Reachability in 2-clock automata:

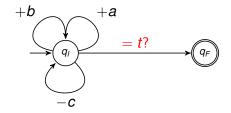
A deceptively hard problem

Paul Hunter

Université Libre de Bruxelles

MFV, December 2013

Bounded one-counter machine:

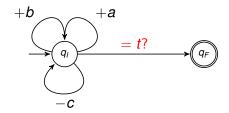


- ➤ One counter, taking integer values in [0, M)
- One guarded transition $q_l o q_F$
- ▶ Three increment/decrement transitions $q_l \rightarrow q_l$

Problem

Given $a,b,c,M,t\in\mathbb{N}$ can the machine reach q_F ?

Bounded one-counter machine:

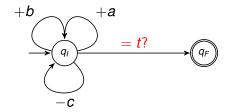


- ➤ One counter, taking integer values in [0, M)
- One guarded transition $q_I \rightarrow q_F$
- ▶ Three increment/decrement transitions $q_l \rightarrow q_l$

Problem

Given $a,b,c,M,t\in\mathbb{N}$ can the machine reach q_F ?

Bounded one-counter machine:



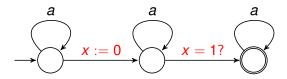
- ➤ One counter, taking integer values in [0, M)
- ▶ One guarded transition $q_I \rightarrow q_F$
- ▶ Three increment/decrement transitions $q_l o q_l$

Problem

Given $a, b, c, M, t \in \mathbb{N}$ can the machine reach q_F ?

Motivation: Timed automata

Timed automata were introduced by Rajeev Alur at Stanford during his PhD thesis under David Dill.

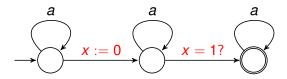


Accepts timed words over {a} where there are two a's exactly one time unit apart

Many problems undecidable, but what about reachability?

Motivation: Timed automata

Timed automata were introduced by Rajeev Alur at Stanford during his PhD thesis under David Dill.



Accepts timed words over {a} where there are two a's exactly one time unit apart

Many problems undecidable, but what about reachability?

PSPACE-complete with $2n + 1$ clocks	[AD90]
NL-complete with 1 clock	[LMS04]
NP-complete for unbounded one-counter reachability	

PSPACE-complete with $2n + 1$ clocks	[AD90]
PSPACE-complete with 3 clocks	[CY92]
NL-complete with 1 clock	[LMS04]
NP-complete for unbounded one-counter reachability	

PSPACE-complete with $2n + 1$ clocks	[AD90]
PSPACE-complete with 3 clocks	[CY92]
NL-complete with 1 clock	[LMS04]
Two-clock reachability is equivalent to bounded one-counter reachability	[HOW12]
NP-complete for unbounded one-counter reachability	/ [HKOW09]

PSPACE-complete with $2n + 1$ clocks	[AD90]
PSPACE-complete with 3 clocks	[CY92]
NL-complete with 1 clock	[LMS04]
Two-clock reachability is equivalent to bounded one-counter reachability	[HOW12]
NP-complete for unbounded one-counter reachability	[HKOW09]
PSPACE-complete with 2 clocks	[FJ13]

From timed automata to counter machines

Idea: Store difference of two clocks in counter value

Problem: How to do inequalities?

Solution: Impose upper-bound limit on counter value!

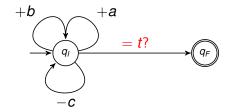
From timed automata to counter machines

Idea: Store difference of two clocks in counter value

Problem: How to do inequalities?

Solution: Impose upper-bound limit on counter value!

Bounded one-counter machine:

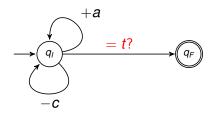


- ➤ One counter, taking integer values in [0, M)
- ▶ One guarded transition $q_I \rightarrow q_F$
- ▶ Three increment/decrement transitions $q_l o q_l$

Problem

Given $a, b, c, M, t \in \mathbb{N}$ can the machine reach q_F ?

