The Expressiveness of Metric Temporal Logic II:

This time it's irrational!

#### Paul Hunter

Université Libre de Bruxelles





(Joint work with Joël Ouaknine and James Worrell)

Verification seminar, Oxford, June 2013

Timed systems are everywhere:

- Hardware circuits
- Communication protocols
- Cell phones
- Plant controllers
- Aircraft navigation systems

▶ ...





Want to specify:

#### "If I press the brake pedal then the pads will be applied."

"If the brakes are applied then the pedal has been pressed."

Expressiveness vs Computability





Want to specify:

"If I press the brake pedal then the pads will be applied."

"If the brakes are applied then the pedal has been pressed."

Expressiveness vs Computability





Want to specify:

"If I press the brake pedal then the pads will be applied."

"If the brakes are applied then the pedal has been pressed."

Expressiveness vs Computability

### **Classic temporal logic**

Metric temporal logic

Extending Kamp's Theorem (again)

### **Temporal models**

- A set **MP** of propositions: *P*, *Q*, *R*, ...
- ► Continuous time model: ℝ

### **Temporal models**

- ► A set **MP** of propositions: *P*, *Q*, *R*, ...
- ► Continuous time model: ℝ

$$f: \mathbb{R} \to 2^{MP}$$
 (flow or signal)

### **Temporal models**

- A set **MP** of propositions: *P*, *Q*, *R*, ...
- ► Continuous time model: ℝ

$$f: \mathbb{R} \to 2^{\mathsf{MP}}$$
 (flow or signal)



#### Classic temporal predicate logic

FO(<): First-order logic with < and monadic predicates for each proposition  $P \in MP$ :

 $\varphi ::= \mathbf{x} < \mathbf{y} | P(\mathbf{x}) | \varphi_1 \land \varphi_2 | \varphi_1 \lor \varphi_2 | \neg \varphi | \forall \mathbf{x} \varphi | \exists \mathbf{x} \varphi$ or example:

 $\forall x . pedal(x) \rightarrow \exists y . ((y > x) \land brake(y)).$ 

 $\forall x . \texttt{BRAKE}(x) \rightarrow \exists y . ((y < x) \land \texttt{PEDAL}(y)).$ 

#### Classic temporal predicate logic

FO(<): First-order logic with < and monadic predicates for each proposition  $P \in MP$ :

 $\varphi ::= x < y | P(x) | \varphi_1 \land \varphi_2 | \varphi_1 \lor \varphi_2 | \neg \varphi | \forall x \varphi | \exists x \varphi$ For example:

$$\forall x . \texttt{PEDAL}(x) \rightarrow \exists y . ((y > x) \land \texttt{BRAKE}(y)).$$

 $\forall x . \texttt{BRAKE}(x) \rightarrow \exists y . ((y < x) \land \texttt{PEDAL}(y)).$ 

### Temporal logic: LTL

Linear Temporal Logic (LTL): Propositional logic with temporal modalities:

For example,

 ${f G}\left({ t PEDAL}
ightarrow{f F}{ t BRAKE}
ight)$ 

### Temporal logic: LTL

Linear Temporal Logic (LTL): Propositional logic with temporal modalities:

For example,

 $G(PEDAL \rightarrow F BRAKE)$ 

 ${f G}\left( { ext{BRAKE}} 
ightarrow {f P} ext{PEDAL} 
ight)$ 

### Temporal logic: LTL

Linear Temporal Logic (LTL): Propositional logic with temporal modalities:

For example,

**G** (PEDAL 
$$\rightarrow$$
 **F** BRAKE)

 $\mathbf{G}$  (brake  $\rightarrow \mathbf{P}$  pedal)

### LTL is all you need

LTL has emerged as *the* definitive temporal logic in the classical setting.

Theorem (Kamp 1968, GPSS 1980) *LTL is as expressive as FO(<).* 

### LTL is all you need

LTL has emerged as *the* definitive temporal logic in the classical setting.

Theorem (Kamp 1968, GPSS 1980) *LTL is as expressive as FO(<).* 



**Classic temporal logic** 

### **Metric temporal logic**

**Extending Kamp's Theorem (again)** 

### Quantitative setting

#### In reality, timed systems are usually quantitative.

LTL can express:

"If I press the brake pedal then the pads will be applied."

### Quantitative setting

In reality, timed systems are usually quantitative.

LTL can express:

"If I press the brake pedal then the pads will be applied."

### Quantitative setting

In reality, timed systems are usually quantitative.

Want to specify:

*"If I press the brake pedal then the pads will be applied between 0.5ms and 1ms."* 

We want to add a metric to the model so we can enforce certain timing constraints, for example:

# "Apply brake pads between 5 to 10 time units after pedal is pushed".

- Traditional approach: intervals over  $\mathbb{Z}$ .
- Continuous but finitely presentable: intervals over Q (seen in Part I).
- **NEW!** Intervals over an arbitrary additive subgroup of  $\mathbb{R}$ ...

