The Expressiveness of Real-Time Temporal Logics

Paul Hunter

Department of Computer Science University of Oxford

(Joint work with Joël Ouaknine and James Worrell)

Logic & Semantics Seminar, Cambridge March 2012

"Que sera, sera"

Jay Livingston and Ray Evans

- ▶ Tense logic introduced by Prior in 1950's
- Used to (automatically) verify reactive and non-terminating systems
 - "Every REQ is followed, at some point, by an ACK"

"Que sera, sera"

Jay Livingston and Ray Evans

- ► Tense logic introduced by Prior in 1950's
- Used to (automatically) verify reactive and non-terminating systems
 - "Every REQ is followed, at some point, by an ACK"

"What will always be, will be: $\mathbf{G} \ p \to \mathbf{F} \ p$ "

Arthur Prior

- Tense logic introduced by Prior in 1950's
- Used to (automatically) verify reactive and non-terminating systems
 - "Every REQ is followed, at some point, by an ACK"

"What will always be, will be:

 $\textbf{G}\, \rho \to \textbf{F}\, \rho\text{"}$

Arthur Prior

- Tense logic introduced by Prior in 1950's
- Used to (automatically) verify reactive and non-terminating systems
 - "Every REQ is followed, at some point, by an ACK"

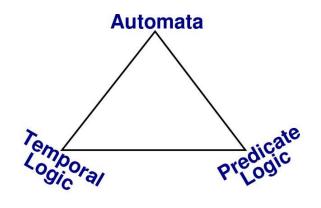
- ► Linear-time vs Branching time
- Qualitative (order-theoretic) vs Quantitative (metric)
- Expressiveness vs Computability

- ► Linear-time vs Branching time
- Qualitative (order-theoretic) vs Quantitative (metric)
- Expressiveness vs Computability

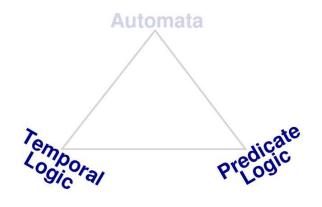
- ► Linear-time vs Branching time
- Qualitative (order-theoretic) vs Quantitative (metric)
- Expressiveness vs Computability

- ► Linear-time vs Branching time
- ▶ Qualitative (order-theoretic) vs Quantitative (metric)
- Expressiveness vs Computability

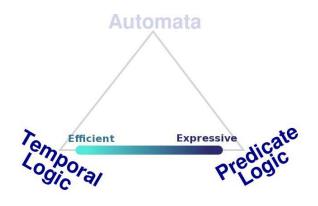
Overview of Verification



Overview of Verification



Overview of Verification



Classic temporal logic

Qualitative Extensions

Quantitative Extensions

Classic temporal models

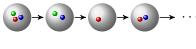
- ► A set MP of propositions: So
- Discrete time model:

Classic temporal models

- ► A set MP of propositions: So
- Discrete time model:

Classic temporal models

- A set MP of propositions: So
- Discrete time model:



 $f: \mathbb{N} \to 2^{MP}$ (flow or signal)

First-order logic (FO(<)):

$$\varphi ::= \mathbf{x} < \mathbf{y} \mid P(\mathbf{x}) \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi \mid \forall \mathbf{x} \varphi \mid \exists \mathbf{x} \varphi$$

For example:
$$\forall x . \mathtt{REQ}(x) \to \exists y . ((y > x) \land \mathtt{ACK}(y))$$

Unable to express:

"P happens at every even position and may or may not hold at odd times,

Monadic second-order logic (MSO(<))

$$\varphi ::= x < y \mid P(x) \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi \mid \forall x \varphi \mid \exists x \varphi \mid \forall P \varphi \mid \exists P \varphi$$

First-order logic (FO(<)):

$$\varphi ::= \mathbf{x} < \mathbf{y} \mid P(\mathbf{x}) \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi \mid \forall \mathbf{x} \varphi \mid \exists \mathbf{x} \varphi$$

For example:
$$\forall x . \mathtt{REQ}(x) \rightarrow \exists y . ((y > x) \land \mathtt{ACK}(y)).$$

Unable to express:

"P happens at every even position (and may or may not hold at odd times)

Monadic second-order logic (MSO(<))

$$\varphi ::= x < y \mid P(x) \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi \mid \forall x \varphi \mid \exists x \varphi \mid \forall P \varphi \mid \exists P \varphi$$

First-order logic (FO(<)):

$$\varphi ::= \mathbf{x} < \mathbf{y} \mid P(\mathbf{x}) \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi \mid \forall \mathbf{x} \varphi \mid \exists \mathbf{x} \varphi$$

For example:
$$\forall x . \mathtt{REQ}(x) \rightarrow \exists y . ((y > x) \land \mathtt{ACK}(y)).$$

Unable to express:

"P happens at every even position (and may or may not hold at odd times)"

Monadic second-order logic (MSO(<))

$$\varphi ::= \mathbf{X} < \mathbf{y} \mid P(\mathbf{X}) \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi \mid \forall \mathbf{X} \varphi \mid \exists \mathbf{X} \varphi \mid \forall P \varphi \mid \exists P \varphi$$

First-order logic (FO(<)):

$$\varphi ::= \mathbf{x} < \mathbf{y} \mid P(\mathbf{x}) \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi \mid \forall \mathbf{x} \varphi \mid \exists \mathbf{x} \varphi$$

For example: $\forall x . \mathtt{REQ}(x) \rightarrow \exists y . ((y > x) \land \mathtt{ACK}(y)).$

Unable to express:

"P happens at every even position (and may or may not hold at odd times)"

Monadic second-order logic (MSO(<)):

$$\varphi ::= \mathbf{X} < \mathbf{y} \mid \mathbf{P}(\mathbf{X}) \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi \mid \forall \mathbf{X} \varphi \mid \exists \mathbf{X} \varphi \mid \forall \mathbf{P} \varphi \mid \exists \mathbf{P} \varphi$$

Büchi's theorem

Flows over non-negative integer time are infinite words over the alphabet 2^{MP}.