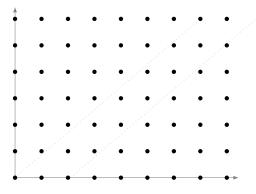
Bounded one-counter machine:

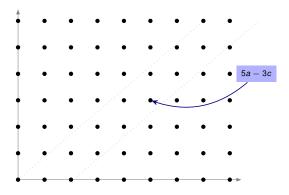


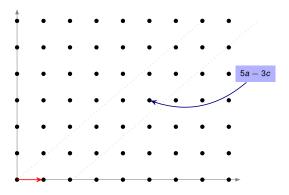
- ➤ One counter, taking integer values in [0, M)
- ▶ One guarded transition $q_I \rightarrow q_F$
- ▶ Three increment/decrement transitions $q_l \rightarrow q_l$

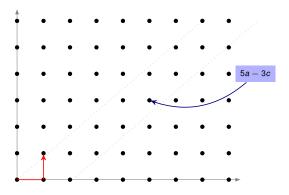
Problem

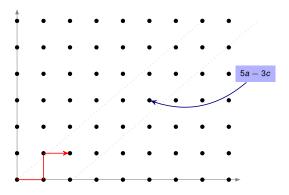
Given $a, b, c, M, t \in \mathbb{N}$ can the machine reach q_F ?

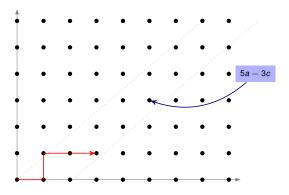


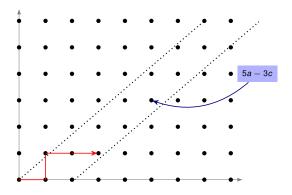


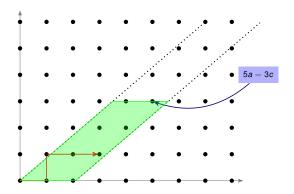












Solving the 2-D case

Theorem

Let (m, n) be a feasible point, and let P be the parallelogram bounded by the parallel lines, x = 0 and x = m. Then there is a walk from (0,0) to (m,n) if and only if P contains at least m + n + 1 lattice points.

Theorem (Pick's theorem)

Let P be a convex polyhedron with vertices on lattice points Then

 $Area(P) = \#interior\ points + \frac{1}{2}\#boundary\ points.$

Solving the 2-D case

Theorem

Let (m, n) be a feasible point, and let P be the parallelogram bounded by the parallel lines, x = 0 and x = m. Then there is a walk from (0,0) to (m,n) if and only if P contains at least m + n + 1 lattice points.

Theorem (Pick's theorem)

Let P be a convex polyhedron with vertices on lattice points. Then

$$Area(P) = #interior points + \frac{1}{2}#boundary points.$$

Solving the 2-D case

There are analogues of Pick's theorem for non-lattice vertices and in more than 2 dimensions.

Unfortunately there is no analogue of the first theorem in 3 dimensions.

A graph theoretic perspective

Consider the configuration graph $G_{a,b,c}^{M}$ of the counter machine:

- Vertices are integers in [0, M)
- a-edges from n to n + a; b-edges from n to n + b and c-edges from n to n − c.

Reachability in counter machine = Reachability in $G_{a,b,c}^{M}$.

 $G_{a,b,c}^{M}$ has nice properties:

- $G_{a,c}^M$ is a subgraph of $G_{a,b,c}^M$
- ▶ $G_{a,b,c}^{M'}$ is a subgraph of $G_{a,b,c}^{M}$ if $M' \leq M$.

What does $G_{a,b,c}^{M}/G_{a,c}^{M}$ look like?

Some group theory

Given a group G and a set $S \subseteq G$ the Cayley graph of G with respect to S is the graph with

- Vertices are elements of G generated by S
- ▶ There is an (s-)edge from x to y if $y = x \cdot s$ for some $s \in S$.

 $G_{a,b,c}^{M}$ is an induced subgraph of the Cayley graph of $(\mathbb{Z},+)$ with respect to $\{a,b,-c\}$!

Some group theory

Given a group G and a set $S \subseteq G$ the Cayley graph of G with respect to S is the graph with

- Vertices are elements of G generated by S
- ▶ There is an (s-)edge from x to y if $y = x \cdot s$ for some $s \in S$.

 $G_{a,b,c}^{M}$ is an induced subgraph of the Cayley graph of $(\mathbb{Z},+)$ with respect to $\{a,b,-c\}!$

What does $G_{a,c}^{M}$ look like?

Lemma

- If M ≥ a + c then every vertex has out-degree at least 1 and in-degree at least 1.
- If M ≤ a + c then every vertex has out-degree at most 1 and in-degree at most 1.

Corollary

If M=a+c then $G^M_{a,c}$ is a set of (gcd(a,c)) disjoint cycles.

