
The Expressiveness of
Real-Time Temporal Logics

Paul Hunter

Department of Computer Science
University of Oxford

(Joint work with Joël Ouaknine and James Worrell)

Logic & Semantics Seminar, Cambridge
March 2012



Reasoning about time

“Que sera, sera”

Jay Livingston and Ray Evans

◮ Tense logic introduced by Prior in 1950’s
◮ Used to (automatically) verify reactive and non-terminating

systems
◮ “Every REQ is followed, at some point, by an ACK”



Reasoning about time

“Que sera, sera”

Jay Livingston and Ray Evans

◮ Tense logic introduced by Prior in 1950’s
◮ Used to (automatically) verify reactive and non-terminating

systems
◮ “Every REQ is followed, at some point, by an ACK”



Reasoning about time

“What will always be, will be:
G p → F p”

Arthur Prior

◮ Tense logic introduced by Prior in 1950’s
◮ Used to (automatically) verify reactive and non-terminating

systems
◮ “Every REQ is followed, at some point, by an ACK”



Reasoning about time

“What will always be, will be:
G p → F p”

Arthur Prior

◮ Tense logic introduced by Prior in 1950’s
◮ Used to (automatically) verify reactive and non-terminating

systems
◮ “Every REQ is followed, at some point, by an ACK”



Points for consideration

◮ Linear-time vs Branching time

◮ Qualitative (order-theoretic) vs Quantitative (metric)

◮ Expressiveness vs Computability



Points for consideration

◮ Linear-time vs Branching time

◮ Qualitative (order-theoretic) vs Quantitative (metric)

◮ Expressiveness vs Computability



Points for consideration

◮ Linear-time vs Branching time

◮ Qualitative (order-theoretic) vs Quantitative (metric)

◮ Expressiveness vs Computability



Points for consideration

◮ Linear-time vs Branching time

◮ Qualitative (order-theoretic) vs Quantitative (metric)

◮ Expressiveness vs Computability



Overview of Verification



Overview of Verification



Overview of Verification



Classic temporal logic

Qualitative Extensions

Quantitative Extensions



Classic temporal models

◮ A set MP of propositions:
◮ Discrete time model:

· · ·



Classic temporal models

◮ A set MP of propositions:
◮ Discrete time model:

· · ·



Classic temporal models

◮ A set MP of propositions:
◮ Discrete time model:

· · ·

f : N → 2MP (flow or signal)



Classic temporal predicate logic

First-order logic (FO(<)):

ϕ ::= x < y | P(x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀x ϕ | ∃ xϕ

For example: ∀x .REQ(x) → ∃y .
(

(y > x) ∧ ACK(y)
)

.

Unable to express:
“P happens at every even position

(and may or may not hold at odd times)”

Monadic second-order logic (MSO(<)):

ϕ ::= x < y | P(x) | ϕ1∧ϕ2 | ϕ1∨ϕ2 | ¬ϕ | ∀x ϕ | ∃x ϕ | ∀P ϕ | ∃P ϕ



Classic temporal predicate logic

First-order logic (FO(<)):

ϕ ::= x < y | P(x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀x ϕ | ∃ xϕ

For example: ∀x .REQ(x) → ∃y .
(

(y > x) ∧ ACK(y)
)

.

Unable to express:
“P happens at every even position

(and may or may not hold at odd times)”

Monadic second-order logic (MSO(<)):

ϕ ::= x < y | P(x) | ϕ1∧ϕ2 | ϕ1∨ϕ2 | ¬ϕ | ∀x ϕ | ∃x ϕ | ∀P ϕ | ∃P ϕ



Classic temporal predicate logic

First-order logic (FO(<)):

ϕ ::= x < y | P(x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀x ϕ | ∃ xϕ

For example: ∀x .REQ(x) → ∃y .
(

(y > x) ∧ ACK(y)
)

.

Unable to express:
“P happens at every even position

(and may or may not hold at odd times)”

Monadic second-order logic (MSO(<)):

ϕ ::= x < y | P(x) | ϕ1∧ϕ2 | ϕ1∨ϕ2 | ¬ϕ | ∀x ϕ | ∃x ϕ | ∀P ϕ | ∃P ϕ



Classic temporal predicate logic

First-order logic (FO(<)):

ϕ ::= x < y | P(x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀x ϕ | ∃ xϕ

For example: ∀x .REQ(x) → ∃y .
(

(y > x) ∧ ACK(y)
)

.

Unable to express:
“P happens at every even position

(and may or may not hold at odd times)”

Monadic second-order logic (MSO(<)):

ϕ ::= x < y | P(x) | ϕ1∧ϕ2 | ϕ1∨ϕ2 | ¬ϕ | ∀x ϕ | ∃x ϕ | ∀P ϕ | ∃P ϕ



Büchi’s theorem

Flows over non-negative integer time are infinite words over the
alphabet 2MP.

