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Motivation

Two player games can be used to model reactive systems

vs

System Environment

Quantitative games let us model resource-constrained systems



Quantitative games

For example
• Various economic utility functions
• Power consumption

• Maximum, Average, Total
• Long term statistics



Quantitative games

Played on a finite, weighted arena
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Players move a token around generating a sequence of weights

Value of the play is given by a payoff function which Eve
(Adam) tries to maximize (minimize)
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Example payoff functions

inf/sup: Minimum (maximum) weight visited
liminf/limsup: Minimum (maximum) weight visited infinitely often
Mean payoff: Limiting average weight: lim inf

∑∞
n=1

wn
n

Discount sum: With discount factor λ ∈ (0,1):
∑∞

n=1 λ
nwn

Total energy: Minimum total weight: inf
∑∞

n=1 wn

Total sum: Minimum total weight seen infinitely often:
lim inf

∑∞
n=1 wn
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Problems

Given a weighted arena and a starting vertex:

Value problem:
Compute the value of the payoff function

Threshold problem:
Decide if the value is above a given threshold ν



Reductions (classical)

Safety/Reachability inf/sup

liminf/limsupBüchi/co-Büchi

Mean payoffParity
Discount sum

Total sum
SSGs

Value

Decision



Complexity (classical)

Theorem (Memoryless determinacy)
For all these payoff functions the optimal value is achieved with
a positional strategy.

Theorem
For all these games the threshold problem is in NP ∩ coNP.
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Interval objectives: Motivation

Sometimes maximizing/minimizing is not ideal, for example in
efficiency considerations

E.g. A battery-operated system:
• Require at least 8 units of energy, but no more than 10
• Batteries are only cost effective if they run at least at 80%

(on average), so energy cost must lie in
[8,10] ∪ [16,20] ∪ · · ·
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Interval objectives: Problem statement

INTERVAL OBJECTIVE GAME

Instance: A weighted arena G, and a finite union of real
intervals I

Question: Does Eve have a strategy to ensure the payoff lies
in I?

The threshold problem is an interval game with interval [ν,∞)

The exact-value problem is an interval game with
a singleton interval
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Interval games

Interval inf/sup games are still safety/reachability games.

Interval liminf/limsup games are equivalent to parity games.

Interval mean payoff, discount sum and total sum games are
quite different from each other.



Interval games: Memory requirements

Payoff type Single interval Multiple intervals
(Eve/Adam)

lim inf/lim sup Positional Positional
Mean payoff Finite/Positional Infinite
DS (non-singleton) Finite Finite
DS (exact value) Infinite Infinite
Total sum Finite/Infinite Infinite



Interval MPGs require infinite memory

Consider the following game with intervals (0,1] ∪ [2,∞):
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Interval Total Sum games require infinite memory

Consider the following game with intervals (−∞,0) ∪ (0,∞):

+1

0

−1

0

+1

0

+1

−1

0

0

0



Interval Discount Sum games are complicated

After sufficiently many steps the payoff is restricted to a small
interval. If there are no singleton intervals (or singleton gaps),
the game “looks like” the classical case

The exact value problem (i.e. singleton intervals) is much
harder and may require infinite memory



Interval games: Complexity

Payoff type Single interval Multiple intervals
lim inf/lim sup PTIME NP ∩ coNP
Mean payoff NP ∩ coNP PSPACE
DS (non-singleton) PSPACE-complete
DS (exact value) PSPACE-hard
Total sum EXP-hard, EXPSPACE



Single interval MPG

Target interval [a,b]:
1. Remove vertices which have a value < a
2. Remove vertices which have a value > b
3. Repeat until no vertices are removed

Adam has a positional strategy from any vertex removed. Need
to show Eve wins on the remainder

Complexity: V calls to classic MP algorithm
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Multiple interval MPG

Similar idea, Step 2 is a recursive call.

Complexity: V 2r−1 calls to classic MP algorithm

Observation: Strategies have a “small” representation:
2r memoryless sub-strategies

Conjecture
The algorithm runs in NP ∩ coNP
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Multiple interval MPG

Can we do better than V 2r−1 calls? Probably not

Theorem
Parity games reduce to unary encoded multiple interval MPGs

Corollary
A pseudo-polynomial time algorithm for multiple interval MPGs
will solve parity games in polynomial time
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Interval Discount Sum games

With or without singleton intervals...

PSPACE-hardness follows from alternating subset sum:

. . .
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Interval Discount Sum games

With no singleton intervals...

PSPACE membership follows from earlier reduction to the clas-
sical case:

“Sufficiently many” is polynomial in the input, so the game can
be decided in alternating polynomial time.



Interval Discount Sum games

With singleton intervals...

The problem is not even known to be decidable!



Interval Total Sum games

EXP-hardness follows from countdown games

Idea: Play game on V × Z where the second component keeps
track of the total weight so far. Then the winning condition
becomes a parity condition.

1. Transform the game into an exponentially larger parity
game on a one-counter graph

2. Use the PSPACE algorithm for such games to decide the
winner

Note: EXP-EXPSPACE gap appears even for
reachability problems on such graphs
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Open problems

• Precise complexity of multiple interval MPGs (between
NP ∩ coNP and PSPACE)

• Decidability of Exact-Value Discount Sum
• Close the complexity gap (EXP-EXPSPACE) for Interval

Total Sum games


