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Problem
Given a,b,c, M, t € N can the machine reach g¢?



Motivation: Timed automata

Timed automata were introduced by Rajeev Alur at Stanford
during his PhD thesis under David Dill.
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Timed automata were introduced by Rajeev Alur at Stanford
during his PhD thesis under David Dill.

a a a

Accepts timed words over {a} where there are two a's exactly
one time unit apart

Many problems undecidable, but what about reachability?
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Reachability in Timed Automata

PSPACE-complete with 2n + 1 clocks
PSPACE-complete with 3 clocks
NL-complete with 1 clock

Two-clock reachability is equivalent to
bounded one-counter reachability

NP-complete for unbounded one-counter reachability

PSPACE-complete with 2 clocks

[AD9O]
[CY92]

[LMS04]

[HOW12]
[HKOWO09]

[FJ13]
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From timed automata to counter machines

Idea: Store difference of two clocks in counter value
Problem: How to do inequalities?

Solution: Impose upper-bound limit on counter value!
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» One guarded transition q; — qr
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Problem
Given a,b,c, M, t € N can the machine reach g¢?
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Run of the machine can be thought of as a 2-dimensional walk:




Solving the 2-D case

Theorem

Let (m, n) be a feasible point, and let P be the parallelogram
bounded by the parallel lines, x = 0 and x = m. Then there is a

walk from (0,0) to (m, n) if and only if P contains at least
m+ n+ 1 lattice points.



Solving the 2-D case

Theorem

Let (m, n) be a feasible point, and let P be the parallelogram
bounded by the parallel lines, x = 0 and x = m. Then there is a
walk from (0,0) to (m, n) if and only if P contains at least

m+ n+ 1 lattice points.

Theorem (Pick’s theorem)

Let P be a convex polyhedron with vertices on lattice points.
Then

, . 1 ,
Area(P) = #interior points + é#boundary points.



Solving the 2-D case

There are analogues of Pick’s theorem for non-lattice vertices
and in more than 2 dimensions.

Unfortunately there is no analogue of the first theorem in 3
dimensions.



A graph theoretic perspective

Consider the configuration graph Ga b of the counter machine:

» Vertices are integers in [0, M)

» a-edges from nto n+ a; b-edges from nto n+ b and
c-edges from nto n—c.

Reachability in counter machine = Reachability in GY/,, ..

GM_ _has nice properties:

a,b,c
» GM. is a subgraph of GY

a,b,c
M
> Gabc

is a subgraph of Ga bolf M <M.

What does GY, ./GJ look like?



Some group theory

Given a group G and a set S C G the Cayley graph of G with
respect to S is the graph with

» Vertices are elements of G generated by S
» There is an (s-)edge from x to y if y = x - s for some s € S.



Some group theory

Given a group G and a set S C G the Cayley graph of G with
respect to S is the graph with

» Vertices are elements of G generated by S
» There is an (s-)edge from x to y if y = x - s for some s € S.

GQ{M is an induced subgraph of the Cayley graph of (Z, +) with
respect to {a, b, —c}!
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and in-degree at most 1.
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What does GY.. look like?

Lemma
» IfM > a+ c then every vertex has out-degree at least 1
and in-degree at least 1.

» If M < a+ c then every vertex has out-degree at most 1
and in-degree at most 1.

Corollary
If M = a+ c then GQ{’C is a set of (gcd(a, ¢)) disjoint cycles.

Corollary
If M > a+ ¢ and gcd(a, c)|t then there is a path from 0 to t.



From 3-D to 2-D

Theorem
If M > a+ c then reachability in GV

a.b,c reduces to reachability in
Gf 4_p Where d = gcd(a, ¢).
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Gl is a set of disjoint paths. How to tell if s and ¢ are on the

same path?



What about if M < a+ ¢?

Gl is a set of disjoint paths. How to tell if s and ¢ are on the

same path?

Solution: Look at the maximum value between s and t on
Gate.



A modular arithmetic perspective

The vertices of G55° are [0, a + ¢) which are the integers
modulo a + c. Also, +a= —c (mod a+ c).

Traversing G3£° is equivalent to taking multiples of a modulo
a+c.