Corollary

If $M \ge a + c$ and gcd(a, c)|t then there is a path from 0 to t.

What does $G_{a,c}^{M}$ look like?

Lemma

- If M ≥ a + c then every vertex has out-degree at least 1 and in-degree at least 1.
- If M ≤ a + c then every vertex has out-degree at most 1 and in-degree at most 1.

Corollary

If M = a + c then $G_{a,c}^{M}$ is a set of $(\gcd(a,c))$ disjoint cycles.

Corollary

If $M \ge a + c$ and gcd(a, c)|t then there is a path from 0 to t.

What does $G_{a,c}^{M}$ look like?

Lemma

- If M ≥ a + c then every vertex has out-degree at least 1 and in-degree at least 1.
- If M ≤ a + c then every vertex has out-degree at most 1 and in-degree at most 1.

Corollary

If M = a + c then $G_{a,c}^{M}$ is a set of $(\gcd(a,c))$ disjoint cycles.

Corollary

If $M \ge a + c$ and gcd(a, c)|t then there is a path from 0 to t.

From 3-D to 2-D

Theorem

If $M \ge a + c$ then reachability in $G^M_{a,b,c}$ reduces to reachability in $G^d_{b,d-b}$ where $d = \gcd(a,c)$.

What about if M < a + c?

 $G_{a,b,c}^{M}$ is a set of disjoint paths. How to tell if s and t are on the same path?

Solution: Look at the maximum value between s and t or $G_{a\,c}^{a+c}$.

What about if M < a + c?

 $G_{a,b,c}^{M}$ is a set of disjoint paths. How to tell if s and t are on the same path?

Solution: Look at the maximum value between s and t on G_{a}^{a+c} .

A modular arithmetic perspective

The vertices of $G_{a,c}^{a+c}$ are [0, a+c) which are the integers modulo a+c. Also, $+a \equiv -c \pmod{a+c}$.

Traversing $G_{a,c}^{a+c}$ is equivalent to taking multiples of a modulo a+c.

Problem

Given a, M, t let n be the smallest positive integer such that $t \equiv n \cdot a \pmod{M}$. What is the maximum value of $\{i \cdot a \pmod{M} : 0 \le i \le n\}$?

A modular arithmetic perspective

The vertices of $G_{a,c}^{a+c}$ are [0, a+c) which are the integers modulo a+c. Also, $+a \equiv -c \pmod{a+c}$.

Traversing $G_{a,c}^{a+c}$ is equivalent to taking multiples of a modulo a+c.

Problem

Given a, M, t let n be the smallest positive integer such that $t \equiv n \cdot a \pmod{M}$. What is the maximum value of $\{i \cdot a \pmod{M} : 0 \le i \le n\}$?

Fibonacci representation

Every natural number can be written as a sum of Fibonacci numbers,

$$n = \sum_{i=1}^{k} \delta_i F_i$$

where $\delta_i \in \{0,1\}$ and F_i is the *i*-th Fibonacci number. With the rewrite rule 011 \rightarrow 100 this representation is unique. This is the Fibonacci representation.

Facts about the Fibonacci representation

- ► The Fibonacci representation of *n* is logarithmic in the size of *n*
- ► There is a 1-1 correspondence with fit-strings and polynomials in $\mathbb{Z}[X]/(X^2-X-1)$
- ▶ There is a 1-1 correspondence with fit-strings and elements of $\mathbb{Z}(\varphi)$
- ▶ The Fibonacci representation can be seen as the "base- φ representation".

Negafibonacci representation

Every integer can be written as a sum of negaFibonacci numbers,

$$n = \sum_{i=1}^{k} \delta_i F_i$$

where $\delta_i \in \{0, 1\}$ and F_i is the (-i)-th Fibonacci number.

Application: Navigating a tiling of the hyperbolic plane [Knuth]

Negafibonacci representation

Every integer can be written as a sum of negaFibonacci numbers,

$$n = \sum_{i=1}^{k} \delta_i F_i$$

where $\delta_i \in \{0, 1\}$ and F_i is the (-i)-th Fibonacci number.

Application: Navigating a tiling of the hyperbolic plane [Knuth].

Euclidean representation

Let $r_0 = a + c$, $r_1 = a$ and consider the sequence of r_i and q_i generated by the Euclidean algorithm via

$$r_i = q_{i+1} \cdot r_{i+1} + r_{i+2}$$
.

