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Reasoning about time

Timed systems are everywhere:
I Hardware circuits
I Communication protocols
I Cell phones
I Plant controllers
I Aircraft navigation systems
I . . .



Reasoning about time

Want to specify:

“If I press the brake pedal then
the pads will be applied.”

“If the brakes are applied then
the pedal has been pressed.”
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Classic temporal logic

Metric temporal logic

Extending Kamp’s Theorem (again)
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Classic temporal predicate logic

FO(<): First-order logic with < and monadic predicates for
each proposition P ∈ MP:

ϕ ::= x < y | P(x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀x ϕ | ∃ xϕ

For example:

∀x .PEDAL(x) → ∃y .
(

(y > x) ∧ BRAKE(y)
)

.

∀x .BRAKE(x) → ∃y .
(

(y < x) ∧ PEDAL(y)
)

.
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Temporal logic: LTL

Linear Temporal Logic (LTL): Propositional logic with temporal
modalities:

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ
| F θ (θ occurs in the Future)
| G θ (θ occurs always (Globally))
| θ1 U θ2 (θ1 holds Until θ2)
| P θ (θ occurred in the Past)
| H θ (θ has always occurred (Historically))
| θ1 S θ2 (θ1 has held Since θ2)

For example,
G (PEDAL→ F BRAKE)

G (BRAKE→ P PEDAL)
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LTL has emerged as the definitive temporal logic in the
classical setting.

Theorem (Kamp 1968,
GPSS 1980)
LTL is as expressive as FO(<).
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Classic temporal logic

Metric temporal logic

Extending Kamp’s Theorem (again)
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In reality, timed systems are usually quantitative.
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Quantitative setting

In reality, timed systems are usually quantitative.

Want to specify:

“If I press the brake pedal then
the pads will be applied between 0.5ms and 1ms.”



Adding time metrics to the models

We want to add a metric to the model so we can enforce certain
timing constraints, for example:

“Apply brake pads between 5 to 10 time units
after pedal is pushed”.

R has a distance metric use real intervals for timing
constraints.

I Traditional approach: intervals over Z.
I Continuous but finitely presentable: intervals over Q (seen

in Part I).
I NEW! Intervals over an arbitrary additive subgroup of R...
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We want to add a metric to the model so we can enforce certain
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I Traditional approach: intervals over Z.
I Continuous but finitely presentable: intervals over Q (seen

in Part I).
I NEW! Intervals over an arbitrary additive subgroup of R...



Additive subgroup?

I Can easily form integer linear combinations of timing
constants.

I Integer linear combinations of K = Subgroup of (R,+)
generated by K.



Motivation

I Includes most general case (K = R)

I Generalizes previous cases (K = Z, Q, or {0})

I Can be used to model multiple independent asynchronous
timing systems (e.g. Z[

√
2])

“Turn on brake lights 5 ‘pedal-time-units’ after pedal is pressed
and 3 ‘pad-time-units’ after pads are applied”
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Metric Predicate Logic

We add many unary functions {+c : c ∈ K} to FO(<) to model
moving c time units into the future.

“Apply brake pads between 5 to 10 time units
after pedal is pushed”

becomes

∀x .PEDAL(x) → ∃y . (x+5 < y < x+10) ∧ BRAKE(y),

a formula of FO{5,10}.
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Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ∼1990]
is a central quantitative specification formalism for timed
systems.
MTLK = LTL + timing constraints on operators:

G (PEDAL→ F(5,10) BRAKE)

Formally,

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ
| FI θ (θ occurs in the Future in the interval I)
| GI θ (θ occurs always (Globally) in the interval I)
| θ1 UI θ2 (θ2 holds in I and Until then θ1 holds)
| PI θ θ occurred in the Past in the interval I)
| HI θ (θ always occurred in the interval I)
| θ1 SI θ2 ( θ2 held in I and θ1 has held Since)

where I is an interval of K.
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Classic temporal logic

Metric temporal logic

Extending Kamp’s Theorem (again)



Kamp’s theorem restated

Theorem (Kamp 1968)
MTL{0} has the same expressive power as FO{0}.



