, let µ ∈ Aut(D). Then, for all data d ∈ D and

for all actions (φ, asgn) ∈ ActionsD(R), we have:

ν
d ,(φ,asgn)
−−−−−−−→

TD
R

ν′ if and only if µ(ν)
µ(d),(φ,asgn)
−−−−−−−−−→

TD
R

µ(ν′)

Proof. The key point of the proof if the following: since µ preserves both
the relations and relations of D, it preserves satisfiability. More precisely,
for any finite set X and any valuation τ : X → D, and for any atomic
formula ϕ, we have τ � ϕ if and only if µ(τ) � ϕ (the cases of > and
⊥ are trivial, and the case of relations P(t) is by definition). This can be
extended by induction to formulas, and hence to tests: for any valuation
ν : R t {?} → D, for any test φ over D, ν � φ iff µ(ν) � φ.

Thus, let D be a data domain, R be a set of registers, ν, ν′ : R → D

and µ ∈ Aut(D). Moreover, let d ∈ D and (φ, asgn) ∈ ActionsD(R). As-

sume that ν
d ,(φ,asgn)
−−−−−−−→

TD
R

ν′. This means that ν{?← d} � φ and ν′ �

ν{asgn← d}. Then, µ(ν){?← µ(d)} � µ (ν{?← d}). By the above rea-
soning, this implies that µ (ν{?← d}) � φ. Moreover, observe that

µ(ν){asgn← µ(d)} � µ(ν{asgn← d}). We obtain that µ(ν)
µ(d),(φ,asgn)
−−−−−−−−−→

TD
R

µ(ν′).

The converse direction is obtained by applying the above reasoning to
the inverse µ−1 of µ, which also belongs to Aut(D).

We are now ready to prove the following key property:

Proposition 4.10 (Closure under automorphisms) Let A be a register

automaton over data domain D recognising a data language L ⊆ (Σ × D)ω,
and let µ ∈ Aut(D). Then, µ(L) � L.

In other words, for all labelled data words w ∈ (Σ ×D)ω , w ∈ L⇔ µ(w) ∈ L.

Remark 4.11 Note that we make no hypothesis on the semantics of A: it
can be non-deterministic or universal.

Proof. Let A be a register automaton. Since labels are left unchanged by
automorphisms, they play no role in the argument. To avoid cluttering
the notations, we treat the case of a unary label alphabet and omit it. Let
w ∈ Dω . We show that for all runs ρ of A over w, µ(ρ) is a run of A over
µ(w), where we apply µ to valuations of ρ pointwise.



4. Register Automata over a Data Domain 92

[21]: Kaminski and Francez (1994), ‘Finite-
Memory Automata’

We useB to avoid a confusion with �.

We prefer to write the study for an ar-
bitrary D to highlight the fact that its
structure does not matter. This also helps
preventing a mixup with Section 12.3.1,
which is dedicated to register automata
over (N, <, 0).

Let ρ � (q0 , ν0)t0(q1 , ν1)t1 . . . be a run of A over w, if it exists. Let
µ(ρ) � (q0 , µ(ν0))t0(q1 , µ(ν1))t1 . . . , where for all valuations ν : R→ D,
µ(ν) : r 7→ µ(ν(r)). By the above Lemma 4.9, we have that for all i,

(qi , µ(νi))
µ(di )−−−→ti (qi+1 , µ(νi+1)), so we get that µ(ρ) is indeed a run of A

over µ(w).

Moreover, note that µ(νιR) � νιR, so µ(ρ) is initial whenever ρ is initial.
Since µ does not affect the states, we get that if w is accepted by A, then so
is µ(w). The converse is obtained by applying the above reasoning to µ−1

(or, equivalently, by using the other direction of the above lemma). Finally,
note that since our analysis establishes a one-to-one correspondence
between initial runs over w and µ(w), the argument holds for both the
non-deterministic and universal semantics.

4.5. Non-Deterministic Register Automata over
Labelled Data Words with Equality

Register automata were first introduced as finite-memory automaton [21]
over data domains with the equality predicate only, with the non-
deterministic semantics and over finite data words. We start with this
data domain, as it is the most elementary one; it is also the most well-
behaved. The results that we present here are a mild generalisation of
those of [21], in that we consider labelled data values and allow the use
of constants. This proves useful in many of our reductions, on top of
slightly enriching the modelling power. We already pointed out earlier
that finite-memory automaton correspond with single-assignment register
automata, but, as they show, this is not a restriction [21, Theorem 2] (see
also Proposition 4.8). Finally, in their setting, the initial value # of the
registers is not part of the input alphabet. We chose to include it since it
simplifies some reasonings, but it can be simulated by considering tests
of the form φ ∧ (? , #) (Remark 4.5).

In the rest of this section, we fix a finite label alphabetΣ. The data domain
is DB (D,�,C), whereD is a countably infinite set,� is interpreted as the
equality predicate and C ⊂ f D is a finite non-empty set of constants (for
simplicity, we confuse the constant symbols and their interpretation, as
no ambiguity arises). Among them, we arbitrarily distinguish some # ∈ C
that consists in the initial content of the registers. We denote γ � |C | the
number of constants. This setting is isomorphic to (N,�, {0, . . . , γ − 1}),
and one can take e.g. # � 0.

4.5.1. Constraints

Over (D,�,C), atomic formulas over variables X are of the form x � y
for x , y ∈ X t C. Thus, given a valuation ν : X → D, the information
whether ν(x) � ν(y), along with if ν(x) � c for some constant c ∈ C
allows to decidewhether a given formula is satisfied by a valuation. In the
field of register automata, this information is stored through constraints,
that allow to abstract their behaviour with regards to tests. This notion
is pervasive, and is used for instance in [28] through abstract states to
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Extending valuations to constants allows
for a uniform treatment of equalities
ν(r) � ν(r′) for r, r′ ∈ R and ν(r) � c
for c ∈ C.

decide emptiness of register automata and in [36] when defining boolean

associates.

We first introduce constraints in the case of equality, before generalising
it to other data domains through its relation with the notion of type
( Section 4.5.5). For now, we prefer to keep things elementary. They allow
to establish that any register automaton over (D,�,C) can be turned into
a locally concretisable one (Proposition 4.25), and to recognise feasible
action sequences (Section 4.5.4).We also use constraints in the proof of the
renaming property as a tool to represent information about valuations.

Notation 4.19 It is often useful to extend valuations to constants as
follows: for ν : R → D, we let νC(r) � ν(r) for all r ∈ R, and νC(c) � c
for all c ∈ C. When it is clear from the context, we again denote ν this
extended valuation.

Definition 4.20 (Constraint associated with a valuation) Let ν : R→ D

be a valuation over R. Its associated constraint is the equivalence relation
over RtC such that for all x , y ∈ RtC, x ∼ν y whenever νC(x) � νC(y).
We denote [ν] � (RtC)/∼ν . To a constraint τ, we associate the constraint
formula ψτ B

∧
x ,y x ./x ,y y, where ./x ,y∈ {�,,} is �whenever x ∼ y in

τ. Note that ν � ψτ if and only if [ν] � τ, so a constraint is equivalent to
a formula ψτ. It is represented as an equivalence relation to distinguish
it from tests.

Note that a constraint stores in particular the information whether r
contains # or not.

Example 4.4 Assume that C � {#, c}. Consider the valuation ν : R �

{r0 , r1 , r2 , r3} → D defined by letting ν(r0) � #, ν(r1) � a, ν(r2) � b and
ν(r3) � b, where a , b ∈ D \ C are some arbitrary data values such that
a , b. The constraint associated with ν is the equivalence relation over
R t C whose equivalence classes are {{#, r0}, {r1}, {r2 , r3}, {c}}.

Let ν′ : R → D where a and b are swapped, i.e defined by letting
ν′(r0) � #, ν′(r1) � b, ν′(r2) � a and ν′(r3) � a. The constraint associated
with ν′ is the same as that of ν, i.e. [ν′] � [ν].

Over (D,�,C), constraints allow to abstract the behaviour of register
automata. We establish a few properties to that effect. First, a constraint
determines which formulas can be satisfied.

Lemma 4.11 Let X be a finite set of variables, and let ν, ν′ : X → D be

two valuations over R such that [ν] � [ν′]. For all quantifier-free formulas

ϕ ∈ QF(X), ν � ϕ if and only if ν′ � ϕ.

Proof. It suffices to observe that for all atomic formulas, we have that
ν � ψ ⇔ ν′ � ψ. Indeed, they are of the form ψ B x � y, for
x , y ∈ X t C. Since [ν] � [ν′], by definition we have ν(x) � ν(y)
whenever ν′(x) � ν′(y). The result then follows by structural induction
on the form of ϕ.

A consequence of Lemma 4.11 is that a constraint determines which tests
can be satisfied from a valuation.
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Recall that ν is extended to constants by
letting ν(c) � c for all constants c ∈ C
(Notation 4.19).

A transition t is enabled for configuration
(p , ν) if there exists d ∈ D and (q , ν′) such
that (p , ν) d−→t (q , ν′).

Lemma 4.12 Let R be a finite set of registers, and let ν, ν′ : R → D be two

valuations over R such that [ν] � [ν′]. For all tests φ ∈ Tests(R), there exists
d ∈ D such that ν, d � φ if and only if there exists d′ ∈ D such that ν′, d′ � φ.

Proof. Let R be a finite set of registers, and ν, ν′ : R → D be two
valuations over R such that [ν] � [ν′]. Let φ ∈ Tests(R), and assume that
there exists d ∈ D such that ν, d � φ. Define E � {x ∈ R t C | ν(x) � d}.
There are two cases:

I E � ∅. Itmeans that d is locally fresh, anddistinct fromall constants.
Pick d′ ∈ D \ (ν′(R) ∪ C).

I E , ∅. E is an equivalence class of [ν], so, since [ν] � [ν′], we get
that ν′(E) is a singleton. Pick d′ the only element of ν′(E).

In both cases, we obtain that [ν{?← d}] � [ν′{?← d′}]: all equivalence
classes are left unchanged, except for E, which is appended ? in both
constraints. By Lemma 4.12, we obtain that for all ψ ∈ QF(R t {?}),
ν{?← d} � ψ if and only if ν′{?← d′} � ψ. This is the case in particular
for φ, so we have that ν′, d′ � φ.

The converse implication is obtained by interverting ν and ν′, as they
play the same role.

As a consequence, a constraint contains enough information to determine
whether a given transition is enabled from a configuration:

Proposition 4.13 Let A be a register automaton with registers R, and ν, ν′ :
R → D be two valuations over R such that [ν] � [ν′]. For all transitions
t � p

σ,φ,asgn
−−−−−−→ q, t is enabled from (p , ν) if and only if it is enabled from

(p , ν′).

Further, on taking a transition, one can end in a configuration that has the
same constraint. This last result implies that constraints allow to abstract
the behaviour of a register automaton, as only the constraint matter to
decide the existence of a transition.

Proposition 4.14 Let A be a register automaton with registers R, and ν, ν′ :
R → D be two valuations over R such that [ν] � [ν′]. Finally, let t �

p
σ,φ,asgn
−−−−−−→ q be some transition of A, and assume that (p , ν) σ,d−−→ (q , λ) for

some d ∈ D and some λ ∈ Val(R).

Then, there exists d′ ∈ D such that [ν{?← d}] � [ν′{?← d′}], and for all

such d′, we have that (p , ν′) σ,d′−−→ (q , λ′), where λ′ � ν′{asgn← d′}, and
[λ] � [λ′] holds.

Proof. From the proof of Lemma 4.12, we know that there exists d′ ∈
D such that [ν{?← d}] � [ν′{?← d′}]. Moreover, if d′ satisfies this

property, we have by Lemma 4.11 that ν′, d′ � φ, so (p , ν′) σ,d
′

−−→ (q , λ′),
where λ′ � ν′{asgn← d′}. Then, we have that that [ν{asgn← d}] �
[ν′{asgn← d′}], i.e. [λ] � [λ′].

Remark 4.12 One can recover the renaming property from the above re-
sult as follows: first, recall that (D,�,C) is isomorphic to (N,�, {0, . . . , c−
1}). Then, at every step, pick the minimal d′ ∈ N such that [ν{?← d}] �
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[21]: Kaminski and Francez (1994), ‘Finite-
Memory Automata’

Note that there is no γ in [21, Proposition
3], as there is only one constant # and it
does not belong to the input alphabet.

Handling constants complicates the mat-
ter a bit as they break some symmetries
and imply the introduction of a notion of
renaming set, which is trivial when there
are none. We treat them as they will be
needed later on, and add an ounce of gen-
erality to the study.

The renaming property does not hold for
universal register automata over (D,�),
see Section 4.8,nor for register automata
over (Q, <, 0), see Property 4.33.

In particular, states(ρ) � states(ρ′).
We write valuations(ρ) � ν0ν1 . . . and
valuations(ρ′) � ν′0ν

′
1 . . . .

We write trans(ρ) � t0t1 . . . .

Recall that valuations are extended to con-
stants by letting ν(c) � c for all c ∈ C.
Note that Ei t {?} is an equivalence class
of [νi{?← d}].

[ν′{?← d′}]. It is easy to showby induction that along the run, valuations
take their values in {0, . . . , c + k}.

In Section 4.5.3, we show that storing constraints in the states allows to
statically decide whether a transition is enabled from a state, without
knowing the valuation. But for now, we move to a core property of
the model that proves sufficient to establish decidability of the register-
bounded synthesis problem for universal register automata over (D,�,C)
(Chapter 6, and in particular Section 6.2.1).

4.5.2. The Renaming Property

A key property of non-deterministic register automata with equality only
is the renaming property [21, Proposition 4]. It states that if an automaton
with k registers recognises a data word w, then the data of such word can
be renamed so that they only take k + γ + 1 distinct data values, where γ
is the number of constants. Indeed, since it only has k registers, it can
only distinguish the values that it has stored and the constants, but all
data values that is neither of those look the same to the automaton. And,
once the content of some register has been erased, it is indistinguishable
from a value that has never been stored.

Correspondingly, a renaming set denotes any set that contain constants,
along with sufficiently many data values so that one can rename a data
word using those values while preserving acceptance.

Definition 4.21 (Renaming set) Let k ≥ 1. A k-renaming set, or simply
renaming set when k is clear from the context, is a set of the form
X � Y t C, where Y ⊆ D \ C is of size |Y | > k.

Proposition 4.15 (Renaming property [21, Proposition 4]) Let A be a non-

deterministic register automaton with k registers. Assume that A accepts some

data word w ∈ (Σ ×D)ω. For all k-renaming sets X ⊆ D, there exists a data

word w′ ∈ (Σ × X)ω such that lab(w) � lab(w′) and w′ is accepted by A.

Proof. Let A be a non-deterministic automaton with k registers that
accepts some data word w ∈ (Σ ×D)ω through a run ρ. Let X ⊆ D be a
k-renaming set, i.e. such that X � Y t C with |Y | > k.

We build by induction on i a data word w′ ∈ (Σ × X)ω along with a run
ρ′ such that ρ′ is a run of A on w′, trans(ρ) � trans(ρ′) and for all i ∈ N,
[νi] � [ν′i].

First, let ν′0 � ν0 � νιR.

Now, suppose that ρ′[:i] and w′[:i − 1] have been constructed. We write
w[i] � (σi , di). By the induction hypothesis, we have that ν′i : R→ X is

such that [ν′i] � [νi]. Let ti � qi
ai ,φi ,asgni−−−−−−−→ qi+1. Let Ei � {x ∈ R t C |

νi(x) � di} be the set of registers in νi and of constants that are equal to
di . There are two cases:

I Ei , ∅. It means that the input data value is equal to some register
or constant. Then, Ei is an equivalence class of [νi] � [ν′i], so ν

′
i(Ei)

is a singleton and we let d′i be its single element.
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I Ei � ∅ (di is not in νi). Then, let d′i ∈ X \
(
ν′i(R) ∪ C

)
be a value

distinct from all the registers of ν′i(R), and from all constants. This
value exists as |X \ C | > k, which imples that |X \ (ν′i(R) ∪ C)| > 0.

In both cases, we get that that [νi{?← di}] �
[
ν′i{?← d′i}

]
. This entails

that for each atomic formula ψ B x � y for x , y ∈ RtC, νi{?← di} � ϕ
if and only if ν′i{?← d′i} � ϕ. A straightforward structural induction on
φi yields that ν′i , d

′
i � φi , since νi , di � φi (see Lemma 4.11).

Let w′[i] � (σi , d′i), and extend ρ with rho[i + 1] � tiν′i+1, where ν′i+1 �

ν′i{asgni← d′i}. We then have that (qi , ν′i)
σi ,d′i−−−→ti (qi+1 , ν′i+1), where

ν′i+1 : R→ X satisfies [ν′i+1] � [νi+1] (Proposition 4.14).

Overall, ρ′ is a run of A over w′, and states(ρ′) � states(ρ). Since ρ is
accepting, ρ′ is accepting as well, so w′ is accepted by A, which concludes
the proof.

This property has two immediate consequences:

Corollary 4.16 Let A be a non-deterministic register automaton over (D,�,C)
with k registers such that L(A) , ∅.

For any k-renaming set X ⊆ D, L(A) ∩ (Σ × X)ω , ∅.
Corollary 4.17 Let A be a non-deterministic automaton with k registers. For

all k-renaming sets X ⊆ D,

lab (L(A)) � lab (L(A) ∩ (Σ × X)ω)

In particular, this implies that non-deterministic automata with the
equality predicate cannot recognise the language of data words that
contain pairwise distinct data values.

Property 4.18 ([21, Proposition 5]) The data language L∀, � {d0d1 · · · |
∀i , j, di , d j} of Example 4.1 cannot be recognised by any non-deterministic

register automaton over (D,�,C).

As it is recognised by theuniversal register automata over (D,�, #) of Figure 4.1b
on page 81, languages recognised by non-deterministic register automata over

(D,�, #) are not closed under complement.

Projection over Labels

Since non-deterministic register automata behave like ω-automata over
finite subsets of D (Proposition 4.1), we get:

Proposition 4.19 Let A be a non-deterministic register automaton. Then,

lab(L(A)) is ω-regular.

More precisely, it is recognised by a non-deterministic ω-automaton Alab
with

n(k + γ + 1)k states, where n is the number of states of A, k its number of

registers, and γ the number of constants. Its acceptance condition is π−1
1 (Ω),

whereΩ is the acceptance condition of A.
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Proof. By Corollary 4.17, lab (L(A)) � lab (L(A) ∩ (Σ × X)ω) for any k-
renaming set X. Take some k-renaming set of size k + γ + 1, and use
Proposition 4.1 to get an ω-automaton that recognises L(A) ∩ (Σ × X)ω.
Finally, project away X.

Remark 4.13 Note that over (D,�,C) the satisfaction of a formula ϕ by a
valuation ν can be evaluated in time linear in ϕ, so Alab can be constructed
in time linear in its size (which is exponential in k). It can moreover be
constructed on-the-fly, as the existence of a transition (p , ν) σ−−→

Alab
(q , λ) in

Alab only depends on p , q, ν, λ and σ.

Emptiness Problem

This property, along with the lower bound established in [28, Theorem
5.1], yields:

Theorem 4.20 ([21, Theorem 1] and [28, Theorem 5.1]) The emptiness

problem for non-deterministic register automata over (D,�,C) is PSpace-

complete.

As for ω-automata, determinism does not reduce the complexity of the problem:

the emptiness problem for deterministic register automata is PSpace-complete.

Remark 4.14 (Duplicate values increase succinctness) In [111, Theorem 4],
it was shown that the emptiness problem for finite-memory automaton
is NP-complete. This lower complexity results from the fact that registers
cannot take duplicate data values in the lattermodel. ThePSpace-hardness
proof of [28, Theorem 5.1] heavily relies on this property, as each register
is used to store a bit, i.e. either 0 or 1.

We have now gathered enough properties of the model to solve the
register-bounded synthesis problem for specifications expressed as uni-
versal register automata over data domains with equality only. The reader
who ismainly interested in this problem can thus jump to the next chapter
(Chapter 5).

Universality Problem

In contrast with Theorem 4.20, it was shown in [101, Theorem 18] that
given a non-deterministic register automaton, it is undecidable whether
it accepts all data words, i.e. L(A) � (Σ ×D)ω.
Theorem 4.21 ([101]) The universality problem for non-deterministic register

automata is undecidable.

Proof. The proof consists in a reduction from the Post Correspondence
Problem, showing that a non-deterministic register automaton can recog-
nise data words that are not encodings of a valid PCP solution, and we do
not redo it here. However, in Section 4.8 (Universal Register Automata),
we show how to construct a universal register automaton that recognises
halting runs of a Turing machines, which yields another proof by duality
(Theorem 4.50).

As a consequence, the containment and language equivalence problems
are also undecidable.
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Remark 4.15 (Unambiguity) Those problems are however decidable for
the subclass of unambiguous register automata. A non-deterministic
register automaton is unambiguous if any data word admits at most one
run (whether it is accepting or not). Any deterministic register automaton
is in particular unambiguous, but unambiguous automata are strictly
more expressive than deterministic ones. For instance, the automaton of
Figure 4.3 recognises the language of finite data words whose last data
value appears before:

La� � {d0 . . . dn | ∃0 ≤ i < n , di � dn}

This language cannot be recognised by adeterministic register automaton,

i p q

>

>, ↓ r

? , r

? � r

Figure 4.3.: An unambiguous register au-
tomaton with one register r over data do-
main (D,�) recognising La�, that checks
that last data value appears before. It is
unambiguous as the? , r self-loop over p
ensures that the transition from i to p was
taken on the last occurrence of dn before
the end of the word.

since its complement La, cannot be recognised by any non-deterministic
register automaton [38, Example 4] (without guessing; see Example 4.9).

Decidability of the containment and language equivalence problems for
unambiguous register automata was first established in [112, Theorem 5],
with a 2-ExpSpace upper bound. It was later on improved to 2-ExpTime
by [113, Theorem 2]. Finally, [114, Theorem VIII.1] provides an ExpTime
upper bound, even when non-deterministic reassignment is allowed.

4.5.3. Local Concretisability

Unlike ω-automata, a path in a register automaton does not always
correspond to a run (not necessarily accepting) over some data word.
For instance, consider the register automaton of Figure 4.4. The path

p q r
? , r1 , ↓ r2 ? � r1 ∧? � r2

>

Figure 4.4.:A register automatonwith two
registers r1 and r2 that is syntactically non-
empty, but accepts no data words.

p
?,r1 ,{r2}−−−−−−−→ q

?�r1∧?�r2−−−−−−−−→ r is not instantiable by any data word, since the
first transition implies that in q, the content of r1 and r2 are distinct, while
the second transition asks that they are equal. A desirable propertywould
be to ensure that from all reachable configurations, any test labelling an
outgoing transition corresponds to at least one data value. This way, a
run in the syntactical automaton corresponds to a run in the semantical
register automaton. In other words, we want to prune transitions that
cannot be taken. We call this property local concretisability.

Definition 4.22 (Local concretisability) A register automaton A is said
to be locally concretisable if for all reachable configurations (p , ν) ∈
Configs(A), and for all transitions p

σ,φ,asgn
−−−−−−→

A t
q, there exists d ∈ D

such that ν, d � φ.
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In a locally concretisable register automaton, any path is a run. Thus, we
get:

Observation 4.22 Let A be a locally concretisable register automaton.
L(A) � ∅ if and only if L(Asynt) � ∅.

This property cannot be enforced for all data domains (cf Property 4.39)
for the case of (N, <, 0)), but we show that it is the case for (D,�,C)
(Proposition 4.25), by storing additional information in the states. We
later on prove that this is again the case of (Q, <, 0) (Proposition 4.37).
Its applications are twofold. First, it yields yet another PSpace decision
procedure for the emptiness problem (Remark 4.18 and Theorem 4.36):
once the register automaton is locally concretisable, it suffices to check
that its syntactical automaton is empty (Observation 4.22). Second, it
is instrumental in showing that the unbounded synthesis problem is
decidable for specifications given by deterministic register automata over
(D,�,C) (Theorem 7.15) and (Q, <, 0) (Theorem 7.16).

Explicit Tests

We already know that tests admit a normal form, that relies on full
disjunctive normal form (Proposition 4.5). In the case of data domains
with equality, maximally consistent tests are of the form

φ B
∧

x ,y∈RtCt{?}
x ./x ,y y , where ./x ,y∈ {�,,}

This can be decomposed as∧
x∈E

? � x ∧
∧
x<E

? , x ∧
∧

x ,y∈RtC
x ./ y for some E ⊆ R t C

Notation 4.23 In the following, for E ⊆ R t C we let

φE B
∧
x∈E

? � x ∧
∧
x<E

? , x

We call it an explicit test.

Then, observe that its constraint determines which tests can be taken
from a valuation.

Observation 4.23 Any maximally consistent test φ can be written as
φE ∧ ψτ, where φE is an explicit test and ψτ is a constraint formula.

Then, given a valuation ν : R→ D, we have that ν, d � φ if and only if
[ν] � τ and E � {x ∈ RtC | ν(x) � d}, i.e. E � ∅ or E is an equivalence
class of [ν].
Remark 4.16 Explicit tests correspond to the formalism of [22, Definition
3.1], with the addition of constants.

Definition 4.24 Given a constraint τ and an explicit test φE, we say that
τ enables φE if E � ∅ or E is an equivalence class of τ. We extend the
notion to maximally consistent tests by saying that τ enables φE ∧ ψτ′
whenever τ enables φE and, additionally, τ � τ′.
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It follows from the above observation that given a valuation ν and a

transition t � p
φ,asgn
−−−−→ q such that φ is explicit or maximally consistent,

t is enabled from (p , ν) if and only if [ν] enables φ.

Update of Constraints

In Proposition 4.14, we established that constraints contain enough
information todecidewhether a transition canbe crossed fromavaluation.
We now show that they can be updated.

Definition 4.25 Let τ be a constraint, and φ � φE be an explicit test that
is enabled by τ. For all asgn ∈ 2R , we define the successor τ′ of τ following

action (φ, asgn), written τ
φ,asgn
−−−−→ τ′, as the equivalence relation such

that r ∼τ′ r′ if either:

I r, r′ < asgn ∪ E and r ∼τ r′

I r, r′ ∈ asgn ∪ E

In other words, it has the same equivalence classes as τ except that the
class of E is extended with the elements of asgn. If E is empty, asgn thus
forms a new equivalence class.

The notion is extended to maximally consistent tests of the form φE ∧ ψτ .

It is easy to check that the abstraction is correct:

Proposition 4.24 For all ν, µ : X → D and all maximally consistent tests

φ, we have that [ν]
φ,asgn
−−−−→

[
µ
]
if and only if there exists d ∈ D such that

ν
d ,φ,asgn
−−−−−−→ µ.

Proof. For the ⇒ direction, take d such that
(
νC

)−1 (d) � φ. The ⇐
direction is routine.

Making a Register Automaton Locally Concretisable

We now have all the tools in hand to show the following:

Proposition 4.25 Any register automaton over (D,�,C) can be turned into a

locally concretisable one.

More precisely, let A � (Q , I ,Σ, R,∆,Ω) be a register automaton over (D,�
,C). There exists a locally concretisable register automaton A′ � (Q × ER(R t
C), I′,Σ, R,∆′,Ω′) such that L(A) � L(A′), and whose transitions are of the
form p

φE ,asgn−−−−−→ q for some E ⊆ R t C.

Proof. By Proposition 4.5, one can turn a register automaton into one
whose tests are maximally consistent conjunctions of literals. The above
study established that we can store the constraints in memory and update
them along the run, which allows to determine whether a transition is
enabled or not.

Let us formalise the argument. Let A � (Q , I ,Σ, R,∆,Ω) be a register
automaton over (D,�,C). Let A′′ � (Q , I ,Σ, R,∆′′,Ω), be an equivalent
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register automaton whose tests consist in maximal conjunctions of formu-
las of the form x � y or x , y, for x , y ∈ R t C t {?} (Proposition 4.5).
Then, defineA′ � (Q′, I×{[νιR]},Σ, R,∆′,Ω′), whereQ′ � Q×ER(RtC)

andΩ′ � π−1
1 (Ω). There is a transition (p , τ)

σ,φE ,asgn−−−−−−−→ (q , τ′) if and only

if p
σ,φE∧ψτ ,asgn−−−−−−−−−−→

A′
q and τ

φE ,asgn−−−−−→ τ′.

Using Proposition 4.24, a straightforward induction establishes that there

is a run (p0 , ν0)
σ0 ,φE0∧ψτ0 ,asgn0−−−−−−−−−−−−−→ (p1 , ν1) . . . in A′′ if and only if there is a

run ((p0 , ν0), τ0)
σ0 ,φE0 ,asgn0−−−−−−−−−→ ((p1 , ν1), τ1) . . . in A′, where, for all i ∈ N,

[νi] � τi . Moreover, sinceΩ′ � π−1
1 (Ω) the run in A′ is accepting if and

only if that in A′′ is accepting. As a consequence, L(A′) � L(A′′) � L(A).

Finally, A′ is locally concretisable: as a consequence of Proposition 4.24,
for any reachable configuration C � ((p , τ), ν), we have that [ν] � τ.
The⇒ direction of Proposition 4.24 yields that for any transition t �

(p , τ)
σ,φE ,asgn−−−−−−−→ (q , τ′), there exists d ∈ D such that t is enabled from

C.

Once constraints are stored in memory, explicit tests are a bit overkill, in
the sense that they contain too much information.

Observation 4.26 Let ν : X → D. For all explicit test φE, we have:

I If E ∩ R , ∅, then ν enables φE if and only if ν enables? � r
I If E ∩ C , ∅, then ν enables φE if and only if ν enables? � c
I If E � ∅ then ν enables φE if and only if ν enables locFresh B∧

r∈R? , R (Notation 4.17).

As a consequence, the tests of the transition can be replacedwith the above
ones, yielding a more precise evaluation of the number of transitions.

Proposition 4.27 Let A � (Q , I ,Σ, R,∆,Ω) be a register automaton over

(D,�,C). There exists a locally concretisable register automaton A′ � (Q ×
ER(R t C), I′,Σ, R,∆′,Ω′) such that L(A) � L(A′), and whose transitions

are of the form:

I p
?�r,asgn−−−−−−→ q for some r ∈ R

I p
?�c ,asgn−−−−−−→ q for some c ∈ C

I p
locFresh(?),asgn
−−−−−−−−−−−→ q.

Remark 4.17 In a single-assignment register automaton, the constraints
can be simplified. Indeed, along a run, valuations are such that ν(r) �
ν(r′) ⇔ ν(r) � # (Proposition 4.7). As a consequence, we do not need
to keep equality relations between registers, but simply whether or not
they are equal to some constant. This amounts to replacing constraints
τ ∈ ER(RtC) by a function f : R→ Ct {_}, where f (r) � c ∈ Cmeans
that ν(r) � c, and f (r) � _ means that ν(r) < C.
Remark 4.18 By definition, a locally concretisable register automaton
is non-empty if and only if its syntactical automaton is non-empty
(Observation 4.22). Since the construction of Proposition 4.27 can be
conducted on-the-fly, we get another proof that the emptiness problem
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[28]: Demri andLazic (2009), ‘LTLwith the
freeze quantifier and register automata’

Dmay be omitted when it is clear from
the context.

for register automata is in PSpace, hence PSpace-complete by the lower
bound of [28, Theorem 5.1] (Theorem 4.20).

4.5.4. Action Sequences

Constraints also prove useful to show that feasible action sequences are
ω-regular for (D,�,C) (Proposition 4.29) and for (Q, <, 0) (Proposition
4.34). The notions of action sequence and compatible datawords formalise
the connection between syntax and semantics for register automata, and
are defined for all data domains. We later on show that they are not
ω-regular over (N, <, 0) (Property 4.38).

Definition 4.26 (Action Sequence) An (infinite) action sequence over data
domain D and set of registers R is an infinite sequence

α � φ1asgn1φ2asgn2 · · · ∈ (TestsD(R)2R)ω

We denote by ActSeqD(R) the set of action sequences over D and R.

Definition 4.27 (Compatible Data Word) A data word x � d0d1 · · · ∈
Dω is compatible with α whenever there exists an infinite sequence of
valuations (νi)i∈N ∈ (ValD(R))ω such that ν0 � νιR and for all i ∈ N,
νi{?← di} � φi and νi+1 � νi{asgni← di}. In other words, x ∈ Dω

is compatible with α whenever there is a path over x ⊗ α in the data
processing transition system TD

R .

Remark 4.19 This is equivalent to saying that x is compatible with α
whenever there exists a register automaton (with no labels) which admits
an initial run over x whose transitions are labelled by α.

Definition 4.28 (Feasible Action Sequence) Given an action sequence α,
we then define the set of compatible data words as:

Comp(α) �
{

x ∈ Dω | x is compatible with α
}

An action sequence α is feasible if Comp(α) , ∅. The set of feasible action
sequences over R is denoted as:

FeasibleD(R) � {α ∈ ActSeqD(R) | Comp(α) , ∅}

It is straightforward to extend the notion of action sequence to that
of labelled action sequence, which is an infinite sequence in ((Σ ×
TestsD(R))2R)ω. The notion of compatible labelled data words is corre-
spondingly extended. Since labels play no role in the construction, the
focus is rather set on action sequences with no labels.

Feasible Action Sequences over (D,�,C)

Constraints represent the equality relations between the registers of a
valuation. As such, they allow to check that an action sequence is feasible.
Since any test is equivalent to a disjunction of maximally consistent tests
(Equation 4.1), we can extend the successor relation of constraints to
tests. In the process, we however lose determinism, in the sense that a
constraint can now have multiple successors.
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An acceptance condition W is trivialwhen
W � Qω . A word is thus accepted as soon
as it admits a run.
We intersect with the finite subsetΦ to get
a finite input alphabet.

By Remark 4.12, it actually suffices to work
with valuations that take their values in
{0, . . . , c+k} instead of constraints, where
k � |R | and c � |C |. Then, the successor
relation over constraints corresponds to
the successor relation over configurations,
restricted to this finite subset of data val-
ues. This is more efficient, but we prefer
to describe a generic method, since it is
applied later on to (Q, <, 0).

The state space is bigger, but we provide
this result to prepare for the case of (Q, <
, 0), where the renaming property does
not hold anymore (cf Property 4.33).

Definition 4.29 Let τ be a constraint, and (φ, asgn) ∈ ActionsD(R) be an
action. We say that τ′ is a successor of τ on action (φ, asgn) whenever
there exists a maximally consistent test ψ such that φ ∧ ψ is satisfiable

and τ
ψ,asgn
−−−−−→ τ′.

Example 4.5 Let ν : r1 → a , r2 → b , r3 → b where a , b ∈ D. For
simplicity, we assume there are no constants in this example. Let φ B
? � r1 ∧? , r2. Let τ � [ν] � {{r1}, {r2 , r3}}, and let ψ B ? � r1 ∧? ,
r2 ∧? , r3 ∧ ψτ. We have that τ

ψ,{r2}−−−−→ τ′, where τ′ � {{r1 , r2}, {r3}}.

Correspondingly, ν
a ,φ,{r2}−−−−−−→ λ, where λ : r1 → a , r2 → a , r3 → b is such

that τλ � τ′.

We can then extend Proposition 4.28 to all tests.

Proposition 4.28 For all ν, µ : X → D and all testsφ, we have that [ν]
φ,asgn
−−−−→[

µ
]
if and only if there exists d ∈ D such that ν

d ,φ,asgn
−−−−−−→ µ.

As a consequence, we get that the set of feasible action sequences is
ω-regular:

Proposition 4.29 For any finite subset Φ ⊂ f Tests(R), there exists a non-

deterministic Büchi automaton AR
Φ
over the alphabet Φ × 2R

with states ER(R)
and a trivial acceptance condition which accepts Feasible(R) ∩ (Φ2R)ω.

Proof. The ω-automaton starts in
[
νιR

]
. When in state τ, on reading an

action (φ, asgn), it guesses a successor constraint τ′ and transitions to
state τ′. The successor relation over constraints can be computed as
follows: guess a maximally consistent test ψ such that φ ∧ψ is satisfiable
and check that τ′ is indeed the successor of τ on action (ψ, asgn). Now, let
α ∈ (TA)ω be an action sequence. Assume that there exists w ∈ Comp(α).
Then, there exists a sequence of valuations (νi)i∈N such that ν0 � νιR and

for all i ∈ N, νi
w[i],φi ,asgni−−−−−−−−−→ νi+1. Then, for each i ∈ N, [νi]

φi ,asgni−−−−−−→ [νi+1],
so this yields a run in the automaton, which is accepting since all runs
are.

Conversely, let ρ � τ0t0τ1t1 . . . be a run of the automaton over some
action sequence α. We can build by induction a sequence of valuations
(νi)i∈N and a word w ∈ Dω such that w ∈ Comp(α) and for all i ∈ N,
[νi] � τi . We take ν0 � νι. Now, if νi and w[:i] have been built, we

know that τi
φi ,asgni−−−−−−→ τi+1. Thus, there exists a maximally consistent test

ψi such that [νi]
ψi ,asgni−−−−−−→ τi+1. ψi � φEi ∧ ψτi , where Ei is either an

equivalence class of [νi] or the empty set. In both cases, there exists di ∈ D
such that (νi)−1 (di) � Ei . By letting w[i] � di and νi+1 � ν{asgni← di},
we have that [νi+1] � τi+1. Overall, we get that w ∈ Comp(α).

This property yields another proof that that the projection over labels
of a data word language recognised by a non-deterministic register
automaton is ω-regular (Proposition 4.19)

Proposition 4.30 Let A be a non-deterministic register automaton. lab(L(A))
is ω-regular.
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Note that in general, type(ν) is infinite.
We simply write type(ν) when D is clear
from the context.

These domains are called oligomorphic.
Section 12.2 in Part II further discusses
them.
[115]: Marcja and Toffalori (2003), ‘Quanti-
fier Elimination’

As usual, we extend valuations to con-
stants by letting ν(c) � c for all c ∈ C.

The result is established for dense linear
orders, but a formula over (D,�,C) can
be seen as a formula over (D,�, <,C) that
simply does not use <, where < is a dense
linear order over D.

More precisely, it is recognised by a non-deterministic ω-automaton Alab
with

states Q × ER(R) and acceptance condition π−1
1 (Q).

Proof. Let Φ be the set of tests used by A. Let AR
Φ
be an automaton

recognising Feasible(R) ∩ (Φ2R)ω (Proposition 4.29). Then, the product
of A and AR

Φ
recognise the accepting runs of A. Projecting on Σ yields

lab(L(A)).

4.5.5. Constraints and Types

We hinted at the fact that constraints entertain a tight relation with the
notion of type from model theory. We now make the connection explicit,
to shed a different light on the reason why they abstract the behaviour of
register automata, that allows to generalise them to the case of (Q, <, 0).
Actually, this method provides a way to decide emptiness for any data
domain whose finite tuples have finitely many possible types, even in the
presence of non-deterministic reassignment, as shown in Section 12.2.1
in Part II.

Types

The notion is defined for any data domains; in the following, we apply it
to (D,�,C) and (Q, <, 0). A type characterises a valuation with regard
to predicates of the domain.

Definition 4.30 (Type) Let ν : X → D be a valuation over X. The type of
ν in D is the set typeD(ν) of first-order formulas ϕ(X) (i.e. we allow the
use of quantifiers) that ν satisfies over domain D.

The set of types over D is denoted Types(D).

Some data domains, in particular (N,�) and (Q, <), admit only finitely
many distinct types for all finite sets of variables. Actually, they even enjoy
quantifier elimination (see, e.g., [115, Section 2.3]), which is a sufficient
condition.

Proposition 4.31 Let D � (D,�,C). For all ν, ν′ : X → D, we have that

[ν] � [ν′] if and only if typeD(ν) � typeD(ν′).

Proof. Let ν, ν′ : X → D. First, assume that type(ν) � type(ν′). Let
ϕ(X) B ∧

x ,y∈XtC x ./x ,y y, where ./x ,y∈ {�,,} is � if and only if
ν(x) � ν(y). By construction, ν � ϕ, so ν′ � ϕ as they have the same
type. This implies that [ν] � [ν′], since ϕ characterises [ν].

Conversely, assume that [ν] � [ν′], and let ϕ be some first-order formula
over X. Since (D,�,C) admits quantifier elimiation [115, Section 2.3], we
know that there exists a quantifier-free formula ψ(X) such that ψ ≡ ϕ.
Since [ν] � [ν′], they satisfy the same quantifier-free formulas (Lemma
4.11), which concludes the proof.

Remark 4.20 The above result allows to get Lemma 4.11, as it even holds
for the more general case of first-order formulas.

In (Q, <, 0), constraints can be enriched to again characterise types:
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Here, [x] denotes the equivalence class of
x for ∼ν .

A total preorder or weak order over X is a
binary relation. that models ordered sets
with ties allowed. Formally, it is:

I transitive, i.e. for all x , y , z ∈ X, if
x . y and y . z, then x . z

I strongly connected, i.e; for all x , y ∈
X, x . y or y . x (note that this
implies that . is reflexive)

The number of weak orders over a set X
of size n is the n-th Fubini number (also
known as ordered Bell numbers). There is
no simple closed form, which is why we
use the coarse bound 2n2 .

r1 , r2 is a short for ¬(r1 � r2).

Recall that � can be derived in (Q, <).

Definition 4.31 Let D� (Q, <, 0), and let ν : X → Q. We associate to it
an equivalence relation [ν]Q whose classes are ordered (we again denote
it [ν] when the data domain is clear from the context). More precisely,
for all x , y ∈ X t {0}, x ∼ y whenever ν(x) � ν(y) and [x] < [y] (resp.
[x] > [y]) whenever ν(x) < ν(y) (resp. ν(x) > ν(y)), where we set
ν(0) � 0. The set of constraints over (Q, <, 0)with variables X is denoted
ConstrQ(X). A constraint can be represented as a total preorder over R,
which is in particular a binary relation over R, so the size of ConstrQ(R)
is bounded by 2|R |

2
.

Proposition 4.32 Let D � (Q, <, 0). For all ν, ν′ : X → Q, we have that

[ν]Q � [ν′]Q if and only if typeQ(ν) � typeQ(ν′).

Proof. The proof relies on the same argument as for Proposition 4.31: if
typeQ(ν) � typeQ(ν′), then we know that ν satisfies

∧
x ,y∈Xt{0} x ./x ,y y,

where ./x ,y∈ {<,�, >} characterises the relative order of x and y in ν.
As a consequence, ν′ satisfies the same formula, which exactly specifies
[ν′]Q.

Conversely, (Q, <, 0) admits quantifier elimination [115, Section 2.3], so
any first-order formula ϕ over X is equivalent to a quantifier-free formula
ψ over X. By definition, [ν]Q determines which atomic formulas are
satisfied by ν, so a straightforward structural induction yields that ν and
ν′ satisfy the same quantifier-free formulas. In particular, ν � ψ if and
only if ν′ � ψ.

Example 4.6 Consider again the valuation ν of Example 4.2. Its type
in (N,�) contains infinitely many formulas, but is characterised by the
formulas r1 , r2, r1 , r3, r2 � r3, which correspond to the equivalence
relation whose classes are {{r1}, {r2 , r3}}. In (N,�, 0), we add the infor-
mation that r1 � 0, so we summarise the type through the equivalence
relation {{0, r1}, {r2 , r3}}.

In (Q, <), it is characterised by r1 < r2, r1 < r3 and r2 � r3, which
corresponds to ordered equivalence classes, that we represent as an
ordered tuple ({r1}, {r2 , r3}).

Note that in (N,�), ν has the same type as ν′ defined as ν′(r1) � 2,
ν′(r2) � ν′(r3) � 1, while their types are distinct in (N,�, 0) and (Q, <).

Finally, in (N, <, 0), all distinct valuations have a distinct type, already
with a single register. Indeed, let n ∈ N, and consider the first-order
formula ϕ≥n(x) B ∃y0 , . . . , ∃yn−1 , y0 < y1 ∧ y1 < y2 · · · ∧ yn−2 <
yn−1 ∧ yn−1 < x. Then, for all m ∈ N, ϕ(m) holds if and only if m ≥ n.
Thus, if ν, ν′ : {r0} → N are distinct, let m � ν(r0) and n � ν′(r0) and
assume without loss of generality that m < n. typeN(ν′) contains ϕn(x)
while typeN(ν) does not. More generally, a natural number n ∈ N is
characterised by ϕ�n � ϕ≥n ∧ ¬ϕ≥n+1.

This link between constraints and types allows to circumvent the ad-hoc
construction of a data value that enables a transition, as was done in
Lemma 4.12. We apply this to the case of (Q, <, 0).
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An acceptance condition W is trivialwhen
W � Qω . A word is thus accepted as soon
as it admits a run.
We intersect with the finite subsetΦ to get
a finite input alphabet.

4.6. Non-Deterministic Register Automata over
a Densely Ordered Domain

Let us extend our study to the case of a densely ordered data domain.
For simplicity, we let D be (Q, <, 0), but the reader can check that the
properties we exhibit hold for any domain (D, <,C) where D is infinite,
< is a dense order and C is a finite set of constants.

Definition 4.32 (Dense order) LetD be a set, and < an order relation. We
say that < is dense when for all x , y ∈ D such that x < y, there exists
z ∈ D such that x < z < y.

First, one can notice that the renaming property does not hold anymore
over this data domain, even for deterministic register automata:

Property 4.33 Consider again LQ
< � {d0d1 · · · ∈ Qω | ∀i < j, di < d j}. It is

recognised by the deterministic register automaton over (Q, <, 0) of Figure 4.1c
on page 81. It is easy to see that LQ

< contains no data word with only finitely many

distinct data. In particular, one cannot hope to get an analogue of Proposition

4.15 for register automata (Q, <).

Over this datadomain,weonly studynon-deterministic register automata,
since universal ones do not behave as well, as explained in Section 4.8.

While non-deterministic register automata over (Q, <, 0) do not have the
renaming property, we show that their projection over labels is ω-regular.
To this end, we demonstrate that the set of feasible action sequences is
ω-regular (when restricted to a finite set of actions).

Proposition 4.34 For any finite subset T ⊂ f TestsQ(R), there exists a non-
deterministic ω-automaton AR

T over the alphabet T×2R
with states ConstrQ(R)

and a trivial acceptance condition which accepts Feasible
Q
(R) ∩ (T2R)ω.

Proof. The ω-automaton starts in [νιR]Q. Then, observe that the successor
relation over constraints can be expressed as a first-order formula: there

is a transition τ
φ,asgn
−−−−→ τ′ if and only if

ψ
φ,asgn
τ,τ′ (r1 , . . . , rk , r′1 , . . . , r

′
k) B ∃xd ·ψτ(r1 , . . . , rk) ∧ ψτ′(r′1 , . . . , r′k) ∧

φ(r1 , . . . , rk , xd) ∧∧
r∈asgn

r′ � xd ∧
∧

r<asgn
r′ � r

is satisfiable.

Let α ∈ (TA)ω be an action sequence. Assume that there exists w ∈
Comp(α). Then, there exists a sequence of valuations (νi)i∈N such that

ν0 � νιR and for all i ∈ N, νi
w[i],φi ,asgni−−−−−−−−−→ νi+1. Then, for each i ∈ N,

[νi]
φi ,asgni−−−−−−→ [νi+1], by instantiating xd with w[i], r j by νi(r j) and r′j by

νi+1(r j) in the above formulaψφ,asgnτ,τ′ , so this yields a run in the automaton,
which is accepting since all runs are.

Conversely, let ρ � τ0t0τ1t1 . . . be a run of the automaton over some
action sequence α. We can build by induction a sequence of valuations
(νi)i∈N and a word w ∈ Dω such that w ∈ Comp(α) and for all i ∈
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[39]: Segoufin and Torunczyk (2011), ‘Au-
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dered data domains’

Recall that MCTestsQ(R) denotes the set
of maximally consistent tests in (Q, <, 0)
over R.

N, [νi] � τi . We take ν0 � νι. Now, if νi and w[:i] have been built,

we know that τi
φi ,asgni−−−−−−→ τi+1. Thus, there exists ν′i , ν

′
i+1 such that

ψ
φi ,asgni
τi ,τi+1 (ν′i(r1), . . . , ν′i(rk), ν′i+1(r1), . . . , ν′i+1(rk)) holds, by taking some

valuation d′ for xd . By definition of ψφ,asgnτ,τ′ , this implies that [ν′i] �
τi � [νi]. By Proposition 4.32, this means that a first-order formula
over νi is satisfiable if and only if it is satisfiable over ν′i , so we know
that ψφi ,asgni

τi ,τi+1 (νi(r1), . . . , νi(rk), r′1 , . . . , r′k) is satisfiable. Take a valuation
νi+1 of r′1 , . . . , r

′
k that satisfy the formula, and take some d as a value of

xd that is existentially quantified. We then have that νi
d ,φ,asgn
−−−−−−→ νi + 1,

and moreover [νi+1] � τi+1 since νi+1 satisfies the formula, which in
particular determines the constraint.

Overall, we get that w ∈ Comp(α).

By applying the same construction as for Proposition 4.30, we get:

Proposition 4.35 The projection over labels of a non-deterministic register

automaton over (Q, <, 0) is ω-regular.

More precisely, it is recognised by a non-deterministic ω-automaton Alab
with

states Q × ConstrQ(R) and acceptance condition π−1
1 (Q).

In , we noted that the size of ConstrQ(R) is bounded by 2(|R |+1)2 , so we
can decide emptiness in polynomial space (a result known from [39]).

Theorem 4.36 ([39, Theorem 21]) The emptiness problem for deterministic

and non-deterministic register automata over (Q, <, 0) is PSpace-complete.

Proof. Let A be a register automaton over (Q, <, 0). L(A) , ∅ if and only
if lab(L(A)) , ∅. By Proposition 4.35, we can construct an ω-automaton
with exponentially many states, that can be described in polynomial
space, and that recognises lab(L(A)). Since emptiness for our ω-automata
is in polynomial time (Theorem 3.5), we get a PSpace decision procedure.

The lower bound is directly inherited from PSpace-hardness of the
emptiness problem for register automata over (N,�, 0), since a register
automaton over (Q, <, 0) can easily simulate one over (D,�, #), bywriting
x , y as x < y ∨ x > y and x � y as ¬(x , y).

Finally, as in the case of (D,�,C), we can do the product with the ω-
automaton AR

MCTestsQ(R) that recognises feasible action sequences over
maximally consistent tests to get a locally concretisable automaton (see
Proposition 4.25).

Proposition 4.37 Any non-deterministic register automaton over (Q, <, 0)
can be turned into a locally concretisable one.

More precisely, let A be a register automaton over (Q, <, 0) with states Q. There

exists an equivalent register automaton A′ with states Q × ConstrQ(R) that is
locally concretisable.

Proof. To lighten the notations, we denote Φ � MCTestsQ(R) the set of
maximally consistent tests in (Q, <, 0) over registers R. Let AR

Φ
be the

Büchi automaton of Proposition 4.34 that recognises Feasible(R)∩(Φ2R)ω .
Then, the product of A and AR

Φ
recognises the runs of A that are feasible,
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labelled with maximally consistent tests. In the presence of maximally
consistent tests, the successor constraint is unique, which enforces that
along the run, the constraint stored in the state indeed correspond to
that of the current valuation. Since the constraints determine whether
a transition can be taken, we get that the resulting automaton is locally
concretisable.

4.7. Register Automata over a Discretely
Ordered Domain

4.7.1. Indefinite Growth in a Bounded Universe:
Exhibiting Non-Regular Behaviours

Let us now examine the case of a discrete order, more precisely of the
data domain (N, <, 0). This setting is more technical than the previous
ones, for the following reason.

Property 4.38 The set of feasible action sequences over (N, <, 0) and the

projection over labels of register automata with data domain (N, <, 0) are not
ω-regular.

Proof. For instance, consider the language of data words in (N, <, 0)
consisting in an initial bound M labelled b, and then of finite sequences
of data labelled a that are strictly increasing, bounded from above by M,
and separated by occurrences of (b , 0). Formally,

L↗ �

{
(b ,M)(a , d0

0) . . . (a , d0
n0)

(b , 0)(a , d1
0) . . . (a , d1

n1)(b , 0) . . .

���� M ∈ N and for all i ∈ N
0 ≤ d i

0 < · · · < d i
ni
< M

}
It is recognised by the deterministic register automaton of Figure 4.5.
Then, its projection over labels is

i pb ,>, ↓ rM

a , r < ? < rM , ↓ r

b , ? � 0, ↓ r

Figure 4.5.: A deterministic register au-
tomaton over (N, <, 0)with two registers
r and rM that recognises L↗. It initially
reads the upper bound M labelled by b.
Then, in state p, it reads a and checks that
their data values strictly increase with its
register r (recall that registers initially con-
tain 0); it checks at the same time that they
are below M. Everytime it reads a b, it
resets r to 0.

lab
(
L↗

)
� {ban0 ban1 · · · | ∃M ∈ N, ∀i ∈ N, ni ≤ M}

Note that this is exactly LaB of Example 4.7.2.A simple pumping argument
establishes that the above language is not ω-regular [59].

As a consequence, one cannot hope to turn a register automaton over
(N, <, 0) into a locally concretisable one.

Property 4.39 There exists a register automaton over (N, <, 0) that has no
equivalent locally concretisable register automaton.
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[116]: Demri and D’Souza (2007), ‘An
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τi+1 |R denotes the restriction of τi+1 to the
set of registers R.

In this section, we distinguish between
feasibility and 0-feasibility to separate the
difficulties linked with chains and those
related to 0.

The mention of D is omitted when clear
from the context.

Proof. When a register automaton is locally concretisable, its syntactical
automaton recognises lab(A) when projecting away the actions (Ob-
servation 4.22). This implies that lab(A) is ω-regular. Thus, the register
automaton of Figure 4.5 on page 108 does not admit a locally concretisable
equivalent.

4.7.2. Constraint Sequences in N

Unlike in (Q, <, 0), it is not anymore sufficient to check that an action
sequence induce constraints that are locally consistent with tests. For
instance, consider the action sequence over a single register r that
repeatedly asks to input a data value that is strictly below the content of
r, and to store it in r, defined as α � (>{r}) ((r > ?){r})ω . It is consistent
but not feasible, as it would require the existence of an infinite descending
chain in N. One now need a global information over the action sequence.
We model this information through the notion of constraint sequence,
which relates successive values of the registers. This notion is equivalent
to the 2-frame sequences of [116, Section 3], where constraints are called
frames (they use k-frame sequences to model dependencies over several
steps, to be able to handle LTL formulas like Xk(φ)). Some results in
this section rely on ideas similar to those in [116, Sections 6 and 7]; we
provide standalone proofs as it yields a more unified presentation of our
results and avoids the introduction of additional notations. Moreover,
we need a finer characterisation to get recognisability by a deterministic
max-automaton (Theorem 4.46).

Definition 4.33 (Constraint Sequence) Let R be a set of registers, and
R′ � {r′ | r ∈ R} be a primed copy of R. We define unprime : R′→ R in
the natural way.We now consider constraints over RtR′, that correspond
to maximally consistent conjunctions of atomic formulas of the form
r ./ s for r, s ∈ R t R′ and ./∈ {<, >,�}. To lighten the notations, we
often write them as sets of atomic formulas instead of conjunctions.

A constraint sequence is then a sequence τ0τ1 . . . of constraints over RtR′.
It is consistent if for all i ∈ N, τi+1 |R � unprime(τi |R′), where unprime is
extended to constraints in the expected way.

A valuation ν : R t R′ → N is compatible with a constraint τ, written
ν |� τ, if every atomic formula holds when we replace every r ∈ R t R′

by ν(r). A constraint sequence τ0τ1 . . . is feasible in N if there exists
a sequence of valuations ν0ν1... ∈ (NR)ω such that νi ∪ ν′′i+1 |� τi for
all i ≥ 0. If, additionally, ν0 � νιR : r 7→ 0, then it is 0-feasible. Notice
that feasibility implies consistency. Feasibility and 0-feasibility in Q are
defined analogously. Given a set R of registers, we denote FeasibleCS

D
(R)

(respectively, FeasibleCS0
D(R)) the set of feasible constraint sequences

(resp., 0-feasible constraint sequences) over R, over data domainD. When
the data domain is not specified, we are considering feasibility in N.

Example 4.7 Let R � {r1 , r2 , r3 , r4}. consider a consistent constraint
sequence τ0τ1 . . . that starts with{

r1< r2< r3< r4 , r4� r′3 , r3� r′4 , r1� r′1 , r1> r′2
} {

r2< r1< r4< r3 , r4� r′3 , r3� r′4 , r1� r′1 , r2> r′1
}

Note that we omit some atomic formulas in τ0 and τ1 for readability:
although they are notmaximal (e.g. τ0 does not contain r′2 < r′1 < r′4 < r′3),
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[39]: Segoufin and Torunczyk (2011), ‘Au-
tomata based verification over linearly or-
dered data domains’
[59]: Bojańczyk and Colcombet (2006),
‘Bounds in ω-Regularity’

[117]: Bojańczyk (2011), ‘Weak MSO with
the unbounding quantifier’

they can be uniquely completed to maximally consistent sets. Figure 4.6
(ignore the colored paths for now) depicts τ0τ1 plus a bitmore constraints.
The black lines represent the evolution of a single register. The constraint

order

time
0 1 2 3 4 5 6

r4

r3

r2

r1

Figure 4.6.: Graphical depiction of a constraint sequence. Register values are depicted as black dots, and dots are connected by black lines
when they are related to the same register. Coloured paths depict chains (cf infra).

τ0 describes the transition from moment 0 to 1, and C1, from 1 to 2. This
finite constraint sequence is feasible both in Q and N. For instance, the
valuation sequence can start with ν0 : r4 7→ 6, r3 7→ 5, r2 7→ 4, r1 7→ 3.
Note however that no valuation sequence starting with ν0(r3) < 5 can
satisfy the sequence in N. Also, the constraint τ0 requires all registers in
R to differ, hence the sequence is not 0-feasible in Q nor in N.

Another example is given by the constraint sequence ({r > r′})ω with
R � {r}, which results from tha action sequence (>{r}) ((r > ?){r})ω
that we described earlier: it is feasible in Q but not in N.

Feasibility of constraint sequences in N

In this section, we study how to check the feasibility of constraint
sequences in (N, <, 0). In [39, Appendix C], Segoufin and Torunczyk
show that feasible constraint sequences in N are recognisable by non-
deterministic ωB-automata [59, Section 3.2]. We provide a characteri-
sation of feasible constraint sequences that allows to refine this result
to deterministic max-automata [117, Section 2]. As a corollary, we get that
they are expressible in weak MSO with the unbounding quantifier, since
it recognises the same languages as deteterministic max-automata [117,
Theorem 5].

The characterisation is based on the study of chains of registers, i.e. of
sequences of registers with constraints over their relative order given
by the constraint sequence. The discrete structure of (N, <, 0) imposes
some conditions on such chains, namely that they cannot be infinitely
decreasing nor unboundedly increasing if they are bounded from above.
In Lemma 4.41, we show that those conditions characterise feasibility. We
later on refine this result by showing that it suffices to consider one-way
chains, that can only go from left to right in the constraint sequence
(Lemma 4.42).

This result was obtained during the quest for decidability of unbounded
synthesis for deterministic one-sided specification automata over (N, <, 0)
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We put equality between quotes to high-
light the fact that it is a constraint symbol:
we do not mean that all (ri ,m + i) are
equal.

(cf Section 7.3.4): while games with a winning condition expressed by a
non-deterministic ωB-automaton are not known to be decidable, those
over deterministic max-automata can be shown decidable (cf Remark
7.10), which implies decidability of the synthesis problem. In the end,
we use a different approach, that yields a better complexity. However,
this result is interesting in its own right, since deterministic automata
model are in general easier to handle than non-deterministic ones, as
illustrated in the context of games: most game resolution techniques rely
on some determinisation procedure, except for approaches based on
good-for-games automata [97].

Definition 4.34 Fix R and a constraint sequence τ0τ1 . . . over R. A two-

way chain is a finite or infinite sequence

γ � (r0 ,m0) ./0 (r1 ,m1) ./1 ... ∈ ((R × N) · {<,�, >})∗,ω

satisfying the following (note that m0 can be distinct from 0).

I mi+1�mi , or mi+1�mi + 1 (time flows forward), or mi+1 � mi − 1
(time goes backwards).

I If mi+1 � mi then (ri ./i ri+1) ∈ Cmi .
I If mi+1 � mi + 1 then (ri ./i r′i+1) ∈ Cmi .
I If mi+1 � mi − 1 then (ri+1 ./i r′i ) ∈ Cmi−1.

It is decreasing (respectively, increasing) if for all 0 ≤ i < |γ |, ./i∈ {>,�}
(resp., ./i∈ {<,�}). In the following, we only consider decreasing two-
way chains. For such a chain, its depth is the number of >. When there are
infinitely many, we say that the chain is infinitely decreasing. Figure 4.6 on
page 110 shows four two-way decreasing chains, respectively depicted
in blue, red, green and yellow. For instance, the green-colored chain
(r4 , 2) > (r3 , 3) > (r2 , 2) > (r1 , 3) > (r2 , 3) has depth 4.

A chain is one-way when time flows forward (mi+1 � mi + 1) or stays the
same (mi+1 � mi), i.e. we do not allow mi+1 � mi − 1. In Figure 4.6, the
blue chain is one-way decreasing, the red chain is one-way increasing.

A stable chain is an infinite one-way chain

(r0 ,m)‘ �′ (r1 ,m + 1)‘ �′ (r2 ,m + 2)‘ �′ . . .

i.e. for all i ≥ 0, mi+1 � mi + 1 and ./i is �. Then, we also write
(m , r0r1r2 . . . ).

Given a stable chain σ � (m , r0r1...) and a (finite or infinite) chain
γ � (s0 , n0) ./0 (s1 , n1) ./1 . . . such that for all 0 ≤ i < |γ |, ni ≥ m, we
say that the chain σ is non-strictly above γ if for all ni , the constraint τni

contains rni−m > sni or rni−m � sni . We also say that γ is non-strictly below
σ.

A stable chain (m , r0r1 . . . ) is maximal if it is non-strictly above all other
stable chains that start after m. In Figure 4.6, the yellow chain (0, (r4r3)ω)
is stable and non-strictly above all other chains, hence maximal.

A chain is ceiled if it is below a maximal stable chain.

First, let us show that we can avoid repetitions in chains that appear in
feasible constraint sequences:
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The result can equivalently be shown by
assuming by contradiction that the chain
with the minimal number of loops has at
least one loop.

Items are primed as we later on refine this
characterisation, see Lemma 4.42

We say ‘infinite descending sequence’ for
‘infinite descending chain’, which is the
usual terminology in the context of well-
founded orders, to avoid a clash with our
notion of chain, that concern registers. As
witnessed by this proof, both notions are
closely related.

Lemma 4.40 Let γ be chain. We say that it is looping if there exists 0 ≤ i <
j < |γ | such that (ri ,mi) � (r j ,m j).

Let κ be a feasible constraint sequence. If κ has an infinite (respectively, finite)

chain of depth d starting from (r,m) ∈ R × N (respectively, starting from

(r,m) ∈ R × N and ending in (s , n) ∈ R × N), then it admits a chain with the

same properties that is non-looping.

Proof. Let κ be a feasible constraint sequence, and let γ � (r0 ,m0) ./0
(r1 ,m1) ./1 . . . be a (finite or infinite) chain of depth d starting from
(r,m) ∈ R × N (and ending in (s , n) ∈ R × N if it is finite) that appears
in κ. We show how to remove a loop of γ; the result is then obtained by
induction on the number of remaining loops.

Assume that γ has a loop, and let i , j ∈ N be such that (ri ,mi) � (r j ,m j).
If there is at least an occurrence of < or > between i and j, then κ
is not feasible, because it means that νmi (ri) < νm j (r j) (respectively,
νmi (ri) > νm j (r j)), we have that for all i ≤ k ≤ j, ./k is ‘�’. Thus, the
chain γ′ � (r0 ,m0) ./0 . . . (ri ,mi)(r j+1 ,m j+1) . . . obtained by removing
the loop has the same depth and the same endpoint(s), which concludes
the proof.

Now, we show that the structure of the chains of a constraint sequence
characterise its feasibility.

Lemma 4.41 A consistent constraint sequence κ is feasible if and only if

(i’) κ has no infinitely decreasing two-way chain, and

(ii’) Ceiled chains have a uniformly bounded depth, i.e. there exists a bound

B ∈ N such that increasing two-way chains of κ that are ceiled have depth

at most B.

Proof idea. The left-to-right direction is easy: if item (i’) is not satisfied,
then one needs infinitely many values below the maximal initial value of
a register to make the constraint sequence feasible, which is impossible
in N. Likewise, if item (ii’) is not satisfied, then one also needs infinitely
many values below the value of a maximal stable chain, which is again
impossible.

For the other direction, we show that if both items hold, then one
can construct a sequence of valuations ν0ν1 . . . satisfying the constraint
sequence such that for all r ∈ R, νi(r) is the largest depth of a (decreasing)
two-way chain starting in r at moment i.

Proof. Direction⇒: first, assume that a constraint sequence κ � τ0τ1...
is feasible by a valuation sequence ν0ν1.... Aiming for a contradiction,
suppose that item (i’) does not hold, i.e. there is an infinitely decreasing
two-way chain γ � (r0 ,m0) .0 (r1 ,m1) . . . . Then, for all i ≥ 0, we have
that νi(ri) .i νi+1(ri+1). Since there are infinitely many .i that are equal
to ‘>’, this yields an infinite descending sequence in N, which yields a
contradiction sinceN iswell-founded.Now, again towards a contradiction,
assume the negation of item (ii’), i.e. that there is a sequence of two-way
ceiled chains of unbounded depth. By definition of a ceiled chain, the
constraint sequence κ has a maximal stable chain. Let M be the value
of the registers in the maximal stable chain (all such registers have the
same value, by definition of a stable chain). Take a ceiled chain of depth



4. Register Automata over a Data Domain 113

Recall that ν′ is defined as ν′ : r′ 7→ ν(r)
for all r ∈ R.

at least M + 1. Necessarily, one of its registers has a value that exceeds
M, which yields a contradiction.

Direction ⇐: let κ � τ0constraint1 . . . be a consistent constraint se-
quence that satisfies items (i’) and (ii’). Let us build a sequence of register
valuations ν0ν1... such that for all i ≥ 0, νi t ν′i+1 |� constrainti . Let
r ∈ R be a register, and i ≥ 0. Let δ(r, i) be the largest depth of two-way
chains that start from (r, i). Note that δ(r, i) < ∞ by item (i’). Then, define
νi(r) � δ(r, i).

Let us show that for all i ≥ 0, we have that νi t ν′i+1 |� constrainti holds,
i.e. that all atomic formulas of τi are satisfied. Pick an arbitrary atom
r1 ./ r2 of τi , where r1 , r2 ∈ R t R′. Define mr1 � i + 1 if r1 is a primed
register, else mr1 � i; similarly define mr2 . There are two cases.

I ./ is ‘�’. Then, the deepest chains from (r1 ,mr1) and (r2 ,mr2) have
the same depth, δ(r1 ,mr1) � δ(r2 ,mr2), which means that νi t ν′i+1
satisfies the atomic formula.

I ./ is ‘>’. Then, any chain (r2 ,mr2) . . . of depth d starting from
(r2 ,mr2) can be prefixed by (r1 ,mr1) to create the chain (t1 ,mt1) >
(t2 ,mt2)... of depth d + 1. Hence δ(r1 ,mr1) > δ(r2 ,mr2), therefore
νi t ν′i+1 satisfies the atomic formula.

This concludes the proof.

The above lemma characterises feasibility in terms of two-way chains. As
we demonstrate, it actually suffices to consider one-way chains, thanks
to a Ramsey argument.

Lemma 4.42 A consistent constraint sequence κ is feasible in N if and only if

(i) It has no infinitely decreasing one-way chains, and

(ii) Ceiled one-way chains have a uniformly bounded depth, i.e. there exists a

bound B ∈ N such that increasing one-way chains of κ that are ceiled

have depth at most B.

Proof idea. The left-to-right direction is a direct consequence of Lemma
4.41, since one-way chains form a particular case of two-way chains. For
the other direction, we actually show that each item implies its primed
version (see Lemma 4.41). First, from an infinitely decreasing two-way
chain, we can always extract an infinitely decreasing one-way chain.
Indeed, two-way chains can be infinite to the right but not to the left, so
for any moment i, there exists a moment j > i such that one register of
the chain is smaller at step j than a register of the chain at step i.

Now, given a sequence of ceiled two-way chains of unbounded depth,
we need to construct a sequence of one-way chains of unbounded depth.
This construction is more difficult than in the case: even though there
are deeper and deeper ceiled two-way chains, they may start at later and
later moments in the constraint sequence and go to the left, thus one
cannot just take an arbitrarily deep two-way chain and extract from it
an arbitrarily deep one-way chain. However, we show, using a Ramsey
argument, that it is possible to extract arbitrarily deep one-way chains as
the two-way chains are not completely independent.
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Given anumber c of colors and a size n, the
Ramsey number R(c , n) denotes the size of
a clique needed to ensure the existence of
a monochromatic subclique when c colors
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the m0 of Theorem B in [118].

Proof. Let κ be a consistent constraint sequence. If it is feasible, by Lemma
4.41, we know that it satisfies items (i’) and (ii’), which implies that both
(i) and (ii), as they respectively weaken their primed version.

Now, assume that κ is not feasible. By Lemma 4.41, it means that either
(i’) or (ii’) is violated.

Extracting an infinitely decreasing one-way chain from a two-way one
First, assume that κ has an infinitely decreasing two-way chain γ �

(ra , i) . . . , we construct an infinitely decreasing one-way chain γ′. The
construction is illustrated in Figure 4.7. Our one-way chain γ′ starts in

order

timei i+1

ra

rb
r′

Figure 4.7.: Proving that ¬(i′) ⇒ ¬ (i) to
get Lemma 4.42. The two-way chain γ is
in black, the constructed one-way chain
γ′ is in blue.

(ra , i). The area on the left from i-timeline contains i · |R | points, but γ has
an infinite depth, so at some point it must go to the right from i. Let rb be
the smallest register visited at moment i by γ. We first assume that rb is
different from ra (the other case is treated later). We have (rb , i). (r′, i+1).
We append this to γ′ and get γ′ � (ra , i) > (rb , i) . (r′, i + 1). If ra and rb
are equal, the chain γ moved (ra , i) . (r′, i + 1), in which case we only
append (ra , i) . (r′, i + 1). By repeating the argument from the point
(r′, i+1), we add one link to the chain γ′. Thus, by induction on i ≥ 0, we
can construct the infinitely decreasing one-way chain γ′, which means
that item (i) is violated.

Extracting arbitrarily deep one-way ceiled chains from two-way ones
Now, assume that item (ii’) does not hold. Given a set of ceiled two-way
chains of unbounded depth, we need to construct a set of ceiled one-way
chains of unbounded depth. This is done with a Ramsey argument: we
represent a two-way chain as a clique with colored edges, and whose
monochromatic subcliques represent all one-way chains. With Ramsey’s
theorem [118, Theorem B], we know that a monochromatic subclique of a
required size always exists if a clique is large enough, which yields the
sought one-way chain. Let n ≥ 0; we need to exhibit a one-way chain
of depth at least n. Let l � R(3, n) be the Ramsey number for 3 colors
and target size n. Let γ be a two-way chain of depth l; it exists since item
item (ii’) fails. From it we construct the following colored clique (the
construction is illustrated in Figure 4.8 on the following page).

I Remove stuttering elements from γ:whenever (ri ,mi) � (ri+1 ,mi+1)
appears in γ, remove (ri+1 ,mi+1). We repeat this process until no
stuttering elements appear. Let γ> � (r1 ,m1) > · · · > (rl ,ml) be
the resulting sequence; it is strictly decreasing, and contains l pairs
(the same as the depth of the original γ). Note the following prop-
erty (†): for every not necessarily adjacent (ri ,mi) > (r j ,m j), there
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(a) A given two-way chain (without stuttering)
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(d) The constructed increasing one-way chain.
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(b) A clique induced by the two-way chain. We have shown the
edges for the top 5 points only so as not to clutter the drawing
(the remaning ones can be inferred).
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(c) A monochromatic subclique with elements 1, 2, 5, 8.

Figure 4.8.: Proving that ¬(ii′) ⇒ ¬ (ii) to get Lemma 4.42.

[118]: Ramsey (1930), ‘On a Problem of
Formal Logic’

is a one-way chain (ri ,mi) . . . (r j ,m j); it is decreasing if mi < m j ,
and increasing otherwise; its depth is at least 1.

I The elements (r,m) of γ> serve as the vertices of the colored clique.
The edge-coloring function is: for every (ra ,ma) > (rb ,mb) in γ>,
let color

(
(ra ,ma), (rb ,mb)

)
be↗ if ma < mb ,↘ if ma > mb , ↓ if

ma � mb (see Figure 4.8b).

By applying Ramsey’s theorem [118, TheoremB], we get amonochromatic
subclique of size n with vertices V ⊆ {(r1 ,m1), . . . , (rl ,ml)}. Its color
cannot be ↓ when n > |R |, because a time line has at most |R | points.
Suppose the subclique color is↗ (the case of↘ is similar). We build the
increasing sequence s � (r?1 ,m?

1 ) < · · · < (r?n ,m?
n), where m?

i < m?
i+1

and (r?i ,m
?
i ) ∈ V , for every plausible i. The sequence s may not be a one-

way chains, because the removal of stuttering elements thatwe performed
at the beginning can cause time jumps mi+1 > mi + 1. However, relying
on property (†), one can construct a one-way chain γ? of depth n from
s by inserting the necessary elements between (ri ,mi) and (ri+1 ,mi+1).
Finally, when the subclique has color↘, the resulting chain is decreasing.

Thus, for every given n, we constructed either a decreasing or increasing
ceiled one-way chain of depth n, which means that item (ii) does not
hold.

Overall, if κ is a consistent constraint sequence that is not feasible, it
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More precisely, there exists a bound B ∈ N
such that increasing one-way chains of κ
that are ceiled have depth at most B.

[117]: Bojańczyk (2011), ‘Weak MSO with
the unbounding quantifier’

either breaks item (i) or (ii), which concludes the proof.

The above characterisation is then easily lifted to 0-feasibility.

Lemma 4.43 A consistent constraint sequence κ � τ0τ1 . . . is 0-feasible in N

if and only if:

(i) It has no infinitely decreasing one-way chains,

(ii) Ceiled one-way chains have a uniformly bounded depth, and moreover

(iii) Initially, all registers contain 0, i.e. τ0 |R � {r� s | r, s ∈ R} ∪ {r � 0 |
r ∈ R}, and

(iv) It has no decreasing one-way chain of depth ≥1 from any (ri ,mi) such
that τi implies ri � 0.

We now have all the tools in hand to prove the main result of this section,
namely that feasible action sequences over (N, <, 0) are recognised by
max-automata [117, Section 2] (Theorem 4.46). They consist in an ω-
automaton equipped with a finite set of counters c1 , . . . , cn which can be
incremented, reset to 0, or updated by taking the maximal value of two
counters. As for ωB-automata, these counters cannot be tested along the
run (otherwisewe get an undecidablemodel, since it can simulateMinsky
machines). The acceptance condition is given as a Boolean combination
of conditions ‘counter ci is bounded along the run’, i.e. there exists a
bound B ∈ N such that counter xi has value at most B during the whole
execution. By using negation, one can also expression conditions like ‘xi
is unbounded along the run’, i.e. it takes arbitrarily large values.

This model strictly lies between ω-automata and non-deterministic ωBS-
automata. On the one hand, they can recognise the language LaB of ,
defined as

LaB � {bak0 bak1 . . . baki b · · · | ∃B ∈ N, ∀i ∈ N, ki ≤ B}

On the other hand, they cannot recognise [117, Lemma 27]

Lli<∞ � {an1 ban2 ban3 b · · · | lim inf ni < ∞}

First, let us show the result for constraint sequences.

Proposition 4.44 For every R, there is a deterministic max-automaton AR

recognising the language of constraint sequences over R that are 0-feasible N.

Its number of states is exponential in |R |, and it has O(|R |2) counters.

Proof. We design a deterministic max-automaton that checks condi-
tions (i) to (iv) of Lemma 4.43.

Condition (i), namely the absence of infinitely decreasing one-way chains,
is an ω-regular condition: an ω-automaton can guess a chain and verify
that it is infinitely decreasing, i.e. that it sees > infinitely often, us-
ing a Büchi condition; determinising and complementing provides a
deterministic parity automaton for this property.

Checking condition (i) (the absence of ceiled one-way chains of un-
bounded depth) is more involved. We design a master automaton that
tracks every chain γ that currently exhibits a stable behaviour. To every
such chain γ, the master automaton assigns a tracer automaton whose
task is to ensure the absence of unbounded depth ceiled chains below
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γ. To that end, it uses 2|R | counters and requires them to be bounded.
When two chains arrive in the same point in a constraint, the automaton
takes the maximum of their depth (hence the need for a max-automaton,
and not just an ω-automaton). The overall acceptance condition ensures
that if the chain γ is stable, then there are no ceiled chains below γ of
unbounded depth. Since themaster automaton tracks every such potential
chain, we are done.

Condition (iii) (all registers contain 0) is easily shown ω-regular, as well
as condition (iv) (no strictly decreasing chains from 0), which simply
consists in checking that no ‘>’ is seen from a register r such that τ
implies r � 0.

Since max-automata are able to recognise ω-regular languages and are
closed under Boolean operations [117], we can build a deterministic
max-automaton that checks all those conditions.

We can now relate action sequences and constraint sequences: an action
sequence α over (N, <, 0) naturally induces a constraint sequence κα over
(N, <, 0)which is 0-feasible if and only if α is feasible. For instance, for
registers R � {r, s}, an action sequence starting with (r < ?∧ s < ?, {s})
(test whether the input data value d is above the values of r and s and
store it in s) induces a constraint sequence starting with {r � s , r � 0, r �

r′, s < s′, r′ < s′} (the atomic formulas r � s and r � 0 result from the
fact that all registers are initially equal to 0; we omitted some formulas
than can be deducted).

Lemma 4.45 Let R be a set of registers. There exists a mapping constr from
action sequences over R (over data domain (N, <, 0))to constraint sequences
over R (again, over data domain (N, <, 0)) such that for all action sequences α
constrα is 0-feasible if and only if α is feasible.

Proof. The general construction is a straightforward generalisation of the
above example and is consequently omitted.

With this correspondence, we get that the set of feasible action sequences
over (N, <, 0) is also recognisable by a deterministic max-automaton.
Recall that an action sequence is feasible if there exists a data word that is
compatible with it. Indeed, to any action sequence α, one can associate a
constraint sequence κα which is 0-feasible if and only α is feasible (we do
not distinguish between feasibility and 0-feasibility for action sequences
since we are only interested in the former):

Theorem 4.46 For every R, there is a deterministic max-automaton AR
recog-

nising the language Feasible(N,<,0)(R) of action sequences over R that are

feasible in N.

Its number of states is exponential in |R |, and it has O(|R |2) counters.

By [117, Theorem 5], we know that deterministic max-automata are
equivalent to weak MSO with the unbounding quantifier, which consists
in Monadic Second Order Logic where quantification over sets is limited
to finite sets, equipped with a quantifier U such that UX · ϕ(X) holds
whenever ϕ(X) holds for sets X of arbitrary size. Thus, we obtain the
following corollary:
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L is defined over finite datawords so as not
to clutter the argument, but it is directly
generalised to dataω-words by appending
$ω at the end. The b stands for ‘batch’, as
req are sent in a batch.

Corollary 4.47 For every R, there is a weak MSO+U formula recognising the

language Feasible(N,<,0)(R) of action sequences over R that are feasible in N.

Both results provide a way to abstract the behaviour of register automata
over (N, <, 0). As mentioned earlier, they yield decidability of the syn-
thesis game over specifications given by such automata (see also Remark
7.10).

In [39], the authors establish decidability of the emptiness problem for
register automata over (N, <, 0), by reducing to the emptiness problem
of a non-deterministic ωB-automaton. Of course, the argument again
works in the case of deterministic max-automaton, so we can apply these
results to show:

Theorem 4.48 ([39, Theorem 14]) The emptiness problem for register automata

over (N, <, 0) is decidable.

Proof. Let A be a register automaton over (N, <, 0). As in the proof of
Proposition 4.30, we make the product of A with the deterministic max-
automaton AR of Theorem 4.46. Then, such an automaton is empty if and
only if A is empty. Emptiness is decidable for deterministicmax-automata,
which concludes the proof [117, Theorem 3].

The reader who is mainly interested in the unbounded synthesis problem
over (N, <, 0) can now jump to the next Chapter 5 before going to Chapter
7, where this study is detailed in Section 7.3.4.

4.8. Universal Register Automata

Already over data domains with equality only, the emptiness problem
of universal register automata is undecidable, by a direct reduction
from the universality problem of non-deterministic register automata
(undecidable by [101, Theorem 18]). For this reason, we do not provide a
detailed study of the model; the only properties that we use are obtained
by duality.

Note that universal register automata over (D,�,C) can recognise the
language of words whose data values are pairwise distinct, L∀, �

{d0d1 · · · | ∀i , j, di , d j}, as witnessed by the register automaton of
Figure 4.1b on page 81. Since it does not contain any data word with
finitely many distinct data values, it means that they do not have the
renaming property (Proposition 4.15).

To get an idea of the expressiveness of this automaton class, let us have a
look at its projection over labels. We start by pointing out that it is not
ω-regular; as we see next, the situation is much worse.

Example 4.8 Consider the following data language over finite data words:

Lbrg �

(req, d1) . . . (req, dn)(grt, d′1) . . . (grt, d′m)

��������
for all i , j, di , d j
and all 1 ≤ i ≤ n ,
there exists j
such that d′j � di
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As usual, the $ separator can either be
simulated with a label, or by reading an
additional data value at the beginning.

A data word in Lbrg consists in a word w ∈ reqn with pairwise distinct
data followed by a word w′ ∈ grtm which contains at least all the data of
w. This language can be interpreted as the request-grant specification,
restricted to the case where all requests are made first, and are all made
by pairwise distinct clients.

Lbrg is recognised by a universal register automaton which checks that
once a label grt is read, only grt are read (this is an ω-regular property)
and, on reading (req, di), universally triggers a run which checks that

1. (req, di) does not appear again
2. (grt, di) appears at least once.

Now, lab(Lbrg) � {reqngrtm | m ≥ n}, which is not regular. Padding with
$ω yields a data language that is not ω-regular.

As a consequence, we have:

Property 4.49 The projection over labels of universal register automata is not

always ω-regular.