Theorem (Büchi 1960)
Any MSO(<) formula ϕ can be effectively translated into an
equivalent automaton Aϕ.

Corollary (Church 1960)
The satisfiability problems for MSO(<) and FO(<) are
decidable.

What about complexity?

Theorem (Stockmeyer 1974)
The satisfiability problem for FO(<) has non-elementary
complexity.



Büchi’s theorem

Flows over non-negative integer time are infinite words over the
alphabet 2MP.

Theorem (Büchi 1960)
Any MSO(<) formula ϕ can be effectively translated into an
equivalent automaton Aϕ.

Corollary (Church 1960)
The satisfiability problems for MSO(<) and FO(<) are
decidable.

What about complexity?

Theorem (Stockmeyer 1974)
The satisfiability problem for FO(<) has non-elementary
complexity.



Büchi’s theorem

Flows over non-negative integer time are infinite words over the
alphabet 2MP.

Theorem (Büchi 1960)
Any MSO(<) formula ϕ can be effectively translated into an
equivalent automaton Aϕ.

Corollary (Church 1960)
The satisfiability problems for MSO(<) and FO(<) are
decidable.

What about complexity?

Theorem (Stockmeyer 1974)
The satisfiability problem for FO(<) has non-elementary
complexity.



Temporal logics: LTL

Linear Temporal Logic (LTL):

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ

| X θ (θ occurs at the neXt time)
| F θ (θ occurs in the Future)
| G θ (θ occurs always (Globally))
| θ1 U θ2 (θ1 holds Until θ2)

For example, G (REQ → F ACK).

LTL is subsumed by FO(<), for example

P U Q ≡ ∃x
(

Q(x) ∧ ∀y . (y < x) → P(y)
)

.



Temporal logics: LTL

Linear Temporal Logic (LTL):

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ

| X θ (θ occurs at the neXt time)
| F θ (θ occurs in the Future)
| G θ (θ occurs always (Globally))
| θ1 U θ2 (θ1 holds Until θ2)

For example, G (REQ → F ACK).

LTL is subsumed by FO(<), for example

P U Q ≡ ∃x
(

Q(x) ∧ ∀y . (y < x) → P(y)
)

.



Temporal logics: LTL

Linear Temporal Logic (LTL):

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ

| X θ (θ occurs at the neXt time)
| F θ (θ occurs in the Future)
| G θ (θ occurs always (Globally))
| θ1 U θ2 (θ1 holds Until θ2)

For example, G (REQ → F ACK).

LTL is subsumed by FO(<), for example

P U Q ≡ ∃x
(

Q(x) ∧ ∀y . (y < x) → P(y)
)

.



Temporal logics: LTL

Linear Temporal Logic (LTL):

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ

| X θ (θ occurs at the neXt time)
| F θ (θ occurs in the Future)
| G θ (θ occurs always (Globally))
| θ1 U θ2 (θ1 holds Until θ2)

For example, G (REQ → F ACK).

LTL is subsumed by FO(<), for example

P U Q ≡ ∃x
(

Q(x) ∧ ∀y . (y < x) → P(y)
)

.



Temporal logics: LTL

LTL has emerged as the definitive temporal logic in the
classical setting.

Theorem (Sistla & Clarke 1982)
The satisfiability problem for LTL is PSPACE-complete.

Theorem (Kamp 1968)
LTL is as expressive as FO(<)
(over N).



Temporal logics: LTL

LTL has emerged as the definitive temporal logic in the
classical setting.

Theorem (Sistla & Clarke 1982)
The satisfiability problem for LTL is PSPACE-complete.

Theorem (Kamp 1968)
LTL is as expressive as FO(<)
(over N).



Temporal logics: LTL

LTL has emerged as the definitive temporal logic in the
classical setting.

Theorem (Sistla & Clarke 1982)
The satisfiability problem for LTL is PSPACE-complete.

Theorem (Kamp 1968)
LTL is as expressive as FO(<)
(over N).



Temporal logics: LTL+Past

Requirements such as

“Every ACK was preceded, at some point, by a REQ”.

Linear Temporal Logic with past operators (LTL+Past):

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ

| F θ (θ occurs in the Future)
| G θ (θ occurs always (Globally))
| θ1 U θ2 (θ1 holds Until θ2)
| P θ (θ occurred in the Past)
| H θ (θ has always occurred (Historically))
| θ1 S θ2 (θ1 has held Since θ2)

G (ACK → P REQ)



Temporal logics: LTL+Past

Requirements such as

“Every ACK was preceded, at some point, by a REQ”.

Linear Temporal Logic with past operators (LTL+Past):

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ

| F θ (θ occurs in the Future)
| G θ (θ occurs always (Globally))
| θ1 U θ2 (θ1 holds Until θ2)
| P θ (θ occurred in the Past)
| H θ (θ has always occurred (Historically))
| θ1 S θ2 (θ1 has held Since θ2)

G (ACK → P REQ)



Temporal logics: LTL+Past

Requirements such as

“Every ACK was preceded, at some point, by a REQ”.