Theorem (Büchi 1960)

Any MSO(<) formula φ can be effectively translated into an equivalent automaton A_{φ} .

Corollary (Church 1960)

The satisfiability problems for MSO(<) and FO(<) are decidable.

What about complexity?

Theorem (Stockmeyer 1974

The satisfiability problem for FO(<) has non-elementary complexity.

Büchi's theorem

Flows over non-negative integer time are infinite words over the alphabet 2^{MP}.

Theorem (Büchi 1960)

Any MSO(<) formula φ can be effectively translated into an equivalent automaton A_{φ} .

Corollary (Church 1960)

The satisfiability problems for MSO(<) and FO(<) are decidable.

What about complexity?

Theorem (Stockmeyer 1974)

The satisfiability problem for FO(<) has non-elementary complexity.

Büchi's theorem

Flows over non-negative integer time are infinite words over the alphabet 2^{MP}.

Theorem (Büchi 1960)

Any MSO(<) formula φ can be effectively translated into an equivalent automaton A_{φ} .

Corollary (Church 1960)

The satisfiability problems for MSO(<) and FO(<) are decidable.

What about complexity?

Theorem (Stockmeyer 1974)

The satisfiability problem for FO(<) has non-elementary complexity.

Linear Temporal Logic (LTL):

For example, **G** (REQ \rightarrow **F** ACK).

LTL is subsumed by FO(<), for example

$$P \cup Q \equiv \exists x (Q(x) \land \forall y . (y < x) \rightarrow P(y)).$$

Linear Temporal Logic (LTL):

For example, **G** (REQ ightarrow **F** ACK).

LTL is subsumed by $\mathsf{FO}(<)$, for example

$$P \cup Q \equiv \exists x (Q(x) \land \forall y . (y < x) \rightarrow P(y)).$$

Linear Temporal Logic (LTL):

For example, G (REQ \rightarrow F ACK).

LTL is subsumed by FO(<), for example

$$P \cup Q \equiv \exists x (Q(x) \land \forall y . (y < x) \rightarrow P(y)).$$

Linear Temporal Logic (LTL):

For example, G (REQ $\rightarrow F$ ACK).

LTL is subsumed by FO(<), for example

$$P \cup Q \equiv \exists x (Q(x) \land \forall y . (y < x) \rightarrow P(y)).$$

LTL has emerged as the definitive temporal logic in the classical setting.

Theorem (Sistla & Clarke 1982)

The satisfiability problem for LTL is PSPACE-complete

Theorem (Kamp 1968)

LTL is as expressive as FO(<)
(over N).

LTL has emerged as the definitive temporal logic in the classical setting.

Theorem (Sistla & Clarke 1982)

The satisfiability problem for LTL is PSPACE-complete.

Theorem (Kamp 1968)

LTL is as expressive as FO(<)
(over N).

LTL has emerged as the definitive temporal logic in the classical setting.

Theorem (Sistla & Clarke 1982)

The satisfiability problem for LTL is PSPACE-complete.

Theorem (Kamp 1968) LTL is as expressive as FO(<) (over \mathbb{N}).

Requirements such as

"Every ACK was preceded, at some point, by a REQ".

Linear Temporal Logic with past operators (LTL+Past):

$$G$$
 (ACK $\rightarrow P$ REQ)

Requirements such as

"Every ACK was preceded, at some point, by a REQ".

Linear Temporal Logic with past operators (LTL+Past):

$$\begin{array}{lll} \theta & ::= & P \mid \theta_1 \wedge \theta_2 \mid \theta_1 \vee \theta_2 \mid \neg \theta \\ & \mid \textbf{F} \, \theta & (\theta \text{ occurs in the Future}) \\ & \mid \textbf{G} \, \theta & (\theta \text{ occurs always (Globally)}) \\ & \mid \theta_1 \, \textbf{U} \, \theta_2 & (\theta_1 \text{ holds Until } \theta_2) \\ & \mid \textbf{P} \, \theta & (\theta \text{ occurred in the Past}) \\ & \mid \textbf{H} \, \theta & (\theta \text{ has always occurred (Historically)}) \\ & \mid \theta_1 \, \textbf{S} \, \theta_2 & (\theta_1 \text{ has held Since } \theta_2) \end{array}$$

$$G$$
 (ACK $\rightarrow P$ REQ)

Requirements such as

"Every ACK was preceded, at some point, by a REQ".

Linear Temporal Logic with past operators (LTL+Past):

$$\begin{array}{lll} \theta & ::= & P \mid \theta_1 \wedge \theta_2 \mid \theta_1 \vee \theta_2 \mid \neg \theta \\ & \mid \textbf{F} \, \theta & (\theta \text{ occurs in the Future}) \\ & \mid \textbf{G} \, \theta & (\theta \text{ occurs always (Globally)}) \\ & \mid \theta_1 \, \textbf{U} \, \theta_2 & (\theta_1 \text{ holds Until } \theta_2) \\ & \mid \textbf{P} \, \theta & (\theta \text{ occurred in the Past}) \\ & \mid \textbf{H} \, \theta & (\theta \text{ has always occurred (Historically)}) \\ & \mid \theta_1 \, \textbf{S} \, \theta_2 & (\theta_1 \text{ has held Since } \theta_2) \end{array}$$

$$G$$
 (ACK $\rightarrow P$ REQ)

LTL+Past is the original tense logic developed by Prior.

Is it more expressive?

Kamp's theorem says no.

LTL+Past is the original tense logic developed by Prior.

Is it more expressive?

Kamp's theorem says no.

LTL+Past is the original tense logic developed by Prior.

Is it more expressive?

