The Expressiveness of Metric Temporal Logic II:

This time it's irrational!

Paul Hunter

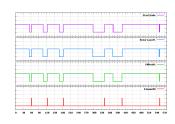
Université Libre de Bruxelles

(Joint work with Joël Ouaknine and James Worrell)

Université Libre de Bruxelles, March 2013

Timed systems are everywhere:

- Hardware circuits
- Communication protocols
- Cell phones
- Plant controllers
- Aircraft navigation systems

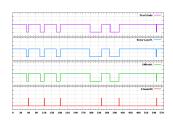


Want to specify:

"If I press the brake pedal then the pads will be applied."

"If the brakes are applied then the pedal has been pressed."

Expressiveness vs Computability

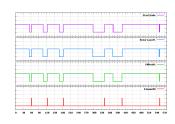


Want to specify:

"If I press the brake pedal then the pads will be applied."

"If the brakes are applied then the pedal has been pressed."

Expressiveness vs Computability



Want to specify:

"If I press the brake pedal then the pads will be applied."

"If the brakes are applied then the pedal has been pressed."

Expressiveness vs Computability

Classic temporal logic

Metric temporal logic

Extending Kamp's Theorem (again)

Temporal models

- ▶ A set **MP** of propositions: *P*, *Q*, *R*, . . .
- ▶ Continuous time model: R

Temporal models

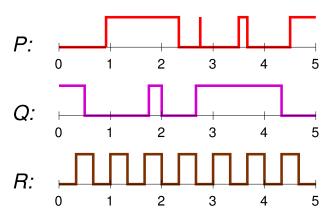
- ▶ A set **MP** of propositions: *P*, *Q*, *R*, . . .
- ▶ Continuous time model: R

 $f: \mathbb{R} \to 2^{MP}$ (flow or signal)

Temporal models

- ▶ A set **MP** of propositions: *P*, *Q*, *R*, . . .
- ▶ Continuous time model: R

 $f: \mathbb{R} \to 2^{MP}$ (flow or signal)



Classic temporal predicate logic

FO(<): First-order logic with < and monadic predicates for each proposition $P \in \mathbf{MP}$:

$$\varphi ::= \mathbf{X} < \mathbf{y} \mid P(\mathbf{X}) \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi \mid \forall \mathbf{X} \varphi \mid \exists \mathbf{X} \varphi$$

For example:

$$orall x$$
 . $\mathtt{PEDAL}(x) o \exists y$. $((y > x) \land \mathtt{BRAKE}(y))$

$$\forall x . \mathtt{BRAKE}(x)
ightarrow \exists y . ((y < x) \land \mathtt{PEDAL}(y)).$$

Classic temporal predicate logic

FO(<): First-order logic with < and monadic predicates for each proposition $P \in \mathbf{MP}$:

$$\varphi ::= \mathbf{X} < \mathbf{y} \mid P(\mathbf{X}) \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi \mid \forall \mathbf{X} \varphi \mid \exists \mathbf{X} \varphi$$

For example:

$$\forall x . \mathtt{PEDAL}(x) \rightarrow \exists y . ((y > x) \land \mathtt{BRAKE}(y)).$$

$$\forall x$$
 . BRAKE $(x) \rightarrow \exists y$. $((y < x) \land \mathtt{PEDAL}(y))$.

Temporal logic: LTL

Linear Temporal Logic (LTL): Propositional logic with temporal modalities:

$$\begin{array}{lll} \theta & ::= & P \mid \theta_1 \wedge \theta_2 \mid \theta_1 \vee \theta_2 \mid \neg \theta \\ & \mid \mathbf{F} \, \theta & (\theta \text{ occurs in the Future}) \\ & \mid \mathbf{G} \, \theta & (\theta \text{ occurs always (Globally)}) \\ & \mid \theta_1 \, \mathbf{U} \, \theta_2 & (\theta_1 \text{ holds Until } \theta_2) \\ & \mid \mathbf{P} \, \theta & (\theta \text{ occurred in the Past}) \\ & \mid \mathbf{H} \, \theta & (\theta \text{ has always occurred (Historically)}) \\ & \mid \theta_1 \, \mathbf{S} \, \theta_2 & (\theta_1 \text{ has held Since } \theta_2) \end{array}$$

For example

$$G$$
 (PEDAL $\rightarrow F$ BRAKE)

Temporal logic: LTL

Linear Temporal Logic (LTL): Propositional logic with temporal modalities:

$$\begin{array}{lll} \theta & ::= & P \mid \theta_1 \wedge \theta_2 \mid \theta_1 \vee \theta_2 \mid \neg \theta \\ & \mid \mathbf{F} \, \theta & (\theta \text{ occurs in the Future}) \\ & \mid \mathbf{G} \, \theta & (\theta \text{ occurs always (Globally)}) \\ & \mid \theta_1 \, \mathbf{U} \, \theta_2 & (\theta_1 \text{ holds Until } \theta_2) \\ & \mid \mathbf{P} \, \theta & (\theta \text{ occurred in the Past}) \\ & \mid \mathbf{H} \, \theta & (\theta \text{ has always occurred (Historically)}) \\ & \mid \theta_1 \, \mathbf{S} \, \theta_2 & (\theta_1 \text{ has held Since } \theta_2) \end{array}$$

For example,

G (PEDAL
$$\rightarrow$$
 F BRAKE)

G (BRAKE \rightarrow **P** PEDAL)