Linear Temporal Logic with past operators (LTL+Past):

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ

| F θ (θ occurs in the Future)
| G θ (θ occurs always (Globally))
| θ1 U θ2 (θ1 holds Until θ2)
| P θ (θ occurred in the Past)
| H θ (θ has always occurred (Historically))
| θ1 S θ2 (θ1 has held Since θ2)

G (ACK → P REQ)



Temporal logics: LTL+Past

LTL+Past is the original tense logic developed by Prior.

Is it more expressive?

Kamp’s theorem says no.



Temporal logics: LTL+Past

LTL+Past is the original tense logic developed by Prior.

Is it more expressive?

Kamp’s theorem says no.



Temporal logics: LTL+Past

LTL+Past is the original tense logic developed by Prior.

Is it more expressive?

Kamp’s theorem says no.



Other temporal logics

Towards MSO(<):
◮ ETL: LTL with existential quantification
◮ µTL: LTL with fix-points
◮ LDL: LTL with regular expressions
◮ ...



Expressiveness in the classical case

LTL FO(<)



Expressiveness in the classical case

LTL FO(<)

Star-free regular
expressions,
Counter-free
automata, etc



Expressiveness in the classical case

LTL FO(<)

Star-free regular
expressions,
Counter-free
automata, etc

MSO(<) Automata



Expressiveness in the classical case

LTL FO(<)

Star-free regular
expressions,
Counter-free
automata, etc

ETL µTL MSO(<) Automata



Classic temporal logic

Qualitative Extensions

Quantitative Extensions



Qualitative extensions: Integer time

Non-negative time makes sense in system verification but not
necessarily from a philosophical perspective.

Classical:
◮ Flows: f : → 2MP

◮ Predicate logics: FO(<) and MSO(<)
◮ Temporal logics: LTL, LTL+Past, . . .

Decidability and Expressiveness results (with LTL+Past) still go
through.



Qualitative extensions: Integer time

Non-negative time makes sense in system verification but not
necessarily from a philosophical perspective.

Classical:
◮ Flows: f : N → 2MP

◮ Predicate logics: FO(<) and MSO(<)
◮ Temporal logics: LTL, LTL+Past, . . .

Decidability and Expressiveness results (with LTL+Past) still go
through.



Qualitative extensions: Integer time

Non-negative time makes sense in system verification but not
necessarily from a philosophical perspective.

Classical+Past:
◮ Flows: f : Z → 2MP

◮ Predicate logics: FO(<) and MSO(<)
◮ Temporal logics: LTL, LTL+Past, . . .

Decidability and Expressiveness results (with LTL+Past) still go
through.



Qualitative extensions: Integer time

Non-negative time makes sense in system verification but not
necessarily from a philosophical perspective.

Classical+Past:
◮ Flows: f : Z → 2MP

◮ Predicate logics: FO(<) and MSO(<)
◮ Temporal logics: LTL, LTL+Past, . . .

Decidability and Expressiveness results (with LTL+Past) still go
through.



Qualitative extensions: Dense time

Discrete time makes sense in system verification but not
necessarily from a physical perspective.

How to handle semantics?

Flows:

f : Q → 2MP

f : R≥0 → 2MP

f : R → 2MP



Qualitative extensions: Dense time

Discrete time makes sense in system verification but not
necessarily from a physical perspective.

How to handle semantics?

Flows:

f : Q → 2MP

f : R≥0 → 2MP

f : R → 2MP



Qualitative extensions: Dense time

Discrete time makes sense in system verification but not
necessarily from a physical perspective.

How to handle semantics?

Flows:

f : Q → 2MP

f : R≥0 → 2MP

f : R → 2MP



Qualitative extensions: Dense time

Discrete time makes sense in system verification but not
necessarily from a physical perspective.

How to handle semantics?

Flows:

f : Q → 2MP

f : R≥0 → 2MP

f : R → 2MP

Pointwise (time-stamped events):

(τ1, p1), (τ2, p2), (τ3, p3), . . .

where τ1 < τ2 < . . . ∈ Q ( or R)
and pi ∈ MP



Qualitative extensions: Dense time

Some good news:

Theorem (Rabin 1969)
MSO(<) is decidable over Q.

Some bad news:

Theorem (Shelah 1975)
MSO(<) is undecidable over [0, 1).



Qualitative extensions: Dense time

Some good news:

Theorem (Rabin 1969)
MSO(<) is decidable over Q.

Some bad news:

Theorem (Shelah 1975)
MSO(<) is undecidable over [0, 1).



Kamp’s theorem again

Some great news:
Kamp’s theorem applies over all domains (rationals need Stavi
connectives)

Theorem (Kamp 1968; Gabbay et al. 1980)

LTL+Past is as expressive as FO(<) (over R).



