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Reasoning about time

Timed systems are everywhere:

◮ Hardware circuits

◮ Communication protocols

◮ Cell phones

◮ Plant controllers

◮ Aircraft navigation systems

◮ . . .

Want to specify:

“If I press the brake pedal then

the pads will be applied.”

Expressiveness vs Computability
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Reasoning about time

LTL has emerged as the definitive temporal logic.

◮ “Computable”

◮ As expressive as first order logic [Kamp 68]

LTL cannot express quantitative properties

“If I press the brake pedal then

the pads will be applied between 0.5ms and 1ms.”



Metric Temporal Logic (MTL)

Metric Temporal Logic (MTL)

[Koymans; de Roever; Pnueli ∼1990] is LTL with timing

constraints added to the temporal modalities

Problem:
How expressive is MTL?



How expressive is MTL?
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Temporal models

◮ A set MP of propositions: P, Q, R, . . .

◮ Continuous time model: R

f : R → 2MP (flow or signal)



Classic temporal predicate logic

FO(<): First-order logic with < and monadic predicates for

each proposition P ∈ MP:

ϕ ::= x < y | P(x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀x ϕ | ∃ xϕ

For example:

∀x .PEDAL(x) → ∃y .
(

(y > x) ∧ BRAKE(y)
)

.



Metric Predicate Logic

Given a set K ⊆ R of constants we add many unary functions

{+c : c ∈ K} to FO(<) to model moving c time units into the

future.

∀x .PEDAL(x) → ∃y . (x+5 < y < x+10) ∧ BRAKE(y),

a formula of FO{5,10}.



Temporal logic: LTL

LTL: Propositional logic with temporal modalities:

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ
| F θ (θ occurs in the Future)
| G θ (θ occurs always (Globally))
| θ1 U θ2 (θ1 holds Until θ2)
| P θ (θ occurred in the Past)
| H θ (θ has always occurred (Historically))
| θ1 S θ2 (θ1 has held Since θ2)

For example,

G (PEDAL → F BRAKE)



Metric Temporal Logic

MTLK = LTL + timing constraints taken from K on operators:

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ
| FI θ (θ occurs in the Future in the interval I)
| GI θ (θ occurs always (Globally) in the interval I)
| θ1 UI θ2 (θ2 holds in I and Until then θ1 holds)
| PI θ θ occurred in the Past in the interval I)
| HI θ (θ always occurred in the interval I)
| θ1 SI θ2 ( θ2 held in I and θ1 has held Since)

where I is an interval with end-points in K.

G (PEDAL → F(5,10) BRAKE)



Adding time metrics to the models

What sets of constants K?

◮ Traditional approach: intervals over Z

◮ Continuous but finitely presentable: intervals over Q

◮ Intervals over an arbitrary additive subgroup of R...
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Additive subgroup?

◮ Can easily form integer linear combinations of timing

constants.

◮ Integer linear combinations of K = Subgroup of (R,+)
generated by K.

Motivation:

◮ Includes most general case (K = R)

◮ Generalizes previous cases (K = Z, Q, or {0})

◮ Can be used to model multiple independent asynchronous

timing systems (e.g. Z[
√

2])



Main result

Theorem
MTLK = FOK if and only if K is dense.



Proof: “Only if”

Lemma
If K is a non-dense additive subgroup of R then K = ǫZ for

some ǫ ∈ R.



Proof: “If”

1. Use “metric separation” to reduce to bounded formulas.

2. Use a normal form for FOK formulas to remove +c

functions.

3. Use denseness of K to express LTL statements restricted

to an interval.



Separation

Expressive completeness of LTL can be proven by separating

formulas into past, present, and future.

Separation does not hold in the quantitative setting.

For example,

G(BRAKE → P(5,10)PEDAL)



General quantitative separation

Given a constant c > 0, a metric temporal formula is:

◮ pure c-distant past if it is invariant on flows that agree on

(−∞,−c)

◮ pure c-distant future if it is invariant on flows that agree on

(c,∞)

◮ bounded if there is an N such that it is invariant on all flows

that agree on (−N,N)

A temporal logic with constants from K is generally metrically

separable if every formula is equivalent, for some c ∈ K>0, to a

boolean combination of pure c-distant past, pure c-distant

future and bounded formulas.

Lemma
MTLK is generally metrically separable for non-trivial K.
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General quantitative separation

Given a constant c > 0, a metric temporal formula is:

◮ pure c-distant past if it is invariant on flows that agree on

(−∞,−c)

◮ pure c-distant future if it is invariant on flows that agree on

(c,∞)

◮ bounded if there is an N such that it is invariant on all flows

that agree on (−N,N)

A temporal logic with constants from K is generally metrically

separable if every formula is equivalent, for some c ∈ K>0, to a

boolean combination of pure c-distant past, pure c-distant

future and bounded formulas.

Corollary

MTLK = FOK iff MTLK can express all bounded FOK formulas.