We want to add a metric to the model so we can enforce certain timing constraints, for example:

# "Apply brake pads between 5 to 10 time units after pedal is pushed".

- Traditional approach: intervals over  $\mathbb{Z}$ .
- Continuous but finitely presentable: intervals over Q (seen in Part I).
- ▶ NEW! Intervals over an arbitrary additive subgroup of ℝ...

We want to add a metric to the model so we can enforce certain timing constraints, for example:

# "Apply brake pads between 5 to 10 time units after pedal is pushed".

- ► Traditional approach: intervals over Z.
- Continuous but finitely presentable: intervals over Q (seen in Part I).
- ▶ NEW! Intervals over an arbitrary additive subgroup of R...

We want to add a metric to the model so we can enforce certain timing constraints, for example:

# "Apply brake pads between 5 to 10 time units after pedal is pushed".

- Traditional approach: intervals over  $\mathbb{Z}$ .
- Continuous but finitely presentable: intervals over Q (seen in Part I).
- ▶ NEW! Intervals over an arbitrary additive subgroup of ℝ...

We want to add a metric to the model so we can enforce certain timing constraints, for example:

# "Apply brake pads between 5 to 10 time units after pedal is pushed".

- Traditional approach: intervals over  $\mathbb{Z}$ .
- Continuous but finitely presentable: intervals over Q (seen in Part I).
- **NEW!** Intervals over an arbitrary additive subgroup of  $\mathbb{R}$ ...

### Additive subgroup?

- Can easily form integer linear combinations of timing constants.
- ► Integer linear combinations of K = Subgroup of (R, +) generated by K.

### **Motivation**

#### • Includes most general case ( $\mathcal{K} = \mathbb{R}$ )

- Generalizes previous cases ( $\mathcal{K} = \mathbb{Z}, \mathbb{Q}, \text{ or } \{0\}$ )
- ► Can be used to model multiple independent asynchronous timing systems (e.g. Z[√2])

"Turn on brake lights 5 'pedal-time-units' after pedal is pressed and 3 'pad-time-units' after pads are applied"

### **Motivation**

- Includes most general case ( $\mathcal{K} = \mathbb{R}$ )
- ► Generalizes previous cases (*K* = Z, Q, or {0})

► Can be used to model multiple independent asynchronous timing systems (e.g. Z[√2])

"Turn on brake lights 5 'pedal-time-units' after pedal is pressed and 3 'pad-time-units' after pads are applied"

### **Motivation**

- Includes most general case ( $\mathcal{K} = \mathbb{R}$ )
- ► Generalizes previous cases (*K* = Z, Q, or {0})
- ► Can be used to model multiple independent asynchronous timing systems (e.g. Z[√2])

"Turn on brake lights 5 'pedal-time-units' after pedal is pressed and 3 'pad-time-units' after pads are applied"

### Metric Predicate Logic

### We add many unary functions $\{+c : c \in \mathcal{K}\}$ to FO(<) to model moving *c* time units into the future.

"Apply brake pads between 5 to 10 time units after pedal is pushed"

becomes

 $\forall x. \texttt{PEDAL}(x) \rightarrow \exists y. (x+5 < y < x+10) \land \texttt{BRAKE}(y),$ 

a formula of FO<sub>{5,10}</sub>.

### Metric Predicate Logic

We add many unary functions  $\{+c : c \in \mathcal{K}\}$  to FO(<) to model moving *c* time units into the future.

"Apply brake pads between 5 to 10 time units after pedal is pushed"

becomes

 $\forall x. \texttt{PEDAL}(x) \rightarrow \exists y. (x+5 < y < x+10) \land \texttt{BRAKE}(y),$ 

a formula of  $FO_{\{5,10\}}$ .

# Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli $\sim$ 1990] is a central quantitative specification formalism for timed systems.

MTL<sub>10</sub> = LTL + timing constraints on operators:

$$G(PEDAL \rightarrow F_{(5,10)} BRAKE)$$

Formally,

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli  $\sim$ 1990] is a central quantitative specification formalism for timed systems.

 $MTL_{C} = LTL + timing constraints on operators:$ 

 $G(PEDAL \rightarrow F_{(5,10)} BRAKE)$ 

Formally,

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli  $\sim$ 1990] is a central quantitative specification formalism for timed systems.

 $MTL_{\mathcal{K}} = LTL + timing constraints taken from \mathcal{K} on operators:$ 

 $G(PEDAL \rightarrow F_{(5,10)} BRAKE)$ 

Formally,

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli  $\sim$ 1990] is a central quantitative specification formalism for timed systems.

 $MTL_{\mathcal{K}} = LTL + timing constraints taken from \mathcal{K} on operators:$ 

$$G(PEDAL \rightarrow F_{(5,10)} BRAKE)$$

Formally,

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli  $\sim$ 1990] is a central quantitative specification formalism for timed systems.

