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◮ A set MP of propositions:
◮ Discrete time model:

· · ·

f : N → 2MP (flow or signal)



Classic temporal predicate logic

First-order logic (FO(<)):

ϕ ::= x < y | P(x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀x ϕ | ∃ xϕ

For example: ∀x .REQ(x) → ∃y .
(

(y > x) ∧ ACK(y)
)

.

Unable to express:
“P happens at every even position

(and may or may not hold at odd times)”

Monadic second-order logic (MSO(<)):

ϕ ::= x < y | P(x) | ϕ1∧ϕ2 | ϕ1∨ϕ2 | ¬ϕ | ∀x ϕ | ∃x ϕ | ∀P ϕ | ∃P ϕ
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Büchi’s theorem

Flows over non-negative integer time are infinite words over the
alphabet 2MP.

Theorem (Büchi 1960)
Any MSO(<) formula ϕ can be effectively translated into an
equivalent automaton Aϕ.

Corollary (Church 1960)
The satisfiability problems for MSO(<) and FO(<) are
decidable.

What about complexity?

Theorem (Stockmeyer 1974)
The satisfiability problem for FO(<) has non-elementary
complexity.



Büchi’s theorem

Flows over non-negative integer time are infinite words over the
alphabet 2MP.

Theorem (Büchi 1960)
Any MSO(<) formula ϕ can be effectively translated into an
equivalent automaton Aϕ.

Corollary (Church 1960)
The satisfiability problems for MSO(<) and FO(<) are
decidable.

What about complexity?

Theorem (Stockmeyer 1974)
The satisfiability problem for FO(<) has non-elementary
complexity.



Büchi’s theorem

Flows over non-negative integer time are infinite words over the
alphabet 2MP.

Theorem (Büchi 1960)
Any MSO(<) formula ϕ can be effectively translated into an
equivalent automaton Aϕ.

Corollary (Church 1960)
The satisfiability problems for MSO(<) and FO(<) are
decidable.

What about complexity?

Theorem (Stockmeyer 1974)
The satisfiability problem for FO(<) has non-elementary
complexity.



Temporal logics: LTL

Linear Temporal Logic (LTL):

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ

| X θ (θ occurs at the neXt time)
| F θ (θ occurs in the Future)
| G θ (θ occurs always (Globally))
| θ1 U θ2 (θ1 holds Until θ2)

For example, G (REQ → F ACK).

LTL is subsumed by FO(<), for example

P U Q ≡ ∃x
(

Q(x) ∧ ∀y . (y < x) → P(y)
)

.



Temporal logics: LTL

Linear Temporal Logic (LTL):

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ

| X θ (θ occurs at the neXt time)
| F θ (θ occurs in the Future)
| G θ (θ occurs always (Globally))
| θ1 U θ2 (θ1 holds Until θ2)

For example, G (REQ → F ACK).

LTL is subsumed by FO(<), for example

P U Q ≡ ∃x
(

Q(x) ∧ ∀y . (y < x) → P(y)
)

.



Temporal logics: LTL

Linear Temporal Logic (LTL):

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ

| X θ (θ occurs at the neXt time)
| F θ (θ occurs in the Future)
| G θ (θ occurs always (Globally))
| θ1 U θ2 (θ1 holds Until θ2)

For example, G (REQ → F ACK).

LTL is subsumed by FO(<), for example

P U Q ≡ ∃x
(

Q(x) ∧ ∀y . (y < x) → P(y)
)

.



Temporal logics: LTL

Linear Temporal Logic (LTL):

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ

| X θ (θ occurs at the neXt time)
| F θ (θ occurs in the Future)
| G θ (θ occurs always (Globally))
| θ1 U θ2 (θ1 holds Until θ2)

For example, G (REQ → F ACK).

LTL is subsumed by FO(<), for example

P U Q ≡ ∃x
(

Q(x) ∧ ∀y . (y < x) → P(y)
)

.



Temporal logics: LTL

LTL has emerged as the definitive temporal logic in the
classical setting.

Theorem (Sistla & Clarke 1982)
The satisfiability problem for LTL is PSPACE-complete.

Theorem (Kamp 1968)
LTL is as expressive as FO(<)
(over N).