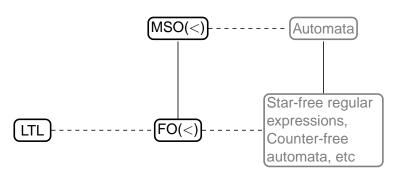
Kamp's theorem says no.

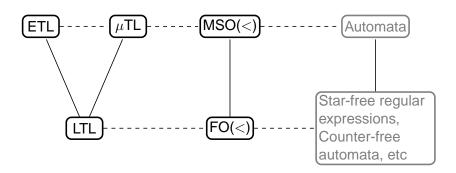
Other temporal logics

Towards MSO(<):

- ► ETL: LTL with existential quantification
- \blacktriangleright μ TL: LTL with fix-points
- ▶ LDL: LTL with regular expressions
- **...**

LTL------(FO(<)





Classic temporal logic

Qualitative Extensions

Quantitative Extensions

Non-negative time makes sense in system verification but not necessarily from a philosophical perspective.

Classical:

```
► Flows: f: \rightarrow 2^{MP}
```

Predicate logics: FO(<) and MSO(<)</p>

Temporal logics: LTL, LTL+Past, . . .

Non-negative time makes sense in system verification but not necessarily from a philosophical perspective.

Classical:

► Flows: $f: \mathbb{N} \to 2^{MP}$

Predicate logics: FO(<) and MSO(<)</p>

Temporal logics: LTL, LTL+Past, ...

Non-negative time makes sense in system verification but not necessarily from a philosophical perspective.

Classical+Past:

- ► Flows: $f: \mathbb{Z} \to 2^{MP}$
- Predicate logics: FO(<) and MSO(<)</p>
- Temporal logics: LTL, LTL+Past, . . .

Non-negative time makes sense in system verification but not necessarily from a philosophical perspective.

Classical+Past:

- ► Flows: $f: \mathbb{Z} \to 2^{MP}$
- Predicate logics: FO(<) and MSO(<)</p>
- Temporal logics: LTL, LTL+Past, . . .

Discrete time makes sense in system verification but not necessarily from a physical perspective.

How to handle semantics?

Flows:

$$f: \mathbb{Q} o 2^{\mathsf{MP}}$$
 $f: \mathbb{R}_{\geq 0} o 2^{\mathsf{MP}}$
 $f: \mathbb{R}_{\geq 0} o 2^{\mathsf{MP}}$

Discrete time makes sense in system verification but not necessarily from a physical perspective.

How to handle semantics?

Flows:

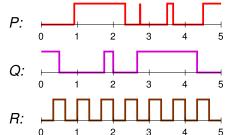
$$f: \mathbb{Q} \to 2^{MP}$$
 $f: \mathbb{R}_{\geq 0} \to 2^{MP}$
 $f: \mathbb{R} \to 2^{MP}$

Discrete time makes sense in system verification but not necessarily from a physical perspective.

How to handle semantics?

Flows:

 $f: \mathbb{Q} \to 2^{MP}$ $f: \mathbb{R}_{\geq 0} \to 2^{MP}$ $f: \mathbb{R} \to 2^{MP}$



Discrete time makes sense in system verification but not necessarily from a physical perspective.

How to handle semantics?

Flows:

$$f: \mathbb{Q} \to 2^{MP}$$

$$f: \mathbb{R}_{\geq 0} \to 2^{MP}$$

$$f: \mathbb{R} \to 2^{MP}$$

Pointwise (time-stamped events):

$$(au_1, p_1), (au_2, p_2), (au_3, p_3), \ldots$$
 where $au_1 < au_2 < \ldots \in \mathbb{Q}$ (or \mathbb{R}) and $p_i \in \mathbf{MP}$

Some good news:

Theorem (Rabin 1969) MSO(<) is decidable over \mathbb{Q} .

Some bad news:

Theorem (Shelah 1975)

MSO(<) is undecidable over [0, 1)

Some good news:

Theorem (Rabin 1969)

MSO(<) is decidable over \mathbb{Q} .

Some bad news:

Theorem (Shelah 1975)

MSO(<) is undecidable over [0,1).

Kamp's theorem again

Some great news:

Kamp's theorem applies over all domains (rationals need Stavi connectives)

Theorem (Kamp 1968; Gabbay et al. 1980)

LTL+Past is as expressive as FO(<) (over \mathbb{R}).

Separation of temporal logics

A temporal logic formula is

- pure past if it is invariant on flows that agree on the past
- pure present if is invariant on flows that agree on the present
- pure future if is invariant on flows that agree on the future

A temporal logic is separable if all its formulas are equivalent to a boolean combination of pure past, present and future formulas.

Lemma LTL+Past is separable

Separation of temporal logics

A temporal logic formula is

- pure past if it is invariant on flows that agree on the past
- pure present if is invariant on flows that agree on the present
- pure future if is invariant on flows that agree on the future

A temporal logic is separable if all its formulas are equivalent to a boolean combination of pure past, present and future formulas.

Lemma

LTL+Past is separable.

Gabbay's theorem

Theorem (Gabbay 1981)
A temporal logic is expressively complete if and only if it is separable.

Proof sketch:

⇒: Model-theoretic argument

⇐: Use separation to eliminate quantified variables

Gabbay's theorem

Theorem (Gabbay 1981)
A temporal logic is expressively complete if and only if it is separable.

Proof sketch:

⇒: Model-theoretic argument.

⇐: Use separation to eliminate quantified variables.

Gabbay's theorem

Theorem (Gabbay 1981)
A temporal logic is expressively complete if and only if it is separable.

Proof sketch:

⇒: Model-theoretic argument.

⇐: Use separation to eliminate quantified variables.

Qualitative extensions: Summary

	FO(<)	MSO(<)	LTL expressively
	decidable?	decidable?	complete?
Classical	Yes	Yes	Yes
Integer time	Yes	Yes	Yes
Rational time	Yes	Yes	Sort of
Real time	Yes	No	Yes

Classic temporal logic

Qualitative Extensions

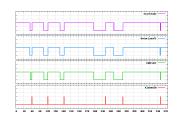
Quantitative Extensions

Timed systems are everywhere:

Want to specify

"If I press the brake pedal then the pads will be applied within 0.1ms.