Actually, one can define a universal register automaton which recognises
encoding of runs of a Turing machine. The following result is trivially
obtained from the undecidability of the universality problem for non-
deterministic register automata [101, Theorem 18], but what we are
interested in is the construction of the automaton. This construction is
inspired by the proof of Theorem 1 in [44].

Theorem 4.50 ([101]) The emptiness problem for universal register automata

over (D,�, #) is undecidable.

Proof. Let M be a deterministic Turing machine with Q states. Recall that
a configuration of M is a triple c � (q , w , r) ∈ Q×{0, 1}n ×{0, . . . , n−1}
for some n ∈ N, where q is the current state of M, w is the content of its
tape, and r is the position of the head. A configuration c can be encoded
as w, that we decorate with q and whose r-th position is marked with a
special symbol. Formally, c is encoded as the word xc of length n over
alphabet Q × {0, 1} × {O, ·}. For all 0 ≤ i < n, we let xc[i] � (q , w[i], p),
where p � O if i � r, and p � · otherwise. In the following, it eases the
proof to assume that when the length of the tape never excelleds m ∈ N,
configurations all are encoded with words of fixed length m. This is
doable for all configurations with tape length n ≤ m by allowing a third
value £ for elements of the tape, and instead encoding w′ � w£m−n .

Now, there exists a URA AM with labels alphabet Q × {0, 1, £} × {O, ·}
which recognises a data language LM whose projection on labels is

Note that asking that all ci have length m
implies that the length of the tape never
exceeds m along the computation. As we
briefly explain at the end of the proof,
it is actually not necessary to restrict to
computations of bounded length, yet it
makes the argument much simpler.

lab (LM) �
{

xc0$xc1$ . . .
���� there exists m ∈ N, all xci have length m and

c0c1 . . . is the sequence of configurations of M

}
The main ingredient of the proof is to show that there exists a universal
register automaton (with two registers) which recognises the data lan-
guage consisting in infinite repetitions of a finite sequence of data values
which are pairwise distinct, separated by $:

L$, �
{
(d0d1 . . . dm$)ω

�� m ∈ N ∧ ∀0 ≤ i < j ≤ m , di , d j
}

To recognise this language, the URA:
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I Stores d0 and triggers a run which checks that d0 appears immedi-
ately after each occurrence of $.

I Before reading the $, when it reads a data value di , it triggers a
run which stores the next data value di+1 and checks that on every
occurrence of di , the next data value is di+1. When the next symbol
is a $ (i.e. i � m), it instead checks that after every occurrence of
dm , the next symbol is a $.

Recall that languages recognised by URA are closed under intersection
(Proposition 4.3), so we can assume that the automaton already restricts
to labelled data words w whose data component dt(w) is of the form
d0 . . . dm$ω for some m ∈ N, where the di are pairwise distinct. We
further ask that the label component lab(w) is of the form x0$x1$ . . . ,
where each xi has length m; this is done thanks to the $ separator. We
moreover ask that xi is a valid encoding: all labels encode the same state
q; the reading head is at exactly one position (i.e.O appears exactly once),
and w ∈ {0, 1}∗£∗ (i.e. once a padding symbol £ is read, the automaton
only reads padding symbols). This is a regular property.

Now that the input is well-formed, it remains to check that the xi
indeed encode the sequence of configurations of M. First, AM checks
that x0 encodes the initial configuration (q ι , ε, 0). It thus checks that
x0 ∈ (q ι , £,O)(q ι , £, ·)∗ (recall that we already know that all xi have
the same length, so we need not evaluate the length of x0). Then, the
automaton has to verify that successive xi indeed encode successive
configurations.

Let i ∈ N, and assume the configuration encoded by xi is c � (p , w , r),
and that that δ(p , w[r]) � (q , a ,m) (we drop the index i for readability).
We treat the case a � 0 (themachine writes 0 at the reading head position)
and m �→ (the reading head moves to the right); the other cases are
similar. Checking that the labels of xi+1 all encode the same state q is
a regular property. Verifying that the content of the tape is unchanged,
except for w[r], is done as follows: the automaton stores the associated
data value and memorises the content of the current cell in its state.
It then checks that label of the next occurrence of data value indeed
corresponds to the same bit. Note that here, it is crucial that the data
values associated with each position are pairwise distinct, so that they
can be used as a unique identifier. Finally, checking that the machine
writes 0 in its current cell and moves one cell to the right is done in a
similar way, by locating the position of r using the data value associated
with O. If the reading head is already at the rightmost position, the
automaton rejects.

As a consequence, lab (LM) indeed consists in encodings of the run of M
(this run is unique as we assume that M is deterministic), if this run only
uses a bounded amount of tape (otherwise LM � ∅). By additionally
asking that some configuration is accepting, we reduce the emptiness
problem of universal register automata to the halting problem for Turing
machines. Indeed, if a run is accepting, then in particular it only uses a
bounded amount of tape.

Let us conclude the proof by noting that we can actually construct an
automaton that recognises the unique encoding without padding of the
run of M, whether it uses a bounded amount of tape or not. In our setting,
the machine cannot erase the content of its tape, i.e. it cannot write the
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symbol £ (this is without loss of generality). As a consequence, the length
of the xi is increasing. We thus need to slightly modify the automaton
recognising L$,. It proceeds as before, by checking that the presence of di
implies the presence of di+1 in the next step, but the case of dm is treated
differently when the reading head is at the rightmost position of the tape
and moves to the right. Instead of asking that the next symbol is a $,
we ask that it is a new data value, distinct from the previous ones, and
that the symbol after it is a $. The freshness condition can be enforced
by checking that between two $, any data value appears at most once.
If the reading head is not at the rightmost position or does not move to
the right, the automaton behaves as before. The above construction is
correspondingly adapted.

4.9. Register Automata and Arithmetic

4.9.1. Register Automata over (N,+1, 0)

As hinted at by the register automaton of Figure 4.1d on page 81 in
Example 4.3, register automata over (N,+1, 0) are equivalent to Minsky
machines, so they can compute any partial recursive function (modulo
a Gödel-like encoding that is complicated but effective) [102, Theorem
I], and are thus Turing-complete. This is almost by definition, since the
registers play the same role in both models. One simply needs to observe
that addition, substraction and zero-tests can be implemented (addition
is ? � ci + 1, substraction is ? + 1 � ci , and zero-test is ci � 0). As a
consequence, we get:

Property 4.51 Let M be a (deterministic) Minsky machine with counters

{c1 , . . . , ck} for some k ≥ 1. There exists a deterministic register automaton

over (N,+1, 0) of size linear in |M | whose runs are exactly those of M.

As a consequence, deterministic register automata over (N,+1, 0) are
equivalent to Turingmachineswhen theyhave at least two registers (again,
modulo some encoding). Since the halting problem is undecidable [1, 119,
120], so is the emptiness problem, and we get:

Theorem 4.52 The emptiness problem for deterministic register automata over

(N,+1, 0) with at least two registers is undecidable.

4.9.2. Register Automata over (N,×, 2, 3)

One can implement in a similar fashion multiplication and division by 2
and 3 if the predicate × (with its expected interpretation) is given, e.g.
division by 3 is?×3 � ci , where ci is some register. By [102, Theorem II],
we get that, even with one register, one can compute any partial recursive
function. As a consequence,

Theorem 4.53 The emptiness problem for deterministic register automata over

(N,×, 2, 3) is undecidable, already with one register.
Remark 4.21 We picked 2 and 3 as they are minimal, but this also works
with any two distinct prime numbers.
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In the context of register automata with
guessing, we call non-guessing register au-
tomata those that do not have this feature,
as defined in Definition 4.13.

4.10. Extensions of the Model

In this section, we describe two (somewhat orthogonal) extensions of
the model. The first one is non-deterministic reassignment [38], also
known as guessing. We make it part of the definition of the transducers
of Part II, but it is not included in this part to keep the argument focused.
The second one is fresh-register automata [121], and is not extensively
studied for the same reason. However, when this is relevant, we make
a few remarks to point out if the results still hold when allowing these
extensions.

4.10.1. Non-Deterministic Reassignment, Also Known as
Guessing

In [38], the authors introduce non-deterministic reassignment, a feature
that aims at improving the symmetry of the model. It is also known as
guessing, and we favour the latter terminology since it also makes sense
in the universal semantics. At each step, on top of assigning the input
data value to some registers, the automaton can guess data values and
assign them to some other registers.

Definition 4.35 (Non-Deterministic Reassignment, a.k.a. Guessing) A
register automaton with non-deterministic reassignment, or register automaton

with guessing, is the same as a register automaton, except that its transitions

are now of the form t � p
σ,φ,asgn,ndasgn
−−−−−−−−−−−→ q, where ndasgn ⊆ R and

asgn∩ndasgn � ∅, thus∆ is of type∆ ⊂ f Q×Σ×TestsD(R)×2R×2R×Q.
The successor relation over configurations is modified as follows. Given
two configurations (p , ν) and (q , λ), a transition t as above and a data
value d ∈ D, we say that C′ is a successor configuration of C whenever:

I ν, d � φ (as for non-guessing register automata)
I Registers are assigned as follows. For all r ∈ R:

• if r ∈ asgn, λ(r) � d (as for non-guessing register automata)
• if r ∈ ndasgn, then λ(r) is not constrained and can take any

data value (the register automaton ‘guesses’ the value of the
register)

• otherwise, λ(r) � ν(r) (as for non-guessing register automata)

The notions of (partial, initial, final, accepting) run are defined in the
expected way. Register automata with guessing can also be defined for
both the non-deterministic and universal semantics. Again, a data word
is accepted by a non-deterministic register automaton with guessing if
there exists an accepting run over it. It is accepted by a universal register
automaton with guessing if all runs of the automaton are accepting (for
all possible guesses; cf Example 4.10).

Guessing is, in essence, not deterministic, and the deterministic restric-
tion of register automata with guessing is defined as (non-guessing)
deterministic register automata.

Remark4.22 The transitions can equivalently be representedas p
σ,φ,regOp
−−−−−−−→

q, where regOp : R→ {keep, set, guess}. Intuitively, keepmeans that the
content of the register is left unchanged, set means that it is assigned,
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i p q>, ?r

? , r

? � r

(a) A non-deterministic register automaton with guessing with
one register r over data domain (N,�) recognising La,, that
checks that the last data value does not appear before in the
input.

i p q?r

? , r

? � r

(b)Auniversal co-Büchi register automatonwith guessingwith
one register r over data domain (N,�) recognising L∀, that
checks that the input contains all data values (the first data
value notwithstanding, to make room for the guess). The state
p is rejecting, so a run is accepting if the data value is eventually
encountered.

Figure 4.9.: Two register automata with guessing, that respectively recognise La, and L∀. ?r graphically denotes ndasgn � {r}, and the
asgn are omitted as they are empty. Recall that > is a test which is satisfied by any data value.

[21]: Kaminski and Francez (1994), ‘Finite-
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[38]: Kaminski and Zeitlin (2010),
‘Finite-Memory Automata with Non-
Deterministic Reassignment’

and guess that it is guessed. We adopt the latter formalism in Part II. In
this part, we prefer to stay as close as possible to Definition 4.13.

This attribute strictly increases expressiveness, already over data domains
with equality only.

Example 4.9 ([38, Example 4]) Consider the language of finite data words
whose last symbol is distinct from all the others. Formally,

La, � {d0 . . . dn | ∀0 ≤ i < n , di , dn}

This language cannot be recognised by any non-deterministic register
automaton without guessing [38, Example 4]. However, it is recognised
the non-deterministic register automaton with guessing of Figure 4.9a. It
initially guesses the last data value, and then waits in p until it sees it
again, then transitions to q. If it was indeed the last data value, it accepts,
otherwise it rejects on the next step since there is no transition from q.
In [21, Example 4], it is shown that La, cannot be recognised by a register
automaton. Intuitively, since the automaton does not know what will be
its last data value, it would have to store all previous data values to check
that they are distinct from this last one.

Example 4.10 For universal register automata, a data word is accepted if
it is accepted by all runs, for all possible guesses. As witnessed by the
automaton of Figure 4.9b, this allows to recognise data words which
contain all data values

L∀ � {d0d1 · · · | ∀d ∈ D, ∃i ≥ 0, di � d}

For simplicity, we considered the variant that excludes the first data
value, {d0d1 · · · | ∀d ∈ D, ∃i ≥ 1, di � d}, as in our syntax, the guess can
only be verified a posteriori. By using an additional register that contains
the first data value d0 to check that the guessed data value is distinct
from d0, the automaton can be tweaked to recognise L∀.

Closure Properties

Let us describe a few properties of this extension, that help understand
how it behaves.

Union and Intersection As pointed out in [38, Theorem 16], the con-
structions of Proposition 4.2 also work in the presence of guessing (see



4. Register Automata over a Data Domain 124

i p q>, ?rt rt � r + 1, r B rt

Figure 4.10.: A non-deterministic register
automaton with guessing with two regis-
ters r and rt over data domain (N,+1, 0)
that silently increments r.
r B rt consists in copying the content of
rt into r.

[122]: Zeitlin (2006), ‘Look-ahead finite-
memory automata’. Register automata
with guessing are called ‘look-ahead finite-
memory automata’in this work.

also [122, Section 2.5]). The choice of the data domain actually plays no
role in the proof, so the result again holds for arbitrary data domains:

Proposition 4.54 (Union and Intersection of non-deterministic register
automata with guessing) Let A1 ,A2 be two non-deterministic register au-

tomata with guessing over the same data domain D, with respectively n1 and n2
states and k1 and k2 registers, and with acceptance conditionΩ1 andΩ2. Then:

I L(A1) ∪ L(A2) is recognised by a non-deterministic register automaton

with guessing with n1 + n2 states and max(k1 , k2) registers, and with

acceptance conditionΩ1 ∪Ω2.

I L(A1) ∩ L(A2) is recognised by a non-deterministic register automaton

with guessing with n1 ·n2 states and k1+k2 registers, and with acceptance

condition π−1
1 (Ω1) ∩ π−1

2 (Ω2).

As for (non-guessing) register automata, the dual result holds in the
universal semantics (see Proposition 4.3).

Closure under automorphisms Closure under automorphisms again
holds in the presence of guessing.

Proposition 4.55 Let A be a non-deterministic register automaton with guess-

ing over data domain D recognising a data language L ⊆ (Σ × D)ω, and let

µ ∈ Aut(D). Then, µ(L) � L.

In other words, for all labelled data words w ∈ (Σ ×D)ω , w ∈ L⇔ µ(w) ∈ L.

Proof. We redo the proof in Part II, as it is at the center of the study (see
Proposition 12.13), but the argument is essentially the same as for non-
guessing register automata, and relies on observing that the successor
relation over configurations is closed under automorphisms.

Restriction to a finite set of data values Contrary to non-guessing
register automata (Proposition 4.1), it can happen that the restriction to
a finite set of data values is not ω-regular, for some data domains. In
particular, over (N,+1, 0), one can construct a register automaton that
simply ignores its input, and simulates aMinskymachine using guessing.
We explain how to implement increment of register r: the automaton
guesses some data value, stores it in a temporary register and checks on
the next step that it is indeed ν(r) + 1. This is graphically depicted in
Figure 4.10. Note that this register automaton uses reassignments, but
this can be removed by adding information to the states, as in Proposition
4.6. As a consequence, we get that:

Property 4.56 There exists a register automaton with guessing A (with unary

label alphabet) such that L(A) ∩ {0, 1}ω is not ω-regular.

Proof. Using the construction of Figure 4.10, one can build a register
automaton with guessing over finite data words with data domain
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The result is initally for finite data words,
but it is easily extend to data ω-words. We
also added labels; this poses no diffculty.

(N,+1, 0) such that L(A) ∩ {0, 1}∗ � {0n1n | n ≥ 0}. It can then be
padded to get {0n1n0ω | n ≥ 0}, which is not ω-regular.

Such an automaton has two registers r and rt . First, note that it can
check whether it reads 0 or 1 with respective tests ϕ0 B ? � 0 and
ϕ1 B ? � 0 + 1. In the following, we write a for 0 and b for 1 when
talking about input data values so as not to confuse them with the
valuations of the registers, even though internally the machine only
manipulates integers. Initially, r and rt contain 0. Then, on reading an
a, it increments its register r as is done in Figure 4.10. At some point,
it starts reading some b. It then decrements r, exactly in the same way.
When r reaches 0 again (this can be tested by asking whether r � 0 on
the transitions), it asks to read only b next, and rejects otherwise.

One can generalise the construction to simulate any Minsky machine.
We do not formalise it as this property is only mentioned to illustrate the
difficulties that might arise when adding guessing.

Remark 4.23 Of course, if we additionally restrict the register valuations
to take their values in a finite set of data values, the above construc-
tion breaks and we recover the property that register automata with
guessing behave in a regular way. Indeed, then, the number of possible
configurations is finite, so the construction of Proposition 4.1 can be
generalised.

Fortunately, over data domain (D,�,C), register automata with guessing
again behave like finite-state automata when restricted to a finite set of
data values:

Proposition 4.57 ([38, Proposition 9]) Let A be a register automaton with

guessing over data domain (D,�) with label alphabet Σ. For all finite subsets
A ⊂ f D, L(A) ∩ (Σ × A)ω is ω-regular.

Projection over Labels Already without guessing, projection over la-
bels is not always ω-regular, e.g. for data domain (N, <, 0) (see Section
4.4.2). However, this is the case over data domain (D,�,C) (Proposition
4.58) and (Q, <, 0) (Proposition 4.59). The first result is a consequence
of the fact that register automata with guessing over data domains with
equality enjoy the renaming property [38, Proposition 14]. As they behave
like ω-automata when executed over a finite set of data values, the same
reasoning as in the non-guessing case (see Proposition 4.19) applies, and
we get:

Proposition 4.58 Let A be a non-deterministic register automaton with guess-

ing. Then, lab(L(A)) is ω-regular.

More precisely, it is recognised by a non-deterministic ω-automaton Alab
with

n(k + γ + 1)k states, where n is the number of states of A, k its number of

registers, and γ the number of constants. Its acceptance condition is π−1
1 (Ω),

whereΩ is the acceptance condition of A.

Over (Q, <, 0), constraints actually allow to abstract non-deterministic
register automata with guessing, so we can generalise Proposition 4.35
to:

Proposition 4.59 The projection over labels of a non-deterministic register

automaton with guessing over (Q, <, 0) is ω-regular.
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More precisely, it is recognised by a non-deterministic ω-automaton Alab
with

states Q × ConstrQ(R) and acceptance condition π−1
1 (Q).

Proof. The same construction as for Proposition 4.35 works for non-
deterministic register automatawith guessing, since the successor relation
for configurations can again be expressed by a first-order formula (cf
Proposition 4.34) in the presence of guessing.

We do not redo the proof as the result is not central to this part, and can
also be obtained from Part II which natively includes guessing in the
definitions. Indeed, it is a consequence of Theorem 12.24, as (Q, <, 0) is
oligomorphic and polynomially decidable (see Corollary 12.25).

Remark 4.24 (Closure under reversal) One of the motivations for the
extension of register automata with a guessing mechanism is to get a
model that is closed under reversal, as is the case for finite-state automata.
For instance, La, is the reversal (see Proposition 4.60) of the data language
L`, � {d0 . . . dn | ∀1 ≤ i ≤ n , di , d0}, which is recognisable by a
deterministic register automaton. Indeed, it is the complement of Lfirst of
Example 4.1 (restricted to finite data words), which is recognised by the
deterministic register automaton of Figure 4.1a on page 81. This is not by
accident:

Proposition 4.60 (Closure under reversal [38, Corollary 31]) Given a finite

word w � a0a1 . . . an−1an ∈ A∗ (for some possibly infinite set A) its reversal
is the word w̃ � an an−1 . . . a1a0 ∈ A∗. The notion is extended to languages by

letting, for any L ⊆ A∗, L̃ � {w̃ | w ∈ L}.

If L is recognised by a register automaton with non-deterministic reassignment,

so is L̃.

We do not use this result in the following, but it highlights the gain of
symmetry induced by non-deterministic reassignment.

Correspondencewith other formalisms Languages recognised by reg-
ister automata with non-deterministic reassignment also correspond to
those generated by regular grammars over infinite alphabets [122, Theo-
rem 8], and have an equivalent description by regular expressions [38,
Theorem 30]. Finally, note that these automata are equivalent to G-
automata over (D,�) that consists in an extension of finite-state automata
to nominal sets [25, Theorem 6.4]. For these reasons, we allow it in
our definition of asynchronous transducers in Part II, that has a more
theoretical aim.

However, in this part, we do not want to make it central to the study
and favour the model without non-deterministic reassignment, whose
behaviour is arguably more intuitive. Still, we make a few remarks along
the document to point out that our results still hold over (D,�) and
(Q, <) when non-deterministic reassignment is allowed, resorting to
properties of the model that are established in [38]. The original model is
defined over finite data words, but the properties easily extend to infinite
data words.
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[121]: Tzevelekos (2011), ‘Fresh-register au-
tomata’

We use the notation ~ of [121].

Note that we implicitly require that labels
match, as for (non-fresh)register automata.

4.10.2. Fresh-Register Automata

With the non-deterministic semantics, register automata cannot distin-
guish between a data value that is locally fresh, i.e. that is not present in
the current register valuation, and one that is globally fresh, i.e. that never
appeared previously in the input (cf Example 4.9). In [121], Tzevelekos
extend finite-memory automaton to fresh-register automata, that have
the ability to determine whether a data value is globally fresh.

The predicate ~ Formally, the notion of test is extended with a special
unary predicate ~ that holds whenever its argument is a globally fresh
data value. A fresh-register automaton is then a register automaton whose
transition relation is instead of type ∆ ⊂ f Q × Σ × Tests~

D
(R) × 2R × Q,

where Tests~
D
(R) consist in tests over Dwhere the special predicate ~ is

allowed.

Extending configurations with histories Since global freshness is not
a local property, one cannot define its semantics from a configuration
(q , ν) only. Thus, the notion of configuration is extended to contain an
history, which is meant to be the set of data values that already appeared
in the input. In other words, a configuration is now a triple (q , ν,H), where
(q , ν) consists in a state and a register valuation, as before, and H ⊆ D.
Correspondingly, satisfiability is defined for a test and a pair (ν,H),
where, for all atomic formulas ϕ that are not ~, we say that (ν,H) � ϕ
whenever ν � ϕ in the sense of Definition 4.7. Then, for a valuation
ν : X → D (for some finite set X of variables) and a variable x ∈ X
we say that (ν,H) � ~(x) whenever ν(x) < H. We write ν,H, d � φ for
(ν{?← d},H) � φ.

The successor relation over extended configurations The successor
relation for configurations is defined as follows: given two configurations

(p , ν,H) and (q , λ,H′), a transition p
σ,φ,asgn
−−−−−−→ q and a data value d ∈ D,

we say that (q , λ,H′) is a successor of (p , ν,H) on reading the labelled
data (σ, d) and following transition t when:

I d satisfies the test in the current configuration: ν, h , d � φ
I λ is updated according to asgn, i.e. λ � ν{asgn← d} (as for usual

register automata)
I The history is extended with d, i.e. H′ � H ∪ {d}

The notions of (partial, initial, final, accepting) run are defined in the
expected way. Once more, fresh-register automata can be endowed
with the non-deterministic and universal semantics; we leave out the
definitions.A fresh-register automatonA is deterministic if for all reachable
configurations (p , ν,H) and all labelled data values (σ, d) ∈ Σ ×D, there

exists at most one transition t such that (p , ν,H) d−→
t
(q , ν′,H′).

Example 4.11 Consider again the data language L∀, of data words that
contain pairwise distinct data values, defined as L∀, � {d0d1 · · · |
∀i , j, di , d j} in Example 4.1, and recognised by the universal register
automaton of Figure 4.1b onpage 81.Weknow that it is not recognisable by
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Recall that φE is defined in Notation 4.23
as

∧
r∈E ? � r ∧∧

r<E ? , r.

locFresh is defined in Notation 4.17 as∧
r∈R ? , r. Note that it is a particular

case of φE , by taking E � ∅. We keep
them separate as they play a different role.

This property contrasts with the non-
deterministic reassignment extension,
where some register automata do not be-
have like ω-automata when restricted to a
finite input alphabet see Property 4.56

any non-deterministic register automaton (Property 4.18). It is recognised
by the deterministic fresh-register automaton of Figure 4.11.

i

~(?) Figure 4.11.: A fresh-register automaton
with one register r that recognises the
language L∀, of data words with pairwise
distinct data values.
~(?) holds whenever? is globally fresh.

Remark 4.25 Note that the fresh predicate can easily be simulated by the
universal register automaton with one register of Figure 4.12, by adapting
that of Figure 4.1b on page 81. For this reason, we do not study the fresh
extension of universal register automata.

i p  

>

>, ↓ r

>

fresh, ? � r

>

Figure 4.12.: A universal register automa-
ton with one register r that simulates the
~ predicate.
Here, >means that no test is conducted,
and additionally that the label does not
matter. We wrote fresh for ~, to make it
clear that we do not use the predicate: this
is only a label.  is a sink rejecting state.

Let us explain how our definition indeed corresponds to the model
of [121, Definition 1]. Using the construction of Section 4.4.4 that consists
in writing tests in full disjunctive normal form, one can see that over
(D,�), with a unary alphabet of labels, it is possible to restrict the tests
to the following syntax:

I p
φE(?),asgn−−−−−−−−→ q (E is exactly the set of registers that contain?)

I p
locFresh(?),asgn
−−−−−−−−−−−→ q (the input data value is locally fresh)

I p
~(?),asgn
−−−−−−−→ q (the input data value is globally fresh)

This corresponds to the syntax of transitions of Fresh Register Automata
with multiple assignment as defined in [121, Definition 18], that are
equivalent to fresh-register automata (in their sense, i.e. with single
assignment) by using Lemma 19, 20 and 21.

Closure Properties The constructions of Proposition 4.2 can be adapted
to the case of fresh-register automata to show that they are closed under
union and intersection. The proof is spelled out in the case of (D,�) in
[121, Proposition 22], and can be generalised.

Closure under automorphisms again holds, since the successor relation
of configurations is closed under automorphisms (see [121, Proposition
6] for the case of (D,�)).

Restriction to a finite set of data values First, it is straightforward to
extend the construction of Proposition 4.1 to show that fresh-register
automata behave like ω-automata when restricted to a finite alphabet,
over any data domain. Again, there is a finite set of configurations; it
suffices to additionally keep in memory the history of letters that already
appeared in the input. Thus, we get
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The 2k factor comes from the fact that we
additionally need to remember the history,
which can be any subset of X.

Proposition 4.61 Let A be a fresh-register automaton over data domain D. For

any finite subset X ⊆ D, L(A) ∩ (Σ × X)ω is ω-regular.

More precisely, L(A) ∩ (Σ × X)ω is recognised by an ω-automaton AX with

n(s+1)k2k
states, where n is the number of states of A, k its number of registers,

and s � |X | is the size of X. Moreover, if A is deterministic, so is AX .

Projection over labels In the proof of Proposition 24, the authors
observe that a fresh-register automaton (in their sense) is empty if and
only if it is empty, when interpreted syntactically. As a consequence, we
get that their projection over labels of fresh-register automata with the
equality predicate is ω-regular.

Proposition 4.62 Let A be a fresh-register automaton over (D,�,C). lab(A)
is ω-regular.



Notions related to encoding are explored
in more detail in Section 11.1.1 in Part II.

Synthesis Problems
over Data Words 5.

The goal of this thesis is to generalise the study of reactive synthesis
problems to the case of infinite alphabets. In this chapter, we describe
how to extend existing notions in the finite alphabet case to this setting.
First, the notion of synchronous program has to be adapted to the case of
programs that manipulate data words, which implies to work modulo
an encoding, since the tape alphabet of a Turing machine is necessarily
finite. Second, we explain how to represent data word specifications with
register automata. This consists in transferring the notion of specification
automaton: a specification register automaton alternately reads an input
and an output labelled data value, and accepts if and only if the sequence
of outputs form an acceptable behaviour for the corresponding sequence
of inputs. Then, we consider register transducers as the analogue of
transducers in the data word case: they generalise transducers in the
same way as register automata extend finite-state automata. Finally, we
define the Church synthesis problem over data words as the problem
of synthesising a register transducer from a data word specification. We
can naturally associate a game with it, that straightforwardly extends the
Church game that models the finite alphabet case (cf Section 3.5.3).

Summary
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5.2. Data Automatic Specifications . . . . . . . . . . . . . . . . 131

5.3. Register Transducers . . . . . . . . . . . . . . . . . . . . 132

5.3.1. I/O Action Sequences . . . . . . . . . . . . . . . . . 134
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5.1. Reactive Synthesis over Data Words

Recall the reactive synthesis problem (Problem 3.2):

Problem 3.2: Reactive synthesis problem

Input: A specification S ⊆ Iω × Oω

Output: A synchronous program Q which uniformises S
(i.e. fQ ⊆ S) if it exists
No otherwise

We need to extend the notion of synchronous program to the case of a
program which operates over data values. Intuitively, this is the same
notion, and we simply assume that data can be encoded in O(1). Formally,
let D � (D,R,C) be a data domain. An encoding of D is an injective
function enc : D→ {0, 1}∗, along with, for all R ∈ R, a program VR such
that for all (t1 , . . . , tk) ∈ Dk (where k is the arity of R), VR outputs 1
on input enc(t1)# . . . #enc(tk) whenever R(t1 , . . . , tk) holds in D (and 0
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[103]: Björklund and Schwentick (2010),
‘On notions of regularity for data lan-
guages’

[123]: Bojanczyk et al. (2011), ‘Two-variable
logic on data words’

[124]: Benedikt, Ley, and Puppis (2010),
‘Automata vs. Logics on Data Words’
[125]: D’Antoni (2012), ‘In theMaze ofData
Languages’

In [108]: Bojańczyk and Stefanski (2020),
‘Single-Use Automata and Transducers
for Infinite Alphabets’, the authors es-
tablished that rigidly guarder MSO logic
is equivalent with single-use register au-
tomata, which form a strict subclass of
non-deterministic register automata. How-
ever, this class is not expressive enough for
our synthesis purpose. Conversely, peb-
ble automata lie between FO and MSO,
but they are too expressive since empti-
ness and universality are undecidable, as
shown in [101]: Neven, Schwentick, and
Vianu (2004), ‘Finite state machines for
strings over infinite alphabets’ (Theorem
5.4).
[26]: Bojańczyk (2019), Atom Book

[101]: Neven, Schwentick, and Vianu
(2004), ‘Finite state machines for strings
over infinite alphabets’

otherwise). Note that the existence of such an encoding implies that D is
countable. Then, a function f : D∗ → D is computable when there exists
a program P f : ({0, 1}∗#)∗ → {0, 1}∗ such that for all w � d0 . . . dn ∈ D∗,
P f (enc(d0)# . . . #enc(dn)) � enc( f (w)).

Finally, a synchronous program over data words is simply the ω-
behaviour of some program over data words.

Over data words, the reactive synthesis problem can be stated as follows:

Problem 5.1: Reactive synthesis problem over data words

Input: A specification S ⊆ (Σ ×D)ω × (Γ ×D)ω
Output: A synchronous program over data words P computing

a (causal) function fP : (Σ ×D)ω → (Γ ×D)ω
which realises S (i.e. fP ⊆ S) if it exists
no otherwise

The Church synthesis problem is a specialisation of the reactive synthesis
problem to the case of MSO specifications, where the target implemen-
tations are computable by finite-state machines. Both the specification
formalism and the notion of finite-state computability need to be gen-
eralised to the setting of infinite alphabets. As explained in [103], in
this setting, compromises have to be made if one wants to preserve
decidability.

Over data words, satisfiability of Monadic Second-Order logic is unde-
cidable, even with the equality predicate only. Actually, this is already
the case of First-Order logic, as soon as three variables are allowed [123,
Proposition 28]. More generally, there does not yet exist a logic which is
suitable for expressing specifications, either by lack of expressive power
(in particular, closure under negation is often missing) or because the
satisfiability problem is already undecidable, which implies that there is
no hope for synthesis. It is not yet clear whether the search for a suitable
logic will ever be bountiful [124, 125].

Unlike thefinite alphabet case, there is noknowncorrespondence between
logics and automata which can be used for synthesis purposes. As a first
step, we study the Church synthesis problem for specifications expressed
as register automata, that we call data automatic. They are the analogue of
automatic specifications, as defined over finite alphabets (cf Section 3.4.3).
Moreover, already over (D,�, #), most register automata models are
inequivalent [26, Section 1.4]. In this work, we focus on one-way models,
since two-way models have undecidable emptiness and universality
problems, already in the deterministic case [101, Theorem 5.3]. This
implies that synthesis is undecidable as well. We thus study the Church
synthesis problem for specifications expressed as non-deterministic,
universal and deterministic register automata.

5.2. Data Automatic Specifications

As in the finite alphabet case (see Section 3.4.3), relations over data
words can be encoded as languages, a pair (wi , wo) ∈ (Σ × D)ω × (Γ ×
D)ω being encoded as wi[0]wo[0]wi[1]wo[1] · · · ∈

(
(Σ × D)(Γ × D)

)ω.
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Where, for σ ∈ {i,o}, i � o and o � i.

If you come back to the coffee machine ex-
ample (Example 3.4), you could also think
of the set C as a set of commands; it then
allows tomodel the fact that if one ordered
an espresso, they will be disappointed if
they receive a long coffee instead.

Correspondingly, a register automaton which alternately reads labelled
data from (Σ ×D) and (Γ ×D) can be seen as recognising the relation

{(wi , wo) ∈ (Σ ×D)ω × (Γ ×D)ω | wi[0]wo[0]wi[1]wo[1] ∈ L(A)}

We can assume without loss of generality that such an automaton is
partitioned according to inputs and outputs.

Definition 5.1 Formally, a specification register automaton is a register
automaton A � (Q , I ,Σ, R,∆,Ω)where

I Q � Qi tQo

I I ⊆ Qi

I Σ � Σi ∪ Σo
I ∆ � ∆i t ∆o, with ∆σ ⊆ Qσ × Σσ × ActionsD(R) ×Qσ

I Ω ⊆ (QiQo)ω

Relation recognised by specification register automata are called data-

automatic relations, as they are an analogue of automatic relations over
data words.

Example 5.1 (Request-Grant) Consider, once again, the setting of a server,
granting requests from a set C of clients. We now want to distinguish
between the clients; e.g., when a client id ∈ C makes a requests, the
server has to specifically grant this request, by marking it with the client
identifier. Here, we do not assume a priori a bound on the number of
clients, so the specification can be expressed as Srg ⊆ Iω × Oω, where
I � {req, idle} × D and O � {grt, idle} × D, where D is some countably
infinite set (e.g., N).

Srg �

(i , o) ∈ Iω × Oω

�������� for all j ∈ N,

if lab(i[ j]) � req then
there exists k ≥ j,
lab(o[k] � grt) and
dt(o[k]) � dt(i[ j])


The ω-automaton of Figure 3.8 in Example 3.19 can be equipped with
one register to recognise the above specification. One can check that a

wi

wo

po

pi

si

∗ ∗

req, ↓ r

idle,> or
grt, ? , r

∗

grt, ? � r

Figure 5.1.: A universal co-Büchi regis-
ter automaton recognising Srg over data
words.
Recall that ↓ r stands for asgn � {r}, ? is
the data value and ∗ accepts any input (or
output). The initial state is wi, and po is
rejecting.

run is rejecting whenever at some point there is some request from client
id ∈ C but no corresponding grant with identifier id is met afterwards.

5.3. Register Transducers

Correspondingly, for target implementations, we equip synchronous
sequential transducers with registers. As for the automaton model, it
can use its registers to store data values and conduct tests with regard to
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Note that this transducer does not have a
distinguished set of accepting states: im-
plicitly, all its states are accepting.

As usual, T can be omitted when clear
from the context.

The enabled transition exists and is unique
since we syntactically ensured that the
transition relation is deterministic and
complete.

the predicates of the data domain. It is additionally equipped with the
ability to output the content of one of its registers, along with an output
label.

Definition 5.2 (Synchronous Sequential Register Transducer) A syn-

chronous sequential register transducer over data domain D is a tuple
T � (Q , q ι ,Σ, Γ, R, δ), where:

I Q is a finite set of states
I q ι ∈ Q is the initial state
I Σ (respectively Γ) is the input (respectively output) label alphabet
I R is a finite set of registers
I δ : Q × Σ × FTestsD(R) → 2R × Γ × R × Q is the (total) transition

function, where FTestsD(R) ⊂ f TestsD(R) is a finite subset of tests
that is:

• deterministic: for allφ , ψ ∈ FTestsD(R)φ∧ψ is not satisfiable
• complete:

∨
FTestsD(R) is valid.

A transition δ(p , a , φ) � (asgn, b , r, q) is written p
a ,φ |asgn,b ,r
−−−−−−−−→

T
q.

In this chapter, we simply write register transducer to denote synchronous
sequential register transducers as no ambiguity arises.

We now define the semantics of these transducers, that derives from that
of register automata. Let T � (Q , q ι ,Σ, Γ, R, δ) be a register transducer.
A configuration of T is a pair (p , ν) ∈ Q × ValD(R), and we again denote
Configs(T) � Q × ValD(R). Given a configuration (p , ν) and a labelled
data value (σ, d) ∈ Σ × D, the transition that is enabled by (σ, d) is the
unique p

σ,φ |asgn,γ,r
−−−−−−−−−→ q such that ν, d � φ. The successor configuration

of (p , ν) on reading (σ, d) is then (q , λ), where λ � ν{asgn← d}. When
transitioning from (p , ν) to (q , λ), the transducer produces the output

(γ, e) ∈ Γ × D, where e � λ(r). Overall, we write (p , ν)
σ,d |γ,e
−−−−−→

T t
(q , λ)

whenever T transitions from (p , ν) to (q , λ) by taking transition t on
reading (σ, d)while producing (γ, e).

Then, given an input data word u ∈ (Σ×D)ω , a run of T on input u is an
infinite sequence ρ � C0t0C1t1 · · · ∈ (Configs(T)δ)ω such that for all i ∈
N, Ci

σi ,di |γi ,ei−−−−−−−→
T ti

Ci+1, where (σi , di) � u[i] for some (γi , ei) ∈ Γ×D. We

say that ρ produces the output v � (γ0 , e0)(γ1 , e1) · · · ∈ (Γ×D)ω . Observe
that, by letting valuations(ρ) � ν0ν1 . . . the sequence of valuations of ρ,
we have, for all i ∈ N, v[i] � (γi , νi+1(ri)).

Note that for any C ∈ Configs(T), there exists a unique run of T on u
that starts in C. In particular, there exists a unique run of T over u that is
initial, i.e. which starts in (q ι , νιR). It produces some output v ∈ (Γ ×D)ω .
Then, T computes the total function fT : (Σ × D)ω → (Γ × D)ω defined,
for all u ∈ (Γ × D)ω, by letting f (u) � v, where v is the output of the
unique initial run of T on u.

Finally, a partial run is a finite prefix of a run; we say that a configuration
C is reachable if there exists a partial run that is initial and ends in C.

Remark 5.1 It is an important property that fT computes a total function.
Indeed, endowing register transducer with a non-trivial acceptance
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condition so that they can have a partial domain makes us cross the
decidability border (Theorem 8.4).

Remark 5.2 To ease the definition, we picked a syntactical restriction that
enforces an analogue of sequentiality (i.e., input-determinism) over data
words. Note tht the notion can be made a bit more flexible, by imposing
a semantical restriction on δ that is more liberal than the syntactical one:
instead of asking for a deterministic and complete set of tests, we require
that for any reachable configuration (p , ν) and any labelled data value

(σ, d) ∈ Σ ×D, there exists a unique transition p
σ,φ |asgn,γ,r
−−−−−−−−−→

T
q which is

enabled by d from (p , ν), i.e. such that ν, d � φ. In this definition, we again
have that any input data word admits an initial run and that it is unique,
which is sufficient to get that a transducer computes a function (i.e. the
image of each data word is unique) which is total (the image exists).
The fact that both definitions are equivalent result from the equivalence
between syntactical and semantical determinism for register automata
(Section 4.13). We use this fact in Chapter 6, to reduce the exploration
space of our algorithms.

Remark 5.3Note that in our model, the register transducer first assigns
the input data value to its registers, and then produces the corresponding
output data value. This choice is consistent with the term of reactive
system, and with the fact that in the finite alphabet case, the output
letter can depend on the last input letter. It also allows to model natural
functions, among which the identity function idD : u ∈ (Σ × D)ω 7→ u
(cf Figure 5.2), which is not possible if we adopt the convention that the
output is produced before the assignment.

> | ↓ r , ↑ r
Figure 5.2.:A synchronous sequential reg-
ister transducer that computes the identity
function. Its label alphabets are unary and
omitted.

Example 5.2 If you come back to the previous example (Example 5.1),
it can be implemented by the register transducer of Figure 5.3a on the
following page, which grants a request as soon as it receives it. Now,
assume that the specification cannot grant a request immediately, e.g. to
model the fact that the server has a buffer which receives the requests
and that only transmits them to its control unit on the next clock tick. To
prevent spamming, the specification also ignores a request if the same
client did one on the previous time unit. The register transducer of Figure
5.3b satisfies this specification.

5.3.1. I/O Action Sequences

As for register automata, the notion of I/O action sequence allows to
connect the syntax and semantics of the model (see Section 4.5.4). Given a
set of registers R, an input action is a test φ ∈ TestsD(R). Correspondingly,
an output action is a pair (asgn, r) ∈ 2R × R.

Remark 5.4 One has to be a bit careful here: input and output actions
respectively correspond to the left- and right-hand-side of the type of the
transition function δ (we introduce labels later on). As a consequence,
tests belong to the input, while assignments belong to the output actions,
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req,> | ↓ r , grt, ↑ r

idle,> | idle, ↑ r

(a) A register transducer comput-
ing the function grg which, to each
i ∈ Iω , associates the output o ∈
Oω such that for all j ∈ N, i[ j] �
(req, id) ⇔ o[ j] � (grt, id).

i 1

2

idle,> | idle, ↑ r1

req,> | idle, ↑ r1

idle,> ∨ req, ? � r1 | grt, ↑ r1

req, ? , r1 | ↓ r2 , grt, ↑ r1req, ? , r2 | ↓ r1 , grt, ↑ r2
idle,> ∨ req, ?

� r2 | grt, ↑ r2

(b) A synchronous sequential register transducer waiting for one time unit before granting a
request. It has two registers r1 and r2, in which it alternately store the pending request. In state i,
it has no pending request. When it receives one, it stores the corresponding identifier in r1 and
transitions to state 1. If it receives another, it grants the pending one and stores the new one in r2,
switching to state 2. The ∨ in the transitions is a short for when there are two transitions with
distinct tests but same output actions.

Figure 5.3.: Two synchronous sequential register transducers that realise the request-grant specification over data words. The one on the
right additionally complies with the requirement to wait for one time unit before granting a request.

We denote β instead of α the action se-
quences of register transducers to distin-
guish them from the analogous concept in
the case of register automata.

Note the shift of indices between valua-
tions and output registers in wo (cf Re-
mark 5.3).

even though what is assigned is the input data value. This is because
when we model synthesis problems of register transducers, assignments
are chosen by Eve (a.k.a. the Output player).

Definition 5.3 Let β � φ0(asgn0 , r0)φ1(asgn1 , r1) ∈ (Tests(R)(2R × R))ω
be an I/O action sequence. A pair (u , v) ∈ Dω × Dω is compatible with
β whenever there exists an infinite sequence of valuations (νi)i∈N ∈
(ValD(R))ω such that:

I ν0 � νιR
I for all i ∈ N, νi{?← u[i]} � φi and νi+1 � νi{asgni← u[i]}
I for all i ∈ N, v[i] � νi+1(ri).

In other words, (u , v) is compatible with β whenever u is compatible
with (φ0 , asgn0)(φ1 , asgn1) . . . in the sense of register automata and,
additionally, v � ν1(r0)ν2(r1)ν3(r2) . . . , where the νi are defined in the
compatibility relation for data words in the context of register automata
(cf Section 4.5.4).

Given an I/O action sequence β, we define the set of compatible pairs of
data words as

CompIO(β) �
{
(u , v) ∈ Dω ×Dω | (u , v) is compatible with β

}
It follows from the definitions that

Proposition 5.1 For all (u , v) ∈ Dω ×Dω
and all action sequences β, (u , v) ∈

CompIO(β) whenever there exists a register transducer (with no labels) which
admits a run ρ on input u which yields output v and such that actions(ρ) � β.
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Of course, we do not claim that this is the
only possible generalisation of the Church
synthesis problem to the setting of infinite
alphabets.

5.4. The Church Synthesis Problem over Data
Words

In our study, the Church synthesis problem over data domain D is now
stated as follows:

Problem 5.2: Church synthesis problem over data words

Input: A data-automatic specification S ⊆ (Σ ×D)ω × (Γ ×D)ω
given as a register automaton AS

Output: A register transducer T computing
a function fT : (Σ ×D)ω → (Γ ×D)ω
which realises S (i.e. fT ⊆ S) if it exists
No otherwise

In the finite alphabet case, the Church synthesis problem can be solved
by solving a two-player game that we introduced as the Church game, as
explained in Section 3.5.3. This game can be generalised to the case of data
words. Winning strategies of Eve again correspond to implementations
of the specification, and winning strategies for Adam witness that the
specification is not realisable. The game is now defined over an infinite
set of actions, so it cannot be solved directly, and, as we show, it is
undecidable for most specification formalisms (see Theorems 6.20, 7.1
and 7.19). However, many of our proofs rely on reductions to games,
and correctness of those reductions is proven by showing that winning
strategies in them induce strategies that are winning in the Church data
game.

Definition 5.4 (Church data game) Let S ⊆ (Σ × D)ω × (Σ × D)ω be a
data word specification. The Church data game GS over S is defined as
a two-player game with two vertices v∀ and v∃, in which Adam picks
inputs in (Σ × D), while Eve picks outputs in (Γ × D). Thus, edges of
Adam are v∀

(σ,d)
−−−→ v∃ for all (σ, d) ∈ Σ × D, and v∃

(σ,d)
−−−→ v∀ for Eve. A

play is thus an infinite sequence ρ � v∀i0v∃o0v∀i1v∃o1 . . . ; it is winning
if actions(ρ) � i0o0i1o1 · · · ∈ 〈S〉, i.e. (i0i1 . . . , o0o1 . . . ) ∈ S.

As for finite alphabets, it follows from the definitions that (cf Proposition
3.13):

Proposition 5.2 There exists a synchronous program which implements S if

and only if Eve has a winning strategy in GS that is computable.

However, the notion of finite-state computable programs and of finite-
memory strategy are obsolete in the data case, as the elements that
they manipulate take their values in an infinite set. We propose to
generalise these notion through register transducers: a program is register
computable whenever it can be computed by a register transducer.
Correspondingly, a register strategy is a strategy that can be computed
using a register machine. It is immediate to show that:

Proposition 5.3 There exists a register computable program which implements

S if and only if Eve has a register winning strategy in GS.
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Register-Bounded Synthesis
of Register Transducers 6.

Already over data domains with equality only, the Church synthesis
problem is undecidable for specifications expressed by non-deterministic
(Theorem 6.20) and universal register automata (Theorem 7.1), as uni-
versality (respectively emptiness) is undecidable for those models. The
latter result is detailed in the next Chapter 7 (Unbounded Synthesis of
Register Transducers). Intuitively, it results from the fact that the number
of registers of the implementation is not bounded a priori, which makes
the exploration space infinite. As explained in [36], one can recover
decidability by additionally taking as input a bound k, and only consider
implementations with at most k registers. Formally, the register-bounded
synthesis problem over data words is defined as:

Problem 6.1: Register-bounded synthesis problem over data words

Input: A data word specification S ⊆ (Σ ×D)ω × (Γ ×D)ω and
an integer bound k ≥ 1

Output: A register transducer T with k registers computing
a function fT : (Σ ×D)ω → (Γ ×D)ω
which realises S (i.e. fT ⊆ S) if it exists
No otherwise

For the complexity analysis, we assume that k is given in unary. Indeed,
describing a register automaton with k registers in general requires O(k)
bits, and not O(log k) bits.
Remark 6.1 (Register-bounded synthesis over finite alphabets) This prob-
lem is reminiscent to the bounded synthesis approach of [3] that consists
in setting a bound on the number of states of the implementation. While
it relies on the same idea of bounding the exploration space, here, not all
parameters are bounded as the state space is left unconstrained. This is the
reason why we chose the more precise terminology of ‘register-bounded
synthesis’, inspired by [35].

And, as it happens, the register-bounded synthesis problem over data
words generalises the Church synthesis problem that we defined over
finite alphabets (Problem 3.4). Indeed, recall that a register automa-
ton (respectively a register transducer) with no registers is simply an
ω-automaton (resp., an ω-transducer). Thus, when the specification
given as input has no registers and in the limit case where k � 0, the
register-bounded synthesis problem over data words reduces to finding
a transducer implementation with arbitrarily many states.

In this chapter, we develop a generic method to solve the slightly more
general template-guided synthesis problem, which takes as input a
template that constrains the actions of the target register transducer
implementation (in particular, it bounds its number of registers). The
method is generic in the sense that it is agnostic with regard to the
specification formalism. We then apply it to the resolution of the register-
bounded synthesis problem for specifications expressed as universal
register automata (Theorems 6.14 and 6.16). In contrast, we demonstrate
that the register-bounded synthesis problem is undecidable for specifi-
cations expressed as non-deterministic register automata, already for a
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bound k � 1 (Theorem 6.19), and exhibit a subclass of specifications that
allows to recover decidability (Theorem 6.25).

Remark 6.2 (Syntax-guided synthesis) The terminology of template-
guided synthesis is loosely related to syntax-guided synthesis [2]: the
idea is again to receive as input a template for the implementation, but
the objectives differ. In our setting, a template simply consists in an
ω-regular constraint on the action sequences of the target transducer, and
the focus is set on bounding the number of registers. In contrast, syntax-
guided synthesis targets programs in a given programming language
and is based on a context-free grammar that describes their syntax. The
exploration space is bounded, so as to allow a SAT-based exploration,
and recursion is forbidden to get decidability.

Related Publications A preliminary version of this work has been
published in the conference paper [37]. It is focused on the register-
bounded synthesis problem in the case of (D,�, #), and considers register
automata withmaximally consistent tests. An extended version appeared
as [41], that features a more flexible formalism for register automata
allowing implicit tests that are given as logical formulas, as well as
simplified proofs. This chapter generalises the study to the template-
guided synthesis problem and correspondingly introduces the notion
of template. This is done to allow a finer-grained synthesis algorithm,
that targets single-assignment register transducers. The applications
are extended to the case of (Q, <, 0), and the constructions also yield
decidability for universal register automata with guessing.

Summary

6.1. A Generic Approach to Template-Guided
Synthesis with Registers

In this section, we provide a generic approach (Section 6.1) to register-
bounded synthesis, and use it to explore the problem over different data
domains. This first allows us to reprove decidability of the problem for
specifications expressed as universal register automata over data domains
with equality only (Section 6.2.1 and Theorem 6.14, first proven in [36,
Corollary 3]). We then extend the result to (Q, <, 0) and we further allow
data guessing (Section 6.2.3). Unfortunately, register-bounded synthesis
is undecidable for specifications expressed by non-deterministic register
automata, already over data domains with equality only (Theorem
6.19). However, we present a restriction of non-deterministic register
automata, namely test-freeness, that allows to recover decidability in the
non-deterministic case (Section 6.3.2).

The notion of compatible relational data word connects the syntax and
semantics of register transducers. As we show, this connection yields
a generic method to tackle the register-bounded synthesis problem. In
the rest of this section, we fix the data domain D, input alphabet Σ and
output alphabet Γ.
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When we write δ ⊆ Q × T × Q,
we implicitly interpret δ as a relation.
Thus, we mean that for all (p , σ, φ) ∈
dom(δ), (p , σ, φ, asgn, γ, q) ∈ Q ×T ×Q,
where (asgn, γ, q) � δ(p , σ, φ).

Onemay say that some templates aremore
equal than others.

Recall that given a set of registers R, we defined labelled input actions as
elements of Ai

R � Σ × TestsD(R) and labelled output actions as elements
of Ao

R � 2R × Γ × R. In the following, we omit the term ‘labelled’ as it is
clear from the context. Given a sequence β ∈ ActSeqIO(R) that alternates
between input and output actions, the set of compatible relational data
words is given as

CompIO(β) �

(u , v) ∈ (Σ ×D)
ω × (Γ ×D)ω

��������
there exists a run ρ s.t.
actions(ρ) � β,
ρ is an initial run
over u yielding v


Remark 6.3Note that the notion of run depends on the machine we
consider. However, the existence of a run over a given data word actually
only depends on the sequence of actions, as in the case of register
automata when we introduced action sequences (Section 4.5.4). For
instance, for a finite data word 1 · 1 · 2 over (D,�), it does not matter

whether the run is p
?,r,↓r
−−−−→ q

?�r−−−→ r
?,r−−−→ s or p

?,r,↓r
−−−−→ p

?�r−−−→ p
?,r−−−→ p:

the compatiblity relation does not depend on the states.

6.1.1. Templates

Bounding the number of registers of the target implementation already
limits the exploration space, which is still infinite in general. We addi-
tionally restrict the space of tests, as there are infinitely many distinct
formulas over Rk t {?}, and doubly exponentially many that are not
equivalent. To that end, we introduce the notion of template.

Definition 6.1 Let Dbe a data domain and R be a finite set of registers.
A template for R is a finite set of pairs of input and output actions T ⊂ f
Ai

R ×Ao

R . We say that a sequential register transducer T � (Q ,Σ, Γ, q ι , δ)
complieswith T when δ ⊆ Q × T ×Q.

To a template T, we associate its input and output alphabets, respectively
defined as Ti � π1(T) and To � π2(T). Then, we say that a (register-
free) sequential transducer T � (Q ,Ti ,To , q ι , δ) complieswith T when
δ ⊆ Q × T ×Q.

Example 6.1 For any set of registers R and any finite set Φ ⊂ f TestsD(R),
(Σ×Φ)×Ao

R is a template. Any register transducerT with testsΦ complies
with the template (Σ ×Φ) × Ao

R.

Among the above, TMC
R � (Σ ×MCTestsD(R)) × Ao

R is a template. As we
see later, not all templates are equal, and the reader might feel that since
any test can be turned into maximally consistent ones (Proposition 4.5),
the latter will play a special role. But let us not put the cart before the
horse.

Remark 6.4 (Why templates?) The notion of template makes a link
between tests and assignments. This allows for finer-grained synthe-
sis algorithms. For instance, we know that single-assignment register
transducers are expressively equivalent to multiple-assignment ones
(Proposition 6.5), which allows to target those implementations without
loss of generality; such machines can be expressed as a template (see
Proposition 6.6). Knowing that the machine is single-assignment then
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In particular, a0b0a1b1 is an I/O action
sequence, i.e. a0b0a1b1 · · · ∈ ActSeqIO(R).

permits to prune tests that are not consistent with single-assignment
valuations (e.g. those that ask that r1 , # ∧ r1 � r2, see Proposition 4.7),
reducing the set of tests by an exponential factor.

Template-Guided Synthesis

A template serves as constraining the shape of the implementation. Cor-
respondingly, we define two synthesis problems, respectively targeting
register transducers and ω-transducers that comply with T:

Problem 6.2: T data guided synthesis problem

Input: A data word specification S ⊆ (Σ ×D)ω × (Γ ×D)ω
Output: A register transducer T that complies with T and

which realises S (i.e. JTK ⊆ S) if it exists
No otherwise

One can then define the analogous problem for words over a finite
alphabet:

Problem 6.3: T guided synthesis problem

Input: A specification W ⊆ Tω
i
× Tω

o

Output: A (register-free) transducer T that complies with T and
which realises W (i.e. JTK ⊆ W) if it exists
No otherwise

IfW isω-regular, the latter problem isdecidable: restricting to transducers
that comply with T can be done by including the requirement in the
specification, and we know that the transducer synthesis problem is
decidable for automatic specifications (Theorem 3.15). Thus, our aim
is to reduce the T-data guided synthesis problem to its finite alphabet
homologue.

Definition 6.2 Let R be a set of registers, and T be an a template over R.
We associate to it the set of action sequences over T

ActSeqIO(T) � {a0b0a1b1 · · · ∈ (TiTo)ω | ∀i ≥ 0, (ai , bi) ∈ T}

From Data Words to Words: the Associated Specification

Let S ⊆ (Σ ×D)ω × (Γ ×D)ω be a data word specification and R be a set
of registers. At this point, we make no assumptions on the formalism
used to express S. Given a template T over R, we define a finite alphabet
specification WT

S that accepts action sequences of T whose compatible
relational data words all belong to S. We call it the associated specification.
Formally,

WT
S �

{
β ∈ ActSeqIO(T)

�� CompIO(β) ⊆ S
}

Soundness

The above specification allows to reduce the reactive synthesis problem
of S to a synthesis problem over finite alphabets, provided we restrict
to well-behaved templates. First, one should consider templates that
indeed yield register automata. For instance, there is no hope that
the singleton template {(⊥,∅)} gives rise to a register transducer, as it
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induces a transition function that is not complete. One should also exclude
templateswhose tests are notmutually exclusive, e.g. {(>,∅), (? � r,∅)}
(for some arbitrary choice of r ∈ R), as the transition function that one
obtains is not deterministic.

Definition 6.3 Let T be a template. It is sound if any (register-free) ω-
transducer T � (Q ,A, B, q ι , δ) for A ⊂ f Ai

R and B ⊂ f Ao

R that complies
with T is such that (Q ,Σ, Γ, q ι , δ) is a register transducer with registers
R, i.e. δ is deterministic and complete when interpreted over data values.

Observation 6.1 Consider again the template TMC
R of Example 6.1. This

template is sound: let T � (Q ,Σ × MCTests(R),Ao

R , q
ι , δ) be a (regis-

ter-free) transducer that complies with TMC
R . Then, for any reachable

configuration (q , ν) and any data value d ∈ D, there exists a unique
maximally consistent test φ such that (ν, d) � φ, so δ is deterministic
and complete over data values.

Soundness indeed yields a sound reduction:

Lemma 6.2 Let S ⊆ (Σ × D)ω × (Γ × D)ω be a data word specification, and

let T be a sound template.

If the finite alphabet specification WT
S is realisable by a synchronous sequential

transducer (with no registers) that complies with T, then the data word spec-

ification S is realisable by a synchronous sequential register transducer that

complies with T.

Proof. Let S ⊆ (Σ×D)ω ×(Γ×D)ω be a data word specification, and letT
be a sound template, and assume that WT

S is realisable by a (register-free)
synchronous sequential transducer T � (Q ,A, B, q ι , δ) that complies
with T. Define the machine T′ � (Q , q ι ,Σ, Γ, R, δ). Since T is sound, T′

is a synchronous sequential register transducer.

Remark 6.5 The notion of template is a bit abstract, so let us instantiate
it to TMC

R to illustrate the reasoning. Then, T � (Q ,A, B, q ι , δ), where
A � Σ × MCTestsD(R) and B � 2R × Γ × R. Thus, we have δ : Q × (Σ ×
MCTestsD(R)) → 2R × Γ × R. This is exactly the type of the transition
function of a register transducer whose tests are maximally consistent.
And we indeed get a sequential machine, since those tests are mutually
exclusive and their disjunction is valid, which implies that for any
reachable configuration and any labelled data value (σ, d) ∈ Σ×D, there
exists a unique transition that is enabled by (σ, d).

We need to show that T′ realises S. Let u ∈ (Σ × D)ω, and let ρ′ be the
run of T′ over v; it yields some output v � fT′(u). Denote β � actions(ρ′).
By construction, β � actions(ρ) for some run ρ of the finite alphabet
transducer T, so CompIO(β) ⊆ S. Since, by definition of the semantics of
register transducers, (u , v) ∈ CompIO(β), we get that (u , v) ∈ S. Overall,
this means that fT′ ⊆ S; in other words, T′ realises S.

Completeness

In general, we target implementations that belong to a specific class of
register transducers, for instance those with a number k of registers. To
that end, we need to be able to express any register transducer of the class
with the template. Consider e.g. the template {(>,∅)}. It is sound, as
any ω-transducer that complies with it indeed corresponds to a register
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transducer. However, it can only represent those that conduct no tests
over their input nor assignments, so it only represents a (very restricted)
subclass of register transducers.

Definition 6.4 Let Ibe a class of register transducers with registers R.
We say that a template T over R is complete for I if any transducer in this
class admits an equivalent transducer that complies with T.

Remark 6.6 We could generalise the notion of template by allowing differ-
ent sets of registers in the same template, to get a notion of completeness
for classes of transducers over different sets of registers. However, since
a template is anyway finite, it fixes a bound k on the number of registers
of the transducers in the corresponding class. Then, any transducer in
the class can be simulated by a transducer with registers Rk , where Rk is
a set of registers of size k.

The template {(>,∅)} is tautologically complete for the (mildly inter-
esting) class of register transducers with actions (>,∅), but it is not
complete for the class of transducers with one (or more) registers. In
contrast, we know that maximally consistent tests allow to express any
test. In combination with Observation 6.1), we get:

Proposition 6.3 For any set of registers R, TMC
R is a sound and complete

template for register transducers with registers R.

Proof. The proof of Proposition 4.5 is directly adapted to the case of
transducers, as it only relies on writing tests in full disjunctive normal
form, so we know that any register transducer T � (Q , q ι ,Σ, Γ, R, δ) can
be turned into an equivalent T′′ � (Q , q ι ,Σ, Γ, R, δ′′)which has the same
states and such that δ′′ is a partial function δ′′ : Q ×Σ×MCTestsD(R) →
2R × Γ × R ×Q.

Using reassignments, we can further restrict to singleton assignments.

Notation 6.5 In the following, we denote SAsgnR � {{r} | r ∈ R} t {∅}.
Proposition 6.4 For any set of registers R, TMCSA

R � (Σ × MCTestsD(R)) ×
(SAsgnR × Γ × R) is a sound and complete template for register transducers

with registers R.

Proof. Soundness is established as above: sincemaximally consistent tests
are mutually exclusive, they induce a deterministic transition function.
Moreover, their disjunction is valid, so they yield a complete transition
function.

Completess is obtained as follows: take a register transducer T. Any tran-

sition p
σ,φ |asgn,γ,r
−−−−−−−−−→ q with asgn , ∅ is equivalent to p

σ,φ |{s},asgnBs ,γ,r
−−−−−−−−−−−−−−→ q,

where s ∈ asgn is chosen arbitrarily and asgn B s corresponds to the
reassignment function f : t ∈ asgn 7→ s and t < asgn 7→ t. Removing
reassignments is done as in Proposition 4.6. One just has to be careful
in the case where the output register r belongs to asgn, but this poses
no major difficulty. Then, one can turn this transducer into one with
maximally consistent tests as was done in Proposition 4.5, and make the
transition function total as above.

Further, the proof of Proposition 4.8 again works for transducers, since
the construction preserves determinism. Thus, we get:
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The notion of single-assignment is natu-
rally extended to transducers as follows:
a transducer is single-assignment if for all

transitions p
σ,φ |asgn,γ,r
−−−−−−−−−→ q, if φ ∧ (? � s)

is satisfiable for some s ∈ R then asgn � ∅,
and otherwise asgn is a singleton or the
empty set.

Recall that 〈a0a1 . . . , b0b1 . . .〉 is defined
as a0b0a1b1 . . . .

Proposition 6.5 Let T � (Q , q ι ,Σ, Γ, R, δ) be a register transducer. There

exists an equivalent single-assignment register transducer T′ � (Q × RR , q ι ×
{idR},Σ, Γ, R, δ′).

Proof. The proof of Proposition 4.8 directly extends to transducers. As
above, one just has to be careful in the case where the output register
belongs to asgn.

As a consequence, we can target implementations that consist in single-
assigment register transducers.

Proposition 6.6 For any set of registers R, the following set is a sound and

complete template for register transducers with registers R:

TSA
R �


(
(σ, φ), (asgn, γ, r)

)
∈ TMCSA

R

������ if there exists s ∈ R such that

φ ∧ (? � s) is satisfiable
then asgn � ∅


Conversely, if a template is complete for a class, we get the other direction:

Lemma 6.7 Let S ⊆ (Σ × D)ω × (Γ × D)ω be a data word specification, and

let T be a template that is complete for a class I.

If the data word specification S is realisable by a synchronous sequential register

transducer in I, then the finite alphabet specification WT
S is realisable by a

synchronous sequential transducer (with no registers).

Proof. Let S ⊆ (Σ×D)ω×(Γ×D)ω be a data word specification, letT be a
template that is complete for some classI, and assume that S is realisable
by a synchronous sequential register transducer T � (Q , q ι ,Σ, Γ, R, δ)
that belongs to I. Since T is complete for I, we know that there
exists an equivalent register transducer T′ � (Q′, q′ι ,Σ, Γ, R, δ′) that
complies with T. By definition, this implies that δ′ is total, so T′ can
be seen as a (register-free) synchronous sequential transducer T′′ �
(Q′,Ti ,To , q′ι , δ′). It computes some (total) function fT′′ : Tiω → Toω .
Remark 6.7 As in Remark 6.5, let us illustrate the argument with TMC

R ,
which is complete for the class of register transducers with registers R.
If S is realised by a register transducer T with registers R, then one can
turn it into an equivalent transducer with maximally consistent tests.
Since its transition function is total, it can be interpreted as a register-free
transducer.

Let us show that T′′ realises WT
S . Let βi ∈ Tωi , βo � fT′′(βi) and β �〈

βi , βo
〉
. Correspondingly, let ρ be the run of T′′ over βi yielding output

βo. We need to show that CompIO(β) ⊆ S. There are two cases:

I CompIO(β) � ∅. This is the case when β is not feasible. Then
CompIO(β) ⊆ S trivially holds.

I Otherwise, let (u , v) ∈ CompIO(β). By construction, actions(ρ)
is the sequence of actions of a run ρ′ of T′ which, on input u,
yields output fT′(u) � v. Since T realises S, we have fT ⊆ S, so
fT′ � fT ⊆ S, hence (u , v) ∈ S. This implies that CompIO(β) ⊆ S.

Overall, we get that T′′ realises WT
S .
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[41]: Exibard, Filiot, and Reynier (2021),
‘Synthesis of Data Word Transducers’

Recall that a finite alphabet specification
is automatic if it can be recognised by a
specification automaton.

Recall that any ω-automaton is equivalent
with a parity automaton. The proof of
Theorem 3.14 then relies on determinising
the observer, which is always doable (at
an exponential price), cf Fact 3.1.

From Data Words to Words: the Transfer Theorem

Combining Lemma 6.2 (soundness) with Lemma 6.7 (completeness)
yields:

Theorem 6.8 (Transfer, [41, Theorem 4.1]) Let T be a sound and complete

template for some class I, and let S ⊆ (Σ × D)ω × (Γ × D)ω be a data word

specification. The following are equivalent:

1. The data word specification S is realisable by a synchronous sequential

register transducer in I.

2. The finite alphabet specification WT
S is realisable by a synchronous

sequential transducer (with no registers).

Remark 6.8 This transfer theorem also transfers objects, as witnessed by
the proofs of the lemma: a register transducer implementation of S can
be converted to an ω-transducer implementation of WT

S , and conversely.

This transfer theorem has the following corollary.

Corollary 6.9 Let Sbe a class of data word specification, and let R be a set of

registers of size |R | � k.

If W
TSA

R
S is effectively automatic for all S ∈ S, then the synthesis problem of

implementations defined by register transducers with k registers is decidable for

S.

Proof. Let k ≥ 1, and let Rk be some arbitrary set of k registers (its
choice is irrelevant). By Proposition 6.6, we have that TSA is a sound
and complete template for register transducers with registers Rk . Let
S be a specification over data words. By Theorem 6.8, S is realisable
by a transducer with k registers if and only if WTSA

S is realisable by an
ω-transducer, so the k-register-bounded synthesis problem for S reduces
to the synthesis problem for WTSA

S . If the latter is effectively automatic,
i.e. if it can be represented by an ω-automaton AS,k that can be computed
from S, solving the synthesis problem for WTSA

S reduces to solving a
game with AS,k as an observer. This is decidable by Theorem 3.14.

Now, we establish decidability of the register-bounded synthesis problem
for different specification formalisms and for data domains (D,�) and
(Q, <). This is done by leveraging the above corollary, which amounts
to show that the associated specification is effectively automatic, i.e. to
construct an ω-automaton that recognises it.

Expressing the Associated Specification with Language Operations

In the following, we fix a template T over registers R. Our goal is
to express the associated specification WT

S using operations on data
languages, to further reduce the problem to establishing properties of
the specification model. More precisely, we show that Equation 6.2 on
page 146 holds, where L

T
is defined in Equation 6.1 on page 146. This

formula looks barbarian, and it indeed is. However, the point is not so
much to align funny-looking characters as to highlight the fact that WT

S
can be expressed from the specification formalism using the following
operations:
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[103]: Björklund and Schwentick (2010),
‘On notions of regularity for data lan-
guages’

I Complement
I Product of a data relation with an automatic relation, more pre-

cisely the relation 〉ActSeqIO(T)〈 � {a0a1 . . . , b0b1 · · · ∈ Tωi ×Tωo |
a0b0a1b1 · · · ∈ ActSeqIO(T)}

I Intersection
I Projection over labels

Moreover, L
T
is definable by a non-deterministic register automaton,

and even a deterministic one, although with more states (Lemma 6.11).
Together with Corollary 6.9, this yields decidability of the register-
bounded synthesis problem for specifications expressed as universal
register automata over (D,�,C) and (Q, <, 0) (respectively Theorems 6.14
and 6.16).

Among the above constructs, product and intersection will pose no
major difficulty, as register automata are closed under those operations:
Propositions 4.2 and 4.3 for intersection; the construction for the product
is easy. On the contrary, they are not closed under complement, and
it is actually the case of most models over infinite alphabets whose
emptiness is decidable (see [103]). That is why we get positive results
for universal register automata, but need to consider a subclass in the
case of non-deterministic register automata, while the latter enjoy better
properties (contrast Section 4.5 with Section 4.8).

Before writing the dreadful Equation 6.2, we show the following lemma,
which has amore semantical flavour. For simplicity, we define a variant of
thewordproduct that implicitly amalgamates labels inΣ andΓ (or, equiva-
lently, consider unlabelled input and output actions). For an I/O action se-
quence β � (σ0 , φ0)(asgn0 , γ0 , r0)(σ1 , φ1) · · · ∈ ActSeqIO(T) and for data
words u � (σ′0 , d0)(σ′1 , d1) · · · ∈ (Σ×D)ω , v � (γ′0 , e0)(γ′1 , e1) . . . (Γ×D)ω ,
β ⊗ (u , v) is only defined when for all i ∈ N, σi � σ′i and γi � γ′i . We
then let β ⊗ (u , v) ∈ (Ai

T
×D)ω × (Ao

T
×D)ω be

β ⊗ (u , v) �
(
((σ0 , φ0), d0)((σ1 , φ1), d1) . . . , ((γ0 , asgn0 , r0), e0)((γ1 , asgn1 , r1), e1) . . .

)
Lemma 6.10 Consider the set LS,T of relational data words w ∈ S labelled by

action sequences β ∈ ActSeqIO(T) such that w ∈ CompIO(β). Formally,

LS,T �

{
β ⊗ (u , v)

���� β ∈ ActSeqIO(T), (u , v) ∈ (Σ ×D)ω × (Γ ×D)ω
(u , v) ∈ CompIO(β) and (u , v) ∈ S

}
Then WT

S can be obtained from the complement of S by projecting on labels and

complementing back:

WT
S �

(
lab

(
LSc ,T

)) c

Proof. Let β ∈ ActSeqIO(T). Then,

β <WT
S

⇔ CompIO(β) * S

⇔ ∃(u , v) ∈ CompIO(β) ∩ Sc

⇔ ∃(u , v) ∈ (Σ ×D)ω × (Γ ×D)ω such that β ⊗ (u , v) ∈ LSc ,T

⇔ β ∈ lab(LSc ,T)
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Now, LS,T can be decomposed further. Define

L
T
�

β ⊗ (u , v)
������ β ∈ ActSeqIO(T),
(u , v) ∈ (Σ ×D)ω × (Γ ×D)ω
(u , v) ∈ CompIO(β)

 (6.1)

Observe that
LS,T � (ActSeqIO(T) ⊗ S) ∩ L

T

Together with Lemma 6.10, we get:

WT
S �

(
lab

(
(ActSeqIO(T) ⊗ Sc) ∩ L

T

) ) c (6.2)

We conclude the section by showing that L
T
is recognisable by a register

automaton.

Lemma 6.11 The data relation L
T
defined in Equation 6.1 is recognised by a

non-deterministic register automaton with states 2R t {i} and registers R.

Additionally, L
T

is recognised by a deterministic register automaton with

reassignments with states {i , o} and registers Rt � R t {rtmp}. Equivalently, a
deterministic register automaton with states {i , o} × (Rt)Rt

and registers Rt
.

They have a trivial acceptance condition, i.e. all states are accepting, and operate

over input alphabet Ti and output alphabet To.

Proof. We first define a non-deterministic register automaton recognising
L
T
. Its has states 2R t {i}, where i is its sole initial state. It is also its only

input state. From state i, it reads a labelled data value ((σ, (λ, φ)), d) ∈
Ti ×D. Then, it:

(i) Checks that labels coincide, i.e. σ � λ
(ii) Checks that d satisfies test φ in its current register configuration
(iii) Guesses an assignment asgn and performs it, i.e. assigns d to

registers in asgn
(iv) Transitions to the corresponding state asgn.

Now, in any output state asgn ∈ 2R, the automaton, on reading labelled
data value ((γ, (asgn′, ζ, r)), e) ∈ (Γ × Ao

k ) ×D,

(i) Checks that labels coincide, i.e. γ � ζ
(ii) Checks that its guess was correct, i.e. asgn′ � asgn
(iii) Verifies that the e is indeed the content of r, i.e. conducts test

φr B ? � r.
(iv) Transitions back to i. Note that it conducts no assignment.

Finally, we equip the automaton with a trivial acceptance condition. The
fact that it recognises L

T
follows from the definitions.

In the above construction, the only source of non-determinism is the
guessingofasgn. This is because assignments are output actions.However,
the automaton can store the data value d in some additional register rtmp,
and then reassign it to the proper registers once it reads asgn. Moreover,
there is no need for storing asgn in the states anymore. Doing so, we get a
deterministic automaton. Finally, one can get rid of reassignments, as was
shown in Section 4.4.5: the automaton keeps track of the reassignments
in its states, through an equality relation between its registers and those
of the simulated automaton which conducts reassignments. This comes
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[36]: Khalimov, Maderbacher, and Bloem
(2018), ‘Bounded Synthesis of Register
Transducers’

[36]: Khalimov, Maderbacher, and Bloem
(2018), ‘Bounded Synthesis of Register
Transducers’

The skeptical reader can observe that the
study again works if we take the more lib-
eral template TSA, which does not prune
unrealisable tests.

at the price of an exponential blowup, as the relations between registers
are recorded through a function from Rt to Rt (Proposition 4.6).

Remark 6.9Note that the state space of the non-deterministic register
automaton can be restricted to assignments that actually belong to T. For
instance, for the single-assignment ones (Propositions 6.4 and 6.6), one
can restrict to SAsgnR.

Remark 6.10 The above construction hints at a possible generalisation of
the notion of template by assimilating with its set of compatible action
sequences that would be given as an ω-regular language L ⊆ (Ai

Rk
Ao

Rk
)ω

of I/O action sequences (here, it is simply recognised by an ω-automaton
with two states and a trivial acceptance condition). We did not include it
so as not to obfuscate the argument.

In the following, we consider separately the non-deterministic and
universal semantics, as there is a sharp contrast between them. Indeed,
the register-bounded synthesis problem is undecidable for the former,
even when the data domain only allows equality (Theorem 6.19). On the
contrary, it is decidable over (D,�,C) [36, Corollary 3] (see also Section
6.2.1) and even (Q, <, 0) for the latter, as we show in Section 6.2.2. We
start with universal automata, as they offer more positive results. We
then show the above undecidability result, and introduce a subclass of
non-deterministic register automata whose register-bounded synthesis
problem is decidable.

6.2. Specifications Expressed as Universal
Register Automata

6.2.1. The Case of Equality

We start with the simplest data domain: an infinite set with equality
only. The above reasoning allows us to reprove the main result of [36],
namely that register-bounded synthesis is decidable, and more precisely
in 2-ExpTime, for specifications over data domain (D,�,C) expressed
by universal register automata (Theorem 6.14). The transfer theorem
allows to exploit known properties of register automata, yielding a more
compositional proof.

First, let us define the template we use. It essentially consists in the
single-assignment one (Proposition 6.6), where we prune tests that are
not satisfiable. Indeed, by Proposition 4.7, we know that we cannot have
? � r1 ∧? � r2 for r1 , r2, except when ? � #. This allows to reduce
the size of the template by an exponential factor (recall that there are
exponentially maximally consistent tests by Proposition 4.5). Note that
for simplicity, in our definition of a sequential transducer, we asked
that the transition function is syntactically deterministic and complete.
However, it is readily seen that we can instead ask this on a semantical
level, by only requiring that it is deterministic and complete for reachable
configurations (cf Remark 5.2).

Definition 6.6 (Single-assignment template for equality) Let R be a set
of registers. A single-assignment action is one of the following:
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Recall that locFreshR is defined as
locFreshR �

∧
r∈R ? , r (Notation 4.17).

I A test? � c for some c ∈ C, along with asgn � ∅
I nonCst(?) ∧ ? � r, where nonCst(?) � ∧

c∈C? , c, along with
asgn � ∅

I nonCst(?) ∧ locFreshR(?) along with asgn � ∅ or asgn � {r} for
some r ∈ R

Then, the single-assignment template for equality is defined as

TSA�
R �

{(
(σ, φ), (asgn, γ, r)

) ���� σ ∈ Σ, γ ∈ Γ, r ∈ R and
(φ, asgn) is a single-assignment action

}
Proposition 6.12 For any set of registers R, TSA�

R is a sound and complete

template for register transducers with registers R.

Proof. First, let T � (Q ,Ai

R ,A
o

R , q
ι , δ) be a (register-free) transducer. Let

(q , ν) be a reachable configuration. By Proposition 4.7, which is easily
adapted to register transducers, we know that for all r, r′ ∈ R such that
ν(r) � ν(r′), either r � r′ or ν(r) � ν(r′) � #. Thus, let d ∈ D. There are
three cases:

I d � c for some c ∈ C. Then ν, d � ? � c, and does not satisfy any
other test of δ

I d � ν(r) for some r ∈ R. If d � c for some c ∈ C, we are back to the
first case. Otherwise, ν, d � nonCst(?) ∧? � r and does not satisfy
any other tests, since we cannot have ν(r) � ν(r′) for r , r′

I d < ν(R). If d is equal to some constant, we are back to the first
case. Otherwise, ν, d � nonCst(?) ∧ locFreshR(?) at the exclusion
of any other test.

This means that δ is indeed deterministic and complete, so T induces a
sequential register transducer: TSA�

R is sound.

Now, let T be some sequential transducer with registers R. Using Propo-
sition 6.5, turn it into an equivalent single-assignment register transducer
T′′. We have seen above that the single-assignment tests are mutually
exclusive in the presence of single-assignment valuations, and that they
are complete. As a consequence, any test φ of T′′ can bewritten as

∨
i∈I ψi

for some finite set I of indices, where each ψi is a single-assignment test.
Thus, T′′ can be turned into a register transducer T′ that complies with
TSA�

R , so this template is complete.

Remark 6.11 Single-assignment register transducers can be exponentially
less succinct than their multiple-assignment homologues (see Remark
4.14). However, it is difficult to harness this fact in an automatic procedure,
as it corresponds to some kind of minimisation. In particular, the way
we build our finite alphabet specification in Lemma 6.13 imposes to store
the equality relations between registers in the states of the specification
automaton, which cancels the succinctness gain of allowing duplicate
values: the implementation is computed by solving a parity game played
on the specification automaton, which yields a positional strategy that has
asmany states as the specification automaton, and there are exponentially
many such states if equality relations are stored. On the contrary, the
single-assignment template restricts to equality relationswhere all classes
but that of # contain at most one register of the implementation. Thus, this
template reduces the exploration space, on top of reducing the alphabet
of input actions.
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πQ is the projection over theQ component.
Depending on the state space, the inverse
π−1

Q is taken on a different set, but we do
not need to be more precise as it suffices
to know that the acceptance condition is
easily computed fromΩ.

[95]: Schewe and Varghese (2014), ‘Deter-
minising Parity Automata’

In the following, we fix a bound k ≥ 1 and a set Rk � {r1 , . . . , rk}
of registers. We only use the above template in the whole section, so

we denote W k
S � W

TSA�
Rk

S the specification associated to S with regard
to TSA�

Rk
, and Lk � L

TSA
Rk

(see Lemma 6.11). We also let Ai

k be its input

alphabet, and Ao

k � SAsgnRk
be its output alphabet. Finally, we denote

Ak � ActSeqIO(TSA�
Rk
) the set of compatible action sequences.

Given a specification S expressed by a universal register automaton,
we need to show that the associated finite alphabet specification W k

S is
ω-regular:

Lemma 6.13 Let S ⊆ (Σ × D)ω × (Γ × D)ω be a specification expressed by

a universal register automaton AS over (D,�,C) and k ≥ 1. Then, W k
S is

ω-regular.

More precisely, if AS has n states and r registers equipped with a parity

condition Ω of index d, it is recognised by a deterministic parity automaton

with 2O
(
n·2(r+k)2

)
states and O

(
d · n · 2(r+k)2

)
colours.

Proof. Let AS � (Q , I ,Σ∪Γ, R,∆,Ω) be a universal specification register
automaton recognising a specification S ⊆ (Σ × D)ω × (Γ × D)ω. We
let n � |Q | be the number of states of AS, and r � |R | its number of
registers. For the complexity analysis, we treat the case where Ω is a
parity condition; other ω-regular conditions are treated similarly.

By Equation 6.2, we know that W k
S �

(
lab

(
(Ak ⊗ Sc) ∩ Lk

)) c
. We build

step by step an automaton for W k
S .

Complementation of URA By duality of the non-deterministic and
universal semantics, Sc is recognised by (AS)c , a non-deterministic
register automaton with same states and registers as AS, and with
acceptance conditionΩc , which is a parity condition of index d + 1.

Word product As a consequence, Ak ⊗ Sc is recognised by a non-
deterministic register automaton with n states and r registers:
simply add labels Ai

k (respectively Ao

k ) to input (respectively out-
put) transitions.