Separation of temporal logics

A temporal logic formula is
◮ pure past if it is invariant on flows that agree on the past
◮ pure present if is invariant on flows that agree on the

present
◮ pure future if is invariant on flows that agree on the future

A temporal logic is separable if all its formulas are equivalent to
a boolean combination of pure past, present and future
formulas.

Lemma
LTL+Past is separable.



Separation of temporal logics

A temporal logic formula is
◮ pure past if it is invariant on flows that agree on the past
◮ pure present if is invariant on flows that agree on the

present
◮ pure future if is invariant on flows that agree on the future

A temporal logic is separable if all its formulas are equivalent to
a boolean combination of pure past, present and future
formulas.

Lemma
LTL+Past is separable.



Gabbay’s theorem

Theorem (Gabbay 1981)
A temporal logic is expressively
complete if and only if it is
separable.

Proof sketch:
⇒: Model-theoretic argument.
⇐: Use separation to eliminate quantified variables.



Gabbay’s theorem

Theorem (Gabbay 1981)
A temporal logic is expressively
complete if and only if it is
separable.

Proof sketch:
⇒: Model-theoretic argument.
⇐: Use separation to eliminate quantified variables.



Gabbay’s theorem

Theorem (Gabbay 1981)
A temporal logic is expressively
complete if and only if it is
separable.

Proof sketch:
⇒: Model-theoretic argument.
⇐: Use separation to eliminate quantified variables.



Qualitative extensions: Summary

FO(<) MSO(<) LTL expressively
decidable? decidable? complete?

Classical Yes Yes Yes
Integer time Yes Yes Yes
Rational time Yes Yes Sort of
Real time Yes No Yes



Classic temporal logic

Qualitative Extensions

Quantitative Extensions



Motivation

Timed systems are everywhere:

Want to specify:

“If I press the brake pedal then
the pads will be applied within 0.1ms.”



Motivation

Timed systems are everywhere:

Want to specify:

“If I press the brake pedal then
the pads will be applied within 0.1ms.”



Motivation

Timed systems are everywhere:

Want to specify:

“If I press the brake pedal then
the pads will be applied within 0.1ms.”



Motivation

Timed systems also occur in:
◮ Hardware circuits
◮ Communication protocols
◮ Cell phones
◮ Plant controllers
◮ Aircraft navigation systems
◮ . . .



Example: Timed automata

Timed automata were introduced by Rajeev Alur at Stanford
during his PhD thesis under David Dill.

Automata with clocks that run over R≥0, and clock constraints
that determine which transitions are available.



Example: Timed automata

Timed automata were introduced by Rajeev Alur at Stanford
during his PhD thesis under David Dill.

Automata with clocks that run over R≥0, and clock constraints
that determine which transitions are available.



Example: Timed automata

A : //ONMLHIJK
@GF ECD

a

��
a

x :=0
//ONMLHIJK a

x=1?
//

@GF ECD
a

�� ONMLHIJKGFED@ABC
@GF ECD

a

��



Adding time metrics to the models

We want to add a metric to the model so we can enforce certain
timing constraints, for example:

“Apply brake pads between 5 to 10 time units
after pedal is pushed”.

N, Z, Q, and R all have suitable distance metrics.



Adding time metrics to the models

We want to add a metric to the model so we can enforce certain
timing constraints, for example:

“Apply brake pads between 5 to 10 time units
after pedal is pushed”.

N, Z, Q, and R all have suitable distance metrics.



Metric predicate logic

We add a unary function +1 to the predicate logics to model
moving to 1 time unit into the future.

“Apply brake pads between 5 to 10 time units
after pedal is pushed”

becomes

∀x .PEDAL(x) → ∃y . (x+5 < y < x+10) ∧ BRAKE(y),

a formula of FO(<,+1).



Metric predicate logic

We add a unary function +1 to the predicate logics to model
moving to 1 time unit into the future.

“Apply brake pads between 5 to 10 time units
after pedal is pushed”

becomes

∀x .PEDAL(x) → ∃y . (x+5 < y < x+10) ∧ BRAKE(y),

a formula of FO(<,+1).



Temporal logics: MTL

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ∼1990]
is a central quantitative specification formalism for timed
systems.
MTL = LTL + timing constraints on operators:

G (PEDAL → F[5,10] BRAKE)

Formally,

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ

| FI θ (θ occurs in the Future in the interval I)
| GI θ (θ occurs always (Globally) in the interval I)
| θ1 UI θ2 (θ2 holds in I and Until then θ1 holds)

where I is an interval of Q.



Temporal logics: MTL

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ∼1990]
is a central quantitative specification formalism for timed
systems.
MTL = LTL + timing constraints on operators:

G (PEDAL → F[5,10] BRAKE)

Formally,

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ

| FI θ (θ occurs in the Future in the interval I)
| GI θ (θ occurs always (Globally) in the interval I)
| θ1 UI θ2 (θ2 holds in I and Until then θ1 holds)

where I is an interval of Q.