Temporal logic: LTL

Linear Temporal Logic (LTL): Propositional logic with temporal modalities:

$$\begin{array}{lll} \theta & ::= & P \mid \theta_1 \wedge \theta_2 \mid \theta_1 \vee \theta_2 \mid \neg \theta \\ & \mid \mathbf{F} \, \theta & (\theta \text{ occurs in the Future}) \\ & \mid \mathbf{G} \, \theta & (\theta \text{ occurs always (Globally)}) \\ & \mid \theta_1 \, \mathbf{U} \, \theta_2 & (\theta_1 \text{ holds Until } \theta_2) \\ & \mid \mathbf{P} \, \theta & (\theta \text{ occurred in the Past}) \\ & \mid \mathbf{H} \, \theta & (\theta \text{ has always occurred (Historically)}) \\ & \mid \theta_1 \, \mathbf{S} \, \theta_2 & (\theta_1 \text{ has held Since } \theta_2) \end{array}$$

For example,

$$\mathbf{G}$$
 (PEDAL $ightarrow \mathbf{F}$ BRAKE)
$$\mathbf{G}$$
 (BRAKE $ightarrow \mathbf{P}$ PEDAL)

LTL is all you need

LTL has emerged as *the* definitive temporal logic in the classical setting.

Theorem (Kamp 1968, GPSS 1980)

LTL is as expressive as FO(<).

LTL is all you need

LTL has emerged as *the* definitive temporal logic in the classical setting.

Theorem (Kamp 1968, GPSS 1980)

LTL is as expressive as FO(<).

Classic temporal logic

Metric temporal logic

Extending Kamp's Theorem (again)

Quantitative setting

In reality, timed systems are usually quantitative.

LTL can express:

"If I press the brake pedal then the pads will be applied."

Quantitative setting

In reality, timed systems are usually quantitative.

LTL can express:

"If I press the brake pedal then the pads will be applied."

Quantitative setting

In reality, timed systems are usually quantitative.

Want to specify:

"If I press the brake pedal then the pads will be applied between 0.5ms and 1ms."

We want to add a metric to the model so we can enforce certain timing constraints, for example:

"Apply brake pads between 5 to 10 time units after pedal is pushed".

R has a distance metric → use real intervals for timing constraints.

- Traditional approach: intervals over Z
- ► Continuous but finitely presentable: intervals over ℚ (seen in Part I).
- ► NEW! Intervals over an arbitrary additive subgroup of R...

We want to add a metric to the model so we can enforce certain timing constraints, for example:

"Apply brake pads between 5 to 10 time units after pedal is pushed".

- Traditional approach: intervals over Z
- ► Continuous but finitely presentable: intervals over ℚ (seen in Part I).
- NEW! Intervals over an arbitrary additive subgroup of R...

We want to add a metric to the model so we can enforce certain timing constraints, for example:

"Apply brake pads between 5 to 10 time units after pedal is pushed".

- Traditional approach: intervals over Z.
- ► Continuous but finitely presentable: intervals over ℚ (seen in Part I).
- NEW! Intervals over an arbitrary additive subgroup of R...

We want to add a metric to the model so we can enforce certain timing constraints, for example:

"Apply brake pads between 5 to 10 time units after pedal is pushed".

- Traditional approach: intervals over Z.
- ➤ Continuous but finitely presentable: intervals over Q (seen in Part I).
- NEW! Intervals over an arbitrary additive subgroup of R...

We want to add a metric to the model so we can enforce certain timing constraints, for example:

"Apply brake pads between 5 to 10 time units after pedal is pushed".

- Traditional approach: intervals over Z.
- ➤ Continuous but finitely presentable: intervals over Q (seen in Part I).
- ► NEW! Intervals over an arbitrary additive subgroup of R...

Additive subgroup?

- Can easily form integer linear combinations of timing constants.
- ▶ Integer linear combinations of \mathcal{K} = Subgroup of $(\mathbb{R}, +)$ generated by \mathcal{K} .

Motivation

- ▶ Includes most general case ($\mathcal{K} = \mathbb{R}$)
- ▶ Generalizes previous cases (K = Z, Q, or {0})
- ► Can be used to model multiple independent asynchronous timing systems (e.g. Z[√2])

"Turn on brake lights 5 'pedal-time-units' after pedal is pressed and 3 'pad-time-units' after pads are applied"

Motivation

- ▶ Includes most general case ($\mathcal{K} = \mathbb{R}$)
- ▶ Generalizes previous cases ($\mathcal{K} = \mathbb{Z}, \mathbb{Q}, \text{ or } \{0\}$)
- ► Can be used to model multiple independent asynchronous timing systems (e.g. Z[√2])

"Turn on brake lights 5 'pedal-time-units' after pedal is pressed and 3 'pad-time-units' after pads are applied"

Motivation

- ▶ Includes most general case ($\mathcal{K} = \mathbb{R}$)
- ▶ Generalizes previous cases ($\mathcal{K} = \mathbb{Z}, \mathbb{Q}, \text{ or } \{0\}$)
- ▶ Can be used to model multiple independent asynchronous timing systems (e.g. $\mathbb{Z}[\sqrt{2}]$)

"Turn on brake lights 5 'pedal-time-units' after pedal is pressed and 3 'pad-time-units' after pads are applied"

Metric Predicate Logic

We add many unary functions $\{+c : c \in \mathcal{K}\}$ to FO(<) to model moving c time units into the future.