Intersection with Lk By Lemma 6.11, we know that Lk is recognised by
a non-deterministic register automaton with 2k + 1 states and k
registers (with trivial acceptance condition). Thus, (Ak ⊗ Sc)∩ Lk is
recognised by a non-deterministic register automaton with n · (2k +

1) states and r + k registers, with acceptance condition π−1
Q (Ωc)

(Proposition 4.2).
Projection over labels By Proposition 4.19 in Section 4.5, we have that

lab
(
(Ak ⊗ Sc) ∩ Lk

)
is ω-regular. It is more precisely recognised by

a non-deterministic ω-automaton with (n · (2k +1)) · (r+ k+1)r+k �

O

(
n · 2(r+k)2

)
states and acceptance condition π−1

Q (Ωc).
Complement of ω-automaton Finally, by duality, we get that W k

S is
recognised by a universal ω-automaton with acceptance condi-
tion π−1

Q (Ωc). This automaton can be converted into a determin-
istic parity automaton. If Ω is a parity condition of index d, this

yields a deterministic ω-automaton with 2O
(
n·2(r+k)2

)
states and

O

(
(d + 1) · n · 2(r+k)2

)
colours [95].
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[36]: Khalimov, Maderbacher, and Bloem
(2018), ‘Bounded Synthesis of Register
Transducers’
[35]: Khalimov and Kupferman (2019),
‘Register-Bounded Synthesis’

[41]: Exibard, Filiot, and Reynier (2021),
‘Synthesis of Data Word Transducers’

[89]: Calude et al. (2017), ‘Deciding parity
games in quasipolynomial time’

[88]: Zielonka (1998), ‘Infinite Games on
Finitely Coloured Graphs with Applica-
tions to Automata on Infinite Trees’, re-
called in Theorem 3.12

Weare now able to reprove the following result, known from [36] and [35]:

Theorem 6.14 ([36, Corollary 3], [35, Theorem 8], [41, Theorem 4.6]) The
register-bounded synthesis problem for specifications expressed as universal

register automata over (D,�,C) is in 2-ExpTime.

Proof. Let S be a specification expressed by a universal register automa-
ton over (D,�). By the previous Lemma 6.13, we construct a deterministic
parity automaton PS,k for W k

S . According to the transfer theorem (Theo-
rem 6.8), S is realisable by a transducer with k registers if and only if W k

S
is realisable by a transducer. The way to decide it is to see W k

S as a parity
game and check whether Eve has a winning strategy. Parity games can be
solved in time O(mlog d), where m is the number of vertices of the game
and d is the parity index [89]. Here, we use Zielonka’s algorithm [88]
which runs in time O(md) as it does not change the complexity class.
Overall, checking whether S is realisable by a transducer with k registers
takes time 2poly(d ,n)·2poly(r,k) .

Remark 6.12 In [35, Theorem 8], the authors provide a finer complexity
analysis,which establishes that their procedure is only simply exponential
in the bound k. A similar reasoning applies here, as we can take the
register automaton Lk to be deterministic, which implies that constraints
behave deterministically over registers that belong to the implementation.

6.2.2. The Case of a Dense Order

The construction of Lemma 6.13 again works in the case of (Q, <, 0), as
the different operations can again be conducted over this richer data
domain. For simplicity, we use the template TSA as such (which is sound
and complete by Proposition 6.6), even though some tests can be pruned
due to the single-assignment property (Proposition 4.7).

In the following, we fix a bound k ≥ 1 and a set Rk � {r1 , . . . , rk} of

registers. As above, we denote W k
S � W

TSA
Rk

S the specification associated to
S with regard to TSA

Rk
, and Lk � L

TSA
Rk

(see Lemma 6.11). We also let Ai

k be

its input alphabet, and Ao

k � SAsgnRk
be its output alphabet. Finally, we

denote Ak � ActSeqIO(TSA
Rk
) the set of compatible action sequences.

Lemma 6.15 Let S ⊆ (Σ ×D)ω × (Γ ×D)ω be a specification expressed by a

universal register automaton AS over (Q, <, 0) and let k ≥ 1. Then, W k
S is

ω-regular.

More precisely, if AS has n states and r registers, and ifΩ is a parity condition

of index d, it is recognised by a deterministic parity automaton with 2O
(
n·2(r+k)2

)
states and O

(
d · n · 2(r+k)2

)
colours.

Proof. By Equation 6.2, we know that W k
S �

(
lab

(
(Ak ⊗ Sc) ∩ Lk

)) c
.

The construction is the same as Lemma 6.15, we only need to redo the
complexity analysis. Complementation is done in the same way, word
product as well, and idem for the intersection operation, so we get a non-
deterministic register automaton with states Q′ of size |Q′ | � n · (2k + 1)
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This is a coarse upper bound, but it does
not affect the complexity class.

We implicitly use the fact hat n log n ≤ n2,
which yields a simpler expression. Note
that poly(r, k) means that there exists a
polynomial P(r, k) such that the bound
holds, but it does not necessarily denotes
a fixed polynomial.

Constraints are bigger over (Q, <, 0), but
this does not change the complexity class.

In a densely ordered set (D, <), an endpoint

is either a lower or an upper bound, i.e. an
element such that ∀e ∈ D, e ≤ d ⇒ e � d
(respectively e ≥ d ⇒ e � d).

[126]: Roitman (1990), Introduction to Mod-

ern Set Theory

[38]: Kaminski and Zeitlin (2010),
‘Finite-Memory Automata with Non-
Deterministic Reassignment’

and registers R′ of size |R′ | � r + k that recognises (Ak ⊗ Sc) ∩ Lk . What
changes is the projection over labels. By Proposition 4.35 in Section 4.6,
we know that lab

(
(Ak ⊗ Sc) ∩ Lk

)
is recognised by a non-deterministic

ω-automaton Alab with states P × ConstrQ(R′) and acceptance condition
π−1

1 (Q′). By Definition 4.6, we know that the size of [R′]Q is bounded
by 2(r+k+1)2 , so the ω-automaton that we have built so far has n · (2k +

1) · 2(r+k+1)2 � O(n · 2poly(r,k)) states and d + 1 priorities. It remains to
complement it; to that end, we need to determinise it. Overall, this yields
a parity automaton with 2O(n22poly(r,k)) states and O

(
(d + 1) · n · 2poly(r,k))

priorities.

The complexity analysis of Theorem 6.14 again applies to the case of
(Q, <, 0), so we get:

Theorem 6.16 The register-bounded synthesis problem for specifications ex-

pressed as universal register automata over (Q, <, 0) is in 2-ExpTime.

The study can be extended to any dense order without endpoints, since it
is isomorphic to (Q, <, 0) [126, Theorem 27] (the result is originally due
to Cantor).

6.2.3. Allowing Non-Deterministic Reassignment

In Section 4.10.1, we pointed out that the projection over labels of register
automata with guessing over (D,�,C) is effectively ω-regular, since
they also enjoy the renaming property [38, Proposition 14] (see also
Proposition 4.58). Moreover, the construction to recognise the projection
is actually the same as without guessing. As a consequence, we can adapt
the proof of Theorem 6.14 to allow non-deterministic reassignment:

Theorem 6.17 The register-bounded synthesis problem for specifications ex-

pressed as universal register automata with guessing over (D,�,C) is in
2-ExpTime.

In Part II, we demonstrate that this is also the case for (Q, <, 0) (Corollary
12.25, see also Proposition 4.59). Since the construction is again the same
as without guessing, we obtain:

Theorem 6.18 The register-bounded synthesis problem for specifications ex-

pressed as universal register automata with guessing over (Q, <, 0) is in

2-ExpTime.

Remark 6.13 In Section 4.10.2, we also note that the projection over labels
is again effectively ω-regular for fresh-register automata, so we could get
a similar result for universal fresh-register automata. This is however less
interesting, since the fresh predicate can be simulated with a universal
register automaton with one register (see Remark 4.25).
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[41]: Exibard, Filiot, and Reynier (2021),
‘Synthesis of Data Word Transducers’

[101]: Neven, Schwentick, and Vianu
(2004), ‘Finite state machines for strings
over infinite alphabets’

We explain at the end of the proof how to
lift the assumption that |Σ| ≥ 2.

We say specification fragment to highlight
the fact that the corresponding relation
does not have a total domain, and only
consists in a part of the sought specifica-
tion, which is later on obtained by taking
the union of the specification fragments.

Recall that register transducers necessarily
implement total functions, so a specifica-
tion whose domain is not total is never
realisable.

6.3. Specifications Expressed as
Non-Deterministic Register Automata

6.3.1. The Case of Equality

Unfortunately, bounding the number of registers of the target implemen-
tation does not allow to recover decidability for specifications expressed
as non-deterministic register automata, as the problem of whether a
non-deterministic register automaton accepts all finite data words is
undecidable. This is the case already over data domains with equality
only.

Theorem 6.19 ([41, Theorem 3.2]) The register-bounded synthesis problem

from specifications expressed as non-deterministic register automata over (D,�
, #) is undecidable, already if the bound k � 1.

This is the case even if we know that the specification given as input has total

domain.

Proof. We reduce the problem from the universality problem of non-
deterministic register automata over finite data words, with data domain
(D,�, #). This problem is undecidable [101, Theorem 18]. Let A be such
an automaton. If we do not assume that the domain of the specification is
total, then the result is directly obtained by asking whether S � idL(A) is
realisable by a transducerwith one register: if L(A) � (Σ×D)ω , then idL(A)
can trivially be implemented (even with a single register), otherwise
dom(S) ( (Σ × D)ω so S is not realisable, as transducers have total
domain by definition.

Now, let us show the stronger result, namely that the above problem is
undecidable even if we know that the specification given as input has
total domain (which is an undecidable property, cf Theorem 8.1). For
simplicity, we assume that A has a label alphabet Σ with at least two
letters. We define a specification SA which starts by reading a finite data
word w, then a separator $ (its associated data value is arbitrary and not
represented). Afterwards, it allows for two behaviours:

I Swapping the labels of the first and second labelled data that are
read, then accept any behaviour. Note that this does not depend on
w (cf specification fragment Sswap).

I Behaving like the identity function, but only whenever w ∈ L(A)
(cf specification fragment SL(A)).

Finally, we complete the domain of SA by allowing any behaviour on
input data words which do not contain a $ (cf specification fragment T).
Formally, SA � Sswap ∪ SL(A) ∪ T, where:

Sswap �


(

w$(σ1 , d1)(σ2 , d2)u ,
w$(σ2 , d1)(σ1 , d2)v

) ������ w ∈ (Σ ×D)∗
σ1 , σ2 ∈ Σ, d1 , d2 ∈ D
u , v ∈ (Σ ×D)ω


SL(A) �

{
(w$u , w$v)

���� w ∈ L(A)
u , v ∈ (Σ ×D)ω

}
T � {(w , w) | w < (Σ ×D)∗$(Σ ×D)ω}
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We now show that S is definable by a non-deterministic register au-
tomaton. As those automata are closed under union (Proposition 4.2), it
suffices to show that each fragment is NRA-definable. First, recognising
the interversion of the first two labels σ1 and σ2 is easily done using
non-determinism, and the behaviour on the data part is definable as well
(the identity, then allow any output), so Sswap is NRA-definable. Second,
simulating A then allowing any behaviour (SL(A)) is also NRA-definable.
Finally, T is an ω-regular property, so it is NRA-definable.

Now, if A accepts all inputs, i.e. L(A) � (Σ × D)ω, then the identity
function id(Σ×D)ω realises S, since in that case id(Σ×D)ω ⊆ SL(A) ∪ T ⊆ SA.
This function can be implemented with a register transducer with one
state and one register.

Conversely, if L(A) ( (Σ × D)ω, assume by contradiction that S is
realisable by a register transducer I. Let w ∈ (Σ × D)ω \ L(A). For any
(σ1 , d1)(σ2 , d2)u ∈ (Σ × D)ω, we must have JIK

(
w$(σ1 , d1)(σ2 , d2)u

)
�

w$(σ2 , d1)(σ1 , d2)v for some v ∈ (Σ × D)ω. This implies guessing the
second label while having only read the first one, which is not doable by
any sequential transducer as soon as σ1 , σ2.

Finally, we can actually lift the assumption that the labels alphabet
contains at least two letters. In the above, the crux of the proof relies on
the fact that Sswap is not realisable. We picked the classical swapping of
letters due to its simplicity, but this can be done using any specification
that is not realisable. One can for instance take the data specification of
Figure 6.1, and adapt the above proof.

i p q r

s

t

 \o/>, ↓ r1 > >, ↓ r2

?
�

r 1

?
�

r2

? � r1

?
,

r1

?
�

r 1

? ,
r1

>

Figure 6.1.: A (deterministic) specification register automaton whose specification is not realisable by any register transducer, nor any
synchronous program. Initially, the environment inputs two data values, that are respectively stored in r1 and r2 (the output of the system
in between, from p to q is irrelevant). Then, the system must guess whether the next input data value is equal to r1 or not, and output r1
(transition to s) or r2 (transition to t) accordingly. If she guessed wrong, the specification automaton transitions to state  , which is an
output state with no outgoing transitions, so it is rejecting. If the guess was right, the automaton transitions to the state \o/, which is a short
for a pair of sink input and output accepting states. No synchronous program can make this guess correctly without knowning the third
input data value, so this specification is not realisable by any synchronous program.

In the proof, we construct, given a non-deterministic register automaton
over finite data words, a specification which is realisable by a transducer
with one register if and only if A accepts all finite data words. However,
one can notice that it is realisable by a transducer with one register if and
only if it is realisable by any register transducer.

Theorem 6.20 ([41, Theorem 3.1]) The (unbounded) Church synthesis prob-
lem for specifications given as non-deterministic register automata over (D,�, #)
is undecidable, even if we restrict to specifications with total domain.
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Note that the above reasoning actually even works for any synchronous
program, as finite memory and the use of registers does not play a role
(what matters is that the implementation is required to knowwhat comes
next, which is not doable synchronously). As a consequence, we get

Theorem 6.21 The reactive synthesis problem for specifications given as non-

deterministic register automata over (D,�, #) is undecidable.

As any data domain contains at least equality, the three above theorems
can also be generalised to richer data domains.

Theorem 6.22 The (unbounded) Church synthesis problem for specifications

given as non-deterministic register automata over some data domain D is

undecidable, even if we restrict to specifications with total domain.

Remark 6.14Note that this ‘monotonicity’ is not automatic: sometimes,
enriching the implementation formalism (or both the specification and
implementation formalisms, aswhenwe consider richer data domains) al-
lows to recover decidability. This is the case for our study in Part II, where,
for asynchronous functional specifications, it is undecidable whether
they can be implemented by an asynchronous sequential transducer, but
one can decide whether it can be implemented by some asynchronous
program.

Whydoes themethod forURAnot allow to conclude? Let us examine
more precisely where the reasoning that we developed for universal
register automata fails for non-deterministic ones. Recall that by Lemma
6.10, we have that

W k
S �

(
lab(LSc ,k)

) c

where

LS,k �

{
α ⊗ w

���� α ∈ Aω
k , w ∈ (Σ ×D)

ω × (Γ ×D)ω
w ∈ CompIO(α) and w ∈ S

}
By mimicking the reasoning of Lemma 6.13, we get that LS,k is definable
by a universal register automaton (remember that there is a complement
operation in the process). However, this does not allow to conclude,
because the projection over labels of the language of a URA is not always
ω-regular (Property 4.49). Even more so, these automata can simulate
Turing machines, as shown in [101, Theorem 5.1] (see also Theorem
4.50).

An intuition on why the problem is harder (actually, undecidable: The-
orem 6.19) for non-deterministic specification register automata is that
there is one additional quantifier alternation: for universal specification
register automata, Eve has to ensure that for all action sequences provided
by Adam, all runs over all compatible data words are accepting. To the
contrary, for non-deterministic specification register automata, she only
has to guarantee that for all action sequences and all compatible data
words, there exists an accepting run.
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6.3.2. Test-free Non-deterministic Register Automata

To recover decidability in the non-deterministic case, we consider a
subclass of register automata that we call test-free nondeterministic
register automata. These automata do not perform tests on input data,
and we additionally ask that on output transitions, they only allow
data that are equal to the content of some register, as if they were
non-deterministic transducers.

This restriction is inspired from [45], which defines transformations of
data words using MSO interpretations with an MSO origin relation. The
MSO interpretation describes the transformation over labels (called the
string transduction), as in [127], while the MSO origin relation describes
the relation between input and output data. This relation does not depend
on (un)equalities between different input data: it uniquely maps each
output position to an input position, expressing that the output data
value at this position is equal to the corresponding input data value. They
show that this model is equivalent to two-way deterministic transducers
with data variables, themselves equivalent to one-way streaming string
transducers with data variables and parameters. These parameters are
reminiscent of the guessing mechanism described in [38] (see Section
4.10.1). The data variables are used to implement the MSO origin relation:
they are registers in which the transducer can store the input data values
and output them, but it is not allowed to perform any test on the stored
data, contrary to our model of register automata.

This is what we call the test-free restriction, that we apply to our one-way
model of register automata: they correspond to non-deterministic one-way

transducers with data variables. Thesemachines can only rearrange input
data (duplicate, erase, move) regardless of the actual data values, as there
are no tests. This way, as stated in Proposition 6.23, registers induce an
origin relation between input and output data.

To avoid confusion between the nature of specifications and implementa-
tions, we prefer to define them as restricted register automata, instead of
transducers.

Definition 6.7 (Test-free register automaton) A non-deterministic register
automaton is test-free if:

1. Its input transitions do not depend on tests over input data: for all

input transitions t � p
σ,φ,asgn
−−−−−−→ q ∈ ∆i, we have φ � >.

2. Its output transitions consist in outputting the content of some

register: for all output transitions t′ � q
γ,ψ,asgn′
−−−−−−−→ p ∈ ∆o, we have

ψ � r� for some r ∈ R. Up to remembering additional information
in the states, we moreover assume that asgn′ � ∅ (see Proposition
4.8).

Note that since there are no tests, the choice of the data domain is
irrelevant.

We now make the connection with the notion of origin precise: as
highlighted in [128, Section 5], one can encode origin graphs using data
words. Our encoding is slightly different, as the data values are not
ordered, and the order on positions is instead given by the positions
in the data word, but the idea is the same: if the input data are all
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Recall that TSA�
R is the single-assignment

template (Proposition 6.6), which is sound
and complete for transducers with regis-
ters R.

pairwise distinct, and if moreover all output data appear in the input,
the occurrence of a data value originates from its unique occurrence on
the input.

Let ρ � p0 σ0 ,>,asgn0−−−−−−−→ q0 γ0 ,?�r0 ,∅−−−−−−−→ p1 · · · ∈ (Q∆)ω be a run of some test-
free non-deterministic register automaton. Its associated origin function

is
oρ : j ∈ N 7→ max{i ≤ j | r j ∈ asgni}

with the convention that max∅ � −1 . Thus, oρ( j) is the last input
position at which the register that is output at position j was assigned,
where −1 means that it contains its initial value #. As a consequence, the
data value output at position j is equal to the data value at input position
oρ( j), with the convention that dt(w[−1]) � # for any data word w.

Now, for an origin function o : N → N and a pair of data words
(u , v) ∈ (Σ × D)ω × (Γ × D)ω, we say that (u , v) is compatible with o,
denoted (u , v) |� o, whenever for all j ∈ N, dt(v[ j]) � dt(u[o( j)]).

The following proposition expresses that the actual data values in a pair
of data word (u , v) do not matter with respect to being accepted by some
test-free register automaton, only the compatibility with origin functions
does. Recall that L∀, is defined in Example 4.1 as the data language of
words whose data values are pairwise distinct: L∀, � {d0d1 · · · ∈ Nω |
∀i , j, di , d j}.
Proposition 6.23 Let (u , v) ∈ (Σ × D)ω × (Γ × D)ω, and ρ a run of some

test-free register automaton. Then:

(i) If ρ is a run over (u , v), then (u , v) |� oρ
(ii) If ρ is a run over (u , v) and dt(u) ∈ L∀,, then for all o : N → N,

(u , v) |� o ⇔ o � oρ
(iii) If (u , v) and ρ have the same labels and if (u , v) |� oρ, then ρ is a run

over (u , v)

Proof. Items (i) and (iii) are easily shown by induction on the length of
a partial run, as they follow from the semantics of test-free NRA. The
⇐ direction of item (ii) is exactly item (i). Now, assume that (u , v) ∈
(Σ × D)ω × (Γ × D)ω is such that dt(u) ∈ L∀,. Let j ∈ N be such that
dt(v[ j]) � dt(u[o( j)]). By item (i), we know that dt(v[ j]) � dt(u[oρ( j)]),
so dt(u[o( j)]) � dt(u[oρ( j)]). Since dt(u) ∈ L∀,, this implies o( j) � oρ( j).
Overall, o � oρ.

It is not clear whether the specification WS,k associated with the TSA�
Rk

template is regular for test-free specifications, but we show that it suffices
to consider another set denoted W tf

S,k which is easier to analyse (and can
be proven ω-regular), which describes the behaviour of S over input with
pairwise distinct data values. Indeed, test-free automata cannot conduct
test on input data, so they behave the same on an input word whose data
values are pairwise distinct, and this choice ensures that two equal input
data values do not ease the task of the implementation (Proposition 6.23).
An interesting side-product of this approach is that it implies that we can
restrict to implementations computed by test-free register transducers,
i.e. transducers whose transitions do not depend on tests over input data
values.
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Technically, Alf
i
depends on k. We omit it

to lighten the notations.

Recall tat locFreshR is defined as
locFreshR B

∧
r∈R ? , r, see Notation

4.17.

[41]: Exibard, Filiot, and Reynier (2021),
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Since the specification is test-free, the
choice of the data domain does not matter,
so we omit it from the statement.

Definition 6.8 (Test-free register transducer) A sequential register trans-
ducer T � (Q , q ι ,Σ, Γ, R, δ) is test-free if its transition function is of type
δ : Q × Σ × {>} → 2R × Γ × R, i.e. its tests are restricted.

Proposition 6.24 Let S be a test-free specification, k ≥ 1 and Alf
i
� Σ ×

{locFreshRk }. The following are equivalent:

1. S is realisable by a register transducers with k registers

2. S is realisable by a test-free transducer with k registers

3. The following (finite alphabet) specification is realisable by a (register-free)

transducer with input alphabet Alf
i
:

W tf
S,k �

{
β ∈ (Alf

i
Ak
o
)ω

��
there exists (u , v) ∈ CompIO(β) ∩ S such that dt(u) ∈ L∀,

}
Proof. 2⇒ 1 is trivial.

Now, assume that S is realisable by some transducer with k registers. The
idea is to generalise its behaviour when it only reads locally (or globally)
fresh data values, to thewhole data domain,which is enough to satisfy the
specification thanks to Proposition 6.23. Thus, consider the specification
WS,k associated with S for the template TSA� (or any other complete
template that contains locFreshR). By Theorem 6.8 (or, more precisely,
Lemma 6.7), it is realisable by some (register-free) transducer T. Now,
since transducers are closed under alphabet restriction,W locFresh

S,k � WS,k∩
(Alf

i
Ak
o
)ω is realisable by T restricted to the input alphabet Alf

i
. Moreover,

W locFresh
S,k ⊆ W tf

S,k . Indeed, let β ∈ W locFresh
S,k . Then, CompIO(β) ⊆ S. As

all tests over input data values consist in locFresh, β is in particular
compatible with an input data word u ∈ (Σ × D)ω whose data values
are pairwise distinct, i.e. dt(u) ∈ L∀,, associated with some output
v ∈ (Γ×D)ω . Thus, (u , v) ∈ CompIO(β)∩L∀,, soCompIO(β)∩S∩L∀, , ∅.
This means that W tf

S,k is realisable by any sequential transducer realising
W locFresh

S,k .

3 ⇒ 2: finally, assume W tf
S,k is realisable by some transducer T. We

show that T, when ignoring the locFresh input tests, is actually an
implementation of S. Thus, let T′ be the same transducer as T except that

all input tests locFresh have been replacedwith>. Formally, p
σ,>|asgn,γ,r
−−−−−−−−−→

T′

q iff p
σ,locFresh |asgn,γ,r
−−−−−−−−−−−−−→

T
q. Note thatT′, interpreted as a register transducer,

is test-free. Let u ∈ (Σ ×D)ω, and βi � lab(u) ⊗ (locFresh)ω be the input
action in Alf

i
with same labels as u. Let βo � T′(βi), and β �

〈
βi , βo

〉
be their interleaving. Finally, let (u′, v′) ∈ CompIO(β) ∩ S ∩ L∀, (such
an (u′, v′) exists because, as above, CompIO(β) ∩ L∀, , ∅). Then, since
lab(w) � lab(w′), they admit the same run ρT′ in T′, so w , w′ |� oρT′ .
Now, w′ ∈ S, so it admits an accepting run ρS in S, which implies
w′ |� oρS . Moreover, w′ ∈ L∀, so, by Proposition 6.23 (ii), we get
oρI � oρS . Therefore, w |� oρS , so, by (iii), w admits ρS as a run, i.e.
w ∈ S. Overall, JT′K ⊆ S, meaning that T′ is a (test-free) implementation
of S.

We are now ready to show that the register-bounded synthesis problem
is decidable for test-free specifications.

Theorem 6.25 ([41, Theorem 4.11]) The register-bounded synthesis problem
for specifications given by test-free register automata is in 2-ExpTime.
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Proof. Let S be a test-free register automaton with n states and r registers
recognising some specification JSK. By Proposition 6.24, JSK is realisable
by a transducer with k registers if and only if the following (finite
alphabet) specification is ω-regular:

W tf
S,k �

{
β ∈ (Alf

i
Ak
o
)ω

���� there exists (u , v) ∈ CompIO(β) ∩ JSK
such that dt(u) ∈ L∀,

}
First, let Slf be the same automaton as S except that all input transitions

p
σ,>,asgn−−−−−−→ q are replaced with p

σ,locFreshRk ,asgn−−−−−−−−−−−−→ q. For all β ∈ (Alf
i
Ak
o
)ω,

there exists u ∈ CompIO(β) ∩ JSK such that dt(u) ∈ L∀, if and only if
there exists u ∈ CompIO(β) ∩ JSlfK: the⇒ direction is trivial, and the
⇐ stems from the fact that an input in L∀, ionly takes transitions with
φ � locFresh. As a consequence, we have

W tf
S,k � {β ∈ (Alf

i
Ak
o
)ω | CompIO(β) ∩ JSlfK , ∅}

Then, the following data language is definable by a non-deterministic
register automaton over data domain (D,�, #):

Ltf
S,k �

(u , v) ⊗ β
������ β ∈ (Alf

i
Ak
o
)ω

(u , v) ∈ (Σ ×D)ω × (Γ ×D)ω
(u , v) ∈ CompIO(β) ∩ Slf


Indeed, by Lemma 6.11,

Llf
k �

β ⊗ (u , v)
������ β ∈ (Alf

i
Ak
o
)ω

(u , v) ∈ (Σ ×D)ω × (Γ ×D)ω
(u , v) ∈ CompIO(β)


is definable by a NRA Alf

k of size exponential in k, so its product with Slf

recognises Ltf
S,k . Finally, W tf

S,k � lab(Ltf
S,k), which is ω-regular (Proposition

4.19). More precisely, it is recognised by a non-deterministic ω-automaton
that consists in extending the state space of Slf ⊗Alf

k with constraints, that
has n(2k + 1)Br+k states. By Theorem 3.15, solving the synthesis problem
for W tf

S,k is in ExpTime, which yields a 2-ExpTime complexity upper bound
for the synthesis problem for S, since W tf

S,k is of size exponential in k.
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Unbounded Synthesis
of Register Transducers 7.

In this chapter, we study the (unbounded) Church synthesis problem,
where we do not bound the number of registers of the implementation,
as well as the reactive synthesis problem, which targets any synchronous
implementation (i.e. it can manipulate data values with arbitrary compu-
tational power, with no constraints to use registers nor to have finitely
many control states). The choice of starting with the study of the register-
bounded case is motivated by the fact that most results are negative in
the general setting, that we call ‘unbounded’ to make the distinction
clear. Indeed, already over data domains with equality only, the Church
synthesis problem is undecidable, both for specifications expressed by
non-deterministic and universal register automata. We start by formally
establishing these two results (Theorems 6.20 and 7.1).

Then, we shift to the case of specifications given by deterministic reg-
ister automata. We introduce the automaton game, which consists in
interpreting the specification automaton as an arena. Contrary to the
finite alphabet case, this does not always yield a sound nor complete
abstraction; we investigate when this is the case through the notions of
game-soundness and game-completeness. For data domains (D,�,C)
and (Q, <, 0), this yields an ExpTime decision procedure for the reactive
synthesis problem (Theorems 7.15 and 7.16) from deterministic specifica-
tion automata; we additionally show that it coincides with the Church
synthesis problem over (D,�,C) (again Theorem 7.15) and for one-sided
specifications over (Q, <, 0) (Theorem Theorem 7.17). Informally, a spec-
ification is one-sided when the system picks her output data values
among those that are present in the registers. This correspond to the
single-sided restriction of [33], in the case where it is the protagonist who
is restricted to a Boolean set.

The case of (N, <, 0) is more intricate: for two-sided specifications, the
reactive synthesis problem is undecidable (Theorem 7.19), since alterna-
tion between the system and the environment allows to simulate Minsky
machines: one player suggests the value of an increment or a decrement,
and the other checks that she does not cheat. Decidability is recovered for
one-sided specifications. The automaton game is not ω-regular, so it does
not suffice to use the above results. However, through a careful analysis
of feasible action sequences in (N, <, 0), we show that one can consider
an ω-regular approximation of the automaton game; as a side-product,
we get that it suffices to consider register transducer implementations.

Related Publications Sections 7.1 and 7.2 describe work that was pub-
lished in the conference paper [37], later on extended to [41] that includes
full, simplified proofs, again reworked in this document. Section 7.3
gathers results from [37, 41] (subsections 7.3.1 and 7.3.2); Section 7.3.4
describes a contribution that appeared as [42], dedicated to the case of
(N, <, 0). Both works have been partially factored together with the intro-
duction of the notion of automaton game, which allows to give general
conditions under which one can finitely abstract the synthesis problem
for specifications given by deterministic register automata through the
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related notion of game-readiness. While [37] and [41] were focused on
the case of one-sided specifications over (D,�, #), we extend the study to
the case of two-sided specifications over (D,�,C) and to the data domain
(Q, <, 0) (Section 7.3.3), that almost comes for free thanks to the above
development.

Summary

7.1. Specifications Expressed by
Non-Deterministic Register Automata

Our study of the register-bounded synthesis problem for specifications
expressed by non-deterministic register automata led us to the conclusion
that this formalism is too expressive, independently of the implemen-
tation formalism as soon as it contains register transducers with one
register. In particular:

Theorem 6.22 The (unbounded) Church synthesis problem for specifications

given as non-deterministic register automata over some data domain D is

undecidable, even if we restrict to specifications with total domain.

Subsequently, if we want to get a decidable synthesis problem for non-
deterministic, we need to limit the expressiveness of the specification
formalism. A good candidate is that of test-free non-deterministic register
automata (Section 6.3.2). However, this problem is still open as of now:

Open Problem 7.1 The decidability status of the Church synthesis prob-
lem for specifications expressed by test-free non-deterministic register
automata is unknown.

7.2. Specifications Expressed by Universal
Register Automata

Now, we show that the Church synthesis problem is also undecidable
for specifications expressed by universal register automata over data
domains with equality only, answering a question left open in [36]. The
proof is more involved than for the non-deterministic case, since then
register-bounded synthesis was already undecidable.

Theorem 7.1 ([41, Theorem 3.3]) The Church synthesis problem for specifica-

tions expressed by universal register automata over (D,�) is undecidable, even
if we restrict to specifications with total domain.

Proof. We present a reduction from the emptiness problem of universal
register automata over finite words. This problem is undecidable by
a direct reduction from the universality problem of non-deterministic
register automata, which is undecidable [101, Theorem 18].

In the following, $ denotes a distinguished data value which does not
appear in the rest of the input (i.e. $ < D). It can be simulated either
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by a label, or by considering the data domain D$ with an additional
data value $ and a corresponding constant symbol. In the following, we
simply assume it is given, to reduce notational overhead.

A specification which is realisable only when the input contains
finitely many distinct data values First, consider the fragment of spec-
ification

S∞ �

(u$v , u$w)

������ u ∈ D∗ , v ∈ Dω , w ∈ Dω

each data value of u
appears infinitely often in w


S∞ is recognised by a universal register automaton with one register:
upon reading a data value d in u, it stores it in its register and checks
that it appears infinitely often in w using a Büchi condition.

Now, for k ≥ 1, define the specification fragment

S≤k �

{
(u$v , u$w)

���� u ∈ D∗ , v ∈ Dω , w ∈ Dω

u contains at most k distinct data

}
We also define the two specification fragments S>k (u contains more than
k distinct data) and T (the input does not contain $) to get a total domain;
both allow any behaviour on the output:

S>k �

{
(u$v , w)

���� u ∈ D∗ , v , w ∈ Dω

u contains more than k distinct data

}
T � {(u , w) | u < D∗$Dω , w ∈ Dω}

For all k ≥ 1, (S∞ ∩ S≤k) t S>k t T is realisable by a transducer with k
registers. On reading u, the transducer stores each distinct data value in
one register. If it encounters more than k distinct data, it simply copies
its input (in that case, any behaviour is allowed). Otherwise, once it reads
the $, it outputs the content of its registers in a round-robin fashion (r1,
then r2, etc until rk , then repeat from r1).

However, S∞ is not realisable: on reading the $ separator, any implemen-
tation must have all the data of u in its registers, but the number of data
of u is not bounded: u can have pairwise distinct data and be of arbitrary
length.

The candidate specification Now, let A be a universal register automa-
ton over finite data words. Consider the specification S � S∞ t T ∪ SL(A),
where

SL(A) � {(u$v , u$w$ω) | u ∈ D∗ , v ∈ Dω , w ∈ L(A)}

S has total domain, and is recognisable by a universal register automaton.
Indeed, these automata are closed under union, by the same product
construction as for the intersection of non-deterministic ones [21, Theorem
3] (see also Proposition 4.3). Moreover, each part is recognisable by a
URA. S∞ is, as described above. SL(A) consists in simulating A on the
output to check that w ∈ L(A) (which is doable as A is a universal register
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automaton) and accepting $ω on the output only if in a final state. Finally,
T simply checks an ω-regular property.

Correctness of the reduction Now, if L(A) , ∅, then let w ∈ L(A), and
let Dw � {d ∈ D | w[i] � d for some 0 ≤ i < |w |} be the set of data
that appear in w. We also let k � |Dw | be the number of distinct data.
S is realisable by a transducer with k + 1 registers. Its set of registers
is R t {rc}, where |R | � k. We let π : Dw → R be some bĳection (its
choice does not matter). Before reading the $, the transducer stores the
k first distinct data in its registers in R, and uses its additional register
rc to copy its input. We denote by ν : R t {rc} → D the valuation of its
registers at the moment it reads the $ if such symbol occurs in the input.
If it never met, the transducer simply keeps copying its input and hence
satisfies the specification. Now, assume there is a $ in the input.

I When the number of data in u is lower than or equal to k, the
transducer realises S∞, in the way that we explained before.

I When it is greater than k, it outputs u$ν(π(w))$ω. As data lan-
guages recognised by register automata are closed under automor-
phisms (Proposition 4.10), we know that ν(π(w)) ∈ L(A).

Conversely, if L(A) � ∅, then SL(A) � ∅ and S � S∞ t T is not realisable.
If it were, then in particular the implementation would comply with S∞
on inputs containing a $. However, we have seen above that this is not the
case. Thus, S is realisable iff L(A) � ∅, which concludes the proof.

7.3. Specifications Expressed as Deterministic
Register Automata

As the Church synthesis problem is undecidable for both semantics, even
for the most elementary data domain, we need to consider restrictions
of the problem. The case of specifications expressed by deterministic
register automata yields positive results. Note that there is a subtlety here,
as the term of deterministic might be misleading: obviously, we do not
assume that the specification is recognised by a sequential (also known
as ‘input-deterministic’) transducer, otherwise the problem is trivial.
Instead, we ask that the specification automaton is deterministic when it
reads both inputs and outputs. Still, many outputs can be associated with
a single input; for instance, the specification that accepts all data words
is easily recognisable by a deterministic specification automaton.

7.3.1. The Automaton Game

Recall that when it is deterministic, a specification ω-automaton S
naturally induces a game: its transition system is an arena, and the
winning condition is its acceptance condition. A winning strategy in this
game then corresponds to an implementation of S; the implementation
is moreover finite-memory when the strategy is (Proposition 3.13). We
extend this idea to specification register automata.

Formally, let S � (Q , q ι ,Σ, Γ, R, δ,Ω) be a deterministic specification au-
tomaton. Its states are partitioned into Q � Qi tQo, where q ι ∈ Qi, and
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Recall that for σ ∈ {i,o}, we set i � o and
o � i.

Recall that being realisable necessitates to
have total domain.

its transition function is δ � δi t δo, where δσ : Qσ × Σ × TestsD(R) →
2R×Qσ . Its associated game is G f

S � (A f
S ,W

f
S ), where the input belongs to

Adam and the output to Eve. Vertices of G f
S are states of S, moves of Adam

are (σ, φ, asgn) ∈ Σ×TestsD(R)×2R , and (γ, φ, asgn) ∈ Γ×TestsD(R)×2R

for Eve. Note that asgn is determined by (σ, φ) (respectively (γ, φ)), but
we include it in the moves to keep the correspondence with the au-
tomaton. The winning condition is however more complex, as the
semantics of register automata does not directly result from their
syntax. Consider a play ρ � p0(σ0 , φ0 , asgn0)q0(γ0 , ψ0 , asgn′0)p1 . . . .
It is winning if p0q0p0q1 . . . is accepting when the action sequence
(φ0 , asgn0)(ψ0 , asgn′0)(φ1 , asgn1)(ψ1 , asgn′1) is feasible. In other words,

W f
S �


p0(σ0 , φ0 , asgn0)
q0(γ0 , ψ0 , asgn′0)
p1 . . .

∈ Plays(A)

������ (φ0 , asgn0)(ψ0 , asgn′0)
(φ1 , asgn1) · · · ∈ Feasible

D
(R)

⇒ p0q0p0q1 · · · ∈ Ω


Contrary to the case of automatic specifications given by deterministic
ω-automata, this game is not in general a sound, complete and effective
abstraction of the Church synthesis problem, for multiple reasons:

I Some input transitions might be missing, which prevents Adam
from inputting some data values (recall that by definition, an
implementation has total domain).

I Eve can deliberately make the action sequence unfeasible. We thus
have to restrict her moves.

I The game may not be decidable. This is the case for instance for
the data domain (N,+1, 0), as one can encode runs of a Minsky
machine (see LM in Example 4.1). We show that this is also the case
for (N, <, 0) for two-sided specifications (Theorem 7.19).

I Winning strategies might not correspond to register transducers:
• They are not necessarily finite-memory. Indeed, the winning

condition is not always ω-regular. We show that it is the case
for (D,�) and (Q, <). This does not hold for (N, <, 0), but
we show that we can still reduce to an ω-regular game for
one-sided specifications.

• The set of moves of Adam is not necessarily deterministic,
as one simply asks that S is deterministic on the semantical
level. This can be enforced as syntactical and semantical
determinism coincide (Section 4.13). Similarly, the moves of
Adam are not necessarily complete, so the corresponding
transducer does not necessarily accept all inputs. This can
be enforced by assuming that S is syntactically complete on
input tests. Note that this latter modification might change
the winner of the game. For instance, if the specification is
empty, then Eve wins the game, while making it complete
reveals that the specification is not realisable.

• By definition, register transducers can only output data that
have already been seen in the input. As a consequence, output

transitions of the form p
σ,φ,asgn
−−−−−−→ q, where φ⇒ ∧

r∈R? , r

do not a priori correspond to transitions of a register trans-
ducer. We show that this property can be recovered in (N,�)
by allowing Eve to use one additional register; this is not the
case for (Q, <).
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For conciseness, we respectively de-
note Configsi(S) � Qi × Val(R) and
Configso(S) � Qo × Val(R).

I Winning strategies of Eve only correspond to implementations
with the same set of registers of the specification, which moreover
use them in the same way. This is not sufficient in general.

I Finally, Eve might be tired of playing infinite-duration games with
Adam.

The last limitation can be lifted since all the objects we manipulate enjoy
mathematical perfection, but the others will all be a difficulty at some
point.

From the Automaton Game to the Church Game: Game-Soundness

Let us first tackle the first two limitations. We group them under the
notion of game-readiness. A sufficient condition for Adam to be able to
input any data value is that the input transitions are complete, i.e. for
all reachable configurations and all data values, there exists a transition
that can be taken. Symmetrically, Eve cannot make the action sequence
unfeasible if the tests on output transitions are locally concretisable, i.e.
for all reachable configurations and all tests, there exists a data value
which satisfies the test with regard to the valuation.

Definition 7.1 Let S � (Q , q ι ,Σ, R, δ,Ω) be a deterministic specification
register automaton. S is game-sound if:

I It is complete on input transitions, i.e. for all reachable input
configurations C � (p , ν) ∈ Configsi(S), all labelled data values

(σ, d) ∈ Σ ×D, there exists a transition p
σ,φ,asgn
−−−−−−→ q that is enabled

from C on reading d, i.e. ν, d � φ.
I It is locally concretisable on output transitions, i.e. for all reachable

output configurations C′ � (q , ν′) ∈ Configso(S) and all transitions

t � q
γ,ψ,asgn′
−−−−−−−→ s, there exists a data value d′ ∈ D such that t is

enabled from C′ on reading d′, i.e. ν′, d′ � ψ.

As the name suggests, if a specification automaton S is game-sound, then
G f

S provides a sound abstraction for its reactive synthesis problem.

Proposition 7.2 Let S be a deterministic specification automaton that is game-

sound. If Eve has a winning strategy in G f
S , then she has a winning strategy in

the Church data game GS.

Proof idea. The main idea of the proof is that a strategy of Eve in the
automaton game G f

S consists in selecting output transitions of S as
the run unrolls. It thus induces a strategy in the Church data game,
as the plays that are consistent with it are runs of S. Those runs are
moreover accepting if their action sequence is feasible, by definition of
the acceptance condition W f

S . Completeness on the input transitions
ensures that Adam can provide any data value. Local concretisability on
the output transitions guarantees that Eve can pick in the Church game
a data value that corresponds to the transition.

Let us be a bit more precise. In the Church data game, Eve simulates
her strategy in the finite game as follows: she maintains in memory the
configuration C of S that is reached when reading the result of their
interaction so far. Such a configuration exists since S is game-sound, and
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By Remark 3.11, one can build a strategy
of Eve by induction by constructing a set
of histories that contains the history v ι ,
and is universally closed (respectively, ex-
istentially closed) for histories of Adam
(resp., Eve). We construct its memory sim-
ulateously; if one wants to be rigorous, the
reasoning consists in inductively building
a set of pairs (h , ρ), where ρ is a partial
run of S over h (where the vertices of h
are omitted, as they simply consist in v∀
and v∃) that is consistent with λ f (when
omitting valuations). The set of histories of
λ is then defined as the projection of this
set on its first component. The argument
is rather phrased on a more intuitive level,
so that the reader can conceive it as a play
of the Church game that unfolds before
their eyes.

Recall that Hist∀(GS) denotes the set of
histories of GS that belong to Adam.

is unique since S is deterministic. When she receives a labelled data
value (σ, d) from Adam, she computes the input transition of S that is
taken when reading (σ, d) from C (again, it exists and is unique since
S is game-sound and deterministic), updates the current configuration,
and feeds the transition to her strategy in G f

S (appended to the history
of the input transitions that have been played so far). The latter strategy

responds with some output transition q
γ,ψ,asgn′
−−−−−−−→ p; correspondingly,

in the Church game, Eve outputs γ, along with some data value that
satisfies ψ (it exists because S is game-sound), and again updates her
memory state with the resulting configuration.

Proof. We now formally establish the result. Assume that Eve has a
winning strategy λ f in G f

S . We inductively build a strategy λ in the
Church data game which maintains in memory a history h f of G f

S that is
consistent with λ f . Such a history consists in the states and transitions of
the partial run ρ of S over the history of the play in GS (recall that in the
latter game, moves consist in data values). We also maintain the fact that
if the h are increasing for the prefix order, then so are their associated h f .
Initially, λ stores the initial vertex q ι of G f

S , which is indeed the state of
the partial run on the history of the play, that is empty as no data values
have been played at this point.

Now, assume that Adam and Eve are at play, and their interaction
yielded an history h∀ ∈ Hist∀(GS); it is Adam’s turn to play. Write
|h∀ | � 2i + 1 (i ≥ 0). By induction, we know that Eve has in memory
an history h f � p0t0q0t′0 . . . qi−1ti−1pi (of length 2i + 1) of G f

S that is
consistent with λ f , and such that p0q0 . . . pi−1qi−1pi � states(ρ) and
t0t′0 . . . ti−1 � trans(ρ) (if i � 0, ρ simply consists in p0 and contains no
transitions), where ρ is the partial run of S on h∀. In the following, we
also let valuations(ρ) � ν0ν′0 . . . νi .

Translate Adam’s move in G f
S Adam plays (σi , di). Since S is game-

sound, it is complete on its input transitions. It is also deterministic, so

there exists a unique transition ti � pi
σi ,φi ,asgni−−−−−−−−→ qi such that νi , di � φi .

Then, S takes transition (pi , νi)
di−→
S ti

(qi , ν′i), where ν′i � νi{asgni← di}.

In G f
S , (σi , φi , asgni) is an action of Adam, so h∃ � h∀(σi , φi , asgni)qi is

an history that is consistent with λ f .

Get Eve’s answer, and translate it back to GS Let (γi , ψ, asgn′) �
λ f (h∃). By definition of G f

S , it corresponds to an output transition

t′i � qi
γi ,ψ,asgn′−−−−−−−→ pi+1. Since S is game-sound, such a transition is locally

concretisable, so there exists d′i ∈ D such that ν′i , d
′
i � ψ. Thus, Eve

answers (γi , d′i) in the Church data game. In other words, we define
λ(h∀(σi , di)) � (γi , d′i). She also updates her memory by extending h f to
h f ti qi t′i pi+1, which is by construction an history that is consistent with
λ f (when projecting away valuations); it moreover contains h f as a prefix.
Finally, we again have that it consists in the states and valuations of the
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[129]: Stevens (1998), ‘Abstract interpreta-
tions of games’

[97]:Henzinger andPiterman (2006), ‘Solv-
ing Games Without Determinization’

Good-for-Games Automata were inde-
pendently discovered in [98]: Colcom-
bet (2009), ‘The Theory of Stabilisation
Monoids and Regular Cost Functions’ un-
der the name of history-deterministic au-
tomata. See also Remark 3.14.

[33]: Figueira, Majumdar, and Praveen
(2020), ‘Playing with Repetitions in Data
Words Using Energy Games’

partial run of S over h∀(σi , di)(γi , d′i) (where we omit the vertices). Thus,
the inductive invariant again holds.

The constructed strategy iswinning Wehave constructed by induction
a strategy for Eve in the Church data game.We need to show that it is win-
ning. Consider a play π � v∀(σ0 , d0)v∃(γ0 , d′0)v∀(σ1 , d1)v∃(γ1 , d′1) . . .
that is consistent with λ. The histories of λ f that are associatedwith those
of π are increasing for the prefix order, so we can take their limit, which
is a play p0t0q0t′0p1t1 . . . . By construction, it is the sequence of states
and transitions of the run ρ of S over (σ0 , d0)(γ0 , d′0)(σ1 , d1)(γ1 , d′1) . . . .
In particular, it implies that its action sequence is feasible. By defini-
tion of W f

S , this implies that ρ is accepting, since λ f is winning. Thus,
((σ0 , d0)(σ1 , d1) . . . , (γ0 , d′0)(γ1 , d′1) . . . ) ∈ JSK, which means that π is
winning in GS.

Remark 7.1 The form of the winning strategy that we construct is quite
specific, as it consists in a strategy that picks transitions of S, with the
help of a (possibly infinite) memory.

Remark 7.2 This result, as well as its converse for game-complete specifi-
cations (Proposition 7.6) could be proven by showing that G f

abstracts

G in the sense of [129]. However, it would require the introduction of
a considerable theoretical arsenal for a modest gain, as the proofs are
already reasonably simple.

Since a winning strategy in the Church data game is equivalent to an
implementation (Proposition 5.2), we get:

Corollary 7.3 Let S be a deterministic specification automaton that is game-

sound. If Eve has a computable winning strategy in G f
S , then S has an imple-

mentation.

Remark7.3 Thegame-sound condition is also sufficient for the automaton
game to be a sound abstraction for non-deterministic specification register
automata, where Eve is in charge of solving non-determinism. This calls
for a study of the extension of the concept of good-for games automata [97]
to register automata.

Targeting Register Transducer Implementations: One-sided
specifications

Let us now focus on output transitions that ask for a locally fresh data
value. In the case of (N,�), allowing these transitions does not impede
decidability, but complicates the matters a bit (cf the difference between
Theorems 7.12 and 7.15). In (Q, <), it induces a difference between the
Church and the reactive synthesis problem (Theorem 7.16 and Property
7.18). We thus introduce a subclass of specification register automata,
that we say are one-sided, that is analogous to the single-sided restriction
of [33] and separately study the synthesis problems for this class.

Definition 7.2 (One-sided, transducer-like) A deterministic specification
register automaton S is one-sided if its output transitions consist in reading

the content of some register, i.e. if they all are of the form q
γ,?�r,asgn
−−−−−−−−→

S
s,

where q ∈ Qo, s ∈ Qi, γ ∈ Γ, r ∈ R and asgn ∈ 2R.
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Since S is one-sided, we have that ψ B
? � r for some r ∈ R.
We still explicitly ask for game-soundness
in statements, to allow for a modular or
diagonal reading of the document.

Game-soundess can be ensured without
loss of generality through a linear trans-
formation (Assumption 7.3).

The factor RR is due to the fact that trans-
ducers do not conduct assignments over
the output, so they have to be removed
by adding information to the states, as in
Proposition 4.6.

Observe that in this case, output transitions are necessarily locally con-
cretisable, so S is game-sound if it is complete on input states, i.e. for all
reachable configurations C � (p , ν) ∈ Configs(A) such that p ∈ Qi, and
for all (σ, d) ∈ Σ ×D, there exists a transition t that is enabled from C on
reading (σ, d).

A one-sided automaton S can be turned into an equivalent game-sound
automaton S′ by adding two sink states and a linear number of transitions.
More precisely, to S, add an input and an output sink state si and so,

with transitions that loop between them: si
σ,>,∅−−−−→ so and so

γ,>,∅
−−−−→ si for

all σ ∈ Σ, γ ∈ Γ. For every input state p, add a transition p
σ,φp ,σ ,∅
−−−−−−→ so,

where φp ,σ accepts any data value that is not accepted by other tests from

p with label σ, i.e. φp ,σ � ¬∨{φ | p σ,φasgn
−−−−−→

S
q for some q,asgn}.

Finally, if it is game-sound and additionally does not conduct assignments
on its output transitions, we say that it is transducer-like. Formally, we ask

that for all q
γ,ψ,asgn
−−−−−−→

S
p ∈ ∆o, we have asgn � ∅.

Assumption 7.3 Since transforming a one-sided specification into a game-
sound one is linear, we assume without loss of generality that one-sided
specification automata are game-sound.

Over (game-sound) one-sided automata, finite-memory strategies in
the automaton game can be turned into register transducer strategies
in the Church data game, as they correspond to strategies that pick
transitions in the register automaton specification (see Remark 7.1), and
the output transitions of a one-sided automaton closely resemble the
output of a transducer transition. Thus, the automaton game also yields
a sound abstraction for the Church synthesis problem. If the specification
automaton is transducer-like, such a conversion is moreover direct.
Formally, Proposition 7.2 can be refined into:

Proposition 7.4 Let S be a deterministic one-sided specification automaton

with states Q and registers R that is game-sound. If Eve has a finite-memory

winning strategy in G f
S with memory M, then she has a register-transducer

winning strategy in the Church data game GS with memory Q ×M × RR
and

registers R.

If S is transducer-like, its memory can be reduced to Q ×M.

Proof idea. If a register automaton specification is one-sided, then its

output transitions are of the form q
γ,?�r,asgn′
−−−−−−−−→ p. This essentially consist

in outputting the content of some register, possibly reassigning it to some
other registers. Thus, the strategy of Eve that is constructed in the proof
of Proposition 7.2 corresponds to a register transducer that simulates S
using registers R and picks transition with its memory Q ×M, possibly
conducting reassignments. The only operations are to conduct tests over
the input (those tests moreover induce a deterministic and complete
transition function), output the content of some register and update some
valuation. Removing assignments on the output can always be done, since
the output is by construction equal to the content of some register, as the
specification is one-sided. This is done by storing additional information
in the states (see Proposition 4.6), hence the factor RR , which disappears
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This example might look pathological to
the reader, and it indeed is. However, one
can constructmoremeaningful ones based
on the phenomenon that is illustrated here.
Observe that without labels, the automa-
ton game for one-sided specifications with
a single register is never very interesting,
since Eve only has one strategy in it. Here,
we precisely use this fact to simplify our
reasonings, as the focus is set elsewhere,
on the information that Adam provides or
not.

if we assume that S is transducer-like, i.e. already does not conduct such
assignments.

Proof. Let us be more precise. Let S be a one-sided specification automa-
ton with states Q and registers R. Come back to the construction of
λ from λ f in Proposition 7.2. Assume that λ f is finite-memory, with
memory space M. Let us show that λ can be computed by a register
transducer with states Q ×M and registers R, that is allowed to conduct
assignments on its output. First, note that to simulate λ f , Eve does
not actually need to keep in memory the full history h f , but only the
corresponding memory state m ∈ M of λ f . Then, each pair of successive
Adam and Eve moves (σi , φi , asgni) and γi , ? � ri ,∅, that correspond

to transitions of S pi
σi ,φi ,asgni−−−−−−−−→ qi

γi ,?�ri ,asgn′i−−−−−−−−−→ pi+1, are computed by

a register transducer transition (pi ,m)
σi ,φi |asgni ,γi ,ri ,asgn′iBri
−−−−−−−−−−−−−−−−−−→ (pi+1 ,m′),

where m and m′ denote the memory states of λ f before and after the
successive moves. The notation asgn′ B ri means that registers of asgn′

are assigned the content of ri . It is routine (although symbol-heavy)
to show that such a machine indeed computes λ. By Proposition 4.6,
one can then remove asgn′ B ri the assignments on the output, up to
blowing up the state space by a factor RR . If S is transducer-like, no such
assignments are conducted, so this last transformation is not necessary
and the RR factor is absent.

Since a register transducer winning strategy in the Church data game is
equivalent to a register transducer implementation (Proposition 5.2), we
get:

Corollary 7.5 Let S be a deterministic one-sided specification automaton that is

game-sound. If Eve has a finite-memory strategy in G f
S with memory M, then S

has a register transducer implementation with states Q ×M × RR
and registers

R, where Q is the set of states of S, and R its set of registers. Its state space is

moreover reduced to Q ×M if S is transducer-like.

From the Church Game to the Automaton Game:
Game-Completeness

Over some data domains, one can translate a strategy of Eve in the
Church data game back to the automaton game, in which case such a
game provides a complete abstraction for the reactive synthesis problem.
A sufficient condition is that of game-completeness, which asks that
the input tests are locally concretisable. In this case, Eve can concretise
the actions (σ, φ, asgn) provided by Adam by a data value in a history-
deterministic way. In other words, her choices should not compromise
the feasibility of the whole sequence.

Example 7.1 Let us give an example to highlight what breaks when
the input transitions are not locally concretisable. Consider the register
automaton over (D,�) of Figure 7.1 (the label alphabet is unary, so labels
are omitted). The environment initially provides a data value, and the
subsequent input transitions depend on whether it is equal to #. If Eve
does not have this information, her choice for the first> test compromises
either the r � # test, or the r , # one (independently of her strategy in the
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Note that here, we do not ask that S is
game-sound, as we are concerned with
the other direction of the transformation.
We later on combine the two notions into
that of game-readiness to get a sound and
complete abstraction.

Church data game). For instance, assume she concretises>, ↓ r by picking

#. Then, Adam picks the transition q
r,#−−→ s. Eve is unable to concretise

it with any data value, since r , # is not satisfiable (as r � #). Yet, the
sequence of actions (>, ↓ r) · (? � r) · (r , #) can be extended in a feasible
one: it suffices to take some data value distinct from # when concretising
the first action. The other case is similar: if Eve initially picks a data value
distinct from #, Adam simply needs to pick the other transition to make
her lose. Overall, Eve fails to convert her strategy in the Church data
game (whatever it is) to a winning strategy in the automaton game.

Yet, the sole strategy that Eve has is winning, since any play ends in the
accepting loop between t and u. Such a strategy, when interpreted as a
register automaton whose output transitions are determined by its input
ones, corresponds to a register transducer that implements the function
ffst : d · Dω 7→ dω, which realises the specification, as they are equal.
One thus has to impose Adam to provide full information on the data
values he provides, by asking that the input tests consist in maximally
consistent conjunctions of atomic formulas, a form that we called explicit
in Section 4.4.4.
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Figure 7.1.:Aspecification automaton that
recognises the function ffst : dDω 7→ dω ,
which is easily realisable by a register trans-
ducer. Yet, Eve fails in translating her strat-
egy in the Church data game to one in the
automaton game.

Definition 7.4 Let S be a specification automaton. We say that S is
game-complete if its input transitions are locally concretisable, i.e. for
all reachable configurations t � (p , ν) ∈ Configsi(S) and all transitions

p
σ,φ,asgn
−−−−−−→ q, there exists d ∈ D such that t is enabled from C on reading

d, i.e. ν, d � φ.

Let us show that if a specification automaton is game-complete, then
from a winning strategy of Eve in the Church data game, one can build a
winning strategy for Eve in the automaton game.

Proposition 7.6 Let S be a game-complete specification automaton. If Eve has

a winning strategy in the Church data game GS, she has a winning strategy in

the automaton game G f
S .

Proof idea. In Proposition 7.2, Eve feeds the data values she receives from
Adam to her strategy in the automaton game and mimicks its response.
Here, we need to do the converse: Eve receives an input action from
Adam, and needs to concretise it with some data value to feed it to her
strategy in the Church data game.

Thus, in G f
S , Eve constructs a play which is the run of S over some play of

GS that is consistent with her strategy in the Church data game. To that
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Recall that strategies can be build by induc-
tion on their consistent plays, see Remark
3.11.

end, she maintains in memory the current configuration of S. When she
receives a move (σ, φ, asgn) fromAdam, she arbitrarily picks a data value
that satisfies the test with regard to the current valuation. She can do so
since input transitions are locally concretisable. She then feeds this data
value to her strategy in the data game, which reacts with some output
labelled data value. Necessarily, this corresponds to a transition in S,
otherwise the play cannot be winning in GS , and we know that Eve wins
such a game. Correspondingly, she picks this transition in the automaton
game. Overall, the play in the automaton game must be winning, since
it corresponds to the run of S over some winning play in GS. Thus, the
resulting strategy is winning.

Proof. Let us now develop the argument. Let S be a game-complete
specification automaton, and assume that Eve has a winning strategy λ
in the Church data game GS.

Constructing the strategy λ f We construct a strategy λ f for Eve by
induction, along with, for each consistent history h f , an history h of GS
such that h f is the sequence of states and transitions of the partial run of
S over h. We also maintain the fact that if the h f are increasing for the
prefix order, then so are their associated h. When no actions have been
played, we let h � v∀, as it is the initial vertex of GS.

Now, assume that the current history is h f � p0(σ0 , φ0 , asgn0)q0(γ0 , ? �

r0 , asgn′0)p1 . . . pi , and it is Adam’s turn to play. By induction, there
exists a history h � v∀d0v∃d′0 . . . v∃d′i v∀ and sequences of valuations

(ν j) j≤i and (ν′j) j≤i such that (p0 , ν0)
σ0 ,φ0 ,asgn0 ,d0−−−−−−−−−−→ (q0 , ν′0)

γ0 ,?�r0 ,asgn′0 ,d
′
0−−−−−−−−−−−−→

(p1 , ν1) . . . (pi , νi) is the partial run of S over h (where vertices are
omitted). Now Adam plays (σi , φi , asgni) ∈ Σ × TestsD(R) × 2R. The

corresponding transition is tii � qii
σi ,φi ,asgni−−−−−−−−→ qoi . Since S is game-

complete,we know that there exists di ∈ D such that νi , di � φi . Then, Eve
feeds (σi , di) to her strategy in GS . Formally, she sets h∃ � h · (σi , di), and
lets (γi , d′i) � λ(h∃), then updates again h∃ to get h∀ � h∃ · (γi , d′i). The
configuration of S is updated accordingly, by letting ν′i � νi{asgn← di}.

Necessarily, there exists an output transition t′i � qi
γi ,ψi ,asgn′i−−−−−−−−→ pi+1

such that (qi , ν′i)
γi ,d′i−−−→

S t′i

(pi+1 , νi+1). Otherwise, it means that there

does not exist any run of S over h∀. In that case, for any infinite suffix
s � (σi+1 , di+1)(γi+1 , d′i+1) . . . , we have that h∀ · s < JSK, so this is the
case in particular of any play consistent with λ that starts with h∀, which
contradicts the fact that λ is a winning strategy in GS (such a play
necessarily exists since Eve must be able to react to any sequence of data
values in GS).

Then, Eve plays (γi , ψi , asgn′i) and updates h to h∀. The inductive invari-
ant is maintained, as h∀ contains h as a prefix, and h f · (σi , φi , asgni) ·
(γi , ? � ri , asgn′i) indeed corresponds to a partial run of S over h∀.

λ f is winning Let us now show that λ f is winning. Consider a play
π f that is consistent with λ f . Take the limit of the histories h of GS
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associated with histories h f of π f : we get a play π of GS that is consistent
with λ, and such that π f consists in the sequence of states and transitions
of the run of S over π (omitting the trivial vertices of GS). We know that
π is winning, since it is consistent with λ, which means that π ∈ JSK
(again, omitting vertices). Thus, the corresponding run of S is accepting,
which implies that π f is winning.

Wrapping Up: Game-Readiness

As a consequence, G f
S is a sound and complete abstraction for the reactive

synthesis problem for specifications S that are both game-sound and
game-complete; we group the two notions under that of game-readiness.
Then, finding an implementation for S reduces to finding a winning
strategy for Eve in G f

S . Note that G f
S is not necessarily decidable, so this

does not necessarily yield a decision procedure.

Definition 7.5 Let S be a specification register automaton. It is game-ready

whenever it is both game-sound and game-complete, i.e.:

I It is complete and locally concretisable on its input transitions
I It is locally concretisable on its output transitions.

Observation 7.7 In a locally concretisable automaton, all paths are feasi-
ble (Observation 4.22). As a consequence, if S is game-ready, then W f

S

is ω-regular, since in that case W f
S essentially consists in the acceptance

conditionΩ of S:

W f
S �


p0(σ0 , φ0 , asgn0)
q0(γ0 , ψ0 , asgn′0)
p1 . . .

∈ Plays(A)

������ p0q0p0q1 · · · ∈ Ω


As a consequence, solving the reactive synthesis problem can be done
by playing directly on the specification automaton, as if it were an
ω-automaton:

Proposition 7.8 Let S be a game-ready deterministic specification automaton.

The following are equivalent:

(i) S is realisable by some synchronous program

(ii) Eve has a computable winning strategy in the Church data game

(iii) Eve has a computable winning strategy in the automaton game

(iv) Eve has a finite-memory winning strategy in the automaton game

Proof. Thisproposition consists inwrapping everything together. (i)⇔ (ii)
is exactly Proposition 5.2. (iii) ⇒ (ii) is Proposition 7.2. (ii) ⇒ (iii) is
Proposition 7.6. Finally, (iv) ⇔ (iii) results from the finite-memory
determinacy of ω-regular games (Theorem 3.8 and Corollary 3.9).

Since ω-regular games are decidable, this yields decidability of the
reactive synthesis problem for game-ready specification automata:

Proposition 7.9 The reactive synthesis problem for specifications given by

game-ready deterministic automata is decidable.
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We take into account the number of tran-
sitions, since there can be exponentially
many tests.

More precisely, if S is given as a game-ready deterministic parity register

automaton, one can decide in O(nd) whether it is realisable by a synchronous
program, where n is the size of S and d is its parity index.

Remark 7.4 The reader might be surprised by the relatively modest (if
not polynomial) complexity of solving the problem, in contrast with,
e.g., solving the emptiness problem for register automata, which is
PSpace-complete, already for deterministic register automata over (D,�)
(Theorem 4.20). The caveat lies in the transformation into a game-ready
automaton, which is not always doable (e.g. for (N, <, 0), cf Property
4.39), and exponential for (D,�) and (Q, <) (Sections 7.3.2 and 7.3.3).
In particular, if a register automaton is locally concretisable, then it is
empty if and only if it is empty when interpreted syntactically as an
ω-automaton (Observation 4.22).

Remark 7.5Note that the resulting implementation is not necessarily
computable by a register transducer, since the specification might ask
to produce data values that are absent from the input. In the case of
(D,�), we are able to show that register transducer actually suffice
(Theorem 7.15); this is not the case anymore for (Q, <) (see Property 7.18).
However, it has a very specific form, as it consists in picking transitions
in the specification automaton with the help of a finite memory, which
corresponds to very simple programs, provided the concretisation of a
transition is simple. This is the case for (Q, <), as concretising r1 < ? < r2
can be done by picking r1+r2

2 (see Remark 7.9).

If the specification S is game-ready and one-sided, we get that the reactive
synthesis problem is decidable and equivalent to the Church synthesis
problem.

Proposition 7.10 Let S be a game-ready one-sided specification with registers

R. The following are equivalent:

(i) S has an implementation

(ii) S has a register transducer implementation with registers R
(iii) Eve has a finite-memory winning strategy in G f

S

Proof. Again, this is a wrapper proposition. Let S be a game-ready
one-sided specification. (i)⇔ (iii) is a consequence of Proposition 7.8
(items (i) and (iv)). Then, in the case of one-sided specifications that
are game-sound (which is the case of game-ready ones), we know that
finite-memory strategies in the automaton game correspond to register
transducers (Corollary 7.5).

7.3.2. The Case of Equality

As expected, we start with the simplest data domain, namely (D,�,C).
Since one can always turn a register automaton over this domain into a
locally concretisable one (Proposition 4.25), we get that any specification
automaton can be converted into one that is game-ready. Thus, solving
the reactive synthesis problem amounts to finding a winning strategy of
Eve in the automaton game if it exists, by Proposition 7.9. Moreover, we
are able to provide an ExpTime lower bound, meaning that the problem
is complete for this complexity class.
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[28]: Demri andLazic (2009), ‘LTLwith the
freeze quantifier and register automata’

There is no known simple closed form for
Bk . For the present complexity analysis,
we only need that it is bounded by an
exponential function. Observe that it is
trivially bounded by 2k2 , which counts
the number of binary relations over a set
of size k, since a partition is in particular a
binary relation. Finer bounds exist, e.g. we

have, for all k ≥ 0, Bk <
(

0.792n
ln(n+1)

)n
from

[130]: Berend and Tassa (2010), ‘Improved
bounds on bell numbers and on moments
of sums of random variables’ (Theorem
2.1).

[120]: Sipser (2013), Introduction to the The-

ory of Computation

Note that we ask that non-deterministic
and universal states alternate. This is done
to simplify the proof, and is without loss
of generality.

We call this problem ‘halting problem’
and not membership problem since we fix
the input, as we only consider the initial
configurationwhere the tape only contains
0.

Theorem 7.11 The reactive synthesis problem for specifications given as deter-

ministic register automata over (D,�,C) is ExpTime-complete.

Proof. Membership in ExpTime essentially follows from the fact that any
register automatonover (D,�,C) canbe turned into a locally concretisable
one, with an exponential blowup (Proposition 4.25). Hardness is obtained
by lifting the proof of [28, Theorem 5.1] to alternating Turing machine
using the interaction between the system and its environment: the system
resolves non-determinism, while the environment resolves universality.

Membership in ExpTime Let S be a deterministic specification automa-
ton with state space Q of size n and registers R of size k, and acceptance
conditionΩ. We treat the case whereΩ is a parity condition with parity
index d.

By Proposition 4.25, we know that there exists a specification automaton
that is equivalent to S and which is locally concretisable, so it is game-
ready. Such an automaton is of size nBk , where Bk is the k-th Bell number,
that counts the number of partitions of R. Then, by Proposition 7.9,
finding an implementation for S is equivalent with determining whether
Eve wins the automaton game. This is a parity game, that can be solved
in time O((nBk)d), which is exponential in the size of the input.

ExpTime-hardness The following proof is an adaptation of the one
establishing PSpace-hardness of the nonemptiness problem for determin-
istic register automata presented in [28, Theorem 5.1]; we spell it out
for completeness. It consists in a reduction from the halting problem
for alternating Turing machines over a binary alphabet with linearly
bounded tapes. The main idea is to use the input part to simulate univer-
sal transitions, and the output part to simulate non-deterministic ones,
hence simulating alternation, which yields an ExpTime lower bound.

An alternating Turing machine [120, Section 10.3] is a tuple M � (Q , qi , δ),
where:

I Q is a finite set of states, partitioned into existential (Q∃) and universal

(Q∀) states: Q � Q∃ tQ∀, where qi ∈ Q∃ is the initial state
I δ : Qσ × {0, 1} → 2Qσ×{0,1}×{−1,1} is the transition function, where
σ ∈ {∀, ∃} and ∀ � ∃, ∃ � ∀.

Then, a configuration of M is a triple (q , i , w), where q ∈ Q is the machine
state, i ∈ {0, . . . , |M | − 1} is the head position, and w ∈ {0, 1} |M | is the
tape content. It is existential if q ∈ Q∃, universal if q ∈ Q∀. A configuration
(q′, i′, w′) is a successor of (q , i , w) if there exists (p , a ,m) ∈ δ(q , w[i]),
p � q′, i′ � i + m ∈ {0, . . . , |M | − 1} and w′ is such that ∀ j , i,

w′[ j] � w[ j] and w[i] � a. We then say that t � q
w[i],a ,m
−−−−−−→ p is the

associated transition. Then, a configuration (q , i , w) is accepting if, either:

1. q ∈ Q∃ is an existential state and at least one of the successor
configurations is accepting

2. q ∈ Q∀ is a universal state and all the successor configurations are
accepting
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[27]: Chandra, Kozen, and Stockmeyer
(1981), ‘Alternation’

We use the notations of [28, Theorem 5.1].

The data values associated with $ and
the ti are irrelevant and not depicted. We
broke our code of conduct of not colouring
text to highlight the fact that transitions
are alternately picked by the environment
and the system (t0 and t2 are in red, while
t1 is in green). It also clarifies who carries
the burden, e.g. that it is the environment
whoprovides encodings of configurations.
Recall that Σ � Q t δ t {−}.

Note that the base case of this inductive definition consists in universal
configurations with no successor. The following problem is ExpTime-
hard [27, Theorem 3.3]: given an alternating Turing machine M, decide
whether its initial configuration (qi , 0, 0|M |) is accepting.

Finally, a computation is a finite sequence of successive configurations.
Let (q0 , i0 , w0) . . . (qn , in , wn) be a computation of M, and t0 . . . tn−1 the
sequence of associated transitions. We encode this computation by the
following finite data word over (D,�,C)with label alphabet Qt δt {−}:

(−, d0)(−, d1)a0
0a0

1 . . . a
0
|M |−1t0a1

0a1
1 . . . a

1
|M |−1t1 . . . tn−1an

0 an
1 . . . a

n
|M |−1

where d0 , d1 ∈ D are two distinct data values respectively encoding
letters 0 and 1, and we have lab(ak

l ) � qk if l � ik and lab(ak
l ) � −

otherwise. Then, dt(ak
l ) � d0 if wk[l] � 0 and dt(ak

l ) � d1 if wk[l] � 1.
dt(tk) does not matter.

As in [28, Theorem5.1],we can construct a deterministic register automaton
AM which accepts a data word w if and only if w has a prefix that encodes
a computation of M from the initial configuration to a configuration with
no successor. Since transitions are part of the input, they do not have to
be guessed: neither non-deterministic nor universal branching is needed
here (they are respectively simulated by the system and the environment).
To present a self-contained proof,we recall the construction:AM has states
Q, along with an |M |-bounded counter l to keep track of the position of
the reading head in wk , a variable i taking its values in {0, . . . , |M | − 1}
used to store the value of ik and a variable t taking its values in δ to
memorise tk , which overall yields a O(|M |4) state space. Its label alphabet
isΣ � Qtδt{−}, and it has |M |+2 registers: r0 and r1 respectively store
d0 and d1, and, for all 0 ≤ l < |M |, r′l successively stores the different
values of wk[l] for 0 ≤ k ≤ n. A run of AM unfolds as follows: initially,
AM stores d0 and d1 and verifies that they are distinct, then checks
that w0 � 0|M | . Now, it has to check successorship of configurations,
while maintaining the invariant that at any step k, r′l contains wk l. It

proceeds as follows: when reading tk � q
c ,a ,m−−−−→ p, it checks that q � qk

(qk was stored as the target of tk−1), c � wk[ik] (i.e. that r′ik
contains

dc), and updates the value of ik to ik+1 � ik + mk , while verifying that
ik ∈ {0, . . . , |M | − 1}. Then, with the help of its registers and its counter
l, it checks that wk+1[l] � wk[l] for all l , ik+1, and that wk+1[ik+1] � da .

From such an automaton, by adding $s to enforce alternation between
input and output, we can build a deterministic specification automaton
such that the environment provides the encoding of the successive
configurations and resolves universal branching, while the system has
to resolve non-determinism (i.e. it chooses which non-deterministic
transition to take). Then, if the environment can force the computation to
go on ad infinitum, he wins, otherwise (if either the provided encoding
is not correct, or if the computation is finite), the system wins, i.e. the
specification is satisfied. Formally:
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[41]: Exibard, Filiot, and Reynier (2021),
‘Synthesis of Data Word Transducers’

S �


(−, d0)$(−, d1)$〈

c0 , $|M |
〉

t0$〈
c1 , $|M |

〉
$t1〈

c2 , $|M |
〉

t2$ . . .〈
cn , $|M |

〉
($$)ω

����������
d0 , d1 and c0t0c1t1c2t2 . . . tn−1cn is
the encoding of a computation of M


∪

〈u , v〉
������ u , v ∈ (Σ ×D)ω

there exists a prefix of w which is not the encoding
of a computation of M


∪

{
(−, d0)$(−, d1)$ 〈u , v〉

���� d0 � d1
u , v ∈ (Σ ×D)ω

}
Let us insist on the fact that the even (i.e. universal) transitions are picked
by the environment, while the odd (i.e. non-deterministic) transitions are
picked by the system.

Remark 7.6 Note that S is recognised by a one-sided specification automa-
ton.

Now, if M halts, A admits an implementation, which behaves as follows:
it first checks that the d0 and d1 given as input are indeed distinct. Then,
when reading the sizeM next labelled data values, it verifies that the
given input is indeed an encoding of the initial configuration, while
outputting $s. It then checks that c1 is indeed a successor of c0 following
t0, again outputting $s. Then, if it receives as input a $, it picks a transition
t1 which is a witness that c0 is indeed accepting, and so on. If, at some
point, the given input is not a valid encoding, then it behaves arbitrarily
(e.g. by outputting only $s).

Remark 7.7Note that such an implementation can be computed by a
register transducer.

Conversely, if M does not halt, then, by choosing an inputwhose universal
transitionswitness that c0 is not accepting, then either the implementation
provides some non-admissible output at some point, or the computation
goes on ad infinitum, which in both cases breaks the specification S.

Thus, S is realisable if and only if M halts and its size is polynomial in
|M |, which yields the sought ExpTime lower bound.

Now, since the automaton game is ω-regular for game-ready specification
automata, we know that if such a strategy exists, then there exists one
that has finite memory, which implies that for one-sided specifications,
the problem coincides with the Church synthesis problem: if there exists
an implementation, there exists one that can be implemented with a
register transducer (Proposition 7.10).

Theorem 7.12 ([41, Theorem 3.7]) The reactive synthesis problem and the

Church synthesis problem for specifications given as deterministic one-sided
register automata over (D,�,C) coincide and are both ExpTime-complete.

Moreover, it suffices to target implementations that use the same registers as the

implementation, and in the same way.

Proof. Membership in ExpTime follows from the above Theorem 7.11 and
from Proposition 7.10. Hardness is obtained through the same reduction
as above, thanks to Remarks 7.6 and 7.7.
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An important corollary is that there is a threshold for register-bounded
synthesis over one-sided specification automata.

Corollary 7.13 Let l ≥ 1. For all k ≥ l, the k-register-bounded synthesis

problem and the Church synthesis problem are equivalent for specifications given

as one-sided automata with l registers over data domain (D,�,C).

Note that this is also the case for the reactive synthesis problem, as it is equivalent

to the Church synthesis problem.

The above results again hold for (Q, <, 0). In the case of (D,C), one can
moreover lift the one-sided restriction for the Church synthesis: even for
two-sided ones, if an implementation exists, then a register transducer
one exists, with at most one additional register (provided registers can
be initialised with values distinct from #):

Proposition 7.14 Let S be a deterministic specification automaton over data

domain (D,�,C) with registers R. If S admits an implementation, it admits a

register transducer implementation with registers R t {r0}, where r0 is some

additional register.

Proof idea. The construction is quite technical; we only give the main idea
of the proof. Consider a winning strategy in the automaton game. Since it
is anω-regular game,we can assume that such a strategy is finite-memory.
The only difficulty consists in output transitions that conduct a test asking
for a locally fresh data value. However, with one additional register, we
can maintain the invariant that the registers contain a locally fresh data
value, by maintaining the fact that they contain pairwise distinct data
values. This is done as follows: whenever the specification asks to store an
incoming data value that would break the invariant, the implementation
instead stores this information in memory, as was done when removing
reassignments (Proposition 4.6). If a register transducer is allowed to take
arbitrary initial values, it suffices to initialise it with pairwise distinct
data values.

As a consequence, we get:

Theorem 7.15 The reactive synthesis problem and Church synthesis problem

for specifications given as deterministic automata over data domain (D,�,C)
are equivalent and decidable. They are both ExpTime-complete.

Moreover, given a specification with k registers, it suffices to target implementa-

tions with k + 1 registers.

7.3.3. The Case of (Q, <, 0)

The case of (Q, <, 0) is similar for the treatment of reactive synthesis and
of the Church problem over one-sided specifications, since the proof
relies on turning an automaton into a locally concretisable one. Thus, we
have:

Theorem 7.16 The reactive synthesis problem for specifications given as deter-

ministic register automata over (Q, <, 0) is ExpTime-complete.
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[131]: Klin and Lelyk (2019), ‘Scalar and
Vectorial mu-calculus with Atoms’

Proof. The proof is the same of for Theorem 7.11, we only redo the
complexity analysis: by Proposition 4.37, we know that there exists a
specification automaton that is equivalent to S and which is locally
concretisable, hence game-ready. The size of such an automaton can be
bounded by n2k2 (cf Definition 4.6). Then, by Proposition 7.9, finding an
implementation for S is equivalent with determining whether Eve wins
the automaton game. This is a parity game, that can be solved in time
O((n2k2)d), which is exponential in the size of the input.

The ExpTime lower bound is inherited from the case of (D,�,C).

Remark 7.8 Decidability of the above problem can be derived from [131,
Section 7], which establishes that parity games where the vertices of the
game can store rational numbers are decidable. However, the complexity
is not clear, and the argument is more involved.

For one-sided specifications, we get, by Proposition 7.10 (the ExpTime
lower bound is again inherited from (D,�,C)):
Theorem 7.17 The reactive synthesis problem and the Church synthesis problem

for specifications given as deterministic one-sided register automata over

(D,�,C) coincide and are both ExpTime-complete.

However, this is not anymore the case for two-sided specification.

Property 7.18 There exists a deterministic specification automaton over (Q, <
, 0) which can be implemented by a synchronous program but cannot be

implemented by any register transducer.

Proof. Consider the specification automaton of Figure 7.2. It can be
realised by an implementation that outputs 0 · 1 · 2 . . . , ignoring its input,
but not by any register transducer: a register transducer can only output
data values that appear in the input, so if the environment provide a
constant input, e.g. 0ω, it cannot come up with infinitely many data
values (let alone in increasing order).

i p

>

? > r, ↓ r

Figure 7.2.: A specification automaton
over (Q, <, 0) that asks the system to out-
put infinitely many data values in increas-
ing order, ignoring its input.

Remark 7.9 Note however that if a specification given by a deterministic
register automaton over (Q, <, 0) is realisable, it can be implemented by a
relatively simple program: it suffices that it is able to provide data values
that satisfy tests of the form r1 < ? < r2 (this can be done by outputting
r1+r2

2 ),? > r (take r + 1) and? < r (take r − 1).

7.3.4. The Case of (N, <, 0)

The case of (N, <, 0) is significantly more involved. Indeed, it is not the
case anymore that feasible action sequences form an ω-regular language
(Property 4.38), which impedes the abstraction of the Church game in a
finite way. And, as a matter of fact, the unbounded synthesis problem
from specifications expressed as deterministic register automata over
(N, <, 0) is undecidable, even if we restrict to implementations that
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When we restrict to register transducers
with initial valuation νιR , the problem is
open (Open Problem 7.2).

[42]: Exibard, Filiot, and Khalimov (2021),
‘Church Synthesis on Register Automata
over Linearly Ordered Data Domains’

are computable by register transducers (Theorem 7.19; provided their
registers can be initialised to distinct values). We start the section by
establishing this result, and then show that if the specification is one-
sided, the problem becomes decidable (Theorem 7.28). But first, let us
provide an example that highlights the difficulties that arise in this setting.
Intuitively, this is because (N, <, 0) allows some form of counting.

Example 7.2 In the game associatedwith the automaton of Figure 7.3, Eve
only has one strategy.Assume thatAdamplays? > 0, ↓ r. A bit heedlessly,
Eve chooses to concretise it with the value 1 in the Church data game.
Then, Adam plays 0 < ? < r, and she is unable to provide any data value
that satisfies the test, since the current valuation is ν(r) � 1. Thus, she
fails to convert her strategy in the Church data game, whereas there exists
a winning strategy for her in the automaton game (the only one, actually).
More generally, if Adam’s strategy is not restricted, Eve does not have a

i p q

r

s

t

? > 0, ↓ r

? � 0, ↓ r

? � r

0 < ? < r, ↓ r

? � 0 ∨? > r, ↓ r

? � r ? � r >, ↓ r

Figure 7.3.: A specification automaton in
which Eve does not have a concretisation
strategy that matches all behaviours of
Adam. Note that all states are accepting,
so the specification is realisable by the
identity.

procedure to concretise data values along the run. Indeed, the strategy
of Adam could consist in playing arbitrarily long sequences of tests
0 < ? < r transitioning from q to r. This can be concretised by picking
a sufficiently large value on the first test ? > 0, ↓ r, which means that
Adam’s sequence is feasible, but any concretisation of Eve can be beaten
by a strategy of Adam that plays a longer sequence. As we demonstrate,
in one-sided specifications like this one, we can recover decidability by
showing that it suffices to consider finite-memory strategies for Adam.