 $MTL_{\mathcal{K}} = LTL + timing constraints taken from \mathcal{K} on operators:$ 

$$G(PEDAL \rightarrow F_{(5,10)} BRAKE)$$

Formally,
**Classic temporal logic** 

**Metric temporal logic** 

# Extending Kamp's Theorem (again)

#### Kamp's theorem restated

#### Theorem (Kamp 1968)

 $MTL_{\{0\}}$  has the same expressive power as  $FO_{\{0\}}$ .

#### Part I recap





Theorem (Hirshfeld & Rabinovich 2007)  $MTL_{\mathbb{Z}}$  is strictly less expressive than  $FO_{\mathbb{Z}}$ .

#### Part I recap

# Theorem (H., Ouaknine & Worrell 2013) $MTL_{\mathbb{O}}$ has the same expressive power as $FO_{\mathbb{O}}$ .

What about  $MTL_{\mathbb{R}}$ ? or  $MTL_{\mathbb{Z}[\sqrt{2}]}$ ?

#### A true extension of Kamp's theorem

Theorem (H. 2013)  $MTL_{\mathcal{K}} = FO_{\mathcal{K}}$  if and only if  $\mathcal{K}$  is dense.

### Proof: "Only if"

#### Lemma

If  $\mathcal{K}$  is a non-dense additive subgroup of  $\mathbb{R}$  then  $\mathcal{K} = \epsilon \mathbb{Z}$  for some  $\epsilon \in \mathbb{R}$ .

- 1. Use metric separation to reduce to bounded formulas.
- 2. Scale  $FO_{\mathbb{Q}}$  formula to get a formula in  $FO_{\mathbb{Z}}$ .
- 3. Use "stacking" to remove the +1 function.
- 4. Use denseness of  $\mathbb{Q}$  to express LTL statements restricted to a single time interval.
- 5. Scale to remove the factor introduced in Step 2.

- 1. Use metric separation to reduce to bounded formulas.
- 2. Scale  $FO_{\mathbb{Q}}$  formula to get a formula in  $FO_{\mathbb{Z}}$ .
- 3. Use "stacking" to remove the +1 function.
- 4. Use denseness of  $\mathbb{Q}$  to express LTL statements restricted to a single time interval.
- 5. Scale to remove the factor introduced in Step 2.

- 1. Use metric separation to reduce to bounded formulas.
- 2. Scale  $FO_{\mathbb{Q}}$  formula to get a formula in  $FO_{\mathbb{Z}}$ .
- 3. Use "stacking" to remove the +1 function.
- 4. Use denseness of  $\mathbb{Q}$  to express LTL statements restricted to a single time interval.
- 5. Scale to remove the factor introduced in Step 2.

- 1. Use metric separation to reduce to bounded formulas.
- 2. Scale  $FO_{\mathbb{Q}}$  formula to get a formula in  $FO_{\mathbb{Z}}$ .
- 3. Use "stacking" to remove the +1 function.
- 4. Use denseness of  $\mathbb{Q}$  to express LTL statements restricted to a single time interval.
- 5. Scale to remove the factor introduced in Step 2.

- 1. Use metric separation to reduce to bounded formulas.
- 2. Scale  $FO_{\mathbb{Q}}$  formula to get a formula in  $FO_{\mathbb{Z}}$ .
- 3. Use "stacking" to remove the +1 function.
- 4. Use denseness of  $\mathbb{Q}$  to express LTL statements restricted to a single time interval.
- 5. Scale to remove the factor introduced in Step 2.

- 1. Use metric separation to reduce to bounded formulas.
- 2. Scale  $FO_{\mathbb{Q}}$  formula to get a formula in  $FO_{\mathbb{Z}}$ .
- 3. Use "stacking" to remove the +1 function.
- 4. Use denseness of  $\mathbb{Q}$  to express LTL statements restricted to a single time interval.
- 5. Scale to remove the factor introduced in Step 2.

- 1. Use more general metric separation to reduce to bounded formulas.
- 2. Use a normal form for  $FO_{\mathcal{K}}$  formulas to remove +c functions.
- 3. Use denseness of  $\mathcal{K}$  to express LTL statements restricted to an interval.

- 1. Use more general metric separation to reduce to bounded formulas.
- 2. Use a normal form for  $FO_{\mathcal{K}}$  formulas to remove +c functions.
- 3. Use denseness of  $\mathcal{K}$  to express LTL statements restricted to an interval.

- 1. Use more general metric separation to reduce to bounded formulas.
- 2. Use a normal form for  $FO_{\mathcal{K}}$  formulas to remove +c functions.
- 3. Use denseness of  $\mathcal{K}$  to express LTL statements restricted to an interval.

- 1. Use more general metric separation to reduce to bounded formulas.
- 2. Use a normal form for  $FO_{\mathcal{K}}$  formulas to remove +c functions.
- 3. Use denseness of  $\mathcal{K}$  to express LTL statements restricted to an interval.