"Apply brake pads between 5 to 10 time units after pedal is pushed"

becomes

$$\forall x. \mathtt{PEDAL}(x)
ightarrow \exists y. \ (x+5 < y < x+10) \land \mathtt{BRAKE}(y),$$
 mula of $\mathsf{FO}_{\{5,10\}}.$

Metric Predicate Logic

We add many unary functions $\{+c : c \in \mathcal{K}\}$ to FO(<) to model moving c time units into the future.

"Apply brake pads between 5 to 10 time units after pedal is pushed"

becomes

$$\forall x. \mathtt{PEDAL}(x) \rightarrow \exists y. (x+5 < y < x+10) \land \mathtt{BRAKE}(y),$$

a formula of $FO_{\{5,10\}}$.

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli \sim 1990] is a central quantitative specification formalism for timed systems.

MTL₁₀ = LTL + timing constraints on operators:

$$\mathbf{G} ext{ (PEDAL}
ightarrow \mathbf{F}_{(5,10)} ext{ BRAKE})$$

Formally,

$$\begin{array}{lll} \theta & ::= & P \mid \theta_1 \wedge \theta_2 \mid \theta_1 \vee \theta_2 \mid \neg \theta \\ & \mid \mathbf{F}_I \theta & (\theta \text{ occurs in the Future in the interval } I) \\ & \mid \mathbf{G}_I \theta & (\theta \text{ occurs always (Globally) in the interval } I) \\ & \mid \theta_1 \mathbf{U}_I \theta_2 & (\theta_2 \text{ holds in } I \text{ and Until then } \theta_1 \text{ holds}) \\ & \mid \mathbf{P}_I \theta & \theta \text{ occurred in the Past in the interval } I) \\ & \mid \mathbf{H}_I \theta & (\theta_2 \text{ held in } I \text{ and } \theta_1 \text{ has held Since}) \end{array}$$

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli \sim 1990] is a central quantitative specification formalism for timed systems.

 $MTL_{ic} = LTL + timing constraints on operators:$

$$\mathbf{G}$$
 (PEDAL $ightarrow \mathbf{F}_{(5,10)}$ BRAKE)

Formally,

$$\theta ::= P \mid \theta_1 \wedge \theta_2 \mid \theta_1 \vee \theta_2 \mid \neg \theta \\ \mid \mathbf{F}_I \theta \qquad (\theta \text{ occurs in the Future in the interval } I) \\ \mid \mathbf{G}_I \theta \qquad (\theta \text{ occurs always (Globally) in the interval } I) \\ \mid \theta_1 \mathbf{U}_I \theta_2 \qquad (\theta_2 \text{ holds in } I \text{ and Until then } \theta_1 \text{ holds}) \\ \mid \mathbf{P}_I \theta \qquad \theta \text{ occurred in the Past in the interval } I) \\ \mid \mathbf{H}_I \theta \qquad (\theta_2 \text{ held in } I \text{ and } \theta_1 \text{ has held Since})$$

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli \sim 1990] is a central quantitative specification formalism for timed systems.

 $MTL_{\mathcal{K}} = LTL + timing constraints taken from \mathcal{K}$ on operators:

$$G$$
 (PEDAL $\rightarrow F_{(5,10)}$ BRAKE)

Formally,

$$\begin{array}{lll} \theta & ::= & P \mid \theta_1 \wedge \theta_2 \mid \theta_1 \vee \theta_2 \mid \neg \theta \\ & \mid \mathbf{F}_I \theta & (\theta \text{ occurs in the Future in the interval } I) \\ & \mid \mathbf{G}_I \theta & (\theta \text{ occurs always (Globally) in the interval } I) \\ & \mid \theta_1 \mathbf{U}_I \theta_2 & (\theta_2 \text{ holds in } I \text{ and Until then } \theta_1 \text{ holds}) \\ & \mid \mathbf{P}_I \theta & \theta \text{ occurred in the Past in the interval } I) \\ & \mid \mathbf{H}_I \theta & (\theta_2 \text{ held in } I \text{ and } \theta_1 \text{ has held Since}) \end{array}$$

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli \sim 1990] is a central quantitative specification formalism for timed systems.

 $MTL_{\mathcal{K}} = LTL + timing constraints taken from \mathcal{K}$ on operators:

$$\mathbf{G} \left(\mathtt{PEDAL} o \mathbf{F}_{(5,10)} \, \mathtt{BRAKE} \right)$$

Formally,

$$\theta ::= P \mid \theta_1 \wedge \theta_2 \mid \theta_1 \vee \theta_2 \mid \neg \theta \\ \mid \mathbf{F}_I \theta \qquad (\theta \text{ occurs in the Future in the interval } I) \\ \mid \mathbf{G}_I \theta \qquad (\theta \text{ occurs always (Globally) in the interval } I) \\ \mid \theta_1 \mathbf{U}_I \theta_2 \qquad (\theta_2 \text{ holds in } I \text{ and Until then } \theta_1 \text{ holds}) \\ \mid \mathbf{P}_I \theta \qquad \theta \text{ occurred in the Past in the interval } I) \\ \mid \mathbf{H}_I \theta \qquad (\theta_2 \text{ held in } I \text{ and } \theta_1 \text{ has held Since})$$

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli \sim 1990] is a central quantitative specification formalism for timed systems.