Two-Sided Specifications

However, in the case of two-sided specifications, antagonism between
the two players can be used to simulate counting, hence yielding unde-
cidability. Indeed, if the two players are able to pick data values, one can
simulate a counter as follows: Eve provides the values of the counter,
and Adam checks that he does not cheat on the increments, using the
fact that c′ � c + 1 whenever c′ > c and there does not exist d ∈ N such
that c < d < c′; similarly for decrements.

Theorem 7.19 ([42, Theorem 10]) The reactive synthesis problem for specifica-

tions expressed by deterministic register automata over (N, <, 0) is undecidable.

This remains the case if we restrict to implementations consisting in register

transducers, provided they can take an arbitrary initial valuation.
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[102]: Minsky (1961), ‘Recursive Unsolv-
ability of Post’s Problem of "Tag" and other
Topics in Theory of Turing Machines’

If 0 is not given as a constant, it suffices
to check that there is no data value that is
strictly lower.

Proof idea. We show that it is undecidable whether Eve has a winning
strategy in the Church data game, since the game formulation is more
intuitive to explain one implication. This yields the result, as this is
equivalent with deciding whether the specification is realisable, by
Proposition 5.2. We reduce the problem from the emptiness problem of
Minsky machines with two counters, which is undecidable since they
are Turing complete [102, Theorem I]. To a 2-counter machine M, we
associate a specification with registers r1 and r2, each containing the
value of one counter, plus an additional register t, used to check that no
cheating occurs. Let us describe how to increment c1 (cf Figure 7.4a); the
case of c2 and of decrementing are similar. Eve suggests a value d > r1,
which is stored in t. Then, Adam checks that the increment was done
correctly: Eve cheated if and only if Adam can provide a data value d′

such that r1 < d′ < d. If he cannot, d is stored in r1, thus updating the
value of the counter. Zero-tests are easily simulated, since 0 is a constant
of the domain (Figure 7.4b). The acceptance condition is a reachability

k k k + 1

 

\o/

? > r1 , ↓ t

r1 <
? <

t

? � t , ↓ r1

? < r1 ∨? > t

(a) Gadget for incrementing c1.
k is the instruction number, stored in the state of the specification automaton.
 (respectively, \o/) is a sink rejecting (resp. accepting) state. ∨ is a shortcut
for two distinct transitions.

k

k , 0

k, >0

k′

k′′

?
�

r 1
�

0

?
� r1 > 0

>

>

(b) Gadget for the zero-test.

Figure 7.4.: Simulating increment (the gadget for decrement is similar) and zero-tests.

one, asking that a halting instruction is eventually met. Now, if M halts,
then its run is easily simulated by a strategy of Eve that provides the
values of the counters. Moreover, in that case, its run is finite and the
values of the counters are bounded by some B, so Eve’s strategy can be
computed by a transducer with B registers that are initialised to 1, . . . , B,
that simulates the run by providing the values of the counters along
the run. Conversely, if M does not halt, then no halting instruction is
reachable by simulating M correctly, and Adam is able to check that Eve
does not cheat during its simulation.

Proof. We now move to the formal proof of the result. We reduce from
the emptiness problem of deterministic two-counter machines, which
is undecidable [102, Theorem I]. For simplicity, we write the proof for
machines with two counters; the reader can observe that a k-counters
Machine can be simulated by a specification with k + 1 registers. Among
the multiple formalisations of counter machines, we pick the following
one: a 2-counter machine has two counters which contain integers,
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initially valued 0. It is composed of a finite set of instructions M �

(I1 , . . . , Im), each instruction being of the form incr j , decr j , if0 j(k′, k′′)
for j � 1, 2 and k′, k′′ ∈ {1, . . . ,m}, or halt. The semantics are defined
as follows: a configuration of M is a triple (k , c1 , c2), where 1 ≤ k ≤ m
and c1 , c2 ∈ N. The transition relation (which is actually a function, since
M is deterministic) is then, from a configuration (k , c1 , c2):

I If Ik � incr1 (respectively, incr2), then the machine increments
c1 (resp. c2) and jumps to the next instruction Ik+1: (k , c1 , c2) →
(k + 1, c1 + 1, c2) (resp. (k , c1 , c2) → (k + 1, c1 , c2 + 1)).

I If Ik � decr1 and c1 > 0, then (k , c1 , c2) → (k + 1, c1 − 1, c2).
If c1 � 0, then the computation fails and there is no successor
configuration. Similarly for decr2.

I If Ik � if01(k′, k′′), then M jumps to k′ or k′′ according to a
zero-test on c1: if c1 � 0, then (k , c1 , c2) → (k′, c1 , c2), otherwise
(k , c1 , c2) → (k′′, c1 , c2). Similarly for if02.

A run of the machine is then a finite or infinite sequence of successive
configurations, starting at (1, 0, 0). We say that M haltswhenever it admits
a finite run which ends in a configuration (k , c1 , c2) such that Ik � halt.
Note that since the machine is deterministic, there is a unique maximal
run.

Let M � (I1 , . . . , Im) be a 2-counter machine. We associate to it the
following deterministic specification automaton: S has states Q �

({0, . . . ,m + 1,  , \o/} × {i, o, y , n}, and has three registers r1 , r2 and t.
r1 and r2 each store the value of one counter and t is used as a buffer.
i and o respectively denote input and output states, while y and n are
used to remember whether a zero-test evaluated to true or false. The
initial state is (0, i), and acceptance is defined by a reachability condition
Ω � Q∗FQω with F � {\o/}×{i, o}.  is a sink state that is not accepting.
Its transitions are defined as follows:

I Initially, there is a transition (0, i) >−→ (1, o) so that Eve can start the
simulation.

I \o/ and  are sink states, so (\o/, i) >−→ (\o/, o) >−→ (\o/, i), and

similarly ( , i) >−→ ( , o) >−→ ( , i).
I Then, for each k ∈ {1, . . . ,m}:

• If Ik � incr j for j � 1, 2, thenwe add the gadget of Figure 7.4a

on page 179, i.e. an output transition (k , o)
?>r1 ,↓t−−−−−→ (k , i) and

input transitions (k , i) r1<?<t−−−−−→ ( , o), (k , i)
?�t ,↓r1−−−−−→ (k + 1, o)

and (k , i) ?≤r1−−−→ (\o/, o), (k , i) ?>t−−→ (\o/, o).
• The case Ik � decr j for j � 1, 2 is similar: we add an

output transition (k , o)
?<r1 ,↓t−−−−−→ (k , i) and input transitions

(k , i) t<?<r1−−−−−→ ( , o), (k , i)
?�t ,↓r1−−−−−→ (k + 1, o) and (k , i) ?≥r1−−−→

(\o/, o), (k , i) ?<t−−→ (\o/, o). Note that in our definition, if
c j � 0, the instruction decr j should be blocking, i.e. the com-
putation should fail, which is consistent with the fact that in
that case, the implementation cannot provide d < r1.
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In the following, to lighten the notations,
we omit the mention of i and o when it is
clear from the context, e.g.we simplywrite
\o/ for (\o/, i) or (\o/,o), and similarly
for  .

• If Ik � if0 j(k′, k′′), then we add the gadget of Figure 7.4b, i.e.

output transitions (k , o) ?�r1�0−−−−−→ (k , y), (k , o) ?�r1>0−−−−−→ (k , n)

and input transitions (k , y) >−→ (k′, o) and (k , n) >−→ (k′′, o).

• If Ik � halt, we add a transition (k , o) >−→ (\o/, i).

Now, assume that M halts, i.e. it admits a run ρ � (k1 , c1
1 , c

1
2) → · · · →

(kn , cn
1 , c

n
2 ), where n ∈ N, k1 � 1, c1

1 � c1
2 � 0 and Ikn � halt. Note

that for all l < n, Ikl , halt, since halting instructions do not have a
successor configuration. The values of the counters are bounded by some
B ≤ n. We can then define a register transducer T with n states and B + 1
registers which ignores its input and outputs w � c j0

0 . . . c
jn−1
n−10ω, where

for 1 ≤ l < n, jl is the index of the counter modified or tested at step l
(i.e. jl � 1, 2 is such that Ikl � incr jl , decr jl of if0 jl (k′, k′′)). Let us show
that it is indeed an implementation, or equivalently that it computes a
winning strategy for Eve in the Church data game GS (see Proposition
5.2). Let u ∈ Nω be an input data word. We show by induction on l that
in S the partial run over 〈u , w〉 [:l] is either in state \o/ or l ≤ n and S
is in configuration (kl , νl), where νl(r1) � c1

l and νl(r2) � c2
l . Initially, S

is in configuration (1, νιR), so the invariant holds. Now, assume it holds
up to step l. If S is in \o/, the invariant holds at step l + 1 as \o/ is a
sink state. Otherwise, if l � n, then S is in configuration (kn , νn) with
Ikn � halt, so the unique outgoing transition is (kn , o)

>−→ (\o/, i), which
means that whatever the input data value u[l + 1],S transitions to \o/
and the invariant holds at step l + 1. Remains the case where l < n and
the current state is not \o/. Then, S is in configuration (kl , νl) and there
are four cases:

I Ikl � incr j . By definition, j � jl . We treat the case j � 1, the other
case is similar. Then, T outputs c1

l � c1
l−1 + 1, which is such that

c1
l > νl(r1). Then, there does not exist d such that νl(r1) < d < νl(t)

since νl(r1) � c1
l−1 and νl(t) � c1

l−1 + 1, so the transition to  cannot
be taken. Now, either u[l + 1] � νl(t) � c1

l−1 + 1, in which case S
transitions to configuration (kl+1 , c1

l+1 , c
2
l+1), or u[l + 1] , νl(t) and

S goes to \o/; in both cases the invariant holds.
I The case of Ikl � decr j is similar. Let us just mention that the

computation does not block at this step, otherwise ρ is not a run of
M. Thus, νl(r j) > 0 and the transition d < r j can indeed be taken.

I Ikl � if0 j(k′, k′′). Again, j � jl , and we treat the case j � 1. T out-

puts c1
l ; there are two cases. If c l

1 � 0, the transition (kl , o)
?�r1�0−−−−−→

(k′, i) is taken. Otherwise, c l
1 , 0 and S takes the transition

(kl , o)
?�r1>0−−−−−→ (k′′, i). In both cases, whatever the input, S then

evolves to (kl+1 , νl+1) (where νl+1 � νl) and the invariant holds.
I Finally, we cannot have Ikl � halt since l < n.

As a consequence, \o/ is eventually reached whatever the input, which
means that for all u ∈ Nω , 〈u , JTK(u)〉 ∈ S, i.e. T is indeed an implemen-
tation of S.

Conversely, assume that S admits an implementation I. Let ρ be the
maximal run of M (i.e. either ρ ends in a configuration with no successor,
or it is infinite). It is unique since M is deterministic. Let n � |ρ |, with the



7. Unbounded Synthesis of Register Transducers 182

In this paragraph, S denotes a determinis-
tic one-sided specification automaton over
(N, <, 0).

convention that n � ∞ if ρ is infinite. Let us build by induction an input
data word u such that for all l < n , I(u)[l] � c jl

l and the configuration
reached by S over 〈u , I(u)〉 [l] is (kl , νl). In the following, we interpret
I as a winning strategy in the Church data game thanks to Proposition
5.2, to better illustrate the interplay between the implementation and the
specification. Initially, let u[0] � 0. As the initial transition conducts test
>, S anyway transitions to state (1, o), with ν(r1) � ν(r2) � 0.

Now, assume we built the input u up to its l-th data value. There are
again four cases:

I Ikl � incr j . Then, Eve outputs somedata value do > νl(r j). Assume
by contradiction that do > νl(r j)+1. Then, Adam can play the input
data value di � νl(r j) + 1, and S goes to state  , which is a sink
rejecting state and Eve loses. So, necessarily, do � νl(r j) + 1 � c jl

l ,
and S transitions to configuration (kl+1 , νl+1).

I The case Ikl � decr j is similar. Necessarily, c l
j > 0, otherwise

Eve cannot provide any output data value and loses. Thus, the
computation does not block here.

I Ikl � if0 j(k′, k′′). The output transitions of the gadget constrains
Eve to output do � νl(r j) � c jl

l , and S transitions to configuration
(kl+1 , νl+1).

I Ikl � halt. Then, it means that n < ∞ and l � n, so the invariant
vacuously holds.

Since the acceptance condition is a reachability one, eventually ρ reaches
\o/, otherwise λ is not a winning strategy. This means that a halt

instruction is eventually reached, so ρ is a halting run of M: M halts.

Overall, Eve has a winning strategy in GS if and only if S admits an
implementation, if and only if S admits an implementation that can
be computed by a register transducer with initial valuation ν : ri 7→ i
for i ∈ {1, . . . , B}, which means that the reactive synthesis problem
for two-sided specifications given by deterministic register automata
over (N, <, 0) is undecidable, even if we restrict to register transducer
implementations (with an arbitrary initial valuation).

It is not clear whether this reduction can be adapted to the case of a
constant initial valuation νιR : r 7→ 0 or νιR : r 7→ c for some c ∈ N.
Open Problem 7.2 The decidability status of the Church synthesis prob-
lem, i.e. when we further restrict to register transducers with initial
valuation νιR : r 7→ 0 is open.

One-Sided Specifications

In the above proof, it is crucial that Eve is able to provide data values
that do not appear in the input, namely the values of the increment of
counters. In this section, we show that decidability can be recovered in
the case of one-sided specifications.

We already established that for game-sound specification automata,
the automaton game yields a sound abstraction of the Church data
game (Proposition 7.2). In other words, if Eve has a winning strategy
in G f

S , then she has a winning strategy in GS, i.e. S is realisable by
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Let us recapitulate the different games at
play here:

I GS is the Church data game over S,
where the players’ moves consists
in data values; a play is winning
if and only if it is accepted by S
(Definition 5.4)

I G f
S is the automaton game associ-

ated with S, where the players re-
spectively choose input and output
transitions of S; a play is winning
for Eve if either the correspond-
ing action sequence is not feasible
or the parity condition is satisfied
(Section 7.3.1)

I Greg
S (formally introduced later on

in Definition 7.8) is the regular au-
tomaton game associatedwith S; it
is the same game as G f

S except that
a play is winning for Eve if either
the corresponding action sequence
is not quasi-feasible or the parity
condition is satisfied.

[116]: Demri and D’Souza (2007), ‘An
automata-theoretic approach to constraint
LTL’

[132]: Bojańczyk (2014), ‘Weak MSO+U
with Path Quantifiers over Infinite Trees’

The reader is invited to read Section 4.7,
or at least Section 4.7.2, if they did not
do so before (or if they forgot its content),
otherwise this section might turn out to
be a dense read.

some synchronous program (Proposition 5.2). Moreover, for one-sided
deterministic specification automata, game-soundness is without loss of
generality (Definition 7.2).However, in (N, <, 0), feasible action sequences
do not form an ω-regular language and we cannot turn all register
automata into game-ready ones, so Proposition 7.10 does not apply
(see Example 7.2 and Property 4.38). The main difficulty is that register
automata over (N, <, 0) exhibit non-ω-regular behaviours: in general,
one needs a deterministic max-automaton to recognise feasible action
sequences (Theorem 4.46).

However, we show that it actually suffices to consider an ω-regular
over-approximation of G f

S that we call Greg
S . It has the same arena as

G f
S , but its winning condition is more demanding for Eve. Recall that

feasible action sequences in (N, <, 0) are characterised by the absence
of infinite descending chains and of increasing ceiled chains. We define
quasi-feasible action sequences by relaxing this condition to the absence
of infinite descending chains and of infinite increasing ceiled chains, and
ask that the parity condition of S must be satisfied for all quasi-feasible
action sequences provided byAdam. The key property of quasi-feasibility
is that it coincides with feasibility for ultimately periodic (a.k.a. regular)
action sequences (Proposition 7.21). Note that a similar idea has been used
in [116, Sections 6 and 7] to solve the satisfability problem of constraint
LTL, which consists in LTL enriched with comparison of data values for
a linear order <, and Proposition 7.21 is the analogue of [116, Lemma 7.2].
We provide a self-contained proof to get a uniform presentation.

The regular game Greg
S yields a sound abstraction, as it over-approximates

G f
S (any winning strategy of Eve in Greg

S is winning in G f
S ). Completeness

is shown by contraposition, using a pumping argument: if Eve loses
Greg

S , then Adam wins it with a positional strategy. As we demonstrate,
finite-memory strategies cannot distinguish between unboundedly and
infinitely increasing chains, so if Adam wins Greg

S , he actually wins G f
S .

Moreover, finite-memoriness sets a bound on the chains provided by
Adam, which allows to concretise his strategy with data values in GS,
which means that he also wins GS.

Remark 7.10 Games with a deterministic max-automaton winning con-
dition can be shown decidable, by expressing the existence of a winning
strategy as a weakMSO+U formula over trees [132, Example 2]. However,
the complexity is high, and it remains to establish that the automaton
game forms a complete abstraction for the synthesis problem, i.e. to show
that if Eve does not have a winning strategy in G f

S , then it means that the
specification is not realisable). We were only able to show the latter by
going through Greg

S .

Quasi-Feasible Action Sequences Let us first recall Lemma 4.42:

Lemma 4.42 A consistent constraint sequence κ is feasible in N if and only if

(i) It has no infinitely decreasing one-way chains, and

(ii) Ceiled one-way chains have a uniformly bounded depth, i.e. there exists a

bound B ∈ N such that increasing one-way chains of κ that are ceiled

have depth at most B.

Then, we can define quasi-feasible action sequences as follows:
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To lighten the notation, we drop the
distinction between feasibility and 0-
feasibility.

This notion is also known as regular word.
We prefer the ‘ultimately periodic’ termi-
nology as it avoids overloading once more
the term ‘regular’, which is already widely
used in this document. Some also say that
those sequences are lasso-shaped; this is
the terminology we use in [42].

Definition 7.6 (Quasi-feasible action sequence) An action sequence in
(N, <, 0) is quasi-feasible whenever:

(i) It has no infinitely decreasing chain
(ii) It has no infinitely increasing ceiled chain.
(iii) Initially, all registers contain 0, i.e. τ0 |R � {r� s | r, s ∈ R} ∪ {r �

0 | r ∈ R}, and
(iv) It has no decreasing one-way chain of depth ≥1 from any (ri ,mi)

such that τi implies ri � 0.

We denote QFeasible(R) the set of quasi-feasible action sequences over
R. Since any infinitely increasing ceiled chain contains unboundedly
increasing ceiled chains, we have that Feasible(R) ⊆ QFeasible(R).

All those conditions are ω-regular, which means:

Proposition 7.20 For any set of registers R, the set of quasi-feasible action

sequences over R is ω-regular.

More precisely, it is recognised by a deterministic parity automatonwith 2poly(|R |)

states and poly(|R |) colours.

Proof. The construction is a direct adaptation of that of Proposition
4.44: a non-deterministic Büchi automaton can easily guess an infinitely
decreasing chain, or an infinitely increasing chain and check that it is
ceiled, by storing the registers of the chain (and, possibly, of the associated
ceiling stable chain) inmemory. The two last conditions are easily verified.
Finally, determinising it into a parity automaton and complementing it
yields the expected result.

Definition 7.7We say that an infinite word w ∈ Aω is ultimately periodic

when it is of the form w � u · vω for u ∈ A∗ and v ∈ A+.

An important property is that over ultimately periodic action sequences,
feasibility and quasi-feasibility coincide, which is reminiscent of [116,
Lemma 7.2]:

Proposition 7.21 Let α be an ultimately periodic action sequence. Then, α is

quasi-feasible if and only if it is feasible.

Proof. The right-to-left direction results from the fact that Feasible(R) ⊆
QFeasible(R). Now, assume that α is not feasible and let κ be its in-
duced constraint sequence. If it has an infinite descending chain, then
we are done. Otherwise, we know it has increasing ceiled chains of
unbounded depth. Since α is ultimately periodic, so is κ; write κ �

τ0 . . . τk−1(τk . . . τk+l)ω . Take an increasing ceiled chain γ of depth greater
than k + |R |l. Necessarily, this chain passes through the same constraint
with twice the same register in the loop (τk . . . τk+l)ω, with a ‘<’ in
between. Thus, we can construct an infinitely increasing ceiled chain by
repeating this chain fragment indefinitely.

The associated regular game We are now ready to define the regular
game Greg

S associated to a specification automaton S, which consists in
allowing Adam to play quasi-feasible action sequences.
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Recall that a game G is ω-regular when its
arena is finite and its winning condition is
an ω-regular language (Definition 3.16).

Game-soundess can be ensured without
loss of generality through a linear trans-
formation (Assumption 7.3).

Definition 7.8 To a deterministic specification register automaton S �

(Q , q ι ,Σ, Γ, R, δ,Ω) over (N, <, 0), we associate the regular automaton

game Greg
S � (A f

S ,W
reg
S ), where A f

S is the same arena as that of G f
S , i.e.

it consists in the automaton S, where vertices are states and moves are
transitions (see Section 7.3.1). The acceptance condition is the same as
that of G f

S , except that we only ask that the action sequence provided by
Adam is quasi-feasible:

W reg
S �


p0(σ0 , φ0 , asgn0)
q0(γ0 , ψ0 , asgn′0)
p1 . . .

∈ Plays(A)

������ (φ0 , asgn0)(ψ0 , asgn′0)
(φ1 , asgn1) · · · ∈ QFeasible(R)
⇒ p0q0p0q1 · · · ∈ Ω


Since the set of quasi-feasible action sequences is ω-regular (Proposition
7.20), we get:

Proposition 7.22 For any specification automaton S over (N, <, 0) with state
space Q and registers R, Greg

S is ω-regular.

More precisely, it is a parity game with O(|Q |2poly(|R |)) vertices and d |R |
colours.

Now, let us establish Greg
S correctly abstracts the reactive synthesis prob-

lem for S, and, as a side-product, that the latter is equivalent with the
Church synthesis problem, in the sense that it suffices to consider reg-
ister transducer implementations. This is summarised by the following
proposition; its proof is the subject of the rest of the section.

Proposition 7.23 Let S be a deterministic one-sided specification automaton

over (N, <, 0) that is game-sound. The following are equivalent:

(i) Eve has a winning strategy in Greg
S

(ii) Eve has a finite-memory winning strategy in Greg
S

(iii) Eve has a finite-memory winning strategy in G f
S

(iv) Eve has a register transducer winning strategy in GS
(v) Eve has a winning strategy in GS

Proof. In the following, we let S be a game-sound deterministic one-sided
specification automaton over (N, <, 0).

A winning strategy of Eve in Greg
S translates to one in GS We start by

establishing the sequence of implications from items (i) to (v), as it is easier.
The implication (i) ⇒ (ii) results from the fact that Greg

S is ω-regular
(Proposition 7.22), and those games enjoy finite-memory determinacy
(Corollary 3.9). Now, if Eve has a finite-memory winning strategy in
W reg

S , then the same strategy is winning in G f
S , since W reg

S ⊆ W f
S , so

(ii) ⇒ (iii). The third implication (iii) ⇒ (iv) is precisely Proposition
7.4: a finite-memory winning strategy in the automaton game can be
interpreted as a register transducer implementation or, equivalently, a
register transducer winning strategy in the Church data game. The last
implication of the series, (iv) ⇒ (v), is immediate. The other is harder,
and relies on finite-memory determinacy of ω-regular games: if Eve
cannot win, then Adam has a finite-memory winning strategy; we then
show that such a strategy can be translated into a winning strategy in
the Church data game GS. Note that this is not the case for arbitrary
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Recall that S is a game-sound determin-
istic one-sided specification automaton,
ambient in the whole proof.

strategies, as witnessed by Example 7.2 (if Adam provides longer and
longer sequences of decreasing values depending on the actions of Eve,
the concretisation of the tests depends on the future of the play).

If Eve cannot win Greg
S , she cannot win GS Now, let us move to the last

implication (v) ⇒ (i); we show it by contraposition. Let us describe the
main ideas of the proof. First, if Eve does not have a winning strategy in
Greg

S , thenAdamhas one, andwe can even assume that it is finite-memory,
since Greg

S is ω-regular. We then show, using a pumping argument, that
we can bound the depth of what we call right two-sided chains. This
allows us to define a procedure that is able to choose data values that
concretise the tests in a way that does not depend on the future of the
play. Such a concretisation function finally yields a way to translate the
strategy of Adam in the regular automaton game into one that is winning
in the Church data game. This implies that Eve does not have a winning
strategy in the latter game, which yields the sought implication, and
provides determinacy of the Church data game as a side-product.

We now move to the formal proof. Assume that Eve does not have a
winning strategy in Greg

S . By finite-memory determinacy of ω-regular
games, this means that Adam has a finite-memory winning strategy in
Greg

S (Theorem 3.8). The rest of the proof is devoted to establishing the
following claim.

Claim 7.24 If Adam has a finite-memory winning strategy in Greg
S , then he has

a winning strategy in GS.

The depth of decreasing right two-way chains is bounded First, let
us show that the length of decreasing right two-way chains of such a
strategy is uniformly bounded.

Definition 7.9 (Right two-way chain) A two-way chain γ � (r0 ,m0) ./0
(r1 ,m1) ./1 (r2 ,m2) ./ . . . is a right two-way chain if it does not go to the
left of position m0, i.e. for all 1 ≤ i < |γ |, mi ≥ m0.

Lemma 7.25 Let λ be a finite-memory strategy of Adam in Greg
S . If λ is winning,

then there exists B ≥ 0 such that for all action sequences β of a play consistent

with λ, any decreasing right two-way chain of β has depth at most B.

Proof. The main idea is that if Adam has a finite-memory strategy, then
if a decreasing right two-way chain γ is sufficiently deep, Eve can force
Adam to loop in amemory state in away such that the loop can be iterated
while preserving the chain, and which contains a strictly decreasing or
increasing segment. In the first case, iterating the loop yields an infinite
descending chain in N, which witnesses that the corresponding action
sequence is not feasible. The second case happens when γ is decreasing
from right to left (recall that it is a two-way chain), which corresponds
to an increasing segment, when read from left to right. When iterated,
this yields an infinite increasing chain, which is perfectly legitimate in
N. However, it can be bounded from above with the help of γ: before
decreasing from right to left, γ has to go from left to right, since it is a
right chain, i.e. it is not allowed to go to the left of its initial position. On
the strictly increasing segment, this left-to-right prefix is either constant
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There is no simple closed form for Fk , so
we simply use the fact that it is bounded
by 2k2 , which counts the number of bi-
nary relations over a given set. Tk �(k

0
)
0! +

(k
1
)
1! + · · · +

(k
k
)
k!, which is asymp-

totically equivalent to ek!. For the purpose
of this argument, we only need that they
are finite.

or decreasing, so when the loop is iterated it provides an upper bound
for our increasing chain.

We now move to the formal proof. Let λ be a finite-memory strategy of
Adam in Greg

S withmemory space M. Assume that λ is winning. Suppose,
towards a contradiction, that there exists plays that are consistent with
λ and which contain a decreasing right two-way chains of arbitrary
depth. At this point, we can use a Ramsey argument in the spirit of
Lemma 4.42 to extract an infinite one-way chain that is either increasing
or decreasing. However, this amounts to breaking a butterfly upon the
wheel and we prefer to rely on a simpler pumping argument, which also
gives a finer-grained perception of what it happening there. In particular,
it provides a bound on B that does not depend on a Ramsey number.

Thus, let ρ be a play consistent with λ whose action sequence admits a
decreasing right two-way chain of depth D > |M | · F|R |T|R | , where Fk
is the k-th Fubini number that counts the number of weak orders over
a set of size k and Tk counts the number of ordered subsets of a set of
size k (both are exponential in k). We denote it γ � (r0 ,m0) .0 (r1 ,m1) .1
(r2 ,m2) .2 · · · .n−1 (rn ,mn), where for all 0 ≤ i ≤ n, .i ∈ {>,�}, ri ∈ R
and mi ∈ N. Given a two-way chain and a position i ≥ m0, we define the
crossing section at i as the sequence of registers that occur at position i,
ordered by they appearance in the chain: HγIi is the maximal subword of
γ that contains letters of the form (r, i) for some r ∈ R (see Figure 7.5a,
where we depicted a chain that has two identical crossing sections at
positions i and j). This construction is reminiscent of the techniques that

play
i j
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(a) A chain with two identical crossing sections.
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(b) Iterating a fragment of a play. We are able to glue the chain since
the crossing sections and the order between registers are the same at
positions i and j.

are used to study loops in two-way automata or transducers, hence the
name. However, here, we can assume without loss of generality that γ is
non-looping (Lemma 4.40), so each register appears at most once, which
simplifies the argument. At each position, there are |M | distinct memory
states for Adam, T|R | many distinct crossing sections and B|R | many
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Recall that [ν]Q denotes the constraint
associated with ν, seen as a valuation in
Q. It consists in the order relation between
the registers, with ties allowed (i.e. we can
have ri � r j ).

possible orderings of the registers. Thus, by the pigeonhole principle,
there exists two positions m0 ≤ i < j such that HγIi � HγI j , the memory
state of Adam at position i and j is the same q ∈ M and the order
between registers at position i is the same at position j: [νi]Q � [ν j]Q and
there is at least one occurrence of > in the chain fragment. Since Adam’s
strategy is finite-memory, Eve can repeat her actions between positions
i and j indefinitely to iterate this fragment of play. Since the crossing
sections match (HγIi � HγI j) and the order between registers is the same
at positions i and j, we can glue the chain fragments together to get an
infinite two-way chain (see Figure 7.5b on page 187), with infinitely many
occurrences of >. There are two cases:

I There is a fragment that strictly decreases from left to right (as the
chain fragment over register r4 in Figure 7.5b). Then, when Eve
repeats her actions indefinitely, this yields an infinite descending
chain, which means that the play is not feasible (Lemma 4.41). This
contradicts the fact that Adam’s strategy is winning.

I All decreasing fragments occur from right to left (as do the frag-
ments over r2 and r1 in Figure 7.5b). Necessarily, the topmost
fragment, i.e. the fragment of the register that appears first in HγIi ,
is left-to-right, since γ is a right two-way chain. It is not strictly
decreasing, otherwise we are back to the first case. Then, the strictly
decreasing fragments are bounded from above by this constant
fragment. Iterating the loop yields an infinite increasing chain that
is bounded from above, which means that the play is again not
feasible, so we also obtain a contradiction.

Overall, we can conclude that there is a uniform bound on the depth of
the decreasing right two-way chains induced by λ.

Bounded right two-way chains yield a data concretisation procedure
Now, let us show that if the depth of decreasing right two-way chains of
a strategy of Adam is uniformly bounded, we can concretise his actions
with data values in GS.

Under the assumption that decreasing right two-way chains are bounded,
we design a data-assignment function that maps feasible constraint
sequence prefixes to register valuations satisfying it, and that is increasing
for the prefix order (i.e. if κ is a prefix of κ′, then the image of κ is a
prefix of that of κ′).

Lemma 7.26 (Data-assignment function) For every B ≥ 0, there exists a
data-assignment function f : (Constr(R)∪Constr(R t R′)+) → NR

such that

for every finite or infinite consistent constraint sequence κ � τ0τ1τ2 . . . whose
decreasing right two-way chains have depth at most B, the sequence of register
valuation f (τ0 |R) f (τ0) f (τ0τ1) . . . is compatible with κ.

Proof idea. We define a notion of x y(m)-chains that allows to estimate
how many insertions between the values of x and y at moment m we
can expect in future. As it turns out, if we do not known the future, the
distance between x and y has to be exponential in the maximal depth
d of x y(m)-chains. Indeed, at each step, the worst case happens if some
interval has to be divided in two parts, which can happen at most d
times.
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To lighten the argument, we sometimes
say ‘right two-way chain’ for decreasing
right two-way chain. No ambiguity arises
since we only consider decreasing chains.

Figure 7.6.: An x y(m)-connecting chain.

Figure 7.7.:Twopossible suffix constraints,
that impose to leave sufficient room be-
tween r0 , r1 and r2.

We thus construct a data-assignment function that maintains such ex-
ponential distances. If the constraint inserts a register x between two
registers r and s with values dr and ds , then set dx � b dr+ds

2 c; and if the
constraint puts a register x above all other registers, then set dx � dM +2B

where dM the largest value currently held in the registers and B is the
given bound on the depth of decreasing right two-way chains.

Proof. We now move to the formal proof.

x y(m)-connecting chains and the exponential nature of register valu-
ations Fix an arbitrary 0-feasible constraint sequence τ0τ1 . . . whose
decreasing right two-way chains have a depth bounded by B. Consider
a moment m and two registers x and y such that τm implies x > y. We
would like to construct witnessing valuations ν0ν1 . . . using the current
history only. More precisely, τ0 . . . τm−1, we want to build a register
valuation νm that is suitable for all possible suffixes constraint sequences
that induce right two-way chains with depth bounded by B.

Let us see how much space we might need between νm(x) and νm(y).

In Figure 7.6, consider decreasing right two-way chains that start at
moment i ≤ m and end in (x ,m) (shown in blue). They are defined
within time moments {i , . . . ,m}. Symmetrically, consider left two-way
chains that start in (y ,m) and end at moment j ∈ {i , ...,m} (shown in
pink), defined within time moments { j, ...,m}. Among such chains, pick
a pair of chains α and β of respective depths dα and dβ that maximise the
sum dα+dβ . After seeing τ0τ1...τm−1, we do not know how the constraint
sequence will evolve in future, but by boundedness of right two-way
chains, any right two-way chain γ starting in (x ,m) and ending in (y ,m)
(defined within time moments ≥ m) will have depth dγ ≤ B − dα − dβ.
Otherwise, we could append to it the prefix α and the postfix β and
construct a right two-way chain of depth greater than B. As a consequence,
we get that νm(x) − νm(y) ≥ B − dα − dβ , since the distance between the
values of two registers should be greater than or equal to the longest
right two-way chain connecting them.

To formalise the argument, we introduce the notion of x y(m)-connecting
chains, which consists in the parts α and β, where x and y are directly
connected (i.e. we do not have segments like (x ,m) > (z ,m) > (y ,m)
or (x ,m) > (z ,m + 1) > (y ,m)). An x y(m)-connecting chain is a right
two-way chain of the form (a , i) .i . . . (x ,m) > (y ,m) .m . . . . j−1 (b , j):
it starts in (a , i) and ends in (b , j), where i ≤ j ≤ m and a , b ∈ R, and
it directly connects x to y at moment m. Note that it is located solely
within moments {i , ...,m}. Continuing the previous example, the x y(m)-
connecting chain starts with α, directly connects (x ,m) > (y ,m), and
ends with β; its depth is α + β + 1 (we have ‘+1’ no matter how many
registers are between x and y, since x and y are connected directly).

With this new notion, the requirement νm(x) − νm(y) ≥ B − α − β
becomes νm(x) − νm(y) ≥ B − dx y + 1, where dx y is the largest depth of
x y(m)-connecting chains.

However, since we do not know how the constraint sequence evolves
after τ0 . . . τm−1, we might need more space between the registers at
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moment m. Consider Figure 7.7, with R � {r0 , r1 , r2} and a bound B � 3
on the depth of right two-way chains.

I Suppose at moment 1, after seeing the constraint τ0, which is
{r′1 , r′2} > {r0 , r1 , r2 , r′0}, the valuation is ν1 � {r0 7→ 0; r1 , r2 7→ 3}.
It satisfies ν1(r2)−ν1(r0) ≥ B−dr2r0 +1 (indeed, B � 3 and dr2r0 � 1
at this moment); similarly for ν(r1) − ν(r0).

I Let the constraint τ1 be {r1 , r2 , r′2} > {r′1} > {r0 , r′0}. What value
ν2(r1) should register r1 take atmoment 2?Note that the assignment
should work no matter what τ2 is (provided the depth of right
two-way chains does not exceed B). Since the constraint τ1 asks
that r1 is between r0 and r2 at moment 2, we can only assign
ν2(r1) � 2 or ν2(r1) � 1. If we choose 2, then the constraint τ2
having {r2 , r′2} > {r′1} > {r1} > {r0 , r′0} (the red dot in the figure)
shows that there is not enough space between r2 and r1 at moment
2 (ν2(r2) � 3 and ν2(r1) � 2). Symmetrically for ν2(r1) � 1: the
constraint τ2 having {r2 , r′2} > {r1} > {r′1} > {r0 , r′0} (the blue dot
in the figure) kills any possibilities for a correct assignment.

Thus, at moment 2, the register r1 should be equally distanced from
r0 and r2, i.e. ν2(r2) ≈ ν2(r0)+ν2(r2)

2 , since its evolution can go either way,
towards r2 or towards r0. This is why we need a space exponential in the
depth of connecting chains between the registers.

The data-assignment function We now build the data-assignment
function f : (Constr(R) ∪ Constr(R t R′)+) → NR by induction on the
length of τ0...τm−1 as follows.

Initially, f (τ0 |R) � ν0 where ν0(r) � 0 for all r ∈ R (recall that since
f takes as input consistent constraint sequences, τ0 is

∧
r,s∈R r � s ∧∧

r∈R r � 0.

Assume that atmomentm, the register valuation is νm � f (τ0 |Rτ0 . . . τm−1).
Let Cm be the next constraint. Then, we define the register valuation
νm+1 � f (τ0 |Rτ0 . . . τm) as:

1. If a register x at moment m + 1 lies above all registers at moment
m, i.e. τm implies x′ > r for every register r, then we set νm+1(x) �
νm(r)+2B , where r is a register whose value is maximal at moment
m. Note that this happens when the test of the action sequence at
moment m asks

∧
r∈R? > r.

2. If a register x at moment m + 1 lies between two adjacent registers
a > b at moment m, then we set νm+1(x) � b νm (a)+νm (b)

2 c. This is
the case when the test contains a > ? > b and for each r , a , b,
either r ≥ a or r ≤ b.

3. If a register x at moment m + 1 is equal to a register r at previous
moment m, i.e. τm implies r � x′, then we let νm+1(x) � νm(r).
This corresponds to tests of the form? � r.

Let us now show that the following invariant holds:

Claim 7.27 The data-assignment function f satisfies the following property:

For all m ∈ N and all ∀x , y ∈ R such that τm implies x > y , νm(x)−νm(y) ≥ 2B−dx y

where dx y is the largest depth of x y(m)-connecting chains and B is the bound

on right two-way chains.
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Figure 7.8.: Both x and y were already
present.

Figure 7.9.: x is a new value at the top

Figure 7.10.: x is inserted between two
registers

Proof. The invariant holds initially since all registers are initially equal,
i.e. τ0 asks that r � s � 0 for all r, s ∈ R.

Now, assume that it holds at step m; let us show that it holds at step
m + 1. Fix two registers x , y ∈ R such that τm implies x′ > y′. We need to
show that νm+1(x) − νm+1(y) ≥ 2B−dx y , where dx y is the largest depth of
x y(m+1)-connecting chains. There are four cases, depending on whether
the values of x and y at moment m + 1 are present at moment m or not.

Case 1: both are present The values of x and y at m+1 are also present
at moment m. This corresponds to item 3 in the definition of f . Then, let
a , b be registers such that τm implies a > b, as all as a � x′ and b � y′.
Thus, we have νm(a) � νm+1(x) and νm(b) � νm+1(y). Note that there
might be less register values between x and y than between a and b
(depicted as black dots in Figure 7.8). Consider the depths of connecting
chains for ab(m) and x y(m+1). Since every ab(m)-connecting chain can be
extended to an x y(m+1)-connecting chain of the same depth as shown on
the figure, we have dab ≤ dx y , hence 2B−dab ≥ 2B−dx y . As a consequence,
νm+1(x) − νm+1(y) � νm(a) − νm(b) ≥ 2B−dab ≥ 2B−dx y .

Case 2: x is a new value at the top Now, assume that the register x
is greater than all values of moments m and m + 1, and y has a value
that was also present at moment m (cf Figure 7.9). This corresponds to
item 1 in the definition of f . Then, we have that τm implies x′ > r for all
r ∈ R, and that y′ � b for some b ∈ R. Let a be a register whose value is
maximal at moment m, i.e. such that τm implies r ≤ a for all r ∈ R (a
and b may coincide). Thus, νm+1(x) � νm(a) + 2B . The invariant holds
for x , y because νm+1(x) � νm(a) + 2B and νm(a) ≥ νm(b) � νm+1(y).

Case 3: x is inserted between two registers, y was already present We
now treat the case where the register x at moment m + 1 takes a value
that is between a and b, i.e. τm implies a > x > b. We take optimal a and
b, i.e. such that either r ≥ a or r ≤ b for all r ∈ R. This corresponds to
item 2. Then, νm+1(x) � b νm (a)+νm (b)

2 c. We also assume that the register y
at moment m + 1 at moment m + 1 is equal to some register c at moment
m, i.e. τm implies c � y′. Note that c and b may coincide. Then,

νm+1(x) − νm+1(y) �
⌊
νm(a) + νm(b)

2

⌋
− νm(c)

�

⌊
νm(a) − νm(c)

2
+
νm(b) − νm(c)

2

⌋
≥

⌊
νm(a) − νm(c)

2

⌋
+

⌊
νm(b) − νm(c)

2

⌋
≥

⌊
2B−dac−1⌋

+
⌊
2B−dbc−1⌋

≥ 2B−dac−1
+

⌊
2B−dbc−1⌋

Weneed to show that the 2B−dac−1+ b2B−dbc−1c ≥ 2B−dx y . In Figure 7.10, we
showhow thegreen x y(m+1)-connecting chain canbe constructed from the
pink ac(m)-connecting chain, which implies that dx y ≥ dac + 1, so we get
2B−dac−1 ≥ 2B−dx y . Overall, νm+1(x) − νm+1(y) ≥ 2B−dac−1 + b2B−dbc−1c ≥
2B−dx y .
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Case 4: x was present, y is inserted in between The case is similar to
the previous one, but we prove it for completeness. Assume that τm
contains a � x′, x′ > y′, b > y′ > c, where b and c are adjacent (a and b
might be the same). Then,

νm+1(x) − νm+1(y) � νm(a) −
⌊
νm(b) + νm(c)

2

⌋
≥

⌊
νm(a) − νm(b)

2
+
νm(a) − νm(c)

2

⌋
≥

⌊
νm(a) − νm(b)

2

⌋
+

⌊
νm(a) − νm(c)

2

⌋
≥

⌊
2B−dab−1⌋

+
⌊
2B−dac−1⌋

≥
⌊
2B−dab−1⌋

+ 2B−dac−1

Since dac + 1 ≤ dx y , we get that νm+1(x) − νm+1(y) ≥ b2B−dab−1c +
2B−dac−1 ≥ 2B−dx y . End of the proof of Claim 7.27

From the invariant (Claim 7.27), it is then routine to show that for every
finite or infinite consistent constraint sequence κ � τ0τ1τ2 . . . whose
decreasing right two-way chains have depth at most B, the sequence
of register valuation f (τ0 |R) f (τ0) f (τ0τ1) . . . is compatible with κ. We
write the argument for completeness.

Our goal is to show that for every atomic formula (r ./ s) (respectively,
(r ./ s′)) of τm , where r, s ∈ R and ./ ∈ {<, >,�}, the expressions
νm(r) ./ νm(s) (resp., νm(r) ./ νm+1(s) hold.We treat each case separately:

I If τm implies r � s (respectively, r � s′or for some r, s ∈ R, then
item 3 implies νm(r) � νm(s) (resp., νm(r) � νm+1(s)).

I If τm implies r > s, then νm(r) > νm(s) by the invariant (Claim
7.27).

I Assume that τm implies r > s′, and that the value of s at moment
m + 1 is present at moment m, i.e. there is a register t such that τm
implies t � s′. Then τm also implies r > t, since it is maximally
consistent. Since νm(t) � νm+1(s) (item 3) and since νm(r) > νm(t)
(as τm implies r > t), we get νm(r) > νm+1(s).

I Similarly for the case τm implies r < s′, where s takes a value that
is also present at moment m.

I Now, if τm implies r < s′ and if the value of s ismaximal atmoments
m and m+1, then then νm(r) < νm+1(s) because νm+1(s) ≥ νm(r)+
2B by item 1.

I Finally, there are two cases left, namely τm implies r > s′ or
r < s′, where s takes a new value at moment m + 1, and there
are higher values at moment m. This corresponds to item 2. Let
a and b be two registers that are adjacent in τm , i.e. such that τm
implies a > b and r ≥ a or r ≤ b for all r ∈ R, and such that s
is inserted between a and b, i.e. τm implies a > s′ > b. Let dab
be the maximal depth of ab(m)-connecting chains; fix one such
chain. We change it by going through s at moment m + 1, i.e. we
substitute the part (a ,m) > (b ,m) by (a ,m) > (s ,m + 1) > (b ,m).
The depth of the resulting chain is dab + 1 and it is bounded by
B by boundedness of right two-way chains. Thus, dab ≤ B − 1, so
νm(a) − νm(b) ≥ 2, implying νm(a) > b νm (a)+νm (b)

2 c > νm(b). When
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[42]: Exibard, Filiot, and Khalimov (2021),
‘Church Synthesis on Register Automata
over Linearly Ordered Data Domains’

τm implies r > s′, we get νm+1(r) ≥ νm(a), and when it implies
r < s′, we get νm+1(r) ≤ νm(b), therefore we are done.

End of the proof of Lemma 7.26

It remains to put everything together, by instantating Adam’s strategy λ
with concrete data values in the Church data game GS. By Lemma 7.25,
we know that the depth of the right two-way chains of the plays that are
consistent with λ is uniformly bounded by some B ∈ N. Instantiation
is done through to the function f defined in Lemma 7.26: the idea is
to construct a strategy λN in GS from λ by translating the finite action
sequence that corresponds to the current history φ0asgn0 . . . φmasgnm
into a finie constraint sequence through f . Then, by construction, for
each play in GS consistent with λN, the corresponding run ρ in S is a play
consistent with λ in Greg

S . As λ is winning for Adam, ρ is not accepting,
which means that the play is winning for Adam in GS . Therefore, λN is a
winning strategy for Adam in GS, meaning that Eve loses GS.

Let us be more precise: we build λN by induction on the length of the
play. Assume that d0 . . . dk−1 has been played by Adam, and that Eve
played e0 . . . ek−1 (we treat the initial case of the induction simultaneously
by allowing k � 0).Wewant to know thevalue dk forλN(e0...ek−1). Let ρ �

(p0 , ν0)(φ0 , asgn0)(q0 , ν′0)(φ′0 , asgn′0)(p1 , ν1)(φ1 , asgn1)(q1 , ν′1)...(φ′k−1 , asgn
′
k−1)(pk , νk)

be the partial run of S over 〈d0 . . . dk−1 , e0 . . . ek−1〉. By the induction hy-
pothesis, this corresponds to a play that is consistent with λ in Greg

S (this
is initially the case). Let (φk , asgnk) � λ(ρ) be the next transition of S
chosen by Adam in Greg

S .

Let τ0 . . . τk−1 be the constraint sequence built from (φ0asgn0φkasgnk)
by the mapping constr of Lemma 4.45. By Lemma 7.25, we know that
the strategy λ induces constraint sequences over R whose right two-way
chains have depth at most B. Thus, we can apply the data-assignment
function from Lemma 7.26. This yields a register valuation νk+1, which
provides a value for ? (for simplicity, we can take νk+1 over R t {?}
and let dk � νk+1(?)). Then, S transitions to configuration (pk+1 , νk+1),
and Greg

S is now in vertex pk . Thus, the extended play is consistent with
Adam’s strategy λ. This way, we build a strategy λN in GS whose plays
all correspond to plays that are consistent with λ in Greg

S . Thus, all plays
of GS that are consistent with λN correspond to interactions d0e0d1e1 . . .
whose run in S is not accepting: λN is winning in GS.

As a consequence, if Eve does not win Greg
S , she does not win GS . End of the

proof of Proposition 7.23

Remark 7.11 A corollary of the above proof is that GS is determined:
either Adam has a winning strategy, or Eve has one.

The above proposition states that Greg
S forms a sound and complete

abstraction for GS, which implies the following:

Theorem 7.28 ([42, Theorem 17]) The reactive synthesis problem and the

Church synthesis problem for specifications given as deterministic one-sided
register automata over (N, <, 0) coincide and are both ExpTime-complete.

Moreover, it suffices to target implementations that use the same registers as the

implementation, and in the same way.
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Proof. Let S be a deterministic one-sided specification register automaton
over (N, <, 0) with state space Q and registers R. By Proposition 7.23,
we know that Eve has a winning strategy in Greg

S if and only if she has
one in GS (items (i) and (v)). Solving GS is equivalent to solving the
reactive synthesis problem for S (Proposition 5.2), so, overall, it amounts
to solving Greg

S . By Proposition 7.22, this game has |Q |2poly(|R |) vertices
and O(|R |) colours. Using Zielonka’s algorithm [88] (cf Theorem 3.12),
we can solve it in time O((|Q |2poly(|R |))|R |), which is exponential in |R |, so
exponential in the size of S.

Moreover, again by Proposition 7.23, we know that Eve wins GS if and
only if she wins G f

S with a finite-memory strategy (items (i) and (iii)).
By Proposition 7.4, this means that if S has an implementation, she has
one that is computed by a register transducer, which means that reactive
synthesis is equivalent with Church synthesis for those specifications.

Finally, the ExpTime lower bounds results from the ExpTime-hardness of
the case of (D,�,C) (Theorem 7.12).
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Partial Versus Total Domain 8.
In this short chapter, we discuss the connection between synthesis and
uniformisation of relations, defined in Section 3.2.1 (Definition 3.1).
In our context, this distinction allows to consider the question of the
domain of the specification: as pointed out in Remark 3.5, synthesis
usually targets implementations that have a total domain; in particular,
specifications whose domain is not total are considered unrealisable.
This is the case in particular for register transducers (Definition 5.2): by
definition, for any register transducer T, we have dom(JTK) � (Σ ×D)ω,
so if a specification S is realisable by a register transducer T (i.e. JTK ⊆ S),
we have dom(S) � (Σ ×D)ω.

However, it might happen that the user provides a specification whose
domain is not total, but would be content with an implementation that
is correct on inputs that belong to the domain (i.e. that admit at least
one corresponding acceptable behaviour). This is the case for instance if
they are only interested in a subset of behaviours; e.g., they know that
all input data values are pairwise distinct, or, to the contrary, that only
a bounded number of distinct data values are input (as is the case for
parameterised synthesis [34]), so they do not care about what happens
for inputs that break this property. In the finite alphabet setting, the
formalisms used to express specifications are closed under complement
(whether we consider MSO, LTL or ω-automata), and it is actually not
a restriction to assume that the domain of the specification is total: it
suffices to complete the specification by allowing any behaviour on inputs
that do not belong to the domain. Any implementation satisfying this
extended specification satisfies it over its domain. This question has
recently been studied under the name of good-enough synthesis in the
context of LTL specifications [133]. In particular, the construction that we
sketched for allowing arbitrary outputs on the complement of the domain
is detailed in Theorem 1, which states that the more general problem of
synthesising good-enough implementations is 2-ExpTime-complete, as is
the case when targeting implementations that accept all inputs [13].

The landscape radically changes in the infinite alphabet case, for spec-
ifications given by register automata: since they are not closed under
complement, the above approach does not work anymore, and the prob-
lem actually becomes undecidable.

This retrospectively justifies our efforts to provide undecidability proof
for specifications whose domain is known to be total, so as to remove
what is already a source of undecidability (Theorems 6.19, 6.20 and 7.1).

8.1. Domains of Specification Automata

First, let us show that one cannot decide whether a specification register
automaton has total domain, already when it is deterministic.

Theorem 8.1 ([41, Theorem 5.1]) Given a deterministic specification automa-

ton S over (D,�,C), it is undecidable whether its domain is total.
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Proof. We reduce from the universality problem of non-deterministic
register automata, which is undecidable [101, Theorem 5.3] (see also
Theorem 4.21). The main idea is to encode the language of a NRA as
the domain of some deterministic specification register automaton: the
input transitions are the same as those of the original automaton, but
when there is some non-determinism, its resolution is postponed to the
corresponding output transition, whose label corresponds to the chosen
transition. In the vocabulary of games, we make Adam choose the label
and the test over the input data value, while Eve is in charge of solving
non-determinism.

We move to the formal proof. Let A � (Q , I ,Σ, R,∆,Ω) be a non-
deterministic register automaton over (D,�,C). Assume without loss of
generality that its tests consist in maximally consistent tests (Proposition
4.5). We construct a deterministic specification register automaton SA
over (D,�,C)with label alphabet Σ t δ recognising the relation

RA �

{(
(σ1 , d1)(σ2 , d2) . . . ,
(t1 , d1)(t2 , d2) . . .

) ���� t1t2 . . . is a run of A
over (σ1 , d1)(σ2 , d2) . . .

}
(8.1)

DefineSA � (QtQ×(Σ×MCTests(R)), {q0},Σtδ, Rt{r0}, δ′,Ω′),where
transitions are defined as follows. Let q ∈ Q, σ ∈ Σ and φ ∈ MCTests(R).
We define the input transition p

σ,φ,{r0}−−−−−−→
SA

(p , (σ, φ)), that simply consists

in storing the input label and test in memory, and the input data value

in r0. Then, for all transitions t � p
σ,φ,asgn
−−−−−−→

A
q ∈ δ, we define the output

transition (p , (σ, φ))
t ,φ∧(?�r0),asgn−−−−−−−−−−−→

SA
q that consists in outputting the label

t and simulating the transition. The acceptance condition only depends
on the states of A, and is given as Ω′ � π−1

1 (Ω). By construction, SA
is deterministic and recognises the relation RA of Equation 8.1. Thus,
dom(SA) is total if and only if L(A) � (Σ × D)ω. This concludes the
proof.

This result obviously extends to non-deterministic and universal speci-
fication register automata, since deterministic ones form a special case.
Note that the unbounded synthesis problem for deterministic register
automata specifications is not reducible to deciding whether the domain
is total: if the specification is not realisable, it is not possible in general to
determine whether it is because its domain is not total or because it is
not realisable by a sequential machine (e.g. it asks to output right away a
data value that will only be input in the future).

As a corollary, observe that it is undecidable whether the domain of
a deterministic specification register automaton is recognisable by a
deterministic register automaton.

Corollary 8.2 There is no algorithm that, given a deterministic specification

automaton S over (D,�,C), exhibits a deterministic register automaton D such

that L(D) � dom(S) if it exists and answers No otherwise.

Proof. The set of all data words is trivially recognisable by a deterministic
register automaton which simply ignores its input and accepts. Thus, we
can reduce from the aboveproblemas follows: letS be aDRAspecification.
If its domain cannot be recognised by a deterministic register automaton,
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then in particular it cannot be the set of all data words. If it is, compute
some deterministic register automaton D that recognises dom(S) and
check that L(D) � (Σ × D)ω. This can be done by checking whether
Dc � ∅, since complementing deterministic register automata amounts
to complementing their acceptance condition and emptiness is decidable
for (non-)deterministic register automata.

8.2. Uniformisation Problem

As a consequence, it is not possible to preserve decidability if one equips
register transducers with an acceptance condition and considers the
uniformisation problem. Recall that f : (Σ×D)ω → (Γ×D)ω uniformises
R ⊆ (Σ ×D)ω × (Γ ×D)ω whenever (Definition 3.1):

(i) dom( f ) � dom(R)
(ii) f ⊆ R, i.e. for all x ∈ dom( f ), (x , f (x)) ∈ R

Then, the uniformisation problem is defined as

Problem 3.1: Uniformisation problem

Input: A relation R ∈ R
Output: A finitely represented function f ∈ Fwhich uniformises R

if it exists
No otherwise

Formally, a register transducer T � (Q , q ι ,Σ, Γ, R, δ) can be equipped
with an acceptance condition Ω ⊆ Qω; it then recognises the partial
function that associates an input data word with the output of the unique
run only if it is accepting (i.e. its sequence of states satisfy Ω). It is a
simple observation that the domain of such functions is recognisable by
a deterministic register automaton. Thus, by Corollary 8.2 one gets:

Theorem 8.3 The uniformisation problem for specifications given by determin-

istic register automata to register transducers with an acceptance condition is

undecidable.

8.3. Good-Enough Synthesis

We can finally show that the good-enough variant of the register-bounded
synthesis problem for specifications given by universal register automata
is undecidable. Formally, it is defined as follows:

Problem 8.1: Good-enough register-bounded synthesis problem
over data words

Input: A data word specification S ⊆ (Σ ×D)ω × (Γ ×D)ω and
an integer bound k ≥ 1

Output: A register transducer T with k registers computing
a function fT : (Σ ×D)ω → (Γ ×D)ω
such that for all x ∈ dom(S), (x , fT(x)) ∈ S
if it exists
No otherwise

This is in contrast with Theorem 6.14.
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Theorem8.4 ([41, Theorem5.2]) The good-enough register-bounded synthesis
problem for specifications given by universal register automata over (D,�,C) is
undecidable.

Proof. The proof is a direct reduction from the emptiness problem of
universal register automata, which is undecidable ([101, Theorem 18] and
Theorem 4.50).

Let A be a universal register automaton. Consider the specification

S �

(w$u(σ, #)$x , w$(σ, #)u$x)

������ w ∈ L(A)
u ∈ (Σ ×D)∗ , σ ∈ Σ
x ∈ (Σ ×D)ω


It is well-known that no sequential machine can conduct the transforma-
tion u(σ, #) 7→ (σ, #)u, as it implies guessing σ before reading it. Thus,
there is a register transducer implementation that is good-enough for S if
and only if S � ∅, if and only if L(A) � ∅. This concludes the proof.



Conclusion 9.
Unbounded Synthesis for Register Automata In this part, we have
given a picture of the decidability landscape of the synthesis of register
transducers from register automata specifications over data domains
(D,�,C), (Q, <, 0) and (N, <, 0), which respectively provide reasonably
expressive formalisms for implementations and specifications. As demon-
strated in Chapter 7, the landscape of unbounded synthesis is quite grim,
as we quickly get undecidability: the (unbounded) synthesis problem
is undecidable for both non-deterministic and universal specification
register automata, already over (D,�, #). This seems to be intrinsic to
the case of infinite alphabets, as most known models have an undecid-
able universality or emptiness problem, which is often enough to calm
synthesis passions. Still, results about decidability of the unbounded
synthesis problem for deterministic specifications can be read as decid-
ability of classes of games over data values, which is encouraging for
further game-theoretic perspectives. Specifically, we plan to generalise
the study of unbounded synthesis to good-for-games register automata.
Multiple notions can be defined, depending on whether we want to
impose constraints on the strategy that chooses transitions. Then, the
main question is whether such a class is decidable, and how expressive
it is.

Note also that the techniques that are developed for (N, <, 0) should
be of interest to a more general audience. In particular, the proof of
correctness based on strategy transfers through concretisation of tests
along the run requires developments that are relevant in their own
right. Besides, two problems remain open, namely unbounded synthesis
for test-free non-deterministic specification automata, that we believe
is decidable but difficult, and Church synthesis for deterministic one-
sided specification automata over (N, <, 0) (i.e. when we target register
transducer implementations with a fixed, constant initial valuation), for
which we do not have a conjecture.

Register-BoundedSynthesis forRegisterAutomata Moreover, register-
bounded synthesis raises spirits, since decidability is recovered for uni-
versal register automata over (D,�,C), (Q, <, 0). The next part actually
allows, as a side-product, to further generalise decidability of the register-
bounded synthesis problem to the class oligomorphic data domains
(under reasonable computability assumptions), that contain both data
domains (see Chapter 14 (Thesis Conclusion)). Indeed, as we have seen,
the key ingredient is that we are able to abstract the behaviour of register
automata through the notion of type, which we store as constraints
and yields a finite abstraction when there are finitely many. We did not
include this development in this part for the sake of clarity. The case
of register-bounded synthesis for URA over (N, <, 0) is left open in this
manuscript as it is the topic of current reasearch; it appears that a closer
examination of constraint sequences allows to reduce to an ω-regular
approximation of the problem, by extending the techniques that we
developed for the unbounded case.
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Towards Logics As illustrated by the case of test-free non-deterministic
register automata, the transfer theorem yields a generic method for the
decision of register-bounded synthesis, andpaves theway for applications
to other formalisms. Over data words, the landscape of relations between
automata and logics is much more complex than in the finite alphabet
case [101, 124]. In particular, the correspondence between ω-automata
and MSO means that specifications given by ω-automata capture the
intrinsic difficulty of the synthesis problem over finite alphabets; such a
correspondence remains to be discovered for models over data words (if
it exists at all). While undecidability results over logics for data words are
somewhat deterring, they form a key line of research, as the ultimate goal
of synthesis is to obtain high-level formalisms. In particular, two-variable
fragments of first order logic look promising [128, 134, 135]. The synthesis
problem from specifications expressed as first-order formulas with two
variables and predicates (equality of data values), < (order on positions)
and +1 (successor on positions) is undecidable [34, Theorem 5], but the
problem remains open when we restrict to and < (without the successor
relation). It is also open in the more general setting of ordered data
values (again without successor), i.e. with two predicates <p (order on
positions) and <d (order on data), whose finite satisfiability problem
has been shown decidable (more precisely, ExpSpace-complete) in [135,
Theorem 3.1].

Other Models of Computation It would also be relevant to consider
othermodels, such as pebble automata [101, Section 2.2] and deterministic
class-memory automata [103], which are each expressively incomparable
with register automata (respectively [101, Figure 1] and [103, Proposition
4.2]). Note that the quest is doomed for non-deterministic class-memory
automata (or, equivalently [103, Proposition 3.7], data automata [134,
Section IV]), since they strictly contain non-deterministic register au-
tomata [103, Theorem 4.1], whose register-bounded and unbounded
synthesis problem are undecidable (Theorems 6.19 and 6.20), unless
possibly when targeting other classes of implementations.

Embracing Undecidability Another direction, initiated over infinite
alphabets in [44] for register automaton formalism and furthered in [46]
for Temporal Stream Logic, is to accept undecidability and look for semi-
algorithms. Those two papers present encouraging results, which means
that it is probably theway to go for practical applications in the near future.
The techniques developed in [136, 137] could also yield semi-decision
procedures for synthesis problems over (alternating) data automata,
which is undecidable. Still, the field of synthesis over infinite alphabets
is fairly recent, and many theoretical results are yet to be obtained so
as to pinpoint the sources of the complexity and (un)decidability of the
problems we consider.

Challenges for an Implementation As it reduces to the finite alphabet
case, the method exposed in Chapter 6 allows to leverage existing tools
dedicated to classical reactive synthesis. However, the main challenge
is to tame the abstraction of the behaviour of register automata, more
precisely their projection over labels: a naive construction systematically
blows-up the state space by a factor that is exponential in the number
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of registers, independently of the relevance of the constraints that are
explored. We expect that antichain techniques [16] or binary decision
diagram-based approaches [138] might be of use to control this blowup;
this of course does not preclude the development of other techniques
that are specific to registers.

Another possibility is to relax the requirement of feasibility for the action
sequences, and to progressively restore it in case of a negative answer,
using a CEGAR [139] approach. This is particularly relevant in the case of
(N, <, 0), where feasibility checking requires some amount of counting.

To this challenge adds all the ones that already exist for classical synthesis.
In particular, efforts have been made to yield compositional algorithms
for synthesis [16, 19, 140], but there is still a lot to be done. And, contrary
to verification, where one can independently check different properties,
a specification should right away make precise all the requirements that
the system has to meet, which means that they are typically bigger than
specifications for verification, and makes compositionality even more
important. Still, tremendous progress has happened in the last decade
and, as pointed out in the previous paragraph, positive results already
exist in the infinite alphabet case.

This concludes this part, and we now move to the study of the case of
asynchronous specifications and implementations, again expressed by
machines with registers.



Part II.

Computability of Functions
Defined by Transducers

over Infinite Alphabets
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In this part, we study systems which do not react to their inputs in a
synchronous way. More precisely, we are interested in non-deterministic
asynchronous transducers with registers. As for their synchronous coun-
terparts, these machines are equipped with a finite set of registers, that
they use to store data values. We do not assume anymore that they are
sequential, and instead study their non-deterministic variant. Finally,
asynchrony means that on reading an input, the machine outputs a finite
data word (which may be empty) instead of a single data value. Thus,
while a synchronous transducer can be seen as an automaton operating
over the product of the input and output alphabets, an asynchronous
transducer corresponds to an automaton with two tapes that can move
independently from left to right (except that the one operating over the
input is not allowed to stay at the same spot for too long).

Already in the finite alphabet case, the reactive synthesis problem for
specifications expressed by non-deterministic transducers is undecid-
able [48, Theorem 17], so we instead focus on the properties of the
relations computed by these transducers. We are interested in particular
in the subclass of transducers which compute functional relations. Note
that, as we show, membership to this class is decidable for a large class
of data domains which includes all the data domains that we study in
Chapter 4 (Theorems 12.8, 12.40 and 12.64, respectively for (D,�), for
oligomorphic data domains and for (N, <, 0)).

We then examine the conditions that make a function in this class com-
putable. As we are working over infinite words, the notion of computabil-
ity has to be extended to ω-computability: a function is ω-computable
when there exists a deterministic Turing machine that, on reading longer
and longer prefixes of the input, produces longer and longer prefixes
of the output (Definition 11.2 and Section 11.1). Letters of those words
moreover take their values in an infinite alphabet, so we further need to
extend the notion of a Turing machine. Those machines can store a data
value in a single cell, and their transitions depend on tests over these data.
This is of course an abstraction, as one cannot encode an infinite alphabet
using a bounded amount of memory. We show that ω-computability
is robust to encoding, in the sense that it also hold when we instead
consider a machine that explicitly works with an encoding of the data.
This is not the case for uniform computability, yet this notion still proves
relevant as it allows a fine-grained analysis of the quantity of data values
that have to be read before being able to produce some output.

In [51], Dave et al. established that over finite alphabets, ω-computability
is equivalent to continuity for the Cantor distance for functions definable
by (possibly two-way) non-deterministic transducers. Our main result
is an extension of this equivalence over infinite words, for one-way
register transducers. We moreover show that, even over data words, both
notions are decidable for all the data domains that we consider (modulo
mild computability assumptions). We draw the reader’s attention to the
fact that all those results hold when non-deterministic reassignment
(also known as guessing) [38] is allowed, which strictly increases the
expressive power of register transducers. This poses no difficulty in the
case of (D,�,C) and oligomorphic domains, but necessitates additional
work for the case of (N, <, 0). In particular, note that continuity was also
studied in [50], where it is shown that deciding continuity of f reduces
to deciding functionality of its topological closure. Such an approach
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again works for (D,�,C) and oligomorphic data domains, but fails over
(N, <, 0) in the presence of non-deterministic reassignment. For this
reason, we chose a different approach.

Related Publications Our results were partially published in confer-
ence proceedings [141] for the case of data domains the equality predicate
only, without guessing. This is the topic of Section 12.1, which also allows
guessing as it comes for free. This publication led to the writing of an
extended version, that is currently being reviewed [142]. It generalises
the study to oligomorphic data domains, that subsume (D,�,C) (Section
12.2), and to (N, <, 0) (Section 12.3), all with guessing.

Summary



This part is meant to be readable indepen-
dently. However, the reader who skipped
Chapter 4 is invited to consult the begin-
ning of this chapter if they are not famil-
iar with the notions of tests and valua-
tions (Section 4.2), as it provides some
examples of their use. More generally, this
part assumes an elementary knowledge
of register automata (Definition 4.13), as
they underly our definition of transduc-
ers and are used as a tool in the proofs.
This knowledge can be found in Chapter
4, which states properties from the litera-
ture that we use here. Finally, recall that
the knowledge package links all notions
to the place they are defined.

Data domains without equality constitute
pathological cases that we want to rule
out.
For simplicity, in the following,we confuse
the symbols with their interpretation.

Note that data words are infinite, other-
wise they are called finite data words.

D is omitted when clear from the context.

As previously stated, we explicitly treated
labels in the first part for modelling puro-
poses. Here, we drop this treatment to
lighten the argument, since we lie on a
more theoretical level.

[71]: Sakarovitch (2009), Elements of Au-

tomata Theory

[143]: Sakarovitch (2003), Éléments de

théorie des automates

To express non-deterministic reassign-
ment in an operational way, we slightly
modified the syntax of transitions of the
model from that of sequential transducers:
there is now no dedicated asgn set, and
the transition instead expresses whether
the value of the register is kept, set to the
input data value or guessed.

Non-Deterministic
Asynchronous Register

Transducers 10.
This part is largely independent of the other, so we recall here the notion
of data domain, valuation and test .

Definition 4.1 (Data domain, data words) A data domain is a triple D�

(D,R,C)whereD is a countably infinite set of data values, R is a finite set
of interpreted relational symbols, also known as predicates and C a finite
set of interpreted constant symbols, disjoint from R. The setS � R t C is
called the signature of D. We assume that the symbol � is in R, and we
interpret it as the equality relation.

A data ω-word, or simply data word, is an infinite sequence of data
x � d0d1 · · · ∈ Dω. Finite data words are defined analogously.

Definition 4.7 (Valuation) A valuation of variables X over data domain
D is a total function ν : X → D. We denote by ValD(X) � XD the set of
valuations of X over D.

Definition 4.10 (Test) Let R be a finite set of variables, that we call
registers, and let ? < R be a variable, denoting the input data value. A
test in D over R is a quantifier-free formula ϕ over variables the R t {?}.

The set of tests in D over R is denoted TestsD(R). It is infinite in general,
but finite up to logical equivalence (see Proposition 4.5).

For a valuation ν : R → D, a data value d ∈ D and a test φ, we often
write ν, d � φ for ν{?← d} � φ.
Remark 10.1 (On Labels) Contrary to Part I, in this part we are only
concerned with data words which have no labels, as they can be included
in the data domain. Formally, for a finite alphabet Σ and a data domain
D� (D,R,C), one can instead consider the product data domainΣ×D�

(Σ ×D, (R t {�σ}σ∈Σ), (Σ × C)),where relations inR are interpretedover
the data component and, for σ ∈ Σ,�σ (a , d)whenever a � σ. This choice
is made to reduce notational complexity. Besides, the reader can check
that labels would anyway play no role in our proofs. Note that they are
present in some examples; this should pose no difficulty.

10.1. The Model

We are now ready to define non-deterministic asynchronous register
transducers. They are defined by equipping non-deterministic (register-
free) asynchronous transducers (see, e.g., [71, 143, Chapter IV Section
1.5]) with registers, in the same way as synchronous sequential register
transducers extend their register-free counterparts. Recall that instead
of outputting a single letter, an asynchronous transducer is allowed to
output a (possibly empty) word. Note that here, non-determinism is to
be understood as the full-fledged notion, i.e. we allow non-deterministic
reassignment (or guessing) of data values. Finally, for simplicity, we only
study the Büchi acceptance condition. This is without loss of generality
as it can express the other ω-regular acceptance conditions (Fact 3.1).

https://www.irif.fr/~colcombe/knowledge_en.html
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Note that, as for synchronous transducers,
w is output after the possible assignment
in t.

The fact that t is enabled only depends on
C and φ, as it amounts to asking whether
there exists d ∈ D such that C, d � φ.

Assumption 10.1 In the following, we assume that the set of C is not
empty and contains a distinguished constant #. As for register automata,
this is needed for the initialisation of registers. Given a set R of registers,
the initial valuation is defined as νιR : r ∈ R 7→ #.

Definition 10.2 (Non-deterministic asynchronous register transducer) A
non-deterministic asynchronous register transducer (with Büchi acceptance
condition) over data domain D� (D,R,C) is a tuple T � (Q , I , R,∆, F)
where:

I Q is a finite set of states
I I ⊆ Q is a set of initial states
I F ⊆ Q is a set of accepting states
I R is a finite set of registers
I ∆ is the transition relation. It is a finite subset of

Q︸︷︷︸
current state

× TestsD(R)︸     ︷︷     ︸
current registers + input data

× {keep, set, guess}R︸                  ︷︷                  ︸
register operations

× R∗︸︷︷︸
output word

× Q︸︷︷︸
target state

As usual, we write p
φ |regOp,v
−−−−−−−→

T t
q for t � (p , φ, regOp, v , q) ∈ ∆,

and omit T and/or t when they are clear from the context.

Such a transducer is non-guessing if for all transitions, regOp : R →
{keep, set}. It is deterministic when, additionally, its transition relation is
a partial function δ : Q × TestsD(R) → Q × {keep, set}R × R∗, which is
moreover such that for all states q ∈ Q, for all valuations ν : R→ D and
all data values d ∈ D, there exists at most one φ ∈ TestsD(R) such that
(q , φ) ∈ dom(δ) and ν, d � φ.

In the following, we simply say ‘non-deterministic register transducer’ or
even ‘register transducer’ for ‘non-deterministic asynchronous register
transducer’, as no ambiguity arises.

Now, a configuration C of T consists of a state and a valuation, i.e.
C � (q , ν) ∈ Q × ValD(R). A configuration is initial if q ∈ I and ν � νιR . It
is final if q ∈ F. The set of configurations of T is written Configs(T).

Let C � (p , ν) and C′ � (q , λ) be two configurations; let d ∈ D and

t � p
φ,regOp,v
−−−−−−−→

T
q be a transition. We say that C′ is a successor configuration

of C by reading d through t and producing w ∈ D|v | when:

I The test is satisfied, i.e. ν, d � φ
I Registers are updated correctly, i.e.

• for all r ∈ R, if regOp(r) � keep, then λ(r) � ν(r)
• for all r ∈ R, if regOp(r) � set, then λ(r) � d
• for all r ∈ R, if regOp(r) � guess, then λ(r) ∈ D can take any

data value in D

I The output data word indeed corresponds to the content of the
output registers: for all 0 ≤ i < |v |, w[i] � λ(v[i]).

We then write C
d ,φ |regOp,w
−−−−−−−−−→

T t
C′ when this is the case. In that case, we

say that t is enabled from C. If they are clear from the context, we omit T

and/or t; we sometimes omit φ and regOp and simply write C
d |w
−−→t C′.
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Formally, ρ is accepting whenever
Inf(states(ρ)) ∩ F , ∅.

These graphical conventions are recapitu-
lated in Section A.6.

A run over input x ∈ Dω is an infinite sequence ρ � C0t0C1t1 · · · ∈
(Configs(T)∆)ω such that for all i ∈ N, Ci

x[i]|vi−−−−→
T ti

Ci+1. It produces the

(possibly finite) output w � v0v1 · · · ∈ D∞. It is initial if C0 is initial. It
is final if states(ρ) satisfy the Büchi acceptance condition defined by F,
i.e. infinitely many configurations of ρ are final. It is accepting if it is

both initial and final. We write p
x |w
−−→ when there is a run from state

p that produces w ∈ D∞ on input x ∈ Dω. The notion of (initial, final,

accepting) partial run are defined in the expected way; we write p
u |v
−−→ q

when there is a partial run from p to q with input u ∈ D∗ and output
v ∈ D∗.

Then, the semantics of T is defined as JTK ⊆ Dω ×D∞, with

JTK �
{
(x , w) | there exists an accepting run over x that produces w

}
Size of a register transducer Complexity-wise, the relevant parameters
forT are its number of states |Q |, its number of registers k and itsmaximum

output length M, which is the maximum length of any output word v
appearing on the transitions. The size ofT is then defined as their product.
Note that k is implicitly encoded in unary, since in general it requires
O(k) bits to describe a transducer with k registers.

Graphical depiction of register transducers In the examples, we often
provide a pictural representation of the transducers we consider. As
for register automata, the graphical depiction of transducers slightly
differs from its mathematical definition, to get a more intuitive rendering.
States and transitions are respectively depicted as circles and arrows, as

usual. Given a transition p
φ |regOp,w
−−−−−−−→ q, we extract from regOp the set

asgn � {r ∈ R | regOp(r) � set} of assigned registers and ndasgn � {r ∈
R | regOp(r) � guess}. Registers whose content is unaffected, i.e. those
such that regOp(r) � keep, are not depicted so as not to clutter the figure.
Then, as for register automata, we write ↓ r to signify that r ∈ asgn (the
input data value is stored in r) and ?r when r ∈ ndasgn (the content of r
is guessed).

Finally, when labels from a finite alphabet Σ are involved (Remark 10.1),
we unify the notations with Part I and write σ, φ for the test σ(?) ∧ φ,
which conducts test φ and additionally asks that the label is σ, for all
σ ∈ Σ.
Example 10.1 As an example, consider the register transducer Trename
depicted in Figure 10.1 on the following page. It operates over data
domain (Σ × D,�, del, ch, $), where Σ � {del, ch, $} is an alphabet of
labels (see Remark 10.1). By a slight abuse of notation, del (respectively, ch,
$) are unary predicates specifying that the label is del (resp. ch, $). It deals
with communication logs between a set of clients. A log is an infinite
sequence of pairs consisting of a tag, chosen in some finite alphabet Σ,
and the identifier of the client delivering this tag, chosen in some infinite
set of data values. The transducer must modify the log as follows: for a
given client that needs to be modified, each of its messages should now
be associated with some new identifier. It should verify that this new
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identifier is indeed free, i.e. never used in the log. Before treating the
log, the transformation receives as input the id of the client that needs to
be modified (associated with the tag del), and then a sequence of client
identifiers (associated with the tag ch), ending with $. The transducer
is non-deterministic as it does not impose the choice of the identifier
that is used to replace the one of the client. In particular, observe that
it may associate multiple output words to a same input if two such free
identifiers exist. Labels on the output are irrelevant and unconstrained.

This specification can be described as the following relation: its inputs are
of the form (del, id0)(ch, id1) . . . (ch, idk)($, idk+1)(σ0 , id′0)(σ1 , id′1) . . . ,where
id0 , . . . , idk+1 ∈ D and (σi , id′i) ∈ Σ ×D for all i ∈ N. The corresponding
admissible outputs are of the form id′′0 id′′1 . . . (labels are omitted), where
there exists a replacement identifier with index j ∈ {1, . . . , k} which is
distinct from the identifier to replace, i.e. id j , id0 and distinct from all
subsequent identifiers that are not replaced, i.e. for all i ≥ 0, if id′i , id0
then id j , id′i . Then we ask that the replacement is conducted correctly,
i.e. if id′i � id0, then id′′i � id j .

1 2 3 4
del,> | ↓ r1 , ε

ch,> | ε

ch, ? , r1 | ↓ r2 , ε

ch,> | ε

$,> | ε

? � r1 | ↑ r2

? , r1 ∧? , r2 | ↓ r0 , ↑ r0

Figure 10.1.: A register transducer Trename. It has three registers r1, r2 and r0 and four states. Register r1 stores the id of del and r2 the chosen
id of ch, while r0 is used to output the last data value read as input.
↓ r means that the input data value is stored in r, and ↑ r that the content of r is output. Predicates σ in tests are depicted as σ, φ instead of
σ(?) ∧ φ to unify with Part I.

Now, consider the following variant: instead of getting the replacement
identifier from its input, the transducer initially guesses some new
identifier, and thenoperates the replacement as above,while checking that
the identifier it guessed indeeddoes not appear in the input. This guessing
mechanism can be modelled using non-deterministic reassignment (cf
Figure 10.2).

1 2
del,> | ↓ r1 , ?r2 , ε

? � r1 ∧? , r2 | ↑ r2

? , r1 ∧? , r2 | ↓ r0 , ↑ r0

Figure 10.2.: A variant Trename2 of the register transducer Trename, that uses non-deterministic reassignment to replace a given client id with
a new identifier. Note that the transducer needs to check that its guess is distinct from the modified identifier when it reads it (hence the
requirement that? , r2 when? � r1) since, in our model, properties of the guessed data values are checked a posteriori (this is done to
lighten the syntax).
The notation ?r2 means that r2 is non-deterministically assigned some data value.

Assumption 10.3 In the following, we are only interested in transducers
that produce infinite outputs, i.e. JTK ⊆ Dω×Dω . Restricting the accepting
runs of a transducer to the ones that produce data ω-words is a Büchi
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See also Definition 4.13 in Chapter 4.

To a transition p
φ,regOp
−−−−−−→ q of the model

wedefine here, one can associate the transi-

tion p
φ,asgn,ndasgn
−−−−−−−−−−−→ q, where asgn � {r ∈

R | regOp(r) � set} and ndasgn � {r ∈
R | regOp(r) � guess} of the model of
Chapter 4, and conversely.

condition and can easily be done by adding one bit of information to
states.

10.2. Register Transducers and Register
Automata

As expected, the model of register transducer is tightly linked with that
of register automata. In this section, we establish a series of (unsurprising
but useful) technical results that allow to reduce problems over register
transducers to the simpler model of register automaton. For our purpose,
a register automaton is simply a register transducer with no outputs.

Definition 10.4 (Register Automaton) A non-deterministic register au-

tomaton (with guessing) is a tuple A � (Q , I , R,∆, F), where Q is a
finite set of states, I ⊆ Q a set F ⊆ Q of accepting states, and ∆ ⊆
Q × TestsD(R) × RegOpR ×Q is a transition relation.

Non-guessing register automata are defined as expected.

We do not formalise the semantics of themodel, as it is naturally inherited
from that of register transducers. The reader can check that it corresponds
to the model of register automaton introduced in Chapter 4 with non-
deterministic reassignment (Definition 4.35), with a Büchi acceptance
condition, modulo a minor adaptation of the syntax. In this part, register
operations are grouped in a single object regOp since, unlike in Part I,
guessing is natively supported by the model.

10.2.1. Traces of Runs of Register Transducers

Assumption 10.5 (Separator) In the following, we assume the existence
of a distinguished constant $ that we use as a separator. We implicitly
assume that it is not present in the input, except at the places where we
specify it. Given a data domain D, one can simply consider Dt {$},
where the equality relation is extended accordingly. The structure of
D is only mildly affected by this addition: the automorphism group of
Dt {$} is isomorphic with that of D (see Proposition 12.14).

Register transducers can be simulated by register automata in the fol-
lowing sense: the runs of a register transducer can be flattened to their
traces, so as to be recognised by a non-deterministic register automaton
(Proposition 10.1).

Definition 10.6 Let T be a non-deterministic register transducer. Given

a run ρ � (q0 , ν0)
d0 |y0−−−→ (q1 , ν1) . . . , we define its (marked) trace tr(ρ) �

d0 · y0$d1 · y1$ . . . .