Removing the unary functions

First remove unary functions from monadic predicates by

introducing new predicates: e.g. P(x + 5) = P5(x)

ϕ(x) = ∃y ∈ (x , x + 1) ∃z ∈ (y , y +
√

2) . . .

= ∃y ∈ (x , x + 1)
(

∃z ∈ (y , x + 1) . . .

∨ ∃z ∈ (x + 1, y +
√

2) . . .
)

= ∃y ∈ (x , x + 1)
(

∃z ∈ (y , x + 1) . . .

∨ ∃z ′ ∈ (x + 1 −
√

2, y) . . .
)

ϕ(x0, x1, x2) = ∃y ∈ (x1, x2)
(

∃z ∈ (y , x2) . . . ∨ ∃z ′ ∈ (x0, y) . . .
)

Corollary

MTLK = FOK iff MTLK can express all bounded FO{0} formulas.
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Removing the unary functions

Replace the “milestones” ({x + 1 −
√

2, x , x + 1}) with new

variables to obtain a FO(<) formula.
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Use a model-theoretic argument to break this into formulas on

the intervals {x0}, (x0, x1), {x1}, . . .

ϕ(x) = ∃y ∈ (x , x + 1) ∃z ∈ (y , y +
√

2) . . .

= ∃y ∈ (x , x + 1)
(

∃z ∈ (y , x + 1) . . .

∨ ∃z ∈ (x + 1, y +
√

2) . . .
)

= ∃y ∈ (x , x + 1)
(

∃z ∈ (y , x + 1) . . .

∨ ∃z ′ ∈ (x + 1 −
√

2, y) . . .
)

ϕ(x0, x1, x2) = ∃y ∈ (x1, x2)
(

∃z ∈ (y , x2) . . . ∨ ∃z ′ ∈ (x0, y) . . .
)

Corollary

MTLK = FOK iff MTLK can express all bounded FO{0} formulas.



Removing the unary functions

Use a model-theoretic argument to break this into formulas on

the intervals {x0}, (x0, x1), {x1}, . . .

ϕ(x) = ∃y ∈ (x , x + 1) ∃z ∈ (y , y +
√

2) . . .

= ∃y ∈ (x , x + 1)
(

∃z ∈ (y , x + 1) . . .

∨ ∃z ∈ (x + 1, y +
√

2) . . .
)

= ∃y ∈ (x , x + 1)
(

∃z ∈ (y , x + 1) . . .

∨ ∃z ′ ∈ (x + 1 −
√

2, y) . . .
)

ϕ(x0, x1, x2) = ∃y ∈ (x1, x2)
(

∃z ∈ (y , x2) . . . ∨ ∃z ′ ∈ (x0, y) . . .
)

Corollary

MTLK = FOK iff MTLK can express all bounded FO{0} formulas.



Failure of Kamp’s theorem

MTLZ is unable to express:

“P occurs twice in the next time interval.”

In FOZ:

ϕ(z) = ∃x .∃y .(z < x < z + ) ∧ (z < y < z + ) ∧ P(x) ∧ P(y).

In MTLZ:

(F(0,1)P ∧ F(1,2)P) ∨
F=2

(

P(0,1)

(

P ∧ P(0,1)P
)

)



Failure of Kamp’s theorem

MTLZ is unable to express:

“P occurs twice in the next time interval.”

In FOZ:

ϕ(z) = ∃x .∃y .(z < x < z + 1) ∧ (z < y < z + 1) ∧ P(x) ∧ P(y).

In MTLZ:
???
(F(0,1)P ∧ F(1,2)P) ∨
F=2

(

P(0,1)

(

P ∧ P(0,1)P
)

)



Failure of Kamp’s theorem
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Adding granularity

ϕ = F(0,1)

(

P ∧ F(0,1) P

)

∨
(F(0,1) P ∧ F(1,2) P) ∨
F=2

(

P(0,1)

(

P ∧ P(0,1) P

)

)

Corollary

“P occurs twice in the next time interval” is expressible in MTLQ.



Adding granularity

ϕ = F(0, 1
2
)

(

P ∧ F(0, 1
2
) P

)

∨
(F(0, 1

2
) P ∧ F( 1

2
,1) P) ∨

F=1

(

P(0, 1
2
)

(

P ∧ P(0, 1
2
) P

)

)

Corollary

“P occurs twice in the next time interval” is expressible in MTLQ.



Counting is all you need...

Theorem
MTLZ with counting modalities has the same expressive power

as FOZ.

Corollary

MTLK can express any bounded LTL formula if K is dense and

non-trivial



Counting is all you need...

Theorem
MTLZ with counting modalities has the same expressive power

as FOZ.

Corollary

MTLK can express any bounded LTL formula if K is dense and

non-trivial



A true extension of Kamp’s theorem

Theorem
MTLK = FOK if and only if K is dense.