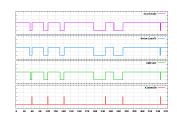
Timed systems are everywhere:



Want to specify:

"If I press the brake pedal then the pads will be applied within 0.1ms."

Timed systems are everywhere:



Want to specify:

"If I press the brake pedal then the pads will be applied within 0.1ms."

Timed systems also occur in:

- Hardware circuits
- Communication protocols
- Cell phones
- Plant controllers
- Aircraft navigation systems
- **•** . . .

Example: Timed automata

Timed automata were introduced by Rajeev Alur at Stanford during his PhD thesis under David Dill.

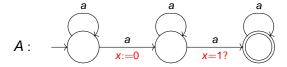
Automata with clocks that run over $\mathbb{R}_{\geq 0}$, and clock constraints that determine which transitions are available.

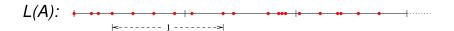
Example: Timed automata

Timed automata were introduced by Rajeev Alur at Stanford during his PhD thesis under David Dill.

Automata with clocks that run over $\mathbb{R}_{\geq 0}$, and clock constraints that determine which transitions are available.

Example: Timed automata





Adding time metrics to the models

We want to add a metric to the model so we can enforce certain timing constraints, for example:

"Apply brake pads between 5 to 10 time units after pedal is pushed".

 \mathbb{N} , \mathbb{Z} , \mathbb{Q} , and \mathbb{R} all have suitable distance metrics.

Adding time metrics to the models

We want to add a metric to the model so we can enforce certain timing constraints, for example:

"Apply brake pads between 5 to 10 time units after pedal is pushed".

 \mathbb{N} , \mathbb{Z} , \mathbb{Q} , and \mathbb{R} all have suitable distance metrics.

Metric predicate logic

We add a unary function +1 to the predicate logics to model moving to 1 time unit into the future.

"Apply brake pads between 5 to 10 time units after pedal is pushed"

becomes

$$\forall x. \texttt{PEDAL}(x) \rightarrow \exists y. \ (x+5 < y < x+10) \land \texttt{BRAKE}(y).$$
 mula of $\texttt{FO}(<.+1)$.

Metric predicate logic

We add a unary function +1 to the predicate logics to model moving to 1 time unit into the future.

"Apply brake pads between 5 to 10 time units after pedal is pushed"

becomes

$$\forall x. \mathtt{PEDAL}(x) \rightarrow \exists y. (x+5 < y < x+10) \land \mathtt{BRAKE}(y),$$

a formula of FO(<,+1).

Temporal logics: MTL

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli \sim 1990] is a central quantitative specification formalism for timed systems.

MTL = LTL + timing constraints on operators:

$$G ext{ (PEDAL}
ightarrow F_{[5,10]} ext{ BRAKE})$$

Formally,

$$\begin{array}{lll} \theta & ::= & P \mid \theta_1 \wedge \theta_2 \mid \theta_1 \vee \theta_2 \mid \neg \theta \\ & \mid \textbf{F}_{l} \, \theta & (\theta \text{ occurs in the Future in the interval } \textit{I}) \\ & \mid \textbf{G}_{l} \, \theta & (\theta \text{ occurs always (Globally) in the interval } \textit{I}) \\ & \mid \theta_1 \, \textbf{U}_{l} \, \theta_2 & (\theta_2 \text{ holds in } \textit{I} \text{ and Until then } \theta_1 \text{ holds}) \end{array}$$

where I is an interval of \mathbb{Q} .

Temporal logics: MTL

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli \sim 1990] is a central quantitative specification formalism for timed systems.

MTL = LTL + timing constraints on operators:

$$G ext{ (PEDAL}
ightarrow F_{[5,10]} ext{ BRAKE})$$

Formally,

$$\begin{array}{lll} \theta & ::= & P \mid \theta_1 \wedge \theta_2 \mid \theta_1 \vee \theta_2 \mid \neg \theta \\ & \mid \textbf{F}_{l} \, \theta & (\theta \text{ occurs in the Future in the interval } \textit{I}) \\ & \mid \textbf{G}_{l} \, \theta & (\theta \text{ occurs always (Globally) in the interval } \textit{I}) \\ & \mid \theta_1 \, \textbf{U}_{l} \, \theta_2 & (\theta_2 \text{ holds in } \textit{I} \text{ and Until then } \theta_1 \text{ holds}) \end{array}$$

Temporal logics: MTL

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli \sim 1990] is a central quantitative specification formalism for timed systems.

MTL = LTL + timing constraints on operators:

$$G ext{ (PEDAL}
ightarrow F_{[5,10]} ext{ BRAKE})$$

Formally,

$$\begin{array}{lll} \theta & ::= & P \mid \theta_1 \wedge \theta_2 \mid \theta_1 \vee \theta_2 \mid \neg \theta \\ & \mid \textbf{F}_{l} \, \theta & (\theta \text{ occurs in the Future in the interval } \textit{I}) \\ & \mid \textbf{G}_{l} \, \theta & (\theta \text{ occurs always (Globally) in the interval } \textit{I}) \\ & \mid \theta_1 \, \textbf{U}_{l} \, \theta_2 & (\theta_2 \text{ holds in } \textit{I} \text{ and Until then } \theta_1 \text{ holds}) \end{array}$$

Temporal logics: MTL

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli \sim 1990] is a central quantitative specification formalism for timed systems.