Given a register transducer, it is straightforward to construct a non-
deterministic register automaton over data domain D t {$} which
recognises the language of marked traces of accepting runs of T:

Proposition 10.1 Let T be a register transducer. The data language

traces(T) � {tr(ρ) | ρ is an accepting run of T}
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[144]: Béal et al. (2003), ‘Squaring trans-
ducers: an efficient procedure for deciding
functionality and sequentiality’

The second technical property of the state-
ment is needed to make a connection be-
tween the structure of T and that of Atr

T .
This is particularly useful in pumping ar-
guments.

is recognised by a non-deterministic register automaton Atr
T with a polynomial

number of states and the same set of registers. Moreover, if T is non-guessing,

then so is Atr
T .

Besides, for all configurations (p , ν), (q , λ) ∈ Configs(T), all data values

d0 , . . . , dn and for all finite data words y0 , . . . , yn , there is a partial run

(p , ν)
d0 ·y0$d1 ·y1$...$dn ·yn$
−−−−−−−−−−−−−−−−→ (q , λ) in Atr

T if and only if there is a partial run

(p , ν)
d0 ...dn |y0 ·...·yn−−−−−−−−−−−→ (q , λ) in T.

Proof. We simply show how to translate a single transition of T, the
general construction follows. The automaton stores the name t of the
transition in its states, and conducts the test using a first transition. Then,
it simulates the output, by checking that it successively reads the data
values contained in the registers of the output word. To that end, it uses
a counter bounded by the length of the output word of the transition. It
finally reads $.

Formally, Atr
T has states Q t (Q × ∆ × {0, . . . ,M + 1}), where M is

the maximum output length of T. Consider t � p
φ,regOp,v
−−−−−−−→

T
q, where

v � r0 . . . rn−1 ∈ Rn for n � |v |. Construct the transitions p
φ,regOp
−−−−−→

(p , t , 0) ?�r0−−−→ (p , t , 1) . . . ?�rn−2−−−−−→ (p , t , n − 1) ?�rn−1−−−−−→ (p , t , n) ?�$−−−→ q.
Correctness of the construction follows from the semantics of both
models.

Those traces can then be interleaved, in order to be compared.

Definition 10.7 Given two runs ρ1 and ρ2 with respective traces tr(ρ1) �
d0 · y0$d1 · y1 . . . and tr(ρ2) � e0 · z0$e1 · z1 . . . in (DD∗$)ω , we define the
interleaving of their traces as ρ1 ⊗ ρ2 � d0 · y0$e0 · z0$d1 · y1$e1 · z1 · · · ∈
((DD∗$)2)ω.

Given a register transducerT, we candefine the language of its interleaved
traces

L⊗(T) �
{
ρ1 ⊗ ρ2

�� ρ1 and ρ2 are accepting runs of T
}

(10.1)

One can then compute the product of Atr
T with itself, as is done in [144],

and that uses the separators $ as synchronisers to get:

Proposition 10.2 Let T be register transducer with k registers. The data

language L⊗(T) is recognised by a non-deterministic register automaton AT
⊗

with 2k registers, whose size is polynomial in |T |.

Besides, for all configurations (p , ν), (p′, ν′), (q , λ), (q′, λ′) ∈ Configs(T), all
data values d0 , . . . , dn , e0 , . . . , en and all finite data words y0 , . . . , yn and

z0 , . . . , zn , there is a partial run

((p , p′), (ν, ν′))
d0 ·y0$e0 ·z0$...$dn ·yn$en ·zn−−−−−−−−−−−−−−−−−−−→ ((q , q′), (λ, λ′))

in AT
⊗ if and only if there are two partial runs

(p , ν)
d0 ...dn |y0 ·...·yn−−−−−−−−−−−→

T
(q , λ) (p′, ν′)

e0 ...en |z0 ·...·zn−−−−−−−−−−→
T

(q′, λ′)
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[38]: Kaminski and Zeitlin (2010),
‘Finite-Memory Automata with Non-
Deterministic Reassignment’

in T such that(p , ν) and (p′, ν′) are jointly reachable in T, i.e. there exists a

finite input data word u ∈ D∗ such that Cι u |u1−−−→
T
(p , ν) and Cι u |u2−−−→

T
(p′, ν′).

With the same notations, there is a run

((p , p′), (ν, ν′))
d0 ·y0$e0 ·z0$d1 ·y1$e1 ·z1 ...−−−−−−−−−−−−−−−−−−→ ((q , q′), (λ, λ′))

in AT
⊗ if and only if there are two runs

(p , ν)
d0d1 ···|y0 ·y1 ...−−−−−−−−−−→

T
(p′, ν′)

e0e1 ···|z0 ·z1 ...−−−−−−−−−→
T

10.2.2. Properties Inherited from Register Automata

The links between register automata and register transducers allow to
transfer some results from onemodel to the other. First, a straightforward
extension of the proof of Proposition 4.1 establishes that over a finite set of
data values, non-deterministic register transducers that are non-guessing
behave like non-deterministic ω-transducers:

Proposition 10.3 LetT be a non-guessing non-deterministic register transducer

over data domain D. For any finite subset X ⊆ D, JTK∩(Xω×Xω) is recognised
by a non-deterministic ω-transducer.

This non-deterministic ω-transducer has n(s+1)k states, where n is the number

of states of T, k its number of registers, and s � |X | is the size of X.

Remark 10.2Note that this is not the case in general when guessing
(a.k.a. non-deterministic reassignment) is allowed, already for register
automata. For instance, over (N,+1, 0), one can define a non-deterministic
register automaton which ignores its input and simulates a run of a
Minsky machine using two registers, each containing the current value
of one counter. Those registers are initialised with 0. At each step, the
automaton guesses the values of the counters and checks that increments,
decrements and zero-tests are carried out correctly. Due to the syntax
of the model, those tests must be conducted on the next input step, but
this poses no difficulty. Finally, it reaches an accepting state whenever
the machine that it simulates reaches an halting state. Overall, this
automaton accepts some input if and only if it accepts any input, if
and only if the Minsky machine it simulates does not halt. This means
that the restriction to a finite number of data values cannot be effectively
ω-regular. One can then modify the construction so that the automaton
recognises for instance Lcount � {dn

0 · dn
1 · $ω | d0 , d1 ∈ N, d0 , d1}, which

is such that Lcount ∩ {0, 1}ω � {0n · 1n · $ω}, which is notoriously not
ω-regular. Note that this construction actually allows to recognise any
recursively enumerable language (and even non-computable ones by
allowing non-computable predicates).

On the contrary, this property is recovered over (D,�,C) [38, Proposition
9]; see also Proposition 12.2.

Besides, one can adapt the proof of Proposition 4.2 to show that, as for
non-deterministic register automata, NRT are closed under union.



10. Non-Deterministic Asynchronous Register Transducers 212

[71]: Sakarovitch (2009), Elements of Au-

tomata Theory

We implicitly require that the identifier to
replace is not the maximal one.

Proposition 10.4 Let T1 , T2 be two non-deterministic register transducers over

the same data domain D, with respectively n1 and n2 states and k1 and k2
registers, and with final states F1 and F2.

Then, JT1K∪ JT2K is recognised by a non-deterministic register transducer with

n1 + n2 states and max(k1 , k2) registers, and with final states F1 ∪ F2.

As their finite alphabet counterparts, they are however not closed under
intersection.

Property 10.5 Relations recognised by NRT over (D,�,C) are not closed under
intersection.

Proof. This is a consequence of the fact that NRT behave as transducers
when restricted over a finite alphabet. It is well-known that the latter are
not closed under intersection, see e.g. [71, Remark 1.1 in Chapter IV].

More precisely, build two NRT that respectively recognise {(an , bn c∗$ω) |
n ∈ N} and {(an , b∗cn$ω) | n ∈ N} for some fixed constants a , b , c ∈ C.
Then, their intersection is {(an , bn cn$ω) | n ∈ N}. A simple pumping
argument establishes that such a relation cannot be recognised by any
NRT (since it cannot be recognised by any transducer over alphabet
{a , b , c}).

Note that the proof extends to the case where |C | < 3 by making the
transducer first ask for three distinct data values that play the role of a , b
and c. The proof also extends to (Q, <, 0) and (N, <, 0).

10.3. Functions Recognised by Asynchronous
Transducers

Asynchronous register transducers define in general relations and not
necessarily functions since they are non-determinsitic, as illustrated
by Example 10.1. As our goal is to study notions of ω-computability
and continuity, which apply to functions, we are mainly interested in
functional register transducers.

Definition 10.8 (Functional Transducer) A register transducer is functional
if JTK is a partial function.

Example 10.2 Consider again the transducer Trename of Example 10.1. In
general, it defines a relation. One can reinforce the specification by fixing
some k and asking that the transducer reads k identifiers, and chooses the
first that is free. This transformation is realised by the register transducer
Trename3 depicted in Figure 10.3 on the following page (for k � 2).

Note that using non-determinism only, one cannot specify this behaviour
without fixing k. This can be modelled through universality (a.k.a. co-
non-determinism), but this yields a model for which the problems that we
study are undecidable (including functionality).

Consider a slightly different setting, in which the identifiers are ordered.
We want to replace the identifier with the maximal identifier appear-
ing in the input. This can be modelled, again using non-deterministic
reassignment, as illustrated in Figure 10.4 on the next page.
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1 2 3 4

67 5

del,> | ↓ r1 , ε ch, ? , r1 | ↓ r2 , ε ch, ? , r1 ∧? , r2 | ↓ r3 , ε

$,> | ε
$,> |

ε

? � r2 | ↑ r2

? � r1 | ↑ r2

? , r1 ∧? , r2 | ↓ r0 , ↑ r0

? � r1 | ↑ r3

? , r1 ∧? , r2 ∧? , r3 | ↓ r0 , ↑ r0

? � r1 | ↑ r3

? , r1 ∧? , r3 | ↓ r0 , ↑ r0

Figure 10.3.: A non-deterministic register transducer Trename3, with four registers r1 , r2 , r3 and r0 (the latter being used, as in Figure 10.1, to
output the last read data value). After reading the $ symbol, it guesses whether the value of register r2 appears in the suffix of the input
word. If not, it goes to state 5, and replaces occurrences of r1 by r2. Otherwise, it moves to state 6, waiting for an occurrence of r2, and
replaces occurrences of r1 by r3.

1 2 3
del,> | ↓ r1 , ?r2 , ε

? � r1 ∧? < r2 | ↑ r2

? , r1 ∧? ≤ r2 | ↓ r0 , ↑ r0

? , r1 ∧? � r2 | ↓ r0 , ↑ r0

? � r1 ∧? < r2 | ↑ r2

? , r1 ∧? ≤ r2 | ↓ r0 , ↑ r0

Figure 10.4.: A variant Trename4 of the register transducer Trename3, that uses non-deterministic reassignment to guess the maximal identifier,
for some given order over the identifiers. The transducer checks that its guess is always greater than or equal to the client identifiers, and
that it appears at least one in the input (transition from state 2 to state 3).

Recall that the language-equivalence prob-
lem for non-deterministic register au-
tomata is undecidable, since the universal
language Dω is trivially NRA-definable
and universality is undecidable, by [101]:
Neven, Schwentick, and Vianu (2004), ‘Fi-
nite state machines for strings over infinite
alphabets’ (Theorem 5.3, see also our The-
orem 4.21).

The corresponding decision problem is the functionality problem. We
show that it is decidable and more precisely PSpace-complete for the data
domains we consider. See Theorems 12.8, 12.40 and 12.64, respectively
for (D,�,C), oligomorphic data domains and for (N, <, 0).
Problem 10.1: Functionality problem

Input: A register transducer T
Output: Yes if JTK is a partial function

No otherwise

Note that when the functionality problem is decidable, it allows to decide
equivalence of functional non-deterministic register transducers on the
intersection of their domain.

Proposition 10.6 If the functionality problem is decidable, then one can decide,

given two functions f and g defined by non-deterministic register transducers,

whether for all x ∈ dom( f ) ∩ dom(g), f (x) � g(x).

Moreover, the reduction is polynomial.

Proof. Let f and g be two functions, respectively defined by the trans-
ducers T f and Tg . The relation f ∪ g � {(x , y) | y � f (x) or y � g(x)}
is recognised by the union of T f and Tg , which can be constructed
in polynomial (even linear) time (cf Proposition 10.4). Then, f ∪ g is
functional if and only if for all x ∈ dom( f ) ∩ dom(g), f (x) � g(x).

In particular, this yields decidability of the equivalence of NRT with total
domain. Note however that it is undecidable whether two NRT have the
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[141]: Exibard, Filiot, and Reynier (2020),
‘On Computability of Data Word Func-
tions Defined by Transducers’

f ◦ g : x 7→ f (g(x))

same domain, or even whether a given NRT has total domain, already in
the synchronous case, as a direct consequence of Theorem 8.1.

10.4. Closure under Composition

A desirable property of a class of functions is that it is closed under
composition, as it allows to define complex functions from simpler
elements. We thus start this study by showing that this class is closed
under composition. We actually establish a more general result, as this
property even holds for relations.

Theorem 10.7 ([141, Theorem 12]) Let f and g be two functions defined by

non-deterministic register transducers over the same data domain D, that admits

quantifier elimination. Then, their composition f ◦ g is effectively definable by a

non-deterministic register transducer.

Proof (main ideas). The proof is similar to the data-free case, where the
composition is computed via a product construction which simulates
both transducers in parallel, executing the second on the output of the
first. Quantifier elimination allows to express the existence of a path in
the transducer computing f that executes over the output of the one
computing g using first-order logic formulas. The construction is quite
technical, so we only describe the main ideas behind it.

Let D be a data domain that admits quantifier elimination. Then,
we can write tests as first-order formulas, and then convert them to
quantifier-free ones to get a proper register transducer. Let f and g
be two functions from Dω to Dω, respectively computed by tranduc-
ers T f � (Q f , I f , R f ,∆ f , F f ) and Tg � (Qg , Ig , Rg ,∆g , Fg). Assume
without loss of generality that R f and Rg are distinct. Then, we de-
fine T f ◦g � (Q f × Qg , I f × Ig , R f t Rg ,∆′F f × Fg). We now define
the transitions. We want, for all configurations (p , ν), (p′, ν′) of T f
and (q , λ), (q′, λ′) of Tg , for all d ∈ D, all w ∈ D∗, all φ ∈ Tests(R),

regOp ∈ RegOpR, that ((p , ν), (q , λ))
d ,φ |regOp,w
−−−−−−−−−→

T f ◦g
((p′, ν′), (q′, λ′))when-

ever:

(i) (q , λ)
d ,φ |regOp′ ,w′
−−−−−−−−−−→

Tg
(q′, λ′)

(ii) By writing w′ � e1 . . . en , we have:

(p , ν)
e1 ,φ1 |regOp1 ,w1−−−−−−−−−−−→

T f
(p1 , ν1) . . . (pn−1 , νn−1)

en ,φn |regOpn ,wn−−−−−−−−−−−−→ (p′, ν′)

where w1 · . . . · � w

Both conditions can be expressed in first-order logic, so this can bewritten
as a (big) test; recall that the length of output words on each transition
is bounded by a constant M that only depends on the transducer, so
the length n of the path of (ii) is bounded. One just need reassignments
to handle register operations correctly, since the path in T f has to be
simulated in one step, but we know that reassignments can be removed
without loss of expressive power (Proposition 4.6).
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[115]: Marcja and Toffalori (2003), ‘Quanti-
fier Elimination’

These observations allow to define an NRT that computes f ◦ g. We leave
out the details.

Remark 10.3 In the proof, we do not use the hypothesis that T f and Tg
are functional. This actually shows a stronger result, namely that relations
defined by NRT are closed under composition, where

R ◦ S � {(x , y) ∈ Dω ×Dω | ∃z ∈ Dω , (x , z) ∈ S and (z , y) ∈ R}

As a consequence, we get the following:

Corollary 10.8 Functions computed by register transducers over (D,�,C) and
(Q, <, 0) are closed under composition.

Proof. This results from the fact that both domains admit quantifier
elimination [115, Section 2.3].

Since (N, <, 0) is a substructure of (Q, <, 0), we also get:

Corollary 10.9 Functions computed by register transducers over (N, <, 0) are
closed under composition.



The reader might wonder why we start
with the presentation of ω-computability,
before providing a solution to the func-
tionality problem. Indeed, if the class of
functions recognised by register transduc-
ers were undecidable, it would make less
sense to study whether a given function is
ω-computable (and it would moreover be
undecidable). Fortunately, functionality is
decidable for the data domains we con-
sider (Theorems 12.8, 12.40 and 12.64), so
the reader can let their mind be at peace.
And, as it happens, the proof techniques
that we use are quite similar for the func-
tionality andω-computability problem, so
it is better to present them successively.

[51]: Dave et al. (2020), ‘Synthesis of
Computable Regular Functions of Infinite
Words’
[145]: Weihrauch (2000), Computable Anal-

ysis - An Introduction

Determinism plays a crucial role here, as
non-determinism strictly increases expres-
siveness over infinite words; see Example
11.2.
Note that the tape of a Turing machine
cannot be initialised with an infinite word.
Here, we assume that the input data ω-
word is given as a stream, i.e. the content
of the i-th cell is written when the reading
head reaches it.

ω-Computability and Continuity 11.
11.1. Computability

Given a function f : Dω → Dω recognised by some register transducer,
one might want to check whether it can be computed by some program.
We thus introduce a notion of ω-computability for functions over infinite
words. As we are working on data words, we right away consider it
over infinite alphabets, but this is a direct generalisation of the notion of
computability defined in [51, Definition 3] (see also [145, Chapter 2]). One
might wonder why a relatively elementary model as transducers do not
always induce ω-computable functions. The answer is that over ω-words
(and, a fortiori, data ω-words), non-determinism is very expressive. For
instance, the machine can guess whether some letter (or data value)
appears infinitely often in the input, which cannot be decided by reading
any finite prefix of the input (cf fagain in Example 11.2).

11.1.1. Representation

To define programs over data ω-words, we need the data values to
be (finitely) representable. This is the case for (N,�) through binary
encoding, as well as for (N, <) and (Q, <), but not for (R,�) (see Example
11.1).

Formally, let D � (D,R,C) be a data domain. An encoding of D is an
injective function enc : D → A∗ for some finite alphabet A such that
membership to following sets is decidable: {enc(d) | d ∈ D}, {enc(c) |
c is a constant of D} and, for all predicates P ∈ R of arity k ∈ N, encP �

{enc(d1)£ . . . £enc(dk) | (d1 , . . . , dk) ∈ P} (where £ < A). When such an
encoding exists, we say that D is representable.

Example 11.1 The following data domains are representable:

I (N,�), with the usual binary encoding
I (N, <)with the same encoding
I (Q, <), by encoding a rational number r as the pair (p , q) ∈ Z ×
(N \ {0}), where r �

p
q is an irreductible fraction, and p and q are

themselves encoded in binary.

The set of real numbers is not representable, as there does not exist an
injective function R→ A∗ for any finite set A, since R is not countable.

Then, a data ω-word is encoded as an ω-word by applying enc pointwise
and adding separators. Formally, for w � d0d1 · · · ∈ Dω we let enc(w) �
enc(d0)£enc(d1)£ · · · ∈ ({0, 1}∗£)ω.

We now define how a Turing machine can compute a function from Dω

to Dω. We consider deterministic Turing machines which have three
tapes:

I A one-way read-only input tape on alphabet At{£}, which contains
the encoding of the input.
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This limit exists and is in D∞ since
(D∞ , ‖·, ·‖) is complete (cf Proposition
11.1).

Recall that contrary to our models of regis-
ter automata and register transducer, Tur-
ing machines are 2-way, i.e. they can go
left and right on their input.

I A two-way read-write working tape over some work alphabet W
I A one-way write-only output tape over alphabet A t {£}, on which

the machine writes the encoding of the output data ω-word.

Convention 11.1 (Implicit Encoding) Since we always work modulo
encoding, from now on and in the rest of the chapter, we assume for
simplicity that each cell of the Turing machine contains a data value
d ∈ D. Note that the working alphabet can be encoded with constants.
Thus, when we say that the input tape contains the input data ω-word
x ∈ Dω , we actually mean that it contains the encoding of x, similarly for
the output. We discuss in Section 11.1.3 how the computability notions
that we introduce hereafter are sensitive to encoding.

11.1.2. Computability and Uniform Computability

Now, consider a Turing machine M built on the above model, and an
input data word x ∈ Dω . For any integer k ∈ N, we let M(x , k) denote the
finite output data word written by M on its output tape when it reaches
cell number k on its input tape, assuming it does. Since the output tape
is write-only, the sequence of data words (M(x , k))k≥0 is increasing. We
denote by M(x) ∈ D∞ the limit content of the output tape.

Definition 11.2 (ω-Computability) Let Dbe a representable data domain.
A partial dataword function f : Dω → Dω isω-computable if there exists a
deterministic multi-tape Turing machine M such that for all x ∈ dom( f ),
M(x) � f (x). We say that M computes f .

Example 11.2 Consider the (partial) function fswap which reads blocks of
data separated by $ and places the last data value of each block at the
beginning. Formally, fswap : (D+$)ω → (D+$)ω takes a data word of the
form x0d0$x1d1$ . . . (where for all i ∈ N, xi ∈ D∗ and di ∈ D) and outputs
d0x0$d1x1$ . . . . This function is ω-computable by a machine which reads
its input block by block: on each block $xi di$, it goes to the end separator
$, goes one step left, stores di , goes back to the begin separator, outputs di
and copies xi . Besides, it is recognised by the non-deterministic register
transducer (with non-deterministic reassignment) of Figure 11.1.

1 2 3
? , $ | ?r1 , ↑ r1

? , $ | ↓ r0 , ↑ r0

? , $ ∧? � r1 | ε

? � $ | ↑$

Figure 11.1.: A register transducer with non-deterministic reassignment which recognises fswap of Example 11.2. Note that ↑$ is not allowed
in the syntax, but can be simulated, e.g. by adding a register that is required to contain $.

On the contrary, define a function fagain which takes an input data word
and repeatedly outputs the first data value d if it appears again in the
input, and copies its input otherwise. Intuitively, f is not ω-computable,
since the machine cannot decide between outputting d and copying its
input as long as it does not see d appear again. Formally, fagain : Dω → Dω

is defined as fagain(dx) � dω if there exists i ∈ N such that xi � d, and
fagain(dx) � dx otherwise. This function is not ω-computable: assume



11. ω-Computability and Continuity 218

Of course, this is not by accident that the
terminology resembles that of ‘uniform
continuity’ and ‘modulus of continuity’
(cf Theorems 12.10, 12.39 and 12.66).

Recall that a program is a Turing machine.

that there is some machine M which computes fagain, and consider an
input data word dx such that d does not appear in x. Then, there exists
some k ∈ N such that dx[0] �M(x , k), since fagain(dx) � dx. As the input
tape is one-way and M is deterministic, it behaves the same on all inputs
that coincide with x on the first k data values. This is the case in particular
for input x′ � d · x[0:k] · d · y for some y ∈ Dω, i.e. if we set the k + 1-st
data value of the input to d. However, fagain(x′) � dω, so in particular
fagain(x′)[1] , x[0], since we assumed that d does not appear in x. Note
that fagain is recognised by the non-deterministic register transducer of
Figure 11.2.

1

2 3

4 5

> | ↓
r1, ↑ r1

> | ↓ r1 , ↑ r1

? � r1 | ε

? � r1 | ↑ r1

? , r1 | ↓ r2 , ↑ r2

? , r1 | ↑ r1 > | ↑ r1

Figure 11.2.: A non-deterministic register
transducer which recognises fagain of Ex-
ample 11.2. It initially guesses whether d
appears again, and checks that its guess
is correct along the run. The state 3 can
be discarded, as it does not have outgoing
transitions, but is left for symmetry.

We can also define stricter notions of computability, e.g. by asking that
there exists a bound on the length of the input prefix that is read before
the machine is able to produce an output:

Definition 11.3 (Uniform Computability) Let D be a representable data
domain. A partial data word function f : Dω → Dω is uniformly com-

putable if there exists a deterministic multi-tape Turing machine M, along
with a computable function m : N → N such that M computes f and,
moreover: for all i ≥ 0 and all x ∈ dom( f ), |M(x ,m(i))| ≥ i. The func-
tion m is called a modulus of computability for f . In that case, f is called
m-computable. We say that M uniformly computes f , or that M m-computes

f .

Example 11.3 Come back to the function fswap of Example 11.2. It is not
uniformly computable, as the next separatormight be arbitrarily far in the
input. Formally, assume that fswap is m-computable for some : N→ N.
Take input x � dm(1) · e · $ · y for some d , e ∈ D, and some suffix
y ∈ (D+$)ω whose choice is irrelevant. Then we have, by definition
|M(x ,m(1))| ≥ 1. In other words, at least one data value has been output;
we call it f . At this point the machine cannot know e as the input reading
head is on position m(1) (recall that the input tape is one-way). If, by
chance, f � d, consider instead an input x′ where e is replaced with
some e′ , e. Since the machine is deterministic, it cannot distinguish
between these two inputs as it only read the first m(1) data values. As a
consequence, M does not compute fswap, as it already makes a mistake
on the first output data value.

Remark 11.1 (Synchronous programs) If f is synchronously computable,
then it is uniformly computable with modulus of computability id : i ∈
N 7→ i, as witnessed by any program P whose ω-behaviour computes f .
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For instance, for the binary encoding over
N, it suffices to take 2m(i), encoded as 1 ·
0m(i).

Note that in practice, most data domains
are actually finite, e.g. the integers are
encoded over fixed-length sequences of
32 or 64 bits, and the corresponding data
values are thus stored in O(1)†.

[51]: Dave et al. (2020), ‘Synthesis of
Computable Regular Functions of Infinite
Words’

In other words, A is either an alphabet or
a data set.
The condition u � v is needed for infinite
words, since thenwe cannotwrite u ·ε � v
as concatenating on the right is undefined.

We distinguish the case of u � v, other-
wise the notion of longest common prefix
is not well-defined when both u and v are
infinite.

11.1.3. Robustness to Encoding

Recall that we now work modulo encoding (cf Convention 11.1). Let
us examine the incidence of this assumption on our computability
notions. Let D be a representable data domain, and let enc : D →
A∗ be its encoding function. For a partial function f : Dω → Dω,
it is encoded as the following fenc : (A∗$)ω → (A t $)ω. It takes an
input w0#w1# · · · ∈ (A∗$)ω, which is meant to be the encoding of some
data word x � enc−1(w0)enc−1(w1) . . . . This input x is then fed to
f , which yields an output f (x) � d0d1 · · · ∈ Dω. It finally encodes
it as enc(d0)$enc(d1)$ · · · ∈ (A∗$)ω. Then, one can check that f is ω-
computable if and only if fenc is ω-computable.

However, this is not the case for uniform computability. Take for instance
the function fsnd which takes as input adatawordover some representable
data domain D and removes its first data value. As the encoding of the
first data value can be arbitrarily long, there is no bound on the number
of bits that have to be read before outputting the first bit (which depends
on the second data value). Formally, fsnd : Dω → Dω is defined as
fsnd(d0d1d2 . . . ) � d1d2 . . . . Assume that fsnd is m-computed by some
machine M for some m : N→ N, and let e , f ∈ D. Let i ∈ N be some
position such that enc(e)[i] , enc( f )[i]. Take some d ∈ N such that
|enc(d)| > m(i). It necessarily exists since N is infinite. Now, compare
the executions of M on input deω and d f ω . By a similar reasoning as for
Example 11.3, one can establish that the machine makes a mistake on the
i-th output bit.

Despite this limitation, working modulo encoding allows to provide
guarantees on the maximal number of input data values that have to
be read to produce a given number of output data, even though the
encoding of those data can be arbitrarily large.

11.2. Continuity

As in the finite alphabet case, the notion ofω-computability can be related
to the notion of continuity for the Cantor distance [51, Theorem 6]. We
first introduce some preliminary notions.

Definition 11.4 (Prefix, longest common prefix, mismatch) Let A be a
possibly infinite set. Given two (finite or infinite) words u , v ∈ A∞, u is a
prefix of v, written u � v, when there exists w ∈ A∞ such that u ·w � v or
u � v. We then define u−1v � w. It is a strict prefix, written u ≺ v, when
w , ε. For u , v ∈ A∞, we say that u and v match, denoted u ‖ v if either
u � v or v � u, and that they mismatch, written u ∦ v, otherwise.

Finally, for u , v ∈ A∞, we denote u ∧ v their longest common prefix: if
u � v, then u ∧ v � u, otherwise it is the longest finite word w such that
w � u and w � v. Note that in that case, |u∧ v | � min{i ∈ N, u[i] , v[i]}.

†: One might even argue, although maybe with a little touch of bad faith, that anyway all
computers have finitely many states. However, in that case, why even bother with register
automata as computers can be modelled with finite-state automata (admittedly in a very
inefficient way).
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In the following, we mostly formulate the
definitions with regard to the longest com-
mon prefix, but the reader can check that
this is equivalently formulated using the
Cantor distance.

Ametric space (X, d) is (sequentially) com-

pact when all sequences of X have a con-
vergent subsequence which converges to
a point in X.

As noted earlier, the notions of continuity,
uniform continuity and modulus of conti-
nuity are usually defined with regard to
the distance, while here they depend on
the length of the longest common prefix,
which varies inversely to the distance. The
usual notion of modulus of continuity can
be recovered, given amapping m : N→ N

which satisfies our definition, by setting

ω : x 7→ 2−m
(⌈

log2

(
1
x

)⌉)
.

Definition 11.5 (Cantor distance and convergence) We equip the set D∞

with the Cantor distance: for u , v ∈ D∞, we set ‖u , v‖ � 0 if u � v, and
‖u , v‖ � 2−|u∧v | otherwise.

A sequence of (finite or infinite) (data-)words (wn)n∈N ∈ (A∞)N converges

to some word w ∈ A∞ if:

For all ε > 0, there exists N ≥ 0 such that for all n ≥ N, ‖wn , w‖ ≤ ε

In our setting, this is better reformulated in terms of the longest common
prefix. We ask:

For all i ∈ N, there exists N ≥ 0 such that for all n ≥ N, |wn ∧ w | ≥ i

We then say that w is the limit of (wn)n∈N, and that (wn)n∈N is convergent.

Given a (data-) language L ⊆ A∞, its topological closure L is the set of
words which can be approached arbitrarily close by words of L, i.e. the
set of words which are limits of convergent sequences of L.

Remark 11.2 The structure of the metric space (A∞ , ‖·, ·‖) substantially
depends on whether A is infinite. Indeed, when A is finite, this space
is compact, but it is not when A is infinite. For instance, for A � N, the
sequence defined, for all n ∈ N, by wn � n ·0ω does not have a convergent
subsequence, as for all m , n, ‖wm , wn ‖ � 1

2 .

We are now ready to define continuity for functions over infinite (data)
words. This is the textbook notion, as one can find it in any analysis
lesson.

Definition 11.6 (Continuity) Let f : Iω → Oω be some partial function,
where I and O are possibly infinite sets. We say that f is continuous at x
if, equivalently:

(i) for all sequences of words (xn)n∈N which converge to x ∈ dom( f ),
and which are such that for all n ∈ N, xn ∈ dom( f ), we have that
( f (xn))n∈N converges to f (x).

(ii) for all i ≥ 0, there exists j ∈ N such that for all y ∈ dom( f ), if
|x ∧ y | ≥ j then | f (x) ∧ f (y)| ≥ i.

The function f is called continuous when it is continuous at each x ∈
dom( f ).
Definition 11.7 (Uniform continuity) Now, a partial function f : Aω →
Aω is uniformly continuous if moreover in item (ii) the choice of j does not
depend on x and y. Formally, this can be written as:

For all i ≥ 0, there exists j ≥ 0 such that for all x , y ∈ dom( f ),
if |x ∧ y | ≥ j then | f (x) ∧ f (y)| ≥ i

This is equivalent to asking that there exists a mapping m : N→ N such
that:

For all i ≥ 0 and all x , y ∈ dom( f ), if |x∧y | ≥ m(i) then | f (x)∧ f (y)| ≥ i

The function m : N→ N is called a modulus of continuity for f . We also
say that f is m-continuous.
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Theproof is actually the same, as it actually
does not depend on the hypothesis that A
is finite.

One can also define an intermediate notion of continuity, namely Cauchy
continuity. A Cauchy continuous function maps any Cauchy sequence to
a Cauchy sequence. As we will see, this notion also admits a counterpart
notion of Cauchy computability (cf Definition 11.10).

Definition 11.8 (Cauchy sequence) A Cauchy sequence in A is a sequence
(xn)n∈N such that:

For all i ∈ N, there exists some N ≥ 0 such that
for all m , n > N, |xm ∧ xn | ≥ i

It is well-known that for any finite alphabet A, the set (Aω , ‖·, ·‖) is
complete, i.e. every Cauchy sequence converges to an element of Aω. We
show that this is also the case for infinite alphabets.

Proposition 11.1 For any (possibly infinite) set D, (Dω , ‖·, ·‖) is complete.

Proof. Let D be some set, and let (xn)n∈N ∈ DN be a Cauchy sequence.
We first define the candidate limit x. Let i ∈ N. We know that there exists
some N ≥ 0 such that for all m , n > N , |xm∧xn | ≥ i. Define x[i] � xm[i]
for some m ≥ N . The choice of m is irrelevant as all xm coincide on their
first i values. Then, for each i ∈ N, choose N as above. For all n ≥ N , we
have |xn ∧ x | ≥ i, which means that (xn) converges to x.

Definition 11.9 (Cauchy continuity) A partial function f : Aω → Bω

is Cauchy continuous if for all Cauchy sequences (xn)n∈N ∈ (dom( f ))N,
( f (xn))n∈N is a Cauchy sequence.

Given a Cauchy continuous function f , we denote by f its continuous
extension over dom( f ).
Fact 11.1 An interesting property of this class of functions is that they
always admit a (unique) continuous extension to the completion of their
domain. Since we deal with A∞ which is complete, the completion of a
set is simply its closure.

Example 11.4 By definition, uniform continuity implies Cauchy continu-
ity. In the finite alphabet case, and in general for compact spaces, Cauchy
continuity and uniform continuity actually coincide. In particular, the
function fsnd of Section 11.1.3 is Cauchy continuous. Conversely, one can
check that the function fswap is not Cauchy continuous, e.g. by showing
that it does not admit any continuous extension on data words which do
not contain the $ separator.

Remark 11.3 Over infinite alphabets, equivalence between Cauchy con-
tinuity and uniform continuity does not hold anymore. Consider for
instance the function fdecr : Nω → Nω which takes as input a data word
u ·0 ·x, where u ∈ N∗ is strictly decreasing, and outputs x ∈ Nω . This func-
tion is not uniformly continuous, since twowords may be arbitrarily close
and have different images. Formally, for all i ∈ N, take u � i · (i−1) · . . . ·1,
then we have |u · 0 · 0ω ∧ u · 0 · 1ω | � i, but |0ω ∧ 1ω | � 0. Note that fdecr
can be computed by a sequential register transducer, which waits to see
0 in its input and then copies its input.

However, one can check that the image of a Cauchy sequence is indeed
Cauchy: up to removing a prefix, we can assume that all xn start with
the same data value, which sets a bound on the length of the input to



11. ω-Computability and Continuity 222

[5]: Thomas (2009), ‘Facets of Synthesis:
Revisiting Church’s Problem’

[142]: Exibard et al. (2021), ‘Computability
ofData-WordTransductions overDifferent
Data Domains’

read before reaching 0 and outputting something. Formally, let (xn)n∈N
be a Cauchy sequence in dom( fdecr). First, let K ≥ 0 be such that for all
m , n ≥ K, xn[0] � xm[0] � d ∈ N. Such a K exists since (xn) is Cauchy, so
in particular at some point all elements of the sequence are at distance less
that 1

2 . Now, let i ≥ 0; we want to find some N ≥ 0 such that all elements
after N have a common prefix of length at least i. Choose N to be such
that for all m , n ≥ N , |xm∧xn | ≥ d+ i+1. Thenwe know that there exists
j ≤ d such that xm[ j] � xn[ j] � 0, since the input has to strictly decrease
until 0 is reached. Thus, xm � y · 0 · z · tm and ym � y · 0 · z · tn , where
y is of length j − 1, z is of length i, and tm , tn ∈ Nω. As a consequence,
f (xm) � z · tm and f (xn) � z · tn , so z � f (xm) ∧ f (xn), which means
that | f (xm) ∧ f (xn)| ≥ i. Overall, this means that ( f (xn))n∈N is a Cauchy
sequence.

Remark 11.4 We could further refine the notions of continuity, by study-
ing m-continuity for particular m. For instance, for m : i 7→ i + b for
some b ∈ N, m-continuous functions are exactly 2b-Lipschitz continuous
functions. Similarly, for m : 7→ a · i + b (where a ∈ N \ {0}), m-continuous
functions are 1

a -Hölder continuous functions.

However, both notions are very sensitive to the metric that we choose. For
instance, the metric d(x , y) � 1

|x∧y | induces the same topology over D∞,
but yields different notions of Lipschitz and Hölder continuity. For this
reason, we stick to continuity, Cauchy continuity and uniform continuity.

11.3. ω-Computability versus Continuity

In this section, we show that the the different computability notions
imply their respective continuity notion, and give general conditions
for the converse to hold. First, let us introduce the notion of Cauchy
computability, which is the counterpart of Cauchy continuity.

Definition 11.10 (Cauchy computability) Let Dbe a representable data
domain. A data word partial function f : Dω → Dω is Cauchy computable

if there exists a deterministic multi-tape Turingmachine M that computes
f and such that for all x in the topological closure dom( f ) of dom( f ),
the sequence (M(x , k))k∈N converges to an infinite word. In other words,
a Cauchy computable function is a function which admits a continuous
extension to the closure of its domain and which is ω-computable. We
say M Cauchy computes f .

11.3.1. From ω-Computability to Continuity

In the Cantor topology, continuity means that a given output element
only depends on a finite prefix of the input; Cauchy and uniform conti-
nuity successively refine this idea. In our definition, the computation is
conducted by a Turing machine which deterministically reads its input
one-way, so an element of output is determined by a finite prefix. We
used this fact in Example 11.2, to show that fagain is not ω-computable,
and in Example 11.3, to establish that fswap is not uniformly computable
(see also [5, Section 6]). This is formally captured as follows:

Theorem 11.2 ([142, Theorem 2.14]) Let D be a representable data domain.

Let f : Dω → Dω
, be a partial function. The following implications hold:
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Here, we consider usual Turing machines,
i.e; those which operate over a finite al-
phabet. We assume they do not take any
input.

Note that the choice of the input alphabet
A does not matter since fhalt ignores its
input.

[1, 119]: Turing, Turing (1936, 1938), ‘On
Computable Numbers, with an Applica-
tion to the Entscheidungsproblem’, ‘On
Computable Numbers, with an Applica-
tion to the Entscheidungsproblem. A Cor-
rection’; see also [120]: Sipser (2013), Intro-
duction to the Theory of Computation. Here,
we restrict to machines that ignore their
input, but it is easy to reduce from the
emptiness problem for Turing machines,
which is undecidable [120, Theorem 5.2].
A constant function is continuous for
about any (reasonable) notion of conti-
nuity that one can imagine.

(i) If f is ω-computable, then f is continuous

(ii) If f is Cauchy computable, then f is Cauchy continuous

(iii) If f is uniformly computable, then f is uniformly continuous

(iv) If f is m-computable for some mapping m : N → N, then f is m-

continuous

Proof. We start by jointly proving items (i) and (ii). Assume that f is
ω-computable by a deterministic multi-tape Turing machine M. Let x
be in the topological closure of dom( f ), and let (xn)n∈N be a sequence
in dom( f ) converging to x. We show that ( f (xn))n∈N converges to M(x)
if M(x) is infinite. Since limn∞ xn � x, for all k ≥ 0, there exists an
nk ∈ N such that for all m ≥ nk , x[:k] � xm . As M is a deterministic
machine, it implies that M(x , k) � f (xm). As a consequence, for all k,
M(x , k) � f (xm) for all but finitely many m. If M(x) is an infinite word,
it means that ( f (xm)m∈N) converges to M(x) � limn∞M(x , k). It is the
case for all x ∈ dom( f ) since f is ω-computable, which means that f is
continuous. If additionally f is Cauchy computable, this also holds for
all x in the closure of dom( f ), so f is Cauchy continuous.

We now show item (iv), which entails item (iii). Assume that f is m-
computable by some machine M. We show f is m-continuous. So, let
i ≥ 0 and x , y ∈ dom( f ) such that |x ∧ y | ≥ m(i). We must show that
| f (x) ∧ f (y)| ≥ i. Since M is deterministic, we know that M(x ,m(i)) �
M(y ,m(i)), as |x ∧ y | ≥ m(i). Since M m-computes f , we also have
|M(x ,m(i))| ≥ i. Finally, M(x ,m(i)) � f (x) and M(y ,m(i)) � f (y), we
get | f (x) ∧ f (y)| ≥ i, which concludes the proof.

11.3.2. From Continuity to ω-Computability

As we have seen, ω-computability implies continuity, and similarly for
the refined notions of uniform and Cauchy computability. The converse
does not hold in general, already over finite alphabets:

Example 11.5 Assume some enumeration (Mi)i∈N of Turing machines,
and define fhalt : Aω → {0, 1}ω which simply ignores its input and
outputs the sequence h0h1 · · · ∈ {0, 1}ω, where, for all i ∈ N, hi � 1
whenever Mi halts. fhalt is not ω-computable, as a machine that computes
it would be able to answer the halting problem, which is undecidable [1,
119, 120]. However, fhalt is continuous, even uniformly so, as it is constant.

Wegive a sufficient conditionunderwhich continuity impliesω-computability
(and similarly for the refine notion), namely that f has a computable
next-letter problem. This problem asks, given as input two finite data
words u , v ∈ D∗, to output, if it exists, a data value d ∈ D such that for all
suffixes y ∈ Dω such that u · y ∈ dom( f ), we have v · d � f (u · y). Note
that d is unique if it exists, since y is universally quantified.

Problem 11.1: Next-letter problem

Input: u , v ∈ D∗
Output: d ∈ D such that for all y ∈ Dω which satisfy u · y ∈ dom( f ),

v · d � f (u · y)
if it exists
No otherwise



11. ω-Computability and Continuity 224

[142]: Exibard et al. (2021), ‘Computability
ofData-WordTransductions overDifferent
Data Domains’

The i-th iteration lasts forever when the
output only depends on the i-th first data
values. This is the case e.g. for constant
functions, for i � 0.

By convention, for any data ω-word w, we
extend concatenation by letting w · ε � w.

One can actually show that the following
property holds: denote mx : N → N the
optimal modulus of continuity of f at x,
i.e. themappingwhich, to each i ∈ N, asso-
ciatesmin{ j ∈ N | ∀y ∈ dom( f ), |x∧y | ≥
j ⇒ | f (x) ∧ f (y)| ≥ i}. The minimum ex-
ists for all i ∈ N by definition of continuity
(Definition 11.6, item (ii)). Then, the i-th
data value of f (x) is output at the mx(i)-th
iteration of the for loop.

d is chosen as the (|v0 | + · · ·+ |vi0 | + 1)-th
data value of f (x).

We call next-letter decision problem the decision version of the above
problem, which simply asks whether the asked d ∈ D exists.

If the above problem is computable, then the converse of Theorem 11.2
holds:

Theorem 11.3 ([142, Theorem 2.15]) Let f : Dω → Dω
be a partial function

with a computable next-letter problem. The following implications hold:

(i) If f is continuous, then f is ω-computable

(ii) If f is Cauchy continuous, then f is Cauchy computable

(iii) If f is uniformly continuous, then f is uniformly computable

(iv) If f is m-continuous for some mapping m : N → N, then f is m-

computable

Proof. Assume that there exists a procedure Next f (u , v)which computes
the next-letter problem. We exhibit a deterministic multi-tape Turing
machine M f common to the four statements, in the sense that it computes
f when f is continuous, respectively Cauchy computes f when f
is Cauchy continuous, etc. M f executes the following pseudo-code:

Algorithm 2: The Turing machine M f defined in pseudo-code.
Input : x ∈ Dω

1 v :� ε;
2 for i � 0 to +∞ do
3 d :� Next f (x[:i], v);
4 while d , No do
5 output d; // write d on the output tape

6 v :� v · d;
7 d :� Next f (xx[:i], v);

/* end while loop when d � No */

We now show that if f is continous, then M f computes f , i.e. M f (x) �
f (x) for all x ∈ dom( f ). For all i ≥ 0, define vi � d i

0d i
1 . . . the (possibly

infinite) sequence of data values output at line 4 at the i-th iteration of
the for loop of line 2. Note that the test at line 5 can be forever true,
which makes the corresponding vi infinite, and entails that the following
j-th iterations may not exist. In that case, we set v j � ε. As the input
reading head moves to the right at the end of the for loop, we have
that M f (x , i) � v0 · v1 . . . vi for all i ≥ 0. Moreover, by definition of the
next-letter problem, we also have M f (x , i) � f (x). Finally, on input x,
note that M f outputs M f (x) � v0 · v1 · v2 . . . . As a consequence, if M f (x)
is infinite, then M f (x) � f (x). It remains to show that this is the case
when f is continuous at x. Suppose the contrary. Then, there exists i0
such that for all i ≥ i0, the call to Next f (x[: i], v0 · . . . · vi0) returns No.
Assume i0 is the smallest index having this property, and let d ∈ D be
such that v0 · . . . · vi0 · d ≺ f (x). Then, for all i ≥ i0, there exists yi ∈ Dω

and e , d such that x[: i]yi ∈ dom( f ) and v0 · . . . · vi0 · e � f (x[: i]yi).
Clearly, the sequence ( f (x[: i]yi))i∈N, if it converges, does not converge
to f (x). Since (x[: i]yi)i converges to x, this contradicts the continuity of
f . We thus established item (i).

Consider now the case where f is Cauchy continuous. It implies that f
admits a (unique) continuous extension f to dom( f ) (see Fact 11.1). By
item (i), that we just proved, it means that M f computes f . By definition
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of Cauchy computability, this means that M f Cauchy computes f . Note
that we have Next f � Next f .

Finally, we show item (iv), which implies item (iii). Assume that f is
m-continuous for some modulus of continuity m : N → N. Let us
show that M f m-computes f . Since f is continuous, we already know
that M f computes f . Let i ≥ 0, and x ∈ dom( f ). We have to show
that |M f (x ,m(i))| ≥ i. Let j � m(i). Since the algorithm M f calls
Next f (x[: j], ·) until it returns No, we get that v0v1 . . . v j is the longest
output which can be safely output given only x[: j], i.e. v0 . . . v j �∧{ f (x[: j] · y) | x[: j] · y ∈ dom( f )}. If v j is infinite, then |M f (x , j)| � +∞
and we are done. Suppose v j is finite. Then, there exists y ∈ Dω such that
x[: j] · y ∈ dom( f ) and f (x) ∧ f (x[: j] · y) � v0v1 . . . v j � M f (x , j). Since
|x∧ x[: j] · y | ≥ j � m(i), by m-continuity of f , we get that |M f (x , j)| ≥ i,
concluding the proof.
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Adding constants does not affect oligomor-
phicity, see Proposition 12.14.

Exploration of Various Data
Domains 12.

We now move to the study of various data domains. In all cases, the
argument relies on characterising functionality, continuity and its related
notions with a forbidden pattern that can be searched for by a decision
procedure. The case of (D,�,C) is the most elementary, as the renaming
property allows to reduce to the case of a finite alphabet (Theorem 12.11),
itself characterised by a forbidden pattern [51, Figure 2 and Lemma
11]. We then move to the case of oligomorphic data domains, which
encompasses that of (D,�,C). Intuitively, those domains are ‘almost
finite’, in the sense that any tuple has finitely many orbits, i.e. there
are finitely many valuations up to automorphisms of the domain. Since
languages and relations recognised by register machines are closed under
automorphisms, this property allows us to abstract their behaviour in
a finite way, and define a notion of loop (Section 12.2.3) that allows to
use pumping arguments to exhibit a forbidden pattern, and to further
obtain a small witness property for such a pattern (Lemma 12.33). This
setting supersedes (D,�,C), since then a valuation is characterised by
the equalities between the content of each register. We chose to present
the first case independently, as the reasonings are simpler. Finally, we
move to the case of (N, <, 0), which is not oligomorphic (cf Example
12.3). It then implies refining the notion of loop to again get a decidable
characterisation, this time using a Ramsey argument (Propositions 12.56
and 12.57). This section concludes with a method to transfer this result
to similar structures, e.g. (Z, <), using the notion of quantifier-free
interpretation.

The proof techniques we use have in common the following structure:
first, we characterise non-functionality and non-continuity by structural
patterns on non-deterministic register transducers and establish small-
witness properties for the existence these patterns. Then, based on the
small witness properties, we show how to decide whether given a register
transducer, such patterns are matched or not. As this chapter consists in
pushing further and further the decidability border, it might incur some
redundancy between the different cases. However, it does not seem possi-
ble to factor all proofs using a reasonable amount of additional notations,
except for (D,�,C), which is included for pedagogical purposes.

12.1. The Case of Data Domains with Equality

We start with the case of (D,�, #). As stated above, the results in this
section follow from the study of the oligomorphic case of Section 12.2,
since data domains with equality are oligomorphic (cf Example 12.3).
We prefer to treat this particular case in its own right, as the renaming
property yields conceptually simpler proofs which present a pedagogical
interest. This is moreover sufficient for the reader who is only interested
in this case. The impatient reader can jump to Section 12.2, which
presents standalone proofs for the oligomorphic case. Note that to
lighten the argument, we defer the proof of some secondary results
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[38]: Kaminski and Zeitlin (2010),
‘Finite-Memory Automata with Non-
Deterministic Reassignment’

A k-renaming set is a set of the form X �

Y t C, where Y ⊆ D \ C is of size |Y | > k
(Definition 4.21).

Recall that this property holds over any
data domain when non-deterministic reas-
signment is disallowed (Proposition 4.1),
but breaks otherwise (Remark 10.2).

to Section 12.2, namely equivalence between uniform continuity and
Cauchy continuity (Theorem 12.29), and the characterisation and decision
of uniform continuity, which is repetitive. We still give some hints on how
to deduce them without diving into the oligomorphicity terminology.

The key property of data domains with equality is that machines with
registers enjoy the renamingproperty (see Section 4.5.2 for amoredetailed
study of this property and its implications), even when non-deterministic
reassignment is allowed:

Proposition 12.1 (Renaming property in the presence of non-determinis-
tic reassignment [38, Proposition 14]) Let A be a non-deterministic register

automaton with k registers with non-deterministic reassignment over some data

domain (D,�,C). Assume that A accepts some data word w ∈ Dω
. For all

k-renaming sets X ⊆ D, there exists a data word w′ ∈ Xω
which is accepted by

A.

Moreover, it admits an accepting run whose valuations take their values in X.

Proof. The proof is the same as that of Proposition 4.15, and we do not
redo it here. Observe that the valuations of the run we build indeed take
their values in X, i.e. guessing can be restricted to the values in X.

Moreover, machines with registers over (D,�) behave like ω-automata
over any finite subset of data values, again even when non-deterministic
reassignment is allowed:

Proposition 12.2 ([38, Proposition 9]) Let A be a register automaton with

non-deterministic reassignment over data domain (D,�,C). For any finite

subset X ⊆ D, L(A) ∩ Xω
is ω-regular.

More precisely,L(A)∩Xω
is recognised by anω-automatonAX with n(max(s , k)+

c + 1)k states, where n is the number of states of A, k its number of registers,

s � |X | is the size of X and c � |C |. Moreover, if A is deterministic, so is AX .

Proof. Note that contrary to the non-guessing case (Proposition 4.1), this
property does not hold for all data domains (see Property 4.56 and
Remark 10.2). However, in the case of (D,�,C), we can use the second
part of the renaming property to obtain that if w ∈ L(A), it admits an
accepting run that takes its values in a finite renaming set.

Let us make the argument more precise: let A be a register automaton
(with guessing) with states Q and registers R, and let X ⊂ f D be some
finite set of data values. Then, take a k-renaming set Y that contains X; its
size can be bounded by max(s , k) + c + 1). By Proposition 12.1, we know
that if w ∈ L(A) ∩ Xω , then it admits an accepting run whose valuations
take their values in Y. Thus, it suffices to simulate A on the finite set
Y of data values, which can be done by an ω-automaton which stores
valuations in memory using a state space Q × YR. The construction is a
straightforward generalisation of that of Proposition 4.1: theω-automaton
simply needs to additionally guess some value in Y for registers r such
that regOp(r) � guess.

This result can easily be lifted to non-deterministic transducers, yielding
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A relation is ω-rational when it can be
recognised by a non-deterministic asyn-
chronous transducer.

[146]: Gire (1986), ‘Two Decidability Prob-
lems for Infinite Words’
[147]: Filiot, Mazzocchi, and Raskin (2018),
‘A Pattern Logic for Automata with Out-
puts’

A decision problem is in NLogSpace if
there exists a non-deterministic Turing
machine which decides it using only loga-
rithmic space. It is well-known that those
algorithms can be run deterministically in
polynomial time, i.e. NLogSpace ⊆ PTime.
The construction is the same as for show-
ing PSpace ⊆ ExpTime.

A run is lasso-shaped if it is of the form
ρ � πλω for finite sequences of transitions
π and λ.

Proposition 12.3 Let T be a register transducer over data domain (D,�,C).
For any finite subset X ⊆ D, JTK ∩ (Xω × Xω) is ω-rational.

More precisely, JTK ∩ (Xω × Xω) is recognised by an ω-transducer TX with

n(max(s , k)+ c + 1)k states, where n is the number of states of A, k its number

of registers, s � |X | is the size of X and c � |C |.

Aswe demonstrate, those properties jointly allows to reduce functionality
and continuity problems to the data-free case.

12.1.1. The Functionality Problem

We start with the functionality problem, as it is more elementary. We
start by recalling that it is decidable in the data-free case, i.e. for functions
defined by non-deterministic asynchronous transducers with no registers
(Theorem 12.4). We then reduce the decision of functionality for register
transducers to the data-free case by leveraging the renaming property: if
a register transducer is not functional, then this is witnessed by an input
data word and two distinct output data words that take their values in
a finite set of data values, whose size only depends on the number of
registers of the transducer (Proposition 12.7).

Functionality in the Data-Free Case

In this section, Σ and Γ denote two finite alphabets.

By [146, Proposition 3.3], functionality is decidable for transducerswithno
registers. By relying on the pattern logic of [147] designed for transducers
of finite words, we can show that the problem more precisely belongs to
NLogSpace .

Theorem12.4 ([146, Proposition3.3],[147]) Decidingwhether a non-deterministic

asynchronous transducer is functional is in NLogSpace.

Proof (Main Ideas). A non-deterministic asynchronous transducer T is
not functional whenever a given input word admits at least two distinct
outputs. Since both outputs areω-words, they are distinct whenever there
is a position at which they mismatch, i.e. an i such that their i-th letters
are different. Using pumping arguments, one can show that if such a
mismatch occurs at some point, there exists an input of the form u · vω for
words u ∈ Σ∗ and v ∈ Σ+ whose length is polynomial in the size of T, and
that has two accepting runs in T respectively yielding outputs u1(v1)ω
and u2(v2)ω such that u1 and u2 are output on reading u and u1 ∦ u2.
A non-deterministic algorithm can thus guess the accepting runs over
the two inputs, which are lasso-shaped. Using a polynomially-bounded
counter, it keeps track of the length of the output on the runs over the
two mismatching outputs, and checks that there is indeed a mismatch.
It finally checks that both runs can be jointly completed with the same
input word to yield an accepting run.
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‘A Pattern Logic for Automata with Out-
puts’

Tests between outputs are the main cause
of undecidability, as they allow to encode
the Post Correspondence Problem.

This precaution is again to disallow the
expression of equality tests between out-
puts.

Recall that conjunction are easily derived
through De Morgan’s laws.

[149]: Filiot, Mazzocchi, and Raskin (2020),
‘A Pattern Logic for Automata with Out-
puts’

Intermezzo: the Pattern Logic

Many problems on ω-transducers reduce to finding a pattern in a ma-
chine. This is the case for instance of determinisability, which has been
characterised by the twinning property [148, Proposition 3.4]. Aswe point
out in a few lines, this is also te case for functionality. Finally, continuity
and uniform continuity also fall in this framework [51, Lemma 11], and
our characterisation of these notions in the infinite alphabet case relies
on an extension of these patterns. In [147, 149], the authors introduce
the aptly named pattern logic, which allows for a uniform treatment of
the decision of the existence of those patterns, and allows to abstract
pumping arguments. We seize the occasion of this reasonably simple
proof to present the logic, aswe use it as a tool for our subsequent decision
procedures. It is designed for the general setting of finite-state machines
operating over some monoid. In the case of finite-state transducers, the
model-checking problem for this logic is easily shown undecidable, but
the authors introduce a decidable fragment that they call PLtrans [149,
Theorem 9 and Section 5]. We present the syntax of this fragment, that we
simply call PL or pattern logic, and provide its semantics on an intuitive
level. We refer to [149] for a general presentation. Note that this logic is
defined for transducers over finitewords.

Definition 12.1 (Pattern logic [149, Definition 10]) Formulas of the pattern
logic are of the following form, for some n ∈ N:

ϕ F ∃π1 : p1
u1 |v1−−−→ q1 , . . . , ∃πn : pn

un |vn−−−−→ ·C

CF ¬C | C∨ C | u � u′ | u ∈ L | |u | ≤ |u′ | |
init(q) | final(q) | q � q′ | π � π′ |
t � t′ | t ∈ N | |t | ≤ |t′ |, where:

I For all 1 ≤ i < j ≤ n, πi , π j and vi , v j , i.e. we ask that the path
variables π and the output variables are all pairwise distinct, to
disallow equality tests between outputs

I The set L (respectively N) are regular languages over some alphabet
Σ (respectively Γ), given as a deterministic finite automaton

I u , u′ ∈ {u1 , . . . , un} are input variables
I q , q′ ∈ {p1 , . . . , pn , q1 , . . . , qn} are state variables
I t , t′ ∈ Terms({v1 , . . . , vn}, ·, ε) are terms over the output variables
I π, π′ ∈ {π1 , . . . , πn} are path variables.
I We finally require that t � t′ does not occur under an odd number

of negations.

We now give the semantics on an informal level: ϕ states that there exists
n paths in the transducer that that satisfy the condition C. Then, negation
and disjunction are interpreted as usual. The symbol � is interpreted as
the prefix relation, and ∈, |·|,� are interpreted as expected (respectively
set membership, word length and equality). init(q)means that q is initial,
i.e. q ∈ I, and final(q) that it is final, i.e. q ∈ F.

Note that one can define syntactic sugar for non-equality of outputs
t , t′ B t � t′ ∨ t′ � t, as well as for mismatch: mismatch(t , t′) B t �
t′ ∧ t′ � t.

As shown in [149, Theorem 11], the pattern logic has a decidable model-
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checking problem. More precisely:

Theorem 12.5 ([149, Theorem 11]) The model checking of transducers against

formulas in PL is PSpace-complete. It is NLogSpace-complete when the formula

is fixed.

Example 12.1 Since we are operating over ω-words, we present as exam-
ples simple patterns that will serve as macros in the following. First, as
can be established using a simple pumping argument, an ω-transducer
accepts some input ω-word if and only if it accepts an input ω-word of
the form u · vω for some u , v ∈ Σ∗. This is characterised by the pattern of
Figure 12.1.

∃π1 : p
x |x′
−−→ q , ∃π2 : q

y |y′
−−−→ q · init(p) ∧ final(q)

p qx | x′

y | y′

Figure 12.1.: A pattern characterising
non-emptiness of the domain of func-
tions definable by a non-deterministic ω-
transducer. we accompany the formula
with its graphical depiction.
The attentive readermay have noticed that
since the word can be decomposed in mul-
tiple ways, we do not necessarily have
u � x and v � y. Note also that we put no
conditions on x′ and y′.

This pattern also allows to specify that a given state is co-accessible, i.e.
there exists an input word which yields a final run, starting from this
state: coacc(p) is defined as above, except that we do not ask init(p).

Sometimes, we further require that two states are jointly coaccessible, i.e.
that the same input word yields a final run from both states. Formally,
p and q are jointly coaccessible, written jtcoacc(p , q) whenever there

exists an infinite input ω-word x ∈ Σω such that p
x |x′
−−→ and q

x |x′′
−−−→

for some x′, x′′ ∈ Γω. A simple pumping argument establishes that this
is characterised by the pattern of Figure 12.2. We make the argument
precise, for the sake of completeness. p and q are jointly coaccessible
whenever there exists two finite runs π1 and π2 of the following form,
where the outputs have not been indicated as they do not matter for this
property:

π1 : p
u−→ p′

v−→ p′′
w−→ p′

π2 : q
u−→ q′

v−→ q′′
w−→ q′

such that p′ and q′′ are accepting states. Indeed, since we use a Büchi
acceptance condition, if p and q are jointly co-accessible by a common
ω-word x ∈ Σω, then we can find a loop in each run over x and exhibit
two runs over some word u · (v · w)ω, on which there is a run from p
with some accepting states p′ and a run from q with some accepting state
q′′, both occurring on the loop of the lasso. Therefore, jtcoacc(p , q) holds
whenever the pattern logic formula of Figure 12.2 is true against T (seen
as a transducer over finite words).

We can now come back to the formal proof of the decidability and
complexity of the functionality problem for ω-transducers.

Proof of Theorem 12.4. Let T be some NFT with input alphabet Σ and
output alphabet Γ. By definition, JTK maps ω-words to ω-words (cf
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∃π1 : p
u−→ p′ ∃π′1 : p′

v−→ p′′ ∃π′′1 : p′′
w−→ p′

∃π2 : q
u−→ q′ ∃π′2 : q′

v−→ q′′ ∃π′′2 : q′′
w−→ q′

final(p′) ∧ final(q′′)

p p’ p”

q q’ q”

u | u′
v | v′

w | w′

u | u′′
v | v′′

w | w′′
Figure 12.2.:Apattern characterising joint
coaccessibility of two states p and q in a
non-deterministic ω-transducer.

[38]: Kaminski and Zeitlin (2010),
‘Finite-Memory Automata with Non-
Deterministic Reassignment’

Assumption 10.3), so we have that T is not functional if and only if there
exist three ω-words x ∈ Σω and y1 , y2 ∈ Γω such that (x , y1) ∈ JTK,
(x , y2) ∈ JTK and y1 , y2, which implies that there is a mismatch
between y1 and y2, i.e. a position i ∈ N such that y1[i] , y2[i]. By
taking a sufficiently long prefix u ∈ Σ∗ of x, the latter is equivalent to the

existence of finite runs π1 : p1
u |v1−−−→ q1 and π2 : p2

u |v2−−−→ q2, where p1 , p2

are initial, q1 , q2 are jointly co-accessible (by a common ω-word) and
there is a mismatch between v1 and v2. This property is expressible in
the pattern logic. More precisely, we model-check T against the following
pattern formula:

∃π1 : p1
u |v1−−−→ q1 ∃π2 : p2

u |v2−−−→ q2

init(p1) ∧ init(p2) ∧ jtcoacc(q1 , q2) ∧mismatch(v1 , v2)

The predicate jtcoacc(q1 , q2) is defined in Example 12.1. Recall that the
pattern logic operates over finite words and paths, which is why we need
to encode jtcoacc(q1 , q2). This concludes the proof.

Reducing to the Data-Free Case

As established in Section 10.2, traces of runs of a non-deterministic
register transducer can be recognised by a non-deterministic register
automaton. Over data domains with equality, this model enjoys the
renamingproperty, evenwhennon-deterministic reassignment is allowed
([38, Proposition 14]; see also Proposition 12.1.). As we demonstrate, this
allows to show that T is functional if and only if its restriction to some
finite set of data values is functional.

More precisely, we show that if somemismatch happens between outputs,
the input and output words can be renamed with finitely many distinct
data values while preserving the mismatch, by applying the renaming
property on some well-chosen non-deterministic register automaton.
Indeed, if we know a bound on the length before the mismatch, we can
recognise traces that correspond to runs whose outputs mismatch before
this bound.
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When comparing two runs ρ1 and ρ2 over
the same input w ∈ Dω , we say that an
output data value at position j is produced
first in ρ1 if it is output in ρ1 on reading
the k-th input data value, while it is output
in ρ2 on reading the l-th input data value
for l ≥ k.

One needs 2k + 3 data values to rename,
plus the 2 data values # and $, hence 2k+5.
Note that $ could actually be simulated by
adding labels.

[141]: Exibard, Filiot, and Reynier (2020),
‘On Computability of Data Word Func-
tions Defined by Transducers’

Proposition 12.6 Let T be a register transducer with k registers, and let i ∈ N.

We define

MT
i �

ρ1 ⊗ ρ2

������ ρ1 and ρ2 are accepting runs of T
in(ρ1) � in(ρ2) and
|out(ρ1) ∧ out(ρ2)| ≤ i

 (12.1)

Then, MT
i is recognised by a non-deterministic register automaton with 2k + 2

registers.

Proof. Let T be a register transducer. We know by Proposition 10.2 that
L⊗(T) is recognised by a non-deterministic register automaton with 2k
registers. Checking that in(ρ1) � in(ρ2) can be done with a single register:
store di , wait for the separator $, and check that ei � di .

Checking that the outputs of the run mismatch before their i-th data
value is done as follows: initially, the automaton guesses a position
j ≤ i such that out(ρ1)[ j] , out(ρ2)[ j] and stores it in an i-bounded
counter. Assume without loss of generality that out(ρ1)[ j] is produced
first. The automaton keeps track of the length of the prefixes of out(ρ1)
and out(ρ2)which have been output so far using two i-bounded counters.
At some point, it reaches the output position j on out(ρ1) and stores
out(ρ1)[ j] in a register. Then, it keeps simulating ρ1 and ρ2 in parallel,
while keeping track of the length of the prefix of out(ρ2) that has been
produced. Once it reaches the output position j in ρ2, it checks that,
indeed, out(ρ1)[ j] , out(ρ2)[ j], by comparing the value with the one that
it stored in its register. Finally, it continues to simulate ρ1 and ρ2 while
checking that in(ρ1) � in(ρ2) (cf above).

By applying the renaming property to such an automaton, we get the
following:

Proposition 12.7 Let T be a non-deterministic register transducer with k
registers. Then, for all X ⊂ f D of size |X | ≥ 2k + 5 such that #, $ ∈ X, we

have that T is functional if and only if JTK ∩ (Xω × Xω) is functional.

Proof. The left-to-right direction is trivial. Now, assume that T is not
functional, and let x , y , z ∈ Dω such that y , z and (x , y), (x , z) ∈ JTK.
Correspondingly, let ρ1 (respectively ρ2) be an accepting run of T on
input x yielding output y (respectively z). Let i � |y ∧ z |. Consider
the data language MT

i of Equation 12.1. We have that ρ1 ⊗ ρ2 ∈ MT
i , so

MT
i , ∅.We knowby the above Proposition 12.6 that MT

i is recognised by
a non-deterministic register automaton with 2k + 2 registers. By applying
Proposition 12.1 to MT

i , we know that there exists some w ∈ MT
i ∩ Xω.

By definition of MT
i , w � ρ′1 ⊗ ρ′2 for accepting runs ρ′1 and ρ′2 such

that in(ρ′1) � in(ρ′2) � x′ for some x′ ∈ Xω, which respectively yields
out(ρ′1) � y′ and out(ρ′2) � z′ such that |y′∧z′ | ≤ i. In particular, y′ and z’
are such that y′ , z′, so thismeans that (x′, y′), (x′, z′) ∈ JTK∩(Xω×Xω)
are such that y′ , z′, which means that JTK∩(Xω ×Xω) is not functional,
which concludes the proof.

Along with Proposition 12.3 and Theorem 12.4, we get:
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[28]: Demri andLazic (2009), ‘LTLwith the
freeze quantifier and register automata’

Note that RA is in general a relation, since
the decomposition w · $ω is not unique in
general, if $ is a data of w.

Theorem 12.8 ([141, Corollary 10]) The functionality problem for functions

defined by non-deterministic register transducers over data domain (D,�, #) is
PSpace-complete.

Proof. Let T be a non-deterministic register transducer. By the above
Proposition 12.7, the functionality problem of T reduces to that of
JTK ∩ (X × X)ω for any X of size 2k + 5. The choice of X does not matter,
e.g. if D � N, one can take X � {#, 1, . . . , 2k + 5}. Then, JTK ∩ (X × X)ω
is recognised by a non-deterministic ω-transducer with exponentially
many states which can be constructed on-the-fly (Proposition 12.3).
Since functionality is in NLogSpace for non-deterministic (register-free)
asynchronous transducers, it can be decided in polynomial spacewhether
T is functional.

For the hardness, it is known that the emptiness problem for non-
deterministic register automata is PSpace-hard [28, Theorem 5.1]. It
can easily be reduced to a functionality problem, by constructing a
register transducer which is functional if and only if its domain is empty.
For instance, given a register automaton A, build a transducer which
recognises the relation idD ∪ RA, where, by distinguishing $ , £ ∈ D,
RA � {(w · $ω , w · £ω) | w ∈ L(A)}. idD is trivially recognisable by a NRT,
and one can easily build a NRT recognising RA (recall also that NRT are
closed under union, see Proposition 10.4). Then, idD ∪ RA is functional if
and only if RA � ∅, if and only if L(A) � ∅.

12.1.2. ω-Computability and Continuity

We already know by Theorem 11.2 that ω-computability implies continu-
ity. To show the converse, thanks to Theorem 11.3, it suffices to show that
the next-letter problem is decidable.

Proposition 12.9 Let T be a non-deterministic register transducer over (D,�
,C) recognising some function f : Dω → Dω

. The next-letter problem for f is

decidable.

In other words, given u , v ∈ D∗ one can decide whether there exists some d ∈ D
such that for all y ∈ Dω

with u · y ∈ dom( f ), we have v · d � f (u · y), and
exhibit such a data value d if it exists.

Proof. The proof goes in two steps.

The next-letter decision problem We first solve the next-letter deci-
sion problem. We reduce it to the emptiness problem of some non-
deterministic register automaton. The automaton simulates T on inputs
which start with u and whose corresponding output starts with v, and
checks whether there are two subsequent runs whose output do not
match on the first data value after v.

Formally, consider the data language

LT
⊗,u ,v �

ρ1 ⊗ ρ2

������ ρ1 and ρ2 are accepting runs of T
u � in(ρ1), in(ρ2), v � out(ρ1), out(ρ2),
out(ρ1)[|v |] , out(ρ2)[|v |]
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Recall that NRA are closed under intersec-
tion, see Proposition 4.2

The reader might be surprised by the bla-
tant inefficiency of the procedure we de-
scribe. Recall that we are only concerned
about decidability here, since we only
want to establish equivalence between ω-
computability and continuity. A more ef-
ficient procedure would be to simulate T
until it outputs the sought d. However,
when guessing is involved, there are in-
finitely many distinct runs over a given
input, so one has to abstract them in some
way. This is done in a more general setting
in the proof of Proposition 12.38.

[141]: Exibard, Filiot, and Reynier (2020),
‘On Computability of Data Word Func-
tions Defined by Transducers’

We have that LT
⊗,u ,v � ∅ if and only if there exists d ∈ D such that for all

y ∈ Dω with u · y ∈ dom( f ), we have v ·d� f (u · y). Indeed, if LT
⊗,u ,v , ∅,

it means there exists two accepting runs over respective inputs u · y1 and
u · y2 ∈ dom( f ) with respective outputs v · d1 · z1 and v · d2 · z2, with
d1 , d2, which contradict the existence of d. Conversely, if LT

⊗,u ,v � ∅,
then take d � f (u · y)[|v |] for some y ∈ Dω with u · y ∈ dom( f ) if such
an y exists; one can check that it satisfies the required property. If no
such y exists, then any d ∈ D is suitable.

We already know that L⊗(T) is recognisable by some non-deterministic
register automaton over (D,�, $) (with 2k registers). One can hard-code u
and v by adding constants elem(u)∪elem(v) to the data domain. Checking
that u � in(ρ1), in(ρ2) and v � out(ρ1), out(ρ2) is then easily done through
tests ? � u[i] and ? � v[ j], with one |u |-bounded counter i and one
|v |-bounded counter j. Finally, testing that out(ρ1)[|v |] , out(ρ2)[|v |]
is done using a single additional register and a |v |-bounded counter.
Overall, LT

⊗,u ,v is recognised by an NRA (with 2k + 1 registers) over
data domain (D,�, {$} t elem(u) ∪ elem(v)). The emptiness problem is
decidable over this data domain (Theorem 4.20), which concludes the
first part of the proof.

Exhibiting d If the next-letter decision problem answers No, we are
done. Assume it answers Yes: we know there exists d ∈ D such that for
all y ∈ Dω with u · y ∈ dom( f ), we have v · d � f (u · y). As pointed out
above, there are two cases.

If uDω∩dom( f ) � ∅, then take any d ∈ D.Note that uDω anddom( f ) are
both recognisable by an NRA , so checking whether uDω ∩ dom( f ) � ∅
reduces to checking the emptiness of some non-deterministic register
automaton, which is decidable (again by Theorem 4.20).

If uDω ∩dom( f ) , ∅, then one can iteratively test all d ∈ D; the fact that
D is representable entails that the d can be enumerated. For each d ∈ D,
the algorithm checks emptiness of the following data language, which
can be shown recognisable by a NRA with a similar reasoning as above:

LT
u ,v ,d �

{
tr(ρ)

���� ρ is an accepting run of T such that
u � in(ρ) and v · d � out(ρ)

}
The procedure is guaranteed to terminate since we know such a d
exists.

Along with Theorem 11.3, this yields:

Theorem 12.10 ([141, Theorem 18]) ω-Computability and continuity co-

incide for functions defined by non-deterministic register transducers over

(D,�,C).

This equivalence also holds for the refined notions of Cauchy, uniform and

m-computability (respectively, continuity).

12.1.3. Deciding Continuity

In this section, we provide an effective characterisation of non-continuity,
and show how to decide it, and hence how to decide ω-computability.
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[51]: Dave et al. (2020), ‘Synthesis of
Computable Regular Functions of Infinite
Words’

[141]: Exibard, Filiot, and Reynier (2020),
‘On Computability of Data Word Func-
tions Defined by Transducers’

[51]: Dave et al. (2020), ‘Synthesis of
Computable Regular Functions of Infinite
Words’

In [51, Figure 2 and Lemma 11], continuity is characterised by a forbidden
pattern. We extend this characterisation to the case of non-deterministic
register transducers over (D,�), and show that this allows to reduce the
decision of continuity to the finite alphabet case. The technique we use is
very similar to the one for deciding functionality: we again show that a
particular language of traces is recognisable by some non-deterministic
register automaton, to which we apply the renaming property.

Theorem 12.11 ([141, Theorem 19]) Let T be a functional NRT with k
registers, and X ⊆ D of size |X | ≥ 2k + 3. The following are equivalent:

(i) T is not continuous at some x ∈ Dω

(ii) T is not continuous at some x ∈ Xω

(iii) T has the pattern of Figure 12.3.

∃u , v ∈ X∗ ,
∃u′, u′′, v′, v′′ ∈ X∗ ,
∃w ∈ Xω ,

∃w′ ∈ Xω ,

∃q ∈ Q , ∃q f ∈ F,

∃ν, λ : R→ X,
mismatch(u′, u′′) ∨
v′′ � ε ∧mismatch(u′, u′′w′′)

i0 , νιR q f , ν

i0 , νιR q , λ

u | u′

u | u′′

v | v′

v | v′′

w | w′′
Figure 12.3.:A pattern characterising non-
continuity of functions definable by aNRT
over (D,�).
Recall that mismatch(u , v) is a macro ex-
pressing that u and v mismatch, i.e. u ∦ v.

Proof. The implication (ii)⇒ (i) is trivial. Note that (ii)⇔ (i) is sufficient
for decidability, but (iii) is useful to prove (i)⇒ (ii). It also yields another
explanation of the decision procedure, which actually consists in looking
for this pattern under the hood, as it is theway to decide non-continuity in
the data-free case [51, Figure 2 and Lemma 11].We nowmove to (iii)⇒ (ii).

The pattern yields a discontinuity point Let T be a non-deterministic
register transducer. Assume that T has the pattern of Figure 12.3 for
some X ⊆ D. Consider the sequence (xn)n∈N defined, for all n ∈ N, by
xn � u · vn · w. It converges to x � u · vω, and f (x) � u′ · (v′)ω. For all
n ∈ N, we have f (xn) � u′′ · (v′′)n · w′′. There are two cases:

I If u′ ∦ u′′, then for all n ∈ N, f (xn) ∧ f (x) � u′∧ u′′, so ( f (xn))n∈N
does not converge to f (x).

I Otherwise, we have v′′ � ε, so for all n ∈ N f (xn) � u · w′′. Since
in that case u′ ∦ u′′ · w′′, this again means that ( f (xn))n∈N does not
converge to f (x) � u′(v′)ω.

In both cases, f is not continuous at x � u · vω ∈ Xω , and item (ii) holds.

The pattern is necessary for non-continuity We now move to the
hardest implication, namely (i)⇒ (iii).
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Note that the constants involved might be
incredibly large, as we have no bound on i,
nor on j. Thus, the NRAwe build can have
a myriad of states. However, we do not
care about that, as the renaming property
only depends on the number of registers.
Evaluating the number of states is an easy
exercise, which may (or may not) bring
some fun to the reader.

Outline To that end, we need to build two data words u and v which
take their data values in X andwhich coincide on a sufficiently long prefix
to allow for pumping. We use a similar proof technique as for Proposition
12.7: we show that a non-deterministic register automaton can recognise
the data language of interleaved traces of runs whose inputs coincide
on a sufficiently long prefix, while their respective outputs mismatch
before a given position. We then apply the renaming property. Actually,
we also ask that one run presents sufficiently many occurrences of a final
state q f , so that we can ensure the existence of a pair of configurations
containing q f which repeats in both runs.

On reading such u and v, the automaton behaves as an ω-automaton,
since the number of distinct data values is finite (Proposition 12.2). By
analysing the respective runs, we can, using pumping arguments, bound
the position onwhich themismatch appears in u, then show the existence
of a synchronised loop over u and v after such position, allowing us to
build the sought pattern.

Relabel over X Let us prove the result formally. Let T be a functional
non-deterministic transducer with n states and k registers, which recog-
nises a function f : Dω → Dω . Assume that f is not continuous at some
x ∈ Dω and let X ⊆ D such that |X | ≥ 2k + 3. Let ρ be an accepting run
of T yielding output f (x), and let q f ∈ Inf(states(ρ)) ∩ F be a final state
which appears infinitely often in ρ. As f is not continuous at x, there
exists some i ≥ 0 such that for all j ≥ 0, there exists y ∈ dom( f ) such that
|x∧ y | ≥ j but | f (x)∧ f (y)| ≤ i. Pick such an i. Then, take K > |Q | · |X |k ,
and define m � K(i + 1) + K2(i + 1) + K2. Finally, choose j ∈ N such
that states(ρ)[: j] contains at least m occurrences of q f . Consider the data
language

LT
i , j,m �

ρ1 ⊗ ρ2

������ ρ1 and ρ2 are accepting runs of T
|in(ρ1) ∧ in(ρ2)| ≥ j, |out(ρ1) ∧ out(ρ2)| ≤ i and
q f occurs at least m times in states(ρ1)[: j]


By Proposition 10.2, we know the language of interleaved traces of accept-
ing runs ofT is recognised by a non-deterministic register automatonwith
2k registers. Checking that |in(ρ1) ∧ in(ρ2)| ≥ j can be done with a single
additional register and a j-bounded counter, by successively storing each
data value in(ρ1)[l] for 0 ≤ l ≤ j, going to the next $, and checking that
indeed in(ρ1)[l] � in(ρ2)[l]. Testing whether |out(ρ1) ∧ out(ρ2)| ≤ i is
done with two i-bounded counters and another register: the automaton
guesses the position of the mismatch, stores the corresponding position
in its state using a third i-bounded counter along with its data value,
goes to the same position in the output of the other run and checks
that they indeed mismatch. Finally, checking that there are at least m
occurrences of q f in states(ρ1)[: j] is a regular property, necessitating yet
another j-bounded counter and an m-bounded counter. Overall, LT

i , j,m
is recognised by a non-deterministic register automaton with 2k + 2
registers.

It remains to show that LT
i , j,m , ∅, so that we can apply the renaming

property and pump to get the sought pattern. Since f is not continuous at
x, there exists some y ∈ dom( f ) such that |x∧y | ≥ j but | f (x)∧ f (y)| ≤ i.
Pick such a y, and let ρ2 be an accepting run of T over y yielding output
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Still, the above reasoning suffices in the
case of uniform continuity, since then the
witnessing x′ and x′′ can depend on j, due
to uniformity: for each i ≥ 0, one just need
to find x′ and x′′ such that |x′ ∧ x′′ | ≥ i
but | f (x′) ∧ f (x′′)| ≤ j.

We removed the primes and indices in the
decomposition to make the notation less
cluttered. pr stands for ‘prefix’, np for ‘non-
productive’ (it is called this way because
this is where we pump in the case v′′ � ε),
mm for ‘mismatch’ and sf for ‘suffix’. Note
also thatwe do not need to assume that the
partial runsdecomposing ρ′1 end in q f , but
this is a way to make the decomposition
unambiguous.

Note that λsf is the only infinite sequence,
the others are partial runs. Similarly, w
and w′ are data ω-words, while the others
are finite data words.

f (y). We then have that ρ1 ⊗ ρ2 ∈ LT
i , j,m . By the renaming property

(Proposition 12.1)weget two runs ρ′1 and ρ
′
2 such that ρ

′
1⊗ρ′2 ∈ LT

i , j,m∩Xω .
Thus, they are both accepting, and their respective inputs x′ � in(ρ′1) ∈
Xω and x′′ � in(ρ′2) ∈ Xω are such that |x′∧x′′ | ≥ j but | f (x′)∧ f (x′′)| ≤ i.
Moreover, states(ρ′1)[: j] contains at least m occurrences of q f . Note that
we cannot stop here and right away conclude to non-continuity x′, since
x′ and x′′ depend on j. We thus need pumping arguments to exhibit the
pattern, which is a witness of non-continuity at some x′′′.