Temporal logics: MTL

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ∼1990]
is a central quantitative specification formalism for timed
systems.
MTL = LTL + timing constraints on operators:

G (PEDAL → F[5,10] BRAKE)

Formally,

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ

| FI θ (θ occurs in the Future in the interval I)
| GI θ (θ occurs always (Globally) in the interval I)
| θ1 UI θ2 (θ2 holds in I and Until then θ1 holds)

where I is an interval of Q.



Temporal logics: MTL

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ∼1990]
is a central quantitative specification formalism for timed
systems.
MTL = LTL + timing constraints on operators:

G (PEDAL → F[5,10] BRAKE)

Formally,

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ

| FI θ (θ occurs in the Future in the interval I)
| GI θ (θ occurs always (Globally) in the interval I)
| θ1 UI θ2 (θ2 holds in I and Until then θ1 holds)

where I is an interval of Q.



Temporal logics: MTL+Past

We can also add timing constraints to past modalities.

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ

| FI θ (θ occurs in the Future in the interval I)
| GI θ (θ occurs always (Globally) in the interval I)
| θ1 UI θ2 (θ2 holds in I and Until then θ1 holds)
| PI θ (θ occurred in the Past in the interval I)
| HI θ (θ always occurred in the interval I)
| θ1 SI θ2 ( θ2 held in I and θ1 has held Since)

where I is an interval of Q.



Temporal logics: MTL+Past

We can also add timing constraints to past modalities.

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ

| FI θ (θ occurs in the Future in the interval I)
| GI θ (θ occurs always (Globally) in the interval I)
| θ1 UI θ2 (θ2 holds in I and Until then θ1 holds)
| PI θ (θ occurred in the Past in the interval I)
| HI θ (θ always occurred in the interval I)
| θ1 SI θ2 ( θ2 held in I and θ1 has held Since)

where I is an interval of Q.



Temporal logics: TPTL

Motivated by timed automata, Timed Propositional Temporal
Logic (TPTL) [Alur & Henzinger 1994] adds clocks and clock
constraints to LTL using freeze variables.

G x .
(

PEDAL → F y .((x + 5 < y < x + 10) ∧ BRAKE
)

Formally

π ::= x + c | c

θ ::= P | π1 ≤ π2 | π1 ≡d π2 | x .θ

| ¬θ | θ1 ∧ θ2 | θ1 ∨ θ2

| F θ | G θ | θ1U θ

| P θ | H θ | θ1S θ



Temporal logics: TPTL

Motivated by timed automata, Timed Propositional Temporal
Logic (TPTL) [Alur & Henzinger 1994] adds clocks and clock
constraints to LTL using freeze variables.

G x .
(

PEDAL → F y .((x + 5 < y < x + 10) ∧ BRAKE
)

Formally

π ::= x + c | c

θ ::= P | π1 ≤ π2 | π1 ≡d π2 | x .θ

| ¬θ | θ1 ∧ θ2 | θ1 ∨ θ2

| F θ | G θ | θ1U θ

| P θ | H θ | θ1S θ



Temporal logics: TPTL

Motivated by timed automata, Timed Propositional Temporal
Logic (TPTL) [Alur & Henzinger 1994] adds clocks and clock
constraints to LTL using freeze variables.

G x .
(

PEDAL → F y .((x + 5 < y < x + 10) ∧ BRAKE
)

Formally

π ::= x + c | c

θ ::= P | π1 ≤ π2 | π1 ≡d π2 | x .θ

| ¬θ | θ1 ∧ θ2 | θ1 ∨ θ2

| F θ | G θ | θ1U θ

| P θ | H θ | θ1S θ



Decidability

Immediately we have

LTL ⊆ MTL ⊆ MTL+Past ⊆ TPTL ⊆ FO(<,+1) ⊆ MSO(<,+1)

Over the integers +1 is definable in FO(<):

y = x + 1 ≡ y > x ∧ ∀z.z < x ∨ z > y

So LTL = FO(<,+1) over N and Z.

Unfortunately:

Theorem (Alur & Henzinger 1992)
MTL satisfiability is undecidable over R≥0.



Decidability

Immediately we have

LTL ⊆ MTL ⊆ MTL+Past ⊆ TPTL ⊆ FO(<,+1) ⊆ MSO(<,+1)

Over the integers +1 is definable in FO(<):

y = x + 1 ≡ y > x ∧ ∀z.z < x ∨ z > y

So LTL = FO(<,+1) over N and Z.

Unfortunately:

Theorem (Alur & Henzinger 1992)
MTL satisfiability is undecidable over R≥0.



Decidability

Immediately we have

LTL ⊆ MTL ⊆ MTL+Past ⊆ TPTL ⊆ FO(<,+1) ⊆ MSO(<,+1)

Over the integers +1 is definable in FO(<):

y = x + 1 ≡ y > x ∧ ∀z.z < x ∨ z > y

So LTL = FO(<,+1) over N and Z.