MTL = LTL + timing constraints on operators:

$$G ext{ (PEDAL}
ightarrow F_{[5,10]} ext{ BRAKE})$$

Formally,

$$\begin{array}{lll} \theta & ::= & P \mid \theta_1 \wedge \theta_2 \mid \theta_1 \vee \theta_2 \mid \neg \theta \\ & \mid \textbf{F}_I \, \theta & (\theta \text{ occurs in the Future in the interval } \textit{I}) \\ & \mid \textbf{G}_I \, \theta & (\theta \text{ occurs always (Globally) in the interval } \textit{I}) \\ & \mid \theta_1 \, \textbf{U}_I \, \theta_2 & (\theta_2 \text{ holds in } \textit{I} \text{ and Until then } \theta_1 \text{ holds}) \end{array}$$

Temporal logics: MTL+Past

We can also add timing constraints to past modalities.

```
\begin{array}{lll} \theta & ::= & P \mid \theta_1 \wedge \theta_2 \mid \theta_1 \vee \theta_2 \mid \neg \theta \\ & \mid \mathbf{F}_I \theta & (\theta \text{ occurs in the Future in the interval } I) \\ & \mid \mathbf{G}_I \theta & (\theta \text{ occurs always (Globally) in the interval } I) \\ & \mid \theta_1 \mathbf{U}_I \theta_2 & (\theta_2 \text{ holds in } I \text{ and Until then } \theta_1 \text{ holds}) \\ & \mid \mathbf{P}_I \theta & (\theta \text{ occurred in the Past in the interval } I) \\ & \mid \mathbf{H}_I \theta & (\theta \text{ always occurred in the interval } I) \\ & \mid \theta_1 \mathbf{S}_I \theta_2 & (\theta_2 \text{ held in } I \text{ and } \theta_1 \text{ has held Since}) \end{array}
```

where I is an interval of ℚ

Temporal logics: MTL+Past

We can also add timing constraints to past modalities.

```
\begin{array}{lll} \theta & ::= & P \mid \theta_1 \wedge \theta_2 \mid \theta_1 \vee \theta_2 \mid \neg \theta \\ & \mid \mathbf{F}_I \, \theta & (\theta \text{ occurs in the Future in the interval } I) \\ & \mid \mathbf{G}_I \, \theta & (\theta \text{ occurs always (Globally) in the interval } I) \\ & \mid \theta_1 \, \mathbf{U}_I \, \theta_2 & (\theta_2 \text{ holds in } I \text{ and Until then } \theta_1 \text{ holds}) \\ & \mid \mathbf{P}_I \, \theta & (\theta \text{ occurred in the Past in the interval } I) \\ & \mid \mathbf{H}_I \, \theta & (\theta \text{ always occurred in the interval } I) \\ & \mid \theta_1 \, \mathbf{S}_I \, \theta_2 & (\theta_2 \text{ held in } I \text{ and } \theta_1 \text{ has held Since}) \end{array}
```

Temporal logics: TPTL

Motivated by timed automata, Timed Propositional Temporal Logic (TPTL) [Alur & Henzinger 1994] adds clocks and clock constraints to LTL using *freeze variables*.

$$\mathbf{G} \ x. \ (\mathtt{PEDAL} \to \mathbf{F} \ y. \ ((x+5 < y < x+10) \land \mathtt{BRAKE})$$
 Formally

$$\pi ::= \mathbf{X} + \mathbf{C} \mid \mathbf{C}$$

$$\theta ::= \mathbf{P} \mid \pi_1 \leq \pi_2 \mid \pi_1 \equiv_d \pi_2 \mid \mathbf{X}.\theta$$

$$\mid \neg \theta \mid \theta_1 \land \theta_2 \mid \theta_1 \lor \theta_2$$

$$\mid \mathbf{F} \theta \mid \mathbf{G} \theta \mid \theta_1 \mathbf{U} \theta$$

$$\mid \mathbf{P} \theta \mid \mathbf{H} \theta \mid \theta_1 \mathbf{S} \theta$$

Temporal logics: TPTL

Motivated by timed automata, Timed Propositional Temporal Logic (TPTL) [Alur & Henzinger 1994] adds clocks and clock constraints to LTL using *freeze variables*.

$$\mathbf{G} \mathbf{x}.$$
 (PEDAL $\rightarrow \mathbf{F} \mathbf{y}. ((\mathbf{x} + \mathbf{5} < \mathbf{y} < \mathbf{x} + \mathbf{10}) \land \mathsf{BRAKE})$

$$\pi ::= \mathbf{X} + \mathbf{C} \mid \mathbf{C}$$

$$\theta ::= \mathbf{P} \mid \pi_1 \leq \pi_2 \mid \pi_1 \equiv_{\mathbf{d}} \pi_2 \mid \mathbf{X}.\theta$$

$$\mid \neg \theta \mid \theta_1 \land \theta_2 \mid \theta_1 \lor \theta_2$$

$$\mid \mathbf{F} \theta \mid \mathbf{G} \theta \mid \theta_1 \mathbf{U} \theta$$

$$\mid \mathbf{P} \theta \mid \mathbf{H} \theta \mid \theta_1 \mathbf{S} \theta$$

Temporal logics: TPTL

Motivated by timed automata, Timed Propositional Temporal Logic (TPTL) [Alur & Henzinger 1994] adds clocks and clock constraints to LTL using *freeze variables*.

$$\textbf{G} \ \textbf{\textit{x}}. \big(\texttt{PEDAL} \to \textbf{\textit{F}} \ \textbf{\textit{y}}. \big(\big(\textbf{\textit{x}} + \textbf{\textit{5}} < \textbf{\textit{y}} < \textbf{\textit{x}} + \textbf{\textit{10}} \big) \land \texttt{BRAKE} \big)$$
 Formally

$$\pi ::= \mathbf{X} + \mathbf{C} \mid \mathbf{C}$$

$$\theta ::= \mathbf{P} \mid \pi_1 \leq \pi_2 \mid \pi_1 \equiv_{\mathbf{d}} \pi_2 \mid \mathbf{X}.\theta$$

$$\mid \neg \theta \mid \theta_1 \land \theta_2 \mid \theta_1 \lor \theta_2$$

$$\mid \mathbf{F} \theta \mid \mathbf{G} \theta \mid \theta_1 \mathbf{U} \theta$$

$$\mid \mathbf{P} \theta \mid \mathbf{H} \theta \mid \theta_1 \mathbf{S} \theta$$

Decidability

Immediately we have

$$\mathsf{LTL} \subseteq \mathsf{MTL} \subseteq \mathsf{MTL+Past} \subseteq \mathsf{TPTL} \subseteq \mathsf{FO}(<,+1) \subseteq \mathsf{MSO}(<,+1)$$

Over the integers +1 is definable in FO(<)

$$y = x + 1 \equiv y > x \land \forall z.z < x \lor z > y$$

So LTL = FO(<,+1) over $\mathbb N$ and $\mathbb Z$.