Decompose the runs and pump Write ρ′1 as ρ′1 � λpr · λnp · λmm · λsf,
where (this decomposition is depicted in Figure 12.4):

I λpr is the partial run containing the first K(i + 1) occurrences of
q f and ending with q f . We write λpr � (q ι , νιR)

upr |vpr

−−−−→ (q f , νpr),
where upr � in(λpr) and vpr � out(λpr)

I λnp is the subsequent partial run containing K2(i + 1) occurrences
of q f and endingwith q f . Wewrite λnp � (q f , νpr)

unp |vnp

−−−−−→ (q f , νnp),
where unp � in(λnp) and vnp � out(λnp)

I λmm is the following partial run containing K2 occurrences of q f

and ending with q f . We write λmm � (q f , νnp)
umm |vmm

−−−−−−→ (q f , νmm),
where umm � in(λmm) and vmm � out(λmm)

I λsf is the remaining run. We write λsf � (q f , νmm)
t1 |t′1−−−→, where

t1 � in(λsf) and t′1 � out(λsf).

We parallely decompose (cf again Figure 12.4) ρ′2 � τpr · τnp · τmm · τsf,
where |λ∗ | � |τ∗ | for ∗ ∈ {pr, np,mm}. Note that this condition implies
that in(ρ∗2) � in(ρ∗2) (again for ∗ ∈ {pr, np,mm}), since we know that
|in(ρ′1)∧ in(ρ′2)| ≥ j, so the inputs match at least until the m-th occurrence
of q f . Thus, we can write:

I τpr � (p ι , νιR)
upr |wpr

−−−−−→ (p , µpr)

I τnp � (ppr , µpr)
unp |wnp

−−−−−→ (pnp , µnp)

I τmm � (pnp , µnp)
umm |wmm

−−−−−−→ (pmm , µmm)

I τsf � (pmm , µmm)
t2 |t′2−−−→

q ι , νιR q f , ν
pr

q f occurs
K(i + 1) times

q f , ν
np

q f occurs
K2(i + 1) times

q f , ν
mm

q f occurs
K2 times

p ι , νιR ppr , µpr pnp , µnp pmm , µmm

upr | vpr

λpr

unp | vnp

λnp

umm | vmm

λmm

t1 | t′1
λsf

upr | wpr

τpr
unp | wnp

τnp
umm | wmm

τmm

t2 | t′2
τsf

Figure 12.4.: Decomposition of the runs ρ′1 and ρ′2 of T.
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A productive transition is a transitionwhose
output is o , ε.

By a slight abuse of notation, we write

(q f , ν)
w |ε
−−−→

T λ
(q f , ν) to say that we call

λ (for ‘loop’) the partial run which loops
over (q f , ν).

Repeating configurations We can assume that all valuations take their
values in X, even when non-deterministic reassignment is allowed
(cf Proposition 12.1). We can see from Figure 12.4 that we are getting
closer to the pattern. First, let us observe that in ρ′1, any sequence
of transitions which contains more than |Q | · |X |k occurrences of q f
contains a repeating valuation associated with q f , by the pigeonhole
principle. In other words, there exists some valuation ν : R → X such
that (q f , ν) appears at least twice. As a consequence, there exists at least
one productive transition among those transitions. Otherwise, it means

that there exists a partial run λ � (q f , ν)
w |ε
−−→

T λ
(q f , ν) for some finite

input data word w ∈ D∗, which can be pumped to yield an accepting
run with finite output, which contradicts the assumption that register
transducers only produce infinite outputs. For the sake of completeness,
we make the argument more precise: since (q f , ν) is a configuration of
ρ′1, it means in particular that it is accessible, i.e. there exist w0 , w′0 ∈ D∗

and a partial run π such that (q ι , νιR)
w0 |w′0−−−−→

T π
(q f , ν). By pumping λ, we

get that π · λω � (q ι , νιR)
w0 |w′0−−−−→

T π
(q f , ν)

w |ε
−−→

T λ
(q f , ν)

w |ε
−−→

T λ
. . . is a run

over input w0 · wω which yields finite output w′0 ∈ D∗, which contradicts
Assumption 10.3.

Locating the mismatch The first consequence of this is that |vpr | > i,
since λpr contains K(i + 1) occurrences of q f , and K > |Q | · |X |k . This
means that the position of the mismatch between f (x′) and f (x′′) lies
in vpr. Now, the argument is a bit technical, due to the necessity to
decompose the runs further, but as we demonstrate, the number of
occurrences of q f in each part of ρ′1 allows to pump so as to exhibit the
pattern of Figure 12.3 on page 235. There are two cases, depending on
whether themismatch occurs early or late. In the latter case, we then show
that it implies the existence of improductive transitions (this corresponds
to the right-hand-side of the disjunction in the pattern, where v′′ � ε).
We formalise the argument:

I Assume the mismatch occurs early in ρ′2, i.e. vpr · vnp ∦ wpr · wnp.
Since there are K2 > |Q |2 · |X |2k occurrences of q f in λmm, there is a
pair of configurations which contains q f and repeats synchronously.
In other words, we can write

λmm
� (q f , ν

np)
t0 |t′0−−−→ (q f , ν)

v |v′
−−→ (q f , ν)

t1 |t′1−−−→ (q f , ν
mm)

and simultaneously

τmm
� (pnp , µnp)

t0 |t′′0−−−→ (p , µ)
v |v′′
−−−→ (p , µ)

t1 |t′′1−−−→ (pmm , µmm)

By taking u � upr · unp, u′ � vpr · vnp, u′′ � wpr ·wnp and w � t1 · t2,
w′′ � t′′1 · t′2, we get the pattern of Figure 12.3.

I Otherwise, the mismatch occurs late in ρ′2, i.e. wpr · wnp � vpr · vnp.
This implies that |wpr · wnp | ≤ i, so, in particular, |wnp | ≤ i. We
know there are K2(i + 1) occurrences of q f in λnp, so, among the
pairs of configurations containing q f that repeat, there is at least
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one which is improductive. In other words, we can write τnp as

(pnp , µnp)
t0 |t′′0−−−→ (q , µ)

v |ε
−−→ (q , µ)

t1 |t′′1−−−→ (pmm , µmm)

and synchronously decompose λnp as

(q f , ν
np)

t0 |t′0−−−→ (q f , ν)
v |v′
−−→ (q f , ν)

t1 |t′1−−−→ (q f , ν
mm)

Take u � upr · t0, u′ � vpr · t′0, u′′ � wpr · t′′0 , w � t1 · umm · t2 and
w′′ � t′′1 · wmm · t′2. Since |u′ | > i, we know that u′ ∦ u′′ · w′′, as
| f (x′) ∧ f (x′′)| ≤ i, so we exhibited the pattern of Figure 12.3.

This concludes the proof.

The above characterisation allows to decide continuity for functions de-
fined by non-deterministic register transducers. We can further pinpoint
its complexity:

Theorem 12.12 ([141, Corollary 20]) The continuity problem for functions

defined by non-deterministic register transducers is PSpace-complete.

Proof. Let T be a non-deterministic register transducer. We know by
Theorem 12.11 that T is not continuous if and only if it is not continuous
over Xω for any X ⊆ D of size |X | ≥ 2k + 5. Pick some X ⊂ f D of size
2k + 3. By Proposition 12.3, we know that T ∩ (Xω ×Xω) is recognised by
a non-deterministic ω-transducer with exponentially many states, which
can moreover be constructed on-the-fly. Since continuity is in NLogSpace
for this model [51, Theorem 12], this yields an algorithm for deciding
continuity of T which runs in polynomial space.

To show that the problem is PSpace-hard, we again reduce from the
emptiness problem for non-deterministic register automata over finite
data words, which is PSpace-complete [28, Theorem 5.1]. Let A be such a
register automaton, over (D,�). We construct a transducer T which is
continuous if and only if L(A) � ∅, iff the domain of T is empty. Let f
be a function realised by some NRT H which is not continuous at some
x ∈ Dω (take, e.g., the function fagain of Example 11.2). Let $ < D be a
fresh symbol, and define the function g as follows: it takes as input a
data word of the form w$w′, where w ∈ L(A), and outputs w$ f (w′).
Then, g is continuous if and only if L(A) � ∅. Indeed, if L(A) � ∅, then
dom(g) � ∅ and g is trivially continuous. Conversely, if L(A) , ∅, then
g is not continuous at w$x for any w ∈ L(A). It remains to show that g is
recognisable by a non-deterministic register transducer. This transducer
starts by simulating A on its input, and simultaneously outputs it. When
it reads $, if it was in some accepting state of A, it branches to some initial
state of H and proceeds executing H. This concludes the proof.

Remark 12.1 (Uniform continuity) Over finite alphabets, uniform con-
tinuity is also characterised by a forbidden pattern [51, Figure 3 and
Lemma 11], for any set X of size |X | ≥ 2k + 3. The above reasoning can
be adapted to show that uniform continuity is characterised by the same
forbidden pattern over (D,�) (Figure 12.5 on the following page). It is
thus decidable, and more precisely PSpace-complete. We do not formally
show it here, as it does not bring much to the presentation and can be
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The proof of Theorem 12.29 is done in the
more general oligomorphic setting, but the
reader who is only interested in the case
of (D,�) should be able to derive from it
a direct proof for this particular case.

The reader who is less mathematically
inclined will find some remarks which
help to derive proofs for the particular
case of (Q, <) from the general setting.

deducted from the study of the oligomorphic case (see Section 12.2, and
in particular Theorem 12.41). Besides, as pointed out in the proof of
Theorem 12.11, on does not actually need to exhibit the pattern to get
decidability, as we can directly establish that non-uniform continuity at
some x ∈ Dω is equivalent with non-uniform continuity at some x ∈ Xω

for any X of size |X | ≥ 2k + 3. It then suffices to reduce to the data-free
case, as is done in the above proof.

∃u , v ∈ X∗ ,
∃u′, u′′, v′, v′′ ∈ X∗ ,
∃w1 , w2 ∈ Xω ,

∃w′, w′′ ∈ Xω ,

∃q ∈ Q , ∃q f ∈ F,

∃ν, µ : R→ X,
mismatch(u′, u′′) ∨
v′′ � ε ∧mismatch(u′, u′′ · w′′) ∨
v′ � v′′ � ε ∧mismatch(u′ · w′, u′′ · w′′)

q ι , νιR q , ν

p ι , νιR p , µ

u | u′

u | u′′

v | v′

v | v′′

w1 | w′

w2 | w′′

Figure 12.5.: A pattern characterising non-uniform continuity of functions definable by a NRT over (D,�).

Finally, note that, as in the finite alphabet case, uniform continuity and
Cauchy continuity coincide over (D,�) by Theorem 12.29.

12.2. The Case of Oligomorphic Data Domains

As pointed out in Property 4.33, the renaming property does not hold
anymore over (Q, <, 0), so the proof techniques of Section 12.1 do not
apply. However, as witnessed by our study of register automata over
(Q, <, 0) (Section 4.6), this data domain presents some form of finiteness:
its k-tuples have finitely many distinct types. These types can thus be
stored in the states, and this allows to show that in (Q, <, 0), the pro-
jection over labels of non-deterministic register automata is ω-regular
(Proposition 4.35). It also makes it possible to turn them into locally
concretisable devices (Proposition 4.37). As we demonstrate, this prop-
erty (as well as reasonable computability assumptions) is sufficient for
the decidability of functionality, continuity and its refined notions. It
also yields decidability of the next-letter problem, which entails the
decidability of ω-computability (and, again, its refined notions).

Since this part of our study has a more theoretical aim, we climb one
level of abstraction and study the class of data domains whose k-uples
have finitely many types. To that end, we shift to the setting of nominal
sets, where this property bears the name of oligomorphicity. This class
of domains contains a wide range of data domains, and in particular
(D,�) and (Q, <) (cf Example 12.3). Distinguishing constants preserves
oligomorphicity, so this also encompasses (D,�,C) and (Q, <,C′) for
arbitrary finite sets C and C′ of constant symbols which are interpreted
with data values in D (respectively Q), see Proposition 12.15. More
generally, any data domain which admits quantifier elimination falls in
this study, as types then correspond to quantifier-free formulas. Note
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For simplicity, we confuse a symbol of the
signature with its interpretation.

Composition of functions is associative,
and it is routine to check that the compo-
sition of two automorphisms again pre-
serves relations and constants. The neutral
element of Aut(D) is the identity function
idD, and the inverse of an automorphisms
is its inverse function.

Applying a morphism to a configuration
consists in applying it to its valuation: for
all (q , ν) ∈ Configs(A), µ(q , ν) � (q , µ(ν)),
with µ(ν) : r ∈ R 7→ µ(ν(r)).
µ(w) is the pointwise application of µ to
w, i.e. for all i ∈ N, µ(w)[i] � µ(w[i]).

that, on the contrary, (N, <, 0) is not oligomorphic, and is the topic of the
dedicated Section 12.3.

As was already pointed out earlier, the languages recognised by register
automata are closed under automorphisms (Proposition 4.10 in Section
4.4.6). The proofs are easily adapted to show that this is also the case for
register transducers, even in the presence of non-deterministic reassign-
ment (see Proposition 12.13). In nominal sets, this closure property bears
the name of equivariance, and plays a central role. In [25], the authors
established an elegant correspondence between nominal sets and register
automata; the study has been furthered in particular in [26]. We lean on
this work to develop our argument. In the following, we recall what an
automorphism is, and subsequently define the notions of orbit. As we
will see, it is closely related to the notion of type (see Proposition 12.17).
Note that what follows is by no means a comprehensive introduction to
the theory of nominal sets and its links with automata; we refer to [25,
26] for a more thorough presentation.

Let us recall the notion of automorphism.

Definition 4.18 (Automorphism of a data domain) Let D� (D,R,C) be
a data domain. A function µ : D → D is an automorphism of D if it is
bĳective and preserves relations and constants, i.e.:

I for all constants c ∈ C, µ(c) � c
I for all relation P ∈ R of arity k and for all tuples (d1 , . . . , dk) ∈ Dk ,

we have (d1 , . . . , dk) ∈ P if and only if (µ(d1), . . . , µ(dk)) ∈ P.

The set of automorphisms of D is denoted Aut(D). Note that is has a
group structure for the composition operation.

Automorphisms are extended to labelled data in the obvious way:
µ(σ, d) � (σ, µ(d)) for all (σ, d) ∈ Σ ×D.

Let us show that runs of a register automaton are closed under the
application of some automorphism. (see also Proposition 4.10). In the
setting of nominal sets, this property is called equivariance:

Definition 12.2 Let D � (D,R,C) be a data domain. A set X ⊆ D

is equivariant if is closed under automorphisms, i.e. µ(X) ⊆ X for all
morphisms µ ∈ Aut(D). This property extends to sets that can be obtained
from D using product, sum, powerset, Kleene star, etc by accordingly
extending morphisms through pointwise application.

Proposition 12.13 Let A be a register automaton over some data domain

D� (D,R,C) (with non-deterministic reassignmen).

For a run ρ of A and a morphism µ ∈ Aut(D), we define µ(ρ) by apply-

ing it pointwise to its configurations: configs(µ(ρ)) � µ(C0)µ(C1) . . . , and
trans(µ(ρ)) � trans(ρ).

Then, for all runs ρ of A over some data word w ∈ Dω
, we have that µ(ρ) is

a run of A over µ(w). Moreover, if ρ is initial (respectively, final, accepting),

then so is µ(ρ).

The result extends to partial runs in the expected way. It also holds over

transducers, by applying µ to the input and output word.
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We say ‘someupdate’ because the updated
valuation is not unique in presence of non-
deterministic reassignment.
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LM is defined over (N, <, 0), but 0 can be
simulated by assimilating it with the first
data value that is read.

Proof. We prove the result over a single transition, the result then follows
by a direct induction. The proof essentially consists in observing that
the successor relation over configurations is invariant under applying an
automorphism.

We treat the case of non-deterministic register transducers; the case
of register automata is obtained by ignoring the outputs. Let T be a
register transducer over data domain D� (D,R,C). Let (p , ν), (q , λ) ∈
Configs(T), and assume there exists t � p

φ,regOp,v
−−−−−−−→ q ∈ ∆ and d ∈ D,

w ∈ D∗ such that C
d |w
−−→

T t
D. By definition, this means that ν, d � φ, that

λ is updated as follows

I for all r ∈ R, if regOp(r) � keep, then λ(r) � ν(r)
I for all r ∈ R, if regOp(r) � set, then λ(r) � d
I for all r ∈ R, if regOp(r) � guess, then λ(r) ∈ D can take any data

value

and that w � λ(v).

Since µ preserves the predicates and constants of D, we get that
µ(ν), µ(d) � φ, as ν, d � φ. Moreover, µ(λ) indeed corresponds to some
update of µ(ν) according to regOp. Finally, µ(w) � µ(λ(v)) � (µ(λ))(v).
Overall, this means that µ(C)

µ(d)|µ(w)
−−−−−−−→

T t
µ(D).

Finally, the character of being initial, final, accepting is preserved, since
applying a morphism to a configuration does not affect its state.

Note that by considering µ−1, we could even get the converse of Proposi-
tion 12.13, i.e. that for any sequence ρ ∈ (Configs(T)∆)∞, ρ is a (partial)
run of T if and only if µ(ρ) is a (partial) run of T.

Orbits

In this study, we are interested in data domains which have a lot of
symmetry. The reader can refer to the notion of data symmetry in [25,
Part 1] for a formal definition. Oligomorphic data domains are data
domains which are characterised by their group of automorphisms. For
instance (D,�) is characterised by the group of (unrestricted) bĳections
over D, as the only predicate that is preserved by all bĳections is equality.
Adding a finite number of constants then corresponds to restricting to
bĳections that preserve those elements. Then, (Q, <) is characterised by
the group of increasing bĳections, which preserve the dense order and
equality. On the contrary, (N, <) does not fall in this category, as the only
bĳection which preserve the discrete order is the identity. Yet, a dedicated
study yields results that are similar to the oligomorphic case, although
the proof is more involved. The key property that we use is that (N, <)
is a substructure of (Q, <), which is oligomorphic. Finally, (Z,+) is not
suitable for our purpose: already, emptiness of register automata over
this domain is undecidable, as they can simulate Minsky machines (cf
LM in Example 4.1).

We now introduce the notion of orbit, which characterises the structure
of a data domain.
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We omit D and simply write Rwhen D

is clear from the context.

Definition 12.3 (Orbit) Let r ∈ N. For d ∈ Dr , the orbit of d under the
action of Aut(D) is the set orbit(d) �

{
µ(d) | µ ∈ Aut(D)

}
.

Example 12.2 In (D,�), all 1-uple have the same orbitD under the action
of Aut((D,�)), which is the set of all bĳections. 2-uple (d1 , d2) ∈ D2 are
of two types: either d1 � d2, in which case the orbit of (d1 , d2) is the
diagonal {(d , d) | d ∈ D}, or d1 , d2 and the corresponding orbit is the
complement of the diagonal {(d , e) | d , e}. More generally, one can
check that the orbit of a tuple is characterised by the equalities between
its elements (more on that later; see also [25, Lemma 6.1]).

Similarly, over (Q, <), the orbit of a pair (d1 , d2) (under the action of
Aut((Q, <)), which is the set of all increasing bĳections) depends on
whether d1 < d2 (it is then {(d , e) | d < e}), d1 � d2 or d1 > d2.

On the other hand, consider (Z, <). Automorphisms of (Z, <) are exactly
translations tc : n 7→ n + c for some c ∈ Z. Thus, the orbit of a pair
(m , n) ∈ (Z2) depends on the distance between m and n, as it is preserved
by applying a translation. Thus, the orbit of (m , n) is {(k , l) | k−l � m−n}.

Oligomorphicity

We are now ready to define the notion of oligomorphicity (see also [26,
Chapter 3]), which separates (D,�) and (Q, <) from (N, <) and (Z, <)
(and, a fortiori, (Z,+)).
Definition 12.4 (Oligomorphicity) A data domain D is oligomorphic if for
all k ∈ N, the set Dk has finitely many orbits under the action of Aut(D).

When D is oligomorphic, we denote RD : N → N its Ryll-Nardzewski

function, which maps k ∈ N to the number of orbits of k-tuples of data
values.

Example 12.3 As explained in Example 12.2, data domains with equality
only (D,�) are oligomorphic. Indeed, the orbit of a k-uple is characterised
by the equalities between its components. It is thus characterised by an
equivalence relation over k elements, so the Ryll-Nardzewski function of
(D,�)maps k to the k-th Bell number Bk .

Similarly, (Q, <) is oligomorphic, as the orbit of a k-uple x is characterised
by the set of relations xi ./ x j for all 0 ≤ i , j ≤ |x |, where ./ is selected in
{<, >,�}. It can thus be represented by a function X × X → {<, >,�},
where X is a set of variables of size k. Overall, R(Q,<) is bounded by 2k2 .

This is also the case of (1(0 + 1)∗ , ⊗) which consists in bit vectors, where
⊗ denotes the bitwise xor operation. Indeed, it forms a vector space,
and an n-tuple is either linearly independent or not. A tuple is then
characterised by the linear equations over n variables that it satisfies, and
there are exponentially many.

Oligomorphic data domains can be though of as ‘almost finite’, in the
sense that in many cases, it suffices to consider the finitely many distinct
types of orbits, instead of the data values themselves.

As a final note, recall that (N, <) is not oligomorphic, as explained above.

Remark that the adding finitely many constants to the data domain
preserves oligmorphicity.
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Formally,C′ bĳectively represents K if |C′ | �
|K | and each element of K is uniquely
represented by some element of C′. In
practice, we confuse K with C′.

Technically, Hc
n+1 is called an hyperplane,

hence its name.

Proposition 12.14 Let D� (D,R,C) be an oligomorphic data domain. Let K
be a set of fresh data values, i.e. D ∩ K � ∅.

We define the addition of K to data domain as follows: DtK � (DtK,R,Ct
C′), where C′ is some set of fresh constant symbols that bĳectively represents K.

Then, Dt K is oligomorphic. Moreover, their Ryll-Nardzewski functions are

equal.

Proof. Let D� (D,R,C) be an oligomorphic data domain. We show how
to add one constant, the result is then obtained by induction. Let c0 < C
be some fresh constant symbol. The result follows from the definition of
oligomorphicity, we include the proof for completeness. Assume that c0
interpreted as some fresh data value $ < D. The automorphism group
Aut(Dt {$}) is in bĳection with Aut(D), as the former is obtained by
uniquely extending all µ ∈ Aut(D) by setting µ($) � $. Consequently, for
all k ∈ N, Dk has finitely many orbits under the action of Aut(D) if and
only if (Dt {$})k has finitely many under the action of Aut(Dt {$}), and
the number of distinct orbits is the same.

Remark 12.2 This easy result entails that our assumption of the existence
of some special constant # that we use to initialise the registers is again
benign for oligomorphic data domains (Assumption 10.1). This is also
the case when we suppose that there is a value that is used as a separator
(Assumption 10.5).

We now show that it is also possible to distinguish some finite set of
constants, i.e. to add constant symbols that are interpreted as data values
that already belong to the data domain. The difference lies in the fact that
the predicates of the domain act on these constants, e.g. in (Q, <, {0, 1}),
we have 0 < 1. Contrary to the above, the Ryll-Nardzewski function is in
general affected by this distinction process.

Proposition 12.15 Let D � (D,R,C) be an oligomorphic data domain. Let

K ⊂ f D be a finite set of distinguished data values.

We define the distinction of K in data domain as follows: DK � (D,R,CtC′),
where C′ is some finite set of fresh constant symbols that bĳectively represents K.

Then, DK
is oligomorphic. We have, for all n ∈ N, RDK (n) ≤ RD(n + |K |).

Proof. This result is slightly less immediate, since the number of orbits
increases in general. We again show how to distinguish a single constant,
the result directly follows by induction on the number of distinguished
constants. Let D � (D,R,C) be an oligomorphic data domain, and
let c ∈ D. Let c0 < C be some fresh constant symbol, interpreted as
c. We have Aut(Dc) � {µ ∈ Aut(D) | µ(c) � c}. Consider an element
d � (d1 , . . . , dn) ∈ Dn for some n ∈ N. Its orbit in Dc is

orbitDc (d) � {µ(d) | µ ∈ Aut(Dc)}
� {µ(d) | µ ∈ Aut(D), µ(c) � c}

Considernow theorbit of (d1 , . . . , dn , c) in D. It isorbitD((d1 , . . . , dn , c)) �
{µ(d1 , . . . , dn , c) | µ ∈ Aut(D)}. Let Hc

n+1 � {(d1 , . . . , dn+1) ∈ Dn+1 |
dn+1 � c} be the set of (n + 1)-uples whose last component is equal to c.
We have that

orbitD((d1 , . . . , dn , c))∩Hc
n+1 � {µ(d1 , . . . , dn , c) | µ ∈ Aut(D), µ(c) � c}
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Thus, projecting on the n first elements yields

πDn (orbitD((d1 , . . . , dn , c)) ∩ Hc
n+1) � orbitDc (d)

As a consequence, the function OrbitsD(Dn+1) → OrbitsDc (Dn) that maps
any orbit Ω ∈ OrbitsD(Dn+1) to πDn (Ω ∩ Hc

n+1) is surjective, which
implies that OrbitsDc (Dn) is finite, since OrbitsD(Dn+1) is itself finite, as
D is oligomorphic. More precisely, we have RDc (n) ≤ RD(n + 1). This
concludes the proof.

Decidable Data Domains

Definition 12.5 We say that D is decidable if its Ryll-Nardzewski function
is computable and FO[S] has decidable satisfiability problem over D.
Moreover, we say that D is polynomially decidable if any orbit of Dk can be
expressed by some FO formula whose size is polynomial in k and the FO
satisfiability problem is decidable using polynomial space.

Remark 12.3 If D is polynomially decidable, then RD is exponential,
since there are exponentially many distinct formula of polynomial size.

Example 12.4 The data domain (D,�) is decidable. First, as stated
in Example 12.3, R(k) is the k-th Bell number for each k ∈ N, so
it is computable. Moreover, satisfiability of FO[�] is decidable, and
more precisely in PSpace. Finally, an orbit of Dk can be expressed as∧k

i�1
∧k

j�1 xi ./i , j x j for variables x1 , . . . , xk where ./i , j is chosen in
∈ {�,,} for each (1 ≤ i ≤ j ≤ k). Overall, we can see that (D,�) is
actually polynomially decidable.

The same goes for (Q, <); simply replace ./i , j∈ {�,,} with ./i , j∈ {�, <
, >}, so (Q, <) is again polynomially decidable.

One can show that (1{0, 1}∗ , ⊗) is not polynomially decidable. However,
it is decidable: one characterises a tuple by the set of equations over n
variables that it satisfies (there are exponentially many), which can be
manipulated by an SMT-solver.

Remark 12.4 One can also establish that orbits of (Q, <) (and, a fortiori,
(D,�)) can be defined with a polynomial formula by using the fact that
this domain admits quantifier-elimination. Thus, any orbit can be defined
by a quantifier-free formula; taking the minimum such formula yields a
formula of linear size. Actually, a type is simply given by the linear order
between the free variables (with equalities allowed).

Note that (Q, <) is homogeneous [26, Definition 7.1 and Example 7.2],
which also yields the result by [26, Lemma 7.5].

It is a direct consequence of Propositions 12.14 and 12.15 that adding and
distinguishing constants preserve decidability and polynomial decidabil-
ity. Formally,

Proposition 12.16 Let D � (D,R,C) be an oligomorphic data domain. For

any finite set of fresh constants K (i.e., K ∩D � ∅), Dt K is decidable. If D is

polynomially decidable, then so is Dt K, if |K | is considered fixed.

Similarly, for any finite set of distinguished constants K ⊂ f D, DK
is decidable,

and polynomially decidable if D is.
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Strictly speaking, we need f to be at least
polynomial, but even the simplest data do-
main (D,�) already requires a polynomial
f .

Note that in general, type(ν) is infinite.
We simply write type(ν) when D is clear
from the context.

For instance by reading Section 4.5.5.

[26]: Bojańczyk (2019), Atom Book

Recall that by definition, this is the case
whenever they satisfy the same set of first-
order formulas.

We assume without loss of generality that
Q ∩S � ∅, where S is the signature of
the data domain.

Remark 12.5 One could easily define analogous notion of exponentially
decidable data domains, and more generally f -decidable for some fixed
complexity function f . We only study the case of decidable and polynomi-
ally decidable data domains since it covers (D,�) and (Q, <). The reader
can check that the complexity analysis transfers to the more general
setting.

Roughly speaking, the problems that we consider (emptiness, function-
ality and continuity) are PSpace (respectively, decidable) whenever the
data domain D is polynomially decidable (resp., decidable).

12.2.1. Register Automata over Oligomorphic Data
Domains

Westart by carrying out a brief study of the behaviour of register automata
over oligomorphic data domains, as it gives an intuition of the structure
induced by oligomorphicity. This also yields results that prove useful
later on.

Orbits, Types and First-Order Logic

Orbits and Types Recall that a type is defined as follows.

Definition 4.30 (Type) Let ν : X → D be a valuation over X. The type of
ν in D is the set typeD(ν) of first-order formulas ϕ(X) (i.e. we allow the
use of quantifiers) that ν satisfies over domain D.

The set of types over D is denoted Types(D).

At this point, the reader who is familiar with the notion should feel a
connection between this notion and that of orbit. And indeed, by [26,
Claim 4.12], we get:

Proposition 12.17 (Orbits and Types [26, Claim 4.12]) For an oligomorphic

data domain and for any k ∈ N, two k-uples have the same orbit whenever they

have the same type.

In our study, we are mainly interested in valuations and configurations,
so we make precise what we mean when we mention their type. In
the following, we assume that the set R of registers is of the form
R � {r1 , . . . , rk} for some k ≥ 1. This is without loss of generality. Note
that in particular, this induces an ordering over registers: r1 < · · · < rk .
We use this fact to interpret valations over R as k-uples.

Definition 12.6 The type of a valuation ν : R → D is type((r1 , . . . , rk)).
For C � (q , ν) a configuration, its type is defined as type(C) � (q , type(ν)).

An immediate corollary of Proposition 12.17 is that when two configura-
tions have the same type, one can be mapped to the other through an
automorphism (and conversely):

Corollary 12.18 Let ν, ν′ : R → D be two valuations. type(ν) � type(ν′) if
and only if there exists some morphism µ ∈ Aut(D) such that µ(ν) � ν′.

Let A be a register automaton. This property is extended to configurations of

A by considering morphisms over Dt Q, where Q is seen as a finite data

domain with Aut(Q) � {idQ} (or, equivalently, as a finite set of constants).
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In particular, type(C) � type(C′) imply
that they have the same state.

t is enabled from C whenever there ex-
ists d such that C

d−→t C′ for some target
configuration C′.

Note that we impose no condition on r′i
when regOp(ri) � guess, as it it then al-
lowed to take any data value.

By the formula ψt (C, d , C′), we mean
ψt (ν(r1), . . . , ν(rk ), d , λ(r1), . . . , λ(rk )).

By definition of our notion of type for con-
figurations, having the same type implies
having the same state (Definition 12.6).

When we say that ϕ(r1 , . . . , rk ) is satisfied
by ν, we naturally mean that it is true
when each variable r j for 1 ≤ j ≤ k is
replaced by ν(r j).

Automorphisms of Dt Q are exactly automorphisms µ ∈ Aut(D) extended
by letting µ(q) � q for all q ∈ Q. We can formulate the property as follows:

let C � (p , ν) and C′(q , ν′) be two configurations of A. type(C) � type(C′) if
and only if there exists some morphism µinAut(DtQ) such that µ(C) � C′.

In the following, this extension will be left implicit to lighten the notations. Thus,

we pick µ ∈ Aut(D) and implicitly extend it to configurations by first letting

µ(q) � q for all q ∈ Q and then applying it pointiwise: µ(q , ν) � (q , µ(ν)).

Expressing Transitions in First-Order Logic By definition of a type,
we also have that the ability to take a transition from a configuration only
depends on the type of the configuration.

Lemma 12.19 Let A be some register automaton. Let C,D be two configurations

of A such that type(C) � type(D). For any transition t of A, t is enabled from

C if and only if it is enabled from D.

The proof is merely an observation, since enabling can be expressed with
a first-order formula. First, notice that a transition can be represented by
a formula.

Definition 12.7 Let R � {r1 , . . . , rk} be a set of k registers (for some
k ≥ 1), and (φ, regOp) ∈ ActionsD(R). To (φ, regOp), we associate the
quantifier-free formula

ψφ,regOp(r1 , . . . , rk , ?, r′1 , . . . , r
′
k) Bφ(r1 , . . . , rk , ?)∧

υregOp(r1 , . . . , rk , ?, r′1 , . . . , r
′
k)

where

υregOp(r1 , . . . , rk , ?, r′1 , . . . , r
′
k) B

k∧
i�1

∧
regOp(ri )�keep

r′i � ri∧
∧

regOp(ri )�set
r′i � ?

Let A be some register automaton. By a slight abuse of notation, for

any transition t � p
φ,regOp
−−−−−→ q (for some states p and q), we denote

ψt B ψφ,regOp.

Observation 12.20 Let A be some register automaton. It follows from the
semantics of register automata that for any configurations C � (p , ν) and
C′ � (q , λ), and for all transitions p

φ,regOp
−−−−−→ q and all data values d ∈ D,

C
d−→t C′ if and only if ψt(C, d , C′) holds.

We can now establish Lemma 12.19, which follows from this observa-
tion.

Proof of Lemma 12.19. Let A be some register automaton. Let C,D ∈
Configs(A) be two configurations of A such that type(C) � type(D).
Write C � (p , ν) and D � (p , λ). Let t � p

φ,regOp
−−−−−→ q be a transition,

and assume that t is enabled from C. Let d ∈ D and C′ be such that
C

d ,φ,regOp
−−−−−−−→

A t
C′. By Observation 12.20, this means that ϕ(r1 , . . . , rk) B

∃d , ∃r′1 , . . . , r
′
k · ψt(r1 , . . . , rk , d , r′1 , . . . , r

′
k) is satisfied by ν. Since C and

D have the same type, they satisfy the same formulas, so in particular
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[26]: Bojańczyk (2019), Atom Book

Feasible action sequences are defined in
Section 4.5.4, but we recall the necessary
definitions.
We banned labels from this part, but it
should be obvious how to restore them.
Otherwise, simply consider the result in
the case of a unary alphabet; this suffices to
reduce the emptiness problem of register
automata to its analogous for ω-automata.

The impatient reader should feel free to
jump to Section 12.2.2.

We did not study register automata over
oligomorphic data domains in Chapter 4
since the case of (Q, <)was then sufficient
for our purpose, and introducing the ter-
minology would have been cumbersome.

∃d , ∃r′1 , . . . , r
′
k · ψt(D , d) is satisfied by ν. This precisely means that t is

also enabled from D.

Orbits and First-Order Logic A key property of oligomorphic data
domains is that their orbits can be defined by first order formulas. In
the following, we denote by FO[S] the set of first-order formulas over
signatureS � R t C, or simply FO whenS is clear from the context. As
demonstrated in [26], we have:

Proposition 12.21 ([26, Lemma 4.11]) Let D be an oligomorphic data domain,

and let k be a natural number. Any orbit of an element of Dk
is first-order

definable.

As a consequence, we can refine Lemma 12.19 by requiring that the types
of the target configurations also match.

Proposition 12.22 Let A be some register automaton. Let C,D be two con-

figurations of A such that type(C) � type(D). For any transition t of A, if

C
d−→t C′ for some d ∈ D and some configuration C′, then there exists d′ ∈ D

and a configuration d′ such that D
d′−→t D′ and type(C′) � type(D′).

Proof. Let A be some register automaton, and C,D be two configurations
of A such that type(C) � type(D). Let t be a transition of A, and assume

thatC
d−→t C′ for some d ∈ D and some configurationC′. Let τ′ � type(C′)

be given as a first-order formula (thanks to Propositions 12.17 and 12.21).

Since C
d−→t C′ and type(C′) � τ′, we know that ∃d , ∃r′1 , . . . , r

′
k · ψC,d ∧

τ′(r′1 , . . . , r′k) is satisfiable (see Observation 12.20). Then, C and D have
the same type, so we know that ∃d′, ∃r′1 , . . . , r

′
k · ψD ,d ∧ τ′(r′1 , . . . , r′k) is

satisfiable aswell. Let d′, r′1 , . . . , r
′
k ∈ D be some data values that satisfy it,

and define λ as λ(r j) � r′j for all 1 ≤ j ≤ k. By taking q the state of C′, we

get that D′ � (q , λ) is such that D
d′−→t D′ and type(D′) � type(C′).

Fugue: Projection over Labels

To give a flavour of the behaviour of register automata over oligomorphic
data domains, we show that the set of feasible action sequences is ω-
regular (provided we take a finite set of tests), which implies that the
projection over labels is also ω-regular. This yields a proof that emptiness
is decidable for register automata over decidable data domains. This
section is not strictly necessary for our argument ondeciding functionality
and continuity as we provide a standalone proof of this fact later on
(Theorem 12.26), but it completes the picture of register automata that we
started in Chapter 4 and might give a better understanding of Theorem
12.26.

We first recall the necessary definitions:

Definition 4.26 (Action Sequence) An (infinite) action sequence over data
domain D and set of registers R is an infinite sequence

α � φ1asgn1φ2asgn2 · · · ∈ (TestsD(R)2R)ω

We denote by ActSeqD(R) the set of action sequences over D and R.
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Dmay be omitted when it is clear from
the context.

This condition is necessary to get PSpace
complexity later on. See Section B.2.1 for
a definition of the representation of an
ω-automaton.

Definition 4.27 (Compatible Data Word) A data word x � d0d1 · · · ∈
Dω is compatible with α whenever there exists an infinite sequence of
valuations (νi)i∈N ∈ (ValD(R))ω such that ν0 � νιR and for all i ∈ N,
νi{?← di} � φi and νi+1 � νi{asgni← di}. In other words, x ∈ Dω

is compatible with α whenever there is a path over x ⊗ α in the data
processing transition system TD

R .

Definition 4.28 (Feasible Action Sequence) Given an action sequence α,
we then define the set of compatible data words as:

Comp(α) �
{

x ∈ Dω | x is compatible with α
}

An action sequence α is feasible if Comp(α) , ∅. The set of feasible action
sequences over R is denoted as:

FeasibleD(R) � {α ∈ ActSeqD(R) | Comp(α) , ∅}

The following result generalises Proposition 4.29 and Proposition 4.34.

Proposition 12.23 Let D be a decidable oligomorphic data domain, and let R
be a set of registers.

For any finite subset Φ ⊂ f Tests(R), there exists an ω-automaton AR
Φ
over the

alphabet Φ × RegOpR with states Types(D) and a trivial acceptance condition

which accepts Feasible
D
(R) ∩ (Φ × RegOpR)ω.

If D is polynomially decidable, then AR
Φ
can be represented in space polynomial

in |Φ| and |R |.

Proof. This is essentially a corollary of Proposition 12.22: the core prop-
erty that we use is that given a transition, the existence of a successor
configuration of a given type only depends on the type of the current
configuration, since having the same type implies satisfying the same set
of first-order formulas. We develop the argument as it makes the proof
of Theorem 12.26 (on which we heavily rely) more precise. Note that the
standalone proof that we give later on (see Section Subsection 12.2.3 on
page 255) essentially consists in checking emptiness of an ω-automaton
recognising accepting runs of a given register automaton, although we
present it in a different way.

Let D be a decidable oligomorphic data domain, and let R be a set
of registers. Finally, let Φ ⊂ f Tests(R) be a finite set of tests. Define
AR
Φ

� (Types(D),Φ × RegOpR , τ
ι ,∆,Ω), where τι �

∧
r∈R r � # and

Ω � Types(D)ω is a trivial acceptance condition. Let τ, τ′ ∈ Types(D) and
(φ, regOp) ∈ Φ×RegOpR . There is a transition τ

φ,regOp
−−−−−→

AR
Φ

τ′whenever the

formula ψ(x1 , . . . , xk , d , y1 , . . . , yk) B τ(x1 , . . . , xk) ∧ τ′(y1 , . . . , yk) ∧
φ(d , x1 , . . . , xk) ∧ υregOp(x1 , . . . , xk , d , y1 , . . . , yk) is satisfiable.

Correctness of the construction We start by showing that this au-
tomaton accepts the set of feasible action sequences over R in D and
defer the complexity analysis to the end of the proof. First, let α �

(φ0 , regOp0)(φ1 , regOp1) · · · ∈ (ΦRegOpR)ω be a feasible action sequence,
and let w � d0d1 · · · ∈ Comp(α). By definition, there exists a sequence
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The notion of representation of a non-
deterministic Büchi automaton is formally
defined in Section B.2.1.

of valuations (νi)i∈N such that ν0 � νι and for all i ∈ N, νi , di � φi and
νi+1 � update(νi , regOpi , di). For all i ∈ N, we let τi � type(νi). We build
by induction a run ρ of AR

Φ
such that for all i ∈ N, states(ρ)[i] � τi .

Initially, we have type(ν0) � type(νι) � τι. Assume that this is the
case at step i. We know that νi , di � φi , νi+1 � update(νi , regOpi , di)
and type(νi) � τi . We then have that τi(x1 , . . . , xk) ∧ τi+1(y1 , . . . , yk) ∧
φ(d , x1 , . . . , xk) ∧ υregOpi (x1 , . . . , xk , d , y1 , . . . , yk) is satisfied by taking,

for all j ∈ R x j � νi(r j), y j � νi+1(r j) and d � di . Thus, τi
φi ,regOpi−−−−−−→ τi+1,

where τi+1 � type(νi+1), so the inductive invariant holds at step i + 1.

Conversely, let ρ be a run of AR
Φ

over some action sequence α �

(φ0 , regOp0)(φ1 , regOp1) · · · ∈ (ΦRegOpR)ω. We need to show that α
is feasible. To that end, we build by induction a sequence of valuations
(νi)i∈N such that ν0 � νι and for all i ∈ N, νi , di � φi and νi+1 �

update(νi , regOpi , di). We moreover ask that type(νi) � states(ρ)[i] B τi
for all i ∈ N.

Initially, take ν0 � νι; we have type(νι) � τ0. Now, assume that νi has

been built. Since τi
φi ,regOpi−−−−−−→ τi+1, we know that

ψi(x1 , . . . , xk , d , y1 , . . . , yk) B τi(x1 , . . . , xk) ∧ τi+1(y1 , . . . , yk) ∧
φ(d , x1 , . . . , xk) ∧
υregOpi (x1 , . . . , xk , d , y1 , . . . , yk)

is satisfiable. Let x1 , . . . , xk ∈ D which, together with some d′ ∈ D

and some y′1 , . . . , y′k ∈ D, satisfy ψi . Then, the first-order formula
∃d , ∃y1 , . . . , yk , ψi(x1 , . . . , xk , d , y1 , . . . , yk) is satisfiable. We also know
that τi(x1 , . . . , xk). Since type(νi) � τi , it means that νi has the same type
τi as (x1 , . . . , xk), so, by definition, they satisfy the same set of formula. In
particular, itmeans that∃d , ∃y1 , . . . , yk , ψi(ν(r1), . . . , ν(rk), d , y1 , . . . , yk)
is satisfiable; let di � d and, for all 1 ≤ j ≤ k, νi+1(r j) � y j . We then know
that type(νi+1) � τi+1 and νi+1 � updateνi , regOpi , di , so the inductive
invariant holds at step i + 1.

Complexity of the construction Now, assume that D is polynomially
decidable. We need to show that AR

Φ
is representable in polynomial

space. First, its states can be represented in polynomial space as first-
order formulas. The initial state can be represented in space linear in
|R |, and the acceptance condition is trivial. It remains to show that
given τ, τ′ ∈ Types(D) and φ ∈ Φ, regOp ∈ RegOpR, one can decide in

polynomial space whether there exists a transition τ
φ,regOp
−−−−−→

AR
Φ

τ′. This

amounts to deciding satisfiability of somefirst-order formula of size linear
in |R |, which is doable in polynomial space by definition of polynomial
decidability.

As a consequence, we get:

Theorem 12.24 Let D be a decidable oligomorphic data domain. Let A be a

register automaton with labels over D. The projection over labels lab(A) is
effectively ω-regular.
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Formally, the co-projection

of Ω ∈ Qω is defined as
(πX

Q)
−1(Ω) � {(q0 , x0)(q1 , x1) · · · ∈

(Q × X)ω | q0q1 · · · ∈ Ω}, where πX
Q

denotes the projection of Q × X to Q.

Recall that in this part, automata and trans-
ducers natively handle guessing.

As usual,PSpace-hardness results from the
fact that the problem is already PSpace-
hard over (Q,�), see Theorem 4.20.
[39]: Segoufin and Torunczyk (2011), ‘Au-
tomata based verification over linearly or-
dered data domains’

Note that y � µ(x) implies that x and y
have the same length, with the conven-
tion that two infinite words have the same
length.

More precisely, is is recognised by an ω-automaton with states Q × Types(D)
(where Q is the state space of A). If D is polynomially decidable, this automaton

can be represented using polynomial space.

Proof. The proof is the same as for Proposition 4.29 and Proposition
4.34: see A as an ω-automaton, and construct the product of A and AR

Φ

(defined in Proposition 12.23) that recognises the intersection of their
languages, where R is the set of registers of A, and Φ its set of tests.
Such an ω-automaton recognises the language of accepting runs of A.
Finally, project away the alphabet Φ × RegOpR, keeping only labels. The
acceptance condition is obtained by co-projecting on the Q component.
One can check that all those operations can be encoded using polynomial
space.

Since (Q, <, 0) is polynomially decidable, we get:

Corollary 12.25 The projection over labels of a non-deterministic register

automaton (with guessing) over (Q, <, 0) is ω-regular.

Emptiness Problem An immediate corollary of Theorem 12.24 is the
decidability of the emptiness problem, as lab(A) � ∅ if and only if
L(A) � ∅. Moreover, when D is polynomially decidable, we obtain
membership of PSpace since lab(A) is recognised by an ω-automaton that
can be represented using polynomial space.

Theorem 12.26 Let D be a decidable (respectively, polynomially decidable)

oligomorphic data domain. The emptiness problem for non-deterministic register

automata over D is decidable (respectively in PSpace).

We later on provide a standalone proof by describing a non-deterministic
algorithm that checks emptiness using polynomial space. It essentially
consists in checking emptiness of lab(A), but we feel that this presentation
sheds a different and useful light on the problem (see Section 12.2.3).

Note that since (Q, <, 0) is polynomially decidable (Example 12.4), we
get the following result, that is already known from [39, Theorem 14]:

Theorem 12.27 ([39]) The emptiness problem for register automata over (Q, <
, 0) is PSpace-complete.

12.2.2. Uniform Continuity and Cauchy Continuity

As we have seen by our short study of register automata over oligo-
morphic data domains, these domains enjoy some form of finiteness.
Correspondingly, oligomorphicity allows to recover some form of com-
pactness, which implies that uniform continuity and Cauchy continuity
coincide, as in the finite alphabet case.

Proposition 12.28 Let D be an oligomorphic data domain. The metric space

D∞/Aut(D) is compact, equipped with the distance

d([x], [y]) � min{d(u , v) | u ∈ [x], v ∈ [y]}
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Here, we confuse the finite data word u �

d0 . . . dm with the tuple (d0 , . . . , dm), so
the orbit of xn[0:m] is to be understood as
the orbit of (xn[0], . . . , xn[m]).
For (D,�) and (Q, <) there is even a sin-
gle orbit over singletons, namely the entire
data domain. This is not the case anymore
when one distinguishes some constants.
See also Example 3.21 in [26]: Bojańczyk
(2019), Atom Book for a more complex ex-
ample.

One could show equally easily that
(µm(ym))m∈N is a Cauchy sequence,
which implies that it converges since
(Dω , ‖·, ·‖) is complete.

[142]: Exibard et al. (2021), ‘Computability
ofData-WordTransductions overDifferent
Data Domains’

Proof. Let Dbe an oligomorphic data domain. By definition, the quotient
D∞/Aut(D) is constructed as follows: given two words x , y ∈ D∞, x ∼ y
if there exists an automorphism µ ∈ Aut(D) such that y � µ(x). It is well-
known that ∼ is an equivalence relation. Then, elements of D∞/Aut(D)
are the equivalence classes of ∼. Given x ∈ D∞, we denote by [x] the
equivalence class of x.

The main idea of the proof is that since D is oligomorphic, we have that
for all i ∈ N, Di only has finitely many orbits. As a consequence, one can
successively extract subsequences from (xn)n∈N such that their first i data
values all belong to the same orbit. Overall, we get a sequence (yn)n∈N
such that from the i-th data word, all yn[0:i] belong to the same orbit.
This means that there exists a sequence (µn)n∈N such that (µn(yn))n∈N
converges, since from step i, all µn(yn) agree on their i first data values.
Note that it actually converges to y ∈ Dω defined by y[i] � µi(yi[i]).

Formally, let ([xn])n∈N be a sequence of elements of D∞/Aut(D). Let
us build by induction on n ∈ N a subsequence (ym)m∈N, along with a
sequence (µm)m∈N, such that for all m ∈ N, the two following conditions
hold:

(i) xn[0:m] is in the same orbit as ym[0:m] for infinitely many n ∈ N
(ii) |µm+1(ym+1) ∧ µm(ym)| ≥ m.

Since D is oligomorphic, D has finitely many orbits, so there is at least
one orbit of D that contains infinitely many xn[0]. Let y0 be one of them.
Then, xn[0] is in the same orbit as y0[0] for infinitely many n ∈ N, and
item (i) is satisfied. The second item (ii) holds for any choice of µ0 and
µ1, so one can pick µ0 � idD.

Now, let m ∈ N, and assume by induction that we built ym and µm
satisfiying items (i) and (ii). Consider the infinitely many xn such that
xn[0 : m] is in the same orbit as ym[0 : m]. Since D is oligomorphic,
Dm+1 only has finitely many orbits. As a consequence, among those xn ,
there are infinitely many such that all xn[0 : m + 1] are in the same orbit.
Take ym+1 to be one of them. Then ym+1 satisfies item (i). Moreover,
ym+1[0 : m] is in the same orbit as ym[0 : m], so it is also in the same
orbit as (µm(ym[0 : m])). Thus, there exists µm+1 ∈ Aut(D) such that
µm+1(ym+1[0 : m]) � µm(ym[0 : m]). Such µm+1 makes item (ii) true.

Finally, define y ∈ Dω as, for all i ∈ N, y[i] � µi(yi[i]). An easy induction
establishes, thanks to item (ii), that for all m ∈ N, |µm(ym)∧y | ≥ m, which
means that (µm(ym))m∈N converges to y. As a consequence, ([ym])m∈N is
a convergent subsequence of ([xn])n∈N.

This property suffices for the notions of uniform continuity and Cauchy
continuity to coincide.

Theorem 12.29 ([142, Proposition 2.7]) Let D be an oligomorphic data

domain, and let f : Dω → Dω
be an equivariant function. Then, f is uniformly

continuous if and only if it is Cauchy continuous.

Proof. The left-to-right direction always hold, by definition. Conversely,
let D be an oligomorphic data domain, and let f : Dω → Dω be an
equivariant function. Assume that f is not Cauchy continuous, and let
i ∈ N and a sequence (xn , yn)n∈N such that for all n ∈ N, |xn ∧ yn | ≥ n
but | f (xn)∧ f (yn)| ≤ i. We consider the sequence ([xn], [yn])n∈N of pairs
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Recall that the Cartesian product of two
compacts is compacts.

Note that convergence is preserved when
applying a morphism.

of elements of D∞/Aut(Dω), i.e. of words up to automorphisms. Since
D∞/Aut(D) is compact by Proposition 12.28, we can extract a subsequence
wich is convergent. We also call it ([xn], [yn])n∈N for convenience. This
means that there are morphisms (µn)n∈N such that (µn(xn), µn(yn))n∈N
converges. By interleaving (µn(xn)) and µn(yn)), we obtain a convergent
sequence whose image is divergent. Formally, define (zn)n∈N as, for all
n ∈ N, z2n � µn(xn) and z2n+1 � µn(yn). Then we have, for all n ∈ N,
f (z2n) � f (µn(xn)) � µn( f (xn)), similarly f (z2n+1) � µn( f (yn)). Since
µn is bĳective, we get that µn( f (xn))∧µn( f (yn)) � µn( f (xn)∧ f (yn)), so
| f (z2n) ∧ f (z2n+1)| ≤ i, which means that ( f (zn))n∈N does not converge,
while (zn)n∈N does, since both (xn) and (yn) converge to the same limit.
This is a witness that f is not Cauchy continuous.

12.2.3. Characterising Functionality and Continuity

Our goal is to show that one can decide, under reasonable computability
assumptions, the next-letter problem, as well as continuity and uniform
continuity (hence also Cauchy continuity, see Theorem 12.29) over oligo-
morphic data domains. As a first step, we prove characterisations of these
properties, and later on show how to decide them, by establishing that
these characterisations can be checked by register automata.

Loop Removal

The main goal of this section is to give characterisations of functionality,
continuity and uniform continuity for non-deterministic register trans-
ducers over oligomorphic data domains. Those characterisations consist
in small witnesses, which are obtained by pumping arguments that rely
on the finiteness of the number of configuration orbits.

We start by defining loop removal, which is instrumental in exhibiting
small witnesses. Contrary to the finite alphabet case, no actual loop over
the same configuration is guaranteed to exist over a given run. However,
oligomorphicity guarantees that over long enough runs, a configuration
orbit repeats.

Definition 12.8 (Loop removal) We consider a partial run to be weakly

looping if it is of the shape C
u |u′
−−−→ D

v |v′
−−→ µ(D)

w |w′
−−−→ E for some

v , ε and some morphism µ ∈ Aut(D). By applying µ to the first
part of the run, we can remove the weak loop and get the shorter path

µ(C)
µ(u)|µ(u′)
−−−−−−−→ µ(D)

w |w′
−−−→ E, which is still a partial run by Proposition

12.13.

If, additionally, µ is such that µ(C) � C, we say that the partial run is

looping. We can then remove the loop and get the shorter path C
µ(u)|µ(u′)
−−−−−−−→

µ(D)
w |w′
−−−→ E, which is still a run, again because runs of register automata

are closed under automorphisms.
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Technically, the iteration of the process
can be done by taking the minimal u such
that there is a run from C to D over in-
put u, and assume by contradiction that
l ≥ n2 · R(2k). The following argument
shows that if this is the case, there exists
a strictly shorter such u, which yields a
contradiction.

Small run witnesses Loop removal allows to shorten witnesses of the
existence of runs of register automata, which provides another way to
decide whether a given register automaton is empty.

Proposition 12.30 (Small run witness) Let T be a non-deterministic register

transducer with k registers and n states over data domain D. Assume that

C
u |u′
−−−→ D is a partial run for C,D ∈ Configs(T) and u , u′ ∈ D∗. Then, there

exists w , w′ ∈ D∗ with |w | ≤ n2 ·RD(2k) such that C
w |w′
−−−→ D.

Proof. The main idea is a direct generalisation of the classical pumping
argument yielding small run witnesses in the finite alphabet case: any
large enough run must contain a loop and can thus be shortened.

Formally, Let T be a non-deterministic register transducer with k registers
and n states over data domain D. Let u � d0 . . . dl−1 ∈ D∗, and assume

that there is a partial run C0
d0 |v0−−−→ C1 . . . Cl−1

dl−1 |vl−1−−−−−−→ Cl , and that

l ≥ n2 · R(2k) (otherwise we are done). We need to exhibit a shorter
run; the process can then be iterated until l ≤ n2 ·R(2k). Consider the
orbits of the pairs (C0 , Ci) for 0 ≤ i ≤ l. Recall that each configuration
Ci is itself a pair (q , ν), where ν : R→ D is a valuation of the registers.
Since there are n2 · R(2k) distinct orbits for pairs of configurations,
there must be two pairs of configurations with the same orbit, i.e. there
exists two indices 0 ≤ i < j ≤ l and some automorphism µ such that
µ(C0 , Ci) � (C0 , C j). By applying µ to the i first transitions of the partial

run, we get the shorter run C0
µ(d0)|µ(v0)−−−−−−−−→ µ(C1) . . . µ(Ci−1)

µdi−1 |µ(vi−1)−−−−−−−−−→

µ(Ci) � C j
d j |v j
−−−→ C j+1 . . . Cl−1

dl−1 |vl−1−−−−−−→ Cl .

Remark 12.6 Note that by removing weak loops, we can drop the bound
on the length of w to |w | ≤ n ·RD(k). However, this comes at the price

of modifying the prefix of the run, since then we only have µ(C)
w |w′
−−−→ D

instead of C
w |w′
−−−→ D. This complexifies the proofs but does not change

the complexity class, so we prefer to remove ‘strong’ loops. The reader
can check that removing weak loops would suffice in our proofs.

A Characterisation of Non-Emptiness for Register Automata As a
first application, we show that this small witness property yields another
algorithm to decide emptiness of non-deterministic register automata.

Proposition 12.31 Let A be a non-deterministic register automaton over some

oligomorphic data domain D. The following are equivalent:

(i) A recognises at least one data ω-word.

(ii) There exists a partial run Cι u−→ C
v−→ µ(C) with v , ε, C a final

configuration and µ ∈ Aut(D).
(iii) There exists a partial run Cι u−→ C

v−→ µ(C) with v , ε, |u |, |v | ≤
n2 ·R(2k), C a final configuration and µ ∈ Aut(D).
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We specify that π and λ are sequences
of transitions, and not partial runs, since
in general C , µ(C), so the configura-
tions do not repeat (but they repeat up to
automorphism, which is enough for our
purpose).

Recall thatR(k) is exponential by Remark
12.3.

Proof. The proof is the same as for the finite alphabet case, except that
we manipulate orbits of configurations instead of states. Let A be a
non-deterministic register automaton with n states and k registers.

First, assume that A recognises at least one data ω-word x ∈ Dω , and let
ρ be an accepting run of A over x (item (i)). Let q f ∈ F be a state that
repeats infinitely often in states(ρ). Since there are finitely many orbits
of configurations, we obtain that there is a configuration orbit with state
q f that repeats at least twice, i.e. there exists C and an automorphism
µ ∈ Aut(D) such that Cι u−→ C

v−→ µ(C) for some u , v ∈ D∗, where C is
final, i.e. item (ii) holds.

Assume now that item (ii) holds. Loop removal of Proposition 12.30
immediately yields the existence of u′, v′ such that |u′ |, |v′ | ≤ n2 ·R(2k).
Note that here, removing weak loops suffices with no alteration of the
proof. Indeed, for all automorphisms µ ∈ Aut(D), we have µ(#) � #, so
µ(Cι) � µ(Cι), so we could further show that we can assume |u′ |, |v′ | ≤
n ·R(k).

Finally, suppose that Cι u−→π C
v−→λ µ(C) with |u |, |v | ≤ n2 ·R(2k), C

a final configuration and µ ∈ Aut(D). We respectively call π and λ the
sequences of transitions of the first and second part of the partial run.
Then, πλω is the sequence of transitions of a run over the data ω-word
u · v · µ(v) · µ2(v) · · · ∈ Dω.

Decision of Emptiness of Register Automata: Take Two We are now
ready to provide a standalone proof of Theorem 12.26, that we recall
here.

Theorem 12.26 Let D be a decidable (respectively, polynomially decidable)

oligomorphic data domain. The emptiness problem for non-deterministic register

automata over D is decidable (respectively in PSpace).

Proof. We show the result in the case of a polynomially decidable data
domain, the more general case can be obtained by forgetting about
complexity. LetD be a polynomially decidable oligomorphic data domain
and let A be a non-deterministic register automaton with k registers and
state space Q of size |Q | � n. SinceD is polynomially decidable, any orbit
ofDk can be represented by a first-order formulawhose size is polynomial
in k. Using the non-emptiness characterisation from Proposition 12.31,
we only need to find a run of length polynomial in Q and R(k). We
describe a non-deterministic algorithm that runs in polynomial space
which checks the existence of such a run. It uses a counter bounded by
n2R(2k), using space 2 log(n ·R(2k)), guesses a run of the automaton
and updates the type of configurations using space polynomial in k and
log n.

Simulating the run goes as follows: the algorithm maintains in memory
the value of the counter, plus an abstract configuration (p , τ), where
p ∈ Q is a state and τ is the type of the associated register valuation.
Initially, it stores (q ι , τι) in memory for some initial state q ι ∈ I, where
τι(x1 , . . . , xk) �

∧
1≤i≤k xi � #. Along its execution, when the algorithm
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[150]: Immerman (1988), ‘Nondeterminis-
tic Space is Closed Under Complementa-
tion’
[151]: Szelepcsényi (1988), ‘The Method of
Forced Enumeration for Nondeterministic
Automata’
[152]: Savitch (1970), ‘Relationships Be-
tween Nondeterministic and Determin-
istic Tape Complexities’

This result is quite auxiliary, but we prefer
to present it separately, so as to lighten the
exposition of the following more technical
properties.

Recall that a run is final if some final state
occurs infinitely often in it. It is not neces-
sarily initial.

has some abstract configuration (p , τ) in memory, it guesses a new type
τ′(y1 , . . . , yk) as well as a transition t � (p , φ, regOp, q). Let

ϕ(x1 , . . . , xk , ?, y1 , . . . , yk) B τ(x1 , . . . , xk) ∧ τ′(y1 , . . . , yk)∧
ψt(x1 , . . . , xk , ?, y1 , . . . , yk)

By Observation 12.20 and Proposition 12.22, for any configuration (p , ν)
such that type(ν) � τ, there exists d ∈ D and λ of type τ′ such that

(p , ν)
d ,φ,regOp
−−−−−−−→t (q , λ) if and only if ϕ(x1 , . . . , xk , d , y1 , . . . , yk) is satisfi-

able. Since D is polynomially decidable, the algorithm can check that this
is the case in polynomial space. It then moves to the new configuration
type given by (q , τ′) and, if its counter does not exceed n2R(2k), it
increments it and continues the simulation; otherwise it rejects.

In parallalel of the simulation of the run, the algorithm has to find a
loop. To that end, at some point when the current abstract configuration
is (p f , τ f ) where p f is final, it guesses that it is the start of the loop
and stores it in memory. If it later on reaches again (p f , τ f ), it halts and
declares that A is not empty.

Overall, the algorithm uses polynomial space log(n2 ·R(2k)) to store its
counter and space 2 log n · P(n , k) to store the current and the repeating
abstract configuration, where P(n , 2k + 1) is the maximum size of a
formula describing the orbit of a (2k + 1)-uple. Finally, it uses polynomial
space to check satisfiability of ϕ.

We have described a non-deterministic algorithm that decides whether
its input register automaton A is non-empty, which runs using a space
polynomial in k and log n, hence polynomial in the size of its input (recall
that k � |R | ≤ |A|). Its correctness results from Proposition 12.31. By
Immerman–Szelepcsényi’s theorem [150, 151, Theorem 1, Theorem 1], it
implies that there exists a non-deterministic algorithm which runs using
polynomial space that decides whether its input register automaton is
empty. By Savitch’s theorem [152, Theorem 1], this means that there exists
a deterministic algorithm which again runs in polynomial space and
decides whether its input register automaton is empty. In other words,
the emptiness problem for register automata is in PSpace.

Characterising Functionality

Characterising functionality relies on the same idea, although is a bit
more complicated, for two reasons. First, we now need to manipulate
outputs; second, we need to exhibit patterns involving two runs, which
makes pumping more involved.

Applying Proposition 12.31 to the product automaton recognising pairs
of runs allows to synchronously pump runs:

Lemma 12.32 Let A be a register automaton. The following are equivalent:

(i) The register automaton A has two final runs C1
x−→ and C2

x−→ over the

same input x ∈ Dω
.
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(ii) There exists two partial runs

C1
u−→ F1

v−→ D1
w−→ µ(F1)

C2
u−→ D2

v−→ F2
w−→ µ(D2)

with u , v , w ∈ D∗, v , w , ε, F1 , F2 final configurations and µ ∈
Aut(D).

(iii) There exists two partial runs

C1
u−→ F1

v−→ D1
w−→ µ(F1)

C2
u−→ D2

v−→ F2
w−→ µ(D2)

with u , v , w ∈ D∗, v , w , ε, F1 , F2 final configurations, µ ∈ Aut(D)
and, moreover, |u |, |v |, |w | ≤ n4 ·R(4k).

Proof. We develop the argument, for the sake of completeness. The proof
is the same as for Proposition 12.31, except that we cannot ensure that
final configurations occur at the same time in both runs. Let A be a
register automaton.

First, assume that A has two final runs ρ1 � C1
x−→ and ρ2 � C2

x−→ over
the same input x ∈ Dω. Necessarily, infinitely many configurations are
final in ρ1 and ρ2, so we can decompose both runs as

ρ1 � C1
x0−→ F0

1
y0−→ D0

1
x1−→ F1

1
y1−→ D1

1
x2−→ . . .

ρ2 � C2
x0−→ D0

2
y0−→ F0

2
x1−→ D1

2
y1−→ F1

2
x2−→ . . .

where for all i ∈ N, F i
1 , F

i
2 are final, and x0 · y0 · x1 · y1 · · · � x.

Consider the set of tuples of configurations (C1 , C2 , F i
1 ,D

i
2)with i ∈ N.

There are finitely many orbits for these tuples, so, necessarily, there
exists i < j and a morphism µ ∈ Aut(D) such that µ(C1) � C1 , µ(C2) �
C2 , µ(F i

1) � F j
1 and µ(D i

2) � D j
2. Thus, we can write

ρ1 � C1
u−→ F i

1
yi−→ D i

1
w−→ F j

1

ρ2 � C2
u−→ D i

2
yi−→ F i

2
w−→ D j

2

which yields the expected pattern (item (ii)), with u � x0 · y0 · . . . · xi ,
v � yi , w � xi+1 · yi+1 · . . . · x j , F1 � F i

1 and D2 � D i
2.

Now, assume that this pattern is present, i.e. we have item (ii). The pair
of partial runs C1

u−→ F1 and C2
u−→ D2 is a partial run in the product

automaton A ⊗ A, which has n2 states and 2k registers, and similarly for
v and w. We can thus apply Proposition 12.30 to each segment of the
pair of runs, which yields |u |, |v |, |w | ≤ n4R(4k), which gives item (iii).

Finally, the latter pattern yields two runs of A over u · v · w · µ(v) · µ(w) ·
µ2(v) · µ2(w) · · · ∈ Dω, which are final since they each contain infinitely
many final configurations. This concludes the proof.
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The above lemma is easily lifted to register transducers, yielding the
same statement, with no conditions on the outputs.

We start by showing that we can remove loops while preserving mis-
matches. The proof is quite technical, but it provides a quite powerful tool
to establish the existence of small witnesses for the patterns we exhibit.

Lemma 12.33 (Smallmismatchwitness) There exists a polynomial P(x , y , z)
such that the following holds.

Let T be an NRT, with k registers, n states and a maximal output length M. If

there exists two partial runs C1
u |u1−−−→ D1 and C2

u |u2−−−→ D2 such that u1 ∦ u2,

then there exists u′ of length less than P(R(4k), n ,M) and u′1 , u
′
2, so that

C1
u′ |u′1−−−→ D1, C2

u′ |u′2−−−→ D2 with u′1 ∦ u′2.

Proof. Let ρ1 � C1
u |u1−−−→ D1 and ρ2 � C2

u |u2−−−→ D2 be two partial runs
such that u1 ∦ u2. We assume that |u | > P(R(2k), n ,M), and we want to
show that we can obtain a strictly smaller data word with the desired
property. Our goal is thus to remove synchronous loops in ρ1 , ρ2 while
preserving the mismatch. A synchronous loop is defined as a loop over the
same input in the product transducer T ⊗ T. Let u1 � αa1β1, u2 � αa2β2
with a1 , a2. We will only consider removing loops that do not contain
the transitions producing the mismatching letters a1 or a2.

We call the effect of a loop on ρ1, the length of the output factor removed
from α, in particular the effect is 0 if the factor removed is in β1 (and
symmetrically for ρ2). Removing loops that have the same effect on ρ1
and ρ2 preserves the mismatch.

The only case remaining is when any loop has different effects on ρ1 and
ρ2. The first step is to show that removing a loop with different effects
and which cancels a mismatch ensures a very strong periodicity property
on the outputs.

Let us consider the first synchronous loop occuring in ρ1 , ρ2 which does
not contain the transitions producing the mismatching outputs. From
the previous cases we can assume that this loop has a non-zero effect on
ρ1 (without loss of generality). Let us assume that the loop occurs after
the transition producing the mismatching output in ρ2. This means that
there are no loops occuring before the transition producing a2, and thus
|α | < Mn2 ·R(4k) and that all loops have a null effect on ρ2. From that
we can deduce that there are fewer than Mn2 ·R(4k) loops in total since
any loop has to have a non null effect on ρ1. Thus we can deduce that
|u | ≤ (Mn2 ·R(4k))(n2 ·R(4k)), which yields a contradiction.

The only case which remains is that all loops occur before the transitions
producing the mismatching outputs. We can assume, for u large enough,
that there are at least two loops. Let u1 � α1β1β′1γ1δ1δ′1ζ1a1η1 and
u2 � α2β2β′2γ2δ2δ′2ζ2a2η2 with α1β1β′1γ1δ1δ′1ζ1 � α2β2β′2γ2δ2δ′2ζ2 �

u1 ∧ u2, where β1β′1 , β2β′2 denote the outputs produced by the first
occurring loop and δ1δ′1 , δ2δ′2 correspond to the outputs of the sec-
ond loop. What we mean by that is that removing the first loop gives
the outputs α1λ(β1)γ1δ1δ′1ζ1a1η1 and α2λ(β2)γ2δ2δ′2ζ2a2η2; while re-
moving the second loop gives the outputs α1β1β′1γ1µ(δ1)ζ1a1η1 and
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α2β2β′2γ2µ(δ2)ζ2a2η2. Without loss of generality, we assume that l �

|β′1 |−|β′2 | > 0.After removing thefirst loopweobtain u′1 � α1λ(β1)γ1δ1δ′1ζ1a1η1
and u′2 � α2λ(β2)γ2δ2δ′2ζ2a2η2, and we assume that u′1 ‖ u′2, otherwise
we are done. We define u1 � αζa1η1 and u2 � αζa2η2 where α is the
longest data word bewteen α1β1β′1γ1δ1δ′1 and α2β2β′2γ2δ2δ′2, so that ζ is
a suffix of both ζ1 and ζ2.

Let us assume that |ζ | < l. This means that |u1 ∧ u2 | ≤ 2Mn2 ·R(4k).
Since any loop has to produce at least one data value in u1 or u2, u
must have fewer than 4Mn2 · R(4k) double loops. Thus we get that
|u | < (4Mn2 ·R(4k))(n2 ·R(4k))which gives a contradiction. Thus we
can safely assume that l ≤ |ζ |. Let v denote the length l suffix of ζ, then
we have that α1λ(β1)γ1δ1δ′1ζ1v � α2λ(β2)γ2δ2δ′2ζ2. Thus we have that
ζ ends in v2, assuming that it is long enough. Repeating this we obtain
that ζ is in the language v′v∗ for some v′ suffix of v. Let t be the primitive
root of v then we can even say that ζ is in t′t∗ for some t′ suffix of t. So we
obtain that ζa1 ‖ t′tω and ζ ‖ t′tω and ζa2 ∦ t′tω. Let us consider now
removing the second loop corresponding to outputs δ′1, δ

′
2. Using the

same arguments we get that |β′1 | − |β′2 | and |δ′1 | − |δ′2 | are both multiples
of |t |. Note moreover that we cannot have |δ1 | − |δ2 | < 0, otherwise we
would conclude that ζa1 ∦ t′tω . Hence we obtain that all loops must have
a larger effect on ρ1 than on ρ2 and that the effect difference is a multiple
of |t |. Now that we have established that strong periodicity property of
ζa1, the main idea is the following: remove all loops while preserving
a ζ larger than the maximal effect of a loop but still smaller than twice
that. Once this is done, repump just enough loops so that the first data
word is larger than the second one. This is sure to cause a mismatch since
xζ ∦ yζa2, for any x , y satisfying 0 < |x | − |y | < |ζ |. This concludes the
proof.

We have now established the existence of small mismatch witnesses. This
is sufficient to give a characterisation of functionality which, as we show
later on (Theorem 12.40), is decidable.

Proposition 12.34 There exists a polynomial P(x , y , z) such that the following
holds.

Let R ⊆ Dω ×Dω
be a relation given by a non-deterministic register transducer

with n states, k registers and a maximum output length M. The following are

equivalent:

(i) R is not functional

(ii) There exists two partial runs:

I1
u |u1−−−→ F1

v |v1−−−→ C1
w |w1−−−→ µ(F1)

I2
u |u2−−−→ C2

v |v2−−−→ F2
w |w2−−−→ µ(C2)

such that I1 and I2 are initial, F1 and F2 are final, µ ∈ Aut(D) and
u1 ∦ u2



12. Exploration of Various Data Domains 260

Recall that in our study, we only consider
transducers which produce infinite out-
puts, see Assumption 10.3.

Note that t1 and t2 may (or may not) be
equal.

note that in general, the last input data
word of each partial run are distinct, i.e.
we do not necessarily have w � z.

(iii) There exists two partial runs:

I1
u |u1−−−→ F1

v |v1−−−→ C1
w |w1−−−→ µ(F1)

I2
u |u2−−−→ C2

v |v2−−−→ F2
w |w2−−−→ µ(C2)

such that I1 and I2 are initial, F1 and F2 are final, µ ∈ Aut(D), u1 ∦ u2
and, moreover, |u |, |v |, |w | ≤ P(R(4k), n ,M).

Proof. Let T be a non-deterministic register transducer with n states,
k registers and a maximum output length M, which recognises some
relation R � JTK.

First, assume that R is not functional. Thismeans that T has two accepting
runs ρ1 and ρ2 over some input data word x � in(ρ1) � in(ρ2) ∈ Dω,
which yields twodistinct outputs y � out(ρ1) ∈ Dω and z � out(ρ2) ∈ Dω .
Since they are distinct and both infinite, y and z necessarily mismatch at
some position. Thus, we can decompose ρ1 and ρ2 as:

I1
u |u1−−−→ C1

t |t1−−→λ1

I2
u |u2−−−→ C2

t |t2−−→λ2

where u ∈ D∗ is some finite prefix of x such that the corresponding
(finite) outputs mismatch, i.e. u1 ∦ u2, and t � u−1 · x is the infinite suffix
yielding (infinite) outputs t1 , t2 ∈ Dω. By applying Lemma 12.32 to the
two runs λ1 and λ2 over t, we get the pattern of (ii).

We now need to show that we have small witnesses. The bound on v
and w is a consequence of Lemma 12.32 (iii), which yields a polynomial
bound (that actually does not depend on M). Applying Lemma 12.33 to

the pair of runs I1
u |u1−−−→ F1 and I2

u |u2−−−→ gives a polynomial bound on the
size of u, which gives item (iii).

Finally, ifwehave the latter pattern, consider x � u ·v ·w ·µ(v)·µ(w)·µ2(v)·
µ2(w) . . . . Then, the first (respectively, second) partial run is awitness that
there exists a run of T over x with output y � u1 ·v1 ·w1 ·µ(v1) ·µ(w1) . . .
(respectively, z � u2 · v2 · w2 · µ(v2) · µ(w2) . . . ). Since u1 ∦ u2, we get
that y ∦ z, so R is not functional.

Characterising Continuity and Uniform Continuity

The above proof techniques can be adapted to get patterns for non-
continuity and non-uniform continuity, that are reminiscent of those that
we exhibited over (D,�) (cf Figure 12.3 on page 235 and Figure 12.5 on
page 240).

To unify the presentation of the two patterns, we introduce the notion of
critical pattern.

Definition 12.9 (Critical pattern) Let T be a non-deterministic register
transducer. Two partial runs of T form a critical pattern if they are of the
form
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Here, we ask that D1 and D2 are co-
reachable, but not that they are jointly
co-reachable.

Saying ‘We can assume |u |, |v |, |w |, |z | ≤
P′(R(4k), n ,M)’ is a short for stating
that if there is a critical pattern for
some u , v , w , z , u1 , u2 , v1 , v2 , w1 , w2 ∈
D∗, then this is also the case for some
u′, v′, w′, z′, u′1 , u

′
2 , v
′
1 , v
′
2 , w

′
1 , w

′
2 with

|u′ |, |v′ |, |w′ |, |z′ | ≤ P′(R(4k), n ,M).

It should be obvious what R, G and B
stand for.

I1
u |u1−−−→ C1

v |v1−−−→ µ(C1)
w |w1−−−→ D1

I2
u |u2−−−→ C2

v |v2−−−→ µ(C2)
z |w2−−−→ D2

for some morphism µ ∈ Aut(D), with D1 and D2 two co-reachable
configurations, and such that one of the following holds:

(a) u1 ∦ u2, or
(b) v2 � ε and u1 ∦ u2 · w2, or
(c) v1 � v2 � ε and u1 · w1 ∦ u2 · w2.

Before characterising continuity and uniform continuity, we show that
critical patterns also admit small witnesses.

Proposition 12.35 (Small critical patterns) There exists a polynomialP′(x , y , z)
such that the following holds.

Let T be a non-deterministic register transducer with n states and k registers,

and with maximal output length M. Let I1 , C1 ,D1 , I2 , C2 ,D2 be configurations

of T, and µ ∈ Aut(D) be some morphism. If

I1
u |u1−−−→ C1

v |v1−−−→ µ(C1)
w |w1−−−→ D1

I2
u |u2−−−→ C2

v |v2−−−→ µ(C2)
z |w2−−−→ D2

forms a critical pattern, thenwe can assume |u |, |v |, |w |, |z | ≤ P′(R(4k), n ,M).

Proof. We want to remove loops in u , v , w , z without affecting the mis-
matches. The idea is to see such a critical pattern as a pair of runs
which mismatch and leverage Lemma 12.33. Let T be a non-deterministic
register transducer with states Q, with k registers and with maximal
output length M. We let n � |Q |. Assume that T has a critical pattern for
some u , v , w , z , u1 , u2 , v1 , v2 , w1 , w2 ∈ D∗, and with otherwise the same
notations as in the statement of the proposition.

We first treat the case of u1 ∦ u2, as it is easier. In that case, Lemma
12.33 yields u′ with mismatching outputs u′1 ∦ u′2 such that |u′ | ≤
P(R(4k), n ,M). We can then apply Proposition 12.30 to the product
transducer T ⊗ T to remove synchronous loops and get v′, w′, z′ with
|v′ |, |w′ |, |z′ | ≤ n4 ·R(4k).

For the two other cases, we need to be careful not to affect the intermediate
configurations, since the position of the mismatch of the second run
lies in z. To that end, we consider runs that are coloured. Formally, we
consider the register transducer T′ which is the same as T, except that its
state space is Q × {R,G, B}, where the states of the partial run over u
(respectively v and w , z) are coloured in red (respectively in green, blue).
Since Lemma 12.33 is proved using loop removal, it does not remove loops
which contain states with different colours. By applying it to the two runs
of the critical pattern, we get that |u · v · w |, |u · v · z | ≤ P(R(4k), 3n ,M).
This yields the expected result.

We are now ready to give a characterisation of continuity and uniform
continuity for functions recognised by a non-deterministic register trans-
ducer.
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Recall that over oligomorphic data do-
mains, the renaming property does not
hold anymore, so we cannot bound the
number of distinct data values along a
run.

Note that ρ1 is not unique in general: there
might be multiple runs over x yielding the
same output f (x).
Contrary to the case of (D,�), it does not
suffice to take L � K2, as we have no
bound on the growth of R(k).

Proposition 12.36 Let T be a functional non-deterministic register transducer

with n states and k registers, with maximum output length M, that recognises

some partial function f : Dω → Dω
.

Then, f is not continuous if and only if T has a critical pattern

I1
u |u1−−−→ C1

v |v1−−−→ µ(C1)
w |w1−−−→ D1

I2
u |u2−−−→ C2

v |v2−−−→ µ(C2)
z |w2−−−→ D2

where, moreover, C1 is final.

Proof. The proof is very similar to that of (D,�) (Theorem 12.11), except
that we manipulate configurations up to automorphisms instead of
configurations taking a limited number of distinct data values. We
develop the argument for completeness; the reader who learnt about the
case of (D,�)may feel confident enough to jump to the characterisation
of uniform continuity (Proposition 12.37). Let T be a functional non-
deterministic register transducer with n states and k registers, with
maximum output length M, that recognises some partial function f :
Dω → Dω.

First, assume that f is not continuous at some x ∈ Dω. Let i ∈ N be
such that for all j ≥ 0, there exists y ∈ dom( f ) with |x ∧ y | ≥ j but
| f (x) ∧ f (y)| ≤ i. Let ρ1 be a run of T over input x, which yields output
f (x), and pick some q f ∈ F that appears infinitely often in ρ1. We let
K > nR(k) and L > n2R(2k). Let j ≥ 0 be such that there are 2Ki
occurrences of q f in the first j transitions of ρ1, and let y ∈ dom( f ) such
that |x ∧ y | ≥ j but | f (x) ∧ f (y)| ≤ i. Finally, let ρ2 be a run of T which
yields output f (y). We can decompose ρ1 and ρ2 as follows:

I1
upr |vpr

−−−−→ Cpr
1

unp |vnp

−−−−−→ Cnp
1

umm |vmm

−−−−−−→ Cmm
1

t1 |t′1−−−→ Csf
1

I2
upr |wpr

−−−−−→ Cpr
2

unp |wnp

−−−−−→ Cnp
2

umm |wmm

−−−−−−→ Cmm
2

t2 |t′2−−−→ Csf
2

where Cnp
1 is final and vpr · vnp · vmm · t′1 ∦ wpr · wnp · wmm · t′2. We ask

that there are Ki occurrences of q f in the partial run of ρ1 over upr,
Li occurrences over unp, and L occurrences of umm. First, let us show
that each sequence of transitions in ρ1 containing K occurrences of q f
contain at least one productive transition. Assume the contrary. Then,
there exists two final configurations F1 and F2 in the same orbit with
only improductive transitions in between. Thus, we can write write

I1
u′ |u′1−−−→π F1

v′ |ε
−−→λ µ(F1) for some u′, u′1 , v

′ ∈ D∗ with v′ , ε and some
µ ∈ Aut(D). In that case, π · λω is the sequence of transitions of an
accepting run over u′ · v′ · µ(v′) · µ2(v′) . . . which yields finite output
u′1 ∈ D∗. This contradicts Assumption 10.3. As a consequence, we have
that |vpr | > i.

Then, since umm contains L occurrences of q f we know that there are two
pairs of configurations of ρ1 and ρ2 with state q f for ρ1 that belong to
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the same orbit, i.e. we can write

Cnp
1

umm |vmm

−−−−−−→ Cmm
1

Cnp
2

umm |wmm

−−−−−−→ Cmm
2

as

Cnp
1

p |p1−−−→ F1
l |l1−−→ µ(F1)

s |s1−−→ Cmm
1

Cnp
2

p |p2−−−→ C2
l |l2−−→ µ(C2)

s |s2−−→ Cmm
2

where p · l · s � w, idem for w1 and w2, F1 is final and µ ∈ Aut(D).