A temporal logic formula is

- pure past if it is invariant on flows that agree on the past
- pure present if is invariant on flows that agree on the present
- pure future if is invariant on flows that agree on the future

A temporal logic is separable if all its formulas are equivalent to a boolean combination of pure past, present and future formulas.

A temporal logic formula is

- pure past if it is invariant on flows that agree on the past
- pure present if is invariant on flows that agree on the present
- pure future if is invariant on flows that agree on the future

A temporal logic is separable if all its formulas are equivalent to a boolean combination of pure past, present and future formulas.

For example,

#### $G(\text{BRAKE} \rightarrow P \text{PEDAL})$

= **P** pedal  $\lor$  (¬brake **U** pedal)  $\lor$  **G**(¬brake)

A temporal logic formula is

- pure past if it is invariant on flows that agree on the past
- pure present if is invariant on flows that agree on the present
- pure future if is invariant on flows that agree on the future

A temporal logic is separable if all its formulas are equivalent to a boolean combination of pure past, present and future formulas.

For example,

$$\begin{array}{l} \textbf{G}(\texttt{BRAKE} \rightarrow \textbf{P} \texttt{PEDAL}) \\ = \textbf{P} \texttt{PEDAL} \lor (\neg \texttt{BRAKE} \textbf{U} \texttt{PEDAL}) \lor \textbf{G}(\neg \texttt{BRAKE}) \end{array}$$

A temporal logic formula is

- pure past if it is invariant on flows that agree on the past
- pure present if is invariant on flows that agree on the present
- pure future if is invariant on flows that agree on the future

A temporal logic is separable if all its formulas are equivalent to a boolean combination of pure past, present and future formulas.

Lemma LTL is separable.

#### Gabbay's theorem

#### Theorem (Gabbay 1981)

A temporal logic is expressively complete if and only if it is separable.



#### Quantitative separation

Separation does not hold in the quantitative setting.

For example,

$$G(\texttt{BRAKE} 
ightarrow \mathbf{P}_{(5,10)}\texttt{PEDAL})$$

#### General quantitative separation

Given a constant c > 0, a metric temporal formula is:

- pure *c*-distant past if it is invariant on flows that agree on  $(-\infty, -c)$
- ▶ pure c-distant future if it is invariant on flows that agree on (c,∞)
- ▶ bounded if there is an N such that it is invariant on all flows that agree on (-N, N)

A temporal logic with constants from  $\mathcal{K}$  is generally metrically separable if every formula is equivalent, for some  $c \in \mathcal{K}_{>0}$ , to a boolean combination of pure *c*-distant past, pure *c*-distant future and bounded formulas.

#### Lemma

 $MTL_{\mathcal{K}}$  is generally metrically separable for non-trivial  $\mathcal{K}$ .

#### General quantitative separation

Given a constant c > 0, a metric temporal formula is:

- pure *c*-distant past if it is invariant on flows that agree on  $(-\infty, -c)$
- ▶ pure c-distant future if it is invariant on flows that agree on (c,∞)
- ▶ bounded if there is an N such that it is invariant on all flows that agree on (-N, N)

A temporal logic with constants from  $\mathcal{K}$  is generally metrically separable if every formula is equivalent, for some  $c \in \mathcal{K}_{>0}$ , to a boolean combination of pure *c*-distant past, pure *c*-distant future and bounded formulas.

#### Lemma

 $MTL_{\mathcal{K}}$  is generally metrically separable for non-trivial  $\mathcal{K}$ .

#### General quantitative separation

Given a constant c > 0, a metric temporal formula is:

- ▶ pure *c*-distant past if it is invariant on flows that agree on  $(-\infty, -c)$
- ▶ pure c-distant future if it is invariant on flows that agree on (c,∞)
- ▶ bounded if there is an N such that it is invariant on all flows that agree on (-N, N)

A temporal logic with constants from  $\mathcal{K}$  is generally metrically separable if every formula is equivalent, for some  $c \in \mathcal{K}_{>0}$ , to a boolean combination of pure *c*-distant past, pure *c*-distant future and bounded formulas.

#### Corollary

- 1. Use more general metric separation to reduce to bounded formulas.
- 2. Use a normal form for  $FO_{\mathcal{K}}$  formulas to remove +c functions.
- 3. Use denseness of  $\mathcal{K}$  to express LTL statements restricted to an interval.