Unfortunately:

Theorem (Alur & Henzinger 1992)
MTL satisfiability is undecidable over R≥0.



Other temporal logics: QMLO and Q2MLO

Rabinovich introduced QMLO
and later Q2MLO, decidable
fragments of FO(<,+1).

+1 moved into bounded
quantifiers that can only act on
formulas with one (QMLO) or
two (Q2MLO) free variables



Other temporal logics: QMLO and Q2MLO

Rabinovich introduced QMLO
and later Q2MLO, decidable
fragments of FO(<,+1).

+1 moved into bounded
quantifiers that can only act on
formulas with one (QMLO) or
two (Q2MLO) free variables



Other temporal logics: MITL, Bounded MTL, ...

Punctuality and an unbounded global operator are sufficient for
undecidability.

◮ MITL [Alur & Henzinger 1994] is MTL restricted to
non-singleton intervals.

◮ Bounded-MTL [Ouaknine & Worrell 2005] is MTL restricted
to bound intervals only.

Theorem (Alur & Henzinger 1994)
MITL satisfiability (over R≥0) is in EXPSPACE.

Theorem (Ouaknine & Worrell 2005)
Bounded-MTL satisfiability is decidable over R≥0.

Ouaknine and Worrell also showed the (non-elementary)
decidability of several other semantic restrictions of MTL.



Other temporal logics: MITL, Bounded MTL, ...

Punctuality and an unbounded global operator are sufficient for
undecidability.

◮ MITL [Alur & Henzinger 1994] is MTL restricted to
non-singleton intervals.

◮ Bounded-MTL [Ouaknine & Worrell 2005] is MTL restricted
to bound intervals only.

Theorem (Alur & Henzinger 1994)
MITL satisfiability (over R≥0) is in EXPSPACE.

Theorem (Ouaknine & Worrell 2005)
Bounded-MTL satisfiability is decidable over R≥0.

Ouaknine and Worrell also showed the (non-elementary)
decidability of several other semantic restrictions of MTL.



Other temporal logics: MITL, Bounded MTL, ...

Punctuality and an unbounded global operator are sufficient for
undecidability.

◮ MITL [Alur & Henzinger 1994] is MTL restricted to
non-singleton intervals.

◮ Bounded-MTL [Ouaknine & Worrell 2005] is MTL restricted
to bound intervals only.

Theorem (Alur & Henzinger 1994)
MITL satisfiability (over R≥0) is in EXPSPACE.

Theorem (Ouaknine & Worrell 2005)
Bounded-MTL satisfiability is decidable over R≥0.

Ouaknine and Worrell also showed the (non-elementary)
decidability of several other semantic restrictions of MTL.



Other temporal logics: MITL, Bounded MTL, ...

Punctuality and an unbounded global operator are sufficient for
undecidability.

◮ MITL [Alur & Henzinger 1994] is MTL restricted to
non-singleton intervals.

◮ Bounded-MTL [Ouaknine & Worrell 2005] is MTL restricted
to bound intervals only.

Theorem (Alur & Henzinger 1994)
MITL satisfiability (over R≥0) is in EXPSPACE.

Theorem (Ouaknine & Worrell 2005)
Bounded-MTL satisfiability is decidable over R≥0.

Ouaknine and Worrell also showed the (non-elementary)
decidability of several other semantic restrictions of MTL.



Temporal logic: Summary so far

LTL

MTL

MTL+Past

TPTL

FO(<,+1)

MSO(<,+1)



Temporal logic: Summary so far

LTL

MTL

MTL+Past

TPTL

FO(<,+1)

MSO(<,+1)

MITL Bounded-MTL Q2MLO



Temporal logic: Summary so far

LTL

MTL

MTL+Past

TPTL

FO(<,+1)

MSO(<,+1)

MITL Bounded-MTL Q2MLO

DECIDABLE

UNDECIDABLE



Digression: Expressiveness in bounded time

In reality timed systems often have a “time-out”, where
behaviour is not defined after a certain length of time.

We can model this by considering bounded time domains
rather than R or R≥0.

Theorem (Ouaknine, Rabinovich & Worrell 2009)
Over bounded time,

◮ MSO(<,+1) is decidable, and
◮ MTL is as expressive as FO(<,+1).

Proof sketch:
◮ Remove the metric using punctuality,
◮ Convert to LTL, and
◮ Use the bounded domain to restrict the scope of the LTL

operators.



Digression: Expressiveness in bounded time

In reality timed systems often have a “time-out”, where
behaviour is not defined after a certain length of time.

We can model this by considering bounded time domains
rather than R or R≥0.

Theorem (Ouaknine, Rabinovich & Worrell 2009)
Over bounded time,

◮ MSO(<,+1) is decidable, and
◮ MTL is as expressive as FO(<,+1).