 $MTL_{\mathcal{K}} = LTL + timing constraints taken from \mathcal{K}$ on operators:

$$G$$
 (PEDAL $\rightarrow F_{(5,10)}$ BRAKE)

Formally,

$$\begin{array}{lll} \theta & ::= & P \mid \theta_1 \wedge \theta_2 \mid \theta_1 \vee \theta_2 \mid \neg \theta \\ & \mid \mathbf{F}_I \, \theta & (\theta \text{ occurs in the Future in the interval } I) \\ & \mid \mathbf{G}_I \, \theta & (\theta \text{ occurs always (Globally) in the interval } I) \\ & \mid \theta_1 \, \mathbf{U}_I \, \theta_2 & (\theta_2 \text{ holds in } I \text{ and Until then } \theta_1 \text{ holds}) \\ & \mid \mathbf{P}_I \, \theta & \theta \text{ occurred in the Past in the interval } I) \\ & \mid \theta_1 \, \mathbf{S}_I \, \theta_2 & (\theta_2 \text{ held in } I \text{ and } \theta_1 \text{ has held Since}) \end{array}$$

Classic temporal logic

Metric temporal logic

Extending Kamp's Theorem (again)

Kamp's theorem restated

Theorem (Kamp 1968)

 $MTL_{\{0\}}$ has the same expressive power as $FO_{\{0\}}$.

Part I recap

Theorem (Hirshfeld & Rabinovich 2007) $MTL_{\mathbb{Z}}$ is strictly less expressive than $FO_{\mathbb{Z}}$.

Part I recap

Theorem (H., Ouaknine & Worrell 2013) $MTL_{\mathbb{Q}}$ has the same expressive power as $FO_{\mathbb{Q}}$.

What about $MTL_{\mathbb{R}}$? or $MTL_{\mathbb{Z}[\sqrt{2}]}$?

A true extension of Kamp's theorem

Theorem (H. 2013)

 $MTL_{\mathcal{K}} = FO_{\mathcal{K}}$ if and only if \mathcal{K} is dense.

Proof: "Only if"

Lemma

If K is a non-dense additive subgroup of $\mathbb R$ then $K=\epsilon\mathbb Z$ for some $\epsilon\in\mathbb R$.

- 1. Use metric separation to reduce to bounded formulas.
- 3. Use "stacking" to remove the +1 function
- Use denseness of Q to express LTL statements restricted to a single time interval.
- 5. Scale to remove the factor introduced in Step 2.

- 1. Use metric separation to reduce to bounded formulas.
- 2. Scale $FO_{\mathbb{Q}}$ formula to get a formula in $FO_{\mathbb{Z}}$.
- Use "stacking" to remove the +1 function.
- Use denseness of Q to express LTL statements restricted to a single time interval.
- Scale to remove the factor introduced in Step 2.

- 1. Use metric separation to reduce to bounded formulas.
- 2. Scale $FO_{\mathbb{O}}$ formula to get a formula in $FO_{\mathbb{Z}}$.
- 3. Use "stacking" to remove the +1 function.
- Use denseness of Q to express LTL statements restricted to a single time interval.
- 5. Scale to remove the factor introduced in Step 2.

- 1. Use metric separation to reduce to bounded formulas.
- 2. Scale $FO_{\mathbb{O}}$ formula to get a formula in $FO_{\mathbb{Z}}$.
- 3. Use "stacking" to remove the +1 function.
- 4. Use denseness of $\mathbb Q$ to express LTL statements restricted to a single time interval.
- 5. Scale to remove the factor introduced in Step 2.

- 1. Use metric separation to reduce to bounded formulas.
- 2. Scale FO₀ formula to get a formula in FO₂.
- 3. Use "stacking" to remove the +1 function.
- 4. Use denseness of $\mathbb Q$ to express LTL statements restricted to a single time interval.
- 5. Scale to remove the factor introduced in Step 2.

- 1. Use metric separation to reduce to bounded formulas.
- 2. Scale $FO_{\mathbb{O}}$ formula to get a formula in $FO_{\mathbb{Z}}$.
- 3. Use "stacking" to remove the +1 function.
- 4. Use denseness of $\mathbb Q$ to express LTL statements restricted to a single time interval.
- 5. Scale to remove the factor introduced in Step 2.

- 1. Use more general metric separation to reduce to bounded formulas.
- 2. Use a normal form for FO $_{\mathcal{K}}$ formulas to remove +c functions.
- 3. Use denseness of $\mathcal K$ to express LTL statements restricted to an interval.

- 1. Use more general metric separation to reduce to bounded formulas.
- 2. Use a normal form for FO_K formulas to remove +c functions.
- 3. Use denseness of $\mathcal K$ to express LTL statements restricted to an interval.

- 1. Use more general metric separation to reduce to bounded formulas.
- 2. Use a normal form for FO_K formulas to remove +c functions.
- 3. Use denseness of $\mathcal K$ to express LTL statements restricted to an interval.

- 1. Use more general metric separation to reduce to bounded formulas.
- 2. Use a normal form for FO $_{\mathcal{K}}$ formulas to remove +c functions.
- 3. Use denseness of $\mathcal K$ to express LTL statements restricted to an interval.

A temporal logic formula is

- pure past if it is invariant on flows that agree on the past
- pure present if is invariant on flows that agree on the present
- pure future if is invariant on flows that agree on the future

A temporal logic is separable if all its formulas are equivalent to a boolean combination of pure past, present and future formulas.

A temporal logic formula is

- pure past if it is invariant on flows that agree on the past
- pure present if is invariant on flows that agree on the present
- pure future if is invariant on flows that agree on the future

A temporal logic is separable if all its formulas are equivalent to a boolean combination of pure past, present and future formulas.

