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Reasoning about time

LTL has emerged as the definitive temporal logic.

Pros:

◮ Model-checking in PSPACE

◮ Human readable

◮ As expressive as first order logic [Kamp 68]

Con:

LTL cannot express quantitative properties

“If I press the brake pedal then

the pads will be applied.”
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LTL has emerged as the definitive temporal logic.

Pros:

◮ Model-checking in PSPACE

◮ Human readable

◮ As expressive as first order logic [Kamp 68]

Con:

LTL cannot express quantitative properties

“If I press the brake pedal then

the pads will be applied within 1ms.”



Metric Temporal Logic (MTL)

Metric Temporal Logic (MTL)

[Koymans; de Roever; Pnueli ∼1990] is LTL with timing

constraints added to the temporal modalities

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ
| θ1 U θ2 (θ2 holds and Until then θ1 holds)
| θ1 S θ2 ( θ2 held and θ1 has held Since)

where I is an interval with endpoints taken from some K ⊆ R.

For example:

PEDAL → ⊤ U BRAKE
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where I is an interval with endpoints taken from some K ⊆ R.

For example:

PEDAL → ⊤ U(0,1) BRAKE



Predicate Logic

FO(<): First-order logic with linear order < and monadic

predicates P.

FOK: Given a set K ⊆ R of constants we add many unary

functions {+c : c ∈ K} to FO(<) to model moving c time units

into the future.

PEDAL(x) → ∃y . (x < y) ∧ BRAKE(y),



Predicate Logic

FO(<): First-order logic with linear order < and monadic

predicates P.

FOK: Given a set K ⊆ R of constants we add many unary

functions {+c : c ∈ K} to FO(<) to model moving c time units

into the future.

PEDAL(x) → ∃y . (x < y < x+1) ∧ BRAKE(y),



How expressive is MTL?

MTLK ⊆ FOK

When is there equality?

◮ With no constants: MTL{0} = FO{0} [Kamp 68]

◮ With integer constants: MTLZ 6= FOZ [Hirshfeld and

Rabinovich 07]

◮ With rational constants: MTLQ = FOQ [H., Ouaknine and

Worrell 13]
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Failure of Kamp’s theorem

MTLZ is unable to express:

“P occurs twice in the next time interval.”

ϕ = F(0,)

(

P ∧ F(0,)P
)

∨

(F(0,)P ∧ F(,)P) ∨

F=

(

P(0,)

(

P ∧ P(0,)P
)

)

Corollary

“P occurs twice in the next time interval” is expressible in MTLQ.



Failure of Kamp’s theorem

MTLZ is able to express:

“P occurs twice in the next two time intervals.”

ϕ = F(0,1)

(

P ∧ F(0,1)P
)

∨
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(
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(

P ∧ P(0,1)P
)

)

Corollary

“P occurs twice in the next time interval” is expressible in MTLQ.
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Counting is all you need...

Theorem (H. 13)

MTLZ with counting modalities has the same expressive power

as FOZ.

Observation/Exercise

1. If K is a non-dense subgroup of R then K = ǫ · Z.

2. If K is a non-trivial dense subgroup of R then MTLK can

express the counting modalities.
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When is MTL expressively complete?

Theorem (H. 13)

MTLK = FOK if and only if K is dense.