Theorem

Every integer $N \in [-a, c)$ has a unique representation of the form

$$N = \sum_{i=1}^{m} (-1)^{i+1} b_i \cdot r_i$$

where $0 \le b_1 \le q_1 - 1$; $0 \le b_k \le q_k$, for $k \ge 2$ and $b_k = 0$ if $b_{k+1} = q_{k+1}$. Moreover, the difference between lexicographic neighbours in this encoding is either a or -c.

Euclidean representation example

Consider a = 17, c = 5:

$$egin{array}{llll} 22&=&1.17+5&&(q_1=1)\ 17&=&3.5+2&&(q_2=3)\ 5&=&2.2+1&&(q_3=2)\ 2&=&2.1+0&&(q_4=2) \end{array}$$

Permissible $b_4b_3b_2$ ($b_1=0$):

()	010(2)	()	` ,	113(-14)	`
001(-5) 002(-10)	011(-3) 012(-8)	(/	()	120(3) 200(-2)	203(-17
003(-15)	013(-13)	102(-11)	112(-9)	201(-7)	

Algorithm for 2-D reachability

Finding the maximum value between s and t on $G_{a,c}^{a+c}$ then becomes:

- Compute the representation of s and t
- Solve the resulting linear constraint problem to find the maximum value between s and t

Ostrowski representation

The Ostrowski representation can be seen as a generalization of (nega)Fibonacci representation. Given $\alpha \in \mathbb{R}_{\geq 0}$ let

 $[a_0, a_1, \ldots]$ be the continued fraction representation of α . That is:

$$\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$$

Let $\frac{p_n}{q_n}$ represent the *n*-th approximation of α and let $\theta_n = q_n \alpha - p_n$.

Ostrowski representation

Theorem

If α is irrational then

Every natural number N can be written uniquely in the form

$$N = \sum_{i=1}^{m} b_i q_{i-1}$$

where $0 \le b_1 \le a_1 - 1$; $0 \le b_k \le a_k$, for $k \ge 2$ and $b_k = 0$ if $b_{k+1} = a_{k+1}$.

► Every real number $x \in [-\alpha, 1 - \alpha)$ can be written uniquely in the form

$$x = \sum_{i=1}^{\infty} b_i \theta_{i-1}$$

where $0 \le b_1 \le a_1 - 1$; $0 \le b_k \le a_k$, for $k \ge 2$, $b_k = 0$ if $b_{k+1} = a_{k+1}$ and $b_k \ne a_k$ for infinitely many odd indices.

What's going on?

Intuitively $\sum_{i=1}^{\infty} b_i \theta_{i-1}$ is the fractional part (shifted to $[-\alpha, 1-\alpha)$) of $N\alpha$ where

$$N=\sum_{i=1}^{\infty}b_iq_{i-1}.$$

Integer multiples of $\frac{a}{a+c}$ modulo 1 are equivalent to integer multiples of a modulo a+c

When α is rational.

- ▶ The continued fraction for α is finite so the Ostrowski representation is finite, and
- $\theta_n = (-1)^{n+1} \frac{r_n}{r_0}$ where r_i is derived from the Euclidean algorithm.

Corollary

The Euclidean representation is equivalent to the Ostrowski representation

What's going on?

Intuitively $\sum_{i=1}^{\infty} b_i \theta_{i-1}$ is the fractional part (shifted to $[-\alpha, 1-\alpha)$) of $N\alpha$ where

$$N=\sum_{i=1}^{\infty}b_iq_{i-1}.$$

Integer multiples of $\frac{a}{a+c}$ modulo 1 are equivalent to integer multiples of a modulo a+c

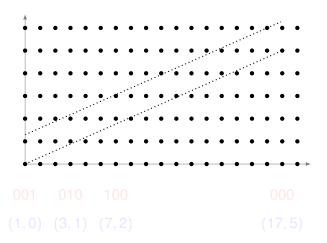
When α is rational,

- ▶ The continued fraction for α is finite so the Ostrowski representation is finite, and
- $\theta_n = (-1)^{n+1} \frac{r_n}{r_0}$ where r_i is derived from the Euclidean algorithm.

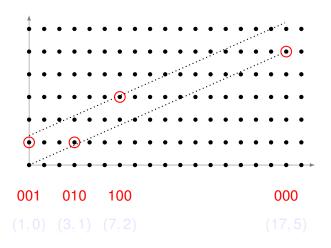
Corollary

The Euclidean representation is equivalent to the Ostrowski representation

Returning to geometry



Returning to geometry



Returning to geometry