Part I recap

Theorem (Hirshfeld & Rabinovich 2007)
MTLZ is strictly less expressive than FOZ.



Part I recap

Theorem (H., Ouaknine & Worrell 2013)
MTLQ has the same expressive power as FOQ.

What about MTLR? or MTL
Z[
√

2]?



A true extension of Kamp’s theorem

Theorem (H. 2013)
MTLK = FOK if and only if K is dense.



Proof: “Only if”

Lemma
If K is a non-dense additive subgroup of R then K = εZ for
some ε ∈ R.



Proof: “If”

Recall proof in Part I:

1. Use metric separation to reduce to bounded formulas.

2. Scale FOQ formula to get a formula in FOZ.

3. Use “stacking” to remove the +1 function.

4. Use denseness of Q to express LTL statements restricted
to a single time interval.

5. Scale to remove the factor introduced in Step 2.
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a boolean combination of pure past, present and future
formulas.
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Separation of temporal logics

A temporal logic formula is
I pure past if it is invariant on flows that agree on the past
I pure present if is invariant on flows that agree on the

present
I pure future if is invariant on flows that agree on the future

A temporal logic is separable if all its formulas are equivalent to
a boolean combination of pure past, present and future
formulas.

Lemma
LTL is separable.



Gabbay’s theorem

Theorem (Gabbay 1981)
A temporal logic is expressively complete if
and only if it is separable.



Quantitative separation

Separation does not hold in the quantitative setting.

For example,
G(BRAKE→ P(5,10)PEDAL)



General quantitative separation

Given a constant c > 0, a metric temporal formula is:
I pure c-distant past if it is invariant on flows that agree on

(−∞,−c)

I pure c-distant future if it is invariant on flows that agree on
(c,∞)

I bounded if there is an N such that it is invariant on all flows
that agree on (−N,N)

A temporal logic with constants from K is generally metrically
separable if every formula is equivalent, for some c ∈ K>0, to a
boolean combination of pure c-distant past, pure c-distant
future and bounded formulas.

Lemma
MTLK is generally metrically separable for non-trivial K.
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Corollary
MTLK = FOK iff MTLK can express all bounded FOK formulas.



Proof: “If”

1. Use more general metric separation to reduce to bounded
formulas.

2. Use a normal form for FOK formulas to remove +c
functions.

3. Use denseness of K to express LTL statements restricted
to an interval.



Removing the unary functions
First move the unary functions to the free variable (removing
from predicates as before).

ϕ(x) = ∃y ∈ (x , x + 1) ∃z ∈ (y , y +
√

2) . . .

= ∃y ∈ (x , x + 1)
(

∃z ∈ (y , x + 1) . . .

∨ ∃z ∈ (x + 1, y +
√

2) . . .
)

= ∃y ∈ (x , x + 1)
(

∃z ∈ (y , x + 1) . . .

∨ ∃z′ ∈ (x + 1 −
√

2, y) . . .
)

ϕ(x0, x1, x2) = ∃y ∈ (x1, x2)
(

∃z ∈ (y , x2) . . . ∨ ∃z′ ∈ (x0, y) . . .
)

Corollary
MTLK = FOK iff MTLK can express all bounded FO{0} formulas.



Removing the unary functions
First move the unary functions to the free variable (removing
from predicates as before).

ϕ(x) = ∃y ∈ (x , x + 1) ∃z ∈ (y , y +
√

2) . . .

= ∃y ∈ (x , x + 1)
(

∃z ∈ (y , x + 1) . . .

∨ ∃z ∈ (x + 1, y +
√

2) . . .
)

= ∃y ∈ (x , x + 1)
(

∃z ∈ (y , x + 1) . . .

