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The problem

Bounded one-counter machine:

qI qF

+a+b

−c

= t?

◮ One counter, taking integer values in [0,M)

◮ One guarded transition qI → qF

◮ Three increment/decrement transitions qI → qI

Problem
Given a, b, c,M, t ∈ N can the machine reach qF ?
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Motivation: Timed automata

Timed automata were introduced by Rajeev Alur at Stanford

during his PhD thesis under David Dill.

a a a

x := 0 x = 1?

Accepts timed words over {a} where there are two a’s exactly

one time unit apart

Many problems undecidable, but what about reachability?



Motivation: Timed automata

Timed automata were introduced by Rajeev Alur at Stanford

during his PhD thesis under David Dill.

a a a

x := 0 x = 1?

Accepts timed words over {a} where there are two a’s exactly

one time unit apart

Many problems undecidable, but what about reachability?



Reachability in Timed Automata

PSPACE-complete with 2n + 1 clocks [AD90]

PSPACE-complete with 3 clocks [CY92]

NL-complete with 1 clock [LMS04]

Two-clock reachability is equivalent to

bounded one-counter reachability [HOW12]

NP-complete for unbounded one-counter reachability [HKOW09]

PSPACE-complete with 2 clocks [FJ13]
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Idea: Store difference of two clocks in counter value

Problem: How to do inequalities?

Solution: Impose upper-bound limit on counter value!
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Solving the 2-D case

Theorem
Let (m, n) be a feasible point, and let P be the parallelogram

bounded by the parallel lines, x = 0 and x = m. Then there is a

walk from (0, 0) to (m, n) if and only if P contains at least

m + n + 1 lattice points.

Theorem (Pick’s theorem)

Let P be a convex polyhedron with vertices on lattice points.

Then

Area(P) = #interior points +
1

2
#boundary points.
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Solving the 2-D case

There are analogues of Pick’s theorem for non-lattice vertices

and in more than 2 dimensions.

Unfortunately there is no analogue of the first theorem in 3

dimensions.



A graph theoretic perspective

Consider the configuration graph GM
a,b,c of the counter machine:

◮ Vertices are integers in [0,M)

◮ a-edges from n to n + a; b-edges from n to n + b and

c-edges from n to n − c.

Reachability in counter machine = Reachability in GM
a,b,c .

GM
a,b,c has nice properties:

◮ GM
a,c is a subgraph of GM

a,b,c

◮ GM′

a,b,c is a subgraph of GM
a,b,c if M ′ ≤ M.

What does GM
a,b,c /GM

a,c look like?



Some group theory

Given a group G and a set S ⊆ G the Cayley graph of G with

respect to S is the graph with

◮ Vertices are elements of G generated by S

◮ There is an (s-)edge from x to y if y = x · s for some s ∈ S.

GM
a,b,c is an induced subgraph of the Cayley graph of (Z,+) with

respect to {a, b,−c}!
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What does GM
a,c look like?

Lemma

◮ If M ≥ a + c then every vertex has out-degree at least 1

and in-degree at least 1.

◮ If M ≤ a + c then every vertex has out-degree at most 1

and in-degree at most 1.

Corollary

If M = a + c then GM
a,c is a set of (gcd(a, c)) disjoint cycles.

Corollary

If M ≥ a + c and gcd(a, c)|t then there is a path from 0 to t.
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From 3-D to 2-D

Theorem
If M ≥ a + c then reachability in GM

a,b,c reduces to reachability in

Gd
b,d−b where d = gcd(a, c).



What about if M < a + c?

GM
a,b,c is a set of disjoint paths. How to tell if s and t are on the

same path?

Solution: Look at the maximum value between s and t on

Ga+c
a,c .
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A modular arithmetic perspective

The vertices of Ga+c
a,c are [0, a + c) which are the integers

modulo a + c. Also, +a ≡ −c (mod a + c).

Traversing Ga+c
a,c is equivalent to taking multiples of a modulo

a + c.