For example,

```
\begin{aligned} \textbf{G}(\texttt{BRAKE} &\rightarrow \textbf{P} \, \texttt{PEDAL}) \\ &= \textbf{P} \, \texttt{PEDAL} \, \, \vee \, \, \left( \neg \texttt{BRAKE} \, \textbf{U} \, \texttt{PEDAL} \right) \, \, \vee \, \, \textbf{G}(\neg \texttt{BRAKE}) \end{aligned}
```

A temporal logic formula is

- pure past if it is invariant on flows that agree on the past
- pure present if is invariant on flows that agree on the present
- pure future if is invariant on flows that agree on the future

A temporal logic is separable if all its formulas are equivalent to a boolean combination of pure past, present and future formulas.

For example,

$$\begin{aligned} & \textbf{G}(\texttt{BRAKE} \rightarrow \textbf{P} \, \texttt{PEDAL}) \\ &= \textbf{P} \, \texttt{PEDAL} \, \vee \, \left(\neg \texttt{BRAKE} \, \textbf{U} \, \texttt{PEDAL} \right) \, \vee \, \textbf{G}(\neg \texttt{BRAKE}) \end{aligned}$$

A temporal logic formula is

- pure past if it is invariant on flows that agree on the past
- pure present if is invariant on flows that agree on the present
- pure future if is invariant on flows that agree on the future

A temporal logic is separable if all its formulas are equivalent to a boolean combination of pure past, present and future formulas.

Lemma

LTL is separable.

Gabbay's theorem

Theorem (Gabbay 1981)

A temporal logic is expressively complete if and only if it is separable.

Quantitative separation

Separation does not hold in the quantitative setting.

For example,

 $\mathbf{G}(\mathtt{BRAKE}
ightarrow \mathbf{P}_{(5,10)}\mathtt{PEDAL})$

General quantitative separation

Given a constant c > 0, a metric temporal formula is:

- ▶ pure *c*-distant past if it is invariant on flows that agree on $(-\infty, -c)$
- ▶ pure *c*-distant future if it is invariant on flows that agree on (c, ∞)
- **bounded** if there is an N such that it is invariant on all flows that agree on (-N, N)

A temporal logic with constants from \mathcal{K} is generally metrically separable if every formula is equivalent, for some $c \in \mathcal{K}_{>0}$, to a boolean combination of pure c-distant past, pure c-distant future and bounded formulas.

Lemma

 $MTL_{\mathcal{K}}$ is generally metrically separable for non-trivial \mathcal{K} .

General quantitative separation

Given a constant c > 0, a metric temporal formula is:

- ▶ pure *c*-distant past if it is invariant on flows that agree on $(-\infty, -c)$
- ▶ pure *c*-distant future if it is invariant on flows that agree on (c, ∞)
- **bounded** if there is an N such that it is invariant on all flows that agree on (-N, N)

A temporal logic with constants from \mathcal{K} is generally metrically separable if every formula is equivalent, for some $c \in \mathcal{K}_{>0}$, to a boolean combination of pure c-distant past, pure c-distant future and bounded formulas.

Lemma

 $MTL_{\mathcal{K}}$ is generally metrically separable for non-trivial \mathcal{K} .

General quantitative separation

Given a constant c > 0, a metric temporal formula is:

- ▶ pure *c*-distant past if it is invariant on flows that agree on $(-\infty, -c)$
- ▶ pure *c*-distant future if it is invariant on flows that agree on (c, ∞)
- **bounded** if there is an N such that it is invariant on all flows that agree on (-N, N)

A temporal logic with constants from \mathcal{K} is generally metrically separable if every formula is equivalent, for some $c \in \mathcal{K}_{>0}$, to a boolean combination of pure c-distant past, pure c-distant future and bounded formulas.

Corollary

- 1. Use more general metric separation to reduce to bounded formulas.
- 2. Use a normal form for FO_K formulas to remove +c functions.
- 3. Use denseness of $\mathcal K$ to express LTL statements restricted to an interval.

First move the unary functions to the free variable (removing from predicates as before).

$$\varphi(x) = \exists y \in (x, x+1) \exists z \in (y, y+\sqrt{2}) \dots$$

$$= \exists y \in (x, x+1) \left(\exists z \in (y, x+1) \dots \right)$$

$$\vee \exists z \in (x+1, y+\sqrt{2}) \dots \right)$$

$$= \exists y \in (x, x+1) \left(\exists z \in (y, x+1) \dots \right)$$

$$\vee \exists z' \in (x+1-\sqrt{2}, y) \dots \right)$$

$$\varphi(x_0, x_1, x_2) = \exists y \in (x_1, x_2) \left(\exists z \in (y, x_2) \dots \vee \exists z' \in (x_0, y) \dots \right)$$

Corollary

First move the unary functions to the free variable (removing from predicates as before).

$$\varphi(x) = \exists y \in (x, x+1) \exists z \in (y, y+\sqrt{2}) \dots$$

$$= \exists y \in (x, x+1) (\exists z \in (y, x+1) \dots$$

$$\vee \exists z \in (x+1, y+\sqrt{2}) \dots)$$

$$= \exists y \in (x, x+1) (\exists z \in (y, x+1) \dots$$

$$\vee \exists z' \in (x+1-\sqrt{2}, y) \dots)$$

$$\varphi(x_0, x_1, x_2) = \exists y \in (x_1, x_2) (\exists z \in (y, x_2) \dots \vee \exists z' \in (x_0, y) \dots$$

Corollary

First move the unary functions to the free variable (removing from predicates as before).