Unfortunately:

Theorem (Alur & Henzinger 1992

MTL satisfiability is undecidable over $\mathbb{R}_{\geq 0}$.

Decidability

Immediately we have

$$\mathsf{LTL} \subseteq \mathsf{MTL} \subseteq \mathsf{MTL+Past} \subseteq \mathsf{TPTL} \subseteq \mathsf{FO}(<,+1) \subseteq \mathsf{MSO}(<,+1)$$

Over the integers +1 is definable in FO(<):

$$y = x + 1 \equiv y > x \land \forall z.z < x \lor z > y$$

So LTL = FO(<,+1) over $\mathbb N$ and $\mathbb Z$.

Unfortunately

Theorem (Alur & Henzinger 1992)

MTL satisfiability is undecidable over R

Decidability

Immediately we have

$$\mathsf{LTL} \subseteq \mathsf{MTL} \subseteq \mathsf{MTL+Past} \subseteq \mathsf{TPTL} \subseteq \mathsf{FO}(<,+1) \subseteq \mathsf{MSO}(<,+1)$$

Over the integers +1 is definable in FO(<):

$$y = x + 1 \equiv y > x \land \forall z.z < x \lor z > y$$

So LTL = FO(<,+1) over $\mathbb N$ and $\mathbb Z$.

Unfortunately:

Theorem (Alur & Henzinger 1992)

MTL satisfiability is undecidable over $\mathbb{R}_{\geq 0}$.

Other temporal logics: QMLO and Q2MLO

Rabinovich introduced QMLO and later Q2MLO, decidable fragments of FO(<,+1).

+1 moved into bounded quantifiers that can only act on formulas with one (QMLO) or two (Q2MLO) free variables

Other temporal logics: QMLO and Q2MLO

Rabinovich introduced QMLO and later Q2MLO, decidable fragments of FO(<,+1).

+1 moved into bounded quantifiers that can only act on formulas with one (QMLO) or two (Q2MLO) free variables

Punctuality and an unbounded global operator are sufficient for undecidability.

- MITL [Alur & Henzinger 1994] is MTL restricted to non-singleton intervals.
- Bounded-MTL [Ouaknine & Worrell 2005] is MTL restricted to bound intervals only.

Theorem (Alur & Henzinger 1994)

MITL satisfiability (over $\mathbb{R}_{\geq 0}$) is in EXPSPACE.

Theorem (Ouaknine & Worrell 2005)

Bounded-MTL satisfiability is decidable over $\mathbb{R}_{\geq 0}$

Ouaknine and Worrell also showed the (non-elementary) decidability of several other semantic restrictions of MTL.

Punctuality and an unbounded global operator are sufficient for undecidability.

- MITL [Alur & Henzinger 1994] is MTL restricted to non-singleton intervals.
- Bounded-MTL [Ouaknine & Worrell 2005] is MTL restricted to bound intervals only.

Theorem (Alur & Henzinger 1994) MITL satisfiability (over $\mathbb{R}_{\geq 0}$) is in EXPSPACE

Bounded-MTL satisfiability is decidable over $\mathbb{R}_{\geq 0}$. Ouaknine and Worrell also showed the (non-elementary) decidability of several other semantic restrictions of MTL

Punctuality and an unbounded global operator are sufficient for undecidability.

- MITL [Alur & Henzinger 1994] is MTL restricted to non-singleton intervals.
- Bounded-MTL [Ouaknine & Worrell 2005] is MTL restricted to bound intervals only.

Theorem (Alur & Henzinger 1994) MITL satisfiability (over $\mathbb{R}_{\geq 0}$) is in EXPSPACE

Theorem (Ouaknine & Worrell 2005) Bounded-MTL satisfiability is decidable over $\mathbb{R}_{\geq 0}$. Ouaknine and Worrell also showed the (non-elementary) decidability of several other semantic restrictions of MTL

Punctuality and an unbounded global operator are sufficient for undecidability.

- MITL [Alur & Henzinger 1994] is MTL restricted to non-singleton intervals.
- Bounded-MTL [Ouaknine & Worrell 2005] is MTL restricted to bound intervals only.

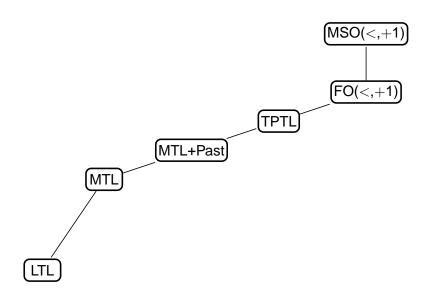
Theorem (Alur & Henzinger 1994)

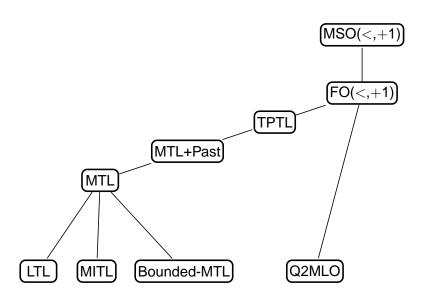
MITL satisfiability (over $\mathbb{R}_{\geq 0}$) is in EXPSPACE.