First move the unary functions to the free variable (removing from predicates as before).

$$\varphi(x) = \exists y \in (x, x+1) \exists z \in (y, y+\sqrt{2}) \dots$$
$$= \exists y \in (x, x+1) (\exists z \in (y, x+1) \dots$$
$$\lor \exists z \in (x+1, y+\sqrt{2}) \dots)$$
$$= \exists y \in (x, x+1) (\exists z \in (y, x+1) \dots$$
$$\lor \exists z' \in (x+1-\sqrt{2}, y) \dots)$$

 $\varphi(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2) = \exists \mathbf{y} \in (\mathbf{x}_1, \mathbf{x}_2) (\exists \mathbf{z} \in (\mathbf{y}, \mathbf{x}_2) \dots \lor \exists \mathbf{z}' \in (\mathbf{x}_0, \mathbf{y}) \dots)$ 

First move the unary functions to the free variable (removing from predicates as before).

$$\varphi(\mathbf{x}) = \exists \mathbf{y} \in (\mathbf{x}, \mathbf{x} + 1) \exists \mathbf{z} \in (\mathbf{y}, \mathbf{y} + \sqrt{2}) \dots$$
$$= \exists \mathbf{y} \in (\mathbf{x}, \mathbf{x} + 1) (\exists \mathbf{z} \in (\mathbf{y}, \mathbf{x} + 1) \dots \\ \forall \exists \mathbf{z} \in (\mathbf{x} + 1, \mathbf{y} + \sqrt{2}) \dots)$$
$$= \exists \mathbf{y} \in (\mathbf{x}, \mathbf{x} + 1) (\exists \mathbf{z} \in (\mathbf{y}, \mathbf{x} + 1) \dots \\ \forall \exists \mathbf{z}' \in (\mathbf{x} + 1 - \sqrt{2}, \mathbf{y}) \dots)$$

 $\varphi(x_0, x_1, x_2) = \exists y \in (x_1, x_2) (\exists z \in (y, x_2) \dots \lor \exists z' \in (x_0, y) \dots)$ 

First move the unary functions to the free variable (removing from predicates as before).

$$\varphi(\mathbf{x}) = \exists \mathbf{y} \in (\mathbf{x}, \mathbf{x} + 1) \exists \mathbf{z} \in (\mathbf{y}, \mathbf{y} + \sqrt{2}) \dots$$
$$= \exists \mathbf{y} \in (\mathbf{x}, \mathbf{x} + 1) (\exists \mathbf{z} \in (\mathbf{y}, \mathbf{x} + 1) \dots \\ \lor \exists \mathbf{z} \in (\mathbf{x} + 1, \mathbf{y} + \sqrt{2}) \dots)$$
$$= \exists \mathbf{y} \in (\mathbf{x}, \mathbf{x} + 1) (\exists \mathbf{z} \in (\mathbf{y}, \mathbf{x} + 1) \dots \\ \lor \exists \mathbf{z}' \in (\mathbf{x} + 1 - \sqrt{2}, \mathbf{y}) \dots)$$

 $\varphi(x_0, x_1, x_2) = \exists y \in (x_1, x_2) (\exists z \in (y, x_2) \dots \lor \exists z' \in (x_0, y) \dots)$ 

First move the unary functions to the free variable (removing from predicates as before).

$$\varphi(\mathbf{x}) = \exists \mathbf{y} \in (\mathbf{x}, \mathbf{x} + 1) \exists \mathbf{z} \in (\mathbf{y}, \mathbf{y} + \sqrt{2}) \dots$$
$$= \exists \mathbf{y} \in (\mathbf{x}, \mathbf{x} + 1) (\exists \mathbf{z} \in (\mathbf{y}, \mathbf{x} + 1) \dots \\ \lor \exists \mathbf{z} \in (\mathbf{x} + 1, \mathbf{y} + \sqrt{2}) \dots)$$
$$= \exists \mathbf{y} \in (\mathbf{x}, \mathbf{x} + 1) (\exists \mathbf{z} \in (\mathbf{y}, \mathbf{x} + 1) \dots \\ \lor \exists \mathbf{z}' \in (\mathbf{x} + 1 - \sqrt{2}, \mathbf{y}) \dots)$$

 $\varphi(x_0, x_1, x_2) = \exists y \in (x_1, x_2) (\exists z \in (y, x_2) \dots \lor \exists z' \in (x_0, y) \dots)$ 

Replace the "milestones" ({ $x + 1 - \sqrt{2}, x, x + 1$ }) with new variables to obtain a FO(<) formula.

$$\varphi(x) = \exists y \in (x, x+1) \exists z \in (y, y+\sqrt{2}) \dots$$
  
=  $\exists y \in (x, x+1) (\exists z \in (y, x+1) \dots$   
 $\lor \exists z \in (x+1, y+\sqrt{2}) \dots)$   
=  $\exists y \in (x, x+1) (\exists z \in (y, x+1) \dots$   
 $\lor \exists z' \in (x+1-\sqrt{2}, y) \dots)$ 

 $\varphi(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2) = \exists \mathbf{y} \in (\mathbf{x}_1, \mathbf{x}_2) (\exists \mathbf{z} \in (\mathbf{y}, \mathbf{x}_2) \dots \lor \exists \mathbf{z}' \in (\mathbf{x}_0, \mathbf{y}) \dots)$ 