$$\varphi(x) = \exists y \in (x, x+1) \exists z \in (y, y+\sqrt{2}) \dots$$

$$= \exists y \in (x, x+1) \left(\exists z \in (y, x+1) \dots \right)$$

$$\vee \exists z \in (x+1, y+\sqrt{2}) \dots \right)$$

$$= \exists y \in (x, x+1) \left(\exists z \in (y, x+1) \dots \right)$$

$$\vee \exists z' \in (x+1-\sqrt{2}, y) \dots \right)$$

$$x_0, x_1, x_2) = \exists y \in (x_1, x_2) \left(\exists z \in (y, x_2) \dots \vee \exists z' \in (x_0, y) \dots \right)$$

Corollary

First move the unary functions to the free variable (removing from predicates as before).

$$\varphi(x) = \exists y \in (x, x+1) \exists z \in (y, y+\sqrt{2}) \dots$$

$$= \exists y \in (x, x+1) \left(\exists z \in (y, x+1) \dots \right)$$

$$\forall \exists z \in (x+1, y+\sqrt{2}) \dots \right)$$

$$= \exists y \in (x, x+1) \left(\exists z \in (y, x+1) \dots \right)$$

$$\forall \exists z' \in (x+1-\sqrt{2}, y) \dots \right)$$

$$(x_1, x_2) = \exists y \in (x_1, x_2) \left(\exists z \in (y, x_2) \dots \forall \exists z' \in (x_0, y) \dots \right)$$

Corollary

Replace the "milestones" ($\{x+1-\sqrt{2},x,x+1\}$) with new variables to obtain a FO(<) formula.

$$\varphi(x) = \exists y \in (x, x+1) \exists z \in (y, y+\sqrt{2}) \dots$$

$$= \exists y \in (x, x+1) \left(\exists z \in (y, x+1) \dots \right)$$

$$\vee \exists z \in (x+1, y+\sqrt{2}) \dots \right)$$

$$= \exists y \in (x, x+1) \left(\exists z \in (y, x+1) \dots \right)$$

$$\vee \exists z' \in (x+1-\sqrt{2}, y) \dots \right)$$

$$\varphi(x_0, x_1, x_2) = \exists y \in (x_1, x_2) \left(\exists z \in (y, x_2) \dots \vee \exists z' \in (x_0, y) \dots \right)$$

Corollary

Use a model-theoretic argument to break this into formulas on the intervals $\{x_0\}, (x_0, x_1), \{x_1\}, \dots$

$$\varphi(x) = \exists y \in (x, x+1) \exists z \in (y, y+\sqrt{2}) \dots$$

$$= \exists y \in (x, x+1) \left(\exists z \in (y, x+1) \dots \right)$$

$$\vee \exists z \in (x+1, y+\sqrt{2}) \dots \right)$$

$$= \exists y \in (x, x+1) \left(\exists z \in (y, x+1) \dots \right)$$

$$\vee \exists z' \in (x+1-\sqrt{2}, y) \dots \right)$$

$$\varphi(x_0, x_1, x_2) = \exists y \in (x_1, x_2) \left(\exists z \in (y, x_2) \dots \vee \exists z' \in (x_0, y) \dots \right)$$

Corollary

Use a model-theoretic argument to break this into formulas on the intervals $\{x_0\}, (x_0, x_1), \{x_1\}, \dots$

 $\varphi(x) = \exists y \in (x, x+1) \exists z \in (y, y+\sqrt{2}) \dots$

 $= \exists y \in (x, x+1) (\exists z \in (y, x+1)...$

$$\forall \exists z \in (x+1, y+\sqrt{2})\dots)$$

$$= \exists y \in (x, x+1) \left(\exists z \in (y, x+1)\dots\right)$$

$$\forall \exists z' \in (x+1-\sqrt{2}, y)\dots\right)$$

$$\varphi(x_0, x_1, x_2) = \exists y \in (x_1, x_2) \left(\exists z \in (y, x_2)\dots \vee \exists z' \in (x_0, y)\dots\right)$$

Corollary

- 1. Use more general metric separation to reduce to bounded formulas.
- 2. Use a normal form for FO $_{\mathcal{K}}$ formulas to remove +c functions.
- 3. Use denseness of $\mathcal K$ to express LTL statements restricted to an interval.

Failure of Kamp's theorem

$\mathsf{MTL}_{\mathbb{Z}}$ is unable to express:

"P occurs twice in the next time interval."

In FOZ

$$\varphi(z) = \exists x. \exists y. (z < x < z +) \land (z < y < z +) \land P(x) \land P(y)$$

In MTL $_{\mathbb{Z}}$:

$$(\mathbf{F}_{(0,1)} \mathbf{P} \wedge \mathbf{F}_{(1,2)} \mathbf{P}) \vee$$

$$\mathbf{F}_{=2} (\mathbf{P}_{(0,1)} (\mathbf{P} \wedge \mathbf{P}_{(0,1)} \mathbf{P}))$$

Failure of Kamp's theorem

 $\mathsf{MTL}_{\mathbb{Z}}$ is unable to express:

"P occurs twice in the next time interval."

In $FO_{\mathbb{Z}}$:

$$\varphi(z) = \exists x. \exists y. (z < x < z+1) \land (z < y < z+1) \land P(x) \land P(y).$$

In $MTL_{\mathbb{Z}}$:

???
$$(\mathbf{F}_{(0,1)} P \wedge \mathbf{F}_{(1,2)} P) \vee \\ \mathbf{F}_{=2} (\mathbf{P}_{(0,1)} (P \wedge \mathbf{P}_{(0,1)} P))$$

Failure of Kamp's theorem

$\mathsf{MTL}_{\mathbb{Z}}$ is able to express:

"P occurs twice in the next two time intervals."