Now, there are two cases:

I If vpr · vnp ∦ wpr · wnp, then we get the expected critical pattern
(with case (a)) by taking u � upr · unp · p, v � l, w � s and z � s.

I Otherwise, we know that in the partial run over unp, there is a pair
of configurations of ρ1 and ρ2 with state q f for ρ1 and with only
improductive transitions in between for ρ2. Thus, we can write

Cpr
1

unp |vnp

−−−−−→ Cnp
1

Cpr
2

unp |wnp

−−−−−→ Cnp
2

as

Cpr
1

p |p1−−−→ F1
l |l1−−→ µ(F1)

s |s1−−→ Cnp
1

Cpr
2

p |p2−−−→ C2
l |ε
−−→ µ(C2)

s |s2−−→ Cnp
2

where F1 is final. This yields a critical pattern (case (b)) for u � upr ·p,
v � l, w � s1 · umm · t1 and z � s2 · umm · t2.

In both cases, the fact that ρ1 and ρ2 are accepting entail that D1 and D2
are each co-reachable.

Conversely, assume that T has a critical pattern, with the same notations
as in the statement. Take x � u · vω. Since D2 is co-reachable, take

some t , t2 ∈ Dω such that D2
t |t2−−→ is a final run. Define, for all n ∈ N,

xn � u · vn · z · t. We have that xn →n∞ x. The pattern is a witness that
f (x) � u1 · vω1 , while f (xn) � u2 · vn

2 · w2 · t2. If u1 ∦ u2, this means
that | f (x) ∧ f (xn)| ≤ |u1 |, which means that f is not continuous at x.
If v2 � ε, we have that u1 ∦ u2 · w2, which again entails that f is not
continuous at x. Finally, we cannot have v1 � ε (case (c) of Definition
12.9), otherwise T produces some finite output over x (since C1 is final),
which contradicts Assumption 10.3.

We nowmove to the characterisation of uniform continuity, which follows
the same lines, although it is slightly more complicated since we need
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Note that we ask | f (x1) ∧ f (x2)| is strictly
less than i, to avoid carrying ‘+1’ along the
proof.

to manipulate three inputs at the same time. The characterisation is the
same as above, except that we do not ask that C1 is final.

Proposition 12.37 Let T be a functional non-deterministic register transducer

with n states and k registers, with maximum output length M, that recognises

some partial function f : Dω → Dω
.

Then, f is not uniformly continuous if and only if T has a critical pattern

I1
u |u1−−−→ C1

v |v1−−−→ µ(C1)
w |w1−−−→ D1

I2
u |u2−−−→ C2

v |v2−−−→ µ(C2)
z |w2−−−→ D2

Proof. Let T be a functional non-deterministic register transducer with n
states and k registers, with maximum output length M, that recognises
some partial function f : Dω → Dω.

Exhibit the pattern First, assume that f is not uniformly continuous.
Let i ≥ 0 be such that for all j ≥ 0, there exists x1 , x2 ∈ dom( f ) with
|x1 ∧ x2 | ≥ j but | f (x1) ∧ f (x2)| < i. Take j ≥ 3i · n2 · R(2k), and
correspondingly x1 , x2 ∈ dom( f ) such that |x1 ∧ x2 | ≥ j but | f (x1) ∧
f (x2)| ≤ i. Let ρ1 and ρ2 be accepting runs of T on x1 and x2 yielding
respective outputs f (x1) and f (x2). Since |x1 ∧ x2 | ≥ 3i · n2 ·R(2k), we
know there are at least 3i pairs of configurations of ρ1 and ρ2 before x1
and x2 mismatch that have the same orbit Ω. The argument is similar
to that for continuity; we phrase it in a slightly different way to shed a
different light on the problem. Take a sufficiently long prefix of ρ1 and ρ2
so that the mismatch is produced in both runs, and write those prefixes
as

I1
p |p1−−−→ C

u0 |v0−−−→ µ1(C)
u1 |v1−−−→ µ2(C) . . .

u3i |v3i−−−−→ µ3i+1(C)
s1 |t1−−−→ E

I2
p |p2−−−→ D

u0 |w0−−−−→ µ1(D)
u1 |w1−−−−→ µ2(D) . . .

u3i |w3i−−−−−→ µ3i+1(D)
s2 |t2−−−→ G

where p , p1 , p2 , s1 , t1 , s2 , t2 ∈ D∗; for all 0 ≤ k ≤ 3i, ui , vi , wi ∈ D∗

with ui , ε, and µi ∈ Aut(D). I1 , I2 , C,D , E,G are configurations of T,
with E and G co-reachable. We ask that p · u0 · . . . · u3i � x1 , x2 and
p1 · v0 · . . . · v3i · t1 ∦ w0 · . . . · w3i · t2. Consider now the set of 3i pairs
(vi , wi). There are three cases:

I If there exists k such that vk � wk � ε, then we can rewrite the
prefixes of runs as

I1
pu0 ...uk−1 |p1v0 ...vk−1−−−−−−−−−−−−−−−→ C′

uk |ε−−−→ µ(C′)
uk+1 ...u3i s1 |vk+1 ...v3i t1−−−−−−−−−−−−−−−−→ E

I12
pu0 ...uk−1 |p2w0 ...wk−1−−−−−−−−−−−−−−−−→ D′

uk |ε−−−→ µ(D′)
uk+1 ...u3i s2 |vk+1 ...v3i t2−−−−−−−−−−−−−−−−→ G

where C′ � µk(C), D′ � µk(D) and µ � µk+1 ◦µ−1
k . This is a critical

pattern of shape (c), with C1 � C′, C2 � D′, D1 � E and D2 � G,
as we have p1 · v0 · . . . · v3i · t1 ∦ w0 · . . . · w3i · t2.

I We now focus on the first 2i pairs. If v j , ε and wk , ε for
(strictly) more than i different 0 ≤ j, k < 2i, then we have that
v0 · . . . ·v2i−1 ∦ w0 · . . . ·w2i−1, since we know that | f (x1)∧ f (x2)| ≤ i
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and |v0 · . . . · v2i−1 |, |w0 · . . . ·w2i−1 | > i, while the latter are prefixes
of f (x1) and f (x2) respectively.This yields a critical pattern of
shape (a), with u � u0 · . . . ·u2i−1, v � u2i and w � u2i+1 · . . . ·u3i · s1,
z � u2i+1 · . . . · u3i · s2.

I Finally, if this is not the case, up to interverting x1 and x2 we
can assume that v j , ε for at most i distinct 0 ≤ j < 2i. Thus,
v j � ε for at least i distinct 0 ≤ j < 2i. If w j � ε for one of
those j, we are back to the first case. Otherwise, it means that
|w0 · . . . · w2i−1 | ≥ i. Now, we study the next i pairs of data words.
If v j , ε for all 2i ≤ j < 3i, we get that |v0 · . . . · v3i−1 | > i, which
means that v0 · . . . · v3i−1 ∦ w0 · . . . · w3i−1, which again yields a
critical pattern of shape (a). Otherwise, there exists some j such
that 2i ≤ j < 3i and v j � ε. This is a critical pattern of shape (b),
by taking u � u0 · . . . · u j−1, v � u j and w � u j+1 · . . . · u3i · s1,
z � u j+1 · . . . · u3i · s2.

The pattern yields a witness of non-uniform continuity Conversely,
assume that T has a critical pattern. Since D1 and D2 are co-accessible,

there exists finite data words s , s1 , s2 and t such that D1
s |s1−−→ and

D2
t |s2−−→ are final runs. Let xn � u · v · . . . · µn(v) · µn(w) · µn(s) and

yn � u ·v · . . . ·µn(v) ·µn(z) ·µn(t). We have, for all n ∈ N, f (xn) � u1 ·v1 ·
. . . ·µn(v1)·µn(w1)·µn(s1) and f (yn) � u2 ·v2 · . . . ·µn(v2)·µn(w2)·µn(s2).
Then, for all n ∈ N, |xn ∧ yn | ≥ |u · vn | ≥ |u | + n |v | (where v , ε).

Let i ≥ 0 be a mismatch position in the pattern, i.e. such that

1. u1[i] , u2[i], or
2. v2 � ε and u1[i] , u2 ·w2[i]
3. v1 � v2 � ε and u1 ·w1[i] , u2 ·w2[i]

We separately treat the different shapes of critical pattern, as µn might
cancel the mismatch in one case:

I If u1 ∦ u2, we have that | f (xn) ∧ f (yn)| ≤ i. Then, for all j ≥ 0,
|x j ∧ y j | ≥ j but | f (x j) ∧ f (y j)| ≤ i, which means that f is not
uniformly continuous.

I If v2 � ε and u1 ∦ u2 · w2, then let us show that f (x j)[i] , f (y j)[i]
for all but maybe one j ∈ N. Let i′ = i − |u2 | be the position of
the mismatch in w2. If i′ < 0, we get that u1 ∦ u2, and we are
back to the previous case. Striving for a contradiction, assume
that u1[i] � µn(w2[i′]) � µm(w2[i′]) for m , n ∈ N. Then, we get
that µ(w2[i′]) � w2[i′], since µ is increasing and bĳective. Thus,
u1[i] � w2[i′], which contradicts the fact that u1 ∦ u2 · w2. Thus,
| f (x j) ∧ f (y j)| ≤ i for all but maybe one j ∈ N.

I If v1 � v2 � ε and u1 · w1 ∦ u2 · w2, then let i′ � i − |u1 |,
i′′ � i − |u2 |. If either is negative, we are back to the previous case.
Since w1[i′] , w2[i′′], this is the case for all iterations of µ, so we
get that for all j ∈ N, | f (x j) ∧ f (y j)| ≤ i.

In all cases, we get that for all but maybe one n ∈ N, | f (xn) ∧ f (yn)| ≤ i.
Up to taking only indices distinct from this n0 that cancels the mismatch,
we get that for all j ≥ 0, |x j ∧ y j | ≥ j but | f (x j) ∧ f (y j)| ≤ i, which
means that f is not uniformly continuous.
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Remark 12.7Note that the above proof is still sound using the a priori
weakest hypothesis that f is not Cauchy continuous, so Cauchy continuity
is characterised by the same forbidden pattern. This yields a proof
that Cauchy continuity and uniform continuity coincide for functions
recognised by non-deterministic register transducers (which we already
know by the more general Theorem 12.29).

12.2.4. Decision of Functionality and Continuity

Computing the Next Letter

In this section, we show how to compute the next-letter problem for
non-deterministic register transducers over a decidable and representable
oligomorphic data domain D. By Theorems 11.2 and 11.3, this entails that
continuity and ω-computability coincide for functions defined by NRT
over D, as stated in Theorem 12.39.

Proposition 12.38 Let f : Dω → Dω
be a function defined by a non-

deterministic register transducer over a decidable and representable oligomorphic

data domain D. Its next-letter function Next f is computable.

Proof. Let f : Dω → Dω be a function defined by a non-deterministic
register transducer T over a decidable and representable oligomorphic
data domain D. Given two input data words u , v ∈ D∗, the next-letter
problem asks to output d ∈ D such that f (u ·Dω) ⊆ v · d ·Dω if it exists,
and answer No otherwise.

Solving the next-letter decision problem We first solve its decision
version, or, more precisely, its complement. There is no next letter if and
only if either v was already not a prefix of all f (u ·x), i.e. f (u ·Dω) * v ·Dω ,
or if there exists x1 , x2 ∈ Dω such that f (u · x1) and f (u · x2)mismatch
right after v, i.e. | f (u · x1) ∧ f (u · x2)| ≤ |v |.

We start by checking that f (u · Dω) * v · Dω, which is the case when-
ever f (u · Dω) ∩ (v · Dω)c , ∅. This reduces to checking emptiness of
some register automaton. First, f (u · Dω) is recognised by some register
automaton over D∪ elem(u), where the elements of u are constants of
the domain. Indeed, the automaton simulates T while checking that u
is a prefix of the input. Similarly, v · Dω is recognised by a deterministic

register automaton over D∪ elem(v), which can be complemented. Their
intersection is a register automaton over D∪ elem(u) ∪ elem(v), which
is oligomorphic since distinguishing constants does not affect oligomor-
phicity (Proposition 12.15). By Theorem 12.26, it is decidable whether
such an automaton is empty.

We now check whether there exists x1 , x2 ∈ Dω such that f (u · x1) and
f (u · x2)mismatch right after v. This is equivalent to asking the existence

of two runs I1
u |u1−−−→ C1

x1 |y1−−−→ D1 and I2
u |u2−−−→ C2

x2 |y2−−−→ D1 such that
|u1 · x1 ∧ u2 · x2 | ≤ |v |. Finding these runs can be done with a register
automaton over D∪ elem(u). Such an automaton has a |v |-bounded
counter. It guesses two runs and checks that their input has u as prefix.
In parallel, it guesses a mismatch position j that it stores in its counter,
and checks that the outputs indeed mismatch at position j.
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[142]: Exibard et al. (2021), ‘Computability
ofData-WordTransductions overDifferent
Data Domains’

Recall that, by Theorem 12.29, Cauchy con-
tinuity and uniform continuity coincide
over oligomorphic data domains.

[142]: Exibard et al. (2021), ‘Computability
ofData-WordTransductions overDifferent
Data Domains’

Both cases are decidable, so, overall, the next-letter decision problem is
decidable.

Finding the next letter If there does not exist a next letter, we are done
and the algorithm simply outputs No. Otherwise, we know that such a
letter exists, so it remains to exhibit it. To that end, it suffices to enumerate
all data values and iteratively check whether f (u ·Dω) ⊆ v · d ·Dω , which
again reduces to the emptiness problem of some register automaton. A
more efficient procedure is to guess some accepting run of T whose input
has u as prefix, and simulate it until it produces the |v | + 1-th output,
which is the sought next letter. The only difficulty is that non-deterministic
reassignment entails that at each step, the space of configurations to
explore is infinite. However, the existence of a run only depends on the
type of a configuration, so it suffices to guess the type, and corresponding
data values that yield the right type.

ω-Computability and Continuity Coincide

As a direct corollary of Proposition 12.38, Theorems 11.2 and 11.3, we
obtain:

Theorem 12.39 ([142, Theorems 2.14 and 2.15]) Let f : Dω → Dω
be a

function defined by a non-deterministic register transducer T over a decidable

and representable oligomorphic data domain D. Then,

(i) f is ω-computable iff f is continuous

(ii) f is uniformly computable iff f is uniformly continuous

(iii) f is m-computable iff f is m-continuous, for all m : N→ N.

Deciding Functionality, Continuity and ω-Computability

We now have all the elements to decide the problems that we target. In
this section, Ddenotes a decidable oligomorphic data domain. We start
with functionality; the proof for the two other problems is similar.

Theorem12.40 ([142,Theorem3.12]) The functionality problem for functions

defined by non-deterministic register transducers over Dis decidable. If, moreover,

D is polynomially decidable, then the functionality problem is PSpace-complete.

Proof. Let P(x , y , z) be some polynomial satisfying the properties of
Proposition 12.34.

Let T be a non-deterministic register transducer with n states, k registers
and maximum output length on transitions M. By Proposition 12.34, we
have that T is not functional if and only if there exists two partial runs

I1
u |u1−−−→ F1

v |v1−−−→ C1
w |w1−−−→ G1

I2
u |u2−−−→ C2

v |v2−−−→ F2
w |w2−−−→ D2

such that I1 and I2 are initial, F1 and F2 are final, G1 � µ(F1) and D2 �

µ(C2) for some µ ∈ Aut(D), u1 ∦ u2 and |u |, |v |, |w | ≤ P(R(4k), n ,M).
First, note that asking G1 � µ(F1) and D2 � µ(C2) for some µ ∈ Aut(D) is
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Recall that k � |R | ≤ |T |, so R(4k) is
singly exponential, and not doubly expo-
nential.
The reader can refer to Section B.2.1 for
a more detailed discussion on the way to
represent automata.

[152]: Savitch (1970), ‘Relationships Be-
tween Nondeterministic and Determin-
istic Tape Complexities’

the same as asking that type((G1 ,D2)) � type((F1 , C2)), as a consequence
of Proposition 12.17. Besides, since M is the maximum output length, we
know that |u1 |, |u2 | ≤ M · |u | ≤ M · P(R(4k), n ,M).

Decision We first establish decidability. Let us show that the above
pattern can be recognised by a register automaton. It consists in a product
automaton which recognises interleavings of marked traces of runs of
T (see Proposition 10.2). It has three P(R(4k), n ,M)-bounded counters,
which checks that |u |, |v |, |w | ≤ P(R(4k), n ,M). It starts by simulating

I1
u |u1−−−→ F1 and I2

u |u2−−−→ C2 while checking that |u | ≤ P(R(4k), n ,M),
and that F1 is final. Checking that u1 ∦ u2 can be done using an additional
register and twoM·P(R(4k), n ,M)-bounded counters.Along the run, the
automaton also maintains the type of the current pair of configurations of
the two runs of T that it simulates. At some point where the configuration
of the first run is final, it guesses that it corresponds to (F1 , C2) and
memorises its type type((F1 , C2)). The next fragment of F1

v |v1−−−→ C1

and C2
v |v2−−−→ F2 is easier to simulate, as it suffices to check that |v | ≤

P(R(4k), n ,M) and that F2 is final. Finally, the last part of the pattern

C1
w |w1−−−→ µ(F1) and F2

w |w2−−−→ µ(C2) is checked as follows: using its last
counter, the automaton checks that |w | ≤ P(R(4k), n ,M). If it reaches a
pair (G1 ,D2) of configurations such that type((G1 ,D2)) � type((F1 , C2)),
it accepts. Note that the type of a configuration includes its state, so
type(G1) � type(F1) implies that G1 is final. Finally, if its counter exceeds
its maximal bound, i.e. |w | > P(R(4k), n ,M), the automaton rejects.
Overall, the above automaton is non-empty if and only if T has the
pattern characterising non-functionality, so functionality is decidable as
it reduces to checking emptiness of this automaton.

Complexity upper bound for polynomially decidable data domains
We now need to show that the problem is in PSpace if D is polynomially
decidable. The above register automaton is certainly of a size exponential
in the size of T, since it stores in its states counters that are bounded
by P(R(4k), n ,M), where R(4k) is exponential in k. However, it can be
represented in polynomial space: its states can be stored in polynomial
space, since the values of the counters can be stored in binary. The labels
of its transitions can also be represented using polynomial space, since
they belong to the same set as those of T, plus tests of the form? � r to
test that the output is correct. Then, given two states p and q and the label
(φ, regOp) of a transition, one can decide in polynomial space whether
there exists a transition between p and q labelled by (φ, regOp). First, if it
consists in simulating a transition of T, this is immediate as it suffices to
check the presence of such transition in the transition table of T. Updating
the type of the current pair of configurations is also doable in polynomial
space, since we assumed that FO satisfiability is in PSpace over D. Finally,
updating the counters is also doable in polynomial space, as it only
consists in increments and equality tests. An analysis of the algorithm of
Theorem 12.26 establishes that the algorithm for checking emptiness runs
in polynomial space given such a representation of its input (see Section
B.2.2 for details). This allows to conclude, since NPSpace � PSpace [152,
Theorem 1].
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Complexity lower bound Finally, hardness is obtained by reducing
from the functionality problem of register automata over (D,�), which
is PSpace-complete Theorem 12.8. Indeed, by definition any data domain
contains at least the equality predicate, so non-deterministic register
transducers over (D,�) can be simulated by NRT over any oligomorphic
data domain.

Using similar arguments, one can establish an analogous statement for
the continuity and uniform continuity problem.

Theorem 12.41 ([142, Theorem3.12]) The continuity and uniform continuity

problem for functions defined by non-deterministic register transducers over D

is decidable. If, moreover, D is polynomially decidable, then the functionality

problem is PSpace-complete.

If D is representable, ω-computability and uniform computability are decidable,

and PSpace-complete for polynomially decidable data domains.

Proof. Themain idea is the same, as it consists in showing that the pattern
that characterises non-continuity is recognisable by a register automaton,
that can moreover be described in polynomial space when the data
domain is polynomially decidable.

Let T be a functional non-deterministic register transducer with n states
and k registers, with maximum output length M, that recognises some
partial function f : Dω → Dω.

By Proposition 12.37, f is not uniformly continuous if and only if T has a
critical pattern

I1
u |u1−−−→ C1

v |v1−−−→ µ(C1)
w |w1−−−→ D1

I2
u |u2−−−→ C2

v |v2−−−→ µ(C2)
z |w2−−−→ D2

Moreover, by Proposition 12.36 it is not continuous if additionally C1 is
final.

Let us describe the construction of a register automaton that recognises
the above patterns. We treat the case of uniform continuity; checking
that a configuration is final can be done by adding one bit of information

to the states. First, checking that we have I1
u |u1−−−→ C1

v |v1−−−→ µ(C1) and

I2
u |u2−−−→ C2

v |v2−−−→ µ(C2), where |u |, |v | ≤ P(R(4k), n ,M) and u1 ∦ u2 is

done as for functionality. It remains to check that µ(C1)
w |w1−−−→ D1 and

µ(C2)
w |w2−−−→ D2, where |w | ≤ P(R(4k), n ,M) and D1 and D2 are each

co-reachable. The only remaining difficulty is to test co-reachability. By a
simple pumping argument, one can show that D1 is co-reachable if and
only if there exists some configuration F1 and somemorphism υ ∈ Aut(D)
such that D1

x |y
−−→ F1

z |t
−−→ µ(F1), with |x |, |z | ≤ nR(k). This property

can again be checked by our register automaton, using an additional
nR(k)-bounded counter, and memorising the type of F1, and similarly
for D2. Membership of PSpace results from the same complexity analysis
as for functionality, as the additional counters and memory does not
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The notion of orbit loop is not defined in
Section 12.2, since we instead present the
patterns usingmorphisms. For the present
argument, it is however more convenient
to make this notion explicit and use a loop
terminology.

Q+ � {q ∈ Q | q ≥ 0}

change the fact that the automaton can be described in space that is
polynomial in the size of the input transducer.

PSpace-hardness is again obtained by reducing to the case of (D,�,C),
which is PSpace-complete by Theorem 12.12.

Finally, the statement about ω-computability and uniform computability
is a direct consequence of Theorem 12.39.

As a consequence, we get PSpace-completeness for all the problems
we consider over data domain (Q, <, 0). Indeed, such a domain is rep-
resentable, as explained in Example 11.1, and polynomially decidable
(Example 12.4).

Theorem12.42 ([142,Theorem3.13]) For relations given bynon-deterministic

register transducers over (Q, <), the problems of deciding functionality, con-

tinuity/ω-computability and uniform continuity/uniform computability are

PSpace-complete.

12.3. The Case of a Discrete Order

We have seen in Example 12.3 that (N, <, 0) is not oligomorphic, as its
group of automorphisms is the trivial group {idN}, so each element is its
own orbit. Neither is (Z, <), whose automorphisms are translations: an
orbit over Z2 is characterised by the distance between each element of
the pair, which can take any value in Z. As a consequence, over these
data domains, we cannot apply the reasonings of Section 12.2, which
heavily rely on the notion of orbit loop, which is defined as a pair of
configurations that occur along a run and which belong to the same
orbit. In particular, the argument of Proposition 12.36 to exhibit a critical
pattern breaks, since there are infinitely many orbits of configurations
and we might not be able to find orbit loops. Neither can we get small
mismatch witnesses using Lemma 12.33, which relies on finding and
removing orbit loops.

In this section, we study the case of (N, <, 0) and conclude the part by
explaining how to transfer it to (Z, <) and to (Z, <,C)where C is a finite
set of distinguished constants that are interpreted as elements of Z.

Remark 12.8 We need to have access to the constant 0, as it is the minimal
element of N, and thus plays a special role.

Assumption 12.10We assume that registers are initialised with # � 0.

Observation 12.43 For all morphisms µ ∈ Aut(Q+), we have µ(Cι) � Cι,
since they preserve the constant 0.

12.3.1. Non-Deterministic Register Automata over
(N, <, 0)

(N, <, 0) as a substructure of (Q+ , <, 0)

Notation 12.11 In the following, Q+ denotes the set of non-negative
rational numbers.
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We say emphself-transition instead of self-
loop to highlight the fact that this is not a
loop in N.

This observation is even more obvious in
(N, <, 0).

To lighten the notations, we sometimes simply write N to denote the data
domain (N, <, 0), and Q+ for (Q+ , <, 0). No ambiguity arises, as in the
argument, those respective sets are only considered with the structure of
their linear ordering plus the constant 0.

Fact 12.1We abundantly use the fact that (N, <, 0) is a substructure of
(Q+ , <, 0), which is oligomorphic. In particular, any register automaton
A over (N, <, 0) is also a register automaton over (Q+ , <, 0). When there
is an ambiguity, we denote AN the automaton as seen over N and AQ+

when interpreted over Q+. When the focus is set over the language
they recognise, we write, for D � N,Q+, LD(A) � L(AD) � {w ∈
Dω | there is a accepting run of A over w}. The notation is extended to
transducers in the expected way, e.g. TQ+

denotes T operating over
(Q+ , <, 0).
Example 12.5 The register automaton of Figure 12.6a is non-empty in

(Q+ , <), as 1 · 1
2
· . . . · 1

n
. . . is accepted. However, it is empty in (N, <),

since its only run consists in an infinite descending chain, which does
not exist in N.

Similarly, in Figure 12.6b, the register automaton initially guesses some
upper bound B which it stores in rM , then it asks to see an infinite
increasing chain which is bounded from above by B. This is possible in
(Q+ , <), but not in (N, <).

p q
>, ↓ r

? < r, ↓ r

(a) A register automaton that is empty
over (N, <), but not over (Q, <) nor (Z, <
).

r s
?rM

r < ? < rM , ↓ r

(b) A register automaton using guessing
that is empty over (N, <), but not over
(Q, <). Figure 12.6.: Two register automata that

are empty over (N, <), but not over (Q, <).

One can check that the self-transitions respectively on states q and s
induce an orbit loop in (Q, <) for each automaton. It does not in (N, <),
since then the only loops (in the sense developed in Section 12.2.3) are
actual loops, i.e. configurations that repeat (not up to automorphism).

Note that the automaton of Figure 12.6a is not empty in (Z, <), since it
accepts e.g. 0 · (−1) · (−2) . . . . As a matter of fact, the self-transition of
state q induces a loop in (Z, <), as one can from any data value of Z to
another with a translation.

Be careful however, as, unlike for oligomorphic domains (Proposition
12.31), the absence or presence of an orbit loop is not a witness of (non-
)emptiness here. For instance, equip the first automaton (Figure 12.6a)
with an additional register which stores a value that is constant along the
run, and is not tested (cf Figure 12.7). It does not contain any oligomorphic
loop, and still it is not empty over (Z, <).

p q r
>, ↓ r >, ↓ r′

? < r, ↓ r

Figure 12.7.: A register automaton that is
not empty over (Z, <) but does not have
any orbit loop.
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A similar study could be conducted for
(Z, <), in which (? < r, ↓ r) is a loop.
Instead of redoing all the work, we show
how to extend the study directly in Section
12.3.6.

Quasi-looping is characterised by a similar
yet weaker criterion as for loops.

Recall that runs are closed under automor-
phisms, see Proposition 12.13.

These observations call for a more precise examination of what it means
to be a loop in (N, <, 0), i.e. at which conditions a path can be taken an
infinite number of times. As we demonstrate, this is characterised by
a criterion on the order between the registers before and after taking
the path (see Definition 12.16 and Proposition 12.55). To characterise
continuity in the presence of guessing, we also need the weaker notion
of a quasi-loop, that encompasses paths that can be taken arbitarily many
times, over finite inputs which are increasing for the prefix order (see
Section 12.3.5). For instance, the self-transition in Figure 12.6b is a quasi-
loop: it suffices to guess bigger and bigger values of the initial upper
bound. However, no run can contain infinitely many occurrences of such
a transition, since the value that is initially guessed on the first transition
of the run sets a bound on the number of times the transition can be
taken. This means that it is not a loop.

In contrast, the self-transition of state q in Figure 12.6a is not even a
quasi-loop: the first letter in the input sets a bound on the number of
times it can be taken.

As we demonstrate, in the absence of non-deterministic reassignment,
both notions coincide.

Partial Runs over (N, <, 0) and (Q+ , <, 0)

Before moving to the study of loops, observe that partial runs in (Q, <, 0)
and (N, <, 0) coincide, in the sense that one can always ‘stretch’ the
intervals betwen the values in Q to obtain values in N by multiplying by
a large enough constant.

Lemma 12.44 (Stretching lemma) Let A be a register automaton over (Q+ , <

, 0) with registers R. If (p , ν) u−→ (q , λ) for some configurations (p , ν), (q , λ) ∈
Configs(A) and some finite data word u ∈ (Q+)∗ with u , ε, then we have

(p , ν′) v−→ (q , λ′) for some valuations ν′, λ′ : R → N and some v ∈ N+
.

Moreover, if C is initial, then we can assume that C′ is also initial.

Proof. The proof simply consists in multiplying all data value by the
product (or even some commonmultiple) of their denominators. Formally,
write ν(R)∪λ(R)∪elem(u) � { a1

b1
, . . . , al

bl
} (for l � |ν(R)∪λ(R)∪elem(u)|).

By letting K � lcm{bi | 1 ≤ i ≤ l}, we have, by letting µ : x ∈ Q+ 7→ Kx,

that µ ∈ Aut(Q+), so µ(C)
µ(u)
−−−→ µ(D), which yields the expected result

as, by construction, all elements now take their values in N. Moreover,
νιR is preserved by all automorphisms of Aut(Q+), since they preserve 0,
so initial configurations are preserved.

Notation 12.12 In the following, for K ∈ N \ {0} we denote, by a slight
abuse of notation, K : x 7→ K · x the morphism of (Q+ , <, 0) that
consists in multiplying by K. No ambiguity should arise due to typing
considerations.

As a consequence, we have that:

Corollary 12.45 LetA be a register automaton over data domain (Q+ , <, 0), that
operates over finite data words. Then, LN(A) , ∅ if and only if LQ+

(A) , ∅.
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We could also get the result equally easily
from Corollary 12.46.

[28]: Demri andLazic (2009), ‘LTLwith the
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Proof. By the above proposition, any accepting run in Q+ induces an
accepting run in N, by multiplying all data values by a large enough
factor.

By specialising Theorem 12.24 to finite data words, we also get the
following, that was observed in [39, Theorem 2]:

Corollary 12.46 ([39]) Let A be a register automaton over (N, <, 0), that
operates over finite data words. Then, lab(LN(A)) is a regular language.

Since register automata over dataω-words can simulate register automata
over finite datawords, we have (this is also a consequence of [39, Theorem
14]):

Theorem 12.47 ([39]) The emptiness problem for non-deterministic register

automata over finite data words over (N, <, 0) is PSpace-complete.

Proof. Membership of PSpace is obtained by adding self-transitions to
the final states. PSpace-hardness results from the fact that the emptiness
problem is PSpace-hard, already for register automata over finite data
words with equality only [28, Theorem 5.1].

We provide a few additional details for membership of PSpace: given
a register automaton A � (Q , I , F,∆) over finite data words with data
domain (N, <, 0), construct a register automaton over data ω-words in

Q+: A′ � (Q , I , F,∆′), where ∆′ � ∆ ∪ {q f
>,keepR

−−−−−→ q f | q f ∈ F}. If
LN(A) , ∅, one can easily construct an accepting run in A′ with prefix
w ∈ LN(A). Conversely, if LQ+

(A′) , ∅, it means in particular that some
final state q f ∈ F is reachable by reading some finite dataword w ∈ (Q+)∗.
From w, one obtains some w′ ∈ N∗ by multiplying by a large enough
factor, as in Lemma 12.44; such a w′ allows to reach q f in A. Finally, the
size of A′ is linear in |A|, so checking that LQ+

(A′) , ∅ can be done using
a space polynomial in |A| by Theorem 12.27.

Widening Types and Looping Configurations in (N, <, 0)

In this section, we study the conditions under which a sequence of
transitions constitutes a loop, i.e. can be taken infinitely many times
to yield a run over (N, <, 0). As witnessed by Example 12.5, it requires
more conditions than over (Q+ , <, 0), asN forbids to take infinitely many
values in a finite interval. More precisely, it forbids infinite decreasing
chains, as well as infinite increasing chains that have an upper bound.
Correspondingly, if a sequence of transitions is to be loop, it has to
affect the relative order between registers in a way that does not induce
such chains when iterated. This necessary condition is captured by the
notion of widening type, that is defined for types of the superstructure
(Q+ , <, 0). As we demonstrate, this condition is sufficient: a widening
type necessarily contains a pair of valuations such that one can be
mapped to the other through a morphism that preservesN. Starting from
a configuration that take its values in N, one can then iteratively apply
this morphism in the same way as loops are iterated in oligomorphic
domains, hence obtaining an infinite run.
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This is amore generally true for valuations
overQ+, and evenQ, but wewant to insist
on N here.

The designation of ‘widening type’ is jus-
tified by Lemma 12.49, which makes the
link with widening valuations.

To be clear: a widening type is required to
preserve types, by definition.

Note that since widening types preserve
types, this a pseudo-widening pair of
valuations necessarily satisfies type(ν) �
type(λ).

Types of Configurations The relative order between registers plays
a key role. As explained in Example 12.3, types in (Q+ , <, 0) are char-
acterised by this information. Given a valuation ν : R → N, we write
type(ν) instead of type(Q+ ,<,0)(ν) (we rely on the fact that (N, <, 0) is
a substructure of (Q+ , <, 0), see Fact 12.1). No ambiguity arises, since
type(N,<,0)(ν) is irrelevant here: there are infinitely many such types. Sim-
ilarly, when we mention some orbit, we refer to the orbit in (Q+ , <, 0).
Given a valuation ν : R→ N, its type (in Q+) is equivalent to

type(ν) ≡
∧

./∈{<,>,�}

∧
r,s∈C

ν(r)./ν(s)

r ./ s ∧
∧
r∈R
ν(r)�0

r � 0 (12.2)

This notation is extended to configurations by letting type((q , ν)) �
(q , type(ν)).
Observation 12.48 Let A be a register automaton. For any configuration
C ∈ Configs(A), if type(C) � type(Cι), then C � Cι, since it imposes that
all registers are valued 0.

Widening Types and Valuations Let us now introduce the central
notion of this section. It concerns the type of pairs of valuations, and
phrases conditions about the relative order of registers between them.
Informally, a type is widening if it prevents intervals between registers
from shrinking. Otherwise, one would need to put infinitely many values
in a finite interval when iterating the loop by repeatedly applying some
morphism. Note that widening is to be understood in a ‘greater than or
equal to’ sense, as intervals do not have to strictly increase.

Definition 12.13 (Widening type) LetR � {r1 , . . . , rk} be a set of registers,
and R′ � {r′1 , . . . , r′k} be its primed copy. Let σ(r1 , . . . , rk , r′1 , . . . , r

′
k)

denote some type of 2k-tuples. We say that it preserves types when
σ(ν, λ) ⇒ type(ν) � type(λ) for all ν, λ : R→ Q+. We further say that σ
is widening if

(a) The value of each register increases between ν and λ: for all r ∈ R,
σ⇒ r ≤ r′ is valid in (Q+ , <, 0), i.e. all valuations ν, λ : R→ Q+

that satisfy σ are such that ν(r) ≤ λ(r), for all r ∈ R.
(b) If a given register is constant between ν and λ, then all registers

below are also constant: for all r, s ∈ X, if σ ⇒ s � s′ and
σ⇒ r ≤ s are valid in Q+, then σ⇒ r � r′ is valid in Q+.

The first item is meant to forbid infinite descending chains, while the
second targets infinite increasing chains that are bounded from above.

By extension, for two valuations ν and λ over R, we say that (ν, λ) is
pseudo-widening if type(ν, λ) is widening.

We say that (ν, λ) is wideningwhen type(ν) � type(λ) and:

1. for all r ∈ R, λ(r) ≥ ν(r)
2. for all r, s ∈ R, |λ(s) − λ(r)| ≥ |ν(s) − ν(r)|

Observe that a widening pair of valuations is in particular pseudo-
widening.

Remark 12.9 We differenciate between pseudo-widening and widening
pairs of valuations because two valuations might be pseudo-widening
while it is not possible to obtain a loop from them. For instance, let
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Note that the construction could be done
by induction, by reasoning on the number
of remaining shrinking intervals.

In the following, for any formula ϕ we
simply write σ⇒ ϕ to say that σ⇒ ϕ is
valid in (Q+ , <, 0).
We cannot have ν(s) � ν(r), otherwise
(r, s) is not shrinking.

ν : r 7→ 1, s 7→ 4 and λ : r 7→ 3, s 7→ 5, and assume that ν
u−→
A t

λ for

some u ∈ N. type(ν, λ) is widening, and yet, the interval between r and
s strictly decreases. As a consequence, there cannot exist a morphism
ζ ∈ Aut(Q+) that preserves N and that maps ν to λ, which would be a
sufficient condition for a loop to exist by taking u · ζ(u) · ζ2(u) . . . .

Widening Types ContainWidening Valuations We now demonstrate
that fromapseudo-wideningpair of valuations, it is in fact alwayspossible
to ‘widen’ the target valuation to get a widening pair of valuations. In
other words, if a widening type is inhabited by a pair of valuations, then
it is inhabited by some widening pair of valuations, which justifies the
name of widening type.

Lemma 12.49 Let R � {r1 , . . . , rk}, and let σ(r1 , . . . , rk , r′1 , . . . , r
′
k) be a

2k-type that is widening. Then, there exists two valuations ν, λ : R → Q+

such that type(ν, λ) � σ and (ν, λ) is widening.

Proof. Let R � {r1 , . . . , rk}, and let σ(r1 , . . . , rk , r′1 , . . . , r
′
k) be a 2k-type

that preserves types.

Given a pair of valuations (ν, λ)with ν, λ : R→ Q+, we say that a pair
of registers r , s ∈ R is shrinking in (ν, λ) if |λ(s) − λ(r)| < |ν(s) − ν(r)|.

We show that, from a pair of valuations of type σ that has a pair of
shrinking registers, one can obtain a pair of valuations with one less pair
of shrinking registers, again of type σ. For conciseness, we formulate it
as a reasoning by contradiction.

Since σ is a type, we know that it is satisfiable. Let (ν, λ) be a pair of
valuations such that type(ν, λ) � σ and that has a minimal number of
shrinking pairs of registers. First, σ is widening, so we have that for
all r ∈ R, σ ⇒ r′ ≥ r, which means that λ(r) ≥ ν(r). Aiming for a
contradiction, suppose that (ν, λ) has a pair (r, s) of shrinking registers.
Up to swapping r and s, assume that ν(s) > ν(r). σ preserves types,
which means that type(λ) � type(ν), so λ(s) > λ(r). Since σ is widening,
we have λ(s) ≥ ν(s). Moreover, we cannot have λ(s) � ν(s), otherwise,
since ν(r) < ν(s), we would get that σ ⇒ r � r′, i.e; ν(r) � λ(r) by
item(b) of the definition of a widening type. This would contradict the
fact that (r, s) is shrinking. Thus, λ(s) > ν(s). The schema is depicted
in Figure 12.8 (where we just do not know whether λ(r) ≥ ν(s)). Our
goal is to lift λ(s) so that (r, s) is not shrinking anymore, while not
inducing new shrinking intervals. To that end, we apply a morphism that
is non-contracting, that does not modify the values of ν(s) nor of λ(r),
and that lifts λ(s) high enough. Thus, choose B such that ν(s) ≤ B < λ(s)
and λ(r) ≤ B < λ(s), and pick M such that M − λ(r) ≥ ν(s) − ν(r).

Consider the morphism µ of (Q+ , <, 0) that sends the interval [0; B] to
[0; B], [B; λ(s)] to [B; M] and [λ(s);+∞[ to [M;+∞[ in the following

way:


x ∈ [0; B] 7→ x
x ∈]B; λ(s)] 7→ ν(s) + M−B

λ(s)−B (x − B)
x ∈]λ(s);+∞[ 7→ x + M − λ(s)

. Apply µ to (ν, λ);

this yields some pair (ν′, λ′) � (µ(ν), µ(λ)). One can check that if a pair
of registers was not shrinking in (ν, λ), it is not shrinking in (ν′, λ′).
Moreover, we have that λ′(s) − λ′(r) � M − λ(r), and ν′(s) − ν′(r) �
ν(s)−ν(r), so λ′(s)−λ′(r) ≥ ν′(s)−ν′(r): (r, s) is not shrinking in (ν′, λ′).
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ν(r)

ν(s)

λ(r)

λ(s)

M

shrinking interval

lift λ(s)

Figure 12.8.:Aschemaof the relative order
between values. It can be that λ(r) > λ(s).

Conceptually, ζ plays a different role than
morphisms that send an element of an
orbit to another. To distinguish between
the two, we use the letter ζ instead of
µ, although both objects are elements of
Aut(Q+).
Since A is over data domain (N, <, 0), the
valuations of C and D take their values in
N, and u ∈ N+.

As a consequence, (ν′, λ′) has strictly less shrinking pairs of registers,
which yields the sought contradiction.

Overall, we get that (ν, λ) is such that type(ν, λ) � σ and it has no
shrinkingpairs. In otherwords, for all r, s ∈ R, |λ(s)−λ(r)| ≥ |ν(s)−ν(r)|.
Moreover, since σ is widening, we get by item (a) that λ(r) ≥ ν(r) for
all r ∈ R. As a consequence, (ν, λ) is widening, which concludes the
proof.

Loops in N Let us formalise what we mean by a loop in N. It relies
on the notion of a morphism that preserves N. We say that a function
f : N→ N preserves N if f (N) ⊆ N, i.e. for all n ∈ N, f (n) ∈ N. We later
on make a connection with the notion of widening type.

Notation 12.14 In the following, we need to make a distinction between
valuations or configurations that take their values in N versus those that
take their values in Q+. To that end, we sometimes say for short that a
valuation ν over registers R is an N-configuration if ν : R→ N, and that it
is a Q+-configuration if ν : R→ Q+.

Definition 12.15 (Loop in N) Let R be some finite set of registers and let
ν, λ : R → N be two valuations. We say that the pair (ν, λ) is looping
if there exists a morphism ζ ∈ Aut(Q+) that preserves N and such that
ζ(ν) � λ.

Let A be a register automaton over (N, <, 0), and let ρ : (p , ν) u−→ (q , λ) be
a partial run of A, where u , ε. We say that ρ is a loop in N if p � q and,
moreover, (ν, λ) is looping. We also say that ((p , ν), (p , λ)) is a looping

pair of configurations in N.
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Strictly speaking, here, ρ denotes the se-
quence of transitions between C and D,
and not the run. Indeed, configurations
are not taken into account, since they do
not necessarily reapeat (although they do
up to automorphism).

Two registers r and s are successive in ν
if ν(s) ≥ ν(r) and there does not exists
t ∈ R such that ν(s) > ν(t) > ν(r).

Let us first observe that a loop in N can indeed be iterated:

Observation 12.50 Let A be a register automaton, and let C
u−→
A ρ

D be a

loop in N. Then, there exists x ∈ Nω such that C
x−→
A ρω

. Moreover, if ρ

contains a final configuration, then the run ρω over x is final.

Proof. Since ρ is a loop inN, there exists ζ ∈ Aut(Q+) that preservesN such

that D � ζ(C). As a consequence, C
u−→ ζ(C)

ζ(u)
−−−→ ζ2(C)

ζ2(u)
−−−→ . . . is a

run of A over x � u · ζ(u) · ζ2(u) . . . . Moreover, as applying a morphism
does not change the state of a configuration, if a final configuration
appears in ρ then it also appears in all the iterations of ρ under ζ.
Thus, in that case, ρω contains infinitely many occurrences of a final
configuration, so it is final.

Looping amounts to Widening (and Conversely) We now show that
the notion of looping pair actually coincides with that of widening pair.
The construction is merely an exercise: since the interval between each
register value is widening, it is possible to pick images for elements in
N that themselves belong to N; conversely, an increasing and bĳective
function that preservesNnecessarily increases the size of integer intervals.

Lemma 12.51 Let ν, λ : R→ N be a pair of valuations in N for some finite set

of registers R. (ν, λ) is looping if and only if it is widening.

Proof. Let ν, λ : R → N for some finite set of registers R. First, assume
that (ν, λ) is looping, i.e. there exists ζ ∈ Aut(Q+) that preserves N and
such that ζ(ν) � λ. A morphism that preserves N necessarily widens
integer intervals, i.e. for all m , n ∈ N, |ζ(n)−ζ(m)| ≥ |n−m | (see Lemma
C.1 and its proof in the appendix). Let r, s ∈ R. By taking m � ν(r) and
n � 0, we get that λ(r) ≥ ν(r), which is item 1 of the definition. Item 2 is
obtained by taking m � ν(r) and n � ν(s).

Conversely, assume that (ν, λ) is widening.The construction relies on the
observation that given two intervals, there exists a monotone bĳection in
Q+ that sends the smallest to the biggestwhile preservingN, as illustrated
in Figure 12.9 on the next page. Given a < b, c < d such that d− c > b− a,
one sends [a; b − 1] to [c; c + (b − 1− a)] using a translation x 7→ x + c − a.
Then, [b − 1; b] is bĳectively sent to [c + (b − 1 − a); d]; the choice of
the mapping does not matter as there are no integer values to preserve,
except for the bounds of the intervals. If the intervals have the same size,
idQ+

does the deed.

The result is then obtained by applying this construction to each interval
between successive registers in ν. Since type(ν) � type(λ), we know that
the order between registers is the same in λ and in ν, so registers that
are successive in ν are also successive in λ.

Formally, this is done by induction on the number of registers. We write
the details for completeness: let us show by induction on |R | that if a pair
of valuations ν, λ : R → N is widening, then there exists a morphism
ζ ∈ Aut(Q+) that preserves N such that ζ(ν) � λ. First, if R � {r} is
a singleton, (ν, λ) is widening if and only if λ(r) ≥ ν(r). Then, take
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•a
• c

· · ·

•b − 1
• e � c + (b − 1 − a)•b − 1/2

• e +
d − e

2
•b

• d

Figure 12.9.:How to send an interval [a; b]
to a strictly bigger one [c; d]while preserv-
ing N.

Formally, s is such that ν(s) � max ν(R).

ν|R′ denotes the restriction of ν to R′, i.e.
ν|R′ : r ∈ R′ 7→ ν(r).

This is a corollary of the easy implication,
namely that looping implies widening,
and can also be deducted from Lemma
C.1.

We spelled out the proof in Section C.0.1
for completeness; this is merely an exer-
cise.

some morphism ζ ∈ Aut(Q+) that maps [0; ν(r)] to [0; λ(r)] in the way
that is explained above, and which sends [ν(r);+∞[ to [λ(r);+∞[with
x 7→ x + λ(r) − ν(r). Such a morphism preserves N.

Now let i ≥ 1, and assume the results holds for all R of size |R | � i.
Let R be some set of registers of size i + 1, and let (ν, λ) be a pair of
valuations over R that is widening. Let s ∈ R be such that ν(s) is the
maximum value of ν. Since type(ν) � type(λ), we know that λ(s) is the
maximum value of λ. Let R′ � R \ {s}. Observe that (ν|R′ , λ |R′) is again
widening. By the induction hypothesis, there exists ζ ∈ Aut(Q+) such
that ζ(ν|R′) � λ |R′ and ζ(N) ⊆ N. There are two cases:

I If ν(s) � ν(r) for some r , s, then we also have λ(s) � λ(r). Thus,
ζ(ν) � ζ(λ), and taking the same ζ is suitable for (ν, λ).

I ν(s) > ν(r) for all r , s. Take the maximum such r, i.e. ν(s) >
ν(r) ≥ ν(t) for all t , r, s. Again, since type(ν) � type(λ), we also
have that λ(s) > λ(r) ≥ λ(t). Besides, as (ν, λ) is widening, we
know that λ(s)−λ(r) ≥ ν(s)−ν(r). By the reasoning around Figure
12.9, we know there exists f : [ν(r); ν(s)] 7→ [λ(r); λ(s)] that is
bĳective andwhichpreserves integer values. Consider the following

ζ′:


x ∈ [0; ν(r)] 7→ ζ(x)
x ∈ [ν(r); ν(s)] 7→ f (x)
x ∈ [ν(s);+∞[ 7→ x + λ(s) − ν(s)

. The function ζ′ ∈

Aut(Q+), as it is bĳective and increasing. Moreover, it preserves N,
and is such that ζ′(ν) � λ.

In both cases, we have established the existence of some morphism that
sends ν to λ and that preserves N, so the inductive invariant holds at
step i + 1.

Overall, we have constructed ζ ∈ Aut(Q+) that preserves N such that
ζ(ν) � λ, so (ν, λ) is looping. This concludes the proof.

An immediate corollary is that the type of a looping pair of valuations is
necessarily widening:

Corollary 12.52 Let ν, λ : R→ N be a pair of valuations over some finite set

of registers R. If (ν, λ) is looping, then type(ν, λ) is widening.

Observe that multiplying by a constant preserves the character of
being widening for Q+-configurations, thus of being looping for N-
configurations:
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A pair of valuations (ν, λ) has type σ if
they jointly satisfy σ, i.e. σ(ν, λ) holds.

K can be taken as the product of all denom-
inators of rational numbers that appear in
ν, λ; see Lemma 12.44.

The notion of candidate loop in Nmight
seem redundant with that of a widening
type, and it indeed is accessory. It is intro-
duced to prepare for the analogous notion
of candidate synchronised loop, that con-
cerns pairs of partial runs.

The prefix B
u−→ C of the run is mentioned

in the statement for the following reason:
froma candidate loop inN, one candeduce
a loop in N of the same type, however the
morphism that maps one to the other does
not necessarilypreservesN.Here,we show
that up to multiplying by some factor, we
get that the prefix also belongs to N.

Implicitly, B, C,D take their values in Q+.

Recall that having the same type is equiv-
alent to belonging to the same orbit, see
Proposition 12.17.

Observation 12.53 Let ν, λ : R → Q+. If (ν, λ) is widening, then so is
(Kν, Kλ), for all K ∈ N \ {0}. Moreover, type(Kν, Kλ) � type(ν, λ).

By combining lemmas 12.51 and 12.49, we get that a widening type always
contains a looping pair:

Lemma 12.54 Let R � {r1 , . . . , rk} be some finite set of registers, and let

σ(r1 , . . . , rk , r′1 , . . . , r
′
k) be a widening type. Then, there exists a pair of valua-

tions ν, λ : R→ N that has type σ and (ν, λ) is looping.

Proof. We spell out the proof, to wrap everything together.

Let R � {r1 , . . . , rk}, and let σ(r1 , . . . , rk , r′1 , . . . , r
′
k) be a widening type

over R. By Lemma 12.49, we know that there exists ν′, λ′ : R→ Q+ such
that σ(ν′, λ′) and (ν′, λ′) is widening. Take some factor K ∈ N \ {0} such
that ν � K(ν′) and λ � K(λ′) take their values inN. By Observation 12.53,
(ν, λ) is again widening and type(ν, λ) � type(ν′, λ′) � σ. By Lemma
12.51, we get that (ν, λ) is looping.

Candidate Loops The above result yields a characterisation of the
existence of a loop that can be checked with the tools that we developed
for (Q+ , <, 0), which is oligomorphic. This characterisation is expressed
in terms of a candidate loop, which denotes partial runs in Q+ that have
a widening type.

Definition 12.16 (Candidate loop in N) Let A be a register automaton
over (Q+ , <, 0). A candidate loop in N is a partial run C

u−→ D such that
(C,D) is pseudo-widening, i.e. type(C,D) is widening.

Note that a loop in N is in particular a candidate loop in N.

The above analysis establishes that a candidate loop is actually a witness
of the existence of a loop in N, in the sense that it contains a loop in N in
its orbit.

Proposition 12.55 Let A be a register automaton over (N, <, 0). If there
exists a partial run ρ : B

u−−−→
AQ+

C
v−−−→

AQ+

D in AQ+ such that C
v−→ D is

a candidate loop in N, then there exists some morphism µ ∈ Aut(Q+) such
that µ(ρ) : µ(B)

µ(u)
−−−→

AN

µ(C)
µ(v)
−−−→

AN

µ(D) is a partial run in AN where

µ(C)
µ(v)
−−−→

AN

µ(D) is a loop in N.

Proof. Let A be a register automaton over (N, <, 0), and assume that there
exists a partial run ρ : B

u−−−→
AQ+

C
v−−−→

AQ+

D in AQ+ such that C
v−→ D is a

candidate loop in N, i.e. type(C,D) is widening. This implies that C and
D have the same state, as a widening type preserves types by definition.
Write C � (p , ν) and D � (p , λ). By Lemma 12.54, we know that there
exists a looping pair of valuations inN such that type(ν, λ) � type(ν′, λ′).
Let υ ∈ Aut(Q+) be such that υ(ν, λ) is a pair of N-valuations that is
looping. We are almost done; the only remaining obstacle is that υ does
not necessarily preserves N, so it might be that υ(B) or υ(u) or υ(v)
lie in Q+. However, by multiplying by a large enough factor K, we get

that they all belong to N, i.e. Kυ(B)
Kυ(u)
−−−−→

AN

Kυ(C)
Kυ(v)
−−−−→

AN

Kυ(D) is a
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Recall that morphisms have a group struc-
ture (see Section 4.4.6).

Some type is said final if its state is final. Re-
call that the type of a configuration (q , ν)
is the pair (q , type(ν)).
What we colour is unordered pairs, al-
though they are de facto ordered by the
mention of j and k.

[118]: Ramsey (1930), ‘On a Problem of
Formal Logic’

Recall that (Q+ , <, 0) is oligomorphic, so
its types are characterised by first-order
formulas (see Propositions 12.17 and 12.21).
From Example 12.4, we can see that in
(Q, <, 0) (and Q+), quantifier-free formu-
las suffice.

partial run of AN (see Lemma 12.44). Multiplying by a constant preserves
the fact of being looping, since it preserves the fact of being widening
(see Observation 12.53). We exhibited the sought loop, by taking the
morphism µ � K ◦ υ, which is a morphism of (Q+ , <, 0).

Runs and Loops

We now show that one can employ pumping arguments in register
automata over (N, <, 0): if there is an infinite run in some automaton,
then there necessarily is a loop, in the sense of Definition 12.15. This is
obtained by a Ramsey argument.

Proposition 12.56 Let A be a register automaton over data domain (N, <, 0). If
there is a run ρ : B

x−→ for some configurationB ∈ Configs(A) and some x ∈ Nω ,
then there exists configurations B′, C,D and finite data words u , v ∈ N∗ with
v , ε such that B′

u−→ C
v−→ D, type(B′) � type(B) and C

v−→ D is a loop in

N.

Moreover, if ρ is final, we can take C and D final.

Proof. Let A � (Q , I , F,∆) be a register automaton over data domain
(N, <, 0), and assume that there is a run ρ : B

x−→ for some configuration
B ∈ Configs(A) and some x ∈ Nω . To avoid repetition, we treat both parts
of the statement together, highlighting when we use the hypothesis that

ρ is final. Write ρ � C0
d0−→ C1

d1−→ C2 . . . , where C0 � B. For each i ≥ 0,
let τi � type(Ci).

Restrict to configurations that have the same type Since there are only
finitelymany types (in (Q+ , <, 0)),we get that there exists some type τ that
occurs infinitely often along the run. If ρ is final, we can further assume
that such a type τ is final. Let (C j) j∈N be an infinite subsequence of (Ci)i∈N
such that for all j ∈ N, type(C j) � τ. We colour the set of unordered pairs
as follows: given j < k, we let c

({
C j , Ck

})
� type(C j , Ck).

Among them, infinitely many have the same pairwise type (Ramsey)
By the infinite version of Ramsey’s theorem [118, Theorem A], there is an
infinite subset such that all pairs have the same colour σ, where σ is a
type of pairs of configurations. Let (Ck)k∈N be an infinite subsequence
such that for all j < k, type(C j , Ck) � σ. In the following, we assume that
σ is given as a quantifier-free formula σ(r1 , . . . , rk , r′1 , . . . , r

′
k).

Such a pairwise type is necessarily widening Striving for a contradic-
tion, suppose that σ is not widening. There are two cases:

I There exists some r ∈ R such that σ⇒ r > r′. It means that for all
j < k, C j(r) > Ck(r). In particular, this means that C0(r) > C1(r) >
· · · > Cn(r) . . . , which yields an infinite descending chain in N,
and leads to a contradiction.
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It would actually suffice that u and v take
their values in Q+.

I There exists some s such that σ⇒ s � s′ and some r which satisfies
σ ⇒ r < s and σ ; r � r′. If σ ⇒ r > r′, we are back to the
first case. Otherwise, it means σ⇒ r < r′. Then, on the one hand,
we have C0(r) < C1(r) < · · · < Cn(r) < . . . . On the other hand,
C0(s) � C1(s) � · · · � Cn(s) � . . . . But we also have that for all
k ∈ N, Ck(r) < Ck(s) � C0(s). Overall, we get an infinite increasing
chain which is bounded from above by C0(s), which again leads to
a contradiction.

This yields a candidate loop Thus, σ is widening. Pick some pair of
configurations C � Ck and D � Cl for some k < l from the last extracted
subsequence that satisfy type(C,D) � σ. Then, B

u−→ C
v−→ D for some

u ∈ N∗ and v ∈ N+, and C
v−→ D is a candidate loop in N.

Which yields a loop By Proposition 12.55, we get that there exists

a morphism µ ∈ Aut(Q+) such that µ(B)
µ(u)
−−−→

AN

µ(C)
µ(v)
−−−→

AN

µ(D) is a

partial run in AN and µ(C)
µ(v)
−−−→ µ(D) is a loop. Let B′ � µ(B); by

Proposition 12.17, we have that type(B) � type(B′). Moreover, if ρ is final,
we constructed C and D so that they are final, so this is also the case of
µ(C) and µ(D). This yields the sought loop.

Emptiness Problem

Our characterisation of the non-emptiness of register automata over
(N, <, 0) is now ripe, so let us harvest it.

Proposition 12.57 Let A � (Q , I , F,∆) be a register automaton over (N, <, 0),
and let A′ be the same register automaton over (Q, <, 0).

LN(A) � ∅ if and only if AQ+
contains a candidate loop over final configurations

that is reachable, i.e., Cι u−→
A′

C
v−→

A′
D for some final configurations C,D ∈

Configs(A′) such that type(C,D) is widening, and some finite data words

u , v ∈ (Q+)∗ with v , ε.

Proof. We simply have to apply our study of loops in N. Let A �

(Q , I , F,∆) be a register automaton over (N, <, 0).

First, assume that LN(A) � ∅. It means that there exists an accepting
run ρ : Cι x−→ for some x ∈ Nω. By Proposition 12.56, we know that
there exists configurations B′, C,D and finite data words u , v ∈ N∗ with
v , ε such that type(B′) � type(Cι), B′

u−→ C and C
v−→ D is a loop in N.

Moreover, we have that C and D are final. By Lemma 12.51, we get that
(C,D) is widening, so in particular type(C,D) is widening (Corollary
12.52). We obtain the result by pointing out that type(B′) � type(Cι)
implies that B′ � Cι, since type(Cι) requires that all registers are valued
0 (Observation 12.48).

We now move to the other implication: assume that Cι u−−−→
AQ+

C
v−−−→

AQ+

D

for some final configurations C,D ∈ Configs(AQ+
) such that type(C,D)
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[39]: Segoufin and Torunczyk (2011), ‘Au-
tomata based verification over linearly or-
dered data domains’

[142]: Exibard et al. (2021), ‘Computability
ofData-WordTransductions overDifferent
Data Domains’

[28]: Demri andLazic (2009), ‘LTLwith the
freeze quantifier and register automata’

In the case of (N, <, 0), the characterisation
and decision of functionality and continu-
ity are less similar than in the oligomor-
phic case. We thus prefer to group the
study differently.

is widening, and some finite data words u , v ∈ (Q+)∗ with v , ε. By
Proposition 12.55, we know that there exists somemorphism µ ∈ Aut(Q+)
such that µ(Cι)

µ(u)
−−−→

AN

µ(C)
µ(v)
−−−→

AN

µ(D), where µ(C)
µ(v)
−−−→ µ(D) is a loop

in N. By Observation 12.43, we have that µ(Cι) � Cι By Observation
12.50, we get that there exists x ∈ Nω such that µ(C) x−−→

AN

is a final run in

AN. Thus, µ(u) · x ∈ LN(A).

The above characterisation yields a PSpace decision procedure for the
emptiness problem of register automata over dataω-words. Note that this
result is already known from [39]. Their proof relies on similar ideas, but
the above analysis works out the details and yields additional properties
that are needed for the characterisation and decision of functionality and
continuity.

Theorem 12.58 ([39, Theorem 16],[142, Corollary 4.18]) The emptiness

problem for register automata over (N, <, 0) is PSpace-complete.

Proof. Let A be a register automaton over (N, <, 0). By the above Propo-
sition 12.57, we know that L(A) , ∅ if and only if there exists two final
configurations D , E over Q+ and two words u , v ∈ (Q+)∗ with v , ε
such that Cι u−→ C

v−→ D and type(C,D) is widening.

Let us show that this property can be checked by a register automaton
over (Q+ , <, 0). The automaton simulates A over the superstructure
(Q+ , <, 0), while keeping inmemory the type of the current configuration.
At some point, along the run, it guesses the current configuration is the
start C of the candidate loop, and memorises its type. From this point
on, it maintains in memory the pair type type(C, E), where E denotes
the current configuration. If it encounters a configuration D such that
type(C,D) is widening (in particular, this implies that type(C) � type(D)),
it enters an accepting sink state. Checking that a pair type is widening
can be done in polynomial space from the quantifier-free formula that
represents the pair type, which is itself of size polynomial in |A|. Overall,
such an automaton can be described in polynomial space, and LQ+

(A′) ,
∅ if and only if LN(A) , ∅. Since the emptiness problem for register
automata over (Q+ , <, 0) is in PSpace (Theorem 12.27), this yields a PSpace
decision procedure to check the emptiness of A.

As usual, PSpace-hardness results from PSpace-hardness of the emptiness
problem over (N,�) [28, Theorem 5.1].

12.3.2. Characterisation and Decision of Functionality

The notion of loop in N proves sufficient for providing characterisations
of functionality and continuity that are analogous to the oligomorphic
case. The patterns are essentially the same; one simply strengthens the
notion of synchronised loop by asking that both paths can jointly be
iterated in (N, <, 0). This amounts to requiring that the type of the pair
of valuations at the beginning and at the end of the synchronised loop is
widening.
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Synchronised Loops

The characterisations that we exhibited for the case of (D,�,C) (Section
12.1.3) and of oligomorphic data domains (Section 12.2.3) heavily rely
on a notion of synchronised loop. Such a notion can also be defined in
(N, <, 0).
Definition 12.17 Let T be a non-deterministic register transducer over
domain (N, <, 0). A synchronised loop in N of T is a pair of partial runs

C1
u |u1−−−→ D1

C2
u |u2−−−→ D2

such that there exists an N-preserving morphism ζ ∈ Aut(Q+) that maps
(C1 , C2) to (D1 ,D2).

First, observe that a synchronised loop can indeed be iterated in the same
way as loops in N (the proof is the same as for Observation 12.50):

Observation 12.59 Let T be a register transducer, and let C1
u |u1−−−→

T ρ1

D1

and C2
u |u2−−−→

T ρ2

D2 be a pair of partial runs that form a synchronised loop

in N, that we call L. Then, there exists x ∈ Nω and y , z ∈ N∞ such that

C1
x |y
−−→

T ρω1

and C2
x |z
−−→

T ρω2

. If L is 1-final (respectively, 2-final, final), then

the run over x yielding output y (respectively z, both) is final.

Candidate synchronised loops Wehave seen that the existence of loops
inN is characterised by a witness in (Q+ , <, 0), that we called a candidate
loop. Such a notion can be lifted to synchronised loops as follows.

Definition12.18 (Candidate synchronised loop) LetT be anon-deterministic
register transducer. A pair of partial runs

C1
u |u1−−−→ D1

C2
u |u2−−−→ D2

is a candidate synchronised loop if the pair of pairs of configurations
((C1 , C2), (D1 ,D2)) is pseudo-widening. Recall that this is the case when-
ever type(C1 , C2 ,D1 ,D2) is widening.

Note that here, we consider the pairwise type of pairs of configurations.
Thus, type(C1 , C2 ,D1 ,D2) can be written as some quantifier-free for-
mula σ(r1 , . . . , rk , s1 , . . . , sk , r′1 , . . . , r

′
k , s
′
1 , . . . , s

′
k), where r1 , . . . , rk de-

notes the registers of C1, s1 , . . . , sk , those of C2, and similarly their primed
copy respectively concern D1 and D2. Let us spell out what it means that
type(C1 , C2 ,D1 ,D2) is widening:

I For all r ∈ R, D1(r) ≥ C1(r) and D2(r) ≥ C2(r)
I For all s ∈ R, if D1(s) � C1(s) then for all r ∈ R such that C1(r) ≤

C1(s), we have D1(r) � C1(r). This is also the case over C2 and D2:
for all r ∈ R such that C2(r) ≤ C1(s), we have D2(r) � C2(r).
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Requiring that final configurations appear
synchronously would be too strong: al-
ready in the finite alphabet case, one cn-
not in general exhibit a synchronised loop
where both states are final at the same
time.

This choice of presentation has the unfor-
tunate side effect to make the arguments
lookmore technical, as they lie on a syntac-
tical level.However, it greatly increases the
conciseness of the argument and avoids
repetitions. It is an interesting exercise to
adapt the proof techniques of the previous
section to synchronised loops.

I The same holds over C2 and D2: for all s ∈ R, if D2(s) � C2(s)
then for all r ∈ R such that C2(r) ≤ C2(s), we have D2(r) � C2(r).
And again this also holds for C1 and D1: for all r ∈ R such that
C1(r) ≤ C2(s), we have D1(r) � C1(r).

This cross dependency is crucial to guarantee that we indeed have a
synchronised loop, so that it can be jointly iterated over the same input in
N.

A synchronised loop is 1-final if C1 (hence D1, since they have the same
type) is final, and similarly for 2-final. It is final if it is 1-final, andmoreover
a final configuration occurs in the second run. Formally, we ask that it is
of the form

C1
v |v1−−−→ E1

w |w1−−−→ D1

C2
x |x2−−−→ F2

y |y2−−−→ D2

where C1 , F2 and D1 are final. Note that we do not require final configu-
rations to appear at the same time.

An Automaton for Pairs of Runs Showing that a candidate synchro-
nised loop is indeed a witness of the existence of an actual synchronised
loop can be done by generalising the study that we conducted for register
automata. To avoid redoing all the work, we instead apply the previous
results to a register automaton that recognises pairs of runs. This idea
was already used in Section 12.1, although in a different perspective: the
goal was then to leverage the renaming property of register automata
over (D,�).

We recall the formal definition of the data language L⊗(T) of interleaved
traces of runs of a transducer T (Equation 10.1):

L⊗(T) �
{
ρ1 ⊗ ρ2

�� ρ1 and ρ2 are accepting runs of T
}

A product of T with itself, along with a flattening of runs of T into their
traces, establishes that L⊗(T) is recognised by a register automaton with
twice as many registers as T:

Proposition 10.2 Let T be register transducer with k registers. The data

language L⊗(T) is recognised by a non-deterministic register automaton AT
⊗

with 2k registers, whose size is polynomial in |T |.

Besides, for all configurations (p , ν), (p′, ν′), (q , λ), (q′, λ′) ∈ Configs(T), all
data values d0 , . . . , dn , e0 , . . . , en and all finite data words y0 , . . . , yn and

z0 , . . . , zn , there is a partial run

((p , p′), (ν, ν′))
d0 ·y0$e0 ·z0$...$dn ·yn$en ·zn−−−−−−−−−−−−−−−−−−−→ ((q , q′), (λ, λ′))

in AT
⊗ if and only if there are two partial runs

(p , ν)
d0 ...dn |y0 ·...·yn−−−−−−−−−−−→

T
(q , λ) (p′, ν′)

e0 ...en |z0 ·...·zn−−−−−−−−−−→
T

(q′, λ′)
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Once again, wemention the prefixes of the
synchronised loop to avoid having to put
them back in N manually every time we
use the lemma.

in T such that(p , ν) and (p′, ν′) are jointly reachable in T, i.e. there exists a

finite input data word u ∈ D∗ such that Cι u |u1−−−→
T
(p , ν) and Cι u |u2−−−→

T
(p′, ν′).

With the same notations, there is a run

((p , p′), (ν, ν′))
d0 ·y0$e0 ·z0$d1 ·y1$e1 ·z1 ...−−−−−−−−−−−−−−−−−−→ ((q , q′), (λ, λ′))

in AT
⊗ if and only if there are two runs

(p , ν)
d0d1 ···|y0 ·y1 ...−−−−−−−−−−→

T
(p′, ν′)

e0e1 ···|z0 ·z1 ...−−−−−−−−−→
T

By making all the states of AT
⊗ final, one can also recognise interleaved

traces of runs of T that are not necessarily accepting.

We now establish a series of lemmas that make the connection between
candidate synchronised loops and synchronised loops in N. In the same
way as for register automata (see Proposition 12.55), from a candidate
synchronised loop in N, one can build a synchronised loop in N.

Lemma 12.60 LetT be a non-deterministic register transducer over (N, <, 0). If
some candidate loop in N is reachable from some pair of configurations (B1 , B2),
i.e.

B1
u |u1−−−→
TQ+

C1
v |v1−−−→
TQ+

D1

B2
u |u1−−−→
TQ+

C2
v |v2−−−→
TQ+

D2

where type(C1 , C2 ,D1 ,D2) is widening, then there exists a morphism µ ∈
Aut(Q+) such that

µ(B1)
µ(u)|µ(u1)−−−−−−−→

TN

µ(C1)
µ(v)|µ(v1)−−−−−−−→

TN

µ(D1)︸                      ︷︷                      ︸
L

µ(B2)
µ(u)|µ(u2)−−−−−−−→

TN

︷                      ︸︸                      ︷
µ(C2)

µ(v)|µ(v2)−−−−−−−→
TN

µ(D2)

are partial runs inN and µ(C1)
µ(v)|µ(v1)−−−−−−−→

TN

µ(D1) and µ(C2)
µ(v)|µ(v2)−−−−−−−→

TN

µ(D2)
form a synchronised loop L in N.

Proof. Let T be a non-deterministic register transducer over (N, <, 0). The
idea is to leverage Proposition 12.55 by applying it to AT

⊗. Assume that
there exists a candidate synchronised loop reachable from configurations
(B1 , B2):

B1
u |u1−−−→
TQ+

C1
v |v1−−−→
TQ+

D1

B2
u |u2−−−→
TQ+

C2
v |v2−−−→
TQ+

D2
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We use the prime symbol to denote the
application of µ for clarity, to avoid a mor-
phism soup.

where type(C1 , C2 ,D1 ,D2) is widening. By Proposition 10.2, this means
that there exists a partial run (B1 , B2)

w−−−−→
A

TQ+
⊗

(C1 , C2)
x−−−−→

A
TQ+
⊗

(D1 ,D2)

where w is an encoding of (u , u1), (u , u2) and x encodes (v , v1), (v , v2).
This forms a reachable candidate loop in ATQ+

⊗ , since type(C1 , C2 ,D1 ,D2)
is widening. Using Proposition 12.55, we get that there there exists

a partial run (µ(B1), µ(B2))
µ(w)
−−−→ (µ(C1), µ(C2))

µ(x)
−−−→ (µ(D1), µ(D2))

in ATQ+

⊗ that takes its values in N, and such that (µ(C1), µ(C2))
µ(x)
−−−→

(µ(D1), µ(D2)) forms a loop in N, that we call L. The way interleaved
traces are encoded implies that µ(w) encodes the pairs (µ(u), µ(u1))
and (µ(u), µ(u2)); similarly µ(x) encodes (v , v1), (v , v2), and they all
belong to N. Using the converse direction of Proposition 10.2, we get that

B′1
u′ |u′1−−−→
TN

C′1
v′ |v′1−−−→
TN

D′1 and B′2
u′ |u′2−−−→
TN

C′2
v′ |v′2−−−→
TN

D′2 are both partial runs of

TN, where B′1 � µ(B1), u′ � µ(u), and so on. Since L is a loop in N in
ATQ+

⊗ , we know that there exists an N-preserving morphism ζ ∈ Aut(Q+)
such that ζ(C′1 , C′2) � (D′1 ,D′2). In other words,

µ(C1)
µ(u)|µ(u1)−−−−−−−→

T
µ(D1)

µ(C2)
µ(u)|µ(u2)−−−−−−−→

T
µ(D2)

formsa synchronised loop inN forT,which is reachable from (µ(B1), µ(B2))
through a partial run in N. This concludes the proof.

Conversely, from a pair of runs over the same input, one can extract a
candidate synchronised loop (and hence a synchronised loop, by the
above result).

Lemma 12.61 Let T be a non-deterministic register transducer over (N, <, 0).
If there exists two runs ρ1 and ρ2 in T over the same input x ∈ Nω:

B1
x |y
−−→

T ρ1

B2
x |z
−−→

T ρ2

then T admits a candidate synchronised loop L overQ+ that is reachable from

B1 and B2, i.e. there exists configurations C1 , C2D1 ,D2 in Q+ such that

B1
u |u1−−−→
TQ+

C1
v |v1−−−→
TQ+

D1

B2
u |u2−−−→
TQ+

C2
v |v2−−−→
TQ+

D2

where type(C1 , C2 ,D1 ,D2) is widening.

Moreover, if ρ1 (respectively ρ2, both) is final, then L is 1-final (resp. 2-final,

final).

Proof. Themain idea is to apply Proposition 12.57 to a register automaton
that recognises interleaved traces of runs of T that have the same input,
which we construct from AT

⊗.
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This can also be implemented without us-
ing non-deterministic reassignment: be-
fore processing its input, the automa-
ton asks to read two valuations, and
checks that they have the correct type.
It guesses the corresponding states using
the usual non-determinism. We use non-
deterministic reassignment to avoid the
case where the loop occurs in this initial
phase.

Exhibit a synchronised loop Let T be a non-deterministic register
transducer over (N, <, 0). Let ρ1 and ρ2 be two runs of T over the same
input x ∈ Nω. We write, with the same notations as above:

B1
x |y
−−→

T ρ1

B2
x |z
−−→

T ρ2

Let L be the data language of interleaved traces of runs (not necessarily
initial) of T over the same input, and that additionally start in respective
configurations B′1 and B′2 such that type(B′1 , B′2) � type(B1 , B2). Formally,

Lτ⊗(T) �


ρ1 ⊗ ρ2

���������
ρ1 : B′1

x′ |y′
−−−→

T
and

ρ2 : B′2
x′ |z′
−−−→

T
are both runs of T such that

in(ρ1) � in(ρ2) and type(B′1 , B′2) � type(B1 , B2)


One can construct a register automaton A over data domain (N, <, 0) that
recognises Lτ⊗(T): we already know by Proposition 10.2 that interleaved
traces of runs of a transducer can be recognised by AT

⊗ . The fact that they
are not initial does not obstruct the construction: the register automaton
simply guesses B′1 and B′2 at the beginning using non-deterministic
reassignment. Checking that type(B′1 , B′2) � type(B1 , B2) is immediate,
as the register automaton can check the type of a configuration on its
transitions (recall that in (Q+ , <, 0), types are quantifier-free formulas,
so they can be encoded in tests). Checking that in(ρ1) � in(ρ2) is done
using an additional register and an M-bounded counter. Note that here,
all states are accepting, since A recognises all runs of T, whether they are
final or not. We know that Lτ⊗(T) , ∅, since ρ1 ⊗ ρ2 ∈ L. By Proposition
12.57, we get that there exists a candidate loop in A, i.e. a configuration
in Q+ that repeats up to automorphism and whose type is widening.

As a consequence,we canwrite (Cι , Cι) s−→
A
(C1 , C2)

t−→
A
(D1 ,D2) for some

configurations C1 , C2 ,D1 ,D2 of T such that type(C1 , C2) � type(D1 ,D2)
and type(C1 , C2 ,D1 ,D2) is widening. Recall that configurations of AT

⊗
consist in pairs of configurations of T. We omit in our reasoning the
additional register used to control that the inputs of the runs ρ1 and ρ2
coincide. This is not harmful since if a type is widening, its subtypes
are widening as well. By definition of Lτ⊗(T), we know that s encodes
two pairs (u , u1) and (u , u2) for some u , u1 , u2 ∈ N∗; similarly, t encodes
(v , v1) and (v , v2) for v , v1 , v2 ∈ N∗. Overall, we get:

B′1
u |u1−−−→

T
C1

v |v1−−−→
T

D1

B′2
u |u2−−−→

T
C2

v |v2−−−→
T

D2

where type(C1 , C2 ,D1 ,D2) is widening and type(B′1 , B′2) � type(B1 , B2).
Since (B′1 , B′2) is in the same orbit as (B1 , B2), there exists a morphism
µ ∈ Aut(Q+) such that µ(B′1 , B′2) � B1 , B2. By applying such a morphism
to the above partial runs, we exhibit a candidate synchronised loop L in
T that is reachable from (B1 , B2).
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Taking care of final states If ρ1 is final, one restricts the accepting states
of A to the pairs of states that are accepting in ρ1. We again have that
the modified Lτ⊗(T) , ∅, since ρ1 is final. This, way, we know that in the

above synchronised loop that we exhibited, in B1
u |u1−−−→

T
C1

v |v1−−−→
T

D1 we
have that C1 is accepting (hence D1 aswell, since they have the same type).
Thus, L is 1-final. By interverting ρ1 and ρ2, we get that L is 2 − f inal if
ρ2 is final. If both are final, by adding one bit of information to the states,
A can require to alternately see an accepting state in ρ1 and ρ2. More
precisely, when it is in F2 for some final configuration in ρ2, it stores in
memory the information that it read a final configuration of ρ2; then,
when it reaches some final configuration F1 in ρ1, it visits an accepting
state, and asks again to see a final configuration in ρ2. In particular,
this means that the only accepting states of A are those that contain an

accepting state of ρ1. This way, we get that in B1
u |u1−−−→

T
C1

v |v1−−−→
T

D1, C1

and D1 are final by the same reasoning as above. Moreover, we also have
that a final state occurs in ρ2 in between. In other words, L can be written
as

C1
a |a1−−→

T
E1

b |b1−−−→
T

D1

C2
a |a2−−→

T
F2

b |b2−−−→
T

D2

where C1 , F2 ,D1 are final, which means that L is final. This concludes
the proof.

By combining them together, we get an analogous of the pumping
argument used in the finite alphabet case: there exists two (infinite) runs
from a pair of configurations if and only if there exists a synchronised
loop that is reachable from a (possibly distinct) pair of configurations that
belongs to the same orbit. Note that we cannot in general assume that
the synchronised loop is reachable from the same pair of configurations,
hence the necessity to mention the prefix of the run in Lemma 12.60, to
ensure that we can assume it also takes its values in N.

Characterising (Non-)Functionality This theoretical arsenal provides
a characterisation of functionality that is reminiscent of the case of
oligomorphic data domains.

Proposition 12.62 Let T be some non-deterministic register transducer over

(N, <, 0) that recognises some relation R ⊆ Nω × Nω. T is not functional if

and only if there exists two partial runs of TQ+
in Q+

Cι u |u1−−−→
TQ+

C1
v |v1−−−→
TQ+

D1︸       ︷︷       ︸
L

Cι u |u2−−−→
TQ+

︷       ︸︸       ︷
C2

v |v2−−−→
TQ+

D2

such that u1 ∦ u2 and L is a candidate loop in N that is final. To be clear: in the

statement, u , u1 , u2 , v , v1 , v2 , w , w1 , w2 ∈ (Q+)∗.
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We call the resulting synchronised loop
µ(L) since it is obtained from L by applying
µ to each partial run.

We preferred to first provide a stronger
pattern to accentuate the proximity with
the oligomorphic case, even though it im-
plies a bit of additional work.

Proof. The result essentially follows fromLemmas 12.60 and 12.61. LetT be
some non-deterministic register transducer over (N, <, 0) that recognises
some relation R ⊆ Nω × Nω.

First, assume that T has the above pattern, with the same notations as in
the statement. By Lemma 12.60, we know that there exists a morphism
µ ∈ Aut(Q+) such that

µ(Cι)
µ(u)|µ(u1)−−−−−−−→

TN

µ(C1)
µ(v)|µ(v1)−−−−−−−→

TN

µ(D1)︸                      ︷︷                      ︸
µ(L)

µ(Cι)
µ(u)|µ(u2)−−−−−−−→

TN

︷                      ︸︸                      ︷
µ(C2)

µ(v)|µ(v2)−−−−−−−→
TN

µ(D2)

is a partial run of T in N, where µ(L) forms a synchronised loop in N. By
Observation 12.59, we get that there exists x ∈ Nω, y , z ∈ N∞ such that

µ(C1)
x |y
−−→
TN

and µ(C2)
x |z
−−→
TN

are runs of T in N. They are moreover final,

since L is final. Necessarily, µ(Cι) � Cι (Observation 12.48), so we get that

Cι
µ(u)|µ(u1)−−−−−−−→

TN

µ(C1)
x |y
−−→
TN

and Cι
µ(u)|µ(u2)−−−−−−−→

TN

µ(C2)
x |z
−−→
TN

are two accepting

runs of T in N. This implies that y , z are infinite words, by Assumption
10.3. Since u1 ∦ u2, we get that µ(u1) ∦ µ(u2), as morphisms preserve
mismatches, so u · x has two distinct images, u1 · y and u2 · z, under JTK.
In other words, T is not functional.

Conversely, assume that T is not functional, and let x , y , z ∈ Nω such
that (x , y), (x , z) ∈ JTK, with y , z. Correspondingly, let ρ1 and ρ2
be accepting runs of T over input x that respectively yield output y
and z. Since y , z, we have y ∦ z as they are both infinite data words

(Assumption 10.3), so we have Cι s |s1−−→ B1
t |t1−−→ and Cι s |s2−−→ B2

t |t2−−→ for
some N-configurations B1 , B2 and s , s1 , s2 ∈ N∗, t , t1 , t2 ∈ Nω, where

s1 ∦ s2. Since B1
t |t1−−→ and B2

t |t2−−→ are final, by Lemma 12.61, there exists a
candidate synchronised loop from B1 and B2 that is final, i.e. there exists
configurations C1 , C2 ,D1 ,D2 and data words u′, u′1 , u

′
2 , v
′, v′1 , v

′
2 ∈ N∗

with v′ , ε such that

B1
u′ |u′1−−−→
TN

C1
v′ |v′1−−−→
TN ρ1

D1

B2
u′ |u′2−−−→
TN

C2
v′ |v′2−−−→
TN ρ2

D2

where a final configuration occurs in ρ1 and ρ2, and type(C1 , C2 ,D1 ,D2)
is widening. Here, data words take their values in Q+, as we do not
need that they belong to N. This yields the expected pattern by taking
u � s · u′, u1 � s1 · u′1, u2 � s2 · u′2, and v � v′, v1 � v′1, v2 � v′2. We have
that u1 ∦ u2, since s1 ∦ s2.