Corollary

Use a model-theoretic argument to break this into formulas on the intervals  $\{x_0\}, (x_0, x_1), \{x_1\}, \ldots$ 

$$\varphi(\mathbf{x}) = \exists \mathbf{y} \in (\mathbf{x}, \mathbf{x} + 1) \exists \mathbf{z} \in (\mathbf{y}, \mathbf{y} + \sqrt{2}) \dots$$
$$= \exists \mathbf{y} \in (\mathbf{x}, \mathbf{x} + 1) (\exists \mathbf{z} \in (\mathbf{y}, \mathbf{x} + 1) \dots \\ \forall \exists \mathbf{z} \in (\mathbf{x} + 1, \mathbf{y} + \sqrt{2}) \dots)$$
$$= \exists \mathbf{y} \in (\mathbf{x}, \mathbf{x} + 1) (\exists \mathbf{z} \in (\mathbf{y}, \mathbf{x} + 1) \dots \\ \forall \exists \mathbf{z}' \in (\mathbf{x} + 1 - \sqrt{2}, \mathbf{y}) \dots)$$

 $\varphi(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2) = \exists \mathbf{y} \in (\mathbf{x}_1, \mathbf{x}_2) (\exists \mathbf{z} \in (\mathbf{y}, \mathbf{x}_2) \ldots \lor \exists \mathbf{z}' \in (\mathbf{x}_0, \mathbf{y}) \ldots)$ 

Corollary

Use a model-theoretic argument to break this into formulas on the intervals  $\{x_0\}, (x_0, x_1), \{x_1\}, \ldots$ 

$$\varphi(\mathbf{x}) = \exists \mathbf{y} \in (\mathbf{x}, \mathbf{x} + 1) \exists \mathbf{z} \in (\mathbf{y}, \mathbf{y} + \sqrt{2}) \dots$$
$$= \exists \mathbf{y} \in (\mathbf{x}, \mathbf{x} + 1) (\exists \mathbf{z} \in (\mathbf{y}, \mathbf{x} + 1) \dots \\ \forall \exists \mathbf{z} \in (\mathbf{x} + 1, \mathbf{y} + \sqrt{2}) \dots)$$
$$= \exists \mathbf{y} \in (\mathbf{x}, \mathbf{x} + 1) (\exists \mathbf{z} \in (\mathbf{y}, \mathbf{x} + 1) \dots \\ \forall \exists \mathbf{z}' \in (\mathbf{x} + 1 - \sqrt{2}, \mathbf{y}) \dots)$$

 $\varphi(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2) = \exists \mathbf{y} \in (\mathbf{x}_1, \mathbf{x}_2) (\exists \mathbf{z} \in (\mathbf{y}, \mathbf{x}_2) \ldots \lor \exists \mathbf{z}' \in (\mathbf{x}_0, \mathbf{y}) \ldots)$ 

#### Corollary

- 1. Use more general metric separation to reduce to bounded formulas.
- 2. Use a normal form for  $FO_{\mathcal{K}}$  formulas to remove +c functions.
- 3. Use denseness of  $\mathcal{K}$  to express LTL statements restricted to an interval.

#### Failure of Kamp's theorem

 $MTL_{\mathbb{Z}}$  is unable to express:

"P occurs twice in the next time interval."

In FO $_{\mathbb{Z}}$ :

 $arphi(z) = \exists x. \exists y. (z < x < z + ) \land (z < y < z + ) \land P(x) \land P(y).$ In MTL<sub>Z</sub>:

#### Failure of Kamp's theorem

 $MTL_{\mathbb{Z}}$  is unable to express:

"P occurs twice in the next time interval."

In FO<sub> $\mathbb{Z}$ </sub>:

 $arphi(z) = \exists x. \exists y. (z < x < z + 1) \land (z < y < z + 1) \land P(x) \land P(y).$ In MTL<sub>Z</sub>:
# Failure of Kamp's theorem

 $MTL_{\mathbb{Z}}$  is able to express:

"P occurs twice in the next two time intervals."

In FO<sub> $\mathbb{Z}$ </sub>:

 $\varphi(z) = \exists x. \exists y. (z < x < z + 2) \land (z < y < z + 2) \land \mathbb{P}(x) \land \mathbb{P}(y).$ In MTL<sub>Z</sub>:

$$\boldsymbol{\varphi} = \mathbf{F}_{(0,1)} (\mathbb{P} \wedge \mathbf{F}_{(0,1)} \mathbb{P}) \vee \\ (\mathbf{F}_{(0,1)} \mathbb{P} \wedge \mathbf{F}_{(1,2)} \mathbb{P}) \vee \\ \mathbf{F}_{=2} (\mathbf{P}_{(0,1)} (\mathbb{P} \wedge \mathbf{P}_{(0,1)} \mathbb{P}))$$

# Failure of Kamp's theorem

 $MTL_{\mathbb{Z}}$  is able to express:

"P occurs twice in the next two time intervals."