In FO_Z:

$$\varphi(z) = \exists x. \exists y. (z < x < z+2) \land (z < y < z+2) \land P(x) \land P(y).$$

In $MTL_{\mathbb{Z}}$:

$$\varphi = \mathbf{F}_{(0,1)} (\mathbf{P} \wedge \mathbf{F}_{(0,1)} \mathbf{P}) \vee (\mathbf{F}_{(0,1)} \mathbf{P} \wedge \mathbf{F}_{(1,2)} \mathbf{P}) \vee \mathbf{F}_{=2} (\mathbf{P}_{(0,1)} (\mathbf{P} \wedge \mathbf{P}_{(0,1)} \mathbf{P}))$$

Failure of Kamp's theorem

$\mathsf{MTL}_{\mathbb{Z}}$ is able to express:

"P occurs twice in the next two time intervals."

In FO_Z:

$$\varphi(z) = \exists x. \exists y. (z < x < z+2) \land (z < y < z+2) \land P(x) \land P(y).$$

In $MTL_{\mathbb{Z}}$:

$$\varphi = \mathbf{F}_{(0,1)} (\mathbf{P} \wedge \mathbf{F}_{(0,1)} \mathbf{P}) \vee (\mathbf{F}_{(0,1)} \mathbf{P} \wedge \mathbf{F}_{(1,2)} \mathbf{P}) \vee \mathbf{F}_{=2} (\mathbf{P}_{(0,1)} (\mathbf{P} \wedge \mathbf{P}_{(0,1)} \mathbf{P}))$$

Failure of Kamp's theorem

$\mathsf{MTL}_{\mathbb{Z}}$ is able to express:

"P occurs twice in the next two time intervals."

In $FO_{\mathbb{Z}}$:

$$\varphi(z) = \exists x. \exists y. (z < x < z+2) \land (z < y < z+2) \land P(x) \land P(y).$$

In MTL_Z:

$$\begin{array}{lll} \varphi & = & \mathbf{F}_{(0,1)} \big(\mathbb{P} \wedge \mathbf{F}_{(0,1)} \mathbb{P} \big) & \vee \\ & & \left(\mathbf{F}_{(0,1)} \mathbb{P} \wedge \mathbf{F}_{(1,2)} \mathbb{P} \right) & \vee \\ & & & \mathbf{F}_{=2} \Big(\mathbf{P}_{(0,1)} \big(\mathbb{P} \wedge \mathbf{P}_{(0,1)} \mathbb{P} \big) \Big) \end{array}$$

$$\begin{array}{lcl} \varphi & = & \mathbf{F}_{(0,1)} \ \left(\mathbf{P} \wedge \mathbf{F}_{(0,1)} \ \mathbf{P} \right) & \vee \\ & & \left(\mathbf{F}_{(0,1)} \ \mathbf{P} \wedge \mathbf{F}_{(1,2)} \ \mathbf{P} \right) & \vee \\ & & & \mathbf{F}_{=2} \Big(\mathbf{P}_{(0,1)} \ \left(\mathbf{P} \wedge \mathbf{P}_{(0,1)} \ \mathbf{P} \right) \Big) \end{array}$$

Corollary

"P occurs twice in the next time interval" is expressible in $MTL_{\mathbb{Q}}$.

In fact, $MTL_{\mathcal{K}}$ can express any LTL (and hence $FO_{\{0\}}$) formula "in the next time interval" as long as \mathcal{K} is dense and non-trivial.

Corollary

$$\begin{array}{lcl} \varphi & = & \mathbf{F}_{(0,\frac{1}{2})} \left(\mathbf{P} \wedge \mathbf{F}_{(0,\frac{1}{2})} \; \; \mathbf{P} \right) & \vee \\ & & \left(\mathbf{F}_{(0,\frac{1}{2})} \; \; \mathbf{P} \wedge \mathbf{F}_{(\frac{1}{2},1)} \; \; \mathbf{P} \right) & \vee \\ & & & \mathbf{F}_{=1} \left(\mathbf{P}_{(0,\frac{1}{2})} \; \; \left(\mathbf{P} \wedge \mathbf{P}_{(0,\frac{1}{2})} \; \; \mathbf{P} \right) \right) \end{array}$$

Corollary

"P occurs twice in the next time interval" is expressible in $MTL_{\mathbb{Q}}$.

In fact, $MTL_{\mathcal{K}}$ can express any LTL (and hence $FO_{\{0\}}$) formula "in the next time interval" as long as \mathcal{K} is dense and non-trivial.

Corollary

$$\begin{array}{lcl} \varphi & = & \mathbf{F}_{(0,\frac{1}{2})} \left(\mathbf{P} \wedge \mathbf{F}_{(0,\frac{1}{2})} \; \; \mathbf{P} \right) & \vee \\ & & \left(\mathbf{F}_{(0,\frac{1}{2})} \; \; \mathbf{P} \wedge \mathbf{F}_{(\frac{1}{2},1)} \; \; \mathbf{P} \right) & \vee \\ & & & \mathbf{F}_{=1} \left(\mathbf{P}_{(0,\frac{1}{2})} \; \; \left(\mathbf{P} \wedge \mathbf{P}_{(0,\frac{1}{2})} \; \; \mathbf{P} \right) \right) \end{array}$$

Corollary

"P occurs twice in the next time interval" is expressible in $MTL_{\mathbb{Q}}$.

In fact, $MTL_{\mathcal{K}}$ can express any LTL (and hence $FO_{\{0\}}$) formula "in the next time interval" as long as \mathcal{K} is dense and non-trivial.