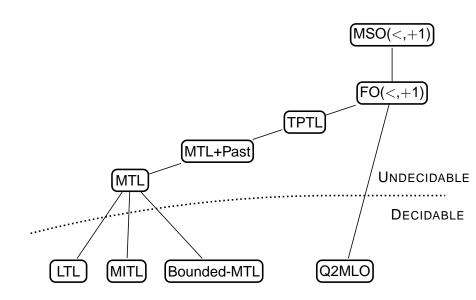
Theorem (Ouaknine & Worrell 2005)

Bounded-MTL satisfiability is decidable over $\mathbb{R}_{>0}$.

Ouaknine and Worrell also showed the (non-elementary) decidability of several other semantic restrictions of MTL.







In reality timed systems often have a "time-out", where behaviour is not defined after a certain length of time.

We can model this by considering bounded time domains rather than \mathbb{R} or $\mathbb{R}_{\geq 0}$.

Theorem (Ouaknine, Rabinovich & Worrell 2009) Over bounded time,

- ► MSO(<,+1) is decidable, and
- ► MTL is as expressive as FO(<,+1).</p>

- Remove the metric using punctuality,
- Convert to LTL, and
- Use the bounded domain to restrict the scope of the LTLL operators.

In reality timed systems often have a "time-out", where behaviour is not defined after a certain length of time.

We can model this by considering bounded time domains rather than \mathbb{R} or $\mathbb{R}_{>0}$.

Theorem (Ouaknine, Rabinovich & Worrell 2009) Over bounded time,

- ► MSO(<,+1) is decidable, and
- MTL is as expressive as FO(<,+1).</p>

- Remove the metric using punctuality,
- Convert to LTL, and
- Use the bounded domain to restrict the scope of the LTLL operators.

In reality timed systems often have a "time-out", where behaviour is not defined after a certain length of time.

We can model this by considering bounded time domains rather than \mathbb{R} or $\mathbb{R}_{>0}$.

Theorem (Ouaknine, Rabinovich & Worrell 2009) Over bounded time,

- ► MSO(<,+1) is decidable, and
- ► MTL is as expressive as FO(<,+1).</p>

Proof sketch

Convert to LTL, and

Use the bounded domain to restrict the scope of the LTLL operators.

In reality timed systems often have a "time-out", where behaviour is not defined after a certain length of time.

We can model this by considering bounded time domains rather than \mathbb{R} or $\mathbb{R}_{>0}$.

Theorem (Ouaknine, Rabinovich & Worrell 2009) Over bounded time,

- ► MSO(<,+1) is decidable, and
- ► MTL is as expressive as FO(<,+1).</p>

- Remove the metric using punctuality,
- Convert to LTL, and
- Use the bounded domain to restrict the scope of the LTL operators.

In reality timed systems often have a "time-out", where behaviour is not defined after a certain length of time.

We can model this by considering bounded time domains rather than \mathbb{R} or $\mathbb{R}_{>0}$.

Theorem (Ouaknine, Rabinovich & Worrell 2009) Over bounded time.

- ► MSO(<,+1) is decidable, and
- ► MTL is as expressive as FO(<,+1).</p>

- Remove the metric using punctuality,
- Convert to LTL, and
- Use the bounded domain to restrict the scope of the LTL operators.

In reality timed systems often have a "time-out", where behaviour is not defined after a certain length of time.

We can model this by considering bounded time domains rather than \mathbb{R} or $\mathbb{R}_{>0}$.

Theorem (Ouaknine, Rabinovich & Worrell 2009)

Over bounded time,

- ▶ MSO(<,+1) is decidable, and</p>
- ► MTL is as expressive as FO(<,+1).</p>

- Remove the metric using punctuality,
- Convert to LTL, and
- Use the bounded domain to restrict the scope of the LTL operators.

Theorem (D'Souza, Holla & Vankadaru 2007) *TPTL is as expressive as FO*(<,+).

Theorem (Hirshfeld & Rabinovich 2007)

FO(<,+1) is strictly more expressive than MTL over $\mathbb{R}_{>0}$.

"In the next unit time interval there is no b after the last a

$$\varphi(z) = \exists x. a(x) \land \forall y. (x < y < z+1) \rightarrow \neg b(y).$$

In MTL+Past:

$$\mathbf{G}_{=1}(\neg b\mathbf{S}_{(0,1)}a).$$

Corollary

MTL+Past is strictly more expressive than MTL

Theorem (D'Souza, Holla & Vankadaru 2007) *TPTL is as expressive as FO*(<,+).

Theorem (Hirshfeld & Rabinovich 2007) FO(<,+1) is strictly more expressive than MTL over $\mathbb{R}_{>0}$.

"In the next unit time interval there is no b after the last a

$$\varphi(z) = \exists x. a(x) \land \forall y. (x < y < z+1) \rightarrow \neg b(y).$$

In MTL+Past:

$$\mathbf{G}_{=1}(\neg b\mathbf{S}_{(0,1)}a).$$

Corollary

MTL+Past is strictly more expressive than MTL

Theorem (D'Souza, Holla & Vankadaru 2007) TPTL is as expressive as FO(<,+).

Theorem (Hirshfeld & Rabinovich 2007)

FO(<,+1) is strictly more expressive than MTL over $\mathbb{R}_{\geq 0}$.

"In the next unit time interval there is no b after the last a"

$$\varphi(z) = \exists x. a(x) \land \forall y. (x < y < z+1) \rightarrow \neg b(y).$$

In MTL+Past:

$$\mathbf{G}_{=1}(\neg b\mathbf{S}_{(0,1)}a).$$

Corollary

MTL+Past is strictly more expressive than MTL.

Theorem (D'Souza, Holla & Vankadaru 2007) TPTL is as expressive as FO(<,+).