Temporal logics: LTL

LTL has emerged as the definitive temporal logic in the
classical setting.

Theorem (Sistla & Clarke 1982)
The satisfiability problem for LTL is PSPACE-complete.

Theorem (Kamp 1968)
LTL is as expressive as FO(<)
(over N).



Temporal logics: LTL

LTL has emerged as the definitive temporal logic in the
classical setting.

Theorem (Sistla & Clarke 1982)
The satisfiability problem for LTL is PSPACE-complete.

Theorem (Kamp 1968)
LTL is as expressive as FO(<)
(over N).



Temporal logics: LTL+Past

Requirements such as

“Every ACK was preceded, at some point, by a REQ”.

Linear Temporal Logic with past operators (LTL+Past):

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ

| F θ (θ occurs in the Future)
| G θ (θ occurs always (Globally))
| θ1 U θ2 (θ1 holds Until θ2)
| P θ (θ occurred in the Past)
| H θ (θ has always occurred (Historically))
| θ1 S θ2 (θ1 has held Since θ2)

G (ACK → P REQ)



Temporal logics: LTL+Past

Requirements such as

“Every ACK was preceded, at some point, by a REQ”.

Linear Temporal Logic with past operators (LTL+Past):

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ

| F θ (θ occurs in the Future)
| G θ (θ occurs always (Globally))
| θ1 U θ2 (θ1 holds Until θ2)
| P θ (θ occurred in the Past)
| H θ (θ has always occurred (Historically))
| θ1 S θ2 (θ1 has held Since θ2)

G (ACK → P REQ)



Temporal logics: LTL+Past

Requirements such as

“Every ACK was preceded, at some point, by a REQ”.

Linear Temporal Logic with past operators (LTL+Past):

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ

| F θ (θ occurs in the Future)
| G θ (θ occurs always (Globally))
| θ1 U θ2 (θ1 holds Until θ2)
| P θ (θ occurred in the Past)
| H θ (θ has always occurred (Historically))
| θ1 S θ2 (θ1 has held Since θ2)

G (ACK → P REQ)



Temporal logics: LTL+Past

LTL+Past is the original tense logic developed by Prior.

Is it more expressive?

Kamp’s theorem says no.



Temporal logics: LTL+Past

LTL+Past is the original tense logic developed by Prior.

Is it more expressive?

Kamp’s theorem says no.



Temporal logics: LTL+Past

LTL+Past is the original tense logic developed by Prior.

Is it more expressive?

Kamp’s theorem says no.



Other temporal logics

Towards MSO(<):
◮ ETL: LTL with existential quantification
◮ µTL: LTL with fix-points
◮ LDL: LTL with regular expressions
◮ ...
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Qualitative extensions: Dense time

Discrete time makes sense in system verification but not
necessarily from a physical perspective.

How to handle semantics?

Flows:

f : Q → 2MP

f : R≥0 → 2MP

f : R → 2MP

Pointwise (time-stamped events):

(τ1, p1), (τ2, p2), (τ3, p3), . . .

where τ1 < τ2 < . . . ∈ Q ( or R)
and pi ∈ MP
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Kamp’s theorem again

Some great news:
Kamp’s theorem applies over all domains (rationals need Stavi
connectives)

Theorem (Kamp 1968; Gabbay et al. 1980)

LTL+Past is as expressive as FO(<) (over R).
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◮ pure past if it is invariant on flows that agree on the past
◮ pure present if is invariant on flows that agree on the

present
◮ pure future if is invariant on flows that agree on the future

A temporal logic is separable if all its formulas are equivalent to
a boolean combination of pure past, present and future
formulas.

Lemma
LTL+Past is separable.



Separation of temporal logics

A temporal logic formula is
◮ pure past if it is invariant on flows that agree on the past
◮ pure present if is invariant on flows that agree on the

present
◮ pure future if is invariant on flows that agree on the future

A temporal logic is separable if all its formulas are equivalent to
a boolean combination of pure past, present and future
formulas.

Lemma
LTL+Past is separable.



Gabbay’s theorem

Theorem (Gabbay 1981)
A temporal logic is expressively
complete if and only if it is
separable.

Proof sketch:
⇒: Model-theoretic argument.
⇐: Use separation to eliminate quantified variables.