In FO<sub> $\mathbb{Z}$ </sub>:

 $\varphi(z) = \exists x. \exists y. (z < x < z + 2) \land (z < y < z + 2) \land P(x) \land P(y).$ In MTL<sub>Z</sub>:

$$\varphi = \mathbf{F}_{(0,1)}(\mathbb{P} \wedge \mathbf{F}_{(0,1)}\mathbb{P}) \vee (\mathbf{F}_{(0,1)}\mathbb{P} \wedge \mathbf{F}_{(1,2)}\mathbb{P}) \vee \mathbf{F}_{=2}(\mathbf{P}_{(0,1)}(\mathbb{P} \wedge \mathbf{P}_{(0,1)}\mathbb{P}))$$

### Failure of Kamp's theorem

 $MTL_{\mathbb{Z}}$  is able to express:

"P occurs twice in the next two time intervals."

In FO<sub> $\mathbb{Z}$ </sub>:

 $\varphi(z) = \exists x. \exists y. (z < x < z + 2) \land (z < y < z + 2) \land \mathbb{P}(x) \land \mathbb{P}(y).$ In MTL<sub>Z</sub>:

$$\varphi = \mathbf{F}_{(0,1)} (\mathbb{P} \wedge \mathbf{F}_{(0,1)} \mathbb{P}) \lor \\ (\mathbf{F}_{(0,1)} \mathbb{P} \wedge \mathbf{F}_{(1,2)} \mathbb{P}) \lor \\ \mathbf{F}_{=2} (\mathbf{P}_{(0,1)} (\mathbb{P} \wedge \mathbf{P}_{(0,1)} \mathbb{P}))$$

#### Corollary

"P occurs twice in the next time interval" is expressible in  $MTL_{\mathbb{Q}}$ .

In fact,  $MTL_{\mathcal{K}}$  can express any LTL (and hence  $FO_{\{0\}}$ ) formula "in the next time interval" as long as  $\mathcal{K}$  is dense and non-trivial.

#### Corollary

$$\begin{split} \varphi &= \mathbf{F}_{(0,\frac{1}{2})} \left( \mathbb{P} \wedge \mathbf{F}_{(0,\frac{1}{2})} \ \mathbb{P} \right) & \lor \\ & \left( \mathbf{F}_{(0,\frac{1}{2})} \ \mathbb{P} \wedge \mathbf{F}_{(\frac{1}{2},1)} \ \mathbb{P} \right) & \lor \\ & \mathbf{F}_{=1} \Big( \mathbf{P}_{(0,\frac{1}{2})} \ \left( \mathbb{P} \wedge \mathbf{P}_{(0,\frac{1}{2})} \ \mathbb{P} \right) \Big) \end{split}$$

#### Corollary

"P occurs twice in the next time interval" is expressible in  $MTL_{\mathbb{Q}}$ .

In fact,  $MTL_{\mathcal{K}}$  can express any LTL (and hence  $FO_{\{0\}}$ ) formula "in the next time interval" as long as  $\mathcal{K}$  is dense and non-trivial.

#### Corollary

$$\begin{split} \varphi &= \mathbf{F}_{(0,\frac{1}{2})} \left( \mathbb{P} \wedge \mathbf{F}_{(0,\frac{1}{2})} \ \mathbb{P} \right) & \lor \\ & \left( \mathbf{F}_{(0,\frac{1}{2})} \ \mathbb{P} \wedge \mathbf{F}_{(\frac{1}{2},1)} \ \mathbb{P} \right) & \lor \\ & \mathbf{F}_{=1} \Big( \mathbf{P}_{(0,\frac{1}{2})} \ \left( \mathbb{P} \wedge \mathbf{P}_{(0,\frac{1}{2})} \ \mathbb{P} \right) \Big) \end{split}$$

#### Corollary

"P occurs twice in the next time interval" is expressible in  $MTL_{\mathbb{Q}}$ .

In fact,  $MTL_{\mathcal{K}}$  can express any LTL (and hence  $FO_{\{0\}}$ ) formula "in the next time interval" as long as  $\mathcal{K}$  is dense and non-trivial.

#### Corollary

$$\begin{split} \varphi &= \mathbf{F}_{(0,\frac{1}{2})} \left( \mathbb{P} \wedge \mathbf{F}_{(0,\frac{1}{2})} \ \mathbb{P} \right) & \lor \\ & \left( \mathbf{F}_{(0,\frac{1}{2})} \ \mathbb{P} \wedge \mathbf{F}_{(\frac{1}{2},1)} \ \mathbb{P} \right) & \lor \\ & \mathbf{F}_{=1} \Big( \mathbf{P}_{(0,\frac{1}{2})} \ \left( \mathbb{P} \wedge \mathbf{P}_{(0,\frac{1}{2})} \ \mathbb{P} \right) \Big) \end{split}$$

#### Corollary

"P occurs twice in the next time interval" is expressible in  $MTL_{\mathbb{Q}}$ .