Corollary

$$\begin{array}{rcl} \varphi & = & \mathbf{F}_{(0,\frac{1}{2})} \; \left(\mathbf{P} \wedge \mathbf{F}_{(0,\frac{1}{2})} \; \; \mathbf{P} \right) & \vee \\ & & \left(\mathbf{F}_{(0,\frac{1}{2})} \; \; \mathbf{P} \wedge \mathbf{F}_{(\frac{1}{2},1)} \; \; \mathbf{P} \right) & \vee \\ & & & \mathbf{F}_{=1} \left(\mathbf{P}_{(0,\frac{1}{2})} \; \; \left(\mathbf{P} \wedge \mathbf{P}_{(0,\frac{1}{2})} \; \; \mathbf{P} \right) \right) \end{array}$$

Corollary

"P occurs twice in the next time interval" is expressible in $MTL_{\mathbb{Q}}$.

In fact, $MTL_{\mathcal{K}}$ can express any LTL (and hence $FO_{\{0\}}$) formula "in the next time interval" as long as \mathcal{K} is dense and non-trivial.

Corollary

$$\begin{array}{rcl} \varphi & = & \mathbf{F}_{(0,\frac{1}{2})} \; \left(\mathbf{P} \wedge \mathbf{F}_{(0,\frac{1}{2})} \; \; \mathbf{P} \right) & \vee \\ & & \left(\mathbf{F}_{(0,\frac{1}{2})} \; \; \mathbf{P} \wedge \mathbf{F}_{(\frac{1}{2},1)} \; \; \mathbf{P} \right) & \vee \\ & & & \mathbf{F}_{=1} \left(\mathbf{P}_{(0,\frac{1}{2})} \; \; \left(\mathbf{P} \wedge \mathbf{P}_{(0,\frac{1}{2})} \; \; \mathbf{P} \right) \right) \end{array}$$

Corollary

"P occurs twice in the next time interval" is expressible in $MTL_{\mathbb{Q}}$.

In fact, $MTL_{\mathcal{K}}$ can express any LTL (and hence $FO_{\{0\}}$) formula "in the next time interval" as long as \mathcal{K} is dense and non-trivial.

Corollary

A true extension of Kamp's theorem

Theorem

 $MTL_{\mathcal{K}} = FO_{\mathcal{K}}$ if and only if \mathcal{K} is dense.

The Expressive Completeness of Metric Temporal Logic $II_{\frac{1}{2}}^{1}$:

Count on this

Counting modalities

The counting modalities $\{C_n : n \in \mathbb{N}\}$ were introduced by Hirshfeld & Rabinovich in 2007.

Intuitively, $\mathbf{C}_n \varphi$ asserts that φ holds in at least n distinct points in the next unit time interval.

MTL with counting is $MTL_{\mathbb{Z}}$ with the addition of the counting modalities.

A decidability result

Hirshfeld & Rabinovich considered MITL with counting (MTL with counting without singleton intervals).

Theorem (Hirshfeld & Rabinovich 2007) *MITL with counting is decidable.*

An expressiveness result

Adding punctuality to MITL with counting gives it the power to express every bounded $FO_{\mathbb{Z}}$ formula, and hence every $FO_{\mathbb{Z}}$ formula.

Theorem (H. 2013)

MTL with counting is expressively equivalent to $FO_{\mathbb{Z}}$.

An expressiveness result

Adding punctuality to MITL with counting gives it the power to express every bounded $FO_{\mathbb{Z}}$ formula, and hence every $FO_{\mathbb{Z}}$ formula.

Theorem (H. 2013)

MTL with counting is expressively equivalent to $FO_{\mathbb{Z}}$.

Conclusions and further work

- Precisely characterized when MTL has the same expressive power as first-order logic.
- Adding counting to the non-equivalent cases gives full expressive power.

Still to do:

- Cost of expressibility.
- Generalization of Gabbay's Theorem
- Extension to more expressive metric temporal logics

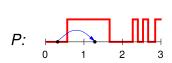
Conclusions and further work

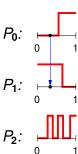
- Precisely characterized when MTL has the same expressive power as first-order logic.
- Adding counting to the non-equivalent cases gives full expressive power.

Still to do:

- Cost of expressibility.
- Generalization of Gabbay's Theorem.
- Extension to more expressive metric temporal logics.

From FO(<,+1) to FO(<)





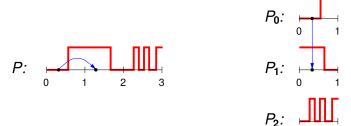
Replace every:

$$\blacktriangleright \forall x \psi(x)$$
 by $\forall x (\psi(x) \land \psi(x+1) \land \psi(x+2))$

▶
$$x + k_1 < y + k_2$$
 by $\begin{cases} x < y & \text{if } k_1 = k_2 \\ \text{true} & \text{if } k_1 < k_2 \\ \text{false} & \text{if } k_1 > k_2 \end{cases}$

- ightharpoonup P(x+k) by $P_k(x)$
- ▶ After converting to MTL, replace P_k with $\mathbf{F}_{=k}F$

From FO(<,+1) to FO(<)



Replace every:

$$\blacktriangleright \ \forall x \ \psi(x) \quad$$
by $\ \forall x \ (\psi(x) \land \psi(x+1) \land \psi(x+2))$

- ightharpoonup P(x+k) by $P_k(x)$
- ▶ After converting to MTL, replace P_k with $\mathbf{F}_{=k}P$