Gabbay’s theorem

Theorem (Gabbay 1981)
A temporal logic is expressively
complete if and only if it is
separable.

Proof sketch:
⇒: Model-theoretic argument.
⇐: Use separation to eliminate quantified variables.



Gabbay’s theorem

Theorem (Gabbay 1981)
A temporal logic is expressively
complete if and only if it is
separable.

Proof sketch:
⇒: Model-theoretic argument.
⇐: Use separation to eliminate quantified variables.



Qualitative extensions: Summary

FO(<) MSO(<) LTL expressively
decidable? decidable? complete?

Classical Yes Yes Yes
Integer time Yes Yes Yes
Rational time Yes Yes Sort of
Real time Yes No Yes
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Motivation

Timed systems also occur in:
◮ Hardware circuits
◮ Communication protocols
◮ Cell phones
◮ Plant controllers
◮ Aircraft navigation systems
◮ . . .
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during his PhD thesis under David Dill.

Automata with clocks that run over R≥0, and clock constraints
that determine which transitions are available.
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Example: Timed automata

A : //ONMLHIJK
@GF ECD

a

��
a

x :=0
//ONMLHIJK a

x=1?
//

@GF ECD
a

�� ONMLHIJKGFED@ABC
@GF ECD

a

��



Adding time metrics to the models

We want to add a metric to the model so we can enforce certain
timing constraints, for example:

“Apply brake pads between 5 to 10 time units
after pedal is pushed”.

N, Z, Q, and R all have suitable distance metrics.
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a formula of FO(<,+1).
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Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ∼1990]
is a central quantitative specification formalism for timed
systems.
MTL = LTL + timing constraints on operators:

G (PEDAL → F[5,10] BRAKE)

Formally,
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Temporal logics: TPTL

Motivated by timed automata, Timed Propositional Temporal
Logic (TPTL) [Alur & Henzinger 1994] adds clocks and clock
constraints to LTL using freeze variables.

G x .
(

PEDAL → F y .((x + 5 < y < x + 10) ∧ BRAKE
)

Formally

π ::= x + c | c

θ ::= P | π1 ≤ π2 | π1 ≡d π2 | x .θ

| ¬θ | θ1 ∧ θ2 | θ1 ∨ θ2

| F θ | G θ | θ1U θ
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Decidability

Immediately we have

LTL ⊆ MTL ⊆ MTL+Past ⊆ TPTL ⊆ FO(<,+1) ⊆ MSO(<,+1)

Over the integers +1 is definable in FO(<):

y = x + 1 ≡ y > x ∧ ∀z.z < x ∨ z > y

So LTL = FO(<,+1) over N and Z.

Unfortunately:

Theorem (Alur & Henzinger 1992)
MTL satisfiability is undecidable over R≥0.
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Other temporal logics: MITL, Bounded MTL, ...

Punctuality and an unbounded global operator are sufficient for
undecidability.

◮ MITL [Alur & Henzinger 1994] is MTL restricted to
non-singleton intervals.

◮ Bounded-MTL [Ouaknine & Worrell 2005] is MTL restricted
to bound intervals only.

Theorem (Alur & Henzinger 1994)
MITL satisfiability (over R≥0) is in EXPSPACE.

Theorem (Ouaknine & Worrell 2005)
Bounded-MTL satisfiability is decidable over R≥0.

Ouaknine and Worrell also showed the (non-elementary)
decidability of several other semantic restrictions of MTL.



Other temporal logics: MITL, Bounded MTL, ...

Punctuality and an unbounded global operator are sufficient for
undecidability.

◮ MITL [Alur & Henzinger 1994] is MTL restricted to
non-singleton intervals.

◮ Bounded-MTL [Ouaknine & Worrell 2005] is MTL restricted
to bound intervals only.

Theorem (Alur & Henzinger 1994)
MITL satisfiability (over R≥0) is in EXPSPACE.

Theorem (Ouaknine & Worrell 2005)
Bounded-MTL satisfiability is decidable over R≥0.

Ouaknine and Worrell also showed the (non-elementary)
decidability of several other semantic restrictions of MTL.



Other temporal logics: MITL, Bounded MTL, ...