Decision of Functionality

This characterisation yields the decidability of the functionality problem
for transducers over (N, <, 0). We just need to show that we can slightly
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weaken the pattern, to highlight the fact that its two parts can be decided
independently, and to get a small witness property on the mismatch from
our study of the oligomorphic case (Lemma 12.33).

Proposition 12.63 There exists a polynomial P(x , y , z) such that the following
holds.

Let T be some non-deterministic register transducer over (N, <, 0) with n states,

k registers and maximum output length M. T is not functional if and only if

there exists two pairs of partial runs of TQ+
in Q+ that satisfy

(a) There is a pair of configurations that is reachable by two ‘short’ partial

runs that yield a mismatch:

Cι u |u1−−−→
TQ+

B1 where |u | ≤ P(RQ+
(4k), n ,M)

Cι u |u2−−−→
TQ+

B2 and u1 ∦ u2

(b) There is a candidate synchronised loop L that is final and that starts from

a pair of configurations that has the same type as (B1 , B2):

C1
v |v1−−−→
TQ+

D1︸       ︷︷       ︸
L

where type(C1 , C2) � type(B1 , B2)

︷       ︸︸       ︷
C2

v |v2−−−→
TQ+

D2

Let us stress out once again that in the statement, u , u1 , u2, v , v1 , v2,

w , w1 , w2 ∈ (Q+)∗.

Proof. We start with the left-to-right direction, which relies on the ‘small
mismatch witness’ Lemma 12.33. By Proposition 12.63, we get the above
pattern with additionally B1 � C1, B2 � C2. Since both partial runs

Cι u |u1−−−→
TQ+

B1 and Cι u |u2−−−→
TQ+

B2 are in (Q+ , <, 0), which is oligomorphic, we

can apply Lemma 12.33 to bound the length of u by P(RQ+
(4k), n ,M),

where P is the polynomial given in the statement of the lemma. This
yields the result.

Conversely, assume that we have the above pattern. Since type(C1 , C2) �
type(B1 , B2), we know there exists µ ∈ Aut(Q+) such that µ(C1 , C2) �
B1 , B2. Thus, by applying µ to L, we get that

Cι u |u1−−−→
TQ+

B1
µ(v)|µ(v1)−−−−−−−→

TQ+

µ(D1)︸                  ︷︷                  ︸
µ(L)

Cι u |u2−−−→
TQ+

︷                  ︸︸                  ︷
B2

µ(v)|µ(v2)−−−−−−−→
TQ+

µ(D2)

where µ(L) is a candidate synchronised loop that is final since L is, and
u1 ∦ u2.
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[142]: Exibard et al. (2021), ‘Computability
ofData-WordTransductions overDifferent
Data Domains’

It could even be made linear by simply
storing the ordering of the registers, plus
whether they are equal to 0 or not.

We have written the proof in Section C.0.1,
just in case.

[39]: Segoufin and Torunczyk (2011), ‘Au-
tomata based verification over linearly or-
dered data domains’

[142]: Exibard et al. (2021), ‘Computability
ofData-WordTransductions overDifferent
Data Domains’

It remains to show that this pattern can be checked in polynomial space,
to get:

Theorem 12.64 ([142, Corollary 4.20]) The functionality problem for func-

tions defined by non-deterministic register transducers over (N, <, 0) is PSpace-

complete.

Proof. We describe an algorithm that checks the pattern of Proposition
12.63 in polynomial space. It initially guesses type(B1 , B2) B σ (which is
equal to type(C1 , C2)), which can be stored in polynomial space, since
it amounts to a quantifier-free formula of size quadratic in 2|R | (see
Equation 12.2). Checking item (a) is done as in the oligomorphic case
(see the proof of Theorem 12.40). Construct a register automaton over
finite data words over (Q+ , <, 0) that recognises interleaved traces of
partial runs of T whose inputs match and whose outputs mismatch
before P(RQ+

(4k), n ,M), then encounter (B1 , B2) that has type σ. It can
be described in polynomial space: equip AT

⊗ with an additional register
that checks that inputs match, and another additional register along with
a P(RQ+

(4k), n ,M)-bounded counter that checks that output mismatch.
Recall that adding a B-bounded counter can be done in space logarithmic
in B (Section B.2.3). Checking that (B1 , B2) has type σ can be done using
tests on the transitions, since σ is given as a quantifier-free formula.

Checking item (b) is done in a similar way: one can again construct
a register automaton of polynomial size to check it (see the proof of
Lemma 12.61). It initially guesses a pair of configurations (C1 , C2), and
checks that they have type σ. Then, it maintains in memory the type of
(C1 , C2 , E1 , E2), where (E1 , E2) is the current pair of configurations. If, at
some point, such a type is widening, the automaton accepts.

Both automata can be described in polynomial space, so checkingwhether
they are empty can be done in polynomial space (Theorem 12.27), as
(Q+ , <, 0) is polynomially decidable (Example 12.4).

12.3.3. ω-Computability and Continuity Coincide

Wenow show thatω-computability and continuity coincide over (N, <, 0).
As for the oligomorphic case, it amounts to showing that the next-letter
problem is computable.

Proposition 12.65 Let f : Nω → Nω be a function defined by a non-

deterministic register transducer over (N, <, 0). Its next-letter function Next f
is computable.

Proof. The proof is, mutatis mutandis, the same as for Proposition 12.38.
The only missing block is to decide emptiness for register automata over
N with distinguished constants, i.e. over (N, <, 0 ∪ C), where C ⊂ f N.
This is a consequence of [39, Theorem 14]. The result can also be obtained
fromTheorem 12.73 (see, in particular, Corollary 12.75), since (N, <, 0∪C)
can be obtained as a quantifier-free interpretation of (N, <, 0) (it suffices
to saturate C, i.e. to include all constants between 0 and maxC).

As a consequence, we have, with Theorems 11.2 and 11.3:
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Recall that TQ+
denotes T operating over

data domain (Q+ , <, 0) instead of (N, <
, 0).

Note thatwe do not ask that D1 and D2 are
jointly candidate co-reachable inN, simply
that each one is.

Theorem 12.66 ([142, Theorem 4.22]) Let f : Nω → Nω be a function

defined by a non-deterministic register transducer T over (N, <, 0).

(i) f is ω-computable iff f is continuous

(ii) f is Cauchy computable iff f is Cauchy-continuous

(iii) f is uniformly computable iff f is uniformly continuous

(iv) f is m-computable iff f is m-continuous, for all m : N→ N.

12.3.4. Characterisation and Decision of Uniform
Continuity

We now turn to uniform continuity over (N, <, 0), and show that it is
enough to consider uniform continuity over (Q+ , <, 0) and restrict our
attention to configurations that are candidate co-reachable in N, i.e. from
which a candidate loop in N is reachable.

Definition 12.19 (Candidate co-reachable inN) LetT be a transducer over
(Q+ , <, 0). AQ+-configurationB is candidate co-reachable inN if there exists

C,D ∈ Configs(T) such that B
u |u′
−−−→ C

v |v′
−−→ D for some u , u′ ∈ (Q+)∗

where C
v |v′
−−→ D forms a candidate loop inN (i.e., type(C,D) is widening).

Proposition 12.67 Let T be a non-deterministic register tranducer over (N, <
, 0) that recognises a function f : Nω → Nω. f is not uniformly continuous if

and only if TQ+
has a critical pattern

Cι u |u1−−−→
TQ+

C1
v |v1−−−→
TQ+

µ(C1)
w |w1−−−→
TQ+

D1

Cι u |u2−−−→
TQ+

C2
v |v2−−−→
TQ+

µ(C2)
z |w2−−−→
TQ+

D2

where D1 and D2 are each candidate co-reachable in N.

Proof. Let T′ be TQ+
, but restricted to configurations that are candidate

co-reachable in N. Note that candidate co-reachability only depends
on the type of the configuration, and of the position of the state in the
transition graph of the transducer, so this restriction can be done by
adding a finite amount of information to the states. Let us show that T′

recognises a uniformly continuous function if and only if T does.

⇒: If T is not uniformly continuous, then neither is T′ First, note that
runs of T are in particular runs of T′, so JTK ⊆ JT′K. Thus, if T recognises
a function that is not uniformly continuous, then either T′ is not even
functional, or it recognises a function that is not uniformly continuous
either.

⇐: the pattern yields a witness of non-uniform continuity inN Con-
versely, assume that T′ is not uniformly continuous. The proof follows
similar lines as in the oligomorphic case (Proposition 12.37), but we need
to be careful to obtain a witness in N. The idea is to first iterate the loop
inQ+. Then, the obtained witness has a regular structure, that allows to
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Actually, we could obtain |s | � |s′ | by
iterating each loop (E1 ,G1) and (E2 ,G2)
to reach the least common multiple of |s |
and |s′ |, idem for t and t′, but this is not
necessary here.

Note that we show not only that T is uni-
formly continuous iff T′ is, but also that
they have the same modulus of continuity.

obtain data words that are in N by multiplying by a large enough factor.
By Proposition 12.37, it means that T′ has a critical pattern

Cι u |u1−−−→ C1
v |v1−−−→ µ(C1)

w |w1−−−→ D1

Cι u |u2−−−→ C2
v |v2−−−→ µ(C2)

z |w2−−−→ D2

such that D1 and D2 are co-reachable. By definition of T′, this means that
D1 and D2 are candidate co-reachable in N, so we can write

Cι u |u1−−−→ C1
v |v1−−−→ µ(C1)

w |w1−−−→ D1
s |s1−−→ E1

t |t1−−→ G1

Cι u |u2−−−→ C2
v |v2−−−→ µ(C2)

z |w2−−−→ D2
s′ |s2−−−→ E2

t′ |t2−−−→ G2

where type(E1 ,G1) and type(E2 ,G2) are widening. Note that we do not
need to have |s | � |s′ |, nor |t | � |t′ |.

Iterate the loop of the pattern, in Q+ Let i ≥ 0 be a mismatch position
in the pattern, i.e. such that

(a) u1[i] , u2[i], or
(b) v2 � ε and u1[i] , u2 ·w2[i]
(c) v1 � v2 � ε and u1 ·w1[i] , u2 ·w2[i]

We need to show that for all j ∈ N, there exists x j , y j ∈ Nω such that
|x j ∧ y j | ≥ j but | f (x j) ∧ f (y j)| ≤ i. Thus, let j ≥ 0. We iterate j times
the loop between (C1 , C2) and µ(C1 , C2). We get that

Cι u |u1−−−→ C1
v |v1−−−→ µ(C1)

µ(v)|µ(v1)−−−−−−−→ µ2(C1) . . .
µ j (v)|µ j (v1)−−−−−−−−→ µ j(C1)

µ j (w)|µ j (w1)−−−−−−−−−→ µ j(D1)

Cι u |u2−−−→ C2
v |v2−−−→ µ(C2)

µ(v)|µ(v2)−−−−−−−→ µ2(C2) . . .
µ j (v)|µ j (v2)−−−−−−−−→ µ j(C2)

µ j (w)|µ j (w2)−−−−−−−−−→ µ j(D2)

are partial runs of T′. In the following, write p � u · v · . . . · µ j(v) · µ j(w),
p′ � u · v · . . . · µ j(v) · µ j(z), p1 � u1 · v1 · . . . · µ j(v1) · µ j(w1) and
p2 � u2 · v2 · . . . · µ j(v2) · µ j(w2) (bear in mind that they depend on j). We
have |p ∧ p′ | ≥ |u | + j |v |. By a similar reasoning as for the oligomorphic
case, we also know that for all but maybe one j ∈ N, we have |p1∧ p2 | ≤ i.
We recall the main ideas of the argument: in items (a) and (c), µ j is
applied on both sides, so it preserves the mismatch, and we have the
result for all j ∈ N. However, the ‘but maybe one’ is due to the fact that
in item (b), µ j may cancel the mismatch between u1 and u2w2 if, by
chance, u1[i] � u2 · µ j(w2)[i]. However, it cannot happen for two distinct
j ∈ N, otherwise it means that u1[i] is a fixpoint of µ, which implies that
u1[i] � u1 ·w2[i] (see the proof of Proposition 12.37 for details).

Turning candidate loops to actual loops in N At this point, all data
words are in Q+, and we only have candidate loops in N. By Proposition

12.55, we know that there exists α ∈ Aut(Q+) such that Cι
α(p)|α(p1)−−−−−−−→

α(µ j(D1))
α(s)|α(s1)−−−−−−−→ α(E1)

α(t)|α(t1)−−−−−−−→ α(G1) is a partial run in N, and addi-

tionally α(E1)
α(t)|α(t1)−−−−−−−→ α(G1) is a loop in N. Symmetrically, since α pre-
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[142]: Exibard et al. (2021), ‘Computability
ofData-WordTransductions overDifferent
Data Domains’

[28]: Demri andLazic (2009), ‘LTLwith the
freeze quantifier and register automata’

serves the fact that type(α(E2 ,G2)) is widening, by applying again Propo-

sition 12.55we obtain there exists β ∈ Aut(Q+) such that Cι
β(α(p′))|β(α(p′2))−−−−−−−−−−−−→

β(α(µ j(D2)))
β(α(s′))|β(α(s′2))−−−−−−−−−−−→ β(α(E2))

β(α(t′))|β(α(t′2))−−−−−−−−−−−→ β(α(G2)) is a partial

run in N, and β(α(E2))
β(α(t′))|β(α(t′2))−−−−−−−−−−−→ β(α(G2)) is a loop in N. Observe

that by construction, β preserves the fact that a pair of valuations is
widening, since it widens all intervals. Note that it might map α(E1) and
α(G1) to Q-valuations however. By letting γ � β ◦ α, we have that

Cι γ(p)|γ(p1)−−−−−−−→ γ(µ j(D1))
γ(s)|γ(s1)−−−−−−−→ γ(E1)

γ(t)|γ(t1)−−−−−−→ γ(G1)

Cι
γ(p′)|γ(p′2)−−−−−−−−→ γ(µ j(D2))

γ(s′)|γ(s′2)−−−−−−−→ γ(E2)
γ(t′)|γ(t′2)−−−−−−−→ γ(G2)

are partial runs of TQ+
such that (γ(E1), γ(G1)) is a widening pair of

valuations, as well as (γ(E2), γ(G2)). Multiply all elements by some large
enough factor K, to get partial runs in N. This preserves the fact of
being widening (Observation 12.53), so we get that (Kγ(E1), Kγ(G1)) and
(Kγ(E2), Kγ(G2)) are looping, since they are widening and take their
values in N (Lemma 12.51). As a consequence, there exists ζ ∈ Aut(Q+)
that preserves N such that ζ(Kγ(E1)) � Kγ(G1). Similarly, there exists
an N-preserving η ∈ Aut(Q+) such that η(Kγ(E2)) � Kγ(G2) (note that
they are distinct in general).

Wrap up We now have two loops in N (not necessarily synchronised),
so we can iterate them to get accepting runs in N. Thus, let x j � Kγ(p) ·
Kγ(s) ·Kγ(t) · ζ(Kγ(t)) · ζ2(Kγ(t)) . . . and y j � Kγ(p′) ·Kγ(s′) ·Kγ(t′) ·
ζ(Kγ(t′)) · ζ2(Kγ(t′)) . . . . We have that x j , y j ∈ Nω are such that |x j ∧
y j | ≥ j, since |p ∧ p′ | ≥ j and we only applied morphisms. Then,
f (x j) � Kγ(p1) · Kγ(s1) · Kγ(t1) · ζ(Kγ(t1)) · ζ2(Kγ(t1)) . . . and f (y j) �
Kγ(p2) ·Kγ(s2) ·Kγ(t2) · ζ(Kγ(t2)) · ζ2(Kγ(t2)) . . . , so | f (x j)∧ f (y j)| ≤ i
for all but maybe one j ∈ N, since again, we only applied morphisms. We
can now conclude that T is not uniformly continuous.

As a consequence, we get that uniform continuity is decidable over
(N, <, 0). More precisely,

Theorem 12.68 ([142, Theorem 4.24]) The uniform continuity problem for

functions defined by non-deterministic register transducers over (N, <, 0) is
PSpace-complete.

Proof. We are left to show that uniform continuity of the transducer that
we built in the above proof T′ is in PSpace. Checking uniform continuity
of a transducer over (Q+ , <, 0) is doable in polynomial space by Theorem
12.42. We have to be careful however, since computing T′ explicitly may
be too costly. Yet, checking if a configuration is candidate co-reachable in
N can be done in polynomial space, using Proposition 12.57 and Theorem
12.58, since it amounts to finding a reachable candidate loop in N.

The complexity lower bound can once more be obtained by a reduction
from the emptiness problem of register automata over (N,�), which is
PSpace-complete [28, Theorem 5.1].
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Note that the argument is quite similar
to the proof of Proposition 12.28, which
establishes that D∞/Aut(D) is compact.

12.3.5. Characterisation and Decision of Continuity

The Non-Guessing Case

We start with the case where non-deterministic reassignment is disal-
lowed, for which the argument is simpler. This is essentially due to the
fact that, from a sequence of accepting runs over inputs which have
longer and longer common prefixes, we can extract a run (not necessarily
accepting) over the limit of the inputs, since there are finitely many
possible configurations after reading some input finite data word w ∈ N∗
(more precisely, they take their values in Q × elem(w)R).
Proposition 12.69 Let T be a non-guessing transducer over (N, <, 0) that
recognises a function f : Nω → Nω. f is not continuous if and only T has a

critical pattern

Cι u |u1−−−→ C1
v |v1−−−→ D1︸       ︷︷       ︸
L

w |w1−−−→ E1

Cι u |u2−−−→

︷       ︸︸       ︷
C2

v |v2−−−→ D2
z |w2−−−→ E2

such that L forms a candidate synchronised loop that is 1-final (i.e. C1 is final),

and E1 and E2 are each candidate co-reachable in N.

Proof. Let T be a non-guessing transducer over (N, <, 0) that recognises a
function f : Nω → Nω . Let Q be its set of states, and R its set of registers.

⇒: If f is not continuous, then it has the pattern First, assume that f is
not continuous at some x ∈ Nω . Let i ≥ 0, along with a sequence (xn)n∈N
such that for all n ∈ N, xn ∈ dom( f ) and xn →n∞ x but | f (xn)∧ f (x)| ≤ i.
Up to taking subsequences, we can assume that for all n ∈ N, |xn∧x | ≥ n.
For all n ∈ N, denote ρn some accepting run of T that yields output
f (xn), and write configs(ρn) � Cn

0 Cn
1 . . . . Since T is non-guessing, we

know that for all j ∈ N and all n ∈ N, Cn
j ∈ Q × (elem(xn[: j]))R.

Extract a run of T from the ρn Let us extract from (ρn)n∈N a run ρ
on x such that for all j ∈ N, ρ[: j] � ρn[: j] for infinitely many j ∈ N.
We proceed by induction on the length of the partial run ρ[: j]. First,
all ρn start with Cι, so take configs(ρ)[0] � Cι. Now, assume that ρ has
been inductively constructed up to its j-th configuration C j � (q j , ν j).
We know that there are infinitely many ρm where m ≥ j such that
ρm[: j] � ρ[: j]. Now, there are finitely many outgoing transitions from
q j . Since for all m ≥ j, we have |xm ∧ x | ≥ j, we know that the Cn

j+1
range in Q × (elem(x[: j]))R, which is finite. Thus, among the infinitely
many ρm that coincide with ρ up to length j, there are infinitely many
which have the same j + 1-th transition t j and configuration C j+1. Thus,

we have that C j
x[ j]|s j
−−−−→

t j
C j+1 for some output word s j ∈ N∗. By letting

ρ[: j + 1] � ρ[: j] · t jC j+1, we get the inductive invariant at step j + 1.
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It is slightly impolite to use again C1 and
C2, since they were used in another con-
text, namely the definition of ρ. May the
reader forgive this departure from good
mathematical morals.

The ‘2’ factor is due to the fact that runs
consist of both configurations and transi-
tions, so they are twice as long as their
corresponding inputs.

Let y′ ∈ N∞ be the (possiblyfinite) output of ρ. By construction, y′� f (xm)
for infinitely many m ∈ N. Let π be an accepting run of T over input x
that yields output y � f (x). There are two cases, depending on whether
y′ is infinite.

I If y′ ∈ Nω, write

Cι p |p1−−−→ B1
s |s1−−→

Cι p |p2−−−→ B2
s |s2−−→

where p · s � x, p1 · s1 � y, p2 · s2 � y′ and p1 ∦ p2. By Lemma
12.61, we know that T admits a candidate synchronised loop L over
Q+ that is reachable from B1 and B2, i.e. there exists configurations
C1 , C2D1 ,D2 in Q+ such that

Cι p |p1−−−→
T

B1
u′ |u′1−−−→

T
C1

v |v1−−−→
T

D1
t |t1−−→

Cι p |p2−−−→
T

B2
u′ |u′2−−−→

T
C2

v |v2−−−→ D2
t |t2−−→

where u′ ·v ·t � s, u′1 ·v1 ·t1 � s1, u′2 ·v2 ·t2 � s2, type(C1 , C2 ,D1 ,D2)
is widening and C1 ,D1 are final. We then get a critical pattern by
taking u � p · u′ and u1 � p1 · u′1, u2 � p2 · u′2, since then u1 ∦ u2,
as p1 ∦ p2. Take also w � w1 � w2 � ε and E1 � D1, E2 � D2; they
are both candidate co-reachable in N (actually, co-reachable in N),
as witnessed by t.

I If y′ ∈ N∗, we can write

Cι p |p1−−−→ B1
s |s1−−→

Cι p |p2−−−→ B2
s |ε
−−→

where p · s � x, p1 · s1 � y, p2 � y′ and |p1 | > i. By Lemma 12.61
we can extract a candidate synchronised loop that produces εon
its second component, i.e. we have

Cι p |p1−−−→
T

B1
u′ |u′1−−−→

T
C1

v |v1−−−→
T

D1
t |t1−−→

Cι p |p2−−−→
T

B2
u′ |ε
−−−→

T
C2

v |ε
−−→ D2

t |ε
−−→

Let m be such that ρ and ρm coincide up to D2, i.e. |ρ ∧ ρm | >
2|p · u′ · v |. We know that | f (x) ∧ f (xm)| ≤ i. Write ρm as Cι

p |p2−−−→
T

B2
u′ |ε
−−−→

T
C2

v |ε
−−→ D2

z |w2−−−→ E2
t′ |t′2−−−→, where p2 · u′ ·w2 ∦ p1 · u′1 (recall

that |p1 | > i, so the mismatch necessarily occurs in p1). We get a
critical pattern by taking u � p · u′, u1 � p1 · u′1, u2 � p2 · u′2, and

E1 such that D1
w |w1−−−→ E1 for w � t[:|z |] the prefix of length |z | of t,

and w1 the corresponding output. We then have that E1 and E2 are
each co-reachable in N, as witnessed respectively by t[|z |:] and t′,
so they are in particular candidate co-reachable in N.
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The pattern yields a point of non-continuity This direction is estab-
lished in the same way as for uniform continuity, except that now we can
fix x instead of building two sequences xn and yn , since we know that
C1 is final. We redo the reasoning, for completeness. Assume that T has
the pattern of the statement:

Cι u |u1−−−→ C1
v |v1−−−→ D1︸       ︷︷       ︸
L

w |w1−−−→ E1

Cι u |u2−−−→

︷       ︸︸       ︷
C2

v |v2−−−→ D2
z |w2−−−→ E2

where L is a candidate synchronised loop, C1 is final, and E1 and E2 are
each candidate co-reachable in N. By Lemma 12.60, we know that there
exists a morphism µ ∈ Aut(Q+) such that

µ(Cι)
µ(u)|µ(u1)−−−−−−−→

TN

µ(C1)
µ(v)|µ(v1)−−−−−−−→

TN

µ(D1)︸                      ︷︷                      ︸
µ(L)

µ(w)|µ(w1)−−−−−−−−→
TN

µ(E1)

µ(B2)
µ(u)|µ(u2)−−−−−−−→

TN

︷                      ︸︸                      ︷
µ(C2)

µ(v)|µ(v2)−−−−−−−→
TN

µ(D2)
µ(z)|µ(w2)−−−−−−−→

TN

µ(E2)

are partial runs in N and C′1
v′ |v′1−−−→
TN

D′1 and C′2
v′ |v′2−−−→
TN

D′2 form a syn-

chronised loop L in N, where we denote C′1 � µ(C1), u′ � µ(u),
etc. Thus, there exists ζ ∈ Aut(Q+) that preserves N and such that
ζ(C′1 , C′2) � (D′1 ,D′2). By the same construction as for Proposition
12.67, we can apply another morphism υ so that υ(µ(L)) is a syn-
chronised loop in N and both υ(E′1) and υ(E′2) are co-reachable in
N. Thus, let x � υ(u′) · υ(v′) · ζ(υ(v′)) · ζ2(υ(v′)) . . . , and let, for all
n ∈ N, xn � υ(u′) · υ(v′) · ζ(υ(v′)) · . . . · ζn(υ(v′)) · ζn(υ(z)) · ζn(t),
where t is such that υ(E2)

t |t2−−→
TN

for some t2 ∈ Nω. We have that

f (x) � υ(u′1) · υ(v′1) · ζ(υ(v′1)) · ζ2(υ(v′1)) . . . , and, for all n ∈ N, f (xn) �
υ(u′2) · υ(v′2) · ζ(υ(v′2)) · . . . · ζn(υ(v′2)) · ζn(υ(w2)) · ζn(t2). Since ζ pre-
serves N, and υ was chosen so that every element lie in N, we get that
x , xn , f (x), f (xn) ∈ Nω . For all n ∈ N, we have that |x∧xn | ≥ |u |+n |v | ≥
n. Now, since u1 · w1 ∦ u2 · w2, we get, by the same reasoning as for
uniform continuity, that | f (x) ∧ f (xn)| ≤ i for all but maybe one n ∈ N.
This witnesses that f is not continuous at x ∈ Nω.

Remark 12.10 Note that the strategy of extracting a run from the sequence
of ρn could also be applied to the case of (D,�) and of oligomorphic data
domainsWedidnot do so at the time sincewe could thenbound the length
of partial runs that do not contain loops, which yielded conceptually
simpler arguments (in particular, avoiding the use of Ramsey’s theorem∗).
Moreover, we found it relevant to present different proof techniques, to
show the different ways in which the problem can be approached.

∗ At this point, the reader might start entertaining the idea that the author has a grudge
against the highly esteemed Ramsey’s theorem. This is actually quite the contrary. The
rationale behind this is that powerful tools should be used sparingly: ‘with great power
comes great responsibilities’. For instance, using it when a pumping argument suffices
might obfuscate the matters.
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We did not explicitly chose 0 to highlight
the fact that it is the minimal element of
N plays no role here.

This characterisation again yields a polynomial space algorithm to decide
whether a function recognised by a non-guessing register transducer is
continuous.

Theorem 12.70 The continuity problem for functions defined by non-guessing

non-deterministic register transducers over (N, <, 0) is PSpace-complete.

Proof. The proof is the same as for uniform continuity. It suffices to
note that checking whether C1 is final can be done by adding one bit of
information to the states of the register automaton that recognises the
pattern.

Allowing Guessing

When non-deterministic reassignment is allowed, it might be that in the

pattern of Proposition 12.69, the bottompath C2
v |v2−−−→ D2 is quasi-looping,

i.e. can be iterated arbitrarily many times, but not infinitely many (see
Example 12.5). Thus, this notion of quasi-looping has to show through
the pattern that characterises non-continuity. In this section, we give the
main ideas on how to get a characterisation of continuity in (N, <, 0) in
the presence of guessing.

Example 12.6 For instance, consider the transducer of Figure 12.10. It
recognises the function f B

$ : Nω → Nω such that f B
$ (x) � x if x does

not contain $, and f B
$ (x) � ($)ω for all x that contain infinitely many

occurrences of $ that are separated by blocks of length at most M, for
some M ∈ N. It is otherwise undefined, i.e. its domain is dom( f B

$ ) �
1ω t {b1 · $ · b2 · $ · · · · | ∃M ∈ N, ∀k ∈ N, |bk | ≤ M}. $ can be chosen as 0,
but it can also be some constant added to the domain, or anydistinguished
integer. This transducer does not have the pattern of Proposition 12.69,

ι p

q r

> | ↓ r1 , ↑ r1

> | ?rM , ↑$

? , $ | ↓ r1 , ↑ r1

r <?r < rM | ↑$

? � $ | ↑$

r B 0 | ↑$

Figure 12.10.:Anon-deterministic register
transducer that recognises f$ of Example
12.6. It initially guesses whether $ appears
in the input, and checks that its guess
is correct along the run. It also initially
guesses an upper bound on the length be-
fore reading $, that constrains the number
of iterations of the self-transition over state
q.
r <?r < rM is not allowed in the syntax;
it is meant to consist in guessing a value
that lies between r and rM , and storing it
in r. This can be implemented by adding
another register r′ that stores this value,
and checks on the next step that it is in-
deed between r and rM , then interverting
the roles of r and r′ and so on. Recall that
here, registers are initialised with 0.
r B 0 is not allowed in the syntrax either,
and consists in reassigning r to 0. This can
be done with reassignment, by guessing
the content of r and checking that it is 0
on the next step, or by storing in the states
the fact that it is supposed to be equal to 0,
and modify the tests accordingly. See the
proof of Proposition 4.6 for more details
on the latter.

since the value of rM that is initially guessed sets a bound on the number
of times the self-transition over state q can be taken; and indeed, it
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Given a finite data word w ∈ N∗, the
notation max w is to be understood as
max0≤ j<|w | w[ j].

induces a type that is not widening. Then, once the transition to state r is
taken, the input mismatch so it cannot yield a critical pattern anymore.
However, the self-transition over q can be taken arbitrarily many times,
for a sequence of inputs that have longer and longer common prefixes,
where the occurrence of $ is farer and farer in the input. For instance,
take $ , 1 and let xn � (1n$)ω. By guessing rM � n, the bottom run is
accepting and yields output $ω, which is a witness of non-continuity
since f (1n) � 1ω , $ω. Intuitively, r and rM are allowed to have this
ill-mannered attitude because their values does not appear in the input,
and can thus vary independently.

Remark 12.11Note that f B
$ cannot be recognised by a non-guessing

transducer. This can be shown by noting that the restriction to the finite
alphabet {0, 1}, where we take $ � 0, is not ω-regular. Indeed, its domain
is then dom( f B

$ ) � 1ω t {1n1 · 0 · 1n2 · 0 · · · · | ∃M ∈ N, ∀k ∈ N, nk ≤ B}.
This ω-language is however ωB-regular, since we can write dom( f B

$ ) �
1ω t (1B0)ω, using the syntax of [59, Section 2]. Non-guessing register
transducers can have a non-ω-regular behaviour, in the sense that the
accepting runs do not have an ω-regular structure (see Property 4.38 for
register automata); however when they are restricted to a finite alphabet
of data values, they always are ω-regular (Proposition 10.3).

The main idea is to restrict the pattern of Proposition 12.69 to registers
that take values that belong to the input, so that we can again show that
their type is widening, using similar arguments as in the non-guessing
case. Actually, we only need to exclude registers whose value remains
above the maximal value that appears in the input.

Assumption 12.20 In the following, we assume that automata and trans-
ducers over (Q+ , <, 0) and (N, <, 0) are equipped with a special register
rmax that stores the maximal value appearing in the input.

Given a transducer T, this is done by replacing each transition p
φ |regOp,v
−−−−−−−→

q with two transitions p
?≤rmax∧φ |regOp{rmax←keep},v
−−−−−−−−−−−−−−−−−−−−−−→ q (the data value

is below the maximal value) and p
?>rmax∧φ |regOp{rmax←set},v
−−−−−−−−−−−−−−−−−−−−−→ q, where

regOp{rmax← instr} is the register operation regOp′ obtained by setting
regOp′(r) � regOp(r) for all r , rmax, and regOp(rmax) � instr. The
construction for automata is similar; we do not spell it out as the focus is
set on transducers.

A direct induction establishes that for all input x ∈ Nω and all runs of
T on x we have, for all i ∈ N, νi(rmax) � max x[:i], where valuations(ρ) �
ν0ν1 . . . .

Definition 12.21 Given a valuation ν : R→ N such that rmax ∈ R, we say
that a register r ∈ R is orderly if ν(r) ≤ ν(rmax). Otherwise, it is said to be
stray.

We correspondingly generalise the notion of widening type to types that
are widening over a subset X ⊆ R of registers. In our characterisations,
we later on ask for types that are widening over the subset of orderly
registers.

Definition 12.22 (Widening type over a subset of registers) Let R �

{r1 , . . . , rk} be a set of registers, and R′ � {r′1 , . . . , r′k} be its primed copy.



12. Exploration of Various Data Domains 300

Note that given a type τ over variables R
represented as a function fτ : R × R →
{<, >,�}, its subtype over X ⊆ R is given
by the restriction of fτ to X×X, i.e. fτ|R �

( fτ)|X×X .

When we write C1 : R1 → Q+, we ac-
tually mean that ν1 : R1 → Q+, where
C1 � (q1 , ν1) for some q1 ∈ Q (where Q
is the state space of T). We use primed
and indexed copies of registers to easily
distinguish between the different configu-
rations).

Let σ(r1 , . . . , rk , r′1 , . . . , r
′
k) be a type of 2k-tuples that preserves types.

For a set X ⊆ R, we say σ is widening over X if its subtype σ|XtX′ is
widening, where σ|XtX′ is the only type τ over variables X t X′ such
that σ ∧ τ is valid. We spell out what this means for clarity:

(a) The value of each register in X increases between ν and λ: for
all r ∈ X, σ ⇒ r ≤ r′ is valid in (Q+ , <, 0), i.e. all valuations
ν, λ : R → Q+ that satisfy σ are such that ν(r) ≤ λ(r), for all
r ∈ X.

(b) If a given orderly register is constant between ν and λ, then all
registers below are also constant: for all r, s ∈ X, if σ⇒ s � s′ and
σ⇒ r ≤ s are valid in Q+, then σ⇒ r � r′ is valid in Q+.

By extension, for two valuations ν and λ over R such that type(ν) �
type(λ), we say that (ν, λ) is pseudo-widening over X if type(ν, λ) is
widening over X.

We say that (ν, λ) is widening over X when type(ν) � type(λ) and:

1. for all r ∈ X, λ(r) ≥ ν(r)
2. for all r, s ∈ X, |λ(s) − λ(r)| ≥ |ν(s) − ν(r)|

Observe that pair of valuations that is widening over X is in particular
pseudo-widening over X.

The notions of candidate loop and of candidate synchronised loop in N

can then be generalised, by restricting to orderly registers:

Definition 12.23 (Candidate quasi-loop) Let A be a register automaton
over (Q+ , <, 0)with a distinguished register rmax maintaining the maxi-
mal value seen in the input (cf Assumption 12.20). A candidate quasi-loop

in N is a partial run C
u−→ D such that (C,D) is pseudo-widening over

O, where O � {r ∈ R | D(r) ≤ D(rmax)} i.e. type(C,D) is widening over
over O.

Definition 12.24 (Candidate synchronised quasi-loop) Let T be a non-
deterministic register transducer, and consider a pair of partial runs
L:

C1
u |u1−−−→ D1

C2
u |u2−−−→ D2

where C1 : R1 → Q+, D1 : R′1 → Q+ and C2 : R2 → Q+, D2 : R′2 → Q+.
Let O2 � {r ∈ R2 | D2(r′) ≤ D2(r′max)} be the set of orderly registers of
D2. The pair L is a candidate synchronised quasi-loop if the pair of pairs
of configurations ((C1 , C2), (D1 ,D2)) is pseudo-widening over R1 t O2.
Recall that this is the case whenever type(C1 , C2 ,D1 ,D2) is widening
over R1 t O2.

Proposition 12.71 Let T be a transducer over (N, <, 0) (with guessing) that

recognises a function f : Nω → Nω. f is not continuous if and only T has a
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critical pattern

Cι u |u1−−−→ C1
v |v1−−−→ D1︸       ︷︷       ︸
L

w |w1−−−→ E1

Cι u |u2−−−→

︷       ︸︸       ︷
C2

v |v2−−−→ D2
z |w2−−−→ E2

such that L forms a candidate synchronised quasi-loop that is 1-final (i.e. C1 is

final), and E1 and E2 are each candidate co-reachable in N.

Remark 12.12 If a transducer is non-guessing, there are no stray registers,
so we obtain the pattern of Proposition 12.69.

Proof idea. We start by outlining the proof, and then detail the main
arguments. The formal proof is omitted, so as not to trespass upon the
reader’s patience†. First, to exhibit the pattern, the central idea is that one
can again extract a limit run when restricting to orderly registers. Indeed,
for any input x ∈ Nω, at each index i ∈ N, orderly registers take their
values in the bounded set {0, . . . ,max x[:i]}, which is sufficient for the
extraction. Then, we can apply a Ramsey argument to get a subsequence
of configurations that all have the same pairwise type σ, and show
that if it were not widening over orderly registers, this would yield an
infinite decreasing chain or an infinite increasing bounded chain, which
is impossible in N. The fact that the pattern is critical is proved as in the
non-guessing case. The other direction also requires a bit more work
than in the non-guessing case, where obtaining a discontinuity point
from the pattern is reasonably easy. Indeed, since there is no condition
on stray registers, we cannot simply iterate the loop, instead we have to
find values for them for each number n of iterations of the quasi-loop

C2
v |v2−−−→ D2, which means leaving sufficient room between them to be

able to iterate n times.

We now give a few more details. Let T be a functional transducer over
(N, <, 0) recognising a function f : Nω → Nω that is not continuous
at some x ∈ Nω, and let i ≥ 0 and (xn)n∈N be a sequence of elements
of dom( f ) that converges to x such that for all n ∈ N, |x ∧ xn | ≥ n
but | f (xn) ∧ f (x)| ≤ i. Correspondingly, let ρ be an accepting run of
T yielding output f (x), and for each n ∈ N, let ρn be an accepting run
of T yielding output f (xn). We build by induction a sequence ρ′ �
ν′0t′0ν

′
1t′1 . . . such that for all j ≥ 0, by letting O j � {r ∈ R, ν j(r) ≤ rmax},

ρn |O j
[: j] � ρ′|O j

[: j], where, given a run ρ and X ⊆ R, we define ρ |X
as ν0 |X t0ν1 |X t1 . . . . This construction relies on the same arguments as
Proposition 12.69, since Q × {0, . . . ,max x[: j]} is finite, so for a given
j ≥ 0, there are only finitely many possible ρn |O j

[: j]. Note that this
construction does not work if we lift the restriction to orderly registers
(e.g. for the transducer of Example 12.6), since then valuations take their
values in the entire domain N (the transducer can guess arbitrarily large
values). Consider the runs ρ and ρ′, we can extract, by applyin the
Ramsey argument of Proposition 12.56 to valuations νi t ν′i , an infinite
sequence of valuations that have the same pairwise type σ. In particular,
they all have the same type, hence the same orderly registers O. If σ is not
† Note that the writer belongs to the set of readers.
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widening over O, we are able to derive an infinite descending chain or
an infinite increasing bounded chain in N, which yields a contradiction,
using the same arguments as in Proposition 12.56.

The other direction relies on the study of candidate synchronised loops:
by isolating stray registers, we are able to iterate the loop for an arbitrary
number of times over data words that are prefix of each other. As for
the non-guessing case, it consists in repeatedly applying a morphism;
however, we can only ensure that it isN-preserving over orderly registers.
Since stray registers are only compared with tests ? < r for any r < O,
they can take arbitarily large values, so we can always pick values
for them that satisfy all tests of any finite prefix. This allows, from a
candidate synchronised loop, to get an x and a family (xn)n∈N such that
(xn)n∈N converges to x, but ( f (xn))n∈N does not, in the same way as for
Proposition 12.69; the fact that the pattern is critical ensures that the
images ( f (xn))mismatch with f (x) at some position.

The above characterisation allows to extend Theorem 12.70 to register
transducer with guessing.

Theorem 12.72 ([142, Theorem 4.28]) The continuity problem for functions

defined by non-deterministic register transducers over (N, <, 0) is PSpace-

complete.

Proof. One first equips the input transducer with a special register rmax,
to ensure Assumption 12.20; this is a linear transformation. Then, the
decision of the above pattern is done in the same way as for Theorem
12.70; excluding stray registers poses no difficulty.

PSpace-hardness results from PSpace-hardness of the non-guessing case
(Theorem 12.70).

12.3.6. Transferring the Study to Similar Structures

We have extended our study to one non-oligomorphic data domain,
namely (N, <, 0), which is a substructure of (Q, <, 0). To extend it to
other substructures of (Q, <, 0), e.g. (Z, <, 0), we could do the same
work again and study the properties of loops in Z. However, a simpler
way is to observe that (Z, <, 0) can be simulated by N, using two copies
of the structure. We show a quite simple yet powerful result: given a
data domain D, if a data domain D′ can be defined as a quantifier-free
interpretation over D, then the problems of emptiness, functionality,
continuity, etc reduce to the same problems over D.

Definition 12.25 A quantifier-free interpretation of dimension l with signa-
ture Γ over a structure (D,S) is given by quantifier-free formulas over
S:

I A formula ϕdomain(x1 , . . . , xl)
I For each constant symbol c of Γ, a formula ϕc(x1 , . . . , xl). Note

that we do not assume the encoding to be unique.
I For each relational symbol R of Γ of arity r (including �), a formula

ϕR(x1
1 , . . . , x

1
l , . . . , x

r
1 , . . . , x

r
l )

The structure D′ is defined by the following:
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I Its domain is D′ � {(d1 , . . . , dl)| D |� ϕdomain(d1 , . . . , dl)}
I Each constant symbol c is interpreted by the tuples (dc

1 , . . . , d
c
l ) ∈

D′ that satisfy ϕc , i.e. such that D |� ϕc(dc
1 , . . . , d

c
l )

I For each relational symbol, an interpretation

RD′
�

{
(d1

1 , . . . , d
1
l , . . . , d

r
1 , . . . , d

r
l )

�� D |� ϕR(d1
1 , . . . , d

1
l , . . . , d

r
1 , . . . , d

r
l )
}

Remark 12.13 If the encoding of constants is unique, i.e. there is exactly
one tuple that satisfiesϕc for all c, thenϕ� simply consists in checking that
the coordinates are equal, i.e. ϕ�(x1 , . . . , xl , x′1 , . . . , x

′
l) B

∧
1≤i≤l xi � x′i .

Example 12.7 Thedatadomain (Z, <, 0) canbedefinedas aQF-interpretation
of (N, <, 0), by using two copies of N. One handles the positive numbers,
the other, the negative ones, and its order is correspondingly reversed.
Formally, this is defined as the following 2-dimensional interpretation
over (N, <, 0) (where the first dimension stores negative numbers, and
the second, positive ones):

I ϕdomain(x , y) B (x � 0) ∨ (y � 0)
I ϕ0(x , y) B (x � 0) ∧ (y � 0)
I ϕ�(x1 , y1 , x2 , y2) B x1 � x2 ∧ y1 � y2
I ϕ<(x1 , y1 , x2 , y2) B (x1 � x2 � 0 ∧ (y1 < y2)) ∨ (y1 � y2 �

0 ∧ (x1 > x2)) ∨ (x2 � y1 � 0 ∧ ¬(x1 � y2 � 0)).
Theorem 12.73 ([142, Theorem 4.29]) Let D be a data adomain, and D′ be
a quantifier-free interpretation over D. There is a polynomial space reduction

from all problems we studied over D′ to their analogous over D.

More precisely, there is a polynomial space reduction from the non-emptiness

problem (respectively, the functionality, continuity, Cauchy-continuity and

uniform continuity problems) over D′ to the non-emptiness problem (respec-

tively, the functionality, continuity, Cauchy-continuity and uniform continuity

problems) over D.

Proof. Let Dbe a data adomain, and D′ be a quantifier-free interpretation
over D. Let R′ ⊆ D′ω × D′ω be a relation given by a non-deterministic
register transducer T′ over D′. Let l ∈ N be the dimension of D′ w.r.t. D.
Then, we can view R as a relation R ⊆ (Dl)ω × (Dl)ω, where R is empty
(respectively, functional, continuous, Cauchy-continuous, uniformly con-
tinuous) if and only if R′ is.

Moreover, since D′ is an interpretation, one can construct anon-deterministic
register transducer T which recognises R. It uses l registers for every
register of T′ plus l − 1 registers to store the input. Its transitions are
grouped by blocks of length l. In the first l − 1 transitions, it simply
stores the input. On the l-th transition, it simulates a transition of T′, by
substituting the formulas of the interpretation for the predicates. This
can be done, as they are quantifier-free, so they match the syntax of tests.
As usual, we do not construct T explicitly, but we are able to simulate it
using only polynomial space.

As a direct corollary, we can transfer our results over (N, <, 0) to (Z, <, 0).

Corollary 12.74 The problems of non-emptiness, functionality, continuity,

Cauchy-continuity and uniform continuity over (Z, <, 0) are PSpace-complete.
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We encode constants in binary as it is the
most succinct.One could also encode them
in unary, or using any encoding since we
do not use any properties of the binary
encoding.

Whether the binary encoding is little or
big endian does not matter here.

Technically, we do not have to specify that
x � 0 as it is already handled by ϕdomain.

Proof. Membership in PSpace follows from Theorem 12.73, since (Z, <
, 0) can be defined as a 2-dimensional quantifier-free interpretation of
(N, <, 0) (Example 12.7).

PSpace-hardness is obtained by observing that (Z, <, 0) can simulate
(D,�), for whom the corresponding problems are already PSpace-hard
(see Section 12.1).

The results can also be extended to (N, <,C) for C ⊂ f N a finite set of
distinguished constants. Here, the dimension depends on the maximal
constant, but the problems are PSpace-complete if C is fixed.

Corollary 12.75 Let C ⊂ f N be a finite number of distinguished constants.

The problems of non-emptiness, functionality, continuity, Cauchy-continuity

and uniform continuity for relations defined by transducers over (N, <,C) are
PSpace-complete.

Proof. The proof again relies on showing that (N, <,C) can be built as
a quantifier-free interpretation of (N, <, 0). One first saturates C into
C′ � {0, 1, . . . ,M − 1,M}, where M � maxC. Then, one can build a
dlog Me + 1-dimensional interpretation of (N, <,C′) by encoding each
constant in binary using the first m � dlog Me coordinates. The last
component consists in a copy of N that is strictly above all constants.
Intuitively, it is shifted by an M factor, i.e. 0 is interpreted as M + 1, 1 as
M + 2 etc.

I The domain consists in tuples that either encode constants or
elements that are above M: ϕdomain(a0 , . . . , am , x) B x , 0 ⇔∧

0≤i≤m ai � 0
I For c ∈ C′, let b0 . . . bm � 2c be the binary encoding of c. We define

a formula ϕc that holds whenever x � 0 and for all 0 ≤ i ≤ m,
ai , 0⇔ bi � 1. Formally,

ϕc(a0 , . . . , am , x) B x � 0 ∧
∧

0≤i≤m
bi�0

ai � 0 ∧
∧

0≤i≤m
bi,0

ai , 0

I Here, the encoding of constants is not unique, so the definition of
equality is non-trivial. As for the definition of order (see below),
the idea is, for each constant, to explictly state to what elements it
is equal, and separately treat the case of non-constants. Thus, we
let ϕ�(a0 , . . . , am , x , a′0 , . . . , a

′
m , y) be defined as∨

c∈C

(
ϕc(a0 , . . . , am , x) ∧ ϕc(a′0 , . . . , a′m , y)

)
∨

(x , 0 ∧ y , 0 ∧ x � y)

I Theorder is defined in a similar fashion.ϕ<(a0 , . . . , am , x , a′0 , . . . , a
′
m , y)

holds when either:

• (a0 , . . . , am) and (a′0 , a′m) respectively encode constants c and
c′ such that c < c′

• The left element (a0 , . . . , am) encodes a constant and the right
one does not, i.e. y , 0

• Neither encode a constant (x , 0 and y , 0) and x < y.
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Formally, we let ϕ<(a0 , . . . , am , x , a′0 , . . . , a
′
m , y) be∨

c ,c′∈C′
c<c′

ϕc(a0 , . . . , am , x) ∧ ϕc′(a′0 , . . . , a′m , y) ∨

(∨
c∈C′

ϕc(a0 , . . . , am , x)
)
∧ y , 0 ∨

x , 0 ∧ y , 0 ∧ x < y

Then, membership in PSpace (if C is fixed) is obtained by Theorem 12.73.

PSpace-hardness once more follows from the hardness results over
(N, <, 0).

Remark 12.14 This encoding of constants is quite wasteful, and one could
define a finer-grained notion of quantifier-free intepretation, in the spirit
of what is done in [108, Definition 1] through the notion of ‘polynomial
orbit-finite set’: instead of considering a single set of copies of the original
domain, one considers labelled sets of copies, e.g. Z can be defined as
+N + −N, and constants simply consists in labels of nullary copies, e.g.
(N, <, {0, 1}) is N + 1. One then defines the formulas over all copies, to
allow interactions between them (e.g. to specify that 1 > 0). Theorem
12.73 is easily adapted to this more general notion.

Remark 12.15 Both constructions above can be combined to get (Z, <,C).
The transfer result also applies to many other substructures of (Q, <, 0),
such as the ordinals ω + ω, ω × ω, etc.
Remark 12.16 This ‘transfer result’ does not hold for first-order interpreta-
tions,which aredefinedasquantifier-free interpretations except thatweal-
lowϕdomain(x1 , . . . , xl),ϕc(x1 , . . . , xl) andϕR(x1

1 , . . . , x
1
l , . . . , x

r
1 , . . . , x

r
l )

to be unrestricted first-order formulas. For instance, (N,+1, 0) can be
obtained from (N, <, 0) as a 1-dimensional first-order interpretation, by
letting ϕ+1(x , y) B y > x ∧ ¬∃z · x < z < y. The emptiness problem
for register automata over this data domain is undecidable since they
can recognise runs of Minsky machines (Theorem 4.52), so there can be
no effective reduction from the problems over (N,+1, 0) to those over
(N, <, 0).

And indeed, the construction of Theorem 12.73 fails when one encodes
ϕdomain, (ϕc)c∈C and (ϕR)R∈R as tests, since tests are restricted to be
quantifier-free formulas.

Remark 12.17 A corollary of the above observation is that allowing tests
to be unrestricted first-order formulas would yield a model of register
automata whose emptiness is undecidable, already over data domain
(N, <, 0). Yet, this would be possible in (D,�,C) and (Q, <, 0), as they
admit quantifier elimination.
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Conclusion 13.
Lifting the equivalence between ω-computability and continuity, known
for transducers over finite alphabets [51], to the case of data words
allows to characterise ω-computability through a forbidden pattern that
is decidable for (D,�,C) and more generally for decidable oligomorphic
data domains, for functions defined by non-deterministic asynchronous
register transducers. This class of functions is moreover closed under
composition, and decidable in the sense that one can decide, given
a transducer, whether it recognises a function. We were also able to
characterise the finer notion of uniform computability, equivalent to
uniform continuity, that guarantees a uniform bound on the number of
data values to read before being able to output something.

The jump in abstraction induced by the generalisation to oligomorphic
data domains highlights the fact that to abstract the behaviour of register
automata, the key point is that the transition dynamics can be described
in first-order logic, which explains why we get non-deterministic reas-
signment for free in our development. Note also that adding a guessing
mechanism is a somehow maximal extension, in the sense that over
(D,�,C), this exactly captures nominal automata [25, Theorem 6.4],
which model all that can be done with FO-definable transitions (this re-
sults from [26, Lemma 4.11], which equates equivariant and FO-definable
sets).

Further Generalisations to Other Data Domains We were also able
to extend our results to (N, <, 0) and its quantifier-free interpretations,
which include e.g. (Z, <,C) for any finite C ⊆ Z, and more generall
(Zk , <,C) for any fixed k ≥ 1. This was obtained using two properties:
first, that N is a substructure of Q and second, that we were able to
characterize iterable paths in N. One possible extension would be to
investigate data domains which have a tree-like structure, e.g. the infinite
binary tree. There exists a tree-like oligomorphic structure, of which the
binary tree is a substructure. Studying the iterable paths of the binary
tree may yield a similar result as in the linear order case. Of course
we could also extend to more general structures, namely those that are
substructures of an oligomorphic structure and for which we are able to
characterise iterable paths.

Two-WayModels In [51], the authors also show decidability of continu-
ity (and ω-computability) for regular functions, i.e. functions that can be
recognised by non-deterministic two-way transducers with look-ahead.
To the best of our knowledge, there does not yet exist a two-way model
operating overdatawords that is closedunder composition,whose expres-
siveness is comparable or greater than that of non-deterministic register
transducers andwhose emptiness is decidable. For instance, deterministic
two-way register automata have an undecidable emptiness problem [101,
Theorem 5.3]. We explored generalisations of bimachines [153, 154],
which provide a canonical model for rational functions [155, Theorem
2]. However, contrary to the finite alphabet case, composing more and
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more left-to-right and right-to-left machines induces an infinite hierarchy,
which implies that the model is not closed under composition. Other
natural restrictions were considered, e.g. reversibility, but to no avail. In-
deed, two-wayness over data words, unless very restricted, easily allows
to recognise inputs with pairwise distinct data values, hence opening
the way to the simulation of computations of Turing machines by using
them as landmarks to navigate back-and-forth; in contrast, restrictions
tend to break closure under composition. A promising formalism is the
extension of streaming string transducers [156] to data words; in [108,
Theorem 11] the authors show that the single-use restriction of streaming
string transducers over data words (called SST with atoms) is shown
equivalent to two-way single-use transducers. The non-deterministic
version of streaming string transducer with atoms thus forms a good
candidate to model functions over data words, and one can wonder
whether continuity is decidable for this model.

Beyond the Functional Case This study was first motivated by synthe-
sis applications. There are several classical ways of extending synthesis
results, for instance considering larger classes of specifications, larger
classes of implementations or both. In particular, an interesting direc-
tion is to consider non-functional specifications. However, as mentioned
earlier, and as a motivation for studying the functional case, enlarging
both (non-functional) specifications and implementations to an asyn-
chronous setting leads to undecidability. Indeed, already in the finite
alphabet setting, the synthesis problem of deterministic transducers over
ω-words from specifications given by non-deterministic transducers is
undecidable [48, Theorem 17]. A simple adaptation of the proof of [48]
allows to show that in this finite alphabet setting, enlarging the class
of implementations to any ω-computable function also yields an unde-
cidable synthesis problem. Still, an interesting case is yet unexplored,
already in the finite alphabet setting: given a synchronous specification,
as an ω-automaton, is it possible to synthesise an ω-computable function
realising it? In [49, 157], this question has been shown to be decidable
for specifications with total domain (any input word has at least one
correct output by the specification). More precisely, it is shown that
realisability by a continuous function is decidable, and it turns out that
the synthesised function is definable by a sequential transducer (a.k.a.
input-deterministic transducer), hence it is ω-computable. When the
domain of the specification is partial, the situation changes drastically:
sequential transducers may not suffice to realise a specification that we
know is realisable by an ω-computable function. This can be seen by
considering the function fswap of Example 11.2, casted to a finite alphabet
{a , b , c} (where c plays the role of $): it is not computable by a sequen-
tial transducer, since it requires an unbounded amount of memory to
compute this function. It has been shown recently that the problem of
deciding the existence of a continuous implementation for specifications
given by rational relations (over finite alphabets) becomes undecidable
in this setting [158, Theorem 8], but the authors indentify a decidable
subclass, namely weakly deterministic rational relations [158, Theorem 2].
This implies in particular that the problem is decidable for synchronous
rational specifications.
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Finer-GrainedMeasures of Continuity It is also worth noting that the
measure we have chosen for continuity and ω-computability is quite
demanding: as soon as two data words differ at a given index, the
proximity between them at later positions is irrelevant. This is consistent
with a notion of exact computability, where machines unerringly output
data values along their runs, but fails to capture the handling of possible
errors in the input and output. For instance, it might be that the input
stream comes from a lossy channel, and that some data values are
erroneous. In that case, it is important to be able to pinpoint the behaviour
of themodel over inputs that are closewith regards to some errormeasure,
e.g. the Hamming distance. This is however much more challenging, as
it requires to jointly abstract a set of behaviours, while we could focus on
single runs in our study.



Thesis Conclusion 14.
Contributions of this thesis are twofold. First, we provide a study of the
synthesis problem for register automata with different semantics (non-
deterministic, universal and deterministic), over data domains (D,�,C),
(Q, <, 0) and (N, <, 0). The undecidability border is never far, and often
crossed, so we also study the register-bounded synthesis problem, which
targets implementations represented by sequential register transducers
whose number of registers is given as input. In the non-deterministic
semantics, the test-free restriction is needed to go back to the realm of
decidable problems. Universal semantics are more easily tamed, which
is lucky since they are also more suitable to express specifications,
as universal register automata are trivially closed under intersection.
Moreover, we argue that it is often easier to first specify a forbidden
behaviour, which is more naturally done using non-determinism, and
then complement by dualising to a universal automaton.

The second set of contributions consists in an examinationofω-computability
for functions defined by non-determinsitic asynchronous register trans-
ducers. We obtained decidability for a wide range of data domains,
and our study led us to a detailed analysis of the behaviour of register
machines that should prove useful in other contexts.

This work constitutes a step in the direction of lifting synthesis to the
case of infinite alphabets and, as usual in research, it opens up more
perspectives than those it closed. Thus, as Sisyphus, let us now draw the
prospects that arise from the lessons we have learned.

14.1. What Is Essential for Abstracting the
Behaviour of Register Automata?

Lifting Register-Bounded Synthesis to Oligomorphic Domains As
pointed out in Chapter 9 (Conclusion), the key ingredient to abstract
the behaviour of register automata in a finite way is that there are
finitely many types, which is captured by the notion of oligomorphicity.
Thus, already in this thesis, the jump in abstraction induced by the
study of this class of domains bounces back on Part I, as it allows to lift
decidability of register-bounded synthesis to decidable oligomorphic data
domains (decidability of a data domain being a reasonable computability
assumption). Indeed, in Section 12.2.1, we showed that projection over
labels is effectively ω-regular for non-deterministic register automata
over decidable oligomorphic data domains (Theorem 12.24). This is
sufficient for mimicking our construction for register-bounded synthesis
over (D,�,C) and (Q, <, 0), which essentially relies on Lemma 6.13 (resp.,
Lemma 6.15), which states ω-regularity of the associated finite alphabet
specification.

Action Sequences and Constraint Sequences Another key observa-
tion is the key role of action sequences to show ω-regularity of the
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projection over labels, which makes them a powerful tool to abstract
the behaviour of register automata. For more complex data domains
as (N, <, 0), global phenomena come into play (e.g. infinite descending
chains are forbidden), which necessitates to shift the focus to constraint
sequences, that successfully capture these dynamics.

Unifying the Constructions for (N, <, 0) The techniques employed in
Part I and Part II to analyse the behaviours of machines with registers
over (N, <, 0) (respectively Sections 7.3.4 and 12.3) bear some similarities,
yet we were not able to unify them. This deserves further exploration,
as this would yield a finer understanding of the way those machines
operate over this data domain.

14.2. Beyond Register Automata: Exploring
Other Formalisms

For Specifications We concluded Part I by insisting on the versatility of
the transfer theorem for the decision of register-bounded synthesis. And
indeed, this might be the way to go for obtaining a logical formalism for
which this problem is decidable. This could be the case of the two-variable
fragment of some first-order logics over data words [134, 135]. Positive
results also exist for the Logic of Repeating Values [33] in the unbounded
case. This first calls for a more precise examination of the memory
structure of winning strategies in these games, as advocated by the
authors. Second, as for specifications given by register automata, it might
be possible to obtain positive results for more expressive fragments in the
register-bounded case. Besides,we ruledout alternating register automata
due to the undecidability of their emptiness and universality problem.
However, they are tightly related to LTL with the freeze quantifier [28,
Theorem 4.1], so it is worth considering their 1-register restriction, which
does not falls victim of the above undecidability results over finite data
words. Other operational models such as data automata (or, equivalently,
class-memory automata) were not considered for similar reasons. Given
that little is known about them from a theoretical perspective, it might
be premature to examine variants of the synthesis problem over them.
However, knowledge about models for infinite alphabets is blossoming,
and one should consider giving a second look once more is discovered.

For Implementations Since they are restricted to outputtingdata values
that appear in the input that they have read so far, and to remember
only finitely many of them, register transducers might not always be
a well-suited model for implementations, and another direction is to
consider more expressive formalisms, as was done in [44], which allows
to store infinitely many data values, with a queue discipline. Depending
on the target model, the transfer theorem can be generalised, as it relies
on the existence of a connection between syntax and semantics, embodied
by action sequences in the case of machines with registers.
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APattern Logic overDataWords In Part II, wewere able to characterise
non-continuity by a forbidden pattern for all the data domains we
consider. This calls for a unified framework for the decision of the
existence of such patterns, that would extend what has been done
in the finite alphabet case with the pattern logic [149]. The model-
checking problem of transducers against this logic is shown decidable
by a reduction to the emptiness problem of Parikh automata. Over data
words, it seems that a decision procedure can be obtained by equipping
Parikh automata with registers, as this feature does not interact too much
with the counters of the automaton, and both can thus be abstracted
independently. Besides, this would simplify the presentation of the
decision of related problems as functionality and emptiness, which
would provide a better understanding of the behaviour of machines with
registers. Parikh’s theorem has recently been lifted to infinite alphabets
for 1-register automata [159]; this should constitute a useful block to build
on for the study of Parikh register automata.

14.3. Minimisation and Learning

The main goal of synthesis is to ‘liberate the programmer’, to quote the
words of Harel [160]. Another way to achieve this goal is to learn the
behaviour of the system from sample outputs. The term of ‘learning’
has lately undergone a lot of fancy uses (especially when prefixed
with ‘machine’); here, it should be understood in a formal way, rather
than in its statistical acception. It consists in finding an acceptor for a
language by being able to ask queries like ‘does this word belong to the
language?’ or ‘did I finally learn the right model?’. This line of work was
initiated for deterministic finite-state automata in [161], and furthered
for non-deterministic ones in [162, 163]. Recently, the learning problem
for register automata has been the subject of attentive scrutiny [164,
165]. This problem is tightly linked with that of defining canonical
representatives, and in particular to the minimisation problem, that asks
to find a minimal machine for a given (data) language, studied in [23,
166]. It is known that sequential transducers can be minimised [167]. Is it
the case of register transducers? We already know that it is undecidable
whether a given partial function over data words can be recognised by
a sequential register transducer, as this implies deciding whether its
domain is recognisable by a deterministic register automaton. However,
this does not imply undecidability of the minimisation problem. On
top of learning applications, being able to minimise sequential register
transducers would be useful to reduce the size of implementations given
by our synthesis algorithms, that suffer from the state space blowup but
are, by construction, sequential.

Nominal transducers extend transducers in the same way as nominal
automata extend finite-state automata, and, over (D,�,C), they corre-
spond to register transducers. For this model, the characterisation of
sequentiality through a syntactic congruence given by Choffrut in [167,
Theorem 1] again holds in the case of nominal transducers, by replacing
‘finite’ with ‘orbit-finite’. Indeed, it does not rely on finiteness of the
alphabet. We know that this criterion is undecidable, since sequentiality
is undecidable; what remains to be seen is whether one can derive a
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minimisation algorithm from it. For that, one needs aminimality criterion,
which is not as obvious as in the finite alphabet case, since there are two
relevant parameters, namely the number of states and of registers. In [23],
it is shown that by constraining register automata to update their registers
following a stack discipline, one gets a minimisation algorithm. Such
constraint however lacks succinctness: in general, machines that follow it
can be exponentially bigger. One could also resort to the construction
of [25, Section 11], which yields canonical representations, although it is
mathematically involved due to its genericity.
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The name can be omitted when irrelevant.

Labels can be positioned otherwise for
graphical purposes.

Graphical Conventions A.
A.1. Relations and Functions, Input and Output

I Input is coloured red
I Output is coloured green
I Functions are coloured green
I Relations are coloured blue

A.2. Reactive Synthesis

I The environment is in red, as it is in charge of inputs.
I The system is in green, as it is in charge of outputs.
I Implementations as well, as they correspond to systems.
I Specifications are in blue, since they are relations.

A.3. ω-Automata

I States are depicted as circles, with their name inside, e.g. a state p

is displayed as: p

I Transitions are depicted as arrows, with their label above. For
instance, p

a−→ q is depicted as follows: p qa

I Initial states are marked with an incoming arrow:

I States which belong to the set F of accepting (for the Büchi accep-
tance condition) or rejecting states (for the co-Büchi one) are doubly

circled:

I When the label of a transition can be any input, it is abbreviated as
∗.

A.3.1. Specification Automata

Consistently with the above conventions:

I Input states and input transitions are in red
I Output states and output transitions are in green
I In particular, a red star (∗) denotes any input letter, and a green star

(∗), any output letter.
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This is done to unify the notations with
Part I. For σ ∈ Σ, the test σ(?) ∧ φ asks
that the label is σ and conducts test φ.

A.4. Register Automata

Conventions regarding states and transitions are inherited from ω-
automata. Additionally:

I Labels are omittedwhen they are irrelevant, which is the case when
the alphabet is unary

I Recall that > is a test which is satisfied by any data value
I asgn � {r} is denoted ↓ r, and more generally asgn � {r1 , . . . , rn}

is denoted ↓ r1 , . . . , ↓ rn .
I asgn � ∅ is omitted
I When reassignments are involved,wewriteA B s when the content

of s is copied into each register in the set A ⊆ R, which corresponds
to the reassignment function r ∈ A 7→ s and r < A 7→ r

I When non-deterministic reassignment is involved, we write ?r to
mean that r ∈ ndasgn

A.5. Synchronous Sequential Register
Transducers

Conventions regarding states, transitions and register operations on the
input are inherited from register automata. Additionally, on transitions
we write ↑ r when the output register is r.

A.6. Non-Deterministic Asynchronous Register
Transducers

Conventions regarding states and transitions are inherited from ω-
automata. Since the definition of the model slightly differ from the
perspective adopted in Part I, we gain spell out its associated graphical
conventions:

I When the data domain supports labels from a finite alphabet Σ, we
write σ, φ for the test σ(?) ∧ φ

I Given a transition p
φ |regOp,w
−−−−−−−→ q, we write ↓ r when regOp(r) � set,

?r when regOp(r) � guess and nothing when regOp(r) � set.
I Finally, we write ↑ r1 · . . . · ↑ rk when the output word is r1 . . . rk .



Details of Chapter 3 B.
B.1. Section 3.4.1 (Logics for Specifications)

B.1.1. The ω-language Lpar is definable in MSO, but not
in LTL

First, we give the details of Example 3.8, and more precisely show that
Lpar � {w0b0$w1b1$ · · · ∈ ({0, 1}∗$)ω | for all i ∈ N, bi � |wi |1 mod 2}
is definable by a MSO formula.

Example B.1 First, define a formula ϕ$(Y) which holds whenever the set
Y is a set of positions strictly between two $, last bit excluded:

ϕ$(Y) B∃b.b < Y ∧ $(b) ∧ b + 1 ∈ Y ∧ ∃e .e < Y ∧ $(e + 1) ∧ e − 1 ∈ Y

∧
(∀y.b < y < e ⇔ (y ∈ Y ∧ ¬$(y))

)
b is thus the $ at the beginning of Y, while e is the last bit of the sequence
(thus its successor is a $). Then, ϕ$ can be refined into ϕ1 so as to
characterise sets of positions between two $ which are labelled 1:

ϕ1(X) B ∃Y.ϕ$(Y) ∧ X ⊆ Y ∧ ∀y ∈ Y.1(y) ⇔ y ∈ X

where X ⊆ Y is a short for ∀x.x ∈ X ⇒ x ∈ Y.

Now, we have to express that X contains an even number of elements.
To that end, we first introduce the formula ϕt(X,Y, Z)which expresses
that Y and Z partition X, i.e. X � Y t Z.

ϕt(X,Y, Z) B ∀t .(t ∈ Y ∨ t ∈ Z) ⇒ t ∈ X ∧ ∀t ∈ X.(t ∈ Y⇔ t < Z)

Then, X contains an even number of elements whenever it can be
partitioned into two sets Y and Z which respectively contain the first and
last element of X, and which alternate: if x ∈ Y, then the next element of
X will belong to Z, and conversely.

ϕeven(X) B∃Y.∃Z.ϕt(X,Y, Z)
∧ ∀y , z ∈ X.¬(∃x ∈ X.y < x < z) ⇒ (y ∈ Y⇔ z ∈ Z)
∧ ∀y ∈ X.(∀t .t < y ⇒ t < X) ⇒ y ∈ Y

∧ ∀z ∈ X.(∀t .t > z ⇒ t < X) ⇒ z ∈ Z

Finally, one can state that a position is the last of a sequence by asking
that the next position is labelled $. Putting it together, one obtains the
sought formula:

ϕpar B ∀X.ϕ1(X) ⇒ ∀y.(y < X ∧ y − 1 ∈ X) ⇒ (0(y) ⇔ ϕeven(X))

Then, we show the claim of Example 3.12, namely that Lpar is not definable
in LTL. To that end, we use the fact that an ω-language is definable in
LTL whenever it is definable in FO[<], which is the case if and only
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if it is aperiodic [62, Theorem 1.1]. An ω-language L ⊆ Σω is aperiodic
when there exists some n ∈ N such that for all u , x ∈ Σ∗ and all v ∈ Σω,
u · xn · v ∈ L ⇔ u · xn+1 · v ∈ L. Assume by contradiction that Lpar is
aperiodic, and let n be as in the definition. We treat the case where n is
odd, the other case is similar. Let u � ε, x � 1 and v � 0 · $ · (11$)ω. We
have that w � u · xn · v � 1n · 0 · $ · (11$)ω ∈ L, since the number of 1 in
the first block is even, and it is odd in the others, and the bi correspond
for each block. However, u · xn+1 · v < L, since b0 is not correct anymore:
there is an odd number of 1 in the first block, while b0 � 0. This means
that Lpar is not aperiodic, so it is not definable in LTL.

B.2. Section 3.4.3 (Automata)

B.2.1. Representation of Automata

When they are represented explicitly, automata are not extremely succinct.
For instance, to recognise finite words of length at most i, an automaton
needs i states, a number that is exponential in the size of the representation
of i (namely, log i). In our study,we sometimes need to represent automata
in a concise way, to obtain PSpace membership. In the following, we
examine what is a representation of an automaton, and what conditions
it must obey so that one can efficiently check whether it is empty (most
of the decision problems we study reduce to checking emptiness). One
should also be able to effectively compute union and intersection while
not blowing up the representation. Note that the representation of finite-
state automata and Büchi automata is the same, as they are syntactically
equivalent.We describe the case of Büchi automata, the case of finite-state
automata is simpler and can be deducted.

Definition B.1 Let A � (Q ,Σ, I , F,∆) be a non-deterministic Büchi au-
tomaton. A representation of A consist in an encoding of states, i.e. an
injective function encQ : Q → {0, 1}s and an encoding of the input alpha-
bet encΣ : Σ × {0, 1}a along with algorithms (algQ , algΣ , algI , algF , alg∆)
and maximum encoding lengths s , a ∈ N \ {0} that satisfy the following
conditions:

I The algorithm algQ takes as input a string w ∈ {0, 1}∗ and outputs
1 if and only if w � encQ(q) for some q ∈ Q; similarly for algI and
algF .

I The algorithm algΣ takes as input a string w ∈ {0, 1}∗ and outputs
1 if and only if w � encΣ(σ) for some σ ∈ Σ.

I The algorithm alg∆ takes as input a triple (wp , wq , wσ) where
wp , wq , wσ ∈ {0, 1}∗, wp � enc(p), wq � enc(q) for some p , q ∈ Q
and wσ � enc(σ) for some σ ∈ Σ. It outputs 1 if and only if there
exists a transition p

σ−→
A

q in A (i.e., whether (p , a , q) ∈ ∆).

It is moreover succinct if s � P(log Q) and a � P(logΣ) for some
polynomial P, and, additionally, all algorithms run using a space that is
polynomial in the size of their input.
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B.2.2. The emptiness problem

By a simple pumping argument, we get:

Lemma B.1 Let A be a non-deterministic Büchi automaton over alphabet Σ. A
recognises at least a word (i.e. L(A) , ∅) if and only if there exists u , v ∈ Σ∗,
an initial state p ∈ I and a final state q f ∈ F such that p

u−→
A

q f
v−→
A

q f .

As a consequence, we get:

Theorem 3.4 The emptiness problem for non-deterministic Büchi automata is

in NLogSpace.

Proof. We give some details for completeness. We actually show that the
non-emptiness problem is in NLogSpace. By Immerman–Szelepcsényi’s
theorem [150, 151, Theorem 1, Theorem 1], it implies that the emptiness
problem is in NLogSpace, since it states that NLogSpace � coNLogSpace.

The reader who is familiar with the pattern logic of [149, Definition 6]
can notice that the characterisation of can be expressed and checked with
it. Indeed, it amounts to model-checking the input automaton A with
regard to ∃π1 : p

u−→ q , ∃π2 : q
v−→ q · init(p) ∧ final(q). By [149, Theorem

7], we get NLogSpace membership.

We now detail an ad-hoc non-deterministic algorithm for the reader who
does not know the logic, or who would like to knowwhat happens under
the hood. guess v ∈ X means that the algorithm non-deterministically
assigns the variable with a value of X. halt means that the computation
fails. accept means that the computation succeeds and the input is
accepted. Finally, increment c means c B c + 1.

Algorithm 3:A non-deterministic algorithm to decide the non-emptiness
problem for non-determistic Büchi automata.
Input :A succinct representation of a non-determistic Büchi automaton

with encoding lengths s and a
1 p ← ε /* The current state */

2 q ← ε /* The next state */

3 q f ← ε /* The repeating final state */

4 σ← ε /* The label of the transition to take */

5 occq f :� 0 /* Count occurrences of q f */

6 guess p ∈ {0, 1}s /* Guess the initial state p */

7 if ¬algI(p) then halt
8 guess q f ∈ {0, 1}s /* Guess the repeating final state q f */

9 if ¬algF(q f ) then halt
10 while true do /* Explore the automaton */

11 if p � q f then increment occq f /* Track whether q f occurs */

12 if occq f ≥ 2 then accept /* q f repeats */

13 guess q ∈ {0, 1}s /* Guess the next transition to take */

14 guess σ ∈ {0, 1}a
15 if alg∆(p , q ,Σ) then p ← q /* Take the transition */

16 else halt

By the characterisation of Lemma B.2.2, there exists an accepting run of
the above algorithm if and only if its input automaton is not empty. By
definition of a succinct representation, it runs in space logarithmic in |Q |
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The separator $ can in turn be encoded if
one wants an encoding over {0, 1}).

and |Σ| (all variables take logarithmic space, except for occq f which takes
constant space log 2). This establishes that the non-emptiness problem
for Büchi automata is in NLogSpace, hence the emptiness problem is as
well.

Corollary B.2 Assume some ambiant object O of size k, typically a register

automaton. As a consequence of the above, we get that if an automaton (related

in one way or the other to O) can be represented using a space that is polynomial

(not logarithmic) in k, one can decide whether it is empty in polynomial space.

This is generally how we get PSpace membership of the problems we study in

Part II.

B.2.3. Bounded Counters

It is often useful to equip automata with bounded counters, that allow
them to count up to a certain bound. Formally, an automaton A can
be equipped by a B-bounded counter by enriching its state space Q with
Q×{0, . . . , B}. It then has the ability to test whether a given value is equal
to i for any 0 ≤ i ≤ B. An important property is that such an automaton
can be described using a space that is polynomial in |A| and logarithmic
in B. Indeed, one can encode a state (q , i) for some i ∈ {0, . . . , B} as
encQ(q)$2i, where 2i is the binary encoding of i.

Proposition B.3 (Bounded counter) Let A be some automaton. Equipping

it with a constant number of counters that are bounded by some B that is

exponential in the size of |A| can be done in polynomial space.



Details of Part II C.
C.0.1. Section 12.3.1 (Register Automata over a Discrete

Domain)

Lemma C.1 Let µ ∈ Aut(Q+) be a morphism that preserves N, i.e. µ(N) ⊆ N.

For all m , n ∈ N, |µ(n) − µ(m)| ≥ |n − m |.

Proof. Up to terminology, this is an high school exercise. Let ζ ∈ Aut(Q+)
be some N-preserving morphism. The result essentially follows from the
fact that the image of any integer interval of size 1 is of size at least 1,
since µ is increasing and bĳective.

Let m ∈ N. We show by induction that for all n ≥ m, µ(n)−µ(m) ≥ n−m.
For m � n, the result is immediate. Assume that the results hold for some
n ≥ m.We have that µ(n+1)−µ(m) = µ(n+1)−µ(n)+µ(n)−µ(m). Since
µ is strictly increasing,we have that µ(n+1) > µ(n), so µ(n+1)−µ(n) ≥ 1.
Thus, µ(n + 1) − µ(m) ≥ 1 + µ(n) − µ(m) ≥ 1 + n − m by the induction
hypothesis, so the inductive invariant holds at step n + 1.

The result is then obtained by interverting m and n when n < m.

Observation 12.53 Let ν, λ : R → Q+. If (ν, λ) is widening, then so is
(Kν, Kλ), for all K ∈ N \ {0}. Moreover, type(Kν, Kλ) � type(ν, λ).

Proof. Let R � {r1 , . . . , rk}, and let (ν, λ) be a pair ofQ+-valuations over
R that is widening, and let K ∈ N \ {0}. Since the type is preserved when
applying a morphism, we have that type(Kν, Kλ) � type(ν, λ). Observe
that (ν, λ) is again widening. First, for all r ∈ R, Kλ(r) ≥ Kν(r) since
λ(r) ≥ ν(r). Then, for all r, s ∈ R, we have:

|λ(s) − λ(r)| � |Kλ′(s) − Kλ′(r)|
� K |λ′(s) − λ′(r)|
≥ K |ν′(s) − ν′(r)| since (ν′, λ′) is widening
≥ |Kν′(s) − Kν′(r)|
≥ |ν(s) − ν(r)|

Proposition 12.65 Let f : Nω → Nω be a function defined by a non-

deterministic register transducer over (N, <, 0). Its next-letter function Next f
is computable.

Proof. Let f : Dω → Dω be a function defined by a non-deterministic
register transducerT over (N, <, 0). Given two input datawords u , v ∈ D∗,
the next-letter problemasks to output d ∈ D such that f (u ·Nω) ⊆ v ·d ·Nω
if it exists, and answer No otherwise.
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Solving the next-letter decision problem We first solve its decision
version, or, more precisely, its complement. There is no next letter if and
only if either v was already not a prefix of all f (u ·x), i.e. f (u ·Nω) * v ·Nω ,
or if there exists x1 , x2 ∈ Nω such that f (u · x1) and f (u · x2)mismatch
right after v, i.e. | f (u · x1) ∧ f (u · x2)| ≤ |v |.

We start by checking that f (u ·Nω) * v ·Nω , which is the case whenever
f (u ·Nω)∩(v · Nω)c , ∅. This reduces to checking emptiness of some reg-
ister automaton. First, f (u ·Nω) is recognised by some register automaton
over N ∪ elem(u), where the elements of u are constants of the domain.
Indeed, the automaton simulates T while checking that u is a prefix of the
input. Similarly, v ·Nω is recognised by a deterministic register automaton
over N ∪ elem(v), which can be complemented. Their intersection is a
register automaton over N ∪ elem(u) ∪ elem(v). By Corollary 12.75, it is
decidable whether such an automaton is empty.

We now check whether there exists x1 , x2 ∈ Nω such that f (u · x1) and
f (u · x2)mismatch right after v. This is equivalent to asking the existence

of two runs Cι u |u1−−−→ C1
x1 |y1−−−→ D1 and Cι u |u2−−−→ C2

x2 |y2−−−→ D1 such that
|u1 · x1 ∧ u2 · x2 | ≤ |v |. Finding these runs can be done with a register
automaton over N ∪ elem(u). Such an automaton has a |v |-bounded
counter. It guesses two runs and checks that their input has u as prefix.
In parallel, it guesses a mismatch position j that it stores in its counter,
and checks that the outputs indeed mismatch at position j.

Both cases are decidable, so, overall, the next-letter decision problem is
decidable.

Finding the next letter If there does not exist a next letter, we are
done and the algorithm simply outputs No. Otherwise, we know that
such a letter exists, so it remains to exhibit it. To that end, it suffices
to enumerate all natural numbers n ∈ N and iteratively check whether
f (u · Nω) ⊆ v · n · Nω , which again reduces to the emptiness problem of
some register automaton.
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Index of Notations

f ◦ g Composition of f and g, i.e. x 7→ f (g(x))

[ν] Constraint associated with valuation ν, with regards to (D,�,C)

[ν]Q Constraint associated with valuation ν, with regards to (Q, <, 0)

D Data domain

D Set of data values of D

typeD(ν) Type of ν in D

Types(D) Set of type of D

Aut(D) Set of automorphisms of D

dom Domain of a function

Im Image of a function

FO First-order formulas

LTL Linear temporal logic formulas

MSO Monadic second-order formulas

QF Quantifier-free formulas

JSK Relation recognised by the specification automaton S

JTK Relation recognised by the transducer T

N Natural numbers

Q Rational numbers

R Real numbers

Z Integers

ΩP Omega-behaviour of P

[x]∼ Equivalence class of x with regards to ∼

∼ Equivalence relation

∪ Union

∩ Intersection

Ac Complement of A

t Disjoint union



A ⊆ B A is a subset of B

A ( B A is a strict subset of B

A ⊂ f B A is a finite subset of B

|A| Size of the set A

TestsD(R) Set of tests over registers R in D

locFreshR
∧

r∈R? , r

~ Globally fresh data value (see fresh-register automata)

φE
∧

r∈E? � r ∧∧
r<E? , r

ψτ Test associated with constraint τ

A∗ Finite words over the set A

Aω Infinite words over the set A

A∞ A∗ ∪ Aω

ε Empty word

w[i] i-th letter of w

w[i: j] w[i] . . .w[ j]

w[:i] w[0:i]

w[i:] w[i:+∞]

|w | Length of the word w

〈u , v〉 Interleaving of u and v

〈R〉 Interleaving of the relation R

〉w〈 Uninterleaving of w

u ⊗ v Pointwise word product of u and v