Proof sketch:
◮ Remove the metric using punctuality,
◮ Convert to LTL, and
◮ Use the bounded domain to restrict the scope of the LTL

operators.



Digression: Expressiveness in bounded time

In reality timed systems often have a “time-out”, where
behaviour is not defined after a certain length of time.

We can model this by considering bounded time domains
rather than R or R≥0.

Theorem (Ouaknine, Rabinovich & Worrell 2009)
Over bounded time,

◮ MSO(<,+1) is decidable, and
◮ MTL is as expressive as FO(<,+1).

Proof sketch:
◮ Remove the metric using punctuality,
◮ Convert to LTL, and
◮ Use the bounded domain to restrict the scope of the LTL

operators.



Digression: Expressiveness in bounded time

In reality timed systems often have a “time-out”, where
behaviour is not defined after a certain length of time.

We can model this by considering bounded time domains
rather than R or R≥0.

Theorem (Ouaknine, Rabinovich & Worrell 2009)
Over bounded time,

◮ MSO(<,+1) is decidable, and
◮ MTL is as expressive as FO(<,+1).

Proof sketch:
◮ Remove the metric using punctuality,
◮ Convert to LTL, and
◮ Use the bounded domain to restrict the scope of the LTL

operators.



Digression: Expressiveness in bounded time

In reality timed systems often have a “time-out”, where
behaviour is not defined after a certain length of time.

We can model this by considering bounded time domains
rather than R or R≥0.

Theorem (Ouaknine, Rabinovich & Worrell 2009)
Over bounded time,

◮ MSO(<,+1) is decidable, and
◮ MTL is as expressive as FO(<,+1).

Proof sketch:
◮ Remove the metric using punctuality,
◮ Convert to LTL, and
◮ Use the bounded domain to restrict the scope of the LTL

operators.



Digression: Expressiveness in bounded time

In reality timed systems often have a “time-out”, where
behaviour is not defined after a certain length of time.

We can model this by considering bounded time domains
rather than R or R≥0.

Theorem (Ouaknine, Rabinovich & Worrell 2009)
Over bounded time,

◮ MSO(<,+1) is decidable, and
◮ MTL is as expressive as FO(<,+1).

Proof sketch:
◮ Remove the metric using punctuality,
◮ Convert to LTL, and
◮ Use the bounded domain to restrict the scope of the LTL

operators.



Expressiveness in continuous time

Theorem (D’Souza, Holla & Vankadaru 2007)
TPTL is as expressive as FO(<,+).

Theorem (Hirshfeld & Rabinovich 2007)
FO(<,+1) is strictly more expressive than MTL over R≥0.

“In the next unit time interval there is no b after the last a”

In FO(<, +1):

ϕ(z) = ∃x .a(x) ∧ ∀y .(x < y < z + 1) → ¬b(y).

In MTL+Past:
G=1(¬bS(0,1)a).

Corollary
MTL+Past is strictly more expressive than MTL.



Expressiveness in continuous time

Theorem (D’Souza, Holla & Vankadaru 2007)
TPTL is as expressive as FO(<,+).

Theorem (Hirshfeld & Rabinovich 2007)
FO(<,+1) is strictly more expressive than MTL over R≥0.

“In the next unit time interval there is no b after the last a”

In FO(<, +1):

ϕ(z) = ∃x .a(x) ∧ ∀y .(x < y < z + 1) → ¬b(y).

In MTL+Past:
G=1(¬bS(0,1)a).

Corollary
MTL+Past is strictly more expressive than MTL.



Expressiveness in continuous time

Theorem (D’Souza, Holla & Vankadaru 2007)
TPTL is as expressive as FO(<,+).

Theorem (Hirshfeld & Rabinovich 2007)
FO(<,+1) is strictly more expressive than MTL over R≥0.

“In the next unit time interval there is no b after the last a”

In FO(<, +1):

ϕ(z) = ∃x .a(x) ∧ ∀y .(x < y < z + 1) → ¬b(y).

In MTL+Past:
G=1(¬bS(0,1)a).

Corollary
MTL+Past is strictly more expressive than MTL.



Expressiveness in continuous time

Theorem (D’Souza, Holla & Vankadaru 2007)
TPTL is as expressive as FO(<,+).

Theorem (Hirshfeld & Rabinovich 2007)
FO(<,+1) is strictly more expressive than MTL over R≥0.

“In the next unit time interval there is no b after the last a”

In FO(<, +1):

ϕ(z) = ∃x .a(x) ∧ ∀y .(x < y < z + 1) → ¬b(y).

In MTL+Past:
G=1(¬bS(0,1)a).

Corollary
MTL+Past is strictly more expressive than MTL.



Expressiveness in continuous time

Theorem (D’Souza, Holla & Vankadaru 2007)
TPTL is as expressive as FO(<,+).

