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Classic temporal predicate logic

FO(<): First-order logic with < and monadic predicates for
each proposition P ∈ MP:

ϕ ::= x < y | P(x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀x ϕ | ∃ xϕ

For example:

∀x .BRAKE(x) → ∃y .
(

(y < x) ∧ PEDAL(y)
)

.
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Kamp’s theorem

Theorem (Kamp 1968,
GPSS 1980)
LTL is as expressive as FO(<).



Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ∼1990]
is a central quantitative specification formalism for timed
systems.
MTL = LTL + timing constraints on operators:
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moving q time units into the future.
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Main result

Theorem
MTL has the same expressive power as FO(<,+q).
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Separation of temporal logics

Separability is a key property for showing LTL and FO have the
same expressive power.
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I pure past if it is invariant on flows that agree on the past
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Separation of temporal logics

Lemma
LTL is separable.

Theorem (Gabbay 1981)
A temporal logic is expressively
complete if and only if it is separable.

Corollary (Kamp’s theorem)
LTL is expressively complete.



Quantitative separation

Separation does not hold in the quantitative setting.
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A metric temporal formula is:

I pure distant past if it is invariant on flows that agree on
(−∞,−1)

I pure distant future if it is invariant on flows that agree on
(1,∞)

I bounded if there is an N such that it is invariant on all flows
that agree on (−N, N)

A temporal logic is metrically separable if every formula is
equivalent to a boolean combination of pure distant past, pure
distant future and bounded formulas.

Lemma
MTL is metrically separable.

G(BRAKE→ P(5,10)PEDAL) = G(0,11](BRAKE→ P(5,10)PEDAL) ∧
G(11,∞)(BRAKE→ P(5,10)PEDAL)



Quantitative separation
A metric temporal formula is:

I pure distant past if it is invariant on flows that agree on
(−∞,−1)

I pure distant future if it is invariant on flows that agree on
(1,∞)

I bounded if there is an N such that it is invariant on all flows
that agree on (−N, N)

A temporal logic is metrically separable if every formula is
equivalent to a boolean combination of pure distant past, pure
distant future and bounded formulas.

Lemma
MTL is metrically separable.

G(BRAKE→ P(5,10)PEDAL) = G(0,11](BRAKE→ P(5,10)PEDAL) ∧
G(11,∞)(BRAKE→ P(5,10)PEDAL)



Quantitative separation
A metric temporal formula is:

I pure distant past if it is invariant on flows that agree on
(−∞,−1)

I pure distant future if it is invariant on flows that agree on
(1,∞)

I bounded if there is an N such that it is invariant on all flows
that agree on (−N, N)

A temporal logic is metrically separable if every formula is
equivalent to a boolean combination of pure distant past, pure
distant future and bounded formulas.

Lemma
MTL is metrically separable.

G(BRAKE→ P(5,10)PEDAL) = G(0,11](BRAKE→ P(5,10)PEDAL) ∧
G(11,∞)(BRAKE→ P(5,10)PEDAL)



An extension of Gabbay’s theorem

Corollary
MTL can express FO(<,+1) if and only if it can express all
bounded formulas.
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I Cost of expressibility.
I Better generalization of Gabbay’s Theorem.
I Extension to more expressive metric temporal logics.



Conclusions and further work

I First generalization of Kamp’s theorem to the quantitative
setting.

I Generalization of Gabbay’s theorem to the quantitative
setting.

Recent results (CSL 2013):
I Other sets of constants (e.g. R, Z[

√
2]).

I Expressive completeness for MTL with counting.

Still to do:
I Cost of expressibility.
I Better generalization of Gabbay’s Theorem.
I Extension to more expressive metric temporal logics.



Conclusions and further work

I First generalization of Kamp’s theorem to the quantitative
setting.

I Generalization of Gabbay’s theorem to the quantitative
setting.

Recent results (CSL 2013):
I Other sets of constants (e.g. R, Z[

√
2]).

I Expressive completeness for MTL with counting.

Still to do:
I Cost of expressibility.
I Better generalization of Gabbay’s Theorem.
I Extension to more expressive metric temporal logics.