Punctuality and an unbounded global operator are sufficient for
undecidability.

◮ MITL [Alur & Henzinger 1994] is MTL restricted to
non-singleton intervals.

◮ Bounded-MTL [Ouaknine & Worrell 2005] is MTL restricted
to bound intervals only.

Theorem (Alur & Henzinger 1994)
MITL satisfiability (over R≥0) is in EXPSPACE.

Theorem (Ouaknine & Worrell 2005)
Bounded-MTL satisfiability is decidable over R≥0.

Ouaknine and Worrell also showed the (non-elementary)
decidability of several other semantic restrictions of MTL.



Other temporal logics: MITL, Bounded MTL, ...

Punctuality and an unbounded global operator are sufficient for
undecidability.

◮ MITL [Alur & Henzinger 1994] is MTL restricted to
non-singleton intervals.

◮ Bounded-MTL [Ouaknine & Worrell 2005] is MTL restricted
to bound intervals only.

Theorem (Alur & Henzinger 1994)
MITL satisfiability (over R≥0) is in EXPSPACE.

Theorem (Ouaknine & Worrell 2005)
Bounded-MTL satisfiability is decidable over R≥0.

Ouaknine and Worrell also showed the (non-elementary)
decidability of several other semantic restrictions of MTL.



Temporal logic: Summary so far

LTL

MTL

MTL+Past

TPTL

FO(<,+1)

MSO(<,+1)



Temporal logic: Summary so far

LTL

MTL

MTL+Past

TPTL

FO(<,+1)

MSO(<,+1)

MITL Bounded-MTL Q2MLO



Temporal logic: Summary so far

LTL

MTL

MTL+Past

TPTL

FO(<,+1)

MSO(<,+1)

MITL Bounded-MTL Q2MLO

DECIDABLE

UNDECIDABLE



Digression: Expressiveness in bounded time

In reality timed systems often have a “time-out”, where
behaviour is not defined after a certain length of time.

We can model this by considering bounded time domains
rather than R or R≥0.

Theorem (Ouaknine, Rabinovich & Worrell 2009)
Over bounded time,

◮ MSO(<,+1) is decidable, and
◮ MTL is as expressive as FO(<,+1).

Proof sketch:
◮ Remove the metric using punctuality,
◮ Convert to LTL, and
◮ Use the bounded domain to restrict the scope of the LTL

operators.
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Expressiveness in continuous time

Theorem (D’Souza, Holla & Vankadaru 2007)
TPTL is as expressive as FO(<,+).

Theorem (Hirshfeld & Rabinovich 2007)
FO(<,+1) is strictly more expressive than MTL over R≥0.

“In the next unit time interval there is no b after the last a”

In FO(<, +1):

ϕ(z) = ∃x .a(x) ∧ ∀y .(x < y < z + 1) → ¬b(y).

In MTL+Past:
G=1(¬bS(0,1)a).

Corollary
MTL+Past is strictly more expressive than MTL.
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Two brand new results

A metric temporal formula is:
◮ pure distant past if it is invariant on flows that agree on

(−1,−∞)

◮ pure distant future if it is invariant on flows that agree on
(1,∞)

◮ bounded if there is an N such that it is invariant on all flows
that agree on (−N, N)

A temporal logic is metrically separable if every formula is
equivalent to a boolean combination of pure distant past, pure
distant future and bounded formulas.
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A separation theorem for metric temporal logic

Theorem (H., Ouaknine, Worrell 2012)
Let L be a temporal logic.

1. If L is expressively complete then L is metrically separable.

2. If L is metrically separable then L is expressively complete
if and only if it is expressively complete for all bounded
formulas.

Proof sketch:

1. A slightly more complex model-theoretic argument.

2. Similar strategy to Gabbay.
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◮ Show it holds for bounded formulas.
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Conclusions and future work

◮ In the qualitative setting weak logics are expressively
complete and strong logics are decidable

◮ In the quantitative setting we need to choose between
decidability and expressive completeness

◮ Look no further than MTL+Past for all your metric temporal
needs

Still to do:
◮ Cost of expressibility
◮ Expressiveness results for the decidable fragments
◮ Extension to more expressive metric temporal logics
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