∨ ∃z′ ∈ (x + 1 −
√

2, y) . . .
)

ϕ(x0, x1, x2) = ∃y ∈ (x1, x2)
(

∃z ∈ (y , x2) . . . ∨ ∃z′ ∈ (x0, y) . . .
)

Corollary
MTLK = FOK iff MTLK can express all bounded FO{0} formulas.



Removing the unary functions
First move the unary functions to the free variable (removing
from predicates as before).

ϕ(x) = ∃y ∈ (x , x + 1) ∃z ∈ (y , y +
√

2) . . .

= ∃y ∈ (x , x + 1)
(

∃z ∈ (y , x + 1) . . .

∨ ∃z ∈ (x + 1, y +
√

2) . . .
)

= ∃y ∈ (x , x + 1)
(

∃z ∈ (y , x + 1) . . .

∨ ∃z′ ∈ (x + 1 −
√

2, y) . . .
)

ϕ(x0, x1, x2) = ∃y ∈ (x1, x2)
(

∃z ∈ (y , x2) . . . ∨ ∃z′ ∈ (x0, y) . . .
)

Corollary
MTLK = FOK iff MTLK can express all bounded FO{0} formulas.



Removing the unary functions
First move the unary functions to the free variable (removing
from predicates as before).

ϕ(x) = ∃y ∈ (x , x + 1) ∃z ∈ (y , y +
√

2) . . .

= ∃y ∈ (x , x + 1)
(

∃z ∈ (y , x + 1) . . .

∨ ∃z ∈ (x + 1, y +
√

2) . . .
)

= ∃y ∈ (x , x + 1)
(

∃z ∈ (y , x + 1) . . .

∨ ∃z′ ∈ (x + 1 −
√

2, y) . . .
)

ϕ(x0, x1, x2) = ∃y ∈ (x1, x2)
(

∃z ∈ (y , x2) . . . ∨ ∃z′ ∈ (x0, y) . . .
)

Corollary
MTLK = FOK iff MTLK can express all bounded FO{0} formulas.



Removing the unary functions
Replace the “milestones” ({x + 1 −

√
2, x , x + 1}) with new

variables to obtain a FO(<) formula.
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functions.
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MTLZ is unable to express:
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Adding granularity
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Corollary
“P occurs twice in the next time interval” is expressible in MTLQ.

In fact, MTLK can express any LTL (and hence FO{0}) formula
“in the next time interval” as long as K is dense and non-trivial.

Corollary
MTLK can express FOK iff K is dense and non-trivial.
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A true extension of Kamp’s theorem

Theorem
MTLK = FOK if and only if K is dense.



The Expressive Completeness
of Metric Temporal Logic II1

2 :

Count on this



Counting modalities

The counting modalities {Cn : n ∈ N} were introduced by
Hirshfeld & Rabinovich in 2007.

Intuitively, Cnϕ asserts that ϕ holds in at least n distinct points
in the next unit time interval.

MTL with counting is MTLZ with the addition of the counting
modalities.



A decidability result

Hirshfeld & Rabinovich considered MITL with counting (MTL
with counting without singleton intervals).

Theorem (Hirshfeld & Rabinovich 2007)
MITL with counting is decidable.



An expressiveness result

Adding punctuality to MITL with counting gives it the power to
express every bounded FOZ formula, and hence every FOZ

formula.

Theorem (H. 2013)
MTL with counting is expressively equivalent to FOZ.
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Conclusions and further work

I Precisely characterized when MTL has the same
expressive power as first-order logic.

I Adding counting to the non-equivalent cases gives full
expressive power.

Still to do:
I Cost of expressibility.
I Generalization of Gabbay’s Theorem.
I Extension to more expressive metric temporal logics.
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From FO(<,+1) to FO(<)

Replace every:
I ∀x ψ(x) by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2 by







x < y if k1 = k2

true if k1 < k2

false if k1 > k2

I P(x + k) by Pk (x)

I After converting to MTL, replace Pk with F=kP
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