In fact,  $MTL_{\mathcal{K}}$  can express any LTL (and hence  $FO_{\{0\}}$ ) formula "in the next time interval" as long as  $\mathcal{K}$  is dense and non-trivial.

$$\begin{split} \varphi &= \mathbf{F}_{(0,\frac{1}{2})} \begin{array}{l} \left( \mathbb{P} \wedge \mathbf{F}_{(0,\frac{1}{2})} \ \mathbb{P} \right) & \lor \\ & \left( \mathbf{F}_{(0,\frac{1}{2})} \ \mathbb{P} \wedge \mathbf{F}_{(\frac{1}{2},1)} \ \mathbb{P} \right) & \lor \\ & \mathbf{F}_{=1} \Big( \mathbf{P}_{(0,\frac{1}{2})} \ \left( \mathbb{P} \wedge \mathbf{P}_{(0,\frac{1}{2})} \ \mathbb{P} \right) \Big) \end{split}$$

#### Corollary

"P occurs twice in the next time interval" is expressible in  $MTL_{\mathbb{Q}}$ .

In fact,  $MTL_{\mathcal{K}}$  can express any LTL (and hence  $FO_{\{0\}}$ ) formula "in the next time interval" as long as  $\mathcal{K}$  is dense and non-trivial.

#### Corollary

# A true extension of Kamp's theorem

Theorem  $MTL_{\mathcal{K}} = FO_{\mathcal{K}}$  if and only if  $\mathcal{K}$  is dense.

The Expressive Completeness of Metric Temporal Logic  $II_2^1$ :

Count on this

# Counting modalities

The counting modalities  $\{\mathbf{C}_n : n \in \mathbb{N}\}$  were introduced by Hirshfeld & Rabinovich in 2007.

Intuitively,  $\mathbf{C}_{n\varphi}$  asserts that  $\varphi$  holds in at least *n* distinct points in the next unit time interval.

MTL with counting is  $\text{MTL}_{\mathbb{Z}}$  with the addition of the counting modalities.

# A decidability result

Hirshfeld & Rabinovich considered MITL with counting (MTL with counting without singleton intervals).

Theorem (Hirshfeld & Rabinovich 2007) *MITL with counting is decidable.* 

# An expressiveness result

# Adding punctuality to MITL with counting gives it the power to express every bounded $FO_{\mathbb{Z}}$ formula, and hence every $FO_{\mathbb{Z}}$ formula.

Theorem (H. 2013)

MTL with counting is expressively equivalent to  $FO_{\mathbb{Z}}$ .

# An expressiveness result

Adding punctuality to MITL with counting gives it the power to express every bounded  $FO_{\mathbb{Z}}$  formula, and hence every  $FO_{\mathbb{Z}}$  formula.

Theorem (H. 2013)

MTL with counting is expressively equivalent to  $FO_{\mathbb{Z}}$ .

# Conclusions and further work

- Precisely characterized when MTL has the same expressive power as first-order logic.
- Adding counting to the non-equivalent cases gives full expressive power.

Still to do:

- Cost of expressibility.
- ► Generalization of Gabbay's Theorem.
- Extension to more expressive metric temporal logics.

# Conclusions and further work

- Precisely characterized when MTL has the same expressive power as first-order logic.
- Adding counting to the non-equivalent cases gives full expressive power.

Still to do:

- Cost of expressibility.
- Generalization of Gabbay's Theorem.
- Extension to more expressive metric temporal logics.

# From FO(<,+1) to FO(<)





#### **Replace every:**

- $\forall \mathbf{x} \, \psi(\mathbf{x}) \quad \text{by} \quad \forall \mathbf{x} \, (\psi(\mathbf{x}) \land \psi(\mathbf{x} + 1) \land \psi(\mathbf{x} + 2))$
- $x + k_1 < y + k_2$  by true if  $k_1 < k_2$  false if  $k_2 > k_2$
- $\blacktriangleright P(x+k) \quad \text{by} \quad P_k(x)$
- After converting to MTL, replace  $P_k$  with  $\mathbf{F}_{=k}P$

# From FO(<,+1) to FO(<)



# $\forall x \psi(x) \quad by \quad \forall x \ (\psi(x) \land \psi(x+1) \land \psi(x+2))$ $k + k_1 < y + k_2 \quad by \quad \begin{cases} x < y & \text{if } k_1 = k_2 \\ \text{true} & \text{if } k_1 < k_2 \\ \text{false} & \text{if } k_1 > k_2 \end{cases}$

- $\blacktriangleright P(x+k) \quad by \quad P_k(x)$
- After converting to MTL, replace  $P_k$  with  $\mathbf{F}_{=k}P$