The Expressive Completeness of Metric Temporal Logic

Paul Hunter

Université Libre de Bruxelles

Highlights of Logic, Games and Automata September 2013

Reasoning about time

LTL has emerged as the definitive temporal logic.

Pros:

- Model-checking in PSPACE
- Human readable
- As expressive as first order logic [Kamp 68]

Con: LTL cannot express <mark>quantitative</mark> properties

> "If I press the brake pedal then the pads will be applied."

Reasoning about time

LTL has emerged as the definitive temporal logic.

Pros:

- Model-checking in PSPACE
- Human readable
- As expressive as first order logic [Kamp 68]

Con:

LTL cannot express quantitative properties

"If I press the brake pedal then the pads will be applied within 1ms."

Metric Temporal Logic (MTL)

Metric Temporal Logic (MTL)

[Koymans; de Roever; Pnueli ${\sim}1990$] is LTL with timing constraints added to the temporal modalities

$$\begin{array}{rcl} \theta & ::= & P \mid \theta_1 \land \theta_2 \mid \theta_1 \lor \theta_2 \mid \neg \theta \\ & \mid \theta_1 \; \mathbf{U} \; \theta_2 & (\theta_2 \text{ holds and Until then } \theta_1 \text{ holds}) \\ & \mid \theta_1 \; \mathbf{S} \; \theta_2 & (\theta_2 \text{ held and } \theta_1 \text{ has held Since}) \end{array}$$

where I is an interval with endpoints taken from some $\mathcal{K} \subseteq \mathbb{R}$.

For example:

$\texttt{PEDAL} \to \top \, \bm{\mathsf{U}} \, \texttt{BRAKE}$

Metric Temporal Logic (MTL)

Metric Temporal Logic (MTL)

[Koymans; de Roever; Pnueli ${\sim}1990$] is LTL with timing constraints added to the temporal modalities

$$\begin{array}{rcl} \theta & ::= & P \mid \theta_1 \land \theta_2 \mid \theta_1 \lor \theta_2 \mid \neg \theta \\ & \mid \theta_1 \; \mathbf{U}_I \; \theta_2 & (\theta_2 \text{ holds in } I \text{ and Until then } \theta_1 \text{ holds}) \\ & \mid \theta_1 \; \mathbf{S}_I \; \theta_2 & (\theta_2 \text{ held in } I \text{ and } \theta_1 \text{ has held Since}) \end{array}$$

where *I* is an interval with endpoints taken from some $\mathcal{K} \subseteq \mathbb{R}$.

For example:

 $\texttt{PEDAL} \to \top ~ \bm{U_{(0,1)}} ~ \texttt{BRAKE}$

Metric Temporal Logic (MTL)

Metric Temporal Logic (MTL)

[Koymans; de Roever; Pnueli ${\sim}1990$] is LTL with timing constraints added to the temporal modalities

where *I* is an interval with endpoints taken from some $\mathcal{K} \subseteq \mathbb{R}$.

For example:

 $\texttt{PEDAL} \to \top ~ \bm{U_{(0,1)}} ~ \texttt{BRAKE}$

Predicate Logic

FO(<): First-order logic with linear order < and monadic predicates *P*.

 $FO_{\mathcal{K}}$: Given a set $\mathcal{K} \subseteq \mathbb{R}$ of constants we add many unary functions $\{+c : c \in \mathcal{K}\}$ to FO(<) to model moving *c* time units into the future.

$\texttt{PEDAL}(x) \to \exists y. (x < y) \land \texttt{BRAKE}(y),$

Predicate Logic

FO(<): First-order logic with linear order < and monadic predicates *P*.

 $\mathsf{FO}_{\mathcal{K}}$: Given a set $\mathcal{K} \subseteq \mathbb{R}$ of constants we add many unary functions $\{+c : c \in \mathcal{K}\}$ to $\mathsf{FO}(<)$ to model moving *c* time units into the future.