Theorem (Hirshfeld & Rabinovich 2007)

FO(<,+1) is strictly more expressive than MTL over $\mathbb{R}_{>0}$.

"In the next unit time interval there is no b after the last a" In FO(<, +1):

$$\varphi(z) = \exists x. a(x) \land \forall y. (x < y < z+1) \rightarrow \neg b(y).$$

In MTL+Past:

$$\mathbf{G}_{=1}(\neg b\mathbf{S}_{(0,1)}a).$$

Corollary

MTL+Past is strictly more expressive than MTL

Theorem (D'Souza, Holla & Vankadaru 2007) TPTL is as expressive as FO(<,+).

Theorem (Hirshfeld & Rabinovich 2007)

FO(<,+1) is strictly more expressive than MTL over $\mathbb{R}_{>0}$.

"In the next unit time interval there is no b after the last a"

In FO(<, +1):

$$\varphi(z) = \exists x. a(x) \land \forall y. (x < y < z+1) \rightarrow \neg b(y).$$

In MTL+Past:

$$\mathbf{G}_{=1}(\neg b\mathbf{S}_{(0,1)}a).$$

Corollary

MTL+Past is strictly more expressive than MTL.

Theorem (D'Souza, Holla & Vankadaru 2007) TPTL is as expressive as FO(<,+).

Theorem (Hirshfeld & Rabinovich 2007)

FO(<,+1) is strictly more expressive than MTL over $\mathbb{R}_{>0}$.

"In the next unit time interval there is no b after the last a"

In FO(<, +1):

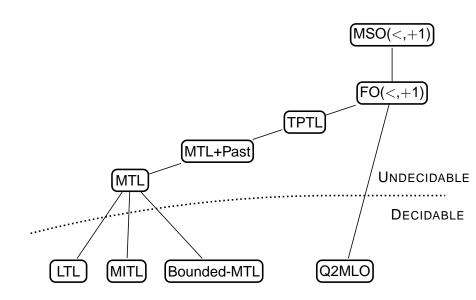
$$\varphi(z) = \exists x. a(x) \land \forall y. (x < y < z + 1) \rightarrow \neg b(y).$$

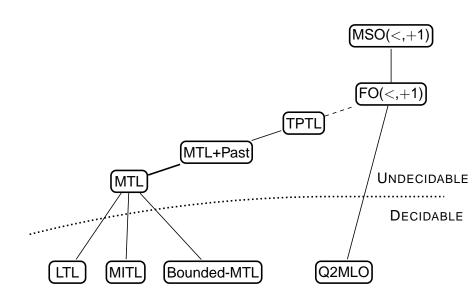
In MTL+Past:

$$\mathbf{G}_{=1}(\neg b\mathbf{S}_{(0,1)}a).$$

Corollary

MTL+Past is strictly more expressive than MTL.





Two brand new results

A metric temporal formula is:

- ▶ pure distant past if it is invariant on flows that agree or $(-1, -\infty)$
- ▶ pure distant future if it is invariant on flows that agree on $(1, \infty)$
- ▶ bounded if there is an N such that it is invariant on all flows that agree on (-N, N)

A temporal logic is *metrically separable* if every formula is equivalent to a boolean combination of pure distant past, pure distant future and bounded formulas.

Two brand new results

A metric temporal formula is:

- ▶ pure distant past if it is invariant on flows that agree on $(-1, -\infty)$
- pure distant future if it is invariant on flows that agree on $(1,\infty)$
- **bounded** if there is an N such that it is invariant on all flows that agree on (-N, N)

A temporal logic is *metrically separable* if every formula is equivalent to a boolean combination of pure distant past, pure distant future and bounded formulas.

A separation theorem for metric temporal logic

Theorem (H., Ouaknine, Worrell 2012)

Let \mathcal{L} be a temporal logic.

- 1. If \mathcal{L} is expressively complete then \mathcal{L} is metrically separable.
- If L is metrically separable then L is expressively complete if and only if it is expressively complete for all bounded formulas.

A separation theorem for metric temporal logic

Theorem (H., Ouaknine, Worrell 2012)

Let \mathcal{L} be a temporal logic.

- 1. If $\mathcal L$ is expressively complete then $\mathcal L$ is metrically separable.
- If L is metrically separable then L is expressively complete if and only if it is expressively complete for all bounded formulas.

- A slightly more complex model-theoretic argument.
- 2. Similar strategy to Gabbay.

A separation theorem for metric temporal logic

Theorem (H., Ouaknine, Worrell 2012)

Let \mathcal{L} be a temporal logic.

- 1. If \mathcal{L} is expressively complete then \mathcal{L} is metrically separable.
- If L is metrically separable then L is expressively complete if and only if it is expressively complete for all bounded formulas.

- A slightly more complex model-theoretic argument.
- 2. Similar strategy to Gabbay.

Expressive completeness of MTL+Past

Theorem (H., Ouaknine, Worrell 2012) MTL+Past is as expressive as FO(<).

- Show it holds for bounded formulas.
- Use separation

Expressive completeness of MTL+Past

Theorem (H., Ouaknine, Worrell 2012) MTL+Past is as expressive as FO(<).

- Show it holds for bounded formulas.
- Use separation!

Conclusions and future work

- In the qualitative setting weak logics are expressively complete and strong logics are decidable
- ► In the quantitative setting we need to choose between decidability and expressive completeness
- Look no further than MTL+Past for all your metric temporal needs

Still to do:

- Cost of expressibility
- Expressiveness results for the decidable fragments
- Extension to more expressive metric temporal logics

Conclusions and future work

- In the qualitative setting weak logics are expressively complete and strong logics are decidable
- ► In the quantitative setting we need to choose between decidability and expressive completeness
- Look no further than MTL+Past for all your metric temporal needs

Still to do:

- Cost of expressibility
- Expressiveness results for the decidable fragments
- Extension to more expressive metric temporal logics

Temporal logic: Summary