A modular arithmetic perspective

The vertices of G55° are [0, a + ¢) which are the integers
modulo a + c. Also, +a= —c (mod a+ c).

Traversing G3£° is equivalent to taking multiples of a modulo
a+c.

Problem

Given a, M, t let n be the smallest positive integer such that
t=n-a (mod M). What is the maximum value of {i - a
(mod M) : 0<i<n}?



Fibonacci representation

Every natural number can be written as a sum of Fibonacci

numbers,
k
n= Z iF;
=1

where §; € {0,1} and F; is the i-th Fibonacci number. With the
rewrite rule 011 — 100 this representation is unique. This is the
Fibonacci representation.



Facts about the Fibonacci representation

The Fibonacci representation of n is logarithmic in the size
of n

There is a 1-1 correspondence with fit-strings and
polynomials in Z[X]/(X? — X — 1)

There is a 1-1 correspondence with fit-strings and
elements of Z(p)

The Fibonacci representation can be seen as the “base-¢
representation”.



Negafibonacci representation

Every integer can be written as a sum of negaFibonacci

numbers,
k
n= Z iFi
=1

where §; € {0,1} and F; is the (—i)-th Fibonacci number.



Negafibonacci representation

Every integer can be written as a sum of negaFibonacci

numbers,
K
n= Z iFi
i=1
where §; € {0,1} and F; is the (—i)-th Fibonacci number.

Application: Navigating a tiling of the hyperbolic plane [Knuth].



Euclidean representation

Let p = a+ ¢, 1 = a and consider the sequence of r; and g;
generated by the Euclidean algorithm via

li = Qit1 - lipr + Tig2.

Theorem
Every integer N € [—a, ¢) has a unique representation of the

form
m

N=> (-1)"*"b;-r
i=1
where0 < by <qy —1;,0< bk < qx, fork > 2 and b, =0 if
bk+1 = qk+1. Moreover, the difference between lexicographic
neighbours in this encoding is either a or —c.



Euclidean representation example

Consider a=17, ¢ = 5:

22 = 11745 (g1 =1)
17 = 35+2 (2 =3)
5 = 2241 (gs =2)
2 = 2140 (94 =2)

Permissible bsbsbs (b = 0):

000(0)  010(2)  020(4)  103(—16) 113(—14) 202(-12
001(-5) 011(=3) 100(—1) 110(1)  120(3)  203(-17
002(—10) 012(—8) 101(—6) 111(-4) 200(-2)
003(—15) 013(—13) 102(—11) 112(-9) 201(-7)



Algorithm for 2-D reachability

Finding the maximum value between s and t on G3%° then
becomes:

» Compute the representation of s and ¢

» Solve the resulting linear constraint problem to find the
maximum value between s and ¢



Ostrowski representation

The Ostrowski representation can be seen as a generalization
of (nega)Fibonacci representation. Given o € R let

[ag, @1, . . .| be the continued fraction representation of «. That
is:
1
a=ag+t —————
a +
a +...
Let % represent the n-th approximation of « and let

9,», = ané - pn.




Ostrowski representation

Theorem
If o is irrational then

» Every natural number N can be written uniquely in the form

m
N = Z biq;i—+
i—1

where0 < by <ay—1;0< by < ag, fork>2and b, =0
If bk+1 == ak+1 .
» Every real number x € [—a,1 — «) can be written uniquely

in the form -
X = Z b,'@,'_1
i=1

whereQ < by <a; —1;0< by < ag, fork > 2, by =0 if
bxi1 = ak1 and by # ax for infinitely many odd indices.



What's going on?

Intuitively Y72, bif;_1 is the fractional part (shifted to
[—a,1 — «)) of Na where

N = Z biqi_1.
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What's going on?

Intuitively Y72, bif;_1 is the fractional part (shifted to
[—a,1 — «)) of Na where

N = Z biqi_1.
i—1

Integer multiples of 22; modulo 1 are equivalent to integer

multiples of a modulo a+ ¢

When « is rational,
» The continued fraction for « is finite so the Ostrowski
representation is finite, and
> 0p = (—1)""172 where r; is derived from the Euclidean
algorithm.

Corollary

The Euclidean representation is equivalent to the Ostrowski
representation
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