 $\texttt{PEDAL}(x) \rightarrow \exists y. (x < y < x+1) \land \texttt{BRAKE}(y),$

$\mathsf{MTL}_{\mathcal{K}}\subseteq\mathsf{FO}_{\mathcal{K}}$

- With no constants: $MTL_{\{0\}} = FO_{\{0\}}$ [Kamp 68]
- ► With integer constants: MTL_Z ≠ FO_Z [Hirshfeld and Rabinovich 07]
- With rational constants: MTL_Q = FO_Q [H., Ouaknine and Worrell 13]

 $\mathsf{MTL}_{\mathcal{K}}\subseteq\mathsf{FO}_{\mathcal{K}}$

- With no constants: $MTL_{\{0\}} = FO_{\{0\}}$ [Kamp 68]
- ► With integer constants: MTL_Z ≠ FO_Z [Hirshfeld and Rabinovich 07]
- ▶ With rational constants: MTL_Q = FO_Q [H., Ouaknine and Worrell 13]

 $\mathsf{MTL}_{\mathcal{K}}\subseteq\mathsf{FO}_{\mathcal{K}}$

- With no constants: $MTL_{\{0\}} = FO_{\{0\}}$ [Kamp 68]
- ▶ With integer constants: $MTL_{\mathbb{Z}} \neq FO_{\mathbb{Z}}$ [Hirshfeld and Rabinovich 07]
- ▶ With rational constants: MTL_Q = FO_Q [H., Ouaknine and Worrell 13]

 $\mathsf{MTL}_{\mathcal{K}}\subseteq\mathsf{FO}_{\mathcal{K}}$

- With no constants: $MTL_{\{0\}} = FO_{\{0\}}$ [Kamp 68]
- ▶ With integer constants: $MTL_{\mathbb{Z}} \neq FO_{\mathbb{Z}}$ [Hirshfeld and Rabinovich 07]
- \blacktriangleright With rational constants: $MTL_{\mathbb{Q}}=FO_{\mathbb{Q}}$ [H., Ouaknine and Worrell 13]

Failure of Kamp's theorem

 $\text{MTL}_{\mathbb{Z}}$ is unable to express:

"P occurs twice in the next time interval."

Corollary

"P occurs twice in the next time interval" is expressible in MTL_{\odot} .

Failure of Kamp's theorem

 $\text{MTL}_{\mathbb{Z}}$ is able to express:

"P occurs twice in the next two time intervals."

$$\varphi = \mathbf{F}_{(0,1)} (\mathbb{P} \land \mathbf{F}_{(0,1)} \mathbb{P}) \lor \\ (\mathbf{F}_{(0,1)} \mathbb{P} \land \mathbf{F}_{(1,2)} \mathbb{P}) \lor \\ \mathbf{F}_{=2} (\mathbf{P}_{(0,1)} (\mathbb{P} \land \mathbf{P}_{(0,1)} \mathbb{P}))$$

Corollary

"P occurs twice in the next time interval" is expressible in MTL_{\odot} .

Failure of Kamp's theorem

 $\text{MTL}_{\mathbb{Z}}$ is able to express:

"P occurs twice in the next two time intervals."

$$\begin{split} \varphi &= \mathbf{F}_{(0,\frac{1}{2})} \big(\mathbb{P} \wedge \mathbf{F}_{(0,\frac{1}{2})} \mathbb{P} \big) & \lor \\ & (\mathbf{F}_{(0,\frac{1}{2})} \mathbb{P} \wedge \mathbf{F}_{(\frac{1}{2},1)} \mathbb{P} \big) & \lor \\ & \mathbf{F}_{=1} \Big(\mathbf{P}_{(0,\frac{1}{2})} \big(\mathbb{P} \wedge \mathbf{P}_{(0,\frac{1}{2})} \mathbb{P} \big) \Big) \end{split}$$

Corollary

"P occurs twice in the next time interval" is expressible in $MTL_{\mathbb{Q}}$.

Counting is all you need...

Theorem (H. 13)

$MTL_{\mathbb{Z}}$ with counting modalities has the same expressive power as $FO_{\mathbb{Z}}.$

Observation/Exercise

- 1. If \mathcal{K} is a non-dense subgroup of \mathbb{R} then $\mathcal{K} = \epsilon \cdot \mathbb{Z}$.
- 2. If \mathcal{K} is a non-trivial dense subgroup of \mathbb{R} then $MTL_{\mathcal{K}}$ can express the counting modalities.

Counting is all you need...

Theorem (H. 13)

 $MTL_{\mathbb{Z}}$ with counting modalities has the same expressive power as $FO_{\mathbb{Z}}.$

Observation/Exercise

- 1. If \mathcal{K} is a non-dense subgroup of \mathbb{R} then $\mathcal{K} = \epsilon \cdot \mathbb{Z}$.
- 2. If \mathcal{K} is a non-trivial dense subgroup of \mathbb{R} then $MTL_{\mathcal{K}}$ can express the counting modalities.

When is MTL expressively complete?

Theorem (H. 13) $MTL_{\mathcal{K}} = FO_{\mathcal{K}}$ if and only if \mathcal{K} is dense.