Problem
Given a,M, t let n be the smallest positive integer such that

t ≡ n · a (mod M). What is the maximum value of {i · a

(mod M) : 0 ≤ i ≤ n}?
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Fibonacci representation

Every natural number can be written as a sum of Fibonacci

numbers,

n =

k∑

i=1

δiFi

where δi ∈ {0, 1} and Fi is the i-th Fibonacci number. With the

rewrite rule 011 → 100 this representation is unique. This is the

Fibonacci representation.



Facts about the Fibonacci representation

◮ The Fibonacci representation of n is logarithmic in the size

of n

◮ There is a 1-1 correspondence with fit-strings and

polynomials in Z[X ]/(X 2 − X − 1)

◮ There is a 1-1 correspondence with fit-strings and

elements of Z(ϕ)

◮ The Fibonacci representation can be seen as the “base-ϕ
representation”.



Negafibonacci representation

Every integer can be written as a sum of negaFibonacci

numbers,

n =
k∑

i=1

δiFi

where δi ∈ {0, 1} and Fi is the (−i)-th Fibonacci number.

Application: Navigating a tiling of the hyperbolic plane [Knuth].
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Euclidean representation

Let r0 = a + c, r1 = a and consider the sequence of ri and qi

generated by the Euclidean algorithm via

ri = qi+1 · ri+1 + ri+2.

Theorem
Every integer N ∈ [−a, c) has a unique representation of the

form

N =
m∑

i=1

(−1)i+1bi · ri

where 0 ≤ b1 ≤ q1 − 1; 0 ≤ bk ≤ qk , for k ≥ 2 and bk = 0 if

bk+1 = qk+1. Moreover, the difference between lexicographic

neighbours in this encoding is either a or −c.



Euclidean representation example

Consider a = 17, c = 5:

22 = 1.17 + 5 (q1 = 1)
17 = 3.5 + 2 (q2 = 3)

5 = 2.2 + 1 (q3 = 2)
2 = 2.1 + 0 (q4 = 2)

Permissible b4b3b2 (b1 = 0):

000(0) 010(2) 020(4) 103(−16) 113(−14) 202(−12)
001(−5) 011(−3) 100(−1) 110(1) 120(3) 203(−17)
002(−10) 012(−8) 101(−6) 111(−4) 200(−2)
003(−15) 013(−13) 102(−11) 112(−9) 201(−7)



Algorithm for 2-D reachability

Finding the maximum value between s and t on Ga+c
a,c then

becomes:

◮ Compute the representation of s and t

◮ Solve the resulting linear constraint problem to find the

maximum value between s and t



Ostrowski representation

The Ostrowski representation can be seen as a generalization

of (nega)Fibonacci representation. Given α ∈ R≥0 let

[a0, a1, . . .] be the continued fraction representation of α. That

is:

α = a0 +
1

a1 +
1

a2 + . . .

Let pn

qn
represent the n-th approximation of α and let

θn = qnα− pn.



Ostrowski representation

Theorem
If α is irrational then

◮ Every natural number N can be written uniquely in the form

N =
m∑

i=1

biqi−1

where 0 ≤ b1 ≤ a1 − 1; 0 ≤ bk ≤ ak , for k ≥ 2 and bk = 0

if bk+1 = ak+1.

◮ Every real number x ∈ [−α, 1 − α) can be written uniquely

in the form

x =
∞∑

i=1

biθi−1

where 0 ≤ b1 ≤ a1 − 1; 0 ≤ bk ≤ ak , for k ≥ 2, bk = 0 if

bk+1 = ak+1 and bk 6= ak for infinitely many odd indices.



What’s going on?

Intuitively
∑∞

i=1 biθi−1 is the fractional part (shifted to

[−α, 1 − α)) of Nα where

N =
∞∑

i=1

biqi−1.

Integer multiples of a
a+c modulo 1 are equivalent to integer

multiples of a modulo a + c

When α is rational,

◮ The continued fraction for α is finite so the Ostrowski

representation is finite, and

◮ θn = (−1)n+1 rn
r0

where ri is derived from the Euclidean

algorithm.

Corollary

The Euclidean representation is equivalent to the Ostrowski

representation
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