Theorem (Hirshfeld & Rabinovich 2007)
FO(<,+1) is strictly more expressive than MTL over R≥0.

“In the next unit time interval there is no b after the last a”

In FO(<, +1):

ϕ(z) = ∃x .a(x) ∧ ∀y .(x < y < z + 1) → ¬b(y).

In MTL+Past:
G=1(¬bS(0,1)a).

Corollary
MTL+Past is strictly more expressive than MTL.



Expressiveness in continuous time

Theorem (D’Souza, Holla & Vankadaru 2007)
TPTL is as expressive as FO(<,+).

Theorem (Hirshfeld & Rabinovich 2007)
FO(<,+1) is strictly more expressive than MTL over R≥0.

“In the next unit time interval there is no b after the last a”

In FO(<, +1):

ϕ(z) = ∃x .a(x) ∧ ∀y .(x < y < z + 1) → ¬b(y).

In MTL+Past:
G=1(¬bS(0,1)a).

Corollary
MTL+Past is strictly more expressive than MTL.



Temporal logic: Summary so far

LTL

MTL

MTL+Past

TPTL

FO(<,+1)

MSO(<,+1)

MITL Bounded-MTL Q2MLO

DECIDABLE

UNDECIDABLE



Temporal logic: Summary so far

LTL

MTL

MTL+Past

TPTL

FO(<,+1)

MSO(<,+1)

MITL Bounded-MTL Q2MLO

DECIDABLE

UNDECIDABLE



Two brand new results

A metric temporal formula is:
◮ pure distant past if it is invariant on flows that agree on

(−1,−∞)

◮ pure distant future if it is invariant on flows that agree on
(1,∞)

◮ bounded if there is an N such that it is invariant on all flows
that agree on (−N, N)

A temporal logic is metrically separable if every formula is
equivalent to a boolean combination of pure distant past, pure
distant future and bounded formulas.



Two brand new results

A metric temporal formula is:
◮ pure distant past if it is invariant on flows that agree on

(−1,−∞)

◮ pure distant future if it is invariant on flows that agree on
(1,∞)

◮ bounded if there is an N such that it is invariant on all flows
that agree on (−N, N)

A temporal logic is metrically separable if every formula is
equivalent to a boolean combination of pure distant past, pure
distant future and bounded formulas.



A separation theorem for metric temporal logic

Theorem (H., Ouaknine, Worrell 2012)
Let L be a temporal logic.

1. If L is expressively complete then L is metrically separable.

2. If L is metrically separable then L is expressively complete
if and only if it is expressively complete for all bounded
formulas.

Proof sketch:

1. A slightly more complex model-theoretic argument.

2. Similar strategy to Gabbay.



A separation theorem for metric temporal logic

Theorem (H., Ouaknine, Worrell 2012)
Let L be a temporal logic.

1. If L is expressively complete then L is metrically separable.

2. If L is metrically separable then L is expressively complete
if and only if it is expressively complete for all bounded
formulas.

Proof sketch:

1. A slightly more complex model-theoretic argument.

2. Similar strategy to Gabbay.



A separation theorem for metric temporal logic

Theorem (H., Ouaknine, Worrell 2012)
Let L be a temporal logic.

1. If L is expressively complete then L is metrically separable.

2. If L is metrically separable then L is expressively complete
if and only if it is expressively complete for all bounded
formulas.

Proof sketch:

1. A slightly more complex model-theoretic argument.

2. Similar strategy to Gabbay.



Expressive completeness of MTL+Past

Theorem (H., Ouaknine, Worrell 2012)
MTL+Past is as expressive as FO(<).

Proof sketch:
◮ Show it holds for bounded formulas.
◮ Use separation!



Expressive completeness of MTL+Past

Theorem (H., Ouaknine, Worrell 2012)
MTL+Past is as expressive as FO(<).

Proof sketch:
◮ Show it holds for bounded formulas.
◮ Use separation!



Conclusions and future work

◮ In the qualitative setting weak logics are expressively
complete and strong logics are decidable

◮ In the quantitative setting we need to choose between
decidability and expressive completeness

◮ Look no further than MTL+Past for all your metric temporal
needs

Still to do:
◮ Cost of expressibility
◮ Expressiveness results for the decidable fragments
◮ Extension to more expressive metric temporal logics



Conclusions and future work

◮ In the qualitative setting weak logics are expressively
complete and strong logics are decidable

◮ In the quantitative setting we need to choose between
decidability and expressive completeness

◮ Look no further than MTL+Past for all your metric temporal
needs

Still to do:
◮ Cost of expressibility
◮ Expressiveness results for the decidable fragments
◮ Extension to more expressive metric temporal logics



Temporal logic: Summary

LTL

MTL

MTL+Past

TPTL

FO(<,+1)

MSO(<,+1)

MITL Bounded-MTL Q2MLO

DECIDABLE

UNDECIDABLE


